
Localized Phase Contrast Imaging Measurements at Wendelstein 7-X

S.K. Hansen1, M. Porkolab1, J.-P. Bähner1, A. von Stechow2, O. Grulke2,3, E.M. Edlund4,

and the Wendelstein 7-X Team
1 Plasma Science and Fusion Center, MIT, Cambridge, MA 02139, USA

2 Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
3 Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

4 State University of New York College at Cortland, Cortland, NY 13045, USA

Localized phase contrast imaging (PCI) measurements at the Wendelstein 7-X (W7-X) stellara-

tor have been carried out using the masking technique pioneered at the Heliotron E stellarator

[1] and the DIII-D tokamak [2]. The masking technique relies on the fact that turbulent fluc-

tuations in magnetically confined plasmas generally have wave vectors, k, which are almost

perpendicular to the background magnetic field, B [1, 2]. When this is combined with the line-

integrated nature of PCI measurements [1, 2, 3, 4, 5], which makes the observed k perpendicular

to the line-of-sight (LoS) of the PCI laser beam, the direction of the k observed by PCI becomes

a function of the pitch angle of B [1, 2, 3]. As illustrated in Fig. 1, the beam pattern in a focal

plane of the plasma, caused by scattering off a fluctuation with wave vector k, consists of an

unscattered beam spot and two scattered beam spots with the same shape as the unscattered one,

but shifted by vectors ∝ ±k [1, 2]. It is therefore possible to obtain PCI measurements from a

limited range of B pitch angles, corresponding to a limited part of the PCI LoS, by placing a

mask in a focal of the PCI system, which cuts off the scattered beam spots for k outside the

desired range of B pitch angles [1, 2].

The ability to obtain localized PCI measurements depends critically on the unscattered beam

spot size in the focal plane where the localization mask is placed, as a scattered beam spot

covering a half-angle of ∆θ will contribute to the signal for B pitch angles within ±∆θ of the

one corresponding to its own k; this is illustrated in Fig. 1. To facilitate long-pulse operation,

the portliner around the PCI laser beam at W7-X has been reduced in size, from previously

having a radius of a = 68 mm, to a = 42 mm in the most recent experimental campaign [5].

Since the new a is similar to the typical 1/e electric field radius of the Gaussian beam used

for PCI at W7-X, W = 40mm, it is of interest to determine the limit of the spot size in the

focal plane imposed by the portliner. To do this, we note that, within a Fraunhofer diffraction

framework, the beam pattern in the focal plane can be modeled by the Fourier transform of the

truncated Gaussian, Ea
0 = C0 Θ(a− r)e−r2/W 2

, where C0 is the beam amplitude vector, Θ is the

Heaviside function, and r is the distance from the beam axis. Defining the Fourier transform as
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Êa
0 =

∫
all x⊥Ea

0 e−ik′·x⊥dx⊥, with x⊥ being the coordinate perpendicular to the beam axis and k′

being the corresponding focal plane wave vector, while noting that the intensity is ∝ |Êa
0|2, we

find

|Êa
0|2(k′) = 4π

2C2
0

[∫ a

0
r J0(k′r)e−r2/W 2

dr
]2

, (1)

where J0(k′r) = [1/(2π)]
∫ 2π

0 e−ik′r cos(θ)dθ is a Bessel function of the first kind of order zero

and k′ = |k′|, C0 = |C0|. When a→ ∞, |Êa
0|2(k′)→ π2C2

0W 4 e−k′2W 2/2, showing that the size of

the non-truncated Gaussian beam spot is ∝ 1/W . To compare the spot size with the portliner

present to the Gaussian case, we fit Eq. (1) by a Gaussian function

|Êfit|2(k′) = |Êfit|2(0)e−k′2W 2
eff/2; (2)

we also note that the 1/e beam spot radius of Eq. (2) in k′ space is
√

2/Weff and use this as

a measure of the beam spot size in Fig. 1. Optimally, we would perform a least square fit of

Eq. (2) to Eq. (1), while enforcing conservation of the power transported by the beam, i.e.,∫
all k′ |Êa

0|2 dk′ =
∫

all k′ |Êfit|2 dk′. Such a fit does, however, not admit a general closed form of

Weff and we shall therefore instead fit Eq. (1) by matching its Maclaurin series to that of Eq. (2)

up to second order, which yields a simple analytical expression for Weff. This method will match

the least square fit in the limit of W/a→ 0, as both Eqs. (1) and (2) are Gaussian functions in

that case. Even in the case of W/a→ ∞, the Weff obtained by matching the Maclaurin series

of Eqs. (1) and (2) up to second order only deviates from the least square fit conserving the

beam power by 2.2% [6]. Matching the zeroth order terms of the Maclaurin series yields the fit

amplitude,

|Êfit|2(0) = |Êa
0|2(0) = 4π

2C2
0

[∫ a

0
r e−r2/W 2

dr
]2

= π
2C2

0W 4(1− e−a2/W 2
)2. (3)

The first order term of the series is obtained by differentiating Eq. (1) with respect to k′,

∂ |Êa|2(k′)
∂k′

=−8π
2C2

0

[∫ a

0
r J0(k′r)e−r2/W 2

dr
][∫ a

0
r2 J1(k′r)e−r2/W 2

dr
]
, (4)

where J1 is a Bessel function of the first kind of order one. Since J1(0) = 0, it is clear that

∂ |Êa
0|2(k′)/∂k|k′=0 = 0. Differentiating Eq. (2), ∂ |Êfit|2(k′)/∂k′ = −k′W 2

eff|Êfit|2(0)e−k2W 2
eff/2,

so ∂ |Êfit|2(k′)/∂k′|k′=0 = 0, meaning that the first order terms of the Maclaurin series will

match regardless of the fit parameters, as both Eqs. (1) and (2) have stationary points at k′ = 0.

To obtain the second order term of the series, we differentiate Eq. (4) with respect to k′,

∂ 2|Êa|2(k′)
∂k′2

= 8π
2C2

0

([∫ a

0
r2 J1(k′r)e−r2/W 2

dr
]2

−
[∫ a

0
r J0(k′r)e−r2/W 2

dr
]

×
{∫ a

0
r3
[

J0(k′r)−
J1(k′r)

k′r

]
e−r2/W 2

dr
})

.

(5)
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Figure 1: Beam pattern due to scattering

off fluctuation with wave vector k in a fo-

cal plane. The scattered beam spots have

the same shape as the unscattered one

and their separations from it are ∝±k.

Figure 2: 2Weff from Eq. (7) for the new (solid

line) and old (dashed line) a at W7-X, along

with 2W (dashed-dotted line) and the new/old
√

2a (dotted lines), versus 2W . For 2W < a,

2Weff ≈ 2W , while 2Weff→
√

2a for 2W > 3a.

Next, we evaluate Eq. (5) for k′→ 0, recalling that J1(k′r)/(k′r)→ 1/2 when k′r→ 0,

∂ 2|Êa|2(k′)
∂k′2

∣∣∣∣
k′=0

=−4π
2C2

0

(∫ a

0
r e−r2/W 2

dr
)(∫ a

0
r3 e−r2/W 2

dr
)

=−π
2C2

0W 6(1− e−a2/W 2
)[1− (1+a2/W 2)e−a2/W 2

].

(6)

We further note that ∂ 2|Êfit|2(k′)/∂k′2 = (k2W 2
eff− 1)W 2

eff|Êfit|2(0)e−k2W 2
eff/2. Combining this

with Eq. (3) yields ∂ 2|Êfit|2(k′)/∂k′2|k′=0 =−π2C2
0W 4W 2

eff(1−e−a2/W 2
)2, which finally allows

us to compute Weff by setting ∂ 2|Êfit|2(k′)/∂k′2|k′=0 = ∂ 2|Êa
0|2(k′)/∂k′2|k′=0,

Weff =W

√
1− a2/W 2

ea2/W 2−1
. (7)

For a2/W 2→ ∞, Weff→W , as expected. When a2/W 2→ 0, Weff→ a/
√

2, in agreement with

the corresponding estimate of [6]. At W7-X, a/
√

2 = 29.7mm, while the least square fit Weff

conserving the beam power is 0.723a = 30.4mm [6], illustrating the closeness of the two fits.

Figure 2 shows 2Weff for the old and new a at W7-X, along with 2W and
√

2a for the old/new

a, versus 2W up to a value of 140 mm, which is the maximum beam size allowed by the W7-X

PCI system [3]. From Fig. 2, we conclude that 2Weff ≈ 2W for 2W < a, while 2Weff increases

significantly slower than 2W for 2Weff > a, and approaches the asymptotic limit of
√

2a for

2W > 3a. Although 2W > a for the typical PCI laser beam size at W7-X (2W = 80mm) with

both the new and old a, we note that the reduction of 2Weff relative to 2W is more significant
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for the new a (2Weff = 53.8mm) than for the old a (2Weff = 72.9mm), as expected. The above

results make it possible to determine a lower limit of the B pitch angle which can be resolved by

cutting off part of the beam in the focal plane. Using the geometry of Fig. 1, with the assumption

of small ∆θ and the fact that Weff < 0.723a, we find

∆θ ≈
√

2
kWeff

>
1.956

ka
. (8)

Equation (8) illustrates that it is generally easier to localize modes with larger k, as their scat-

tered beam spots cover a smaller angle, in agreement with [1, 2] and Fig. 1. The experimental

∆θ limit is expected to be somewhat larger than that of Eq. (8) due to diffraction effects beyond

the Fraunhofer model [2], but Eq. (8) still serves as an ultimate lower bound. For the new typi-

cal effective beam radius at W7-X (Weff = 26.9mm) and ion temperature gradient (ITG) driven

modes around k ≈ 6cm−1, which have the largest linear growth rate for standard electron cy-

clotron resonance heated plasmas at W7-X [4], 2∆θ ≈ 10◦ from Eq. (8). On the other hand,

the variation of the pitch angle of B along the PCI LoS ranges from 15◦ to 20◦ on the outboard

side of W7-X in different magnetic configurations [3]. Using these estimates, we thus see that

localization of typical ITG turbulence PCI features down to half the minor radius is feasible

on the outboard side of W7-X. On inboard side of W7-X, the variation of the pitch angle of

B along the PCI LoS is approximately 5◦ in all magnetic configurations [3] and the ability to

obtain localized PCI measurements on the inboard side is rather limited as a result. Detailed

results related to the W7-X PCI localization masks will be presented in a future publication.
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