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We study the merger of black hole-neutron star (BH-NS) binaries in numerical relativity, focusing on the
properties of the remnant disk and the ejecta, varying the mass of compactness of the NS and the mass and
spin of the BH. We find that within the precision of our numerical simulations, the remnant disk mass and
ejecta mass normalized by the NS baryon mass (M̂rem and M̂eje, respectively), and the cutoff frequency fcut
normalized by the initial total gravitational mass of the system at infinite separation approximately agree
among the models with the same NS compactness CNS ¼ MNS=RNS, mass ratio Q ¼ MBH=MNS, and
dimensionless BH spin χBH irrespective of the NS massMNS in the range of 1.092 − 1.691M⊙. This result
shows that the merger outcome depends sensitively on Q, χBH, and CNS but only weakly on MNS. This
justifies the approach of studying the dependence of NS tidal disruptions on the NS compactness by fixing
the NS mass but changing the EOS. We further perform simulations with massive NSs of MNS ¼ 1.8M⊙,
and compare our results of M̂rem and M̂eje with those given by existing fitting formulas to test their
robustness for more compact NSs. We find that the fitting formulas obtained in the previous studies are
accurate within the numerical errors assumed, while our results also suggest that further improvement is
possible by systematically performing more precise numerical simulations.
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I. INTRODUCTION

The first gravitational wave (GW) detection for
GW150914 from a binary black hole (BBH) merger her-
alded the opening of the era of GW astronomy [1].
Subsequently, at the event of GW170817, the first binary
neutron star (BNS) merger was observed not only through
GWs but also through signals of electromagnetic (EM)
counterparts by diverse instruments all over theworld [2–6].
GW data analysis for this event gave a constraint on the tidal
deformability of the NS which excludes very stiff equa-
tions of state (EOS) [2,7–10]. The observation of short
gamma-ray burst (GRB), GRB 170817A, and the kilonova,

AT2017gfo, indicated that the NS is involved in the merger,
and it is suggested that a remnant formed after a BNS
merger is likely to be the central engine of the GRB [4,5,11].
The observation of the kilonova indicated that an r-process
nucleosynthesis could occur in the BNS merger. All
these facts suggest that future observations of GWs and
EM counterparts will provide us valuable opportunities
to deepen the knowledge of the mechanism of short
GRBs, kilonovae, and r-process nucleosyntheses of heavy
elements.
As in the BNS mergers, the BH-NS mergers can also, in

principle, generate EM counterparts of GW such as kilonovae
when a significant amount of matter is ejected in the tidal
disruption of the NS. Such EM counterparts can give infor-
mation about the NS EOS [8,12], the origin of heavy elements
produced through r-process nucleosynthesis [13–17], and
cast light on physics beyond the nuclear saturation
density. However, although two events GW200105 and
GW200115 [18] are reported to be the BH-NS merger
in 2021, and in addition, GW190425 (with masses of
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1.12 − 1.68M⊙ and 1.61 − 2.52M⊙) could possibly be a
BH-NS merger [19,20], no multimessenger detection of
BH-NS mergers has been confirmed yet. This lack of EM
counterpart observation for the previous events is consistent
with theoretical predictions because the mass ratios of these
binaries are as high as 4–5 and the BH spins are likely to be
zero or retrograde, and thus, tidal disruption is unlikely to
occur [21]. However, for interpreting future events, in
which tidal disruption of NSs may occur, it is crucial to
prepare theoretical models that quantify the relation
between the properties of the BH-NS merger and the
observables.
Numerical simulations of BH-NS mergers play an

important role in understanding the tidal disruption and
mass ejection processes. Since 2006 [22–26], many
numerical simulations have been performed for this to
study the dependence of the merger behavior on binary
parameters, focusing on the characteristic results of tidal
disruptions [27–43]. Additionally, it is revealed that the
cutoff frequency, one of the notable features of the GW
signal in tidal disruptions, encodes information on the NS
EOS, especially when it is stiff [29,31,44,45]. More
importantly, previous studies [32,33,38,46,47] show that
the rest mass of the remnant matter located outside the
apparent horizon and ejecta mass normalized by the NS
baryon mass (M̂rem and M̂eje, respectively) as well as the
cutoff frequency of GWs depend sensitively only on
the mass ratio Q, the BH dimensionless spin χBH, the
compactness of NSs CNS but not on the NS mass MNS.
Based on this approximate parameter dependence, previous
studies [33,38,46,47] of BH-NS mergers give some fitting
formulas for the remnant mass Mrem and the ejecta mass
Meje. These semi-analytical models for the merger results
are valuable because numerical simulations of BH-NS
mergers are resource-intensive. These fitting formulas for
the remnant disk mass and ejecta mass are used to assess
whether the EM counterparts would be present [38,48], and
constrain the binary parameters after the observation of EM
signals [49–54].
However, the typical range of NS mass in these previous

simulations is limited to MNS ≈ 1.2–1.5M⊙ [55,56], with
NS compactness between 0.12 and 0.19, although more
massive NSs at least up to ∼2M⊙ exist in nature [57,58]. It
is not clear whether the fitting formulas obtained by the
previous studies also hold quantitatively for more massive
and compact NSs because they are not tested for more
massive NSs. Given possible GW detections of such
massive NSs in BH-NS binaries [19,59], quantitative
investigation of the BH-NS mergers in such a parameter
space is essential.
In this paper, we study BH-NS mergers in numerical

relativity varying the NS mass and NS compactness for a
range wider than in the previous studies. We first focus on
BH-NS binaries with the several fixed combinations of
mass ratio Q, BH dimensionless spin χBH, and NS

compactness CNS but with various NS masses MNS in
order to clarify how M̂rem, M̂eje, and fcutm0 (where
m0 ¼ MBH þMNS) are sensitive to the NS mass MNS.
We then perform simulations for a large value of the NS
mass (MNS ¼ 1.8M⊙), and examine the accuracy of the
previous fitting formulas of M̂rem, M̂eje, and ejecta velocity
veje for the system with a large value of the NS compactness
(CNS ≥ 0.19). We will show that within the range of the
numerical accuracy, M̂rem, M̂eje, and fcutm0 can be derived
from the fitting formulas if the values of χBH, Q, and CNS
are identical: The fitting formulas previously obtained in
Refs. [38,46,47] still work well for larger values of CNS
above 0.19.
The paper is organized as follows. In Sec. II we briefly

summarize numerical methods used in our study.
Numerical results of simulations are presented in
Sec. III, focusing on the remnant disk mass, the ejecta
mass, and the gravitational waveforms. In Secs. III B and
III C, we present the results for the simulations with the
fixed NS compactness and those for massive and compact
NSs, respectively. Section IV is devoted to a summary and
discussion. Throughout this paper, all the quantities in
tables and figures are shown in units of c ¼ G ¼ M⊙ ¼ 1
unless otherwise stated. Our convention of notation is
summarized in Table I.

TABLE I. Our convention of notation for physically important
quantities, geometric variables, and hydrodynamic variables.

Symbol Description

MBH Gravitational mass of the black hole in isolation
χBH Dimensionless spin parameter of the black hole
MNS Gravitational mass of the neutron star in isolation
RNS Circumferential radius of the neutron star in isolation
Mb Rest baryon mass of the neutron star in isolation
CNS Compactness of the neutron star: CNS ¼ MNS=RNS
Q Mass ratio of BH-NS: Q ¼ MBH=MNS
Mrem Remnant disk mass after the merger
Meje Ejecta mass after the merger
M̂ Mass normalized by Mb

m0 Initial total gravitational mass of the system at
infinite separation

γij Induced metric on the t ¼ const hypersurface
α Lapse function
βi Shift vector
γ Determinant of γij

ρ Baryon rest-mass density
uμ Four velocity of the fluid
P Pressure
ϵ Specific internal energy
ρ� Conserved baryon rest mass density: ρα

ffiffiffi
γ

p
ut

Γ Adiabatic index
h Specific enthalpy: 1þ ϵþ P=ρ
ê Specific energy: hαut − P=ραut
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II. NUMERICAL METHODS

This section describes the numerical methods used in our
study. Sec. II A summarizes our numerical simulation
methods, Sec. II B describes the NS EOS, Sec. II C presents
the diagnostics of simulations, Sec. II D presents the fitting
formulas given from previous studies, and Sec. II E
presents the models employed in this study.

A. Simulation methods

We carry out numerical simulations using the SACRA-
MPI code [60], which uses an adaptive-mesh-refinement
(AMR) algorithm [27] and MPI / OpenMP hybrid paral-
lelization to speed up the computation [60]. SACRA solves
the Einstein equation in a moving puncture version [61–63]
of the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation [64,65], incorporating a Z4c constraint-
propagation prescription locally [66]. Together with the
Einstein equation, we solve hydrodynamics equations using
the Harten-Lax-van Leer contact (HLLC) solver [67–69] in
this paper. More details of the formulation, the gauge
conditions, and the numerical scheme are described in
Refs. [31,32,42,45]. For actual computation, we employ
the public spectral code FUKA (Frankfurt University
Kadath) [70] to generate initial data. We do not take into
account magnetohydrodynamics and neutrino-transfer
effects, since we focus on the evolution of the system up
to 30 ms after the merger for which these effects are not very
important.
The grid structure of SACRA is summarized as follows.

Computational domains are composed of nested equidistant
Cartesian grids, and each grid has ð2N; 2N;NÞ points in
ðx; y; zÞ directions. We employ a cell-centered grid structure
and the x-coordinate at jth grid point is given by
xj ¼ ðjþ 1=2ÞΔx, where Δx is the grid resolution. The
equatorial-plane symmetry is imposed on the z ¼ 0 plane.
We adopt N ¼ 82 as a fiducial value, with which the NS
radius is covered by ≈66 points in the finest grid. We also
perform simulations with N ¼ 62 and N ¼ 102 for selected
models to evaluate the numerical error and check the
convergence of the numerical results (see Appendix A).
The physical quantities in tables and figures, unless specified,
are taken from results withN ¼ 82. In our study, the inspiral
motion before the merger is followed at least for 5 orbits.
We prepare 10 refinement levels for the AMR computa-

tional domains. 6 coarser domains (lc) cover both BH and
NS with the origins fixed at the center of the mass of the
binary system. Two sets of 4 finer domains (lf) comovewith
either BH or NS, covering the region of their vicinity.
Namely, we prepare 2lf þ lc computational grid domains
spanning lc þ lf refinement levels. Starting from the coars-
est level as l ¼ 0, the lth level has a grid spacing, Δxl ¼
L=ð2lNÞ, and at the finest level,Δx ¼ L=ð2lfþlc−1NÞ, where
L is the size of the computational domain, which covers
½−L∶L� × ½−L∶L� × ½0∶L� for x-y-z.

B. Equation of state

Since the lifetime of NS binaries is typically much longer
than the cooling time of NSs, NSs in the late inspiral stage
are believed to be cold enough to be modeled by zero-
temperature EOS [71]. Thus, for modeling the NSs prior to
the merger, we use the zero-temperature EOS in our
simulations. In this paper, we model such EOSs by piece-
wise polytropes [72–74], which are written in the form

PðρÞ ¼ κiρ
Γiðρi ≤ ρ ≤ ρiþ1Þ; ð1Þ

where κi are constants and other quantities are described
in Table I. We perform simulations for models with both two
pieces and four pieces, with i∈ f0; 1g and i∈ f0; 1; 2; 3g
respectively. ρ0 ¼ 0, and for ρ ≤ ρ1, we adopt Γ0 ¼
1.35692395 and κ0=c2¼3.99873692×10−8 g1−Γ0 cm3Γ0−3
[72]. The boundary condition at ρi is κiρ

Γi
i ¼ κiþ1ρ

Γiþ1

i ,
which requires the continuity of pressure at the interface
between ith and (iþ 1)th region.
For different EOS models, we take different fiducial

pressures Pfid at the fiducial density ρfid ¼ 1014.7 g cm−3.
For piecewise polytropeswith twopieces,we takeρ2 → þ∞,
Γ1 ¼ 3.000, and κ1 is defined by κ1 ¼ Pfid=ρ

Γ1

fid. For piece-
wise polytropes with four pieces, we take ρ2 ¼ ρfid,
ρ3 ¼ 1015 g cm−3, ρ4 → þ∞, and κ2 is defined by
κ2 ¼ Pfid=ρ

Γ2

fid. Other parameters for different EOS models
and NS initial properties related to the EOS are listed in
Table II.
In numerical simulations, we add the thermal part of the

EOS to the zero-temperature part described above. Our
implementation for it is the same as that described in
Refs. [75] with an adiabatic index of the thermal
part Γth ¼ 1.8.

C. Diagnostics

1. Remnant disk and ejecta

After the merger, the fate of the matter originating from
the NS can be divided into three types. The matter directly

TABLE II. Piecewise polytropic EOS Models employed in the
present simulations. Model EOS name, Pfid: the pressure at
the fiducial density ρfid ¼ 1014.7 g cm−3, Γi (i ¼ 1–3), and the
maximum gravitational mass of spherical NSs for the given EOS.
The first four EOSs are composed only of two pieces.

EOS log10Pfid½dyne=cm2� Γ1 Γ2 Γ3 Mmax½M⊙�
15H 34.700 3.000 N=A N=A 2.53
H 34.500 3.000 N=A N=A 2.25
HB 34.400 3.000 N=A N=A 2.12
B 34.300 3.000 N=A N=A 2.00

H4 34.669 2.909 2.246 2.144 2.03
APR4 34.269 2.830 3.445 3.348 2.20
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falls into the BH, forms a remnant disk, and becomes
unbound from the system, i.e., ejecta. Evaluating the
properties of the disk and the ejecta is essential for
discussing resultant models of EM counterparts. Here we
describe the method to evaluate these quantities. In the
following, we will define the time of merger tmerger as the
time when 0.01M⊙ of the NS matter falls into the apparent
horizon.
At each time slice, we evaluate the remnant disk by the

rest mass outside the apparent horizon, i.e., the remnant
disk mass with the integral

M>AH ≔
Z
r>rAH

ρ�d3x ð2Þ

where rAH ¼ rAHðθ;ϕÞ denotes the coordinate radius of the
apparent horizon and ρ� is defined in Table I.
The unbound matter of the system, ejecta, is defined as

the matter satisfying −ut > 1, because in this paper we
focus only on the dynamical ejecta, for which the thermal
effect is minor. The mass of ejecta at each time slice is
defined by the integral

Meje ≔
Z
−ut>1;r>rAH

ρ�d3x: ð3Þ

Assuming that the thermal energy of the ejecta is much
smaller than the kinetic energy, the asymptotic kinetic
energy of the ejecta, Teje, can be defined by

Teje ≔
Z
−ut>1;r>rAH

ρ�ð−utÞd3x: ð4Þ

Then the average velocity of the ejecta is estimated from the
asymptotic kinetic energy Teje, and the ejecta massMeje, as

veje ≔

ffiffiffiffiffiffiffiffiffiffi
2Teje

Meje

s
: ð5Þ

Following the previous studies [32,33,38,45–47], we
evaluate all these ejecta quantities at 10 ms after the onset
of the merger.

2. Black hole parameters

During the inspiral or postmerger stage, the parameters
of BHs are estimated from the quantities of the apparent
horizons. If we assume that the spacetime near the apparent
horizon is stationary, the equatorial circumferential radius
Ce and the area of the apparent horizon AAH can be
approximated as [29]

Ce ¼ 4πMBH; ð6Þ

and

AAH ¼ 8πM2
BH

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2BH

q �
: ð7Þ

Then BH massMBH and dimensionless spin parameter χBH
can be evaluated from Eqs. (6) and (7).
From the comparison of different estimations of the spin

parameter, it has been found that the systematic error
with this method to estimate the spin is much less than
0.01 [29,31,45]. Therefore, the spin parameter used in the
paper for developing fitting formulas is accurate enough for
our study.

3. Gravitational waves

To derive gravitational waveforms, we extract the Weyl
scalar Ψ4 at the coordinate radius of D ¼ 480M⊙ from the
coordinate origin and extrapolate them to the null infinity
with a method from the BH perturbation theory [76]. The
gravitational waveforms hGW are obtained from the time
integration of the l ¼ jmj ¼ 2 spherical harmonics modes
of Ψ4. All the waveforms in this paper are shown for the
observer along the z-axis. To reduce the nonphysical low-
frequency components, we do not perform the time
integration directly but adopt the method proposed by
Reisswig and Pollney [77]. The retard time tret is approx-
imately obtained by

tret ¼ t −D − 2m0 lnðD=m0Þ: ð8Þ

The GW spectrum is obtained as the sum of the Fourier
components of the two polarizations of l ¼ jmj ¼ 2modes:

h̃ðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃þðfÞj2 þ jh̃×ðfÞj2

2

s
; ð9Þ

where

h̃þ;×ðfÞ ¼
Z

e2πifthþ;×ðtÞdt: ð10Þ

We use the normalized amplitude fjh̃ðfÞjD=m0 as a
function of a dimensionless frequency fm0 to show the
GW spectrum in the following plots.

D. Fitting formulas

Former studies give fitting formulas for M̂rem [38,47] and
M̂eje [33,46]. In these fitting formulas, M̂rem and M̂eje are
determined by the mass ratioQ, the dimensionless BH spin
χBH, and the NS compactness CNS except for the one
derived in Ref. [33], which also depends on the value of
MNS=Mb. In Sec. III B we will demonstrate that this
parametrization is sufficient for estimating M̂rem and M̂eje.
(1) In Ref. [38], the fitting formula for the remnant mass

(referred to as rem_2012) is determined as
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Mrem
fit;2012

Mb
¼ αð3QÞ1=3ð1 − 2CNSÞ − β

RISCO

RNS
; ð11Þ

¼αð3QÞ1=3ð1−2CNSÞ−βrISCOðχBHÞQCNS;

ð12Þ

where α and β are determined by minimizing the
χ-square (as defined in Eq. (23) below) of the fitting
formula, RISCO is the radius of the innermost stable circular
orbit (ISCO) of the remnant BH with rISCO ¼ RISCO=MBH,
and other quantities are defined in Table I. The ranges of the
initial NS and BH parameters covered by the numerical
simulations are Q ¼ 3–7, χBH ¼ 0–0.9, CNS ¼ 0.13–0.18,
and the best-fit model gives α ≈ 0.288 and β ≈ 0.148. Here
RISCO is given by

Z1 ¼ 1þ ð1 − χBHÞ1=3
× ½ð1þ χBHÞ1=3 þ ð1 − χBHÞ1=3� ð13Þ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2BH þ Z2

1

q
ð14Þ

RISCO

MBH
¼3þZ2

−signðχBHÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3−Z1Þð3þZ1þ2Z2Þ

p
; ð15Þ

as in Ref. [78].
(2) Reference [47] gives a modified fitting formula for

the remnant mass (referred to as rem_2018)

Mrem
fit;2018

Mb
¼
�
Max

�
α
1−2CNS

η1=3
−βrISCO

CNS

η
þγ;0

��
δ

;

ð16Þ

where η denotes the symmetric mass ratio η ¼
Q=ð1þQÞ2. The best fitting gives α ¼ 0.406,
β ¼ 0.139, γ ¼ 0.255, δ ¼ 1.761 and the parameter
space for the simulations was Q ¼ 1–7, χBH ¼
−0.5–0.9, CNS ¼ 0.13–0.182 and Mrem ≤ 0.3Mb.

(3) Reference [33] gives the fitting formula for the ejecta
mass (referred to as eje_2016) as

Meje
fit;2016

Mb
¼ Max

�
a1Qn1

1− 2CNS

CNS
− a2Qn2rISCOðχeffÞ

þ a3

�
1−

MNS

Mb

�
þ a4; 0

�
ð17Þ

χeff ¼ χBH cos itilt ð18Þ

In our simulations, the angle between the BH spin
and the orbital angular momentum is itilt ¼ 0. The
best-fit gives a1¼4.464×10−2, a2 ¼ 2.269 × 10−2,
a3 ¼ 2.431, a4 ¼−0.4159, n1¼0.2497, n2¼1.352,

and the parameter space for simulations was
Q ¼ 3–7, χBH ¼ 0–0.75, and CNS ¼ 0.138–0.18
by fixing MNS ¼ 1.35M⊙ and changing EOS.

(4) Reference [46] gives a modified fitting formula for
the ejecta mass (referred to as eje_2020)

Meje
fit;2020

Mb
¼ a1Qn1

1−2CNS

CNS
−a2Qn2rISCOþa4: ð19Þ

The fitting results are a1 ¼ 0.007116, a2 ¼
0.001436, a4 ¼ −0.02762, n1 ¼ 0.8636, n2 ¼
1.6840, and the parameter space for simulations
was the same as that of Ref. [33].

(5) Reference [33] also gives a fitting formula for the
average ejecta velocity [cf., Eq. (5)] as a simple
linear function of Q:

vejefit;2016 ¼ ð0.01533Qþ 0.1907Þc: ð20Þ

The definition of average ejecta velocity used to fit
vejefit;2016 is given by Eq. (B4) in Appendix B, which is
not the same as veje given in Eq. (5).

E. Models

Table III lists BH-NS binary models and initial param-
eters used in our study. The models are labeled by EOS-
QχBHMNS, i.e., 15H-Q3a75M18 means the model with NS
EOS “15H,” mass ratio Q ¼ 3, NS mass MNS ¼ 1.8M⊙,
and dimensionless BH spin χBH ¼ 0.75 aligned with the
orbital angular momentum.
In Sec. III B, to verify our hypothesis that the normalized

disk mass and ejecta mass only depend onQ, χBH, andCNS,
we perform simulations by varying the NS mass with fixing
these three parameters, and explore whether the differences
of results among different models are within the range of
numerical accuracy. To compare our results with previous
ones, we choose three configurations of Q and χBH as
ðQ; χBHÞ ¼ ð3; 0.5Þ; ð3; 0.75Þ and (5,0.75). We study the
models fixing the NS compactness with CNS ¼ 0.182, but
employing EOS models with two-pieces 15H, HB, and
four-pieces EOS models H4 and APR4 [79–81] to vary the
NS mass. Since the ejecta mass is small in the CNS ¼ 0.182
cases, we also perform simulations with fixed compactness
CNS ¼ 0.147, with two-pieces EOS models 15H, H, B, and
four-pieces EOS model APR4, for which we expect to get a
larger disk and ejecta masses. In the following, we will refer
to the models with fixed compactness CNS ¼ 0.147 and
CNS ¼ 0.182 as C147 and C182, respectively.
We note that the purpose of studying the models with

four-pieces EOS is to test whether the simplified two-pieces
EOSs can be used to accurately describe the NS tidal
disruption in BH-NS mergers and to test how the difference
in the detailed internal structure of the NS can change
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the results of the simulations. Two-pieces polytropes are
simplified EOSs, which are typically employed in address-
ing less massive NSs. It can be proved that for an NS with
mass less than 1.4M⊙, its central density is relatively low,
which means the EOS at higher density plays a minor role.
Hence, two-pieces and four-pieces EOS should provide
approximately the same results for the C147 models. On
the other hand, for the C182 models, the NS structure in
high-density regions can be sensitive to the values of Γ2 and
Γ3. Therefore, it is necessary to perform simulations with
both two-pieces and four-pieces EOS models to test
whether our conclusions can be applied despite the detailed
structure of the NS.
In Sec. III C, we further perform simulations with a high

value of MNS ¼ 1.8M⊙ while fixing Q and χBH to check
the validity of the fitting formulas with large values of NS
compactness. As we demonstrate in Sec. III B that merger
dynamics depends on MNS and RNS approximately only
through the NS compactness (CNS ¼ MNS=RNS), it is an
interesting exploration to see the dependence of the merger
dynamics by varying the compactness of NSs while fixing
MNS, i.e., by changing the EOS of NSs. We choose EOSs,

15H, H, and B, with the compactness varying from 0.194
to 0.252.
To evaluate the validity of fitting formulas, we calculate

the χ-square of their fittings, with the estimation of
numerical error from both Refs. [33,38] and our study.
Numerical simulations are performed with grid resolutions
N ¼ 62, 82 for all the models, and N ¼ 102 for some of
them (see Appendix A) to estimate the numerical errors due
to the finite grid resolution. We take N ¼ 82 as the fiducial
resolution of our simulations and other results are sum-
marized in the Appendix A.

III. RESULTS

We present our numerical results in this section, focusing
primarily on their dependence on the NS compactness, the
mass ratio, and the dimensionless BH spin. After we
describe an overview of the BH-NS merger process in
Sec. III A, we summarize the result for the case of a fixed
NS compactness in Sec. III B, and then, for the case of
massive and compact NSs in Sec. III C. The numerical
results are shown in Tables IV–VI, respectively.

TABLE III. Parameters of initial data and grid structure for all the models studied in this paper. The model name contains the EOS
employed, the mass ratio (Q), and the dimensionless spin of the black hole χBH.MNS;Mb

NS; RNS; CNS, andMBH;0 are the initial NS mass,
NS restmass, NS radius, NS compactness, and BH mass, respectively. m0Ω0 is the dimensionless initial orbital angular velocity of the
system. L is the box size of the simulation, Δx is the grid spacing at the finest level, and Rdiam=Δx is the grid number within the
semimajor diameter of the NS. N denotes the grid resolution of the simulation. The table contains three parts. The first part shows
the parameters for the fixed value of the NS mass asMNS ¼ 1.8M⊙, the second and third parts show the parameters for the fixed values
of CNS ¼ 0.182 and 0.147, respectively. Δx and Rdiam=Δx are calculated with the grid resolution of N ¼ 82.

Model EOS MNS½M⊙� Mb
NS½M⊙� RNS½km� CNS Q MBH;0½M⊙� χBH m0Ω0 Δx½m� Rdiam=Δx L½km� N

15H-Q3a5M18 15H 1.800 2.022 13.70 0.194 3.0 5.400 0.50 0.0377 204 134 8553 62, 82
H-Q3a5M18 H 1.800 2.056 12.14 0.219 3.0 5.400 0.50 0.0377 180 135 7565 62, 82
15H-Q3a75M18 15H 1.800 2.022 13.70 0.194 3.0 5.400 0.75 0.0375 204 134 8553 62, 82, 102
H-Q3a75M18 H 1.800 2.056 12.14 0.219 3.0 5.400 0.75 0.0375 180 135 7565 62, 82
B-Q3a75M18 B 1.800 2.103 10.55 0.252 3.0 5.400 0.75 0.0375 163 129 6842 62, 82
15H-Q5a75M18 15H 1.800 2.022 13.70 0.194 5.0 9.000 0.75 0.0445 203 134 8523 62, 82
H-Q5a75M18 H 1.800 2.056 12.14 0.219 5.0 9.000 0.75 0.0445 180 135 7565 62, 82

15H-Q3a5M1691 15H 1.691 1.884 13.72 0.182 3.0 5.073 0.50 0.0369 204 135 8553 62, 82
HB-Q3a5M1428 HB 1.428 1.590 11.59 0.182 3.0 4.284 0.50 0.0353 171 136 7182 62, 82
15H-Q3a75M1691 15H 1.691 1.884 13.72 0.182 3.0 5.073 0.75 0.0367 204 135 8553 62, 82
HB-Q3a75M1428 HB 1.428 1.590 11.59 0.182 3.0 4.284 0.75 0.0351 171 136 7182 62, 82, 102
APR4-Q3a75M1366 APR4 1.366 1.522 11.08 0.182 3.0 4.098 0.75 0.0358 164 135 6901 62, 82
H4-Q3a75M1651 H4 1.651 1.836 13.40 0.182 3.0 4.950 0.75 0.0356 199 135 8347 62, 82
15H-Q5a75M1691 15H 1.691 1.884 13.72 0.182 5.0 8.455 0.75 0.0411 204 135 8553 62, 82, 102
HB-Q5a75M1428 HB 1.428 1.590 11.59 0.182 5.0 7.140 0.75 0.0404 171 136 7182 62, 82, 102

H-Q3a5M1220 H 1.220 1.327 12.26 0.147 3.0 3.660 0.50 0.0351 182 135 7639 62, 82
B-Q3a5M1092 B 1.092 1.187 10.97 0.147 3.0 3.276 0.50 0.0357 163 135 6842 62, 82
15H-Q3a75M1363 15H 1.363 1.484 13.69 0.147 3.0 4.089 0.75 0.0349 203 135 8523 62, 82
H-Q3a75M1220 H 1.220 1.327 12.26 0.147 3.0 3.660 0.75 0.0349 182 135 7639 62, 82, 102
B-Q3a75M1092 B 1.092 1.187 10.97 0.147 3.0 3.276 0.75 0.0356 163 135 6842 62, 82
APR4-Q3a75M1094 APR4 1.094 1.190 10.99 0.147 3.0 3.282 0.75 0.0356 163 135 6842 62, 82
H-Q5a75M1220 H 1.220 1.327 12.26 0.147 5.0 6.100 0.75 0.0449 182 135 7639 62, 82
B-Q5a75M1092 B 1.092 1.187 10.97 0.147 5.0 5.460 0.75 0.0451 163 135 6842 62, 82
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TABLE IV. Characteristic physical quantities for the model with CNS ¼ 0.182. M̂rem is the normalized remnant
mass for the matter located outside the apparent horizon, M̂eje is the ejecta mass during the merger, normalized by
the baryon mass of the NS. fcutm0 is the normalized cutoff frequency. Teje and veje are the asymptotic kinetic energy

and velocity of the ejecta. χfBH and Mf
BH are the dimensionless spin and mass of BHs after the merger. Models with

EOS “B” are taken from Ref. [45], with CNS ¼ 0.1819, MNS ¼ 1.35M⊙, and N ¼ 50. Some values are N=A since
Ref. [45] does not provide them. All physical quantities are evaluated at 10 ms after the onset of merger. The grid
resolution is N ¼ 82.

Model ID EOS M̂rem M̂eje fcutm0 Teje [erg] veje½c� χfBH Mf
BH½M⊙�

1 Q3a5 15H 0.052 0.0015 0.079 5.8 × 1049 0.15 0.77 6.48
2 HB 0.047 0.0015 0.079 5.3 × 1049 0.16 0.77 5.48

Ref. [45] B 0.033 N=A N=A N=A N=A 0.77 N=A

3 Q3a75 15H 0.12 0.0046 0.071 2.3 × 1050 0.18 0.87 6.37
4 HB 0.12 0.0059 0.069 2.8 × 1050 0.18 0.87 5.38
5 APR4 0.12 0.0065 0.070 3.1 × 1050 0.19 0.87 5.15
6 H4 0.13 0.0042 0.069 2.3 × 1050 0.18 0.87 6.22

Ref. [45] B 0.10 N=A N=A N=A N=A 0.86 N=A

7 Q5a75 15H 0.037 0.0047 0.101 2.8 × 1050 0.19 0.85 9.81
8 HB 0.036 0.0054 0.101 2.8 × 1050 0.19 0.85 8.29

Ref. [45] B 0.021 N=A N=A N=A N=A 0.85 N=A

TABLE V. Characteristic physical quantities for the models with CNS ¼ 0.147. Models with EOS “H4” are taken
from Ref. [32], with CNS ¼ 0.147, MNS ¼ 1.35M⊙, and N ¼ 60. Teje and veje from Ref. [32] are not listed in the
table since we use different definitions, which will be discussed in Appendix. B. fcutm0 is also not listed since
Ref. [32] does not provide it. Other quantities have the same definitions as in Table IV.

Model ID EOS M̂rem M̂eje fcutm0 Teje [erg] veje½c� χfBH Mf
BH½M⊙�

9 Q3a5 H 0.16 0.024 0.040 9.4 × 1050 0.18 0.76 4.59
10 B 0.16 0.022 0.041 8.4 × 1050 0.19 0.76 4.11

Ref. [32] H4 0.16 0.02 N=A N=A N=A 0.76 5.07

11 Q3a75 15H 0.22 0.030 0.038 1.3 × 1051 0.18 0.87 5.07
12 H 0.21 0.030 0.039 1.2 × 1051 0.19 0.87 4.54
13 B 0.21 0.031 0.039 1.2 × 1051 0.19 0.87 4.07
14 APR4 0.21 0.031 0.039 1.2 × 1051 0.19 0.87 4.07

Ref. [32] H4 0.22 0.03 N=A N=A N=A 0.88 4.99

15 Q5a75 H 0.21 0.040 0.059 2.2 × 1051 0.21 0.83 6.93
16 B 0.21 0.039 0.061 2.0 × 1051 0.22 0.83 6.21

Ref. [32] H4 0.22 0.03 N=A N=A N=A 0.83 7.65

TABLE VI. Characteristic physical quantities for the model with MNS ¼ 1.8M⊙. Other quantities have the same definitions as in
Table IV.

EOS M̂rem M̂2012
fit M̂2018

fit M̂eje M̂2016
fit M̂2020

fit Teje½erg� veje½c� χfBH Mf
BH½M⊙�

Q3a0.5 15H 0.014 1.88 × 10−3 0.0117 3.3 × 10−4 0 0 1.0 × 1049 0.13 0.770 6.95
H 5.8 × 10−5 0 0 1.1 × 10−6 0 0 3.8 × 1046 0.13 0.761 6.93

Q3a0.75 15H 0.081 0.0945 0.0779 1.5 × 10−3 4.56 × 10−3 1.49 × 10−3 6.9 × 1049 0.16 0.870 6.83
H 8.9 × 10−3 0.0283 0.0310 1.1 × 10−4 5.48 × 10−3 0 3.7 × 1048 0.14 0.866 6.90
B 1.1 × 10−5 0 7.73-04 5.3 × 10−7 0.0187 0 2.3 × 1046 0.15 0.858 6.87

Q5a0.75 15H 6.3 × 10−3 0 0.0244 9.2 × 10−4 0 0 5.6 × 1049 0.18 0.846 10.48
H 9.5 × 10−6 0 6.58 × 10−6 2.6 × 10−6 0 0 1.4 × 1047 0.17 0.844 10.47
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A. Overview of the merger

Firstwebriefly describe anoverviewof theBH-NSmerger
process in our numerical simulations. Broadly speaking, we
find the same features as for MNS ≈ 1.4M⊙ studied in the
previous works [22–26,28–33,35–42,45,82–92]: The BH-
NS mergers can have two types of fate. One is that the NS is
tidally disrupted by the BH, and subsequently, an accretion
disk is formed around the remnant BH and a part of the NS
matter is ejected as the dynamical ejecta; the other is that the
NS simply plunges into the BH with no tidal disruption and
no mass ejection. In the following, we pay attention only to
the former case because it can provide a lot of information
about the BH-NS systems through the cutoff frequency and
EM counterparts powered by the ejecta.
The condition of tidal disruption can be obtained by

comparing the ISCO radius RISCO and the mass-shedding
radius Rdis. If RISCO ≤ Rdis, the NS can be tidally disrupted
before it is swallowed into the BH. Assuming Newton’s
gravity for simplicity, we have [21]

Rdis

RISCO
∝

1

CNSQ2=3rISCOðχBHÞ
: ð21Þ

This ratio approximately separates the two types of final
fates mentioned above. If the ratio is larger than unity, the
NS is expected to be tidally disrupted by the BH.
Otherwise, the BH-NS binaries encounter an ISCO before
reaching mass shedding limit, NS will simply plunge into
the BH with no tidal disruption. Thus, the significance of
the tidal disruption appears to depend on Q, χBH, and CNS,
and the tidal disruption is less relevant for larger values of
Q and CNS and smaller value of χBH since RISCO decreases
as χBH increases. However, the relation of this ratio may be
modified in general relativity, in particular for high-mass
NSs for which the general relativistic effect is enhanced.
The dependence of ejecta mass and the remnant mass on
these three parameters as well as on the NS mass are
discussed in detail in Secs. III B and III C.
Figure 1 shows the snapshot of the rest-mass density

profile, unbound matter, and the apparent horizon at
selected time slices for model HB-Q5a75M1428. The
separation between the NS and BH decreases due to
GW emission, and after it reaches the tidal disruption
radius, the NS is tidally disrupted (see the top panels in
Fig. 1). While most of the disrupted NSmatter is swallowed
by the BH, a fraction of the matter will gain angular
momentum by gravitational torque to form the tidal tail
which remains outside the BH. The gravitationally-
bounded matter in the tidal tail gradually falls back and
forms a remnant disk around the remnant BH (see the
bottom panels in Fig. 1), while the matter in the outer part
of the tidal tail becomes dynamical ejecta.
Figure 2 shows the time evolution for the rest mass of

the matter located outside the BH for three models,
H-Q3a75M1220, 15H-Q3a5M18, and H-Q5a75M18

models, which represent the cases with significant tidal
disruption, the intermediate case, and no tidal disruption,
respectively. It shows that in tidal disruptions, indeed most
of the NS matter is swallowed by the BH soon after the
onset of the merger, i.e., within ∼1 ms, and the rest mass of
the matter remaining outside the BH depends strongly on
the binary parameter. For the case with significant tidal
disruption (H-Q3a75M1220), 1%–20% of the mass sur-
rounds the BH to form a remnant disk, but only less than
0.01% of matter remains outside the BH after the merger
for the no tidal disruption case (H-Q5a75M18).
At the time of the merger, a fraction of the matter outside

the BH becomes gravitationally unbound, i.e., the dynami-
cal ejecta. The region in Fig. 1 surrounded by the dashed
curves denotes the matter with gravitationally unbound
orbits. Figure 1 shows that the ejecta is formed around the
outer edge of the tidal tail. The time evolution of the ejecta
mass is shown in Fig. 3. The ejecta are formed within the
dynamical timescale (∼1 ms) after the onset of the merger,
and, as is the case for the remnant matter located outside the
BH, the amount of the ejecta depends strongly on the
binary parameters.

B. Fixed compactness case

1. Properties of remnant disks and ejecta

We list the key results of the simulations for C182 and
C147 models in Tables IV and V, respectively. We also
include the results for M̂rem and M̂eje with the same
compactness from Refs. [32,45]. Tables IV and V show
that M̂rem increases as χBH increases, and as the compact-
ness CNS and the mass ratio Q decreases. This is consistent
with the predictions given in Sec. III A. However, we note
that the dependence of M̂rem onQ is rather weak in the case
of the lower compactness CNS ≈ 0.147, which deviates
from the naive prediction of Newton approximation shown
in Eq. (21). This weaker dependence is also found and an
interpretation for this is described in Ref. [34].
From Table V and IV, it is found that M̂eje increases as

χBH increases and as CNS decreases. This is the same
dependence as M̂rem. However, being different from M̂rem,
M̂eje increases as Q increases for the lower compactness
CNS ≈ 0.147. This has also been found in the previous
works [29,32,33,35,38,41,42]. This implies that the ejecta
mass depends more strongly on the dynamical process of
the tidal disruption than the remnant mass, and indicates
that the dynamics of the tidally disrupted matter in the
vicinity of the BH plays a key role in determining the
ejecta mass.
Figure 4 compares the values of M̂rem among the models

with the same values of Q, χBH, and CNS but with different
NS mass MNS, i.e., with different NS EOSs. The error bars
are taken to be the discrepancy of the results between
N¼62 and N¼82 runs of the same model. Hydrodynamic
quantities do not always show monotonic dependency on
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the grid resolution and it is difficult to evaluate the error by
checking the convergence. Therefore we take the error
estimation method shown above. We note that the discrep-
ancies between N ¼ 82 and N ¼ 102 results are mostly
smaller than those betweenN ¼ 62 andN ¼ 82 results (see
Appendix. A). If the range of error bars for different models
with the same values of χBH; Q, and CNS overlaps, we
consider that the results are in agreement within the range
of the accuracy.
It is shown that, within the numerical accuracy, M̂rem with

the same values of Q, χBH, and CNS agrees with each other
regardless of their different NS masses. We also find from
Tables IVand V that the dimensionless spin of the remnant
BH, χfBH, is approximately the same among the models with
the same initial values ofQ, χBH, andCNS. This indicates that
the BH swallows approximately the same amount of the
mass and angular momentum normalized by MNS. These

results show that M̂rem and the radius at which the NS tidal
disruption occurs depends sensitively on Q, χBH, and CNS
while MNS plays a role only in scaling the system.
Figure 5 shows the results for the ejecta mass, with its

error bar defined in the same way as Fig. 4. M̂eje with the
same values ofQ, χBH, andCNS also agrees with each other.
The results show that M̂eje also depends sensitively on Q,
χBH, and CNS but only minorly on MNS.
It is worth noting that the values of M̂rem and M̂eje for the

models which employ the four-pieces EOSs (model
ID ¼ 5, 6, and 14) are also approximately in agreement
with the results for the models which employ the two-
pieces EOSs with the same values ofQ, χBH, and CNS. This
implies that the detailed structure, i.e., the value of Γ2 in
Table II, has only a minor effect on the results of M̂rem and
M̂eje. This conclusion also justifies us to study NSs with
MNS ¼ 1.8M⊙ using two-pieces polytropes in Sec. III C.

FIG. 1. Time evolution of the rest-mass density profile for model HB-Q3a75M1428 with N ¼ 82 run at t − tmerger ≈ −0.94 ms (top
left), 0.07 ms (top right), 0.90 ms (bottom left), and 10.01 ms (bottom right). The white circle indicates the apparent horizon. The white
dashed lines show the region of unbound components in which the relation −ut ≥ 1 is satisfied.
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The fitting formula for the ejecta mass, Eq. (17), given in
Ref. [33] includes not only CNS, Q, and χBH, but also the
specific binding energy. Though the binding energy may
physically have influence on the result, it is still consistent
with our results. Since the specific binding energy can be
well approximated as a function of the NS compactness
CNS (e.g., Ref. [93]), Eq. (17) can be effectively approxi-
mated as a function of only CNS, Q, and χBH. Also, we find
that the variation of the specific binding energy term in our
parameter space is nevertheless less than the estimated
errors in our simulations (around 10%).
Figure 6 shows the average ejecta velocity veje and their

error bars. Broadly speaking, veje increases with Q and

depends weakly on other parameters. This is consistent
with the results of the previous studies for MNS ≈
1.4M⊙ [32,33,35,89], which is also described in fitting
formula of Eq. (20). As is the case for M̂rem and M̂eje, given
the same values of Q, χBH, and CNS, the values of veje for
different models approximately agree with each other
within the numerical accuracy.

FIG. 4. The values of M̂rem for the models with CNS ¼ 0.182
and 0.147. The models with the same values of χBH; Q, and CNS
but with different NS mass MNS are grouped with the same
colors. The error bar of each model is determined by the
difference between N ¼ 62 and N ¼ 82 results. Model ID
corresponds to the column model ID in Tables IV and V.

FIG. 2. Time evolution of M̂rem for representative models,
H-Q3a75M1220, 15H-Q3a5M18, and H-Q5a75M18 (solid,
dot-dashed, and dashed lines, respectively). Each model repre-
sents the cases with significant tidal disruption, the intermediate
situation, and no tidal disruption, respectively.

FIG. 3. Time evolution of M̂eje for the same models as in Fig. 2.
The y-axis shows the normalized ejecta mass. The tiny amount of
ejecta before and right after the merger is due to the mass
conservation error around the NS atmosphere.

FIG. 5. The values of M̂eje for models with CNS ¼ 0.182 and
0.147. The models with the same values of χBH; Q, and CNS but
with different NS mass MNS are grouped with the same colors.
The error bar of each model is determined by the difference
between N ¼ 62 and N ¼ 82 results. Model ID corresponds to
the column model ID in Tables IV and V.
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The coefficients of the fitting formula of Eq. (20) given in
Ref. [33] were obtained by fitting the average ejecta velocity
veje;old obtained by various configurations ofBH-NSbinaries.
They assumed a linear relation between veje;old and Q:
veje;old ¼ ða1Qþ a2Þc, and used the least squares fitting to
derive the coefficients a1 and a2. However, the definition of
veje;old in Ref. [33], which is different from the present
definition inEq. (5), did not take into account thegravitational
potential. Thus, the value of veje;old can be overestimated.
Here, we correct the effect of the gravitational potential

energy in the data summarized in Ref. [33] by employing
the method introduced in Ref. [34], and recalibrate the
ejecta-velocity fitting formula employing those corrected
data as well as the results obtained in this paper. Our
method to correct the ejecta velocity veje;cor is described in
Appendix B. We note that, since the estimated value of the
ejecta velocity for the models with small ejecta mass is not
reliable, they employed only the models with M̂eje > 0.003.
In this paper, we restrict the models in the same manner.
By employing all the data, including veje;cor in Ref. [33]

and veje in this paper, we obtain the fitting formula as

veje;fit ¼ ð0.01108Qþ 0.1495Þc: ð22Þ

Figure 7 shows that the average ejecta velocity in
Ref. [33] is generally larger than veje obtained in this
paper, while after correction, veje;cor is generally closer to
veje. This indeed shows that the values of veje;old in Ref. [33]
are overestimated by neglecting the effect of the gravita-
tional potential energy. The largest relative fitting error of
the fitting formula is around 10% for Eq. (20) and is around
18% for Eq. (22). On the other hand, the relative numerical

error of veje in this paper estimated from the different
resolution runs is around 10%. This implies that there is a
approximate linear relation between veje and Q. It may
indicate that the ejecta velocity is not only determined by
the mass ratio Q, but also influenced by other parameters,
such as the BH spin, NS compactness, and initial spin
misalignment angle.
Figure 8 shows the velocity distributions of the ejecta

normalized by its mass for selected models. The distribu-
tions are evaluated at 10ms after the onset of themerger. The
models shown in the figure are 15H-Q3a75M1691 and HB-
Q3a75M1428which have ðQ; χBH; CNSÞ ¼ ð3; 0.75; 0.182Þ
in common, and H-Q5a75M1220 and B-Q5a75M1092
which have ðQ; χBH; CNSÞ ¼ ð5; 0.75; 0.147Þ in common.
The distributions we obtained from our simulations show
similar features to those obtained by Refs. [32,36,89]; they
peak at veje ≈ 0.1c–0.3c and have a steep cutoff for both the
lower and higher velocity sides. The models with the same
values of ðQ; χBH; CNSÞ essentially show the same distri-
butions having a peak at veje ≈ 0.15c and 0.2c for themodels
with ðQ; χBH; CNSÞ ¼ ð3; 0.75; 0.182Þ and (5,0.75,0.147),
respectively. The NS mass MNS does not play a role in
changing the result significantly.
We also perform a careful resolution study in this paper

for the ejecta velocity distribution and find a result worthy
of remark. Figure 9 shows the ejecta velocity distribution
for model H-Q3a75M1220 with resolutions N62, N82, and
N102. It shows that for relatively low values of the ejecta

FIG. 6. The value of veje at 10 ms after the merger for models
with CNS ¼ 0.182 and 0.147. The models with the same values of
χBH; Q, and CNS but with different NS mass MNS are grouped
with the same colors. The error bar of each model is determined
by the difference between N ¼ 62 and N ¼ 82 results. Model ID
corresponds to the column model ID in Tables IV and V.

FIG. 7. Original average ejecta velocity in Ref. [33], corrected
velocity veje;cor, and veje obtained in this paper as functions of
mass ratio Q. “KK” denotes the data obtained from Ref. [33],
“KK-cor” denotes the same data as “KK” but with the gravita-
tional potential energy correction, veje;cor, “paper” denotes the
data newly obtained in this paper. The line with a label “KK”
denotes the fitting formula obtained in the previous study [33]
[Eq. (20)]. The line with the label “all” denotes the fitting formula
obtained by employing both data of “KK-cor” and “paper”
[Eq. (22)]. The data points are slightly shifted in x-direction to
make different sets of points separated.
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velocity convergence is achieved. However, for the high-
velocity side with ≳0.3c the convergence is not fully
achieved. Specifically, for higher grid resolutions, more
matter is present for the higher velocity side. Our inter-
pretation for this is that with the higher grid resolution, the
surface of the one-armed spiral, where the high-velocity
ejecta exists, is better resolved and the pressure gradient
plays a role in additionally accelerating the matter there.

2. Properties of gravitational waves

The location of the cutoff frequency in the amplitude of
the GW spectrum at f ≳ 1 kHz contains rich information

on the last stage of the inspiral phase and mainly depends
on the orbital frequency of the tidal disruption [21,94,95]. If
the NS is not tidally disrupted, the GW spectrum is
characterized by the inspiral, merger, and ringdown wave-
forms, in which case the gravitational waveforms are nearly
identical to those for binary BH mergers [96]. When tidal
disruption happens, the wave amplitude quickly decreases
before the ringdown phase, and the wave amplitude by the
inspiral motion shuts down. This is because in the tidal
disruptions, the NSmatter becomes less dense and diffused,
and the excitation of the quasinormal modes is suppressed
by the phase cancellation [29,97–99]. The GW spectra in
tidal disruptions are characterized by their damping above
the cutoff frequency, fcut. To quantify fcut, previous studies
fit the GW spectra by a function with seven parameters and
define fcut as one of the parameters [29,31,45]. However,
these two definitions are not robust because the fitting
formula is not flexible enough.
For f → 0, fjhðfÞj is proportional to f−1=6 and can be

approximated by the quadrupole formula fhquadðfÞ with
the point-particle approximation and the binary motion is
determined by Newtonian gravity (e.g., Ref. [100]).
Therefore, we determine the value of fcut to be the value
of the intersection of the half of the GW spectrum obtained
by the quadrupole formula and the one obtained from
simulations; see Fig. 10 as an example.
Figure 11 shows the normalized cutoff frequency fcutm0

and its error bars for models with the same values of Q,
χBH, and CNS, and different EOSs. As in the cases of Mrem
and Meje (see Sec. III B 1), the error bars of fcutm0 are also
taken to be the discrepancies of the results between N ¼ 62
and N ¼ 82 runs. By comparing the models with different
values of Q or χBH or CNS, the figure shows that larger
compactness CNS and higher mass ratio Q induce higher

FIG. 8. Ejecta velocity distributions normalized by the
ejecta mass for selected models. The models 15H-Q3a75M1691
and HB-Q3a75M1428 have ðQ; χBH; CNSÞ ¼ ð3; 0.75; 0.182Þ in
common, and the models H-Q5a75M1220 and B-Q5a75M1092
have ðQ; χBH; CNSÞ ¼ ð5; 0.75; 0.147Þ in common. The models
with the same values of ðQ; χBH; CNSÞ approximately show the
same distributions.

FIG. 9. Ejecta velocity distributions normalized by the ejecta
mass for model 15H-Q3a75M18 with resolutions N62, N82, and
N102. For the higher resolutions, the distribution is extended to
the higher velocity side.

FIG. 10. The example that shows how we determine the value
of fcutm0. The blue curve is the GW spectrum obtained from
model HB-Q5a75M1428, and the purple line is half of the GW
spectrum obtained from the quadrupole formula. We identify the
intersection frequency as the value of the cutoff frequency fcutm0.
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cutoff frequency, while higher BH spin χBH induces lower
cutoff frequency. These results are consistent with Eq. (21),
since larger values of CNS make the tidal disruption of the
binary occur at a more inner orbit with a higher orbital
frequency, higher values of Q induce weaker tidal force in
the vicinity of RISCO, and higher values of χBH gives larger
spin-orbit repulsion, thus reduces the orbital angular
velocity to maintain a circular orbit, decreases the radius
of the ISCO, and therefore, makes NS more easily to be
disrupted. These parameter dependence of the cutoff
frequency shown in Fig. 11 are all consistent with the
interpretation based on the comparison between RISCO and
Rdis in Eq. (21).
It is also seen that within the numerical accuracy, the

normalized cutoff frequency fcutm0 for models with the
same values of Q, χBH, and CNS is approximately identical
even though these models have different NS masses, i.e.,
different EOSs. The relative deviation between fcutm0

within the same group is small, and as a quantity character-
izing where tidal disruptions happen, the value of fcutm0

depends solely on the ratio of Rdis and RISCO. This
dependence of fcutm0 implies the relative location of tidal
disruptions depends solely on Q, χBH, and CNS.

C. Massive NS case

Table VI shows the simulation results with a fixed NS
massMNS ¼ 1.8M⊙ but with different EOSs. Massive NSs
generally have weak or no tidal disruptions due to their high
compactness, as indicated in our analysis in Sec. III A.
To test the validity of fitting formulas derived in previous

studies in more compact regions quantitatively, we calcu-
late the χ-square defined as

χ2 ¼ 1

Nmodel − Npara

XNmodel

i¼1

Δ2
i;fit; ð23Þ

where Nmodel is the number of models in simulations, Δi;fit

is defined in Eq. (24), andNpara is the number of parameters
used in the fitting formula.
Δfit denotes the ratio of discrepancy of the results

between the fitting formulas and the simulation data to
the estimated numerical error of the simulation ΔNR, which
is defined by

Δfit ¼
M̂NR − M̂fit

ΔNR
; ð24Þ

where M̂NR and M̂fit denote the results from numerical
simulations and the prediction of the fitting formulas,
respectively, which can be either remnant or ejecta mass.
In Refs. [33,46], for ejecta mass, ΔNR is assumed to be

ΔNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM̂NR=10Þ2 þ ð1=50Þ2

q
; ð25Þ

which holds for eje_2016 and eje_2020, while for remnant
mass, Refs. [38,47] give

ΔNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM̂NR=10Þ2 þ ð1=100Þ2

q
; ð26Þ

which is the case for rem_2012 and rem_2018.
Since the fitting formulas were derived by minimizing

the χ-square in previous simulations, to achieve a bench-
mark of their accuracy, we first calculate the χ-square of the
fitting formulas with ΔNR from Eq. (25) for the ejecta mass
and from Eq. (26) for the remnant mass for numerical-
relativity results given in Ref. [32], of which parameters of
BH-NS binaries are within the calibrated range. The results
are shown in Table VII. These results can be considered as
typical values of the χ-square. To evaluate how well the
fitting formulas work for our simulations, we compare the
χ-square of our simulation data with that of Ref. [32].
Next, we calculate the χ-square for our simulation data

withMNS ¼ 1.8M⊙, CNS ranging from 0.194 to 0.252, and
C182, C147 models with Eq. (23) and ΔNR given in
Eqs. (25) and (26). For the remnant mass, the χ-squares
of M18, C147, and C182 for both fitting formulas are
smaller than those of the models in Ref. [32]. For
rem_2012, its χ-squares for our simulations are generally
smaller than previous simulations and close to unity. χ2018rem
increases as the NS compactness decreases, and is gen-
erally larger than the corresponding χ2012rem . As to the ejecta
mass, for C182 and C147 models, their χ-squares are
smaller than those of models in Ref. [32]. For the M18 case,
its χ2016eje is significantly larger than those of the other three
cases, while its χ2020eje is much smaller. Nevertheless, we find
that within the numerical accuracy analyzed in previous

FIG. 11. The normalized cutoff frequency fcutm0 for models
with the same values of Q, χBH, CNS, and different EOSs. The
error bar of each model is taken to be the discrepancy of the
results between N ¼ 62 and N ¼ 82 runs. Model ID corresponds
to the column model ID in Tables IV and V.
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studies, their fitting formulas for M̂rem and M̂eje work well
even in the compact NS region since the χ-squares are close
to unity.
It is not surprised to find that model rem_2012 performs

better than model rem_2018 generally in the paper. The
simulations used to fit rem_2012 covers a relatively narrow
parameter space compared to rem_2018, and around 2=3 of
them use Q ¼ 3–5 and χfBH ¼ 0.50–0.75, consistent with
the parameter range in our paper. Therefore, rem_2012 is
more likely to behave better when fitting the results from
our simulations, while rem_2018 is meant to avoid large
errors on a larger scale with the trade-off of lower accuracy
in some specific parameter range.
We then calculate the χ-square of fitting formulas using

ΔNR given by our simulations to test whether there could be
room for improving the fitting formulas employing higher
resolution data of a numerical-relativity simulation. In our
research, the numerical error is estimated to be

ΔNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM̂NR=10Þ2 þ ð3=1000Þ2

q
ð27Þ

(see Appendix A). Equation (27) shows that the numerical
errors of our simulations are smaller than those given by
Eqs. (25) and (26), and hence, the χ-square calculated
based on it gives more severe examination to the fitting
formula.
Results are shown in Table VII. The χ-squares for M18

are significantly larger than those of C147 and C182 except
for eje_2020, which are much smaller. The reason for this
increase is that mergers with compact NSs result in smaller
values of M̂rem and M̂eje and therefore sensitive to the lower
limit of the estimated numerical error. Assuming a smaller
numerical error enhances their χ-squares significantly. χ2018rem
of C182, C147 also increases significantly, while other

χ-squares for C147 and C182 models remain close to
the unity.
We find that some χ-squares in Table VII are much less

than unity. This is because the numerical error we use is the
rough upper estimation, which may be overestimated
especially when M̂NR is small, and makes χ-squares small.
Therefore, if we assume a smaller numerical error of our

simulations, rem_2012, rem_2018, and eje_2016 have
room for improvement, particularly for compact NS cases.
Their χ-squares increase as the NS compactness increases,
and for the M18 case, their χ-squares are significantly
larger. This is reasonable because these fitting formulas are
calibrated in the parameter space of CNS < 0.18. Only χ2020eje

decreases as the compactness increases and has a better
performance in the compact NS region. Thus, if we want to
estimate the remnant disk mass for CNS > 0.194 at higher
accuracy, existing fitting formulas require improvement.
On the other hand, the fitting formula of the ejecta mass
given in Ref. [46] still works well in this region even if we
assume a smaller numerical error of our simulations since
its χ-square is less than the unity. In addition, if we require a
higher accuracy of the estimation of the remnant mass,
rem_2012 works better than rem_2018.

IV. CONCLUSION AND DISCUSSION

We perform numerical-relativity simulations for various
setups of BH-NS mergers with Q ¼ 3, 5, χBH ¼ 0.5, 0.75,
and CNS ¼ 0.147 − 0.252 varying the NS mass. Our results
with the fixed NS compactness CNS ¼ 0.182 and 0.147
show that given the identical values of Q, χBH, and CNS,
M̂rem and fcutm0 agree with each other within the numerical
accuracy of our study. We also found that this is the case for
M̂eje, except for only one dataset which is slightly out of the
numerical accuracy. Therefore, the hypothesis that M̂rem,
M̂eje, veje and fcutm0 depend only on Q, χBH, and CNS is
approximately true for the NS mass in a wide range of
1.1 − 1.7M⊙. This justifies the approach of studying the
dependence of NS tidal disruptions on the NS compactness
by fixing the NS mass but changing the EOS, which is
employed in the previous studies.
We then performed numerical-relativity simulations of

BH-NS mergers for a large value of the NS mass
(MNS ¼ 1.8M⊙), and examined the accuracy of the pre-
vious fitting formulas of M̂rem, M̂eje, and ejecta velocity veje
for the system with a large value of the NS compactness
(CNS ≥ 0.19). As to the four fitting formulas of M̂rem and
M̂eje, we find that they still work well for compact NSs
within the error range of their studies. However, if we
require a higher-precision prediction, the fitting formulas of
the remnant mass could give inaccurate predictions for
CNS > 0.194 cases, leaving room for further improve-
ments, and rem_2012 is generally more accurate than
rem_2018. As to the ejecta mass, the fitting formula

TABLE VII. The χ-squares for different fitting formulas.
M18, C182, and C147 denote models with MNS ¼ 1.8M⊙,
CNS ¼ 0.182, and CNS ¼ 0.147, respectively. The first half is
χ-square calculated using ΔNR from Refs. [33,38] to compare
with the results in the previous simulations. The second half is
χ-square calculated using ΔNR obtained in our simulations.

χ2012rem χ2018rem χ2016eje χ2020eje

ΔNR given in Eqs. (25), (26)
Models in Ref. [32] 4.75 5.56 0.0250 0.0601
M18 1.35 2.75 0.968 0.00122
C182 0.601 3.38 0.0320 0.0300
C147 1.77 5.47 0.0499 0.0162

ΔNR given in Eq. (27)
M18 11.7 28.6 43.0 0.0542
C182 2.53 10.9 1.39 1.31
C147 2.15 6.95 1.20 0.344
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eje_2020 from Ref. [46] still works well for more massive
NSs with CNS between 0.194 and 0.252.
For the case of ejecta velocity, we corrected the data of

average ejecta velocity in Ref. [33] to take into account the
gravitational potential effect, and recalibrated the ejecta-
velocity fitting formula employing these corrected data as
well as the results obtained in our present simulations. We
obtained the simple linear function as the fitting formula
between veje and Q as in Ref. [33]. We found that the
predicted ejecta velocity is systematically smaller than
those of the previous studies. The relative fitting error of
the fitting formula is around 10% for the data in this paper
and in Ref. [33], and grows to 18% if we use all the data to
obtain a new fitting formula. It is larger than 10% of the
relative numerical error of veje estimated from different
resolutions runs. This indicates that the ejecta velocity has a
dependence on the other parameters which cannot be
captured by the simple linear relations between veje and Q.
Our results give some guidance on how to improve the

fitting formulas for the remnant mass. From Fig. 12, which
shows M̂rem as a function of CNS, we can see that rem_2012
works best for Q3a5 models, even for compact NSs. The
inaccuracy of the fitting formula is caused mainly by the
large discrepancies between the fitting and the simulation
results for Q3a75 models. The fitting formula generally
overestimates the remnant mass for all Q3a75 models, but
this overestimation is only significant for mergers with
small remnant masses, i.e., with compact NSs. For exam-
ple, H-Q3a75 has only 0.9% of its baryon mass remaining
outside the BH after the merger, and the rem_2012 gives a
prediction of 2.8%. Rem_2018 overestimates the remnant
mass for compact NSs and is generally less accurate than
rem_2012. Therefore, a linear function of CNS is still a
good choice for the fitting formula of the remnant mass and

the second term in Eq. (11) requires modification to get
more accurate results.
The improvement in the fitting formulas in such a

parameter region may be not very important at this
moment, since the overestimation is only significant for
the cases having weak tidal disruptions, for which only
faint EM counterparts can associate with the GW signals
and are less likely to be detected by observations. However,
the improvement in such a parameter region can play an
important role in interpreting the observational data once
faint EM counterparts are detected or deep EM upper-limits
are obtained in the future BH-NS GW events (cf,
GW190425 and GW190814 [101,102]).
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APPENDIX A: ESTIMATION OF ERROR
CAUSED BY GRID RESOLUTION

The mass of the remnant disk and the ejecta are only a
fraction of the NS mass, and thus, can have large errors in
the numerical results. Here we estimate the errors due to
finite grid resolutions, as shown in Fig. 13. Both masses
depend sensitively on the grid resolution.

FIG. 12. Normalized remnant mass as a function of the compactness. For models with the same values of Q, χBH, and CNS, since the
discrepancies between them are within the margin of error, the simulation results are taken randomly from one of them, and the error bar
is taken to be the largest error range of them.
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As shown in the lower plots, for M̂ > 0.01M⊙, the
relative errors are generally less than 10%, while for very
small values of M̂, the relative error can be up to 100%. We
expect that it is possible to obtain a function for the
numerical errors, analogous to that given in Eq. (25) and
Eq. (26). Therefore, the coefficient in front of M̂ in Eq. (27)
can be taken as 0.1, and the constant part is taken as 0.003.

As shown in Fig. 13, the error for M̂eje and M̂rem can be
described using a uniform estimation as it is in Eq. (27).
We list numerical results for some models with different

grid resolutions N ¼ 62, 82 and 102 in Table VIII. The
relative error between N82 and N102 runs ranges from
0.9% to 3% for M̂rem, and ranges from 1% to 34% for M̂eje.
The relative error of the ejecta velocity between N ¼ 82

FIG. 13. Discrepancy of Mrem=Mb and Meje=Mb between runs with different grid resolutions. The x-axis is taken to the results from
N ¼ 82 runs. The scatters are taken to be the minimum discrepancy among N62, N82, and N102 runs. The blue dashed curves are an
upper estimation of the numerical error of the normalized remnant and ejecta mass, and the orange dashed lines are an estimation of the
relative numerical error.
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and N ¼ 62 runs ranges from 2% to 5%. The discrepancies
of fcutm0 between N ¼ 62 and N ¼ 82 range from 0.4% to
5%. The discrepancies of the spin are around 0.1%
for the three resolutions. In general, due to the complex-
ity of hydrodynamics, hydrodynamic quantities have
larger uncertainties. M̂rem decreases as the grid resolution
increases, while systematic convergence properties of other
quantities are not seen, and the discrepancies of numerical
results among different resolutions do not decrease neces-
sarily as the grid resolution increases. The reason for this
unsystematic behavior is likely that (i) in the presence of
shocks (e.g., in the tidal tail), numerical accuracy becomes
the first-order convergence and hence the error can be
enhanced in an unpredicted manner. (ii) the motion of the
matters is affected by the background atmosphere in the
simulations [32], the error associated with the artificial
atmosphere decreases significantly as grid resolutions are
improved, due to the suppression of spurious shocks at the
stellar surface.

APPENDIX B: CORRECTION
OF EJECTA VELOCITY

Different from Eq. (4), the kinetic energy of the ejecta
defined in Ref. [33] is

Teje;old ≔ Eeje −Ueje −Meje: ðB1Þ

The total energy of the ejecta Eeje is defined by

Eeje ≔
Z
−ut>1;r>rAH

ρ�êd3x: ðB2Þ

The internal energy of the ejecta Ueje is defined by

Ueje ≔
Z
−ut>1;r>rAH

ρ�ϵd3x: ðB3Þ

The mass of ejecta Meje is defined as in Eq. (3). The
definitions of ρ�, ê, and ϵ are listed in Table I.
Assuming the Newtonian dynamics, the averaged veloc-

ity of the ejecta can be evaluated as

veje;old ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Teje;old

Meje

s
: ðB4Þ

The gravitational potential energy is not excluded in
Teje;old, and veje;old is overestimated. To subtract the effect of
this gravitational potential energy, we can approximately
correct the velocity as in Ref. [34]

veje;cor ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2eje;old −

2m0

veje;oldðt − tmergerÞ

s
; ðB5Þ

where veje;old is evaluated at time t.
Figure 14 shows the time evolution of veje with different

definitions for a representative model 15H-Q3a75M1691.
If we choose veje defined in Eq. (5) to be the fiducial value,
we find that veje;old is still overestimated by ∼50% at 12 ms
after the onset of the merger. The corrected velocity of
ejecta veje;cor is closer to veje compared to veje;old, and
asymptotically approaches veje at 10 ms after the onset of
the merger. Thus, it is reasonable to use Eq. (B5) to correct
previous data of the average velocity of ejecta.

FIG. 14. Time evolution ofveje formodel 15H-Q3a75M1691with
different definitions. Here, the results are from N ¼ 82 runs. veje is
defined by Eq. (20), veje;old by Eq. (B4), and veje;cor by Eq. (B5).

TABLE VIII. Several numerical results for models 15H-
Q3a75M18, H-Q3a75M1220, HB-Q3a75M1428, and HB-
Q5a75M1428 with different grid resolutions N ¼ 62, 82, and
102. All the quantities are defined in the body text.

N M̂rem M̂eje veje fcutm0 χBH

15H-Q3a75M18
62 0.0840 0.00144 0.155 0.0762 0.870
82 0.0807 0.00151 0.159 0.0849 0.870
102 0.0782 0.00203 0.172 0.0883 0.870

H-Q3a75M1220
62 0.213 0.0290 0.181 0.0384 0.863
82 0.212 0.0296 0.185 0.0394 0.871
102 0.210 0.0303 0.188 0.0398 0.868

HB-Q3a75M1428
62 0.128 0.00513 0.172 0.0666 0.873
82 0.124 0.00589 0.182 0.0687 0.870
102 0.122 0.005884 0.185 0.0701 0.870

HB-Q5a75M1428
62 0.0393 0.000414 0.200 0.0993 0.845
82 0.0360 0.00542 0.191 0.1014 0.845
102 0.0327 0.00527 0.192 0.1016 0.845

15H-Q5a75M1691
62 0.0428 0.000463 0.177 0.0993 0.845
82 0.0369 0.00474 0.187 0.1011 0.845
102 0.0351 0.00491 0.185 0.1016 0.845

BLACK HOLE-NEUTRON STAR MERGERS WITH MASSIVE … PHYS. REV. D 110, 063016 (2024)

063016-17



[1] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017).

[3] B. P. Abbott et al., Astrophys. J. 848, L12 (2017).
[4] B. P. Abbott et al., Astrophys. J. 848, L13 (2017).
[5] A. Goldstein et al., Astrophys. J. Lett. 848, L14 (2017).
[6] LIGO Scientific Collaboration and Virgo Collaboration,

GRB Coordinates Network 21505, 1 (2017), https://ui
.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract.

[7] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,
and C. M. Biwer, Phys. Rev. Lett. 121, 091102 (2018).

[8] B. P. Abbott et al. (The LIGO Scientific Collaboration and
the Virgo Collaboration), Phys. Rev. Lett. 121, 161101
(2018).

[9] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. X 9, 011001 (2019).

[10] T. Narikawa, N. Uchikata, K. Kawaguchi, K. Kiuchi, K.
Kyutoku, M. Shibata, and H. Tagoshi, Phys. Rev. Res. 2,
043039 (2020).

[11] V. Savchenko et al., Astrophys. J. Lett. 848, L15 (2017).
[12] M. Tanaka, K. Hotokezaka, K. Kyutoku, S. Wanajo, K.

Kiuchi, Y. Sekiguchi, and M. Shibata, Astrophys. J. 780,
31 (2013).

[13] J. M. Lattimer and D. N. Schramm, Astrophys. J. Lett. 192,
L145 (1974).

[14] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Nature
(London) 340, 126 (1989).

[15] C. Freiburghaus, S. Rosswog, and F.-K. Thielemann,
Astrophys. J. 525, L121 (1999).

[16] M. R. Drout et al., Science 358, 1570 (2017).
[17] E. Pian, P. D’Avanzo, S. Benetti, M. Branchesi, E. Brocato,

S. Campana, E. Cappellaro, V. D’Elia, J. Fynbo, F. Getman,
G. Ghirlanda, G. Ghisellini, A. Grado, G. Greco, J. Hjorth,
C. Kouveliotou, A. Levan, L. Limatola, and D. Vergani,
Nature (London) 551, 67 (2017).

[18] R. Abbott et al., Astrophys. J. 915, L5 (2021).
[19] B. P. Abbott et al., Astrophys. J. Lett. 892, L3 (2020).
[20] K. Kyutoku, S. Fujibayashi, K. Hayashi, K. Kawaguchi, K.

Kiuchi, M. Shibata, and M. Tanaka, Astrophys. J. 890, L4
(2020).

[21] M. Shibata and K. Taniguchi, Living Rev. Relativity 14, 6
(2011).

[22] M. Shibata and K. Uryū, Phys. Rev. D 74, 121503 (2006).
[23] M. Shibata and K. Uryū, Classical Quantum Gravity 24,

S125 (2007).
[24] M. Shibata and K. Taniguchi, Phys. Rev. D 77, 084015

(2008).
[25] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro, K.

Taniguchi, and T.W. Baumgarte, Phys. Rev. D 77, 084002
(2008).

[26] M. D. Duez, F. Foucart, L. E. Kidder, H. P. Pfeiffer, M. A.
Scheel, and S. A. Teukolsky, Phys. Rev. D 78, 104015
(2008).

[27] T. Yamamoto, M. Shibata, and K. Taniguchi, Phys. Rev. D
78, 064054 (2008).

[28] Z. B. Etienne, Y. T. Liu, S. L. Shapiro, and T.W.
Baumgarte, Phys. Rev. D 79, 044024 (2009).

[29] M. Shibata, K. Kyutoku, T. Yamamoto, and K. Taniguchi,
Phys. Rev. D 79, 044030 (2009).

[30] F. Foucart, M. D. Duez, L. E. Kidder, and S. A. Teukolsky,
Phys. Rev. D 83, 024005 (2011).

[31] K. Kyutoku, M. Shibata, and K. Taniguchi, Phys. Rev. D
82, 044049 (2010).

[32] K. Kyutoku, K. Ioka, H. Okawa, M. Shibata, and K.
Taniguchi, Phys. Rev. D 92, 044028 (2015).

[33] K. Kawaguchi, K. Kyutoku, M. Shibata, and M. Tanaka,
Astrophys. J. 825, 52 (2016).

[34] K. Hayashi, K. Kawaguchi, K. Kiuchi, K. Kyutoku, and M.
Shibata, Phys. Rev. D 103, 043007 (2021).

[35] F. Foucart, M. D. Duez, L. E. Kidder, S. M. Nissanke, H. P.
Pfeiffer, and M. A. Scheel, Phys. Rev. D 99, 103025
(2019).

[36] W. Brege, M. D. Duez, F. Foucart, M. B. Deaton, J. Caro,
D. A. Hemberger, L. E. Kidder, E. O’Connor, H. P.
Pfeiffer, and M. A. Scheel, Phys. Rev. D 98, 063009
(2018).

[37] F. Foucart, M. B. Deaton, M. D. Duez, L. E. Kidder, I.
MacDonald, C. D. Ott, H. P. Pfeiffer, M. A. Scheel, B.
Szilagyi, and S. A. Teukolsky, Phys. Rev. D 87, 084006
(2013).

[38] F. Foucart, Phys. Rev. D 86, 124007 (2012).
[39] F. Foucart, M. D. Duez, L. E. Kidder, M. A. Scheel, B.

Szilagyi, and S. A. Teukolsky, Phys. Rev. D 85, 044015
(2012).

[40] G. Lovelace, M. D. Duez, F. Foucart, L. E. Kidder, H. P.
Pfeiffer, M. A. Scheel, and B. Szilágyi, Classical Quantum
Gravity 30, 135004 (2013).

[41] F. Foucart, M. B. Deaton, M. D. Duez, E. O’Connor, C. D.
Ott, R. Haas, L. E. Kidder, H. P. Pfeiffer, M. A. Scheel, and
B. Szilagyi, Phys. Rev. D 90, 024026 (2014).

[42] K. Kawaguchi, K. Kyutoku, H. Nakano, H. Okawa, M.
Shibata, and K. Taniguchi, Phys. Rev. D 92, 024014
(2015).

[43] K. Kyutoku, M. Shibata, and K. Taniguchi, Living Rev.
Relativity 24, 5 (2021).

[44] V. Ferrari, L. Gualtieri, and F. Pannarale, Phys. Rev. D 81,
064026 (2010).

[45] K. Kyutoku, H. Okawa, M. Shibata, and K. Taniguchi,
Phys. Rev. D 84, 064018 (2011).

[46] C. J. Krüger and F. Foucart, Phys. Rev. D 101, 103002
(2020).

[47] F. Foucart, T. Hinderer, and S. Nissanke, Phys. Rev. D 98,
081501 (2018).

[48] F. Pannarale and F. Ohme, Astrophys. J. Lett. 791, L7
(2014).

[49] D. Radice, A. Perego, F. Zappa, and S. Bernuzzi,
Astrophys. J. Lett. 852, L29 (2018).

[50] T. Hinderer, S. Nissanke, F. Foucart, K. Hotokezaka, T.
Vincent, M. Kasliwal, P. Schmidt, A. R. Williamson, D. A.
Nichols, M. D. Duez, L. E. Kidder, H. P. Pfeiffer, and
M. A. Scheel, Phys. Rev. D 100, 063021 (2019).

[51] M.W. Coughlin, T. Dietrich, B. Margalit, and B. D.
Metzger, Mon. Not. R. Astron. Soc. 489, L91 (2019).

[52] C. Barbieri, O. S. Salafia, M. Colpi, G. Ghirlanda, A.
Perego, and A. Colombo, Astrophys. J. Lett. 887, L35
(2019).

[53] I. Andreoni et al., Astrophys. J. 890, 131 (2020).
[54] S. Ascenzi, N. D. Lillo, C.-J. Haster, F. Ohme, and F.

Pannarale, Astrophys. J. 877, 94 (2019).

SHICHUAN CHEN et al. PHYS. REV. D 110, 063016 (2024)

063016-18

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa8f41
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://ui.adsabs.harvard.edu/abs/2017GCN.21505....1L/abstract
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevResearch.2.043039
https://doi.org/10.1103/PhysRevResearch.2.043039
https://doi.org/10.3847/2041-8213/aa8f94
https://doi.org/10.1088/0004-637X/780/1/31
https://doi.org/10.1088/0004-637X/780/1/31
https://doi.org/10.1086/181612
https://doi.org/10.1086/181612
https://doi.org/10.1038/340126a0
https://doi.org/10.1038/340126a0
https://doi.org/10.1086/312343
https://doi.org/10.1126/science.aaq0049
https://doi.org/10.1038/nature24298
https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.3847/2041-8213/ab6e70
https://doi.org/10.3847/2041-8213/ab6e70
https://doi.org/10.12942/lrr-2011-6
https://doi.org/10.12942/lrr-2011-6
https://doi.org/10.1103/PhysRevD.74.121503
https://doi.org/10.1088/0264-9381/24/12/S09
https://doi.org/10.1088/0264-9381/24/12/S09
https://doi.org/10.1103/PhysRevD.77.084015
https://doi.org/10.1103/PhysRevD.77.084015
https://doi.org/10.1103/PhysRevD.77.084002
https://doi.org/10.1103/PhysRevD.77.084002
https://doi.org/10.1103/PhysRevD.78.104015
https://doi.org/10.1103/PhysRevD.78.104015
https://doi.org/10.1103/PhysRevD.78.064054
https://doi.org/10.1103/PhysRevD.78.064054
https://doi.org/10.1103/PhysRevD.79.044024
https://doi.org/10.1103/PhysRevD.79.044030
https://doi.org/10.1103/PhysRevD.83.024005
https://doi.org/10.1103/PhysRevD.82.044049
https://doi.org/10.1103/PhysRevD.82.044049
https://doi.org/10.1103/PhysRevD.92.044028
https://doi.org/10.3847/0004-637X/825/1/52
https://doi.org/10.1103/PhysRevD.103.043007
https://doi.org/10.1103/PhysRevD.99.103025
https://doi.org/10.1103/PhysRevD.99.103025
https://doi.org/10.1103/PhysRevD.98.063009
https://doi.org/10.1103/PhysRevD.98.063009
https://doi.org/10.1103/PhysRevD.87.084006
https://doi.org/10.1103/PhysRevD.87.084006
https://doi.org/10.1103/PhysRevD.86.124007
https://doi.org/10.1103/PhysRevD.85.044015
https://doi.org/10.1103/PhysRevD.85.044015
https://doi.org/10.1088/0264-9381/30/13/135004
https://doi.org/10.1088/0264-9381/30/13/135004
https://doi.org/10.1103/PhysRevD.90.024026
https://doi.org/10.1103/PhysRevD.92.024014
https://doi.org/10.1103/PhysRevD.92.024014
https://doi.org/10.1007/s41114-021-00033-4
https://doi.org/10.1007/s41114-021-00033-4
https://doi.org/10.1103/PhysRevD.81.064026
https://doi.org/10.1103/PhysRevD.81.064026
https://doi.org/10.1103/PhysRevD.84.064018
https://doi.org/10.1103/PhysRevD.101.103002
https://doi.org/10.1103/PhysRevD.101.103002
https://doi.org/10.1103/PhysRevD.98.081501
https://doi.org/10.1103/PhysRevD.98.081501
https://doi.org/10.1088/2041-8205/791/1/L7
https://doi.org/10.1088/2041-8205/791/1/L7
https://doi.org/10.3847/2041-8213/aaa402
https://doi.org/10.1103/PhysRevD.100.063021
https://doi.org/10.1093/mnrasl/slz133
https://doi.org/10.3847/2041-8213/ab5c1e
https://doi.org/10.3847/2041-8213/ab5c1e
https://doi.org/10.3847/1538-4357/ab6a1b
https://doi.org/10.3847/1538-4357/ab1b15


[55] T. M. Tauris, M. Kramer, P. C. C. Freire, N. Wex, H.-T.
Janka, N. Langer, P. Podsiadlowski, E. Bozzo, S. Chaty,
M. U. Kruckow, E. P. J. van den Heuvel, J. Antoniadis,
R. P. Breton, and D. J. Champion, Astrophys. J. 846, 170
(2017).

[56] N. Farrow, X.-J. Zhu, and E. Thrane, Astrophys. J. 876, 18
(2019).

[57] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E.
Roberts, and J. W. T. Hessels, Nature (London) 467,
1081 (2010).

[58] J. Antoniadis et al., Science 340, 1233232 (2013).
[59] R. Abbott et al., Astrophys. J. 896, L44 (2020).
[60] K. Kiuchi, K. Kawaguchi, K. Kyutoku, Y. Sekiguchi, M.

Shibata, and K. Taniguchi, Phys. Rev. D 96, 084060
(2017).

[61] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.
Zlochower, Phys. Rev. Lett. 96, 111101 (2006).

[62] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van
Meter, Phys. Rev. Lett. 96, 111102 (2006).

[63] P. Marronetti, W. Tichy, B. Brügmann, J. González, and U.
Sperhake, Phys. Rev. D 77, 064010 (2008).

[64] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(1995).

[65] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1998).

[66] D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy,
and B. Brügmann, Phys. Rev. D 88, 084057 (2013).

[67] A. Mignone and G. Bodo, Mon. Not. R. Astron. Soc. 364,
126 (2005).

[68] C. J. White, J. M. Stone, and C. F. Gammie, Astrophys. J.
Suppl. Ser. 225, 22 (2016).

[69] K. Kiuchi, L. E. Held, Y. Sekiguchi, and M. Shibata, Phys.
Rev. D 106, 124041 (2022).

[70] L. J. Papenfort, S. D. Tootle, P. Grandclément, E. R. Most,
and L. Rezzolla, Phys. Rev. D 104, 024057 (2021).

[71] J. M. Lattimer and M. Prakash, Science 304, 536 (2004).
[72] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,

Phys. Rev. D 79, 124032 (2009).
[73] J. S. Read, C. Markakis, M. Shibata, K. Uryū, J. D. E.

Creighton, and J. L. Friedman, Phys. Rev. D 79, 124033
(2009).

[74] B. D. Lackey, K. Kyutoku, M. Shibata, P. R. Brady, and
J. L. Friedman, Phys. Rev. D 85, 044061 (2012).

[75] K. Hotokezaka, K. Kiuchi, K. Kyutoku, H. Okawa, Y.-i.
Sekiguchi, M. Shibata, and K. Taniguchi, Phys. Rev. D 87,
024001 (2013).

[76] C. O. Lousto, H. Nakano, Y. Zlochower, and M.
Campanelli, Phys. Rev. D 82, 104057 (2010).

[77] C. Reisswig and D. Pollney, Classical Quantum Gravity
28, 195015 (2011).

[78] J. M. Bardeen, W. H. Press, and S. A. Teukolsky,
Astrophys. J. 178, 347 (1972).

[79] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall,
Phys. Rev. C 58, 1804 (1998).

[80] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett.
67, 2414 (1991).

[81] B. D. Lackey, M. Nayyar, and B. J. Owen, Phys. Rev. D
73, 024021 (2006).

[82] T. Hinderer, S. Nissanke, F. Foucart, K. Hotokezaka, T.
Vincent, M. Kasliwal, P. Schmidt, A. R. Williamson, D. A.
Nichols, M. D. Duez, L. E. Kidder, H. P. Pfeiffer, and
M. A. Scheel, Phys. Rev. D 100, 063021 (2019).

[83] S. Chawla, M. Anderson, M. Besselman, L. Lehner, S. L.
Liebling, P. M. Motl, and D. Neilsen, Phys. Rev. Lett. 105,
111101 (2010).

[84] M. D. Duez, F. Foucart, L. E. Kidder, C. D. Ott, and S. A.
Teukolsky, Classical Quantum Gravity 27, 114106 (2010).

[85] Z. B. Etienne, Y. T. Liu, V. Paschalidis, and S. L. Shapiro,
Phys. Rev. D 85, 064029 (2012).

[86] Z. B. Etienne, V. Paschalidis, and S. L. Shapiro, Phys. Rev.
D 86, 084026 (2012).

[87] M. B. Deaton, M. D. Duez, F. Foucart, E. O’Connor, C. D.
Ott, L. E. Kidder, C. D. Muhlberger, M. A. Scheel, and B.
Szilagyi, Astrophys. J. 776, 47 (2013).

[88] V. Paschalidis, M. Ruiz, and S. L. Shapiro, Astrophys. J.
806, L14 (2015).

[89] F. Foucart, D. Desai, W. Brege, M. D. Duez, D. Kasen,
D. A. Hemberger, L. E. Kidder, H. P. Pfeiffer, and M. A.
Scheel, Classical Quantum Gravity 34, 044002 (2017).

[90] K. Kyutoku, K. Kiuchi, Y. Sekiguchi, M. Shibata, and K.
Taniguchi, Phys. Rev. D 97, 023009 (2018).

[91] M. Ruiz, S. L. Shapiro, and A. Tsokaros, Phys. Rev. D 98,
123017 (2018).

[92] F. Foucart, M. D. Duez, T. Hinderer, J. Caro, A. R.
Williamson, M. Boyle, A. Buonanno, R. Haas, D. A.
Hemberger, L. E. Kidder, H. P. Pfeiffer, and M. A.
Scheel, Phys. Rev. D 99, 044008 (2019).

[93] J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426
(2001).

[94] M. Vallisneri, Phys. Rev. Lett. 84, 3519 (2000).
[95] F. Pannarale, E. Berti, K. Kyutoku, B. D. Lackey, and M.

Shibata, Phys. Rev. D 92, 081504 (2015).
[96] F. Foucart, L. Buchman, M. D. Duez, M. Grudich, L. E.

Kidder, I. MacDonald, A. Mroue, H. P. Pfeiffer, M. A.
Scheel, and B. Szilagyi, Phys. Rev. D 88, 064017 (2013).

[97] T. Nakamura and M. Sasaki, Phys. Lett. 106B, 69
(1981).

[98] S. L. Shapiro and I. M. Wasserman, Astrophys. J. 260, 838
(1982).

[99] T. Nakamura and K. Ichi Oohara, Phys. Lett. 98A, 403
(1983).

[100] M. Shibata, Numerical Relativity (World Scientific,
Singapore, 2015), Vol. 1.

[101] K. Kyutoku, S. Fujibayashi, K. Hayashi, K. Kawaguchi, K.
Kiuchi, M. Shibata, and M. Tanaka, Astrophys. J. Lett.
890, L4 (2020).

[102] K. Kawaguchi, M. Shibata, and M. Tanaka, Astrophys. J.
893, 153 (2020).

BLACK HOLE-NEUTRON STAR MERGERS WITH MASSIVE … PHYS. REV. D 110, 063016 (2024)

063016-19

https://doi.org/10.3847/1538-4357/aa7e89
https://doi.org/10.3847/1538-4357/aa7e89
https://doi.org/10.3847/1538-4357/ab12e3
https://doi.org/10.3847/1538-4357/ab12e3
https://doi.org/10.1038/nature09466
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/2041-8213/ab960f
https://doi.org/10.1103/PhysRevD.96.084060
https://doi.org/10.1103/PhysRevD.96.084060
https://doi.org/10.1103/PhysRevLett.96.111101
https://doi.org/10.1103/PhysRevLett.96.111102
https://doi.org/10.1103/PhysRevD.77.064010
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.52.5428
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.88.084057
https://doi.org/10.1111/j.1365-2966.2005.09546.x
https://doi.org/10.1111/j.1365-2966.2005.09546.x
https://doi.org/10.3847/0067-0049/225/2/22
https://doi.org/10.3847/0067-0049/225/2/22
https://doi.org/10.1103/PhysRevD.106.124041
https://doi.org/10.1103/PhysRevD.106.124041
https://doi.org/10.1103/PhysRevD.104.024057
https://doi.org/10.1126/science.1090720
https://doi.org/10.1103/PhysRevD.79.124032
https://doi.org/10.1103/PhysRevD.79.124033
https://doi.org/10.1103/PhysRevD.79.124033
https://doi.org/10.1103/PhysRevD.85.044061
https://doi.org/10.1103/PhysRevD.87.024001
https://doi.org/10.1103/PhysRevD.87.024001
https://doi.org/10.1103/PhysRevD.82.104057
https://doi.org/10.1088/0264-9381/28/19/195015
https://doi.org/10.1088/0264-9381/28/19/195015
https://doi.org/10.1086/151796
https://doi.org/10.1103/PhysRevC.58.1804
https://doi.org/10.1103/PhysRevLett.67.2414
https://doi.org/10.1103/PhysRevLett.67.2414
https://doi.org/10.1103/PhysRevD.73.024021
https://doi.org/10.1103/PhysRevD.73.024021
https://doi.org/10.1103/PhysRevD.100.063021
https://doi.org/10.1103/PhysRevLett.105.111101
https://doi.org/10.1103/PhysRevLett.105.111101
https://doi.org/10.1088/0264-9381/27/11/114106
https://doi.org/10.1103/PhysRevD.85.064029
https://doi.org/10.1103/PhysRevD.86.084026
https://doi.org/10.1103/PhysRevD.86.084026
https://doi.org/10.1088/0004-637X/776/1/47
https://doi.org/10.1088/2041-8205/806/1/L14
https://doi.org/10.1088/2041-8205/806/1/L14
https://doi.org/10.1088/1361-6382/aa573b
https://doi.org/10.1103/PhysRevD.97.023009
https://doi.org/10.1103/PhysRevD.98.123017
https://doi.org/10.1103/PhysRevD.98.123017
https://doi.org/10.1103/PhysRevD.99.044008
https://doi.org/10.1086/319702
https://doi.org/10.1086/319702
https://doi.org/10.1103/PhysRevLett.84.3519
https://doi.org/10.1103/PhysRevD.92.081504
https://doi.org/10.1103/PhysRevD.88.064017
https://doi.org/10.1016/0370-2693(81)91082-0
https://doi.org/10.1016/0370-2693(81)91082-0
https://doi.org/10.1086/160302
https://doi.org/10.1086/160302
https://doi.org/10.1016/0375-9601(83)90248-7
https://doi.org/10.1016/0375-9601(83)90248-7
https://doi.org/10.3847/2041-8213/ab6e70
https://doi.org/10.3847/2041-8213/ab6e70
https://doi.org/10.3847/1538-4357/ab8309
https://doi.org/10.3847/1538-4357/ab8309

