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Vibrational and thermal properties of amorphous alumina from first principles
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Amorphous alumina is employed ubiquitously as a high-dielectric-constant material in electronics, and
its thermal-transport properties are of key relevance for heat management in electronic chips and devices.
Experiments show that the thermal conductivity of alumina depends significantly on the synthesis process,
indicating the need for a theoretical study to elucidate the atomistic origin of these variations. Here we
employ first-principles simulations to characterize the atomistic structure, vibrational properties, and thermal
conductivity of alumina at densities ranging from 2.28 to 3.49 g/cm3. Moreover, using a machine-learned
interatomic potential trained on first-principles data, we investigate how system size affects predictions of the
thermal conductivity, showing that simulations containing 120 atoms can already reproduce the bulk limit of the
conductivity. Finally, relying on the recently developed Wigner formulation of thermal transport, we shed light
on the interplay between atomistic topological disorder and anharmonicity in the context of heat conduction,
showing that the former dominates over the latter in determining the conductivity of alumina.
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I. INTRODUCTION

Alumina (Al2O3) is a deceptively complex material; there
are at least nine known metastable polymorphs [1], an amor-
phous phase which possesses its own unique properties as
a result of local disorder [2], and a number of predicted
nonstoichiometric structures [3]. Alumina has applications in
catalysis [4,5], energy-storage devices (e.g., Li-ion batteries
[6], Li-metal anodes [7], and solid-state electrolytes [8]), as
well as in heat-management technologies [9] and coatings
[10]. Moreover, thin-film amorphous alumina (am-Al2O3) is
often employed in electronic devices, and its thermal proper-
ties play a crucial role in determining both device efficiency
and lifespan [9,11]. The structural properties of am-Al2O3

have become the subject of extensive research, since the
atomic-layer deposition (ALD) technique allows production
of alumina films with controlled thickness and morphology.
There are several open fundamental questions on how the
structure of am-Al2O3 affects its macroscopic properties.
Solid-state 27Al nuclear magnetic resonance has identified
three main aluminum coordination environments in am-Al2O3

[12–16], which play a role in the electronic transport as evi-
denced by x-ray absorption spectroscopy and first-principles
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electronic density of states calculations [17,18]. The litera-
ture on the relationships between structural, vibrational, and
thermal properties of am-Al2O3 at technologically relevant
temperatures (i.e., at T > 30 K, in the so-called above-the-
plateau regime [19–21]) is less developed. Recently, Li et al.
[3] used machine learned force fields with molecular dy-
namics (Green-Kubo molecular dynamics (GKMD) [22–28]
and nonequilibrium molecular dynamics (NEMD) [29–32]
approaches) to compute the room-temperature thermal con-
ductivity of atomistic models of am-AlOx; they studied
models with densities ranging from 2.6 to 3.3 g/cm3 and
containing up to 528 atoms. While providing insights on
the physics governing thermal transport at room temperature,
this work could not explore how the thermal conductivity
varies with temperature—in fact, GKMD and NEMD are both
governed by classical equipartition and thus cannot be used
to investigate how the conductivity changes as temperature
decreases (i.e., when the specific heat deviates significantly
from the classical limit [33]).

Here we employ first-principles calculations alongside a
MACE machine learning potential (MLP) [34,35] to char-
acterize the structural, vibrational, and thermal properties of
am-Al2O3 across a wide range of densities (2.28 � ρ � 3.49
g/cm3). The MACE architecture utilizes the Atomic Clus-
ter Expansion [36–38] and equivariant message passing. In
particular, in Sec. II we investigate from first principles how
the atomic coordination topology of am-Al2O3 changes with
density, and how these changes affect the vibrational prop-
erties. The vibrational properties are then used in Sec. III
as inputs for the Wigner formulation of thermal transport
[39,40], which can be used to calculate heat conduction
in amorphous solids accounting comprehensively for the
effects of structural disorder, anharmonicity, and quantum
Bose-Einstein statistics of vibrations [21]. We employ the
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convergence-acceleration protocol discussed in Ref. [21] to
compute the bulk limit of the thermal conductivity of am-
Al2O3, highlighting the agreement between our predictions
and experiments at various densities and temperatures. We
describe how the interplay between structural disorder and
anharmonicity affects the thermal conductivity of am-Al2O3,
demonstrating that disorder practically determines thermal
transport at all the densities and temperatures studied (50 �
T � 700 K). Finally, in Sec. IV we employ the MACE
MLP to study size effects, comparing the structural, vi-
brational, and thermal properties of models of am-Al2O3

containing 120, 3240, and 7680 atoms. We discuss how the
convergence-acceleration protocol of Ref. [21] affects the
thermal-conductivity predictions in models having different
sizes.

II. STRUCTURAL AND VIBRATIONAL PROPERTIES

The properties of am-Al2O3 strongly depend on the syn-
thesis process—samples with densities ranging from 2.1 to
3.6 g/cm3 have been synthesized and discussed in the litera-
ture [41,42]. To generate structures throughout this range, we
extracted 120-atom structures at 3.17, 3.30, and 3.49 g/cm3

from Ref. [12], and additionally generated two 120-atom am-
Al2O3 models at 2.28 and 2.98 g/cm3 using a melt-quench
procedure [12]. Each structure was generated using ab initio
molecular dynamics (AIMD): initially melted at a temperature
of 4000 K, then quenched to a temperature of 300 K, and
finally equilibrated in the NVT ensemble (see Appendix A 1
for details). In the following, we show that these structures
have very different local atomic environments and coordi-
nation topologies, and consequently different vibrational and
thermal properties.

A. Coordination topology

With the goal of gaining insights on how the atomic bond-
ing topology affects the macroscopic conductivity, we start
by characterizing the coordination environments present in
our am-Al2O3 models, showing in Fig. 1 the probability
distribution of finding x-fold-coordinated oxygen (Ox) or y-
fold-coordinated aluminum (Aly) at each density. Six different
coordination environments are present in our models—Ox

with x ∈ 2, 3, 4, and Aly with y ∈ 4, 5, 6—and at least five
out of these six coordination topologies coexist at every model
density analyzed.

As shown in the top panel of Fig. 1, at increasing densities
the concentration of twofold-coordinated oxygen (O2) gener-
ally decreases in favor of fourfold-coordinated oxygen (O4);
changes in density have weaker effects on the concentration of
threefold-coordinated oxygen (O3). The bottom panel shows
that increasing density yields a reduction in the concentration
of Al4 environments, which is compensated by an increase of
Al6. In contrast, the Al5 environment displays weaker vari-
ations with density; we note that Al5 is characteristic of the
amorphous phase of Al2O3 and is absent in the crystalline
phases [43]. Finally, we highlight how the 2.28 g/cm3 model
contains a high proportion of O2 bridging oxygens and a
majority of Al4 environments, with no Al6. This is consistent
with the trend that at lower densities Al becomes primarily
tetrahedrally coordinated in Al4 environments [10].

FIG. 1. Coordination of oxygen and aluminum in am-Al2O3 at
various densities. The histograms show the probability of oxygen
(top) or aluminum (bottom) to have a certain coordination number in
the disordered models analyzed (different densities are distinguished
with colors). Coordination varies from 2 to 4 for O, and from 4 to 6
for Al.

From the coexistence of at least five different coordination
environments in all the am-Al2O3 models studied, we expect
strong structural disorder. To validate these expectations and
characterize atomistic disorder, we plot in Fig. 2 the total

FIG. 2. Radial distribution function (RDF) at various densities.
Solid lines show total RDF of the am-Al2O3 generated and studied
in this work (a rigid shift of two is used to distinguish the RDF of
different models).
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radial distribution function (RDF) for all AIMD models. We
highlight how the total RDF converges to 1 over a distance
shorter than 5 Å, indicating the presence of strong short-range
disorder (i.e., within the second coordination shell [44,45]).
The decomposition of the total RDF into partial RDFs is
discussed later in Fig. 11, where we use structures containing
up to 7680 atoms to show that the oscillations in the partial
RDF become very weak (negligible) at distances larger than
∼10 Å. We note, in passing, that this decay distance is shorter
than the linear size of all the 120-atom structures studied here,
and in agreement with that found in previous work [46]. This
suggests that atomistic models containing hundreds of atoms
are sufficiently large to capture the structural properties of
strongly disordered solids [21,47]. We validate this expecta-
tion in Sec. IV using the MACE MLP and atomistic models
containing up to 7680 atoms.

B. Vibrational properties

The strong variations in the coordination topology ob-
served in the different structures of am-Al2O3 (Fig. 1) are
intuitively expected to affect the atomic vibrational excita-
tions. Thus, in this section we investigate quantitatively how
the vibrational properties of am-Al2O3 change with the co-
ordination topology. We used density-functional perturbation
theory (DFPT) [48] to compute the energy h̄ωqs of each vibra-
tional mode qs, and the corresponding displacement pattern
Ebα

qs , which describes how atom b moves in direction α when
the vibration qs is excited. We label vibrational modes using
both the wave vector q and the mode index s for the sake
of generality, keeping in mind that q is necessary only in
crystals and in finite-size models of disordered solids, while in
“ideal glasses” (namely, an astronomically large set of atoms
whose arrangement lacks long-range order) one would obtain
q = 0, and thus s would be sufficient to label the vibrations
[21]. Then, we use these quantities to investigate if there is
a relationship between atomic displacements and coordina-
tion topology, computing the root mean square displacement
(RMSD) of every atom b [49],

RMSD(b, T )=
√

h̄

Ncmb

∑
qs

1

ωqs

[
1
2 + Nqs

]∑
α

∣∣Ebα
qs

∣∣2
, (1)

where Nqs=[exp (h̄ωqs/kBT )−1]−1 is the Bose-Einstein dis-
tribution at temperature T , mb is the mass of atom b, and Nc is
a normalization factor [50].

To see if a relationship between RMSD and coordination
topology exists, we compute the average RMSD(b, T ) over
atoms with equal coordination. Figure 3 shows that the aver-
age RMSD of Ox atoms decreases as coordination increases
in all the models analyzed. The average RMSD of Aly is
anticorrelated with coordination in models with ρ � 3.17
g/cm3, and displays deviations from this anticorrelated trend
in models with ρ = 3.30 g/cm3 (where all Al atoms have
a very similar average RMSD, regardless of their coordi-
nation) and with ρ = 3.49 g/cm3 (where Al6 has average
RMSD slightly larger than Al5). Interestingly, as density in-
creases, the average RMSD of O4 approaches the RMSD
of Al4—considering the significant differences between the
mass of oxygen and aluminum (mAl/mO ≈ 1.7), we note

FIG. 3. Average atomic root mean square displacement in am-
Al2O3 at various densities, calculated at T = 300 K using Eq. (1).
The average RMSD of oxygen decreases as coordination increases;
in contrast, aluminum displays a much weaker anticorrelation be-
tween RMSD and coordination number in models with ρ � 3.17
g/cm3; such an anticorrelation disappears in models with ρ � 3.30
g/cm3. Error bars represent the standard deviation of the average
RMSD, and are not reported in the cases in which only a single
coordination environment was detected.

that this behavior departs from the trend RMSD ∝
√

mb
−1

ubiquitously observed in solids with simple coordination
topology. This shows that the presence of complex coordina-
tion topologies can have nontrivial effects on the vibrational
properties.

Having investigated how the constraints imposed by the
coordination topology affect the average RMSDs, we now
study how coordination influences the vibrational frequencies.
To this aim, we compute the vibrational density of states
(VDOS), g(ω)=(VNc)−1 ∑

q,s δ(ω−ωqs) (here V is the vol-
ume of the cell used to simulate the disordered system), we
use the eigenvectors to decompose the VDOS into partial
(single-atom) contributions (PDOS), and finally we integrate
the single-atom PDOS using an indicator function that allows
us to resolve different coordination environments:

gtx (ω) = 1

VNc

∑
qs

δ(ω − ωqs)
∑
b,α

∣∣Ebα
qs

∣∣2
δb,tx , (2)

where δb,tx is an indicator function equal to 1 if the atom b is
of type t and has coordination x (e.g., tx = O3 for threefold-
coordinated oxygen), and zero otherwise. Thus, gtx (ω) allows
us to resolve how the coordination topology affects the
VDOS.

Results for gtx (ω) are shown in Fig. 4. We highlight
how the PDOS for different coordination environments have
similar shapes at different densities. In particular, different
coordination environments for oxygen have fingerprints in
the coordination-resolved PDOS: O3 is characterized by a
bimodal PDOS with a local minimum around 500 cm−1,
while O2 and O4 have a unimodal PDOS with peaks at
about 150 and 500 cm−1, respectively. In contrast, the
coordination-resolved PDOS for Al4, Al5, and Al6 are sim-
ilar in shape. We note that this is in sharp contrast to the
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FIG. 4. Vibrational density of states (VDOS) of am-Al2O3 at
various densities. The total VDOS is solid black. The colored solid
lines distinguish coordination environments for Al atoms: green is
Al4, red is Al5, and yellow is Al6. Dashed colored lines are used for
coordination environments of O atoms: cyan for O2, blue for O3, and
purple for O4.

crystalline θ -Al2O3 phase, which contains only Al4 tetrahedra
and Al6 octahedra and displays a clear distinction between
high-frequency breathing modes associated with Al4 environ-
ments, and low-frequency bending modes associated with Al6

environments [51].
Varying the density of am-Al2O3 causes a variation in the

relative magnitude of the Alx PDOS: at 2.28 g/cm3, the Al4

PDOS is always larger in magnitude than Al5; with increasing
density, the relative magnitude of the PDOS of Al4 and Al5

progressively reverses, with the highest-density 3.49 g/cm3

model featuring a PDOS for Al5 always larger than that for
Al4.

We note that the O3 and Al5 coordination environments
have a significant PDOS in all the models analyzed, regardless
of the models’ density. In contrast, the PDOS of O2, O4,
Al4, and Al6 display much stronger variations with density—
increasing density yields a progressive suppression of the
O2 and Al4 environments, compensated by the progressive
appearance of O4 and Al6 environments.

III. THERMAL PROPERTIES

A. Thermal conductivity of glasses

In this section we summarize the salient features of the
Wigner formulation of thermal transport [39], which describes
heat conduction accounting for the interplay between struc-
tural disorder, anharmonicity, and quantum Bose-Einstein
statistics of atomic vibrations. This allows us to describe
the thermal conductivity of solids ranging from crystals
[40,52,53] to glasses [21,54].

When applied to atomistic models of amorphous systems,
the Wigner formulation of thermal transport yields the follow-
ing “rWTE” conductivity expression [21]:

κ = 1

VNc

∑
q,s,s′

ωqs + ωqs′

4

(
Cqs

ωqs
+ Cqs′

ωqs′

)‖vv (q)s,s′ ‖2

3

× πF[η;
qs+
qs′ ](ωqs − ωqs′ ), (3)

where h̄ωqs denotes the harmonic energy of the vibration qs,
and h̄
qs its linewidth (broadening of the harmonic energy
level due to anharmonicity [55–61] and isotopic-mass disor-
der [62]); ‖vv (q)s,s′ ‖2= ∑3

α=1 v α (q)s,s′v α (q)s′,s is the square
modulus of the velocity operator [40] between eigenstates s
and s′ at fixed q (α denotes a Cartesian direction and, since
amorphous solids are in general isotropic, the scalar conduc-
tivity (3) is computed as the average trace of the tensor καβ

[21]);

Cqs = C[ωqs, T ] = h̄2ω2
qs

kBT 2
Nqs(Nqs + 1) (4)

is the quantum specific heat of the mode qs; V , Nc, and Nqs are,
in order, the simulation’s cell volume, normalization factor,
and Bose-Einstein distribution already discussed in Sec. II B.
Finally, F[η;
qs+
qs′ ](ωqs − ωqs′ ) is a Voigt distribution, i.e.,
a two-parameter distribution that reduces to a Lorentzian
with full width at half maximum (FWHM) 
qs+
qs′ when

qs+
qs′ � η, and to a Gaussian representation of the
Dirac delta with variance η2π/2 in the opposite limit
(
qs+
qs′ 	 η).

As discussed in detail in Ref. [21], Eq. (3) describes
thermal transport as originating from couplings between vi-
brations that have an energy difference smaller than the
broadening of the Voigt profile. Such a broadening is deter-
mined by η in the low-temperature (harmonic) limit where
anharmonicity phases out (
qs+
qs′ → 0 ∀ q, s, s′). Setting
η to a value slightly larger than the average energy-level
spacing h̄�ωavg = h̄ωmax

3Nat
(h̄ωmax is the maximum vibra-

tional energy, and 3Nat is the number of vibrational energy
levels, i.e., three times the number of atoms in the sys-
tem’s reference cell) accounts for the physical property that
heat transfer via a wavelike tunneling between neighboring

043601-4



VIBRATIONAL AND THERMAL PROPERTIES OF … PHYSICAL REVIEW MATERIALS 8, 043601 (2024)

(quasidegenerate) vibrational eigenstates can occur [63] even
in the limit of vanishing anharmonicity, implying that in
such a limit Eq. (3) reduces to the harmonic Allen-Feldman
(AF) thermal conductivity for glasses [20,64]. In contrast,
at temperatures where the anharmonic linewidths are much
larger than the computational broadening η, the Voigt pro-
file becomes a Lorentzian with FWHM 
qs+
qs′ , effectively
reducing to the anharmonic Wigner conductivity expres-
sion [40]. In practice, when applied to finite-size atomistic
models of amorphous solids at temperatures for which
h̄�ωavg > 
qs, the rWTE conductivity expression (3) ensures
that the low-temperature harmonic Allen-Feldman limit is
correctly described, and the effects of anharmonicity are con-
sidered only when they are not spuriously altered by finite-size
effects [40].

In actual calculations, an amorphous solid is approximately
described as a crystal having a primitive cell containing a
large but finite number of atoms, Nat. Thus, the Brillouin
zone (BZ) corresponding to the (large) finite-size model does
not reduce to the aforementioned “ideal glass” limit (q = 0
only), but has a (small) finite volume. Recent work [21] has
shown that when the lengthscale of structural disorder is
shorter than the size of the simulation cell, periodic boundary
conditions and Fourier interpolation over the small BZ of the
glass can be exploited to improve the sampling of the vibra-
tional properties and extrapolate the bulk limit of the thermal
conductivity. In practice, using the Fourier interpolation in
a disordered model corresponds to averaging over different
possible boundary conditions. For example, the vibrational
properties computed at q = 0 only correspond to considering
periodic boundary conditions at the boundaries of the sim-
ulation box; calculations at q = (1, 0, 0)π/L correspond to
considering antiperiodic boundary conditions along direction
x and periodic along the other directions [65]. Of course,
increasing the size of the atomistic model, one expects the
choice of the boundary conditions to become less and less
relevant, and in practice this can be verified by comparing
a calculation at q = 0 only with one performed relying on
Fourier interpolation—when differences are negligible, one
can conclude that the boundary conditions are irrelevant and
the system is large enough to allow a brute-force simulation
of the bulk limit. In practice it is not always possible to
simulate this, due to exceedingly large computational cost.
In the next section we show that in finite-size models of
strongly disordered systems such as am-Al2O3, the bulk limit
of the conductivity can be computed using the rWTE (3),
which ensures that (i) heat transfer mediated by tunneling
between neighboring eigenstates can always occur, preserving
a physical property that would otherwise emerge only in the
thermodynamic limit, and (ii) the sampling of the vibrational
properties is improved by averaging over different boundary
conditions. These statements are validated in Sec. IV using
the MACE MLP for a brute-force calculation of the bulk limit
in models containing up to 7680 atoms.

Finally, it is worth mentioning that the Wigner thermal
conductivity expression (3) can be derived also from a many-
body Green-Kubo approach [66,67], and such an expression
has been recently employed [68,69], in combination with
interatomic potentials, to describe the thermal properties of
several glasses [70].

FIG. 5. Wigner vs Allen-Feldman thermal conductivity of am-
Al2O3. Predictions from anharmonic rWTE (solid lines) and from
harmonic AF (dashed lines); different colors distinguish different
densities: 2.28 g/cm3 (blue and cyan), 2.98 g/cm3 (dark and light
green), and 3.49 g/cm3 (red and orange). The effects of anhar-
monicity are overall small, and become weaker as density decreases.
Scatter points are experiments: red triangles are taken from Lee
et al. [71] (DC sputtering), green circles from Monachon and Weber
[72] (ALD on Si substrate), and the green square is from Gorham
et al. [73] (ALD on Si substrate). Theory and experiments are in
reasonably good agreement over the entire temperature range.

B. Numerical results

1. Thermal conductivity from first principles

In this section we evaluate the rWTE conductivity from
first principles (see Appendix A 1 for details) for each am-
Al2O3 structure, in the temperature range from 50 to 700 K.
We focus on this temperature range because it is the most
relevant for technological applications related to electronics
[6–8], and can be studied with the 120-atom models at our
disposal [21] (this last statement is discussed in detail and
validated in Sec. IV, where we use a MLP to study models
containing up to 7680 atoms).

We show in Fig. 5 the predictions for the thermal con-
ductivity obtained using the harmonic AF or anharmonic
rWTE formulations (see Appendix C 1 for details on the
convergence test for the AF broadening parameter η and
for the calculation of the anharmonic linewidths). We find
that the effects of anharmonicity are in general weak—AF
and rWTE differ at most by 10% in the highest-density
(3.49 g/cm3) model. These differences become smaller as
the density decreases, and are practically invisible in the
lowest-density (2.28 g/cm3) model. The good agreement be-
tween AF and rWTE shows that in am-Al2O3 the vibrations’
damping due to disorder is strong enough to dominate over
anharmonicity. In addition, we highlight how both AF and
rWTE predict an increasing-up-to-saturation trend for the
temperature-conductivity curve; such a saturating trend is
inherited from that of the specific heat (more on this later
in Sec. III B 2). Our calculations shed light on the thermal
properties of am-Al2O3 below room temperature, where the
quantum Bose-Einstein statistics of vibrations has a major
effect on thermal transport. This is a step forward compared
to previous studies based on molecular dynamics (MD) [3],
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FIG. 6. Thermal conductivity as a function of density. The solid
green line is the theoretical rWTE conductivity computed at 300 K.
Empty scatter points are experiments performed at 300 K by Gorham
et al. [73] in 2014 (green squares, ALD samples grown on Si), by Lee
et al. [78] in 2017 (blue diamond, ALD samples grown on Si), and
by Lee et al. [71] in 1995 (red triangle, DC sputtering).

which were governed by classical equipartition and thus had
to be limited to the high-temperature regime [33] (i.e., at
temperature large enough to have a quantum specific heat
effectively very close to the constant classical limit).

In Fig. 5 we compare our calculations with the experimen-
tal measurements from Refs. [72,73] (ALD samples grown
on Si substrate and having density 3.0 g/cm3) and Ref. [71]
(DC-sputtered samples with density 3.51 g/cm3). Thermal
conductivity experiments have uncertainties that depend on
many factors, including, e.g., the sample’s size, shape, and
measurement method [74–76]; as shown by the error bars
from Refs. [72,73], these uncertainties are typically around
10–20 %. We see that our predictions at different densities are
overall compatible (within the error bars or within 10%) with
the corresponding experiments.

We now turn our attention to the dependence of the con-
ductivity on density. In Fig. 6 we plot the room-temperature
rWTE conductivity as a function of density (we note from
Fig. 5 that at 300 K the rWTE and AF conductivities are
practically indistinguishable across the entire density range
analyzed), finding an approximately linear increase of the
conductivity with density (κ (ρ)300K ≈ a · ρ + b, where a =
0.637 ± 0.004 W cm3

m K g , b = −0.495±0.014 W
m K ). We compare

our predictions with the experiments by Gorham et al. [73],
who characterized the room-temperature thermal conductivity
of ALD am-Al2O3 grown on Si substrate [77] at densities
ranging from 2.66 to 3.12 g/cm3. To give an idea about
the conductivity variability found when comparing inde-
pendent experiments, we also report the room-temperature
conductivities extracted from the data set of Lee et al.
[71] (DC-sputtered) and Lee et al. [78] (ALD on Si) al-
ready presented in Fig. 5. We note that there is some
variance between the conductivity observed in independent
experiments; still they show a conductivity that overall in-
creases with density, and such a trend is reproduced in our
calculations.

2. Thermal diffusivity and effects of anharmonicity

To gain microscopic, fundamental insights on why anhar-
monicity has negligible effects on the thermal conductivity of
am-Al2O3, it is useful to resolve the amount of heat carried by
each atomic vibration and its diffusion rate. This information
can be obtained by recasting the rWTE conductivity expres-
sion (3) as [21]

κ (T ) =
∫ ωmax

0
g(ω)C(ω, T )D(ω, T )dω, (5)

where ωmax is the maximum vibrational frequency of the sys-
tem, g(ω) is the VDOS discussed in Sec. II B, C(ω, T ) is the
specific heat for a vibration with frequency ω at temperature
T [see Eq. (4)], and D(ω, T ) is the rWTE diffusivity [21],

D(ω, T ) = [g(ω)VNc]−1
∑
q,s

Dqsδ(ω − ωqs), (6)

Dqs =
∑

s′

ωqs + ωqs′

2[Cqs + Cqs′ ]

[
Cqs

ωqs
+Cqs′

ωqs′

]‖vv (q)s,s′ ‖2

3

× πF[η;
qs+
qs′ ](ωqs − ωqs′ ). (7)

The expression for Dqs is determined by factorizing the spe-
cific heat Cqs in Eq. (3) and by the requirement that in the
coupling between two vibrations qs and qs′ each contributes
to the coupling with a weight equal to the relative specific
heat [40] (e.g., for vibration qs the weight is Cqs

Cqs+Cqs′
, and

correspondingly for vibration qs′ the weight is
Cqs′

Cqs+Cqs′
). In the

harmonic AF limit η � 
qs + 
qs′ → 0, and thus the Voigt
distribution in Eq. (7) reduces to the Gaussian representa-
tion of the Dirac δ, accounting only for couplings between
quasidegenerate vibrational eigenstates and effectively reduc-
ing to the temperature-independent AF diffusivity [20,64]. We
note that in the context of Eq. (5) the only difference be-
tween AF and rWTE originates from the diffusivity D(ω, T ),
implying that differences between AF and rWTE conductiv-
ities derive exclusively from differences between the AF and
rWTE diffusivities.

Equations (6) and (7) allow us to obtain additional,
microscopic information on why the harmonic AF and
anharmonic rWTE conductivities in Fig. 5 display small
(negligible) differences in the high-temperature limit (Cqs =
C(ωqs, T )→kB and 
qs�η ∀ qs). Specifically, the Voigt distri-
bution in Eqs. (6) and (7) implies that in the high-temperature
limit the rWTE diffusivity is a Lorentzian-weighted aver-
age of velocity-operator elements ‖vv (q)s,s′ ‖2, and in practice
such average is mainly determined by elements satisfying
|ωqs−ωqs′ |<[
qs+
qs′ ]; increasing temperature implies an
increase of the linewidths, and therefore velocity-operator ele-
ments with increasingly larger frequency difference contribute
to such an average. Therefore, the trend of the velocity-
operator elements as a function of the energy difference
h̄|ωqs−ωqs′ | determines the trend of the diffusivity as a func-
tion of temperature: elements increasing (decreasing) with
frequency difference imply a conductivity increasing (de-
creasing) with temperature. In contrast, in the harmonic AF
limit, the diffusivity is always determined by quasidegenerate
velocity-operator elements (h̄|ωqs−ωqs′ | → 0) and therefore
it does not depend on temperature. Applying this reason-
ing to am-Al2O3, where the rWTE conductivity saturates
to a temperature-independent value at high temperature, we
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FIG. 7. Velocity operator of am-Al2O3 as a function of vibra-
tional energy differences and averages, for the models having density
2.28, 2.98, and 3.49 g/cm3, computed from Eq. (8). We see that the
average velocity operators for all densities are relatively unchanged
at increasing differences, ωd . These small differences imply that the
effects of anharmonicity on the conductivity are negligible (see text).

expect the velocity-operator elements to be roughly indepen-
dent from the frequency difference. To validate this reasoning,
we show in Fig. 7 the velocity operator as a function of the
energy average h̄ωa = h̄[ωqs+ωqs′ ]/2 and difference h̄ωd =
h̄|ωqs−ωqs′ | of the modes coupled [21]:

〈∣∣v avg
ωaωd

∣∣2〉 = [G(ωa, ωd )]−1 1

VNc

∑
q,s,s′

‖vv (q)s,s′ ‖2

3

× δ
(
ωd − (ωqs −ωqs′ )

)
δ

(
ωa − ωqs + ωqs′

2

)
,

(8)

FIG. 8. AF diffusivity of am-Al2O3 at various densities, com-
puted using Eq. (6) in the AF limit. The diffusivity tends to increase
with density, especially at low frequencies (0–100 cm−1 range) and
between 400 and 600 cm−1. Inset: Quantum specific heat as a func-
tion of temperature.

where G(ωa, ωd ) is a density of states that serves as normal-
ization,

G(ωa, ωd ) = 1

Nat

1

VNc

∑
q,s,s′

δ

(
ωqs + ωqs′

2
− ωa

)

× δ((ωqs−ωqs′ ) − ωd ). (9)

The plots confirm our expectations, i.e., in the am-Al2O3

models studied the saturating trend of the rWTE conductiv-
ity, and the negligible effect of anharmonicity, derive from
having microscopic velocity-operator elements that do not
vary appreciably with ωd across the range of densities stud-
ied. Keeping the negligible differences between AF and
rWTE diffusivity in mind, in the following we focus on the
temperature-independent AF limit of the diffusivity D(ω) to
simplify the discussion [i.e., Eqs. (6) and (7) evaluated with

qs = 0 ∀qs and η determined from the convergence plateau
as discussed in Appendix C 1].

Equation (5) shows that the contributions to heat transport
of atomic vibrational modes with frequency ω are deter-
mined by their density of states, g(ω), amount of heat carried,
C(ω, T ), and rate of diffusion, D(ω). In previous sections we
showed that (i) VDOS increases with density as discussed
in Fig. 4 and (ii) conductivity increases (linearly) with den-
sity as evidenced in Fig. 6. Therefore, it is natural to ask
to what extent the conductivity increase observed in Fig. 6
derives from the increase in the VDOS with density, and
how density affects the diffusivity of vibrations. Analyz-
ing the frequency-resolved AF diffusivity D(ω) reported in
Fig. 8 for all our models of am-Al2O3 allows us to address
these questions. We see that an overall increase of diffu-
sivity with density is visible when comparing low-density
(ρ = 2.28 g/cm3), medium-density (ρ = 2.98 g/cm3), and
high-density (ρ � 3.17 g/cm3) models, especially at low fre-
quencies (from 0 to 100 cm−1). More precisely, comparing
the diffusivity of the highest-density ρ = 3.49 g/cm3 model
with that of the lowest-density ρ = 2.28 g/cm3 model, we
find that the highest-density model has a diffusivity that is a
factor of ∼2 larger than that of the lowest-density model in
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the low-frequency region (0–100 cm−1) and a up to a factor
of 1.5 larger in the region between 400 and 600 cm−1. The
inset of Fig. 8 shows the quantum specific heat C(ω, T ) at
various temperatures, whose frequency dependence at fixed
temperature T is indicative of the portion of the vibrational
spectrum that significantly contributes to heat transport at that
temperature.

We highlight how the low-frequency vibrational modes
which have density-dependent diffusivity are significantly
populated at all the temperatures considered, implying that
the increase of the thermal conductivity with density observed
in Fig. 6 receives contributions also from increases in the
diffusivity. We also note that the saturation of the specific
heat shown in the inset of Fig. 8 drives the saturation of the
AF thermal conductivity at high temperature (Fig. 5). Given
that the effects of anharmonicity are unimportant for thermal
transport in am-Al2O3, the saturation of the rWTE conduc-
tivity has to be attributed to the saturation of the specific
heat. Finally, we highlight how the classical limit (dashed line
in the inset of Fig. 8) is not yet reached even at tempera-
tures as high as 1200 K; this underscores the importance of
correctly accounting for the quantum Bose-Einstein statistics
of vibrations to describe thermal transport in am-Al2O3 at
technologically relevant temperatures.

In summary, we have found that both VDOS (Fig. 4) and
diffusivity (Fig. 8) increase with density. In order to estimate
how much the increase of conductivity with density shown
in Figs. 5 and 6 depends on the increase of the VDOS and
how much on the increase in diffusivity, we computed the
conductivity, artificially combining the VDOS and diffusivity
of the highest- and lowest-density models in the following
ways: (i) using the VDOS of the 3.49 g/cm3 model and the AF
diffusivity of the 2.28 g/cm3 model and (ii) using the VDOS
of the 2.28 g/cm3 model and the AF diffusivity of the 3.49
g/cm3 model. The comparison between these artificial con-
ductivities and the exact ones (taken from Fig. 5) are reported
in Fig. 9, and show that these two artificial calculations yield
a conductivity that lies approximately halfway between the
actual conductivities of the lowest-density and highest-density
models over a wide temperature range, demonstrating that
variations of the thermal conductivity with density are deter-
mined by variations both in the VDOS and in the diffusivity.

IV. SIZE EFFECTS

The AF and rWTE conductivities presented in the previ-
ous section were evaluated following the protocol presented
in Ref. [21], which showed that the thermal conductivity
of strongly disordered solids such as vitreous silica can be
accurately reproduced using models containing ∼100 atoms,
a result supported by other recent studies [47,79]. In this
section we study how the size of the atomistic model affects
the theoretical predictions for the conductivity of am-Al2O3.
To overcome the limitations posed by the computational cost
of first-principles calculations, we generated a MACE MLP
[34,35] for am-Al2O3 using the first-principles data set re-
leased by Li et al. [3]; computational details are reported in
Appendix A 2. Then, we used this potential to produce am-
Al2O3 models containing 120, 3240, and 7680 atoms before
finally computing the vibrational properties of these models,
as well as the AF and rWTE conductivities.

FIG. 9. Microscopic mechanisms underlying conductivity in-
crease with density. Solid lines are exact AF conductivity calcula-
tions for the highest-density 3.49 g/cm3 model (orange, g3.49D3.49)
and lowest-density 2.28 g/cm3 model (cyan, g2.28D2.28). The dashed
lines show results of artificial conductivity calculations, performed
using Eq. (5) with the VDOS of the highest-density model and
the diffusivity of the lowest-density model (purple, g3.49D2.28), or
the VDOS of the lowest-density model and the diffusivity of the
highest-density model (gray, g2.28D3.49). The artificial calculations
yield conductivities lying approximately halfway between the exact
limits, indicating that the increase of conductivity with density is
determined, in similar proportion, by both an increase in VDOS and
an increase in diffusivity.

A. Model generation via melt-quench simulation

We used MACE to generate large models of am-Al2O3.
Specifically, we performed molecular-dynamics melt-quench
simulations, using the same protocol as employed in Ref. [12]
to generate the AIMD 120-atom models discussed in the
previous sections. Starting from the AIMD 120-atom model
with density 2.98 g/cm3 (hereafter referred to as AIMD120),
we generated 3×3×3 and 4×4×4 supercells, containing 3240
and 7680 atoms, respectively. These supercells were used as
the initial configuration for a melt-quench simulation: they
were first heated from 0 to 4000 K in 10 ps, then melted
for 10 ps at 4000 K to ensure randomness of the structure,
and then quenched to 300 K over 10 ps. After the melt-
quench simulation, each structure was equilibrated in an NVT
ensemble at 300 K for 10 ps. Finally, the resulting models
were relaxed to a pressure lower than 0.001 kbar and to in-
teratomic forces lower than 1 meV/Å (without imposing any
constraint on the geometry of the simulation box). After this
final relaxation, both the 3240- and 7680-atom models (here-
after referred to as MACE3240 and MACE7680) displayed a
density of 2.92 g/cm3. We also relaxed the AIMD120 model
with MACE, using the same threshold mentioned above and
without any constraint on the geometry of the box, obtaining
a “MACE120” model with density 2.88 g/cm3. The densities
of structures obtained from first principles and MLP are in
acceptable agreement, being within 3%. In the next section we
validate the capability of MACE to reproduce within few-
percent accuracy the first-principles results for the structural,
vibrational, and thermal properties of am-Al2O3. Then, using
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FIG. 10. Coordination histogram for AIMD and MACE models
of am-Al2O3. The histograms show the proportion of oxygen (top)
and aluminum (bottom) with a certain coordination number. The
atomistic structures above the plot show differences in the linear size
of the models studied.

the 120-, 3240-, and 7680-atom MACE models, we investi-
gate how these properties depend on the size of the model.

B. Structural properties

We start by comparing coordination histograms of MACE
structures with the AIMD120 structure. Figure 10 shows that
both Al and O coordination distributions are in good agree-
ment between MACE120 and AIMD120. Importantly, these
distributions are practically independent from the size of the
model, since MACE120, MACE3240, and MACE7680 show
extremely similar distributions.

Next, to resolve possible more subtle differences between
the various structures, we compare in Fig. 11 the total and
partial RDFs. The total RDFs of MACE120, MACE3240, and
MACE7680 are practically indistinguishable, and they are in
remarkable agreement with the RDF of AIMD120. Similarly,

FIG. 11. Radial distribution function for models of am-Al2O3.
Total and partial RDF of the 120-atom Al2O3 model generated using
AIMD at 2.98 g/cm3 compared with the two models generated using
the MACE potential. The RDFs for the 120-atom models only extend
to r = 10.9 Å, a distance equal to the linear size of these models.

all the partial RDFs (Al-Al, Al-O, and O-O) are in remarkable
agreement between all the four aforementioned models. We
highlight how oscillations in the partial RDFs become very
weak (negligible) at distances larger than the linear size of
our first-principles 120-atom models (∼11 Å, where the solid
light green and dashed dark green lines stop). This suggests
that atomistic models with linear size of ∼11 Å are sufficiently
large to capture the most important features of structural
disorder in am-Al2O3. Importantly, these tests also validate
the capability of the MACE MLP to describe the structural
properties of am-Al2O3 with first-principles accuracy. There-
fore, we continue our validation tests for MACE, discussing in
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the next section its capability to reproduce the first-principles
vibrational properties.

C. Vibrational properties

In Fig. 12 we test the capability of MACE to reproduce the
vibrational properties previously computed from first princi-
ples, and we also check how these depend on the size of the
model. Starting from the bottom, we see that the AIMD120
and MACE120 models show very similar full VDOS (black
line). Also, the decomposition of the VDOS into PDOS con-
tributions from different coordination environments (colored
lines) is compatible between MACE120 and AIMD120.

Turning our attention to size effects on vibrational proper-
ties, we see that the large MACE3240 and MACE7680 models
display a VDOS similar in magnitude and shape to the 120-
atom models but differing in the roughness; i.e., larger models
have VDOS, which is a smoothed version of the VDOS com-
puted for small MACE120 and AIMD120 models. This is also
true for the PDOS, where general shape is maintained but
roughness is reduced as the model size increases. We conclude
by noting that, in all these models, the vibrational frequencies
are non-negative, confirming that our models were correctly
relaxed to an energy minimum and therefore are structurally
stable.

D. Thermal conductivity

In this section we use the vibrational properties of the
MACE models to evaluate the Wigner thermal conductivity
(3), and thus test how it converges with respect to system size.

In Fig. 13 we compare the bare WTE conductivities [i.e.,
Eq. (3) computed at q = 0 with η = 0, hereafter referred
to as “bWTE”] against the regularized rWTE conductivity
(computed relying on the q-mesh interpolation and using η

determined from the beginning of the convergence plateau;
see Figs. 15 and 17 in Appendixes C and D for details). We
see that for the large MACE7680 and MACE3240 models
the bWTE and rWTE conductivities are practically indistin-
guishable, confirming that these models are sufficiently large
to realistically represent a bulk system at temperatures above
50 K; thus the convergence-acceleration protocol based on the
Voigt regularization protocol has a negligible effect on them.
Importantly, the rWTE conductivity for the small AIMD120
and MACE120 models computed on converged 5×5×5 q-
mesh and using η = 6 cm−1 yields a conductivity compatible
[80] with that of the large MACE7680 and MACE3240 mod-
els. We highlight that it is crucial to employ the rWTE to
extrapolate the bulk limit of the conductivity from small
models—Fig. 13 shows that in AIMD120 and MACE120
the bWTE underestimates the conductivity by approximately
20%.

It is worth commenting on how the rWTE protocol extrap-
olates successfully to the bulk limit for the conductivity. As
anticipated in Sec. III A and in Ref. [21], the rWTE protocol
enforces the physical property that couplings between differ-
ent modes can always occur in a truly disordered system, and
exploits q-mesh interpolation to average the vibrational prop-
erties over many possible different boundary conditions—this
last operation is analogous to the averaging over periodic

FIG. 12. Vibrational density of states for AIMD and MACE am-
Al2O3 models. The total VDOS is solid black. The colored solid
lines distinguish coordination environments for Al atoms: green is
Al4, red is Al5, and yellow is Al6. Dashed colored lines are used for
coordination environments of O atoms: cyan for O2, blue for O3, and
purple for O4. From top to bottom: MACE7680, MACE3240 (both
computed at q = 0 only); MACE120 and AIMD120 (both computed
on a 5×5×5 q mesh).

and antiperiodic boundary conditions employed by Feldman
et al. [65] to accelerate computational convergence. To bet-
ter understand the effect of the q-mesh interpolation, we
show in Fig. 18 that the velocity operator as a function of
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FIG. 13. rWTE and bWTE thermal conductivities of am-Al2O3

models at density ∼3.0 g/cm3. The solid lines (scatter points) are
bWTE (rWTE) conductivities: MACE7680 is purple, MACE3240 is
orange, MACE120 is blue, and AIMD is green.

frequency for MACE120 on a 5×5×5 q mesh approaches
the velocity operator as a function of frequency computed
at q = 0 for the larger MACE7680 model. We note that to
represent the velocity operator as a function of frequency
using Eq. (8) in a finite-size model, the Dirac delta must be
broadened with a finite-width (Gaussian) distribution having
width of the order of a few energy-level spacings h̄�ωavg,
i.e., a broadening comparable to the value η used in the
evaluation of the AF conductivity. In the context of Eq. (3),
employing a broadening of the order of h̄�ωavg ensures in
practice that such an expression behaves analogously to that
describing a strongly disordered system in the bulk limit.
The vibrational eigenstates repel each other significantly [81];
therefore, vibrational modes are dense but never degener-
ate and, for arbitrarily small values for the broadening η,
couplings between neighboring vibrational eigenstates are al-
lowed. The model size necessary to achieve computational
convergence with the rWTE protocol depends on the degree
of disorder present: for strongly disordered systems such as
am-Al2O3 and vitreous silica [21,79], models containing hun-
dreds of atoms are sufficient to reproduce the bulk limit;
future work will investigate systems with lower degrees of
disorder.

To further validate our assertion that structural disorder
is the dominant limiting factor for heat conduction in am-
Al2O3 over the range 50–700 K, we selected the MACE7680
model—which is large enough to directly compute the
bulk conductivity, without regularization—and calculated
the bWTE conductivity in three ways: (i) with “physical”
linewidths computed from first principles using the AIMD120
model (solid line in Fig. 14); (ii) using artificially enlarged
linewidths, obtained multiplying by a factor of 2.0 the physi-
cal linewidths (dashed line); and (iii) using artificially reduced
linewidths, obtained multiplying the physical ones by a factor
of 0.5 (dotted line). Intuitively, when structural disorder dom-
inates over anharmonicity in determining heat conduction, we
expect the conductivity to be practically indistinguishable in
the three cases above. This behavior is in sharp contrast with
that observed in ordered simple crystals with well-separated

FIG. 14. Negligible effect of anharmonicity on thermal con-
ductivity of am-Al2O3. Solid, bWTE conductivity of MACE7680,
calculated with physical linewidths. The dashed and dotted lines are
bWTE conductivities calculated by artificially doubling and halving
the anharmonic linewidths, respectively. We see that these artificial
rescalings negligibly affect the conductivity, indicating that structural
disorder dominates over anharmonicity in determining heat transfer
in am-Al2O3.

phonon bands—in this case anharmonicity determines the
conductivity, and in the high-temperature limit doubling the
linewidth directly implies a reduction of the conductivity
by a factor of 2 (one can verify this analytically by simply
rescaling the linewidths appearing in the thermal conductivity
expression for crystals, e.g., Eq. (49) of Ref. [40]). Figure 14
shows that artificially rescaling the linewidths produces prac-
tically unnoticeable changes in the thermal conductivity of
am-Al2O3 between 50 and 700 K, showing that in this system
structural disorder dominates over anharmonicity in determin-
ing heat conduction. In other words, keeping in mind that
Eq. (3) shows that heat conduction in amorphous solids is
mediated by couplings between vibrational modes, Fig. 14
shows that in strongly disordered solids such as am-Al2O3

anharmonicity only serves to allow couplings between modes,
and as soon as anharmonicity is large enough (in the thermo-
dynamic limit an infinitesimal value is sufficient), its exact
magnitude is unimportant and does not influence the value
of the conductivity. This behavior is related to the presence
of velocity-operator elements between pairs of vibrational
eigenstates that do not significantly depend on the energy
difference between the eigenstates coupled. These findings are
consistent with the analysis reported in Fig. 7, as well as with
the negligible differences observed between the AF and rWTE
conductivities between 50 and 700 K.

V. CONCLUSIONS

The ubiquitous use of am-Al2O3 in electronic devices and
the several open fundamental questions on how its atomistic
structural and vibrational properties determine its macro-
scopic thermal properties prompted us to study this material
from a first-principles level of theory. We generated and
characterized atomistic models of am-Al2O3 from AIMD
with densities ranging from 2.28 to 3.49 g/cm3, describing
how the atomic coordination topology varies with density.
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We have shown that at least five different atomic coordina-
tion environments coexist in am-Al2O3, and these lead to
significant structural disorder already at the subnanometer
lengthscale. We have discussed how the atomic coordination
topology affects the vibrational properties, showing that dif-
ferent coordination environments for oxygen and aluminum
have fingerprints on the coordination-resolved PDOS. We
have described the thermal properties using the recently in-
troduced Voigt-regularized Wigner formulation (rWTE) [21],
accounting comprehensively for the effects of structural disor-
der, anharmonicity, and quantum Bose-Einstein statistics. We
have shed light on the microscopic physics underlying thermal
transport in am-Al2O3, discussing the dominant role played
by strong structural disorder (emerging from having at least
five coexisting different atomic coordination topologies) and
the negligible role played by anharmonicity. Specifically, we
showed that the harmonic Allen-Feldman theory—evaluated
using the convergence-acceleration protocol discussed in
Ref. [21]—yields predictions in close agreement with the
anharmonic rWTE protocol and with experiments. We have
validated these first-principles calculations using a MACE
MLP, generating models of am-Al2O3 containing 3240 and
7680 atoms at density ∼3 g/cm3, showing that their ther-
mal conductivity is compatible with that of the 120-atom
first-principles models. We discussed how the increase in
the thermal conductivity observed with density derives from
an increase of the vibrational density of states with density,
as well as from an increase of the diffusivity with density.
Importantly, we have investigated the thermal properties also
below room temperature (T � 50 K), where the quantum
Bose-Einstein statistics of vibrations yields a specific heat
significantly different from the classical limit, providing in-
formation on the thermal conductivity in a regime inaccessible
by molecular-dynamics-based methods [3,33], which are gov-
erned by classical equipartition [33] and thus limited to high
temperatures. Ultimately, this study further validates the ca-
pability of the recently developed rWTE protocol [21] to
describe the thermal properties of strongly disordered glasses
using atomistic models containing hundreds of atoms, and
thus within the reach of first-principles techniques.
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APPENDIX A: COMPUTATIONAL DETAILS

1. First-principles calculations

The 120-atom am-Al2O3 structures were obtained from
the open-source data set of Ref. [82]. These models were
generated via first-principles molecular dynamics simulations,
using the melt-quench procedure described in Ref. [12], with
VASP v5.4 [83]. In order to apply the computational protocol
of Ref. [21] to study the thermal properties, the vibrational
frequencies have to be interpolated in Fourier space. Ap-
plying Fourier interpolation to the vibrational frequencies of
disordered atomistic models containing less than 200 atoms
yields more accurate results when a mesh denser than the
point q = 0 only is used as the starting point. Therefore, to
compute the vibrational properties of am-Al2O3 on a mesh
denser than q = 0 only and to use the most accurate DFPT
technique [48], the vibrational properties are computed using
Quantum ESPRESSO [84,85] on a 2×2×2 q mesh (at present
the DFPT implementation in VASP is restricted to calculations
at q=0). Quantum ESPRESSO calculations were carried out
using a PBE functional, with pseudopotentials from the stan-
dard solid-state pseudopotential (SSSP) precision library [86].
To compute the vibrational properties, the cell and atomic
positions of all the am-Al2O3 models were relaxed using a
threshold for forces of 2×10−4 Ry/Bohr and of 0.01 kbar for
pressure (vc-relax command).

2. Generation of the MACE potential

The MACE MLP was trained using the first-principles
(PBE functional) data set from Ref. [3]. We used a two-layer
MACE and a per-layer cutoff of 4.5 Å, resulting in a total
receptive field of 9 Å, as well as 128 embedding channels and
Lmax = 1. Both energies and forces were used in training and
10% of the full data set was randomly held out for validation;
the remaining 90% comprised the training set. The training
proceeds until the onset of overfitting is observed: we monitor
the errors on the validation set during training and exit when
those errors begin to increase. Following this procedure, the
training terminated with a validation error of 5.4 meV/atom
for the energies and 123.1 meV/Å for the forces.

APPENDIX B: COORDINATION ENVIRONMENT

To determine the coordination topology we calculated the
number of atoms in a sphere of radius equal to the first min-
imum of the radial distribution function (Fig. 2). This radius
was set to 2.35 Å for all structures.

APPENDIX C: FIRST-PRINCIPLES THERMAL
CONDUCTIVITY CALCULATIONS

1. Convergence of the Allen-Feldman theory

In order to calculate the bulk limit of the thermal con-
ductivity of strongly disordered solids such as am-Al2O3, we
rely on the convergence-acceleration protocol discussed in
Ref. [21] for both of the AF and rWTE conductivities. The
capability of such a protocol to accurately extrapolate the
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FIG. 15. Convergence of the AF conductivity for am-Al2O3 with respect to the broadening η for the Dirac δ. The three upper panels show
convergence plateaus for 5×5×5 (lines) and 7×7×7 (scatter points) meshes of models with densities 2.28, 2.98, and 3.49 g/cm3. Black (red)
correspond to evaluating the AF conductivity using the Gaussian (Lorentzian) representation of the Dirac δ function. The three lower panels
contain calculations at q = 0 only for models with densities 2.28, 2.98, and 3.49 g/cm3. Black and red denote Gaussian and Lorentzian,
as in the panels above. The broadening η is chosen as the value approximately determining the beginning of the convergence plateau [21],
and it is set to 6.0 cm−1 for models with density up to 3.30 g/cm3 and 8.34 cm−1 for the model with density 3.49 g/cm3. We see that the
5×5×5 q mesh is dense enough to achieve computational convergence with respect to mesh size, since results obtained on a 7×7×7 mesh are
practically indistinguishable from those obtained using a 5×5×5 mesh. Calculations at q = 0 only are far from computational convergence
and consequently underestimate the conductivity.

bulk limit of the thermal conductivity of strongly disordered
glasses from finite-size models containing hundreds of atoms
is validated in Sec. IV, and in Ref. [21]. The protocol requires
determining the broadening parameters η for the Voigt profile
appearing in Eq. (3) as a value determining the beginning of

the convergence plateau shown in Fig. 15 (see Sec. III A for
details).

All the am-Al2O3 models analyzed display a clear and
broad convergence plateau for the AF conductivity. The three
upper panels in Fig. 15 show results obtained employing a

FIG. 16. Effect of temperature on anharmonic linewidths of am-Al2O3 at various densities and temperatures. The scatter points represent
the linewidths computed at q = 0, and the solid lines are coarse-grained functions 
a[ω, T ] used to approximately describe the anharmonic
linewidths as single-valued functions of frequency, and thus to estimate the effects of anharmonicity at a reduced computational cost [40,94,95].
The purple region denotes the overdamped regime 
 > ω [40,66]. The gray dashed lines show the average spacing between vibrational energy
levels. We note that the linewidths of am-Al2O3 are similar to those found for other oxide glasses, e.g., vitreous silica [21].
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FIG. 17. Convergence of the AF conductivity for MACE models of am-Al2O3 with respect to the broadening η for the Dirac δ. The
three upper panels show convergence for 5×5×5 and 3×3×3 meshes of MACE models containing 120, 3240, and 7680 atoms. Black (red)
corresponds to evaluating the AF conductivity using the Gaussian (Lorentzian) representation of the Dirac δ. The three lower panels contain
calculations at q = 0 for MACE models with 120, 3240, and 7680 atoms. Black and red denote Gaussian and Lorentzian, as in the panels
above. The broadening η is chosen as the value approximately determining the beginning of the convergence plateau [21], and it is set to
6.0 cm−1 for MACE120, 2.0 cm−1 for MACE3240, and 1.0 cm−1 for MACE7680; the values of η are shown as dotted vertical black lines. We
see that a model size of 3240 atoms is sufficient to obtain equivalent results of AF thermal conductivity using the q mesh or q = 0 point only,
and using larger models extends the plateau to lower values of η, as in vitreous silica [21].

5×5×5 or 7×7×7 q mesh; the good agreement between these
two calculations indicates that computational convergence has
been achieved.

The three bottom panels of Fig. 15 show that a calculation
performed at q = 0 only for a 120-atom model is far from
computational convergence and underestimates the thermal
conductivity. The values of η that we determined from the
convergence test discussed in Fig. 15 and that we employed
in our calculations are reported in Table I.

2. Radial distribution functions

All the radial distribution functions are computed follow-
ing Ref. [87], using a Gaussian distribution with standard
deviation equal to 0.075 Å.

3. Anharmonic linewidths

The third-order interatomic force constants are computed
in the 120-atom cells using ShengBTE [88] up to the eighth-
nearest neighbor. The linewidths were then computed using

TABLE I. Broadening parameters η used for the Gaussian repre-
sentation of the Dirac δ function appearing in the AF conductivity
expression, and for the Voigt distribution appearing in the rWTE
expression.

ρ (g/cm3) 2.28 2.98 3.17 3.30 3.49

h̄η (cm−1) 6.0 6.0 6.0 6.0 8.34

PHONO3PY [57,89], with a Gaussian smearing of 0.18 THz
or ∼6 cm−1, and the standard perturbative treatment of an-
harmonicity: (i) vibrational frequencies were considered to
be independent from temperature (i.e., it neglects thermal
expansion and the renormalization of frequencies due to
anharmonicity [33,90–93]), and (ii) the linewidths were com-
puted considering exclusively the cubic terms in the Taylor
expansion of the interatomic potential [21,40] and the contri-
bution due to isotopic-mass disorder [62].

Figure 16 shows the linewidths for AIMD structures cal-
culated at q = 0 at various densities and temperatures. We see
that at 50 K a significant proportion of vibrational modes have
linewidths smaller than the average energy-level spacing. As
mentioned in Sec. III, these linewidths are employed within
the Voigt distribution, which ensures that heat transfer be-
tween neighboring vibrational eigenstates can always occur,
implying that the effects of anharmonicity are accounted for
only when they are not altered by finite-size effects [21].

The solid lines in Fig. 16 are the functions 
a[ω]
that approximately describe the anharmonic linewidths as
single-valued functions of frequency, obtained following the
approaches discussed in Ref. [40] (see also Refs. [47,94,95]
for similar approximated treatments of anharmonicity). The
approximated function 
a[ω] is employed to compute the
anharmonic linewidths as a function of frequency when the
Fourier interpolation is used to extrapolate the bulk limit of
the thermal conductivity (3), following the protocol discussed
in Ref. [40].
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4. rWTE conductivity calculation

The quantities needed to evaluate the rWTE conductivity
(3) were computed as follows: (i) the η parameter was com-
puted as discussed in Sec. C 1; (ii) the software PHONO3PY

[57,89] was used to evaluate frequencies and velocity oper-
ators on a q mesh; and (iii) the linewidths were evaluated
from the frequencies determined at the previous point using
the function 
a(ω) discussed in Sec. C 3.

We checked that increasing the size of the q mesh from
5×5×5 to 7×7×7 produced practically indistinguishable
results in the RMSD, VDOS, and thermal conductivities.
Therefore, all the results discussed in the main text are evalu-
ated on a 5×5×5 q mesh.

We limited our calculations to temperatures higher than
50 K, since at temperatures lower than 50 K the thermal
properties of am-Al2O3 are dominated by low-frequency vi-
brational modes that are likely to feature glassy anomalies
[96–98]; accurately sampling these low-frequency vibrational
modes requires using atomistic models containing thousands
of atoms, and it is therefore beyond the scope of the present
work.

D(ω) data for the plot in Fig. 8 was calculated using Eq. (6)
with δ function smeared to a Gaussian with variance π

2 η2
0, with

h̄η0 = 8.34 cm−1.

APPENDIX D: THERMAL CONDUCTIVITY
CALCULATIONS USING MACE

For the MACE models, we present their convergence tests
in Fig. 17. All three structures display a broad convergence
plateau for AF conductivity on a q mesh that is increased in
length as one increases the system size. We further note that
3240-atom and 7680-atom structures are both big enough to
exhibit a convergence plateau at the q = 0 point only that
is compatible with the plateau at 3×3×3 q mesh, indicating
achievement of computational convergence.

Given that Fig. 14 shows that anharmonicity has negligible
effects on the conductivity of am-Al2O3, in the calculation of
bWTE and rWTE conductivities for 120-, 3240-, and 7680-
atom MACE models we used the coarse-grained functions
for the anharmonic linewidths derived from the 2.98 g/cm3

AIMD model (central panel in Fig. 16).

APPENDIX E: VELOCITY OPERATOR FOR MACE AND
AIMD MODELS AT DENSITIES CLOSE TO 3.0 g/cm3

To compare predictions of AIMD and MACE for the
velocity operator, we plot in Fig. 18 the velocity operator
represented as a function of frequency difference and average
(〈|v avg

ωaωd |2〉, Eq. (8)). In the upper panel, we can see a compar-
ison between AIMD and MACE structures with 120 atoms
each. We note the agreement between different methods is
satisfactory, especially between 200 and 700 cm−1, where the
vibrational DOS is at its maximum. In the middle panel of
Fig. 18 we compare q = 0 and 5×5×5 q-mesh calculations of
velocity operator elements for the 120-atom MACE model.
We see that the q = 0 calculation underestimates velocity
operator elements for frequencies below 150 cm−1, ultimately

FIG. 18. Velocity operator of am-Al2O3 for 120-atom AIMD
model, and 120- and 7680-atom MACE models. The square modu-
lus of the velocity operator, 〈|v avg

ωaωd
|2〉, is represented as a function

of energy differences h̄ωd = h̄|ωqs − ωqs′ | and averages h̄ωa =
h̄[ωqs+ωqs′ ]/2, following Eq. (8). The upper panel shows a reason-
able agreement between velocity operator elements of the 120-atom
models generated with MACE (solid) and AIMD (dashed), both
evaluated on a 5×5×5 q mesh. The middle panel shows that for
MACE120, the velocity operator at q = 0 (dashed) is overall smaller
than the velocity operator computed over a 5×5×5 q-mesh (solid).
The bottom panel shows that the velocity operator for MACE120
computed over a 5×5×5 q mesh (solid) is in reasonable agree-
ment with the velocity operator of MACE7680 computed at q = 0
(dashed). The delta functions used for calculation of 〈|v avg

ωaωd
|2〉 were

replaced with Gaussians with variances related to the smearing pa-
rameters from the convergence plateaus: σ 2 = η2π/2.

leading to an underestimation of thermal conductivity as dis-
cussed in Fig. 13. In the lower panel of Fig. 18 we compare the
velocity operator elements for a small 120-atom model aver-
aged over a q mesh, with those at q = 0 for a large 7680-atom
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model: these are overall similar, explaining the compatible
predictions for rWTE conductivities shown in Fig. 13, and
validating the idea of obtaining velocity operator elements
averaging over different boundary conditions in small models
of disordered solids.

APPENDIX F: ALLEN-FELDMAN CONDUCTIVITY
OF MACE MODELS

To supplement the comparison of rWTE conductivities in
Fig. 13, we present AF conductivities for AIMD and MACE
models in Fig. 19. We first note that for am-Al2O3 at densities
close to 3.0 g/cm3, the influence of anharmonicity on the
magnitude of conductivity is very weak, which is exemplified
by very good agreement between WTE q = 0 and AF q = 0
predictions for 3240- and 7680-atom MACE models between
50 and 700 K. Our second conclusion is that predictions of
AF conductivity using a q mesh in small models give the same
trend and very similar magnitude as predictions of AF conduc-
tivity using q = 0 in large models for very disordered solids,
which am-Al2O3 is an example of. The largest differences of
value of AF conductivity at 700 K are between MACE7680 at
q = 0 and on 3×3×3 q mesh, and is equal to approximately
0.04 W/mK (2%).

FIG. 19. AF thermal conductivity for models of am-Al2O3 with
densities close to 3.0 g/cm3. Solid (dashed) lines are AF (WTE)
calculations done at q = 0 for 3240-atom (orange) and 7680-atom
(purple) MACE models. The scatter points are AF harmonic con-
ductivities calculated on a mesh for the 120-atom AIMD model
(green, empty squares, 5×5×5 mesh), 120-atom MACE model (blue,
solid diamonds, 5×5×5 mesh), 3240-atom MACE model (orange,
inverted solid triangles, 3×3×3 mesh), and 7680-atom MACE model
(open purple circles, 3×3×3 mesh).
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