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We demonstrate coherent control of the fine-structure qubit in neutral strontium atoms. This
qubit is encoded in the metastable 3P2 and 3P0 states, coupled by a Raman transition. Using a
magnetic quadrupole transition, we demonstrate coherent state-initialization of this THz qubit. We
show Rabi oscillations with more than 60 coherent cycles and single-qubit rotations on the µs scale.
With spin-echo, we demonstrate coherence times of tens of ms. Our results pave the way for fast
quantum information processors and highly tunable quantum simulators with two-electron atoms.

Neutral atoms are a promising quantum computing [1]
and quantum simulation [2] platform due to their long
coherence times and highly scalable architecture [3, 4].
Two-electron atoms in particular have gained increasing
attention as their rich level structure offers multiple op-
portunities to encode high-quality qubits. Coupling a
ground and a metastable state via an optical clock transi-
tion has enabled the observation of exceptionally long co-
herence times [5] and direct access to Rydberg states [6].
However, relying on an ultra-narrow optical transition
limits operating speed and poses challenges due to an
inherent sensitivity to atomic motion and laser phase
noise [7].

Faster and more robust qubit rotations can be achieved
by coupling two states with a lower energy splitting us-
ing a coherent Raman transition [8]. Such a coupling
scheme has been successfully implemented between nu-
clear spin states in fermionic isotopes of Yb [9, 10] and
Sr [11]. This nuclear-spin qubit led to the experimental
demonstrations of high-fidelity gates [12], erasure conver-
sion [13], and mid-circuit operations [9, 10, 14]. Recently,
a complementary encoding of information in electronic
degrees of freedom provided by metastable fine-structure
states has been proposed [15, 16], similar to schemes that
have been implemented in ions [17, 18].

In contrast to nuclear spin states, which require a mag-
netic field to induce a qubit splitting typically in the
kilohertz regime [8, 11], the fine-structure states have a
natural frequency splitting on the terahertz scale. Al-
though this splitting makes it more challenging to achieve
state-insensitive trapping conditions, it can be advanta-
geous for state preparation and readout, as energy selec-
tivity rather than polarization selectivity can be lever-
aged [7]. In combination with the existing optical and
nuclear qubits, this novel fine-structure qubit can un-
lock the full potential of the level scheme, leading to new
functionalities such as optical qutrits [19], single-photon
transition to Rydberg states with fast qubit rotations,
and mid-circuit readout operations.

Here, we experimentally demonstrate core capabilities
of a fine-structure qubit using Sr atoms trapped in an op-
tical lattice. As shown in Fig. 1(a), our qubit is encoded

in the metastable triplet states |↑⟩ = |5s5p 3P2,mJ = 0⟩
and |↓⟩ = |5s5p 3P0,mJ = 0⟩, which are separated by
about 17THz in frequency. These states are coupled
via a two-photon Raman transition through the triplet
state |s⟩ = |5s6s 3S1,mJ = 0⟩. We demonstrate fast two-
photon Rabi oscillations with frequencies up to 2π ×
400 kHz and study their decoherence mechanisms. We
show proof-of-principle read-out methods with about
96% detection efficiency that can be used for mid-circuit
read-out. Finally, we investigate the coherence of the
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FIG. 1. Level scheme, schematic of experimental setup, and
coherent state initialization. (a) Relevant 88Sr energy levels.
The fine-structure qubit is encoded in the metastable states
|3P2,mJ = 0⟩ and |3P0,mJ = 0⟩, which are coupled via a two-
photon Raman transition with a one-photon detuning ∆ from
|3S1,mJ = 0⟩. The 689-nm and 461-nm light is used for cool-
ing and imaging of the atoms, respectively. (b) Schematic of
the experimental setup. Atoms are trapped in a horizontal
(vertical) lattice formed at 914 nm (1064 nm). The magnetic
bias field and the 671-nm state-preparation beam point along
the z-axis. The Raman beams and the imaging beam propa-
gate along the x-axis. (c) Coherent transfer of atoms from |g⟩
to |↑⟩ using a Landau–Zener sweep with an efficiency of up
to 97.5(6)%. The transfer-laser frequency is swept over 4 kHz
with the indicated ramp speeds.
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fine-structure qubit with Ramsey and spin-echo measure-
ments.

The experimental setup is illustrated in Fig. 1(b). We
load about 105 88Sr atoms into a 3D optical lattice [20].
In the horizontal direction, the atoms are trapped us-
ing laser light with a wavelength of 914 nm, which forms
an optical lattice inside an enhancement cavity [21]. A
retro-reflected laser beam at 1064 nm generates the ver-
tical lattice. After loading the atoms into the lattice, we
perform resolved sideband cooling on the 1S0–

3P1 tran-
sition at a horizontal (vertical) lattice depth of 150Erec

(270Erec), where Erec = h2/(2mλ2
l ) is the lattice photon

recoil energy for an atom with mass m at the correspond-
ing lattice wavelength λl, and h denotes the Planck con-
stant. The trap depth corresponds to a horizontal (ver-
tical) trap frequency of 65 kHz (68 kHz). We typically
achieve temperatures of about 2.5 µK [20]. To initialize
the qubit in |↑⟩, we coherently excite the atoms from the
ground state |g⟩ = |5s2 1S0⟩ to |↑⟩ using the magnetic
field and lattice parameters from Ref. [20]. To achieve
a robust state preparation, we perform a Landau–Zener
sweep with a typical transfer efficiency of 97.5(6)%, as
shown in Fig. 1(c) [22]. The same sweep is also used for
state-selective readout of |↑⟩.

After state preparation, we set the magnetic field to
20G, oriented along the z-direction, corresponding to a
Zeeman splitting of 42MHz in the 3P2 manifold, which
helps to isolate the mJ = 0 state. We refer to the Raman
laser beams driving the |↑⟩–|s⟩ and the |s⟩–|↓⟩ transition
as the up and down lasers, respectively. They are both
π polarized and co-propagate in the x-direction to mini-
mize momentum transfer, with a Lamb-Dicke parameter
of 0.01. We stabilize the laser frequencies to a shared
optical reference cavity to ensure phase stability between
the lasers. To suppress spontaneous decay from |s⟩, we
can detune the Raman lasers from the atomic transition
frequencies by the one-photon detuning ∆ = ∆↑ ≈ ∆↓,
where ∆↑ and ∆↓ are the detunings of the up laser and
the down laser, respectively. The two-photon detuning
δ = ∆↑ −∆↓ is typically set to zero.

To achieve long coherence times within the Λ system,
it is necessary to mitigate differential light shifts of the
qubit states. The non-spherical |↑⟩ state features a tensor
polarizability which allows tuning its light shift relative
to the light shift of |↓⟩ by tilting the linear polarization
of the trapping light field with respect to the magnetic
quantization axis [19]. For the horizontal 914-nm lattice,
we find the so-called “magic” trapping condition where
the differential polarizability between |↑⟩ and |↓⟩ van-
ishes, close to the theoretically predicted angle of about
79°. For the vertical 1064-nm lattice no such magic an-
gle exists and a residual differential polarizability on the
percent level remains [22]. To minimize the differential
light shift, we reduce the vertical lattice depth to about
27Erec and choose its polarization to be orthogonal to
the magnetic field. The gravitational tilt of the vertical
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FIG. 2. Characterization of the Λ system. (a) Autler–
Townes splitting probed on the |↑⟩–|s⟩ transition in the pres-
ence of a strong resonant down-laser field, as illustrated by the
level scheme. The color scale indicates the number of atoms
that decayed into |g⟩ through 3P1 after excitation to |s⟩. The
blue data points show an example of a spectrum for fixed
down-laser power P↓ = 3.6mW, which is fitted with an elec-
tromagnetically induced transparency model [25] (blue line)
to extract the level splitting of |s⟩. The red line represents
a fit of the level splittings used to calibrate the one-photon
Rabi frequency of the down transition. (b) The analog cal-
ibration of the one-photon Rabi frequency of the up transi-
tion. (c) Excitation spectrum at low coupling strength with
resonant up-laser field. A Lorentzian fit (solid line) to the
narrow dip in the data with a full width at half maximum of
2π×0.71(19) kHz demonstrates a large degree of coherence in
our system.

lattice helps to suppress tunneling and collisions, which
are negligible on our experimental time scales [23, 24].
To characterize the Λ system |↑⟩–|s⟩–|↓⟩ containing the

qubit subspace, we perform Autler–Townes spectroscopy.
With this method, we calibrate the Rabi frequencies and
demonstrate coherent population trapping to reveal the
presence of coherence in the system. First, we resonantly
couple |↓⟩ and |s⟩ by applying the down laser with vari-
able power P↓. The resulting splitting is given by the
Rabi frequency Ω↓ ∝

√
P↓ of the down-laser field [26].

We probe this splitting by scanning the detuning ∆↑ at
P↑ = 30 µW, as illustrated in Fig. 2(a). Readout is per-
formed via detection of atoms that are excited from |↑⟩ to
|s⟩ and subsequently decay through 3P1 into |g⟩. A fit of
the data results in Ω↓/

√
P↓ = 2π × 19.3(1)MHz/

√
mW.

Next, we prepare the atoms in |↓⟩ and repeat the
measurement with exchanged roles of the laser fields.
We use P↓ ≈ 220 nW and find Ω↑/

√
P↑ = 2π ×

24.3(2)MHz/
√
mW, see Fig. 2(b). Finally, to observe

coherent population trapping [27–29], we reduce the
power in both laser fields significantly to about 10 nW.
At the two-photon resonance we observe a narrow dip
in the excitation spectrum, as shown in Fig. 2(c). A
Lorentzian fit yields a full width at half maximum of
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FIG. 3. Fine-structure qubit Rabi oscillations. (a) Measurement of the spatial distribution of the number of atoms in |↑⟩.
(b) Spatial distribution of two-photon Rabi frequency Ω. The data for the Rabi oscillations are taken at the red cross. (c)
Rabi oscillations with Raman lasers about 6GHz red-detuned from |s⟩. Blue circles (orange squares) show the number of
atoms N↑(t) and N↓(t) in |↑⟩ and |↓⟩, respectively, both normalized with interleaved measurements of N↑(0) and averaged
over 10 experimental runs. The lines are fits with a sinusoidal oscillation. (d) A similar measurement as shown in (c), with
data from individual runs of the experiment. The lines represent a damped sinusoidal-oscillation model illustrating that
Ω = 2π × 100.92(4) kHz and the exponential decay time τ = 0.68(1)ms, both found with our analysis method [22], provide
a good description of the data. The error bars correspond to the standard deviation of the data in a 3 × 3 pixel region. (e)
Rabi oscillations at various one-photon detunings |∆|/2π. Upper panel: the Rabi frequency (orange squares) shows a 1/∆
dependence (orange line). Middle panel: The 1/e decay time τ of the envelope of the oscillations (blue dots) increases with
∆. The green stars and the solid line show the limit of the decay time given by the one-photon scattering rate. Lower panel:
the number of cycles Ωτ/(2π) (dots) increases with ∆ and saturates at about 69 cycles (see text). The blue line shows the
scattering-limited number of cycles inferred from the fits in the upper and middle panels.

2π × 0.71(19) kHz, four orders of magnitude narrower
than the excited state’s inverse lifetime 2π×11MHz [30].
This feature demonstrates the presence of coherence in
the Λ system.

We now demonstrate coherent control of the fine-
structure qubit by performing two-photon Rabi oscilla-
tions. To this end, we prepare the atoms in |↑⟩, set the
one-photon detuning to ∆ ≈ −2π× 6GHz, and tune the
lasers to the two-photon resonance δ = 0. Both laser
fields have a Rabi frequency of Ω↑ = Ω↓ ≈ 2π × 36MHz
to minimize differential light shifts. After driving two-
photon Rabi oscillations with frequency Ω for a variable
time t, we perform a state-selective readout of atoms in
|↑⟩. For this purpose, we perform another Landau–Zener
sweep to transfer the population from |↑⟩ to |g⟩. We
then detect the number of atoms in |g⟩ in a spatially re-
solved manner with absorption imaging on the 1S0–

1P1

transition, as shown in Fig. 3(a). We achieve a detection
fidelity of atoms in |↑⟩ of (95.7±2.8)%, currently limited
by the efficiency of the Landau–Zener sweep [22]. We re-
pump any remaining atoms in |↑⟩ and remove them from
the trap. This procedure leads to less than 1% contami-
nation of the |↓⟩ population with atoms from |↑⟩. Then,
we detect the number of atoms in |↓⟩ by repumping them
to |g⟩ via |s⟩ using both Raman lasers. We take another

absorption image and estimate a detection fidelity for
atoms in |↓⟩ of (95.9± 3.3)% [22].

When we analyze the Rabi frequencies spatially re-
solved, we find a variation of the Rabi frequencies due to
the finite beam size of the Raman lasers in the yz-plane,
see Fig. 3(b). To minimize the influence on the dephas-
ing of the Rabi oscillations, we analyze the data at one
spatial location [22]. To correct for long-term drifts of
the atom number, we interleave reference measurements
of the atom number in the initial state |↑⟩, which we use
to normalize the population in |↑⟩ and |↓⟩ [22]. We ob-
serve high-contrast Rabi oscillations in |↑⟩, as shown in
Fig. 3(c). For a π pulse with duration of about 5 µs, we
find an excitation fraction of 98(1)% [22], without includ-
ing the state-detection efficiencies above.

Next, we investigate the long-term dynamics of the
Rabi oscillations, as shown in Fig. 3(d). To this end, we
analyze the data to extract both carrier frequency and
envelope of the oscillations in |↑⟩ separately. We deter-
mine the carrier frequency corresponding to Ω from a
Lorentzian fit to the Fourier transform of the data [22].
Then, we apply a band-pass filter around Ω and detect
the envelope of the Rabi oscillations. We fit the enve-
lope of the filtered data with an exponential function to
find the 1/e decay time τ of the envelope [22]. An expo-
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nentially damped sinusoidal-oscillation model based on
Ω and τ obtained from this analysis method yields good
agreement with our data of both qubit states, as shown
in Fig. 3(d) [22].

Now, we study the influence of the one-photon detun-
ing ∆ on the Rabi oscillations, see Fig. 3(e). We measure
Rabi frequencies up to Ω = 2π × 409(1) kHz and find an
expected scaling of the Rabi frequency as Ω ∝ 1/∆. The
resulting decay times τ at small ∆ are limited predom-
inantly by one-photon scattering, which we characterize
with independent measurements of the scattering rate,
see middle panel of Fig. 3(e) [22]. We find that the num-
ber of cycles increases with |∆| and saturates at about
69 cycles, as shown in the lower panel of Fig. 3(e) [22].
The scaling of τ with Ω and the saturation to 69 cycles
is consistent with a residual inhomogeneity of Ω on the
order of 0.4%, presumably caused by laser intensity noise
and residual spatial inhomogeneity. We note that effects
due to laser intensity noise could be strongly suppressed
with standard composite pulse sequences [31].

Finally, to investigate the qubit coherence we per-
form Ramsey and spin-echo experiments, see Figs. 4(a)
and 4(b). We apply a π/2 pulse to prepare a coherent
superposition state 1√

2
(|↑⟩+|↓⟩). After a dark time T , we

map the coherence onto population oscillations by vary-
ing the phase of a second π/2 pulse. In Fig. 4(c), we
show the decay of the Ramsey contrast with increasing
T . From a Gaussian fit to the data, we extract a 1/e
dephasing time of T ∗

2 = 2.03(7)ms, limited by residual
differential light shifts of the non-magic vertical lattice.

To quantify this light shift, we measure the change in
the |↑⟩–|↓⟩ transition frequency as a function of the ver-
tical lattice depth using Ramsey spectroscopy. Contrary
to the Ramsey measurements above, we do not scan the
phase of the second π/2-pulse, but the dark time T be-
tween the pulses. The Raman laser frequencies are set to
a two-photon detuning of δ ≈ 2π × 10 kHz with respect
to the free-space resonance of the qubit. The differen-
tial light shift that the atoms experience in the lattice
causes an additional change in δ. The frequency of the
resulting Ramsey oscillations fRamsey is equal to δ/(2π)
and is extracted from a fit with a sinusoidal function,
see Fig. 4(d). Figure 4(e) shows the dependence of the
Ramsey frequency on the vertical lattice depth. A lin-
ear fit to the data extracts a differential light shift of
192(82)Hz/µK between |↑⟩ and |↓⟩ at a vertical lattice
wavelength of 1064 nm, corresponding to a differential
polarizability of about 1%.

To reduce dephasing caused by this differential light
shift and other slow fluctuations present in the system,
we carry out spin-echo measurements. We add a π pulse
after T/2 to the Ramsey sequence, which lets the spins
rephase at T . With this method, we extend the con-
trast decay time to T ′

2 = 38(3)ms, as shown in Fig. 4(c).
We project an additional order-of-magnitude increase in
coherence time in a 3D magic lattice, supported by our
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FIG. 4. Coherence measurements of the Sr fine-structure
qubit. (a) Ramsey measurement. Two π/2 pulses are ap-
plied with a dark time T in between. The phase of the second
π/2 pulse is scanned. The resulting oscillations of the |↑⟩
population (dots) are fitted with a sinusoidal function (line).
(b) Spin-echo measurement. A π pulse at T/2 lets the spins
rephase at T . (c) Ramsey (blue dots) and spin-echo (orange
squares) measurements for various T . We extract the contrast
from the fits in (a) and (b) and fit a Gaussian decay with 1/e
decay times of T ∗

2 = 2.03(7)ms (blue line) and T ′
2 = 38(3)ms

(orange line). (d) Ramsey fringes as a function of T to extract
the differential lattice light shift for vertical lattice depths of
21(6) µK (blue dots) and 52(15)µK (orange squares), as expe-
rienced by |↑⟩. The Raman lasers are tuned to a two-photon
detuning of about 2π × 10 kHz with respect to the free-space
resonance. The frequency fRamsey of the |↑⟩ population os-
cillations over the dark time T is determined with a damped
sinusoidal fit model (lines). (e) fRamsey for different vertical
lattice depths of |↑⟩. A linear fit yields a differential light
shift of 192(82)Hz/µK between |↑⟩ and |↓⟩ at the lattice-light
wavelength of 1064 nm.

recent results for the |g⟩ and |↑⟩ states [20].
In summary, we demonstrated a new fine-structure

qubit encoded in metastable Sr operating at a qubit split-
ting of 17THz. We presented coherence times of tens of
milliseconds, orders of magnitude longer than the sin-
gle qubit gate times on the microsecond scale. Extend-
ing the coherence times further by an order of magni-
tude should be possible by modifying the currently lim-
iting wavelength of the vertical lattice [19, 20]. Particu-
larly promising is a trapping wavelength of 813 nm, at
which, based on our experimental results, we predict
a triple magic condition for both qubit states and the
ground state [19, 22]. In such a configuration, the 1S0–
3P0 clock transition and the 1S0–

3P2 transition, used
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here for coherent transfer, could serve as additional tools
for state-selective shelving operations and mid-circuit
readout. Moreover, the manipulation of the all-optical
qutrit 1S0–

3P0–
3P2 will be possible. Alternatively, op-

eration at a triple-magic trap wavelength for the fine-
structure qubit states and a particular Rydberg state
might prove beneficial for reaching high two-qubit gate
fidelities [15, 16]. Finally, fast state-selective readout of
the fine-structure qubit states without the requirement
of a slow shelving pulse can be implemented using the
5s5d 3D states [32, 33].

In a study performed in parallel to ours, similar re-
sults have been achieved with atoms trapped in opti-
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FIDELITY OF THE LANDAU–ZENER SWEEP

We investigated the coherent excitation from |g⟩ to |↑⟩
and its requirements for the optical lattice polarization
and quantization axis orientation in a previous publica-
tion [1]. The Landau–Zener sweep over this transition is
realized by performing a linear sweep of the transfer-laser
frequency symmetrically over the |g⟩–|↑⟩ resonance. We
use a scan range of 4 kHz and a sweep duration of 50ms
corresponding to a ramp speed of 80Hz/ms. To deter-
mine the fidelity of the sweep, we analyze the number of
atoms Nrem remaining in |g⟩ after the scan. Each of these
measurements is normalized to a reference measurement
of the initial ground state atom number Nref . We define
the excitation fidelity as F = 1 −Nrem/Nref . Repeating
this measurement ten times results in an average excita-
tion fidelity of 97.5(6)%.

RAMAN LASER SYSTEM

For the Raman laser system, we use two diode lasers
at wavelengths of 707 nm and 679 nm, which are locked
to the same optical reference cavity using the Pound–
Drever–Hall locking scheme [2]. This ensures phase sta-
bility between the two lasers. The cavity has a finesse
of 323(3)× 103 and 222(4)× 103 at 707 nm and 679 nm,
respectively. We can vary the one-photon detuning ∆ on
the GHz scale by locking the laser frequencies to specific
longitudinal modes of the cavity, which are separated by
the free spectral range of about 1.5GHz. The two laser
beams are spatially overlapped in an optical fiber leading
to the experiment chamber.

BRANCHING RATIOS

The excited state |s⟩ decays incoherently to |↑⟩ and
|↓⟩ with branching ratios of 21.7% and 11.6%, respec-
tively [3, 4]. With a probability of 34.0%, |s⟩ decays
to the 3P1 states from where the atoms decay back to
|g⟩ [3, 4]. The remaining 32.6% decay to mJ ̸= 0 states
of the 3P2 manifold. To suppress spontaneous decay from
|s⟩ we detune both Raman lasers from the atomic transi-
tion frequencies by the one-photon detuning of typically
∆ ≈ −2π × 6GHz.

DATA ANALYSIS

We use a CCD camera to measure the absorption of
the atoms, which we convert into a number of atoms.
We then calculate the mean and standard deviation of
the atom number in a 3 × 3 pixel region, corresponding
to a 10.5× 10.5 µm2 analysis region.

To correct for slow drifts in the number of atoms loaded
into the optical lattice, we interleave the measurements
of the Rabi oscillations with reference measurements that
are performed without the application of Raman pulses,
which we use to determine the atom number in |↑⟩ in
|↑⟩ at t = 0. We use a linear interpolation of these ref-
erence measurements for the correction. The resulting
N↑(t)/N↑(0) is the state-preparation-and-measurement
error corrected atom number in |↑⟩. We use the same
reference measurements to correct the number of atoms
in |↓⟩, given by N↓(t)/N↑(0). To avoid any possible bias
introduced by this method, we only use the measured
atom number in |↑⟩ to determine the results in the main
text.

EXCITATION FRACTION AND DETECTION
FIDELITY OF ATOMS IN |↓⟩

To determine the maximal π pulse excitation fraction,
we measure Rabi oscillations with small time steps, as
shown in Fig. 1. Here, we use ∆ ≈ −2π × 6GHz and
Ω↑ = Ω↓ ≈ 2π × 36MHz. We average seven Rabi os-
cillations by averaging the number of atoms at every
timestep. Starting in |↑⟩, after a π pulse with a time
of t = 5.17 µs, we find a population of 0.02(1) in |↑⟩,
corresponding to an excitation fraction of 98(1)%.

To estimate the detection efficiency of the atoms in |↓⟩,
we use the population in |↓⟩, which we have normalized
with the population in |↑⟩. In Fig. 1, we show this data
that is already corrected for the measured Landau–Zener
efficiency of 97.5(6)%. At a time t = 5.17 µs, we mea-
sure a population of 0.94(3) in |↓⟩. From this, we infer a
detection fidelity of the atoms in |↓⟩ of 0.94(3)/0.98(1) =
96(3)%, where 0.98(1) results from the measured excita-
tion fraction above.
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FIG. 1. Excitation fraction and detection fidelity. We average
seven measurements of the Rabi oscillations between |↑⟩ (blue
dots) and |↓⟩ (orange squares). Here, the data is corrected for
the Landau-Zener efficiency. We infer the excitation fraction
from the number of atoms in |↑⟩ at t = 5.17 µs. From the
number of atoms in |↓⟩ at this time, we derive the detection
fidelity of atoms in |↓⟩.

FIT OF THE RABI FREQUENCY AND THE
ENVELOPE OF THE RABI OSCILLATIONS
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FIG. 2. Data analysis of the Rabi oscillations. Upper panel:
Fourier spectrum of the Rabi oscillations at ∆ ≈ −2π×6GHz
(points). We fit a Lorentzian function to the data to deter-
mine the two-photon Rabi frequency Ω (line). Lower panel:
Rabi oscillations after applying a band-pass filter (blue line).
We fit the envelope (red line) with an exponential function
(green line) to find the decay time of the oscillations.

In our system, we have long-term pulse amplitude fluc-
tuations, which affect the Rabi frequency. As a result, the
Rabi frequency drifts and when the shot-to-shot fluctua-
tions get too high, we no longer observe coherent oscilla-
tions, but the data points still scatter with the contrast
of the oscillations at that time. Thus, we analyze the
frequency and the envelope of the oscillations separately.

First, we perform a Fourier transform of the Rabi oscil-
lation data. We fit a Lorentzian function to the resulting

Fourier spectrum and use the center of the fit to deter-
mine Ω, see upper panel in Fig. 2. Then, we apply a
2nd-order Butterworth band-pass filter with cut-off fre-
quencies ±50% around Ω to the Rabi oscillations. This
suppresses signals with slow and high frequencies and we
obtain a sinusoidal function oscillating between -1 and 1,
see lower panel in Fig. 2. To extract the envelope of the
oscillations, we use the ObsPy toolbox [5]. This func-
tion computes the envelope by first adding the squared
amplitudes and its Hilbert transform and then calculat-
ing the square root [6]. We fit an exponential function
to the envelope to extract the decay time τ of the Rabi
oscillations.
In Fig. 2, we present the results for the Rabi oscil-

lations at ∆ ≈ −2π × 6GHz. We find Ω = 2π ×
100.94(4) kHz and τ = 684(13) µs. From these results,
we infer a 1/e damping of the Rabi oscillations of 69(1)
cycles.
To demonstrate the agreement of our analysis method

with the measured Rabi oscillations, we use the obtained
parameters Ω and τ in a model, which we compare to
the Rabi oscillation data. In addition to the decay of
the envelope due to dephasing, this model also takes into
account loss out of the Λ system due to one-photon scat-
tering. We model the number of atoms in |↑⟩ as

Nj(t) = 0.5 cos(Ωt+ϕj)e
−t/τ−A(1−e−t/τloss)+0.5 , (1)

where Ω is the carrier frequency, the phase is ϕ↑ = 0
(ϕ↓ = π) for atoms in |↑⟩ (|↓⟩), and we assume an expo-
nential envelope of the oscillations with a decay time of
τ . The second term of Eq. (1) describes loss out of the
Λ system due to one-photon scattering with a time scale
τloss. The amplitude A takes into account that atoms
that have scattered a photon can be pumped into the
dark state of the Λ system. Here, we extract A and τloss
from a fit of the difference between the Rabi oscillations
and the filtered Rabi oscillations and obtain Ω and τ from
the analysis described above. We use these parameters to
overlay a curve based on Eqn. 1 in Fig. 3(d) in the main
text, showing the good agreement between the effective
and the data.

MEASUREMENT OF THE ONE-PHOTON
SCATTERING RATE

One-photon scattering of the Raman lasers leads to
decoherence in our system. Here, we discuss our mea-
surements of the one-photon scattering rates. To char-
acterize the scattering on the |↑⟩–|s⟩ transition, we pre-
pare the atoms in |↑⟩. Then, we turn on just the up
laser. After various excitation times, we measure the
number of atoms in the initial state. When the atoms
scatter a photon, they can decay to 3P0,

3P1, and to the
five Zeeman substates of the 3P2 manifold. To include
these effects and get an estimate of the scattering rate,
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FIG. 3. Measurement of the scattering rate at ∆↑ ≈ −2π ×
6GHz and Ω↑ ≈ 2π × 36MHz. We prepare the atoms in |↑⟩
and turn on the up laser. Then, we measure the number of
atoms in |↑⟩ for various excitation times. With a fit of a rate
equation model, we find the scattering rate of the up laser.

we fit a rate equation model to our data. This model
includes all Zeeman substates of the relevant states. In
Fig. 3, we present a measurement of the scattering rate
at ∆↑ ≈ −2π × 6GHz with Ω↑ ≈ 2π × 36MHz. From
the fit, we extract a scattering rate of 867(19) s−1 and
we infer a maximal decay time of the Rabi oscillations
of 1.15(2)ms. We assume that |∆↑| is much larger than
Ω↑ and the natural linewidth, and fit a curve a∆2

↑ to
the resulting scattering-limited decay times shown in
Fig. 3(e) of the main text, and we find a coefficient
a = 39(2)µs/(2π ×GHz)2.

ATOMIC POLARIZABILITIES

Figure 4(a) shows the polarizability of the qubit states
3P0 and 3P2 (mJ = 0) used in this work, as well as the
polarizability of the ground state 1S0 as a function of
trap wavelength λ [7]. The polarizability of the states
1S0 and 3P0 is solely determined by λ due to the lack
of angular momentum (J = 0). In contrast, the polar-
izability of the nonspherical 3P2 state (J = 2) has an
additional dependence on the trap polarization relative
to the quantization axis. For the 3P2 (mJ = 0) state
used in this work, the total polarizability is given by [8]

α(λ, β) = αs(λ)− αt(λ)
3 cos2 β − 1

2
, (2)

where αs and αt denote scalar and tensor polarizabilities,
respectively, and cosβ is the projection of the polariza-
tion vector onto the quantization axis. The shaded region
in Fig. 4(a) indicates the tuning range of the 3P2 polariz-
ability bounded by the limiting cases of trap polarization
parallel (β = 0◦) or orthogonal (β = 90◦) to the quan-
tization axis. For β = 90◦, the differential polarizability
between the 3P0 and 3P2 states is very small over a large
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FIG. 4. Atomic polarizabilities. (a) Theoretically calculated
polarizability of the 1S0 (blue), 3P0 (green) and 3P2 (red)
states as a function of trap wavelength. For the 3P2 state the
polarizability can be tuned within the shaded region bounded
by the limiting cases of parallel (solid line) and orthogonal
(dashed line) trap polarization relative to the quantization
axis. (b),(c),(d) Polarizability as a function of the angle β be-
tween trap polarization and quantization axis for wavelengths
of 813 nm, 914 nm, and 1064 nm, respectively. The shaded
regions indicated one-sigma confidence intervals on the theo-
retical polarizability values, which give rise to a substantial
uncertainty for the predicted magic angles.

range of wavelengths. In this regime the existence of a
magic trapping condition with (near-)perfect differential
light shift cancellation is possible. Because the uncer-
tainty on the theoretically calculated polarizabilites is on
the order of 1-2% and the crossings are very shallow, the
uncertainty on predicted magic wavelengths and angles
is substantial and experimental input is required.

Figures 4(b)–4(d) show polarizability data as a func-
tion of the angle β including theoretical confidence in-
tervals for three specific wavelengths of interest [4]. Trap
wavelengths of 914 nm and 1064 nm are used in this work
for the horizontal and vertical optical lattices, respec-
tively. The magic wavelength of 813 nm is of particu-
lar interest because here the differential light shift on
the 1S0–

3P0 clock transition is canceled, and obtaining
a triple-magic wavelength in combination with the 3P2

state might be feasible. Experimentally, we determine
magic polarization angles by maximizing the Ramsey
contrast by scanning the lattice polarization angles. At
914 nm, we observe a local maximum in the Ramsey con-
trast for an angle β slightly above the predicted magic
angle of βm,914 = 79◦. A precise determination of the
magic angle is beyond the scope of this work, but would
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be a fruitful topic for future experiments. At 1064 nm,
the differential light shift is minimized for β = 90◦, but
no magic trapping conditions could be achieved. These
results indicate that an upper bound on the trap wave-
length for realizing a magic trap for the fine-structure
qubit is located between 914 nm and 1064 nm. Observ-
ing the scaling of the polarizability of the 3P0 and 3P2

states with wavelength in Fig. 4(a) suggests that the ex-
istence of a magic angle at 914 nm supports the existence
of a triple-magic trapping condition for the 1S0–

3P0–
3P2

qutrit at 813 nm.
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