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Predicting Blood Glucose Levels with Organic
Neuromorphic Micro-Networks

Ibrahim Kurt, Imke Krauhausen, Simone Spolaor, and Yoeri van de Burgt*

Accurate glucose prediction is vital for diabetes management. Artificial
intelligence and artificial neural networks (ANNs) are showing promising
results for reliable glucose predictions, offering timely warnings for glucose
fluctuations. The translation of these software-based ANNs into dedicated
computing hardware opens a route toward automated insulin delivery
systems ultimately enhancing the quality of life for diabetic patients. ANNs
are transforming this field, potentially leading to implantable smart prediction
devices and ultimately to a fully artificial pancreas. However, this transition
presents several challenges, including the need for specialized, compact,
lightweight, and low-power hardware. Organic polymer-based electronics are
a promising solution as they have the ability to implement the behavior of
neural networks, operate at low voltage, and possess key attributes like
flexibility, stretchability, and biocompatibility. Here, the study focuses on
implementing software-based neural networks for glucose prediction into
hardware systems. How to minimize network requirements, downscale the
architecture, and integrate the neural network with electrochemical
neuromorphic organic devices, meeting the strict demands of smart implants
for in-body computation of glucose prediction is investigated.

1. Introduction

The prediction of glucose levels is of vital importance in the
management of diabetes, a chronic condition affecting millions
of people worldwide.[1–4] Accurate glucose prediction allows
individuals with diabetes to proactively adjust their insulin doses
or dietary intake, reducing the risk of dangerous fluctuations
in blood sugar levels.[5] While traditional methods of glucose
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monitoring such as fingerstick measure-
ments have provided valuable insights, the
emergence of artificial intelligence tech-
nologies is transforming our ability to pre-
dict glucose levels with high accuracy.[6,7]

Moreover, these advancements hold the po-
tential to translate into implantable predic-
tion devices toward a fully artificial pan-
creas, offering continuous, real-time moni-
toring and management and enhancing the
quality of life for individuals living with
diabetes.[8,9]

Artificial neural networks have demon-
strated notable capabilities in modeling
complex, nonlinear relationships within
data. When applied to glucose prediction,
these networks can analyze a variety of vari-
ables, including historical glucose levels,
dietary patterns, physical activity, and even
sleep patterns.[7] By processing this diverse
data set, neural networks can learn intri-
cate patterns and correlations, ultimately
enabling them to make highly accurate pre-
dictions about future glucose levels.[10] The
application of neural networks to glucose

prediction has already shown promising results.[11–14] These
models can provide patients with timely warnings of glucose
fluctuations, allowing them to take proactive measures to pre-
vent hypoglycemia (low blood sugar) or hyperglycemia (high
blood sugar). Furthermore, the integration of wearable de-
vices such as continuous glucose monitors, has facilitated real-
time data collection, improving the accuracy and responsive-
ness for patients and enabled data curation for neural network
predictions.[15,16]

Translating these neural network models into dedicated
computing hardware would enable the realization of auto-
mated insulin delivery systems and artificial pancreases in
the form of on-body or implantable medical devices.[15,17]

Such devices would bring significant benefits to diabetic pa-
tients, as they would no longer be reliant on wearing ex-
ternal devices or on manually tracking their glucose lev-
els. Implantable prediction devices would offer a seam-
less and continuous monitoring solution, drastically reduc-
ing the burden on patients and enhancing their quality of
life.[18]

The conversion of software neural networks into hardware
suitable for on- and in-body computation poses several chal-
lenges. Specific requirements include specialized, compact, and
lightweight hardware for comfortable body integration. This
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hardware should exhibit low power consumption, energy effi-
ciency, and the ability to execute neural network algorithms.
Additionally, the ANN themselves should operate efficiently
on this hardware, with minimal computational and memory
requirements.[19,20] State-of-the-art wearable sensor devices such
as smartwatches are already widely used and allow the col-
lection of data on a larger scale and data that would other-
wise not be accessible. Evaluation of this data suggests its
potential for remote and personalized healthcare and clinical
applications.[21,22] Nevertheless, the escalation in data volume
calls for more advanced processing techniques (such as ma-
chine learning) and simultaneously poses a data protection
hazard. Using a localized way of data handling and process-
ing would reduce the risks of handling sensitive health-related
data.[23]

Organic polymer-based electronics present an ideal candi-
date to address these challenges.[24,25] Micro-scale organic elec-
tronic components can efficiently mimic the synaptic connec-
tions found in biological neural networks, enabling the cre-
ation of neuromorphic systems that replicate the brain’s pro-
cessing capabilities similar to ANN.[26,27] Additionally, organic
electronics operate at low voltage and are easily tunable, making
them ideal for energy-efficient hardware neural networks[28] that
can process information in real-time[29] within the limits of im-
plantable devices. Simulations have already shown small-scale,
low-voltage organic devices capable of analyzing physiological
data.[30]

Organic polymeric materials possess several additional prop-
erties that are ideal for implantable solutions, including
flexibility,[31] stretchability,[32] biocompatibility,[33] and the ability
to interface seamlessly with biological tissues.[34,35] When applied
in implants, these materials have shown to conform to the com-
plex and curvilinear shapes of body structures, reducing the risk
of tissue damage or foreign body reactions.[35,36] Organic elec-
tronic materials can also be used as glucose sensors[37,38] or be
incorporated into drug delivery systems,[39] allowing for precise,
controlled release of medications, an important integration step
toward an artificial pancreas.

The current state-of-the-art fabrication methods for organic
neuromorphic hardware do not allow the realization of (deep)
hardware neural networks containing thousands of trainable
weights and adopting complex architectures, typically utilized
for time series prediction tasks such as glucose prediction. This
study shows how hardware limitations can drive the development
of efficient neural network designs, enabling the practical im-
plementation of a glucose-predicting neural network that can be
integrated into smart wearables or implant devices (Figure 1a).
First, we minimize the requirements of the neural network by
downscaling existing benchmark architectures without signifi-
cant loss of performance. This process involves reducing the
complexity of the network, and limiting memory and process-
ing demands (Figure 1b,c). We then integrate this neural net-
work with actual measurements from an electrochemical neu-
romorphic organic device (ENODe) which effectively replaces
the conventional network weights directly in dedicated hardware
(Figure 1d). By combining ANN optimization with the capabili-
ties of organic electronics, we show how neuromorphic hardware
can be useful to achieve in-body computations for glucose predic-
tions.

2. Results

2.1. Reducing Network Complexity

2.1.1. Input Reduction

The landscape of glucose prediction research consists of a multi-
tude of algorithms and predictive models, often accompanied by
their own data set, making a reliable comparison difficult. With
the GLYcemia Forecasting Evaluation (GLYFE, Section 4),[12] a
systematic review of nine machine learning models with a stan-
dardized processing pipeline (Section 4) on the same data set has
been provided. Their feed-forward neural network (FFNN, Sec-
tion 4) offers a hardware-suitable architecture[40] and therefore
functions as benchmark for our performance evaluation. The se-
lected OhioT1DM dataset (Section 4)[16] includes clinical data of
12 diabetes 1 patients in two Cohorts (2018 and 2020) and is pub-
licly available to researchers. This allows a unified and freely ac-
cessible approach to evaluating glucose predictions of ANN.

Patient-to-patient variance is a known issue in glucose forecast-
ing. Combined data sets of multiple individuals improves gener-
alization by finding common features, removing person specific
noise or bias and increasing the size of the data set.[13,14] There-
fore, a combined data set is used for training and evaluation (de-
tails in Section 4).

With regard to glucose prediction, blood glucose, insulin, and
meal data are most frequently selected input features in the
literature.[11] This is primarily due to possible preemptive cues
meals and insulin injections are able to provide, reducing the
time lag of potential blood glucose peaks or valleys. With consis-
tent and accurately reported data, the triplet of input features out-
perform an identical model trained on blood glucose only. How-
ever, despite adding to the performance of many models in the lit-
erature, the predictive gain remains marginal. It is in the interest
of minimizing the footprint of the required network and the re-
moval of any sensitive and invasive input features that the single
feature considered in this work is blood glucose. The OhioT1DM
blood glucose data is sampled every 5 min and by default any
history length selected as the input is sampled with the same fre-
quency. To assess the significance of the sample count in the his-
tory with the intent to minimize the number of input nodes into
the network, different sampling frequencies (one sample every
n minutes) are investigated (Figure 2a). Furthermore, by altering
the sampling frequency a minimal form of filtering is applied due
to the inherent smoothing of the reduced number of sampling
points. The FFNN architecture along with all training hyperpa-
rameters are described in Section 4 and the evaluation metrics
are explained in Section 4. The blood glucose history length of
180 min is sampled with 5, 10, 15, 20 and 30 minutes respec-
tively. Furthermore, as an additional assessment of the effect of
down-sampling of the dataset, a range of prediction frequencies
are also investigated. By changing the prediction frequency (one
prediction every n min), the training is performed on increasingly
sparse data, adding to the models generalization. As an example,
a prediction frequency of 30 min (one prediction every 30 min)
subjects the model to a six times smaller dataset during train-
ing without the complete exclusion of the data of five individu-
als. It increases the intervals in the time-series data to improve
efficiency and remove unnecessary details. To note, a sampling
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Figure 1. Organic neuromorphic electronics for glucose prediction. a) Continuous glucose measurement have become a vital strategy in managing
diabetes. Artificial neural networks (ANNs) are used for glucose prediction. Hardware implementations of the ANNs are necessary to move towards on-
body or in-body computation integrating seamlessly with already existing monitoring solutions. Organic electronics emulate neuronal behavior similar
to that of ANNs while also being flexible, stretchable and biocompatible. They offer a great promise for small-scale biointegration of hardware neural
networks. b) Reducing the size and general complexity of the neural networks increases the feasibility of a hardware implementation. c) While pure
software neural networks have a continuous weight space with no bounds, hardware devices exhibit a distinct number of conductance states within a
confined range leading to limitations on the ANN weight space. d) Real-life measurements of hardware weights are used for ANN weights.

and prediction frequency of 5 min provide an identical iteration
to the GLYFE (Section 4), but in our study with blood glucose as
single input feature and a combined data set. We refer to this as
benchmark. An overview of the proposed input parameters and
frequency definitions are provided in Figure S1 (Supporting In-
formation).

The Root-Mean-Squared-Error (RMSE) evaluation of this re-
search predominately falls within the range of 15–30 mg dL–1,
this range is kept constant throughout all figures for comparabil-
ity. The investigated sampling and prediction frequencies do not
show to improve on the RMSE of the cross-validation models of
the considered architecture (Figure 2a). On the contrary, a similar
performance is maintained over all prediction frequencies and a
sampling frequency of 5 min shows to have a slight advantage
over all alternative options. Additional evaluation metrics, such
as the continuous glucose error grid analyses (CG-EGA) metrics
(Section 4) and time lag are provided in Figure S2 (Supporting

Information). The results depicted in Figure 2a are not defini-
tive enough to establish that a sampling frequency of 5 min is
favorable. A distinction should be made whether the model per-
formance is rooted in an increased number of sampling points in
the history caused by a higher sampling frequency or if this stems
from providing a more recent gradient by having less distance be-
tween neighboring points. To investigate this, we train networks
with a history length consisting of two samples only. The sec-
ond sampling point lies 5, 10, 15, 20, and 30 min in the past to
assess the effect of a longer averaged-out gradient (30 min) to a
more recent, immediate one (5 min). The results in Figure 2b and
Tables S1 and S2 (Supporting Information) depict a decreasing
performance with an increasing two-point history length. This
confirms that the model’s performance relies mainly on short-
term gradients.

Most interestingly, we see little change in the overall perfor-
mance even though the input information has been drastically
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Figure 2. Blood glucose prediction results for reduced input and model size. a) Mean (5-fold cross-validation) RMSE over the individuals in Cohorts
2018 and 2020 of the OhioT1DM data set, where the models have been trained with different combinations of sampled history (180 minutes) frequencies
and prediction frequencies. The results show training with alternative prediction frequencies does not effect generalization and a sampling frequency of
5 minutes has a slight advantage over the alternative options. b) Mean RMSE over the individuals in Cohorts 2018 and 2020, however, this time with a
reduced history lengths that consist of two nodes only. The results show a decreasing performance when a longer duration of the history is taken over a
more immediate one. c) Mean RMSE over the individuals in Cohorts 2018 and 2020, where the models have been trained with history length of 5 minutes
for model architectures [128, 64, 32, 16] (11265 parameters), [48, 16] (945 parameters), [9, 6] (94 parameters) and [2, 1] (11 parameters). The results
show no loss of RMSE with reduction of model size except for the smallest model. d) The percentage of erroneous predictions for the models described
in (c), which show likewise to the RMSE that the number of erroneous predictions does not increase with the reduction of model size.(e) Example of
the real-time differences between the blood glucose predictions for the models described in (b), with target (red) the target data for individual 563 on
the day 8 of the test set, benchmark (black) the predictions for the base model with 180 minutes of history sampled at 5 minutes. The results show
larger time lags and increasingly smooth transitions with less immediate gradients, which positively effect the CG-EGA evaluation metrics but not the
RMSE. f) Example of the real-time differences between the blood glucose predictions for the models described in (c) and (d), for the same test day and
individual as in (e). The results show little to no differences among both the base predictions as well as all the predictions made by the smaller models.
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reduced from three to one features and from 36 to 2 sampling
points in time. The mean RMSE over the test sets with only a
history length of 5 min is 20.74 mg dL–1 over Cohort 2018 and
20.83 mg dL–1 over Cohort 2020. The benchmark performance
with 180 min of history has a mean RMSE of 20.72 and 21.43
mg dL–1 over the respective Cohorts. In contrast, the RMSE of
the GLYFE over Cohort 2018 constituted to 20.65 mg dL–1 with
blood glucose, meal data and insulin as the input features (repro-
duced with the combined dataset). This demonstrates not only
replication of performance but also a slight improvement com-
pared to the same model with personal datasets as presented by
the GLYFE originally (RMSE of 21.00 mg dL–1). We hypothesize
that is due to a more significant influence and information con-
tent of the most recent gradient and blood glucose value.

Figure 2e shows an exemplary one-day excerpt of the predictive
performance and the underlying differences between the two-
point history lengths in individual 563. The discussed smooth-
ing of the prediction due to extending the history length is visi-
ble here. A shorter history representing a more recent gradient
has a lower RMSE and leads to more adaptive predictions with
harsher swings. The inset of Figure 2e provides a closer look at
how predictions are categorised based on the CG-EGA evalua-
tion metric with benign errors as yellow triangle and erroneous
predictions as red cross. Accurate predictions are unmarked. The
benchmark model (adapted FFNN of GLYFE), depicted in black,
causes more erroneous predictions in comparison to the itera-
tions with a long history (10–30 min length), but shows a lower
RMSE and time lag (Figure S3e, Supporting Information). This
is accredited to the harsher swings that occur when a shorter his-
tory time frame is considered. Even though these predictions fol-
low the target line more accurately, the rate (gradient) differences
are sufficiently jagged to cause the CG-EGA evaluation metric to
categorize the predictions as erroneous. A full overview of CG-
EGA metrics is provided in Figure S3 (Supporting Information).
Despite better performance in the CG-EGA metrics, the favor is
given to training iterations with a lower RMSE. Improved perfor-
mance in the clinical evaluation metric CG-EGA is not necessar-
ily rooted in a conclusive performance advantage but can also be
caused by a metric-related limitation. Section 2.1.3 provides more
details on this limitation.

Decreasing the history length to a two-point gradient, and se-
lecting blood glucose as the single input feature reduces the num-
ber of parameters in the network from the original 24 883 to 11
265 (≈11 k) without significant loss of performance (20.74 mg
dL–1 compared to 20.65 mg dL–1 over Cohort 2018). This reduced
input not only entails lower energy demands for computation but
also minimizes invasive data collection for future patients.

2.1.2. Size Reduction

Since significant input cuts did not cause performance drops this
indicates that the network and information complexity are not
matched yet and further size reduction might be possible without
compromising the model accuracy.

Figure 2c and Figure S4 (Supporting Information) show the
performance of the model for a range of different model sizes,
more specifically, for hidden layer sizes [128, 64, 32, 12], [48, 16],
[9, 6], and [2, 1] that correspond to 11265 (≈11 k), 945 (≈1 k), 94,

and 11 parameters, respectively. As hypothesized, the required
complexity for the problem of glucose prediction with bench-
mark performance is minimal. No significant performance loss
is observed with a size reduction of multiple orders of magnitude
(Tables S1 and S2, Supporting Information). Only a network size
of 11 shows a slight decrease in performance (RMSE of 20.96 mg
dL–1 over Cohort 2018). This is remarkable, as a model with only
94 parameters is able to perform equally well as the model that
is over two orders of magnitude larger. A closer look at sample
to sample differences, depicted in Figure 2f, reveals minimal ob-
servable differences.

Figure 2d shows the percentage of the erroneous predictions
according to CG-EGA for the same subset of model sizes. Like-
wise to the RMSE, the number of erroneous predictions does not
increase with the reduction of the network size. The percentage
of erroneous predictions over the Cohort of 2018 is 6.03% (now
with a reduced input history length and number of features), this
is slightly higher than the percentage of erroneous predictions for
the benchmark model, which equalled 4.80% over the Cohort of
2018. This increase despite being unfavorable is a trade-off worth
considering, as the reduction in model size and input is substan-
tial compared to the accuracy decrease. Moreover, as explained
earlier, this performance decrease in the CG-EGA evaluation met-
ric is primarily rooted in the blood glucose rate differences. Due
to this effect, a small improvement is observed in the the smallest
sized model (5.77% over Cohort 2018). As previously stated, this
behavior stems from smoothing of peaks and jagged gradients
for the predictions in Figure 2e,f and also seen from the zoom-
ins.

2.1.3. Removing Software-Specific Features

To understand how we can further simplify the prediction
networks, we first need to understand the physical devices
for our hardware setup. The ENODe has three terminals:
source, gate and drain (Figure 3a, dark grey). Source and drain
electrode are connected via the organic polymer PEDOT:PSS
(poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) operat-
ing as channel (Figure 3a, dark blue). Details on device fabrica-
tion are provided in Section 4 and device architecture is pictured
in Figure S7 (Supporting Information). The gate voltage controls
the conductance of the channel material through movement of
ions between the channel material and the ion-containing elec-
trolyte (Figure 3a, light blue). By integrating multiple ENODes
into a crossbar configuration (Figure 3b) it is possible to trans-
late network architecture into hardware.[28] Each weight of the
software neural network is represented by an ENODe in the hard-
ware setup (Figure 3b,c in blue).

A substantial reduction of the network complexity and the
amount of states that its weights can assume, increases the fea-
sibility of a present day hardware implementation. However, all
models that have been trained and evaluated so far employ train-
ing methods difficult to implement in hardware (e.g., the Adam
optimizer), and unbounded, floating-point numbers to imple-
ment weights’ values. To determine whether a hardware appli-
cation is feasible, a more realistic training environment as de-
tailed in Table 1 is considered. The Adam optimizer is removed
and no additional moments in the optimizer are added. Fur-
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Figure 3. ENODe measurement. a) The electrochemical neuromorphic organic devices consists of three terminals: source (S), drain (D) and gate(G).
Source and drain electrode are connected with the p-type polymer PEDOT:PSS. An electrolyte provides an ionic connections to the gate. b) The ENODes
can be integrated in larger-scale architectures like crossbar arrays. c) Each device then represents on weight inside a hardware neural network. d) A
measurement of 100 conductance states shows high linearity in behavior and stability of time.

thermore, the number of states for the neural network weights
are bounded and discretized as the active materials in ENODes
have a restricted on/off ratio and a fixed number of distinct sta-
ble states. Figure 3d showcases a characteristic measurement of
the ENODe’s neuromorphic behavior. Measurement details are
provided in Section 4 and the measurement setup is shown in
Figure S7a (Supporting Information). We can access 100 distinct
conductance states with highly linear set and reset behavior and
stable state retention (zoom-in of Figure 3d). These 100 conduc-
tance states are extracted from the measurement and mapped
into a bounded parameter space for the weights, conserving the
set and reset linearity during the mapping. Depending on the
direction of the weight update, we round to the closest possible
state in the set or reset selections. Moreover, the SELU activa-
tion function is replaced with a ReLU activation function as expo-
nentiation in hardware is currently unfeasible.[41] This alteration
does not effect the performance as the SELU activation function
loses its advantage over a ReLU for shallow networks.[42] Lastly,

Table 1. Comparison between the hyperparameters of a software envi-
ronment and a realistic hardware environment. Using ENODe measure-
ments, 100 stable states are selected as weight and bias values in respec-
tive set and reset selections. Other training configurations, such as the
optimizer, activation functions and batch learning method, are replaced
with hardware feasible alternatives.

Hyperparameter Software Hardware

Activation function SELU ReLU

Weight states 1019 (floating-point) 100 (conductance)

Optimizer Adam None

Batch size 1500 1

batch training is removed as parallel processing of samples is not
attainable following circuit law.

2.2. Neuromorphic Integration

The hardware simulations are performed using three different
parameter spaces. Next to the 100 ENODe states introduced ear-
lier, linearly-spaced arrays of 1000 and 100 states are also consid-
ered. These linear spaces validate whether any performance loss
is caused by non-linearities in the device data or by the bounded
number of states. The introduction of an upper and lower limit
of the network weights, namely the parameter bounds, adds an
additional hyperparameter. These bounds have to be carefully se-
lected as they drastically affect the models ability to converge to an
optimum. Narrowly selected bounds directly limit the parameter
space, causing premature convergence to under-performing so-
lutions during training. Widely selected bounds increase the step
size between states, reducing training precision and increase the
likelihood of convergence to local minima. Here, the maximum
and minimum weight value of the previous (unbound) model are
chosen as upper and lower bounds respectively (Table 2). A more
studious investigation of this hyperparameter could further im-
prove the model performance.

Figure 4a and Figure S5 (Supporting Information) show the
performance for different parameter spaces at varying model
sizes. With the introduction of less sophisticated training ele-
ments (proper) model convergence becomes more challenging
due to the strong limitations imposed by hardware. We note
that this could be circumvented by further hyperparameter op-
timization and/or selecting a suitable, non-random initialization
seed. Hyperparameter tuning becomes increasingly difficult for

Adv. Sci. 2024, 11, 2308261 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2308261 (6 of 11)
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Table 2. Parameter bounds for linearly-spaced network weights and
ENODe-extracted weights.

Model size Boundaries

[48, 16] −1.2, 1.2

[9, 6] −1.5, 1.5

[6, 3] −1.7, 1.7

[4, 3] −1.7, 1.7

[2, 1] −2, 2

smaller networks, as the window for proper convergence and pre-
cision might not overlap with the required parameter bounds to
cover the full spectrum of blood glucose levels. It is clear from
the results in Figure 4a that performance decreases (Tables S3
and S5, Supporting Information) with the introduction of lim-
ited parameter states and non-linearity in the selection spectrum,
but again, this is highly dependent on how well the hyperparam-
eters are optimized. Excluding the smallest model (11 parame-
ters), model sizes 94 and ≈1k have at least one fold that performs
adequately and is able reach the complete range of blood glucose
level. Figure 4a also depicts that for the smallest network size the
RMSE performance drops drastically (24.28 mg dL–1 over Cohort
2018). Further investigation into the smallest network confirms
that none of the 5 folds converged optimally and in turn were
not able to reach every glucose level for any of the parameter
spaces (Figure S8, Supporting Information, for ENODe parame-
ter space) showing that there are clear limitations for downsizing
but at extreme level only.

Model [9, 6] (94 parameters) shows acceptable performance
with an ENODe parameter space (22.97 mg dL–1 over Cohort
2018) and therefore the evaluation is extended with two addi-
tional network sizes [6, 3] (43 parameters) and [4, 3] (31 parame-
ters), depicted in Figure 4b and Figure S6 (Supporting Informa-
tion). We choose a fixed initialization for models of size 43, 31,
and 11 to ensure convergence of all 5 folds despite heavy impo-
sitions, but provide the results of the standard fivefold cross vali-
dation in Figure S9 (Supporting Information). The difference of
performance is another clear indicator that hyperparameter se-
lection and initialization are pivotal for performance at this size.
The model of 94 parameters outperforms other model sizes. This
is however again considered to be caused by superior hyperpa-
rameter selection, because the plain software models depicted in
Figure 2 have already demonstrated how well the performance
can be maintained even for the smallest network considered.

The performance of the 31-parameter model run on the EN-
ODe parameter space is depicted in Figure 4e for all five folds
with seemingly little deviation from the benchmark. As explained
previously, proper model convergence is challenging. One fold is
not able to reach the full height of blood glucose values and cuts
off (Figure 4e, zoom-in). Noticeably, when considering the CG-
EGA evaluation metrics, the remaining converging folds as well
as the benchmark seem to cause more frequent erroneous pre-
dictions (red crosses in zoom-in) than the fold that is capped and
therefore show zero rate change. The converging fold follow the
true blood glucose level more closely, however, the jagged trend of
the rate change is penalized more severely by the CG-EGA eval-
uation leading to worse performance according to this metric.

Therefore, the CG-EGA metric should never be considered as the
sole figure of merit.

Figure 4f depicts the same exemplary excerpt as in Figure 4e,
showcasing one converging fold of all model sizes (with fixed ini-
tialization for models of size 43, 31, and 11). As mentioned be-
fore, the smallest model (11 parameters), similar to the software
environment model, is cut off in all training folds (Figure S8, Sup-
porting Information). The model with 94 parameters appears to
perform better than any of the smaller or larger sized models with
the same limitations. However, this can not be clearly accredited
to its size but rather our ability to tune the model optimally. It
is expected that the other models (excluding the 11-parameter
model) are also able to reach the similar performance to their
plain software twin with a more vigilant tuning of the hyperpa-
rameters such as the parameters bounds and learning rate.

The performance of the ENODe simulated networks using the
CG-EGA evaluation metrics is shown in Figure 4c,d. The 94-
parameter model appears to perform worse in both the percent-
age of accurate and erroneous predictions, however, the more
closely the model follows the benchmark performance (more
jagged) the more severe it is penalized in the CG-EGA evaluation.
For the 31-parameter network, the number of erroneous predic-
tions is 4.55% over Cohort 2018. This is close to the the bench-
mark model with roughly ≈ 11 k parameters (4.80%). The per-
centage of accurate predictions for the same model is 84.85% over
the same Cohort (compared to 80.4% for the benchmark model).

This means that we can perform an extreme miniaturization
of the benchmark model and include limitations due hardware-
based systems without significant loss of performance. This truly
remarkable miniaturization of neural networks for blood glu-
cose prediction meets the demands for implantable devices or
on-body computation.

3. Discussion and Outlook

This study demonstrates the feasibility of redesigning ANNs
while carefully accounting for hardware constraints. This ap-
proach allows for hardware systems capable of achieving state-of-
the-art performance in blood glucose prediction. Moreover, these
systems are suitable for implementation in both on-body and im-
plantable devices, offering promising prospects for redefining di-
abetes management.

In particular, our work successfully demonstrates the feasibil-
ity of minimizing neural networks to reduce network complexity,
memory consumption, and processing demands, ultimately nar-
rowing down input data to a single feature–blood glucose mea-
surements. Remarkably, this approach shows no significant loss
in performance. Furthermore, our results show that networks
of organic neuromorphic devices maintain benchmark-level per-
formance, despite the challenges posed by bounded parameter
spaces and non-linearities.

This marks a substantial step towards the development of im-
plantable, on-body, or wearable systems for glucose prediction
and diabetes management. As this research focuses on reduc-
ing the footprint of neural networks while maintaining perfor-
mance, future work needs to look into further optimization and
the development of practical implementations. Addressing the
challenges of hardware adaptation, including fine-tuning param-
eter bounds, long-term stability and examining the scalability of

Adv. Sci. 2024, 11, 2308261 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2308261 (7 of 11)
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Figure 4. Blood glucose prediction results for hardware simulated models (ENODe). a)Mean RMSE over the test sets of all individuals in the OhioT1DM
dataset, where the model has been trained with hardware feasible hyperparameters and a line-space of a 1000, 100 and 100 ENODe states (from
measurements). The results show decreasing performance with the introduction of fewer and less linear states. b) Mean RMSE over the test sets of all
individuals in the OhioT1DM data set, where the models have been trained with hardware feasible hyperparameters (Table 1, Hardware) and ENODe
characteristic parameter selections. The results show inconsistent performance of the models with decreasing size. This is accredited to how well the
hyperparameters are tuned, as for model [9, 6] the hyperparameters are better optimized. c) The percentage of accurate and erroneous (d) predictions

Adv. Sci. 2024, 11, 2308261 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2308261 (8 of 11)
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these models across a wider patient population will be critical.
Additionally, exploring the integration of organic polymer-based
electronics and neuromorphic systems in practical devices, with
a focus on energy efficiency, biocompatibility, will be a promising
direction. Organic electronics could not only be used for comput-
ing, but also for sensing and drug delivery allowing monolithic
integration of the complete system. Ultimately, the translation
of these findings into real-world solutions holds the potential to
transform diabetes management by providing individuals with
more accurate, continuous, and minimally invasive glucose mon-
itoring, reducing the burden on patients, and improving their
overall quality of life.

4. Experimental Section

GLYFE

The GLYFE (GLYcemia Forecasting Evaluation) provides a benchmark of
the nine different data-driven models in the field of glucose prediction,[12]

evaluated on the OhioT1DM data set (Section 4). Using this publicly avail-
able data set allows for more consistent comparisons between established
architectures. The GLYFE provides the performance of a Feed-Forward
Neural Network (FFNN) evaluated on the individuals of Cohort 2018. This
FFNN has a model size [128, 64, 32, 16] and uses blood glucose, carbohy-
drate (meal) and insulin data as its input leading to a network of 24833
parameters. The architecture uses an Adam optimizer, SELU activation
functions, mini-batch learning (1500 per batch), a Mean-Squared Error
loss function, a logarithmic hyperparameter search over the learning rate
within [10−4, 10−2] and early stopping with a patience of 100 epochs. The
evaluated iterations can be categorized as single or individual models, the
data of a single individual is used for his/hers personal model only (data
not shared across single models). The RMSE over the individuals of Co-
hort 2018 using the personal FFNN models was denoted to be 21.00 mg
dL–1.[12] As combined data sets improve neural network generalization,
the training sets of the patients in Cohort 2018 were combined into a sin-
gle data set to improve the model abstraction, each patient attributing to
≈17% of the data. The training sets of the Cohort 2020 patients were ex-
cluded from the training, only the test sets were considered. This was with
reference to future real-time personalization efforts, which hardware neu-
ral networks could provide. Moreover, it provided an overview of how well
models perform on patients that have provided data to the training effort
and patients who have not. All iterations and models were trained with
this combined data set.

Preprocessing

The continuous glucose monitoring data in the OhioT1DM data set con-
tains many interruptions accredited to device malfunctions or user errors.
To set up a constructive comparison to the GLYFE,[12] an identical pre-
processing pipeline was set up. Linear interpolation of the glucose read-
ings was performed on samples with two known neighbors. Linear extrap-
olation of the glucose readings was performed when linear interpolation
was not possible. All samples for which the ground truths were not known

were disregarded. Furthermore, fivefold cross-validation was applied on
the training set following a 80/20 percent distribution. Early stopping was
applied during training to improve generalization. Finally, feature scaling
in the form of standardization was performed to ensure consistent data
distributions across the partitioned data sets.

Network Architecture

The FFNN networks trained in paragraph 2.1.1 with architecture [128, 64,
32, 16] use an Adam optimizer, SELU activation functions, a batch size
of 1500 and is trained for a maximum of 2500 epochs with early stopping
with a patience of 100 epochs and a logarithmic learning rate search within
[10−4, 10−2], identical to the configuration used by [12] elsewhere. Depend-
ing on the input features selected and the length of the history, the input
size ranges from 108 to 2 nodes. The output is all times a single regression
node that represents the future glucose level. For the models described in
Section 2.1.2 this was equivalent, other than the reduction of the history
length from 180 min to the respective lengths. For the models described
in Section 2.1.3, the Adam optimizer was removed, the SELU activation
function was replaced by a ReLU activation function, the batch size was
set to 1, and the learning rate search window was extended to be within
[10−5, 10−1]. The model was trained for 10 epochs with no early stopping
and the best performing iteration was selected as the evaluated model.

For the adjusted parameter space. the ENODe measurements or line-
spaces were mapped between the selected parameter bounds while main-
taining device linearity. Two different mapped selection were set up, based
on the set or reset operation of the device. Depending on the sign of the pa-
rameter update gradient, the parameter was rounded to the closest value
in the respective selection.

The parameter bounds for different model sizes were specified in
Table 2. All code was written using Python (3.7.16) and Pytorch (1.13.1)
for the machine learning framework and is available upon request.

OhioT1DM Data Set

The OhioT1DM data set[16] is a publicly available clinical data set that aims
to promote and foster the development of glucose prediction algorithms.
The data set contains the information of 12 patients with type 1 diabetes
on insulin pump treatment and includes blood glucose data sampled ev-
ery 5 min by continuous glucose monitoring, fingerstick glucose measure-
ments, basal insulin rates, temporary basal insulin rates, bolus insulin in-
jections, meal-, sleep-, work data, stress, hypoglycemic events, illness, ex-
ercise, heart rate, galvanic skin response, skin temperature, air tempera-
ture, number of steps (Cohort 2018), and acceleration data (Cohort 2020)
of each individual. The total training and test sets consisted of 8 weeks,
where the last 10 days were considered as test set. A distinction was made
between the Cohorts of 2018 and 2020, as the data set was updated with
the latter six individuals in 2020. Apart from the different diagnostic tools
used for measuring physical activity data, other data features matched for
all individuals. The patients privacy was protected by use of personal iden-
tification numbers (PID) and all data were fully de-identified according to
the Safe Harbor method. The six patients of Cohort 2018 had PID 559, 563,
570, 575, 588, 591 and patients of Cohort 2020 had PID 540, 552, 567, 584,
and 596.

for the models (and similar folds) provided in (a). Results show slightly better performance for the sub optimally tuned models, this is due to the inherit
property of the CG-EGA to penalize blood glucose rate differences more severely than value differences. e) Example of the real-time differences between
the blood glucose predictions of the 5 models of the cross-validation folds of model [4, 3], with target (red) the target data for individual 563 on the day
8 of the test set, benchmark (black) the predictions for the benchmark model with 180 minutes of history sampled at 5 minutes (software) and folds
(purple) the cross-validation folds. The results show that folds are prone to be capped in their glucose level reach. Nonetheless, does at least one fold
convergence adequately. f) Identical example to (e) however this time the converged folds of the each of the hardware simulated sizes are presented
with the exception of model [2, 1] (has no fully converged folds). Depending on how well the folds are optimized, is significant performance loss with
hardware networks preventable.
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Evaluation Metrics

The FFNN model of the GLYFE[12] that is used as benchmark performance
in this study is evaluated using the Root-Mean-Squared-Error (RMSE), as
well as the continuous glucose error grid analyses (CG-EGA). The CG-EGA
provides insight into the clinical accuracy of blood glucose predictions,
and provides a more critical assessment of predictions made in each of
the glycemia ranges (hypoglycemia, euglycemia, and hyperglycemia).[43] It
categorizes a prediction to be either accurate, benign or erroneous based
on the combined contribution of value and rate difference between the
prediction and the true target. Accurate predictions are the optimal clas-
sification, benign errors are accredited to predictions that are inaccurate
but do not bear any severe clinical consequences. Erroneous predictions,
on the other hand, are inaccurate prediction that could cause life threat-
ening complications.

Device Fabrication

Standard microscope glass slides (75 mm× 25 mm) were cleaned in a son-
icated bath, first in soap solution (Micro-90 (Sigma-Aldrich)) and then in a
1:1 (v/v) solvent mixture of acetone and isopropanol. Gold electrodes for
source, drain, and gates were photolithographically patterned with nega-
tive photoresist AZ nLof2035 (MicroChemicals) and AZ 726MIF Developer
(MicroChemicals) on the cleaned glass slides. A chromium layer was used
to achieve better adhesion of the gold. The photolithography foil masks
were designed using KLayout[44] and the complementary pypi-package
koala.[45] Each glass slide contained 12 devices with fixed dimensions. The
channel dimensions of the neuromorphic device were as follows: L = 400
μm and W/L = 2 with a lateral gate of the size 1000 μm by 1000 μm and
150 μm distance between the gate and the channel. The complete layout is
depicted in Figure S7 (Supporting Information). Two layers of parylene C
(Specialty Coating Systems (SCS) coatings) were deposited. Soap (Micro-
90 soap solution, 2% (v/v) in deionized water) was used for separation
between the layers, allowing the peel-off of the upper layer. An adhesion
promoter (silane A-174 (𝛾-methacryloxypropyltrimethoxysilane) (Sigma–
Aldrich)) was added to the lower layer of parylene C to prevent detach-
ment. This layer insulated the gold electrodes. In a second photolithog-
raphy step with positive photoresist AZ 10XT (MicroChemicals) and AZ
Developer (MicroChemicals), the channel and lateral gate dimensions of
the devices were defined. Reactive ion etching with O2 plasma was used
to carve out the channel and corresponding gates.

Before preparing the polymer solution, PEDOT:PSS (Clevios PH1000,
Ossila) was sonicated for 30 min. The polymer solution contained: 94 vol%
PEDOT:PSS, 4.9 vol% ethylene glycol (Merck), 1 vol% GOPS (Merck), and
0.1 vol% DBSA (Merck). The soultion was filtered through a 0.45 μm PES
filter and spincoat. The device was baked at 120 °C for 1 min. The sacrifi-
cial upper parylene C was peeled off to confine the polymer inside the gate
and channel regions. It was hardbaked at 140 °C for 1 h to ensure proper
cross-linking. Excess soap was rinsed off with de-ionized water and the de-
vice was stored in DI water overnight. One hundred microliter phosphate-
buffered saline was dropcasted as electrolyte.

Electrical Characterization

For measurements of the electrical characteristics of volatile and non-
volatile devices, a Keithley 2602B SourceMeter was used. The source mea-
sure units at the three device terminals were connected with needle probes
the measurement system (see Figure S7, Supporting Information). For
non-volatile measurements of the ENODe, a mechanical switch in series
with a resistance RG = 100 MΩ was added between the gate of the device
and the measurement system and enhanced the analog memory phenom-
ena. The switch forced open-circuit potential condition between the gate
and channel, while the gate resistor RG downscaled and limited the gate
current in the range of nanoamperes.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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