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Abstract
Lignocellulose is a major component of vascular plant biomass. Its decomposition is 
crucial for the terrestrial carbon cycle. Microorganisms are considered primary de-
composers, but evidence increases that some invertebrates may also decompose lig-
nocellulose. We investigated the taxonomic distribution and evolutionary origins of 
GH45 hydrolases, important enzymes for the decomposition of cellulose and hemi-
cellulose, in a collection of soil invertebrate genomes. We found that these genes 
are common in springtails and oribatid mites. Phylogenetic analysis revealed that cel-
lulase genes were acquired early in the evolutionary history of these groups. Domain 
architectures and predicted 3D enzyme structures indicate that these cellulases are 
functional. Patterns of presence and absence of these genes across different lineages 
prompt further investigation into their evolutionary and ecological benefits. The ubiq-
uity of cellulase genes suggests that soil invertebrates may play a role in lignocellulose 
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1  |  INTRODUC TION

Most photosynthetically bound carbon on land ends up in woody 
plants as lignocellulose, a composite of cellulose, hemicelluloses, 
lignin and pectin. The decomposition of lignocellulose occurs pre-
dominantly in soils, which returns most of this carbon into the atmo-
sphere (Post et al., 1990). Terrestrial ecosystems currently sequester 
about 29% of the anthropogenic carbon emissions, which implies an 
important but not fully understood role of terrestrial carbon cycling 
for climate regulation (Cragg et al., 2015). Microorganisms, especially 
bacteria and fungi, encode glycoside hydrolase cocktails for ligno-
cellulose degradation in their genomes (Cragg et al., 2015), and are 
considered the main actors of decomposition (Bradford et al., 2017; 
Crowther et  al., 2019; Pausas & Bond, 2020). The contribution of 
animals to decomposition of lignocellulose—beyond purely mechan-
ical shredding—remains less understood. Experiments have shown 
that the presence of soil invertebrates can increase litter mass loss 
by up to 50% (García-Palacios et al., 2013). It is estimated that they 
decompose more deadwood in tropical forests than free-living mi-
croorganisms (Griffiths et al., 2019). Nevertheless, the mechanisms 
behind decomposition performed by soil invertebrates remain ob-
scure and the ability of soil animals to degrade composite polysac-
charides without relying on gut symbionts remains a long-standing 
debate in soil ecology (Berg et al., 2004; Cragg et al., 2015).

It was originally assumed that lignocellulose degradation by ani-
mals was entirely ‘outsourced’ to the gut microbiome (Briones, 2018; 
García-Palacios et al., 2013). However, evidence is emerging that at 
least some invertebrates, such as molluscs, crustaceans and phy-
tophagous insects, can synthesize cellulase enzymes themselves 
(Busch et al., 2019; Chang & Lai, 2018; Cragg et al., 2015; Griffiths 
et  al.,  2021; Han et  al.,  2022; Kern et  al.,  2013; King et  al.,  2010; 
Shelomi et al., 2014; Watanabe et al., 1998). Scattered evidence also 
exists for the expression of active endogenous cellulases by distantly 
related soil invertebrates, for example, the earthworm Pheretima 
hilgendorfi (Nozaki et al., 2009), the Antarctic springtail Cryptopygus 
antarcticus (Hong et al., 2014), as well as few oribatid mites and other 
springtails (Busch et al., 2019). Based on these individual findings, we 
hypothesize that a larger fraction of soil invertebrates than previously 
thought may be directly contributing to decomposition of lignocellu-
lose in dead plant matter in soils using endogenous cellulases, with or 
without relying on a microbiome. Given their global abundance and di-
versity in many soil ecosystems (FAO et al., 2020; Phillips et al., 2019; 
Potapov et al., 2023; van den Hoogen et al., 2019), soil invertebrates 
could, therefore, have an important but so far overlooked role in the 

terrestrial carbon cycle which is distinct from the decomposition abil-
ity of microorganisms. To evaluate whether endogenous decompo-
sition ability is a common feature shared by the main groups of soil 
invertebrates, we screened a diverse set of newly sequenced genomes 
of Collembola, Enchytraeidae, Gamasina, Myriapoda, Nematoda, 
Oribatida and Tardigrada for the presence and evolutionary origins of 
cellulase genes. We further investigated the hypothesis that cellulase 
genes in invertebrates were acquired by horizontal gene transfer (HGT) 
from microorganisms. Cellulases are classified into three different cat-
egories: Endoglucanases (EC 3.2.1.4) break down cellulose in smaller 
randomly sized fragments. Exoglucanases (EC 3.2.1.91) release cello-
biose and cellotriose from the ends of cellulose molecules. Cellobiases 
(EC 3.2.1.21) convert cellobiose into glucose. Common to all cellulases 
is their activity to hydrolyse glycoside bonds, and the CAZy database 
currently lists 187 different families of glycoside hydrolases (Drula 
et al., 2022). Here, we focus on GH45 cellulases because these were 
already described in hexapods, and they were found to be functional 
(Cryptopygus antarcticus and Phaedon cochleariae (Girard and Jouanin 
1999; Song et al. 2008; Busch et al., 2019)).

2  |  MATERIAL S AND METHODS

2.1  |  Domain architectures of invertebrate GH45-
type cellulases

Reviewed evidence exists for the presence of GH45-type cellulases 
in the Antarctic springtail (Cryptopygus antarcticus; Collembola, 
UniprotID D3GDK4) and the mustard beetle (Phaedon cochlear-
iae; Insecta, UniprotID O97401). Since these experimentally con-
firmed cellulases harbour a Glyco-hydro 45 Pfam domain (PF02015) 
(Bankevich et al., 2012), we restricted our analysis to cellulase ortho-
logues that carry this Pfam domain. Pfam domains were annotated 
with hmmscan from the HMMER package (Finn et al., 2015) using 
Pfam version 32 and applying the default e-value cut-off of 0.01.

2.2  |  Genome assembly pipeline

The genome assemblies provided by the MetaInvert Project 
(Bioproject ID: PRJNA758215) cover a phylogenetically diverse 
set of soil-living invertebrates collected from the field or obtained 
from cultures. Short read Illumina sequencing (300 bp paired-end) 
with the NovaSeq 6000 platform was done at Novogene Europe 

decomposition, independently or in synergy with microorganisms. Understanding the 
ecological and evolutionary implications might be crucial for understanding soil food 
webs and the carbon cycle.

K E Y W O R D S
arthropods, comparative genomics, decomposition, global change, horizontal gene transfer
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(Cambridge, UK), reads were trimmed with Trimmomatic, human 
contaminating reads were filtered with Kraken2 (Wood et al., 2019) 
and contig assembly was done with SPAdes (Bankevich et al., 2012). 
The resulting contigs were taxonomically assigned with Blobtools2 
(Challis et al., 2020) using the NCBI non-redundant protein database 
as a reference, and only contigs with an assignment to the phylum 
of the target species together with unassigned contigs were kept. 
Redundancy reduction and scaffolding were done with Redundans 
(Pryszcz & Gabaldón,  2016), and genome assembly completeness 
was assessed with BUSCO (v 4.1.4) using the precomputed meta-
zoan (obd10) reference set. The genome data and metadata were 
published and further analysed by Collins et  al. (2023) (in press: 
10.1038/s42003-023-05621-4). Collection (geographic coordinates) 
and vouchering data of the used specimens are provided by Collins 
et al. (2023). For our orthologue search, we selected genomes with at 
least 50% BUSCO completeness (176 assemblies, Table S2).

2.3  |  RefSeq gene set collection

We downloaded gene sets for all 18,412 taxa represented in the 
NCBI RefSeq Genome release 207 (O'Leary et  al.,  2016). The re-
sulting taxon collections comprised 16,401 bacteria, 910 archaea, 
409 fungi, 262 invertebrates and 430 vertebrates. The taxon list to-
gether with the accession numbers is provided in Table S1.

2.4  |  Taxonomic assignment and 
contaminant detection

To rule out that fungal or bacterial contaminations of the underlying 
genome assemblies are responsible for the animal cellulase ortho-
logues (Steinegger & Salzberg, 2020), we followed a multi-step pro-
cedure. First, during the invertebrate genome assembly (described 
in Collins et al., 2023, not part of this paper), all contigs were used as 
input for a Blobtools2 (Challis et al., 2020) analysis using the NCBI 
non-redundant protein and nucleotide databases as a reference. 
Only contigs assigned to the phylum of the target species and unas-
signed contigs were passed on to the downstream analyses. Second, 
we taxonomically classified each of the detected invertebrate or-
thologues. In brief, we used the orthologue sequence as a query for 
a Diamond version 2.0.13 (Buchfink et al., 2015) search against the 
NCBI non-redundant protein database (downloaded January 2022). 
From the resulting hit list, we excluded the trivial hit against itself 
and then assigned the query sequence to the last common ances-
tor of the taxa within a 10% bit score margin of the best hit (Huson 
et al., 2016). A sequence was flagged as a putative contaminant if 
its taxonomic assignment was not placed on the lineage from the 
species whose genome was analysed to the root of the tree of cel-
lular life. The workflow is implemented into the software package 
taXaminer (https://​github.​com/​BIONF/​​taxam​iner), and it provided 
no evidence for a foreign origin of these sequences (Table S3). As a 
showcase example, we further investigated the origin of two GH45 

cellulase orthologues. In the mite Carabodes femoralis, the ortho-
logue is located on a short contig with no neighbouring genes. We 
taxonomically assigned this gene to the Acariformes. In the springtail 
Pogonognathellus longicornis, the GH45 cellulase is located together 
with other genes on a contig of 41 kbp in length. The cellulase and 
neighbouring genes on the same contig were consistently assigned 
to Entomobryomorpha as a result (Figure S5).

2.5  |  Orthology-based phylogenetic profiles of 
fungal GH45 cellulase

Profile-based targeted orthologue searches in annotated gene 
sets were performed with fDOG (Birikmen et  al., 2021) using the 
GH45 cellulase of the fungus Rhizoctonia solani (NCBI Accession 
XP_043186467.1) as the seed. For the training of the initial profile 
Hidden Markov model, we used the parameter --minDist genus and 
--maxDist phylum limiting the number of training sequences to 6 (see 
Table S4 for more information). Candidate orthologues were filtered 
for the presence of the Pfam glyco-hydro 45 domain (PF02015; see 
Table S5 for a list of discarded orthologues). Orthologue search in the 
unannotated MetaInvert genome assemblies was performed with 
the fDOG extension fDOG-Assembly. In brief, genomic regions likely 
containing a GH45-type cellulase were identified with a tBLASTn 
search using the consensus sequence included in the initial core gh45 
core group from fDOG as query. The hit region was extended by 
500 nucleotides on either side and genes in the resulting candidate 
genomic region were annotated with MetaEuk v5.34c21f2 (Levy 
Karin et al., 2020) using the OMA database (released in December 
2021; Nguyen et al., 2015) as the reference database for the gene 
prediction. The corresponding protein sequences were then tested 
for orthology using the routines of fDOG and afterwards, features 
were annotated with FAS (Dosch et al., 2023). The fDOG-assembly 
workflow is available from https://​github.​com/​BIONF/​​fDOG/​tree/​
fdog_​goes_​assembly. We completed the taxon collection by adding 
four individual genomes publicly available on GenBank (Table  S6) 
and performed the same orthologue searches described above. The 
results from fDOG and fDOG-Assembly were merged and visualized 
with PhyloProfile (Tran et al., 2018).

2.6  |  GH45 cellulase gene tree reconstruction

To investigate the evolutionary history of the GH45 cellulases, we 
used the identified orthologues for a gene tree reconstruction. If the 
orthologue search obtained more than one co-orthologue, we used 
the one that is most similar to the seed protein from R. solani for the 
tree reconstruction. Sequences were aligned with Muscle v3.8.1551 
(Edgar,  2004) and alignment columns comprising more than 50% 
gaps were removed with a custom perl script. The resulting multiple 
sequence alignment was used as input for a maximum likelihood tree 
reconstruction with IQ-TREE (Nguyen et  al.,  2015) version 1.6.8. 
Branch support was assessed with 1000 bootstrap replicates using 
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the ultrafast bootstrap approach. The SH-aLRT branch test was per-
formed, and the optimal number of cores was automatically detected 
via IQ-TREE (− nt AUTO). All gene trees were visualized with iTOL 
(Letunic & Bork, 2021). Animals are paraphyletic in this tree, and 
a topology test using the AU test (Shimodaira & Hasegawa, 1999) 
confirmed that a tree with monophyletic animal cellulases explained 
the data significantly worse (p-AU = 9.2E−4). A second gene tree 
containing all identified orthologues and co-orthologues was recon-
structed with the same approach. The two tree files in Newick for-
mat are available as Supplement Files F1 and F2.

2.7  |  Phylogenies of springtails and oribatids

Phylogenies of springtail and oribatid organisms included in the 
MetaInvert project were computed separately with a superma-
trix approach. BUSCO version 5.4.2 (Simão et  al., 2015) with the 
precomputed BUSCO Arthropoda gene set (db10) was used to 
search for orthologues in all genome assemblies. BUSCO genes were 
discarded from the analysis which were present in less than 75% 
of all species. Multiple sequence alignments were computed with 
MAFFT using local pairwise alignment and at maximum 1000 itera-
tions (7.481) (Katoh & Standley, 2013), trimmed with clipkit (1.3.0) 
(Steenwyk et al., 2020) and concatenated with FASconCAT-G (1.04) 
(Kück & Longo, 2014). Four phylogenetic trees per taxon group were 
reconstructed with IQ-TREE (Nguyen et al., 2015). Branch support 
was assessed with 1000 bootstrap replicates using the ultrafast 
bootstrap approach. The best-fit model was Q.insect + F + R9 for 
oribatids, and Q.insect + F + R10 for springtails, automatically cho-
sen by ModelFinder according to BIC. The final consensus tree was 
computed with splitstree (4.19.0) (Huson & Bryant, 2006) by summa-
rizing the four IQ-TREEs into a consensus tree. The consensus trees 
were outgroup-rooted using Sarcoptes scabiei (GCA_020844145.1) 
for oribatids, and Machilis hrabei (GCA_003456935.1), Drosophila 
albomicans (GCA_009650485.1) and Tyrophagus putrescentiae for 
springtails as outgroups. The species trees and reproductive mode 
of the corresponding species (taken from Collins et al. 2023) were 
visualized with iTOL. Chi-squared tests were performed with R.

2.8  |  Correspondence of GH45 tree and 
phylogenies

The BUSCO-based phylogenies of springtails and oribatids were 
outgroup-rooted and merged for the comparison with the GH45 
cellulase gene tree. The tanglegram matches taxa by links and was 
computed with R using the packages phytools v1.4-0 (Revell, 2012) 
and castor v1.7.6 (Louca & Doebeli, 2018).

2.9  |  3D structure comparison

3D structures of R. solani GH45 cellulase and of the endoglucanase 
V from Humicola insolens were retrieved from precomputed predic-
tions from UniProt (accession number A0A0B7FQX1 and P43316). 
The 3D structure of the F. candida GH45 cellulase was locally com-
puted with AlphaFold (Jumper et  al.,  2021). The structures were 
visualized and compared with VMD (Humphrey et  al.,  1996) and 
the extensions MultiSeq (Roberts et al., 2006) in combination with 
the alignment tool STAMP (Russell & Barton, 1992). The active site 
was identified by highlighting in yellow the catalytic residues found 
by Davies et  al., 1993. A structure-guided sequence alignment of 
all three GH45 sequences was computed with expresso from the 
t-coffee package (Armougom et al., 2006) (Figure S4).

3  |  RESULTS

3.1  |  Endogenous GH45 cellulases are mainly 
found in fungi and invertebrates

We used a fungal sequence as a starting point to obtain a compre-
hensive overview of the taxonomic distribution of the GH45 cellu-
lase family. In an initial screen, we considered all species that are 
represented by a genome assembly in NCBI RefSeq. We decided to 
base this analysis on fungal GH45 cellulase because (i) existing re-
sults suggest that invertebrate GH45 cellulases were likely horizon-
tally transferred from fungi (Busch et al., 2019) and (ii) fungal GH45 

F I G U R E  1 GH45 cellulases on the tree of life. (a) Abundance of GH45 cellulases across the three domains of life; (b) Maximum likelihood 
phylogeny of the GH45 cellulase family. Branch lengths are not drawn to scale and line weights indicate percent bootstrap support. Species 
represented by a genome assembly in the NCBI RefSeq or GenBank databases are indicated by an asterisk. Pictograms identify the four main 
soil invertebrate clades: oribatid mites, springtails, thrips and beetles (clockwise). Bars indicate the protein length of the respective GH45 
cellulase in amino acids. Internal node labels provide age estimates of the respective clades (Kumar et al., 2022); (c) Tanglegram between 
the GH45 gene tree (left) and a phylogenomic reconstruction of the species tree (right). Only cellulases identified in oribatids and springtails 
are considered. Lines connect the GH45 cellulases in the gene tree with the corresponding taxa they were identified in the species tree; (d) 
Left: Comparison of protein domain architecture of two fungal (H. insolens (Uniprot ID: P43316), R. solani (Uniprot ID: A0A0B7FQX1)) and 
one invertebrate GH45 cellulase (F. candida (NCBI Acc: XP_021945337.1)). lcr—low complexity region; GH45—Pfam Glyco-hydro 45 domain 
(PF02015). Right: 3D structure alignment of the same three GH45 cellulases. Thirty amino acids from the N termini of the R. solani and F. 
candida proteins are not considered in the structural comparison because the corresponding alpha helix could not be confidently placed in 
the structure by AlphaFold (per-residue confidence score (pLDDT) <70; (Tunyasuvunakool et al., 2021)). Structural similarity is colour coded 
and ranges from red (very low) to very high (blue). The catalytic residues located in the active groove of the H. insolens cellulase (Davies 
et al., 1993) are highlighted in yellow. A structure-guided amino acid sequence alignment is shown in Figure S4 and reveals the conservation 
of these catalytic residuals in the other two proteins.
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cellulases have been thoroughly functionally characterized (Berto 
et al., 2019; Bharadwaj et al., 2020). We searched for orthologues to 
fungal GH45 cellulases in 16,401 bacteria, 910 archaea and 1101 eu-
karyotes (Table S1). The resulting phylogenetic profile revealed that 
GH45 cellulases are abundant only in fungi, where 128 out of 409 in-
vestigated taxa possess at least one GH45 cellulase gene. However, 
they are limited to individual taxonomic groups (Figure 1a). In con-
trast, only 31 out of 16,401 bacterial species were found to harbour 
a GH45 cellulase. Next to fungi, orthologues to GH45 cellulases 
were largely confined to animals (14 out of 692) (Figure  1a). We 
found no evidence that these comprise fungal contaminations (see 
taxonomic assignment and contaminant detection in Section 4). In 
metazoans, the majority of orthologues were found in arthropods, 
and they were completely absent in vertebrates.

3.2  |  Most springtails and oribatid mites possess 
endogenous GH45 cellulases

The analysis of publicly available genomes sheds light on the general 
distribution of GH45 cellulases across the Tree of Life. However, it lacks 
the resolution to investigate the occurrence of this cellulase in soil in-
vertebrates. We extended the analysis by including novel genome as-
semblies for an additional 176 species representing a diverse selection 
of soil invertebrates (NCBI BioProject PRJNA758215) into the analy-
sis. This revealed a high occurrence of GH45 cellulases in springtails 
(56/78 analysed species) and in oribatid mites (33/54 analysed spe-
cies, Table S2). Additionally, we detected cellulases in Coleoptera and 
Thysanoptera (2/2 species, Table S2). In three out of nine nematode 
species we also found GH45 cellulases, whereas none were found in 
30 representatives of Chilopoda and Diplopoda (Table S2).

GH45 cellulases are present in three of four known main springtail 
lineages (Poduromorpha, Entomobryomorpha and Symphypleona), 
missing only from the earliest branching Neelipleona. Within 
Symphypleona and Entomobryomorpha, cellulases are consistently 
absent in one clade each (Figure  S1). GH45 cellulases are pres-
ent in almost all representatives of the basal clades in Oribatida 
(Enarthronota, Mixonomata, Holosomata; Table  S2). In contrast, 
they were missing in half of the investigated species from the later-
branching Brachypylina (Figure  S2). Integrating the presence–ab-
sence pattern of GH45 cellulases with the reproduction mode of the 
respective species (sexually vs. parthenogenetic) reveals no signifi-
cant correlation for Oribatida and Collembola respectively (χ2 test, 
p > .05). Besides Oribatida, we investigated a second mite taxon, the 
Gamasina, which are represented by two species in our data sets 
(Table S2). We found in neither species a GH45 cellulase.

3.3  |  The evolutionary history of invertebrate 
GH45 cellulases is complex

We reconstructed the phylogenetic relationships of the sequences 
identified both in RefSeq assemblies and in soil invertebrate genomes 

(Figure 1b) to better understand the evolutionary trajectory resulting 
in the present-day distribution of soil invertebrate GH45 cellulases. 
In the resulting tree, 104 out of 107 animal proteins are placed in 
only four distinct and taxonomically largely homogenous clades, one 
each for the Collembola, Oribatida, Thysanoptera and Coleoptera. 
On a larger scale, we found that the invertebrate cellulase clades 
are embedded into an evolutionary background formed by mostly 
fungal and very few bacterial sequences. This leaves metazoans as 
a taxonomic group paraphyletic with respect to their cellulases and 
indicates that GH45 cellulases have been independently introduced 
into the animal kingdom at least four times, very likely from fungal 
donors. We noted that several bacterial cellulases, all from the genus 
Legionella, form a monophyletic clade placed within the diversity of 
the oribatid cellulases. This finding suggests a horizontal transfer of 
an animal gene into a bacterial clade. However, the corresponding 
branch is very long (1.78 substitutions per site; SupplData) and fur-
ther investigations will be necessary to consolidate this hypothesis. 
To assess whether the evolutionary relationships of the invertebrate 
cellulases agree with those of the species they were found in, we 
compared the phylogeny from oribatid mites and springtails with 
the reconstructed cellulase gene tree (Figure 1c). The two trees dis-
play in large parts agreeing branching patterns, which is expected 
for intrinsic cellulases. However, they clearly differ in other parts. To 
trace down the reason for these differences, we reconstructed the 
invertebrate cellulase tree this time considering all detected GH45 
co-orthologues. This revealed a highly dynamic and complex evolu-
tionary history of the invertebrate GH45 cellulase family involving 
numerous lineage-specific gene duplications and losses (Figure S3).

3.4  |  Fungal and invertebrate GH45 cellulases are 
structurally conserved

In a last analysis, we investigated whether the detected invertebrate 
GH45 cellulases are likely functional. We compared the domain ar-
chitectures and the predicted 3D protein structures between GH45 
cellulases of the fungus Rhizoctonia solani and the springtail Folsomia 
candida to that of the fungus Humicola insolens, whose GH45 cel-
lulase has been functionally and structurally characterized before 
(Davies et al., 1993). All three enzymes agree in their domain archi-
tecture and have highly similar 3D structures (Figure 1d). Moreover, 
we found the three catalytic residues in the substrate-binding ac-
tive grove initially described by Davies et al. (1993) to be conserved 
across the proteins (Figure S4). Together, this strongly indicates that 
all three proteins can hydrolyse glycoside bonds.

4  |  DISCUSSION

Most cellulases discovered to date in metazoan genomes belong to 
the GH45 family (Busch et al., 2019), endo-β-1,4-glucanases which 
hydrolyse cellulose, lichenin and cereal β-D-glucans (EC 3.2.1.4). 
Individual members of this family appear specific for degrading 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17351 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [08/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 12MUELBAIER et al.

xyloglucan (EC 3.2.1.151). However, Busch et al. (2019) have shown 
that the tested GH45 cellulases show no substrate specificity and 
break down both cellulose and xyloglucan. It was hypothesized that 
invertebrate GH45 cellulases were repeatedly obtained via HGT 
from fungal donors (Busch et al., 2019). Our search in 18,412 RefSeq 
genomes revealed that only 31 bacterial species harbour a GH45-
type cellulase. This is in line with the earlier hypothesis about the 
evolutionary roots of this enzyme within fungi (Busch et al., 2019; 
Palomares-Rius et  al., 2014). The taxonomic distribution of GH45 
cellulases was non-uniform in metazoans, with most orthologues 
being found in arthropods. GH45 cellulases were reported in marine 
bivalves (Okmane et al., 2022) which feed on phytoplankton and on 
particulate matter. We could not evaluate these findings, as genomes 
of the respective species are not yet included in the NCBI RefSeq 
database. Our results confirm previous research which did not find 
evidence for GH45 presence in vertebrates (Chang & Lai, 2018). The 
screening of new soil invertebrate genomes uncovered novel GH45 
cellulase presence patterns. GH45 genes were found in well over 
half of the investigated springtail and oribatid mite species.

Springtails form a basal hexapod group abundant across the 
globe, especially in cold regions (Potapov et  al.,  2023). They are 
known as fungal feeders, but also consume detritus and fresh plant 
materials (Potapov et al., 2020). While the orthologue search showed 
the presence of GH45 cellulase in springtail lineages Poduromorpha, 
Entomobryomorpha and Symphypleona, it is missing from the ear-
liest branching Neelipleona. Neelipleona feed on detritus colo-
nized by fungi and bacteria rather than on plant remains (Potapov 
et  al., 2022), and thus may not require the activity of an endoge-
nous cellulase. A single acquisition event post-dating the divergence 
of the Neelipleona may explain this observation. However, since 
Neelipleona are represented only by a few taxa, the conclusion on 
cellulase absence should be taken cautiously. Within Symphypleona 
and Entomobryomorpha, cellulases are consistently absent in one 
clade each. The absence of cellulase genes is unexpected in the lu-
cerne flea Sminthurus viridis that feeds on live leaf tissue (Greenslade 
& Ireson, 1986), and in the families of Dicyrtomidae, Bourletiellidae 
and Sminthuridae which consume mainly fresh plant materials 
(Potapov et  al., 2020, 2022). The lack of cellulase genes suggests 
that these taxa either outsource cellulose decomposition to their 
midgut microbiome, rely on other GH families or do not digest cel-
lulose. Besides these exceptions, the presence of GH45 cellulase 
genes seems to be a common trait among springtails.

Mites are the most numerous arthropods on land (Rosenberg 
et al., 2023), with most representatives in soil ecosystems belonging 
to Oribatida. Oribatid mites can have diverse feeding strategies, but 
they mostly feed on leaf litter at different decomposition stages and 
on microorganisms (Maraun et al., 2023). Our results showed that 
GH45 cellulases are present all over the basal clades of Oribatida 
while they were missing in half of the Branchypylina, which diversi-
fied later in the course of oribatid evolution. One interesting finding 
is that GH45 cellulases are missing especially in sexually reproduc-
ing mites, while they are present in other sexually reproducing taxa. 
However, the correlation between the reproduction mode and the 

presence of the GH45 cellulases is not statistically significant. An 
alternative hypothesis is that parthenogenetic oribatid mites tend 
to occupy lower trophic positions and typically function as primary 
decomposers, opposed to secondary decomposers feeding predom-
inantly on microorganisms (Fischer et al., 2014). However, ecological 
interpretation of these patterns is difficult since we do not know 
if species without GH45 cellulase genes contain other classes of 
cellulases, digest cellulose with the help of their microbiome or are 
indeed incapable of cellulose digestion. In general, the complex pat-
tern of GH45 presence is similar to the low phylogenetic conserva-
tism of ecological traits in oribatids, such as feeding mode (Potapov 
et al., 2022).

As expected from previous findings (Kirsch et al., 2014), we de-
tected cellulases in Coleoptera. GH45 cellulases were completely 
absent in the genomes of Chilopoda and Diplopoda. The latter was 
surprising as Diplopoda are a key litter-feeding soil invertebrate 
group (Joly et al., 2020; Potapov et al., 2022). However, it was pre-
viously shown that the millipede Telodeinopus aoutii relies on its 
gut microbiome for lignocellulose degradation (Sardar et al., 2022). 
GH45 cellulases were also absent in Gamasina mites which are pred-
ators and therefore might not benefit from cellulose degradation. 
The first report of endogenous cellulases in Thysanoptera suggests 
that our analysis uncovers only the tip of the iceberg. We expect that 
taxonomically broad genome sequencing of eukaryotes promoted, 
for example, by the Earth BioGenome Project (Formenti et al., 2022; 
Lewin et al., 2022) will recover further animal groups in possession 
of enzymes targeting lignocellulose decomposition.

Taken together, our data suggest an early acquisition of a GH45 
cellulase during the diversifications of both springtails and oribatids, 
instead of repeated horizontal transfer events. This implies that the 
possession of a GH45 cellulase is an ancestral trait in these groups. 
Similar to our results, cellulase acquisition was shown to be import-
ant for the diversification of herbivorous beetles (Kirsch et al., 2014). 
Differences in the GH45 cellulase gene tree from the oribatid and 
springtail species trees likely result from a highly dynamic evolution 
of the GH45 cellulase repertoire. Lineage-specific gene duplications 
and losses have partially disconnected the evolutionary history of 
the contemporary cellulase genes from the phylogeny of the species 
they are found in (Figure  1c; Figure  S3). Lineage-specific duplica-
tions have been described for other cellulases (Shelomi et al., 2016; 
Shin et al., 2022), and differential duplicate loss has been shown to 
result in gene tree–species tree incongruencies (Parey et al., 2020). 
The presence of cellulases detected in thrips suggests that pro-
cesses similar to those in Oribatida and Collembola might have been 
important also during the evolution of other arthropod groups.

We want to emphasize that the widespread presence of cellulase 
genes in soil invertebrates does not exclude that many species also 
rely on cellulolytic enzymes from microorganisms. Lignocellulose is 
a highly complex composite of cellulose, hemicellulose, lignin and 
pectin and its decomposition requires complex enzymatic cocktails 
(Cragg et al., 2015). For example, enzymes from the microbiome and 
the host work synergistically for lignocellulose degradation in the pill 
bug Armadillidium vulgare (Bredon et al., 2018). Wood decomposition 
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in termites is also a synergistic activity carried out together by in-
sect and gut symbiont enzymes (Brune, 2014). In addition, transient 
microbiota, consumed together with lignocellulosic fragments, may 
also be secreting relevant enzymes. Decomposition performed by 
invertebrates in synergy with gut microorganisms would be a very 
flexible system capable of fast adaptation to environmental changes.

Cellulase presence in invertebrate genomes is not a proof of func-
tion. However, several lines of evidence point towards functionality. 
First, domain architecture of GH45 cellulases in fungi (H. insolens 
and R. solani) and the springtail F. candida are similar, and the fungal 
enzymes also have similar predicted 3D structures with the cellu-
lases found by us (Figure 1d). Second, the catalytic residues that are 
important for the enzymatic function (Davies et al., 1993) are con-
served in the two fungi and the springtail. Finally, orthologues with 
conserved domain architectures were retained over hundreds of mil-
lions of years of evolution in springtails and oribatids. This suggests 
that little change has occurred in the trophic niche and position of 
springtails and oribatid mites in soil food webs since their evolution-
ary origins. This view is further supported by the presence of both 
taxonomic groups in the first fossil soils (Schaefer & Caruso, 2019; 
Shear et al., 1984). Taken together, these are strong indications that 
GH45 cellulases in springtails and oribatids perform cellulose de-
composition. Future work to experimentally evaluate the functional 
properties of soil invertebrate cellulases (Song et al., 2017) should 
consider all glycoside hydrolase genes, as gene duplication events 
may have led to substrate diversification (Busch et  al., 2019; Shin 
et al., 2022), with duplicates being able to break down other polysac-
charides like xyloglucan, mannans or xylan. While orthologues can 
be identified bioinformatically, functional properties need to be con-
firmed experimentally by expressing these enzymes heterologously, 
and test their substrate specificity on cellulose and hemicellulose 
polysaccharides.

Strong evidence exists that fungal GH45 cellulase genes have been 
repeatedly horizontally transferred to invertebrates. Several proper-
ties can explain why the initially foreign genes were integrated as an 
evolutionarily stable part of the recipient species' metabolic network. 
First, cellulases, as secreted, gut-acting enzymes (Fischer et al., 2013) 
do not depend on existing physiological pathways and their regula-
tion for proper functioning in the recipient organism. Second, such 
enzymes likely reach their correct extracellular destination directly 
after the successful transfer of the cellulase gene, its incorporation 
into the genome and its translation, because the signals of protein ex-
port generally work independent of origin in most other taxa, even 
over vast evolutionary distances (Clérico et al., 2008). Third, the reac-
tion catalysed by cellulases yields products that can serve as a benefi-
cial fitness-relevant resource in any organism, because the necessary 
downstream pathways are ubiquitously present. Supporting these ar-
guments, genes transferred horizontally are often secreted proteins 
(Savory et al., 2015; Undheim & Jenner, 2021).

The horizontal acquisition of cellulases and of other plant cell 
wall-degrading enzymes likely was a key event driving the evolution-
ary emergence of herbivory in arthropods (Wybouw et al., 2016). It 
coincided, for example, with the massive radiation of Phytophaga, 

the most species-rich clade of beetles (Busch et al., 2019), and in ad-
aptation to lignocellulose-rich diets in crustaceans (King et al., 2010). 
The long-term evolutionary preservation of GH45 genes suggests 
that cellulases likely confer fitness benefits also to soil invertebrates. 
These benefits may come from direct use of plant carbohydrate re-
sources, although some theories imply that soil invertebrates are 
limited rather by access to proteins, but not by access to carbohy-
drates. The ability to degrade complex polysaccharides may also 
provide access to more nutritious, protein-rich cytosols or micro-
organisms colonizing the inside of plant cells, such as saprotrophic 
fungi, which are considered as major dietary components of both 
collembolans and oribatids (Pollierer & Scheu,  2021). We expect 
that cellulase presence/absence patterns across large taxon col-
lections integrated with phenotypic traits of the respective species 
and the trophic niches they inhabit (Maraun et  al., 2023; Potapov 
et al., 2022) will provide insights into the functional ecology and evo-
lution of soil invertebrates.

It was previously shown that individual invertebrate species are 
capable of degrading lignocellulose independent from their gut mi-
crobiome (King et al., 2010). The widespread presence of GH45 cellu-
lases in springtails and oribatid mites suggests that such endogenous 
cellulolytic abilities are substantially more common in invertebrates 
than it is generally appreciated. In addition to bacteria and fungi, in-
vertebrates should, therefore, be considered a third evolutionarily 
and ecologically distinct group with such capability. This has import-
ant consequences for our understanding of soil food webs and the 
soil carbon cycle. Fungi compared to bacteria are known to react 
differently to environmental change such as experimental warming 
(Melillo et al., 2017) or habitat degradation (Zhou et al., 2018). This 
results from key differences in life-history strategies, for example, 
growth rates or nutrient use (Jansson & Hofmockel, 2020). Their 
differential reaction to environmental change influences decompo-
sition as distinct taxa determine the rate and biochemical pathways 
of organic matter processing (Crowther et al., 2019). For example, 
fungal-based food webs in soils, and the processes of C and N loss 
they govern, are more resistant against and are better adaptable 
to drought than bacterial food webs (de Vries et  al., 2012). Fungi 
accordingly contribute more to litter decomposition than bacte-
ria under drought conditions (Ullah et al., 2023). Soil invertebrates 
react differently to environmental change compared to microorgan-
isms (Sünnemann et al., 2021). Given key differences in life-history 
strategies among soil invertebrates, bacteria and fungi, a compari-
son of endogenous cellulolytic capabilities of soil invertebrates and 
microorganisms is an important direction for future research. We 
hypothesize that global change has a more detrimental impact on 
decomposition performed by soil invertebrates, given their lower ef-
fective population sizes and adaptive elasticity (Lanfear et al., 2014; 
Pauls et al., 2013). It might be essential to consider all three system-
atic groups and their differences for a better integration of below-
ground processes into ecosystem models (Chertov et  al.,  2017; 
Deckmyn et  al.,  2020; Filser et  al.,  2016) including global carbon 
models (Friedlingstein et al., 2022), and for better predictions of soil 
carbon and nutrient cycling.
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