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We develop a generic geometric formalism that incorporates both TT̄-like and root-TT̄-like deforma-
tions in arbitrary dimensions. This framework applies to a wide family of stress-energy tensor perturbations
and encompasses various well-known field theories. Building upon the recently proposed correspondence
between Ricci-based gravity and TT̄-like deformations, we further extend this duality to include root-TT̄-
like perturbations. This refinement extends the potential applications of our approach and contributes to a
deeper exploration of the interplay between stress tensor perturbations and gravitational dynamics. Among
the various original outcomes detailed in this Letter, we have also obtained a deformation of the flat Jackiw-
Teitelboim gravity action.
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Introduction—Recent studies concerning deformations
of classical and quantum field theories have revealed rich
connections between geometry and field dynamics. A prime
example is that ofTT̄ deformations [1,2] of two-dimensional
theories, driven by the irrelevant composite operator [3]

OTT̄ ¼ − detðTμ
νÞ ¼ 1

2
ðTμνTμν − Tμ

μTν
νÞ: ð1Þ

Despite being irrelevant, two-dimensional TT̄ deformations
remain well-controlled and even solvable at the quantum
level. In the deformed theory, various quantities can be
computed exactly from their counterparts in the original
model. These include the finite-volume spectrum, the S
matrix [1,2], the classical Lagrangian [4–6], and the torus
partition function [7–10]. TT̄ deformations connect with
different topics in theoretical physics, such as string theory
[11–14], holography [15–26], and quantumgravity [27–32].
We refer the reader to [33] for a pedagogical review on the
subject.
Furthermore, the TT̄ deformation lends itself to a

number of geometric interpretations. It was proposed in

[7] that TT̄ perturbing a theory is equivalent to coupling the
original theory to a random geometry. TT̄ deformations can
also be interpreted as coupling the original theory to a flat
space Jackiw-Teitelboim-like gravity [27,28], or equiva-
lently, a topological gravity [29,34,35].
Another interesting deformation of two-dimensional

field theories, driven by the so-called root-TT̄ operator
[36–38]

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TμνTμν −

1

4
Tμ
μTν

ν

r
; ð2Þ

has recently attracted growing attention. While its quan-
tum-mechanical definition remains uncertain, the root-TT̄
perturbation displays some surprising properties at the
classical level. Notably, it commutes with the TT̄, allowing
for their simultaneous activation, and for some integrable
field theories, it preserves classical integrability [39]. The
relation between root-TT̄ deformed conformal field theo-
ries and ultrarelativistic (BMS3) field theories was dis-
cussed in [40]. Finally, the connection between the root-TT̄
deformation and the modified boundary conditions in the
holographic dictionary was studied in [41]. These results
were later employed to explore the modular properties of
deformed holographic conformal field theories in [42,43].
In higher space-time dimensions, stress-energy tensor

perturbations give rise to many interesting field theory
models [4,7,36]. Extensive research has focused on TT̄-like
and root-TT̄-like deformations of four-dimensional
Maxwell’s theory, exploring the relationship between
electromagnetic duality invariance and stress tensor defor-
mations [44–46]. The massive gravity formulation of
duality-invariant nonlinear electrodynamics was studied
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in [47] and, in three dimensions, it was shown that Born-
Infeld theory displays a classical TT̄-like flow, connected to
free Maxwell theory [48]. Furthermore, recent studies have
explored nonlinear chiral two-form gauge theories in six
dimensions as TT̄-like deformations [49].
This Letter introduces a generic geometric approach to

encompass a broader class of stress-energy tensor pertur-
bations. We show that a two-dimensional theory deformed
by both TT̄ and root-TT̄ operators is dynamically equiv-
alent to the undeformed theory coupled to a novel gravity
action, at least at a classical level. We further generalize the
geometric formulation to accommodate various deforma-
tions in higher dimensions. While prior studies have
investigated geometric formulations of TT̄-like deforma-
tions in higher dimensions within the metric approach [36],
our formulation is based on the description in terms of
eigenvalues of the product of the vielbein. This approach
allows us to study stress-energy tensor-related flows within
a simple and elegant setup.
The recent work [50] has emphasized that a TT̄-type

deformed matter action coupled with the standard Einstein-
Hilbert action is equivalent to an undeformed matter theory
coupled with a Ricci-based gravity theory [51]. Adopting
this perspective, we incorporate this logic into our geo-
metric formulations and introduce Ricci-based gravity
actions linked with root-TT̄-like deformations. We develop

a unified framework for TT̄ and root-TT̄ perturbations in
field theories across various space-time dimensions, which
may extend the class of exact-solvability preserving defor-
mations and deepen our understanding of the fundamental
principles of quantum gravity and string theory.
Unified geometric formulation of TT̄ and root-TT̄

deformations in d ¼ 2—We denote by S0½ϕ; eaμ� an arbi-
trary undeformed action, where ϕ indicates a generic
collection of matter fields and eaν denotes an auxiliary
dynamical zweibein. The associated auxiliary metric is
gμν ¼ ηabeaμebν . We couple the auxiliary zweibein to a
second zweibein faμ, and the metric tensor hμν ¼
ηabfaμfbν associated to faμ will eventually emerge as the
metric of the manifold on which the deformed theory lives.
It is convenient to define two Lorentz invariant variables

y1 ¼ trðe−1fÞ ¼ faμe
μ
a;

y2 ¼ tr½ðe−1fÞ2� ¼ faμe
μ
bf

b
νeνa: ð3Þ

We now show that the combination of TT̄ and root-TT̄
deformations can be generated from the action

Sγ;λ½ϕ; eaμ; faμ� ¼ S0½ϕ; eaμ� þ Sgrav½eaμ; faμ�; ð4Þ

where gravity action Sgrav is

Sgrav½eaμ; faμ� ¼
1

2λ

Z
d2x det e

�
2þ y21 − y2 − 2y1 cosh

γ

2
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2 − y21

q
sinh

γ

2

�
: ð5Þ

The parameters λ and γ represent the TT̄ and the root-TT̄
perturbing parameters, respectively. When γ ¼ 0, Sgrav
reduces to the topological gravity action associated to
the TT̄ deformation [29],

Sgrav½eaμ; faμ� ¼
1

2λ

Z
d2xϵμνϵabðeaμ − faμÞðebν − fbνÞ; ð6Þ

where ϵ is the Levi-Civita symbol. Our analysis will be
carried out using the Euclidean signature, and the gener-
alization to the Lorentzian signature is straightforward.
The deformed action can be obtained by extremizing (4)

with respect to the auxiliary zweibein eaμ: performing the
variation of (4) with respect to eaμ, we have

det eðT ½0�Þμν ≡ δS0
δeaμ

eaν ¼ −
δSgrav
δeaμ

eaν ; ð7Þ

where ðT ½0�Þμν is the stress-energy tensor of the undeformed
theory, computed with respect to eaμ. We denote the solution
of the equation of motion by e�aμ . Note that (7) may admit
multiple solutions e�aμ related to the choice of the branch for
the square root of the root-TT̄ operator: in this Letter, we
ignore such branch ambiguities. However, in the quantum
theory, we expect one should sum over contributions from

all branches in the path integral. The deformed field theory
is obtained substituting e�aμ back into (4),

Sdeformed½ϕ; faμ� ¼ Sγ;λ½ϕ; e�aμ ; faμ�: ð8Þ
The stress-energy tensor of the deformed theory can be
computed as

Tμ
ν ≡ 1

det f

δSγ;λ
δfaμ

faν ¼
1

det f

δSgrav
δfaμ

faν

����
e¼e�

; ð9Þ

where we have used the on-shell condition (7) for eaμ, so that
Sλ½ϕ; e�aμ ; faμ� explicitly depends on faμ alone. To simplify
notation, wewill not distinguish between eaν and its on-shell
value e�aμ , unless necessary. One can verify that the total
action (4) obeys the following flow equations:

∂Sγ;λ
∂λ

¼ −
Z

d2x det f detðTν
μÞ; ð10Þ

∂Sγ;λ
∂γ

¼
Z

d2x det f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
Tμ
νTν

μ −
1

4
ðTν

νÞ2
r

: ð11Þ

Therefore, the action (4) provides a geometric description
of the combined TT̄ and root-TT̄ deformations. Since Sγ;λ is
defined as independent of the flow path, and since the
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operators do not have explicit λ and γ dependence, the two
types of deformations commute with each other.
As discussed in Sec. 2.3 of [29], one can translate the

vielbein formulation to the metric formulation by choosing
a gauge such that e−1f ¼

ffiffiffiffiffiffiffiffiffiffi
g−1h

p
by using the local

Lorentz transformations of e and f, where we have omitted
indices to simplify the notation. The validity of the flow
equations (10) and (11) can also be verified in the metric
formulation, and the details are shown in the Supplemental
Material [52].
We now illustrate our methodology, starting from the

simple undeformed action of a free scalar,

S0½ϕ; eaμ� ¼
Z

d2x det e

�
1

2
ηabeμaeνb∂μϕ∂νϕ

�
: ð12Þ

The solution of the equation of motion for eaν is

e�aμ ¼ 1

2
e
�γ
2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4λe�γX
p þ 1

�
faμ

∓
�
sinh γ

2
� 2λe�

γ
2X

X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λe�γX

p þ sinh γ
2

2X

�
ηabfνb∂νϕ∂μϕ; ð13Þ

where X ¼ 1
2
ηabfμafνb∂μϕ∂νϕ. Substituting the solution e�aμ

into the action, we get

Sγ;λ½ϕ; e�aν ; faν � ¼
Z

d2x
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4e�γλX

p

2λ
; ð14Þ

which reproduces the result obtained in [38].
Uplift to higher dimensions—In this section, we uplift

the geometric description to a family of deformations
induced by functionals of the stress-energy tensor in higher
dimensions. In d space-time dimensions, we consider the
following general form for the gravity action:

Sgrav½eaμ; faμ� ¼
Z

ddx det eBðe−1fÞ; ð15Þ

where B is a Lorentz invariant function of ðe−1fÞμν .
Therefore, B depends only on the Lorentz invariant
variables yn ¼ tr½ðe−1fÞn�, n ¼ 1;…; d. For n > d, the
yn are not independent quantities. Since one can express
B in terms of the variables yn, the stress-energy tensor can
be computed as

T ≡ 1

det f

δSgrav
δf

f ¼
Xd
n¼1

n
detðe−1fÞ ðe

−1fÞn∂ynB; ð16Þ

where T denotes the matrix Tμ
ν . To construct higher-

dimensional deforming operators, we need to compute
Lorentz invariant functionals of the stress-energy tensor
(16). Although we can express each invariant trðTkÞ in
terms of the y variables, this approach is quite inefficient in
arbitrary dimensions, since there is no simple general
formula for yn when n > d.
However, assuming e−1f can be diagonalized by means

of some matrix U as e−1f ¼ Udiagðα1;…; αdÞU−1, the

function B can be expressed in terms of the eigenvalues αi,
and each yn reduces to a power sum symmetric polynomial
of the αi. For this reason, working with the eigenvalues of
e−1f proves to be a far more convenient strategy. The
stress-energy tensor can be expressed as

T ¼
�Yd

k¼1

αk

�
−1
U diagðα1∂α1B;…; αd∂αdBÞU−1; ð17Þ

and

trðTkÞ ¼
�Yd

j¼1

αj

�
−k Xd

i¼1

ðαi∂αiBÞk: ð18Þ

Expressing y1 and y2 in terms of eigenvalues of e−1f, the
two-dimensional gravity action (5) can be significantly
simplified,

Sgrav½eaμ; faμ� ¼
1

λ

Z
d2x det eðα1 − e

γ
2Þðα2 − e−

γ
2Þ: ð19Þ

Note that Sgrav is not a symmetric function of the eigen-
values because of the nonanalyticity of the root-TT̄
operator. Exchanging two eigenvalues is equivalent to
crossing a branch cut.
Motivated by the expression (19), we propose a gener-

alization in arbitrary d space-time dimensions,

B ¼ 1

λΣ−1
Yd
k¼1

ðαpk
k − βpk

k Þ1=pk ; ð20Þ

where λ and βk are perturbing parameters, pk are numbers
characterizing the deformation, and Σ ¼ P

d
k¼1 p

−1
k . When

d ¼ 2 and pk ¼ 1, the action (20) reduces to (19) if we
identify β1 ¼ eðγ=2Þ and β2 ¼ e−ðγ=2Þ. We will show that the
parameters λ and log βk emerge as higher-dimensional
analogs of the two-dimensional TT̄ and root-TT̄ deforma-
tion parameters, respectively. With the ansatz (20), the
eigenvalues of the stress-energy tensor can be computed as

τi ¼ αi∂αiB
Yd
j¼1

α−1j ¼ αpi
i

αpi
i − βpi

i
B
Yd
j¼1

α−1j : ð21Þ

We also find

Yd
k¼1

τ1=pk
k ¼ 1

λΣ−1
BΣ−1

�Yd
k¼1

αk

�
1−Σ

: ð22Þ

Therefore, the flow equation for λ is

∂Sgrav
∂λ

¼ −ðΣ − 1Þ
Z

ddx det f

�Yd
k¼1

τ1=pk
k

� 1
Σ−1
: ð23Þ

The operator on the right-hand side of the Eq. (23) is
nonanalytic and not symmetric in terms of the stress-energy
tensor eigenvalues τi. Particularly, when all pk are equal to
p, we obtain a ðdetTÞ½1=ðd−pÞ� deformation [4,7]. When
Σ ¼ 2, the deformation is of order OðT2Þ. Let us now

PHYSICAL REVIEW LETTERS 133, 111602 (2024)

111602-3



consider the flow equation for the β parameters. We have

βi∂βiB − βj∂βjB ¼ −ðτi − τjÞ
Yd
k¼1

αk: ð24Þ

Equation (24) suggests that the flow should be confined to
the surface defined by

Q
d
k¼1 βk ¼ 1. Otherwise, the per-

turbing operator would explicitly depend on λ and βk. The
resulting flow equation is

Xd
k¼1

vk
∂Sβ;λ

∂ log βk
¼ −

Z
ddx det f

�Xd
k¼1

vkτk

�
; ð25Þ

where vk are constants satisfying
P

d
k¼1 v

k ¼ 1. Varying the
β parameters on the surface

Q
d
k¼1 βk ¼ 1 leads to nonana-

lytic marginal deformations that commute with theQ
d
k¼1 τ

1=pk
k deformation. In two dimensions, the root-TT̄

operator can be understood as the difference τ1 − τ2.
However, explicitly expressing the difference between
the τk in terms of trðTjÞ is more difficult in higher
dimensions. Let us now examine the initial conditions of
the flow equations. When integrating out the auxiliary
vielbein eaμ, one needs the equations of motion of eaμ,

Bðe−1fÞδμν − ðe−1fÞμα ∂B
∂ðe−1fÞνα

¼ −
1

det e
δS0
δeaμ

eaν : ð26Þ

The right-hand side is finite in the limit λ → 0. Denoting

the eigenvalues of ðT ½0�Þμν as τ½0�k , the solution is

αj ¼ βj

�
λðτ½0�j Þ−1

�Yd
k¼1

τ½0�k
1=pk

� 1
Σ−1 þ 1

�1=pj

; ð27Þ

which implies that αk ¼ βk þOðλÞ when λ → 0. When
βk ¼ 1, we have eaμ → faμ and the total action Sβ;λ ¼
S0½ϕ; eaμ� þ Sgrav½eaμ; faμ� reduces to the original action
S0½ϕ; faμ�. Equation (27) can be interpreted as the deformed
boundary conditions in holography, formulated in terms of
eigenvalue variables. In the Supplemental Material, we
reproduce the root-TT̄ deformed boundary conditions
proposed in [41].
Examples—Several deformed field theories can be

explored within this framework. A notable example is
the ModMax theory [53] and its Born-Infeld-like (MMBI)
extension [54]. The ModMax theory is a nonlinear con-
formal- and duality-invariant modification of Maxwell’s
theory. The MMBI extension maintains the duality invari-
ance, and the action satisfies two commuting flow equa-
tions [5,55,56],

∂LMMBI

∂λ̃
¼ 1

8

�
TμνTμν −

1

2
Tμ
μTν

ν

�
; ð28Þ

∂LMMBI

∂γ̃
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TμνTμν −

1

4
Tμ
μTν

ν

r
: ð29Þ

In the MMBI theory, the stress-energy tensor admits two
degenerate eigenvalues τ1 and τ2, each of multiplicity 2.
Therefore, the following relations hold:

trðT2Þ − 1

2
ðtrTÞ2 ¼ −4

ffiffiffiffiffiffiffiffiffiffi
detT

p
¼ −4τ1τ2; ð30Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðT2Þ − 1

4
ðtrTÞ2

r
¼ τ1 − τ2: ð31Þ

Turning off the irrelevant deformation momentarily, one
can notice that the flow (23) is satisfied in d ¼ 4 by fixing
pk ¼ 2 for each k, up to rescaling the irrelevant flow
parameter. On the other hand, setting β1 ¼ β2 ¼ eγ ¼
β−13 ¼ β−14 , the flow equation (25) can be identified with
(29), up to a rescaling of γ. This shows that the MMBI
flows (28) and (29) can be realized by coupling Maxwell’s
theory to the gravity action (20) with d ¼ 4 and pk ¼ 2. In
this case, (20) simply reduces to

Sgrav½eaμ; faμ� ¼
Z

d4x det e
�
1

λ

Y4
k¼1

ðα2k − β2kÞ1=2
�
: ð32Þ

Note that the quantities α2k represent the eigenvalues of
gμρhρν: if we switch off the deformation induced by the
βk’s, the corresponding action can be expressed explicitly
in terms of the metrics,

Sgrav½hμν; gμν� ¼
1

λ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðhμν − gμνÞ

q
: ð33Þ

TT̄-like flows of six-dimensional two-form chiral theories
were recently studied in [49]. In these models, T admits two
degenerate eigenvalues of multiplicity 3 (throughout the
flow), implying that our geometric construction can be
straightforwardly implemented. Another example is the
higher-dimensional generalized Nambu-Goto action of a
self-interacting scalar field in d dimensions,

Sλ¼
Z

ddx

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2λð1−λVÞ∂μϕ∂μϕ

p
λð1−λVÞ −

2V
1−λV

�
: ð34Þ

The action (34) satisfies the flow equation (the V ¼ 0 case
has been proven in [49])

∂Sλ
∂λ

¼
Z

ddx
�
1

2d
trðT2Þ − 1

d2
ðtrTÞ2

−
d − 2

2
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
d3=2

trðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðT2Þ − 1

d
ðtrTÞ2

r �
: ð35Þ

The stress-energy tensor has a nondegenerate eigenvalue τ1
and a degenerate eigenvalue τ2 of multiplicity d − 1. In
terms of eigenvalues, the deforming operator can be written
as − 1

2
τ1τ2. Therefore, such deformation can be achieved by

setting βj ¼ 1, p1 ¼ 1 and pk>2 ¼ d − 1 in (23). It was
shown in [48] that the three-dimensional Born-Infeld
theory also satisfies the flow equation (35), and one can
show that T has a nondegenerate eigenvalue τ1 and a
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degenerate eigenvalue τ2 of multiplicity 2, allowing for a
similar description of the flow. Finally, alternative geo-
metric formulations can be constructed when the theory’s
stress-energy tensor has two distinct degenerate eigenval-
ues, as described in the Supplemental Material.
Inclusion of dynamical gravity—In [50], it was pointed

out that a TT̄-deformed matter action coupled to the
Einstein-Hilbert action is equivalent to an undeformed
matter theory coupled to a Ricci-based gravity.
Continuing along the same line of thought, we now make
the metric h dynamical and include the Einstein-Hilbert
term within the first-order Palatini formalism. The total
action is

S½h; g;Γ;ϕ� ¼ 1

2κ

Z
ddx

ffiffiffiffiffiffiffiffiffiffi
det h

p
hμνRμνðΓÞ

þ
Z

ddx
ffiffiffiffiffiffiffiffiffi
det g

p
Bðg−1hÞ þ S0½g;ϕ�; ð36Þ

where the Ricci curvature tensor is a functional of the
connection

RμνðΓÞ ¼ ∂αΓα
νμ − ∂νΓα

αμ þ Γα
αβΓ

β
νμ − Γα

νβΓ
β
αμ: ð37Þ

The equations of motion for the connection Γλ
μν lead to the

compatibility conditions

Γλ
μν ¼

1

2
ðh−1Þλαð∂νhμα þ ∂μhαν − ∂αhμνÞ: ð38Þ

Integrating out g in the action (36) we get

S½h;Γ;ϕ� ¼ 1

2κ

Z
ddx

ffiffiffiffiffiffiffiffiffiffi
det h

p
hμνRμνðΓÞ þ Sdeformed½h;ϕ�;

ð39Þ
which can be viewed as a deformed matter action Sdeformed
coupled to the standard Einstein-Hilbert action.
To obtain the Ricci-based gravity description, one can

integrate out h in the action (36) and obtain

S½g;Γ;ϕ� ¼
Z

ddx
ffiffiffiffiffiffiffiffiffi
det g

p
Lðg−1RÞ þ S0½g;ϕ�; ð40Þ

L ¼
�
Bðg−1hÞ − 1

d − 2
gμαhαν

∂B
∂ðgμβhβνÞ

�����
h¼h�ðgÞ

; ð41Þ

which can be interpreted as an undeformed matter action
coupled to a Ricci-based gravity theory Lðg−1RÞ. This
procedure yields a dynamical equivalence between an
undeformed matter theory coupled to a Ricci-based gravity
and a deformed theory coupled to standard general
relativity.
It is, however, difficult to obtain an explicit expression

for the Lagrangian Lðg−1RÞ associated with the B function
given by (20) because the equations of motion of h are in
general very complicated. In the Supplemental Material, we
derive a flow equation for Lðg−1RÞ,

∂LðρÞ
∂λ

¼ −ðΣ − 1Þκ− Σ
Σ−1

�Yd
i¼1

αi

�

×
�Yd

k¼1

�
α−2k ρk −

1

2

Xd
j¼1

α−2j ρj

�
1=pk

� 1
Σ−1

; ð42Þ

where we express L as a function of the eigenvalues ρk of
g−1R, and αk can be determined through

∂LðρÞ
∂ρk

¼ 1

2κα2k

Yd
i¼1

αi: ð43Þ

The flow equation (42) allows computing the small λ
expansion of Lðg−1RÞ (see the Supplemental Material).
Finally, in two dimensions, one can couple (5) to a

Jackiw-Teitelboim-like gravity. We find that an unde-
formed matter theory coupled with a deformed Jackiw-
Teitelboim-like gravity is dynamically equivalent to a
deformed theory coupled to a Jackiw-Teitelboim-like
gravity. The details are given in the Supplemental Material.
Including marginal flows in general deformations—One

can consider Ricci-based gravity theories associated with
more general deformations. For instance, the stress tensor
deformation originating from Eddington-inspired Born-
Infeld gravity [57] plays a role in d ¼ 4 TT̄-like deforma-
tions of Abelian gauge theories [50]. For a stress tensor
flow driven by an arbitrary operator fðτiÞ with parameter λ,
the associated B function satisfies the flow equation

∂B
∂λ

¼ fðτiÞ
Yd
k¼1

αk; τi ¼ αi∂αiB
Yd
j¼1

α−1j : ð44Þ

One can also include marginal flows by replacing αi →
αi=βi with

Q
d
k¼1 βk ¼ 1 in the B function. The eigenvalues

τi are modified as τiðαjÞ → τiðαj=βjÞ, and the form of the
flow equation (44) remains unchanged. The flow equations
associated with the β parameters are

βi
∂B
∂βi

− βj
∂B
∂βj

¼ αi
∂B
∂αi

þ αj
∂B
∂αj

¼ −ðτi − τjÞ
Yd
k¼1

αk: ð45Þ

Therefore, it is possible to incorporate commutative mar-
ginal flows for any stress tensor deformation that admits a
geometric realization. It follows from (42) that the asso-
ciated Ricci-based gravity action should be modified
as LðρjÞ → Lðβ−2j ρjÞ.
Conclusions—This Letter introduces a geometric for-

mulation for the combination of TT̄ and root-TT̄ deforma-
tions in d ¼ 2. We demonstrate that these deformations can
be classically formulated by coupling the undeformed
theory with a massive gravity action. Additionally, we
extend the geometric framework to encompass various
stress-energy tensor deformations in higher dimensions.
These deformations are related to several well-known
theories, including ModMax and its Born-Infeld-like exten-
sion. Furthermore, we study the Ricci-based gravities
associated with such deformations. These findings might
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have broad implications in key areas of string theory and
holography, improving our understanding of the effects of
stress tensor deformations. Note also that our approach
appears suitable for studying various irrelevant and mar-
ginal deformations. However, challenges arise in finding
exact solutions for more complex B functions in (15). Not
all deformations will lead to explicit or unique solutions for
the relevant constraints, which generalize (44) and (45).
There are several compelling avenues for future explo-

ration stemming from our current work. A natural question
is whether our formulation allows for the study of root-TT̄
or more general deformations at the quantum level. The
quantization of root-TT̄ deformed theory poses a complex
challenge, although some relevant progress has been made
recently [58,59]. We anticipate that our formulation could
offer insights into this intricate issue. Another avenue worth
exploring is investigating the holographic dictionary of
these deformations. Further, exploring the corresponding
realization in celestial holography [60] would be valuable,
as proposed in [61], which offers a potential avenue for
constructing UV-complete gravity theories. The link
between stress-energy flows and classical string or D-brane
actions can provide insights into the UV completeness of
deformed theories. Consequently, one can envisage con-
structing counterparts [61,62] in the framework of
celestial holography to investigate their role in UV-com-
plete theories.

Note added—After our work was submitted to arXiv,
[63] appeared, also investigating the massive gravity
description of the root-TT̄ deformation and finding results
consistent with ours. [63] also examined deformations with
explicit λ dependence across various dimensions. In addi-
tion, an auxiliary field method to define integrable defor-
mations of the principal chiral model was discussed in [64–
66]. Exploring the potential connections between the two
approaches remains an intriguing open problem.
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