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The coupling of an isolated quantum state to a continuum is typically associated with decoherence
and decreased lifetime. Here, we demonstrate that Rydberg macrodimers, weakly bound pairs of
Rydberg atoms, can overcome this dissipative mechanism and instead form bound states with the
continuum of free motional states. This is enabled by the unique combination of extraordinarily slow
vibrational motion in the molecular state and the optical coupling to a non-interacting continuum.
Under conditions of strong coupling, we observe the emergence of distinct resonances and explain
them within a Fano model. For atoms arranged on a lattice, we predict the strong continuum
coupling to even stabilize molecules consisting of more than two atoms and find first signatures of
these by observing atom loss correlations using a quantum gas microscope. Our results present an
intriguing mechanism to control decoherence and bind multiatomic molecules using strong light-
matter interactions.

Coupling to a continuum of free states provides a prom-
inent mechanism for quantum states to acquire a finite
lifetime. Examples include the decay of excited atoms
via coupling to free electromagnetic modes, the phononic
bath in molecules and solids, or quasiparticles coupled
to a many-body continuum. Most often, this coupling is
weak and can be described perturbatively, giving rise to a
finite lifetime as described by Wigner-Weisskopf theory.
Fano provided an exact description for the continuum
coupling in the context of optical absorption, where ei-
genstates in isolated quantum systems are broadened into
resonances [1, 2]. Instances where this generic paradigm
fails include bound states in the continuum [3, 4], invest-
igated accross various physical systems such as optical
waveguides, molecules [5], and electronic states in solids.
Alternatively, in the less investigated regime of strong
continuum couplings, stable eigenstates can emerge by
shifting the bound state out of the coupled continuum [6–
9].

Here, we explore the continuous transition from the
familiar weak continuum coupling to strong couplings
using Rydberg macrodimers, see Fig. 1 (a). Macrodi-
mers are giant molecules of two atoms, both excited to
their Rydberg states [10–15]. Held together by dipolar
forces across distances of hundreds of nanometers, mac-
rodimers exhibit a vibrational spectrum characteristic of
diatomic molecules. For covalently bound molecules, co-
herent control over the bound state is limited to strong
external fields such as available in pulsed lasers [16–18].
In contrast, the weak bonds of long-range Rydberg mo-
lecules [19–21] allow for external control by much weaker
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static fields [11, 22, 23], radiofrequency waves [24, 25],
Casimir forces [26], or continuous-wave laser light. Mac-
rodimers therefore offer an opportune handle to optically
associate and dissociate them on timescales much faster
than their vibrational period such that molecular bonds
can be coherently controlled using laser light.

Our experiments were performed in a quantum gas
microscope, where atom pairs on adjacent optical lat-
tice sites can be excited into bound macrodimers. We
laser couple the macrodimer state resonantly to non-
interacting pair states composed of one Rydberg and one
ground-state atom, see Fig. 1 (a,b). Our spectroscopic
probe reveals new resonances emerging in the presence
of the strong light coupling. Supported by our calcula-
tions, we interpret these resonances as hybridized states
between macrodimers and the continuum and name them
“macrodimerons”. Furthermore, the spatial arrangement
in the lattice facilitates an exchange coupling of macrodi-
mer states via a two-photon process, giving rise to bound
states between three (“macrotrimerons”) or even more
atoms. Using site-resolved detection, we observe correl-
ated two-atom as well as three-atom loss at the predicted
energies.

The experiments started with a unity-filled two dimen-
sional optical lattice of 87Rb atoms with lattice spacing
alat = 532 nm [14], see Fig. 1 (c). The atoms were ini-
tially prepared in the motional ground state at the indi-
vidual lattice sites. A σ+-polarized coupling laser at a
wavelength λ = 298 nm in the ultraviolet (UV) spectral
range was propagating along the lattice diagonal direc-
tion, parallel to a magnetic bias field B = 0.5G setting
the quantization axis. The chosen 1u macrodimer poten-
tial binds atom pairs at a separation Rv = 712 nm, close
to the lattice diagonal distance R0 ≈

√
2alat [27]. The
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Figure 1. Tunable continuum coupling and system overview. (a) Macrodimers (orange symbols) in a vibrational
mode Φv(R) at a bond length Rv are coupled into a continuum of free pair states (blurry orange region). For weak couplings
ℏΩC ≪ Ekin, smaller than the width of the coupled continuum, this broadens the macrodimer state (blurry blue region) and
therefore reduces its lifetime. For strong couplings ℏΩC ≫ Ekin, in contrast, we find a stable macrodimeron at negative energies,
which is shifted out of the continuum, and a quasi-stable macrodimeron resonance at positive energies (blue pictograms). (b)
We study this coupling mechanism for atoms arranged in a lattice with spacing R0 close to Rv. Macrodimer excitations are
resonantly coupled into non-interacting states containing ground state atoms |g⟩ and a single Rydberg atom |e⟩ (purple lines).
In this arrangement, where adjacent macrodimers are coupled via a two-photon transition, a strong continuum coupling can
even stabilize bound states of more than two particles. The coupled system (dashed-bordered box) can be probed from the
collective ground state using a weak probe field Ωp (dashed blue line) at a detuning δp to the singly-excited states. (c) In
the experiment, these bound states were excited from a unity-filled optical lattice (gray grid). Macrodimer excitation occurred
between pairs aligned along the diagonal distance R0 of the array, which is parallel to the magnetic field B and the propagation
direction kL of the σ+-polarized excitation laser. Atoms contributing to the binding leave the lattice (illustrated by thick-
bordered sites), the remaining atoms were detected via fluorescence imaging.

corresponding macrodimer state is |Ψv⟩ = Φv(R)⊗|Ψ (2)
el ⟩,

with Φv(R) the lowest vibrational mode in the binding

potential and |Ψ (2)
el ⟩ the electronic wave function. For

an orientation R0 = (−1, 1)alat parallel to B, the coup-

ling laser couples |Ψ (2)
el ⟩ to non-interacting pair states |eg⟩

and |ge⟩ at a Rabi frequency ΩC, with the Rydberg state
|e⟩ = |36P1/2,mJ = −1/2⟩ and the hyperfine ground
state |g⟩ = |F = 2,mF = −2⟩. In this configuration,
excitation of macrodimers oriented orthogonal to B is
suppressed and the lattice decouples into several one-
dimensional systems [27]. We weakly phase-modulated
our coupling laser tuned to a frequency close to the in-
teraction shift U = 735.2MHz between the macrodimer
state and the pair state |ee⟩ at large distances. This en-
ables probing the strongly coupled system via the trans-
ition |g⟩ to |e⟩ using a low-power probe field at a Rabi
frequency Ωp and a tunable detuning δp using the red
modulated sideband, see Fig. 1 (b).

To reveal the emergence of macrodimerons, we first
performed spectroscopy for various coupling strengths
ΩC. The macrodimer state was resonantly coupled to the
singly-excited states by the coupling laser, whereas the
weaker probe laser detuning was scanned. We observed
a splitting of the ground-state to macrodimer transition
into three spectroscopically resolved lines, with a central
resonance at a detuning δP = 0 that remained unshif-
ted and two outer resonances exhibiting a line shift that
depends linearly on ΩC, see Fig. 2 (a). While the reson-
ance at negative detunings had a narrow and distinct line
shape at all coupling strengths, the resonance at positive

detunings was first broadened and, surprisingly, became
more distinct at larger ΩC.

To understand the emergence of the observed spec-
trum, we first employ a generalized Fano-model involving
two atoms, see Fig. 2 (b). In the rotating frame, the
Hamiltonian reads

H
ℏ

=

∫
dkϱkωk

(
|eg⟩⟨eg|+ |ge⟩⟨ge|

)
|k⟩⟨k| −∆C|Ψv⟩⟨Ψv|

+
ΩC

2

∫
dkϱkfk

(
|ge⟩+ |eg⟩

)
|k⟩⟨Ψv|+ h.c., (1)

with plane wave modes |k⟩ and their density of states ϱk
in the relative coordinate R and the laser detuning ∆C

from the transition between the macrodimer and states
|ge⟩ and |eg⟩ at rest (k = 0). Contrary to the com-
monly used conditions of the Fano model, the continuum
is bounded from below because of the exclusively positive
kinetic energies ℏωk. The optical coupling depends on ΩC

as well as the overlap integrals fk between |k⟩ and Φv(R).
The macrodimer mostly couples to states |k⟩ up to the
kinetic energy Ekin =

∫
dkϱk|fk|2ℏωk ≈ h × 850 kHz

stored in its vibrational mode Φv(R). The kinetic en-
ergy in the center-of-mass and angular coordinates, as
well as the lattice potential, are much smaller than the
vibrational energy and can be neglected. We discretize
the continuum and solve Eq. 1 by exact diagonalization
for resonant coupling ∆C = 0.

The optical transition strengths from the lattice
ground state are provided by their overlaps with the ob-
tained eigenstates, see Fig. 2 (b). For negative δp < 0,
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Figure 2. Spectroscopic response and macrodimerons.
(a) Probe-field spectroscopy starting from an atomic array,
with resonant coupling laser at Rabi frequencies ΩC/2π =
[2.3, 3.2, 4.4, 6.2] MHz (top to bottom). All error bars de-
note one standard error of the mean (s.e.m.). (b) The ob-
served line splitting is already explained by a two-atom model
which predicts a stable (decaying) macrodimeron at negat-
ive (positive) energies, here shown for ΩC/2π = 6.2MHz, see
Fig. 1 (a). The positive macrodimeron becomes quasi-stable
at large couplings, featuring a narrow evolution of the as-
sociated scattering phase (red line). The spatial probability
distributions of both macrodimeron types are similar to that
of the macrodimer vibrational state |Φv(R)|2 (left/right sub-
plot). The envelope of the central peak reflects the initial
distribution |Φg(R)|2 of two atoms in the lattice ground state
(central subplot). Its spatial components overlapping with
the macrodimer are optically transferred to the macrodimeron
states. The asymmetry of the resulting dip originates from a
small mismatch between R0 and Rv. (c) The observed split-
ting between both macrodimerons (orange dashed line) is in
reasonable agreement with ab initio calculations including the
electronic structure of the macrodimer (solid blue line).

we predict a signature originating from a single eigen-

state |Ψ̄ (2)
v ⟩ ≈ Φv(R) ⊗ |Ψ̄ (2)

el ⟩, which we identify with
the negative macrodimeron. Its electronic wave func-

tion |Ψ̄ (2)
el ⟩ = 1√

2
|Ψ (2)

el ⟩ − 1
2 (|ge⟩+ |eg⟩) is a superposi-

tion of the macrodimer and motionally unconfined singly-
excited states. As a consequence, without the presence of

the light field, an atom pair in the electronic state |Ψ̄ (2)
el ⟩

could not be stabilized in a bound motional state. How-
ever, the light coupling confines the motional state of the

macrodimeron |Ψ̄ (2)
v ⟩ to the vibrational mode Φv(R), res-

ulting in a stable configuration. Contrary to the negative
macrodimeron, the positive macrodimeron for δp > 0
is immersed in the continuum to which it resonantly
couples. Here, the description is equivalent to a scat-
tering problem between an open continuum channel and
a closed macrodimer channel [28]. Only at large coup-

lings ℏΩC ≫ Ekin, where the positive macrodimeron is
shifted away from most of the coupled continuum states,
we predict a narrow resonance. We infer that the positive
macrodimeron is a quasi-bound state as we find a rapid
evolution of the associated scattering phase across the
resonance [29]. The remaining broadening of the posit-
ive macrodimeron can be attributed to the much weaker
coupling to high k-modes, which also results in a slightly
modified, but still highly localized motional state, see up-
per right inset in Fig. 2 (b). In this regime of strong coup-
lings, where the motional state Φv(R) acts as a spectator
to the strong coupling of the electronic states, the mac-
rodimeron splitting is reminiscent of an Autler-Townes
splitting. The central unshifted resonance at δP = 0
arises because the relative wave function Φg(R) of two
ground-state atoms in the lattice is much broader than
the vibrational mode Φv(R). As a consequence, some
modes |k⟩ within the singly-excited manifold that are ac-
cessible from the two-atom ground state Φg(R)⊗|gg⟩ but
have zero overlap with Φv(R) remain uncoupled from the
macrodimer state. The relative signal strength between
the two outer resonances and the central resonance de-
pends on the overlap between Φg(R) and Φv(R) and can
be tuned by the trap depth. The deviation between the
calculated and observed resonance position at δp > 0 (see
Fig. 2 (c)) may originate from higher vibrational modes
as well as perturbations within the macrodimer binding
potential [30, 31].

While the simplified two-atom Fano model captures
the main spectroscopic signatures, it does not account for
the lattice, where each state |e⟩ is not coupled to one but
to two adjacent macrodimers. Leading-order corrections
are already expected for three equidistantly spaced atoms

on a line, with electronic states |gge⟩, |geg⟩, |egg⟩, |Ψ (2)
el g⟩

and |g Ψ (2)
el ⟩ contributing to the Fano model, see

Fig. 1 (b). Here, one possible process is the “hopping”
of a macrodimer excitation between two adjacent atom

pairs |Ψ (2)
el g⟩ and |g Ψ (2)

el ⟩, induced by the coupling laser
through a resonant two-photon transition, see Fig. 3 (a).
For strong couplings, one expects the emergence of states

where |Ψ (2)
el ⟩ is delocalized between the two pairs that

can be formed from three atoms. An interesting ques-
tion in this case relates to the nature of the motional
states. They can be parametrized in the two relative co-
ordinates R1 and R2 of the first and the second atom
pair, which we expand into plane waves |k1⟩ and |k2⟩.
Interestingly, the model predicts similar spectra as the
two-atom model, with loss signatures mainly occurring
in three frequency regions, see Fig. 3 (b). Again, a cent-
ral resonance combines singly-excited states which re-
main unshifted by the carrier field because their mo-
tional states have vanishing overlap with both vibra-
tional macrodimer modes. At negative detunings δp, we
predict two closely spaced features which remained ex-
perimentally unresolved. The stronger of the two fea-
tures includes two states where either the first or the
second atom pair is bound into a macrodimeron, while
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Figure 3. Macrotrimerons and their microscopic signatures. (a) For three atoms with both relative distances, R1 and
R2, close to the macrodimer bond length, the laser couples both adjacent macrodimers via a joint Rydberg excitation and
its motional continuum. (b) The calculated three-atom spectrum for ΩC/2π = 6.2MHz now exhibits motional states with
contributions from two atom pairs (lower subplots). At negative detunings, we identify a state (1), where R1 and R2 are
confined to Φv(R), the macrotrimeron. The strong signal (2) at δp < 0 originates from macrodimeron states where either the
first or the second atom pair is confined to the vibrational mode, while the third atom is unconfined. Again, we find an unshifted
signature (3) covering motional states which have zero spatial overlap with Φv(R1) as well as Φv(R2) but are accessible from
the broader three-atom ground state Φg(R1)Φg(R2) ⊗ |ggg⟩. At positive detunings, the continuum broadens the calculated
contributions from two and three atoms into a single resonance (4). (c) Atom-loss correlations after illuminating the atoms
for 50µs with the laser tuned into resonance with the line observed at δp < 0 where dimerons and trimerons are expected

to contribute. Correlations G(2)(δR) and G
(3)
R0

(δR) show a two-atom and three-atom loss signal for atoms aligned along the
expected lattice diagonal distance. At zero distances, the signals were excluded (gray).

the third atom remains unbound. At slightly more neg-
ative δp, calculations predict the presence of yet another

state |Ψ̄ (3)
v ⟩ ≈ Φv(R1)Φv(R2) ⊗ |Ψ̄ (3)

el ⟩, with an elec-

tronic wave function |Ψ̄ (3)
el ⟩ = − 1

2

(
|Ψ (2)

el g⟩+ |g Ψ (2)
el ⟩
)
+

1√
3

(
1
2 |gge⟩+ |geg⟩+ 1

2 |egg⟩
)
. We name this state, which

contains components of both macrodimers, a macrotri-
meron. Remarkably, it adopts the motional state of the
macrodimer in both relative coordinates and thus binds
all three atoms, see Fig. 3 (b). Although broadened by
their immersion in the continuum, similar correspond-
ing macrodimeron and -trimeron resonances appear for
positive δp.

Even for the case where macrodimerons and -trimerons
cannot be spectroscopically resolved, site-resolved atom
loss correlations do allow to substantiate their presence.
Since the macrodimer hopping rate is much larger than
the excitation rate by the optical probe and the present
dissipation rates, we directly excite these quasiparticles
as stable eigenstates of the light-matter Hamiltonian.
The dominant binding energy is close to ΩC and exceeds
the lattice potential. Furthermore, the trapping potential
of these molecules is deactivated by the contribution of
antitrapped Rydberg states. As a consequence, all atoms
bound by the light field will jointly disperse from their
trap positions. Retrapping is even further suppressed
by the large kinetic energy stored in the mode Φv(R),
which will be eventually released after Rydberg decay.
Their excitation should therefore display fully correlated

two-atom and three-atom loss signals. Measuring the
two-atom loss correlation signal G(2)(δR) from the re-
constructed images at the location of the resonance at
δp < 0 shows the emergence of a macrodimeron signal at
the expected distance δR = R0, see Fig. 3 (c). Addition-

ally, we evaluate three-atom loss correlations G
(3)
R0

(δR)
(defined in [30]). Conditioned on two atoms lost at a
distance R0, we vary the separation δR to the third lost
atom, see Fig. 3 (c). Indeed, as expected from macro-

trimeron excitations, G
(3)
R0

(δR) shows a strong signal at
δR = (1,−1) alat and δR = (−2, 2) alat where all three
lost atoms were aligned along the lattice diagonal dir-
ection. We extract a ratio of 3 : 1 between two-atom
and three-atom loss events by reproducing the observed
correlations from numerically generated samples [30].

To further substantiate the presence of macrotrimer-
ons, we compared the regime where adjacent macrodi-
mers are strongly coupled, with the opposite limit of
weak couplings, where the intrinsic macrodimer decay
rate dominates. In the former case, we observed signi-
ficant three-atom loss already at an illumination time of
only t1 = 500 ns, see Fig. 4 (a). In the latter case, after a
much longer pulse time t2 = 500µs required to reach the
same two-atom loss signal as before, we only observed
pair losses but no three-atom loss. These observations
confirm that the three-atom loss mechanism is directly
associated with the high power UV pulse in the strongly
coupled regime. Furthermore, these observations exclude
a collisional loss model, whereby excited macrodimers
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Figure 4. Power dependence of the correlation signal.
(a) Macrodimers were resonantly excited from the ground
state at varying coupling rates, with slightly off-resonant
singly-excited states [30]. (b) At high laser powers and
large coupling rates ΩC/2π = 7.8(3)MHz, where the coupling
between adjacent macrodimers exceeded the theoretical mac-
rodimer decay rate γ ≈ 1/20µs, we observed two-atom loss

correlations G(2)(R0) as well as three-atom loss correlations

G
(3)
R0

(−R0) after a pulse time t1 = 500 ns. (c) In the opposite
limit where γ dominates, we predict to only excite isolated
macrodimers. As expected, after a much longer pulse time
t2 = 500 µs, we only observed a two-atom loss signal. The ob-
served negative signal at low powers can be understood from
uncorrelated pair losses alone.

are expelled from the lattice and subsequently knock out
neighboring atoms because the pulse time t1 is too short
for the atoms to move from their sites. Additional obser-
vations presented in [30] exclude other alternative three-
atom loss mechanisms, such as mechanisms based on ra-
diative decay or Rydberg antiblockade [32, 33], but are
consistent with our interpretation of light-induced mac-
rodimer hopping.

In conclusion, we studied the light-coupling of Rydberg
macrodimers to a continuum of free states. At strong
couplings, we demonstrated that the coupling gives rise
to new emerging quasiparticles that split off from the con-
tinuum and therefore are stable eigenstates. This can be
seen as a reversal of the original idea of Fano, which en-
dows a finite lifetime to an isolated quantum state. For
systems beyond two atoms, we predict this mechanism
to also stabilize macrotrimerons, complex quasiparticles
with the motional state of a triatomic molecule, although
the contributing Rydberg interactions are only binary.
We observed microscopic three-atom loss signatures in a
regime where such macrotrimerons are expected and fur-
ther tested the presence of the underlying macrodimer

hopping process by varying laser power and detuning to
the singly-excited state. The described process sets it
apart from pure electronic excitation hopping [34–37] by
the contribution of the motional mode of the macrodi-
mer. Such an interplay between electronic states and
motional modes, recently also discussed in Rydberg fa-
cilitation models [38, 39], opens up opportunities to con-
struct molecular states of even larger particle number.
First signatures were already found in some of our correl-
ation signals, which indeed showed correlated four-atom
events, see Fig. 7 in [30] and [15]. For our parameters,
the associated excitation rates decrease by about one or-
der of magnitude with each additional contributing atom
because of the decreasing spatial overlap of the lattice
ground state and the multi-atom bound state. In the
future, this overlap could be improved using shallower
binding potentials at higher principal quantum numbers
where motional ground states can be prepared that are
identical with the vibrational mode, providing much lar-
ger multi-atom contributions to the spectra [15]. Finally,
macrodimer hopping can also be studied in the time do-
main, e.g., by quenching the laser coupling and tracking
the combined evolution of the electronic and motional
states.
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SUPPLEMENTARY MATERIAL

This supplementary material discusses further theor-
etical and experimental details and contains additional
experimental datasets supporting the claims made in the
main text.

A. Theory

1. Macrodimers on a lattice

To describe the combined effects of macrodimer bind-
ing and light coupling, we use the following model: We
consider N atoms distributed in one dimension at po-
sitions xi, excited by the probe and the control laser.
Assuming that the probe laser is weak, we restrict our
attention to the space of states reached by a single probe
photon: These comprise states with a single Rydberg ex-
citation as well as states with a single macrodimer excit-
ation. A singly-excited state with a Rydberg excitation
on site i is described by

|Φ̃i⟩ = ρi(R, R1, ..., RN−1)|ei⟩. (2)

Here, we introduced the total motional state
ρi(R, R1, ..., RN−1) written in position space, as
denoted by the tilde. The motional state is parametrized
in a convenient set of “links”, i.e. of relative coordinates
R = (R1, R2, ..., RN−1) with Rλ = xλ − xλ+1 (here, the
subindex λ denotes the link between sites λ and λ + 1)
and the center of mass coordinate, R = 1/N

∑
i xi, as

well as the notation |ei⟩ ≡ |g1...ei...gN ⟩ for the electronic
state. The macrodimer state with its electronic wave
function |Ψ (2)

el, λ⟩ has a fixed motional relative wave

function Φv(Rλ), the index v labels the vibrational
macrodimer mode. We consider many-body states
containing a macrodimer excitation that form a product
state with the state of the remaining ground state atoms
in the motional state φ(R, R1, ..., Rλ−1, Rλ+1, ..., RN−1),

yielding

|Ψ̃λ
v ⟩ =Φv(Rλ)|Ψ (2)

el, λ⟩φ(R, R1, ..., Rλ−1, Rλ+1, ..., RN−1)

× |g1...gλ−1gλ+2...g2⟩. (3)

The kinetic energy of the atoms is

T = − ℏ2

2m

∑
i

d2

dx2
i

(4)

= − ℏ2

2m

(
1

N

d2

dR2
+ 2

N−1∑
λ=1

d2

dR2
λ

− 2

N−1∑
λ=2

d

dRλ

d

dRλ−1

)
.

Neglecting the effects of the optical lattice, all atoms that
are not bound in macrodimer states can freely disperse.
We assume that the macrodimer states are well approx-
imated by harmonic oscillator eigenstates. It is conveni-
ent to expand all states in a basis of momentum eigen-
states (denoted without a tilde), with K representing the
center of mass and kλ the relative coordinate Rλ. We use
the shorthand k⊥λ = (k1, ..., kλ−1, kλ+1, ..., kN−1) to de-
note the set of relative momenta different from kλ.
The total Hamiltonian H = T + V +HL contains the

kinetic energy, the macrodimer binding potential V, as
well as the term HL which couples the singly-excited
states to the macrodimer states by laser light. Differ-
ent singly-excited states are eigenstates of the atomic
Hamiltonian and not coupled by the laser. Thus, within
their subspace, the Hamiltonian is diagonal and only con-
tributes via kinetic terms, with matrix elements

⟨Φi(K,k)|H|Φi′(K
′,k′)⟩ =

δi,i′δK,K′δk,k′
ℏ2

2m

(
2

N−1∑
λ=1

k2λ − 2

N−1∑
λ=2

kλkλ−1 +
K2

N

)
(5)

in the frame co-rotating with the coupling laser. The
situation is slightly more complex for states involving
a macrodimer: Here, the mode coupling of the kinetic
energies in the relative coordinates (see Eq. (4)) mixes
macrodimer states for N ≥ 3. However, this direct mo-
tional coupling is small and we restrict our basis for the
consideration of the case of three atoms (N = 3) to a
single macrodimer state, such that the last term of the
following equation vanishes.

⟨Ψ λ̄
v (K,k⊥λ̄)|H|Ψ λ̄′

v′ (K ′,k′
⊥λ̄′)⟩ = δλ̄,λ̄′δv,v′δK,K′δk⊥λ,k′

⊥λ

∆v
C +

ℏ2

2m

2

N−1∑
λ=1
λ̸=λ̄

k2λ +
K2

N




−2
ℏ2

2m

N−1∑
λ=2

λ̸∈{λ̄,λ̄+1}

⟨Ψ λ̄
v (K,k⊥λ̄)|kλkλ−1|Ψ λ̄′

v′ (K ′,k′
⊥λ̄′)⟩.

(6)

We chose the energy of the intermediate states at rest as E = 0 and defined the macrodimer detuning ∆v
C with

https://doi.org/10.1016/j.cpc.2017.06.015
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respect to the macrodimer energy (see section B 1). The
macrodimer detuning ∆v

C reflects the relative kinetic en-
ergy as well as the macrodimer binding potential on the
respective link. In contrast to the rest of the manuscript
(see section B 1), we introduced another superindex v
in order to also include higher vibrational macrodimer
modes with v ̸= 0.

Finally, we evaluate the optical coupling between
singly-excited states Eq. 2 and macrodimer states Eq. 3 in
momentum space. The laser only changes the electronic
state but transfers no significant momentum, making the
center-of-mass kinetic energy a constant of motion. The
corresponding matrix elements are given by

⟨Φi(K,k)|H|Ψλ
v (K,k⊥λ)⟩ =

⟨ei|HL|Ψ (2)
el, λ⟩

∫
ρ∗i (k)φ(k⊥kλ

)ϕv(kλ)ϱk dk
(7)

with the density of states ϱk. The first term in the second
line only contributes when λ = i or λ = i+1. We identify

⟨ei|HL|Ψ (2)
el, λ⟩ =

1
2αℏΩge, see section B 2 and section A3.

The second term is the Franck-Condon overlap.

2. Eigenstates, Phases and Spectra

The above model is solved by exact diagonalization on
a finite grid in momentum space, yielding the spectrum
of eigenenergies E and corresponding eigenstates |Ψ(E)⟩.
The eigenstates carry contributions of the macrodimer’s
electronic states as well as the intermediate states, both
with motional wave functions. The negative macrodi-
merons are shifted out of the continuum, which is ener-
getically bounded from below, and therefore do not ex-
perience any resonant coupling to free continuum states.
For positive energies, each eigenstate is associated with
a scattering phase, i.e. the phase shift of the continuum
modes induced by the resonant coupling to the macrodi-
mer potential, at distances far away from the potential.
We compute this phase by transforming the states |Ψ(E)⟩
to real space, where the phase can be extracted from
the asymptotic wave function cos(kr) + K sin(kr) and

δ = − arctan(K), with k =
√
2mE
2ℏ2 . Since we employ a

parabolic approximation of the macrodimer binding po-
tential, all eigenstates are either of even or odd parity
with respect to the position of the minimum of the mac-
rodimer binding potential. In Fig. 5, we illustrate the
phases for a system of two atoms at varying coupling
rates ΩC . At low ΩC , even-parity scattering states couple
only to the even macrodimer states, showing rapid phase
evolution around each of the even macrodimer states.
Likewise, the phase of the odd-parity states exhibit a
similiar π phase shift at the energies of the odd-parity
macrodimer states. We note that this behavior is fully
equivalent to Feshbach resonances, where isolated mac-
rodimer states can be viewed as bound states of the closed
channel. Since the lattice ground state is nearly constant

5-5 0 10

C
al

c.
 a

to
m

 lo
ss

 (a
.u

.)

Sc
at

te
rin

g 
ph

as
e

π
2

π
2

0

-

π
2

π
2

0

-

π
2

π
2

0

-

5-5 0 10
Detuning dP  / (2π) (MHz)

1.0

2.0

3.0

4.0

5.0

6.2

Figure 5. Calculated absorption profile and scatter-
ing phase evolution. The coupling rate ΩC/2π increases
from top to bottom as well as left to right, as indicated in
the lower left of the plots. Across positive energies, the evol-
ution of the scattering phase of the continuum states with
even (odd) symmetry is shown in solid (dashed) red. At van-
ishingly small ΩC , we find regions of rapid phase evolution
mainly at the energies of the original even (odd) vibrational
states, indicated in solid (dashed) gray lines. At intermedi-
ate couplings, the phase evolution broadens, indicating accel-
erated decay of the macrodimer states. At large couplings,
regions of rapid phase evolution shift to the energies of the
emerging macrodimeron states, indicating that the positive
macrodimeron becomes quasi-stable. This sharpening is also
also reflected in the atom loss spectra, which are dominated
by the even eigenstates. In contrast to Fig. 2 (b) in the main
text, where only a single vibrational mode has been included,
the two-atom model implemented here included the six low-
est vibrational modes, see also Fig. 11. The broadening of the
central line towards negative detunings for larger ΩC/2π can
also be observed in the experimental datasets (see Fig. 2 (a)
and Fig. 10 (a)) and originates from negative macrodimerons
of higher vibrational modes.

over the length scale of the vibrational wave functions
and much more extended than the modulations of the
scattering states, the odd-parity states do not contribute
significantly to the optical signal (discussed below).

Switching the coupling field ΩC on first widens the
narrow macrodimer resonances, see the scattering phase
evolution in Fig. 5. This can interpreted as a signa-
ture of accelerated decay of the bound macrodimer state
into the continuum or, equivalently, a reduced lifetime
of the macrodimer [29]. This is accompanied with a
shift of the macrodimeron resonance position, in full ac-
cordance with experimental observations. As the optical
coupling strength is increased even further, we observe
that the phase evolution sharpens around the positive-
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macrodimeron. This indicates that the macodimeron is
becoming a quasi-bound state with an increased lifetime.

The optical spectra are computed from overlaps of the
eigenstates with the lattice ground state. Since both the
light coupling and the vibrational macrodimer energies
are much larger than the kinetic energy in the optical
lattice, the lattice has been neglected in the Hamilto-
nian. However, when probing the obtained eigenstates
|Ψ(E)⟩ from the lattice ground states, the optical lat-
tice potential defines the initial motional states of the
atoms, which contribute to the expected loss spectra via
a Franck-Condon integral. The initial motional states of
the individual atoms in the trap can be well approxim-
ated by a Gaussian of a spatial width σ = ℏ/(2mωlat)

1/2

(see also section B 3) centered at xi = i ·
√
2alat, with the

diagonal lattice separation
√
2alat. The global ground

state |Φ̃g(x1, ..., xN )⟩ is a product state of the states of
the individual atoms and can be factorized in momentum
space into

|Φg(K,k)⟩ = Φcm(K)Φrel(k)|g1...gN ⟩ (8)

with the center-of-mass and relative wave functions

Φcm(K) =

(
2σ2

Nπ

) 1
4

eia
N+1

2 K−σ2

N K2

(9)

Φrel(k) = N
1
4

(
2σ2

π

)N−1
4

e−2σ2 ∑N−1
i=1 k2

i (10)

· e2σ
2 ∑N−1

i=2 kiki−1eia
∑N−1

j=1 kj .

The probe field absorption is now directly given by over-
laps with the probe Hamiltonian HP

Cabs(E) ∝ |⟨Ψ(E)|HP |Φg(K,k)⟩|2. (11)

The optically active part of the eigenstates are the singly-
excited states since only they are optically coupled from
the ground state. Since the center-of-mass motion is fac-
torizable and the initial state is in a product state, the
center-of-mass wave function will not get entangled with
the relative motion.

In the experiments, the observable is the loss rate from
the trap after a variable delay time. Since the exact dy-
namics of this process are complex, depending on the trap
depth, the anti-trapping effect of the optical lattice on the
Rydberg states, and the spread into three-dimensional ro-
tational states of the macrodimer, we assume that none
of the atoms excited to a Rydberg state but all of those
in the electronic ground state will be recaptured. This
yields a variable loss fraction f(E) for each eigenstate
and an overall atom loss signal S(E) ∝ f(E)Cabs(E).
Fig. 2 (b) and Fig. 3 (b) in the main text are obtained
from the signal after smoothening the function with a
Gaussian of width of 150 kHz to estimate the additional
broadening from the laser. In the same figures, we also
illustrate the motional wavefunction in the electronic sec-
tor of the singly-excited states. For each of the reson-
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Figure 6. Details of the binding potential. (a) The
optically coupled diabatic binding potential (dashed red po-
tential) is crossed by another diabatic 1u potential which is
not coupled by the light (dashed gray potential). Dipole-
quadrupole interactions between them induce a gap and
provide two new adiabatic pair potentials (solid potential
curves). Solid (dashed) vertical lines indicate the energies
of even (odd) vibrational modes in the diabatic binding po-
tential. We mainly focused on the lowest vibrational mode
Φv(R). (b) Due to R-dependent electronic structure of the
two potentials, the optical coupling parameter α(R) depends
on R. The dependence is small for the diabatic potential
(dashed red line) where α ≈ 1.04 but significant for the two
adiabatic potentials (two solid lines). The relative orientation
between the interatomic axis, the magnetic field B, and the
light polarization ε were chosen as specified in Sec. B.

ances, these are coherently averaged over a small energy
window to represent the optically excited motional states.
Note that assuming only Rydberg excitations to

be ejected from the lattice underestimates the signal
strengths at the macrodimeron and macrotrimeron res-
onances due to the illustrated quenched motional wave
functions. Under this assumption, the calculated absorp-
tion profile neglects the additional loss of ground state
atoms in quenched motional states, as would be expec-
ted at dimeron and trimeron resonances. Even at the
central resonance where only singly-excited states con-
tribute, the modified motional states may occasionally
induce multi-atom loss.

3. Perturbations in the binding potential

In addition to higher vibrational modes, two other
effects may explain the remaining deviations between
the calculated and the observed resonance position in
Fig. 2 (a).
First, a second optically uncoupled pair potential

crosses our binding potential close to the binding poten-
tial minimum, see Fig. 6 (a). The finite coupling between
both potentials induces a gap at the crossing point ener-
getically similar to the vibrational energy in the binding
potential. Here, the Born-Oppenheimer approximation
breaks down and motional states hosted by both cross-
ing potentials are mixed. While previous spectra of the
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same 1u binding potential showed that the vibrational
motion follows the gap mostly diabatically, a broadening
of the second vibrational level close to the gap indicates
that the effect cannot be fully neglected, see Fig. 3 (a) in
Ref. [27].

Second, the electronic structure of the binding po-
tential is not constant over the length scale of the vi-
brational mode Φv(R), resulting in a Rabi coupling
ΩC(R) = α(R)Ωge that depends on the interatomic dis-
tance R. As a consequence, the laser can mix the vi-
brational eigenmodes of the binding potential into new
motional modes at shifted energies. The coupling coef-
ficient α(R) can be calculated using the R-dependent
expansion coefficients cij(R) of the electronic macrodi-

mer state |Ψ (2)
el ⟩ =

∑
ij cij(R)|rirj⟩ into non-interacting

Rydberg pair states |rirj⟩, see Fig. 6 (b).

B. Experimental details

All experiments started with 87Rb atoms in the elec-
tronic hyperfine ground state |g⟩ = |F = 2,mF = −2⟩,
arranged in a two-dimensional optical square lattice with
lattice constant alat = 532 nm at initial filling of 90(5)%
and prepared in the motional ground state of the on-site
traps using the Mott insulating phase. The propagation
direction of the σ+-polarized Rydberg excitation laser at
an ultraviolet (UV) wavelength λ = 298 nm was parallel
to the chosen bias field |B| = 0.5G.

1. Excitation scheme

In our excitation scheme, the probe field at a laser fre-
quency νP was provided by the red sideband of a phase-
modulated UV laser. It had a small detuning δp/2π =
νP−νeg from the UV transition |g⟩ → |e⟩ = |36P1/2,mJ =
+1/2⟩ at a transition frequency νeg . The large modula-
tion frequency was chosen to be close to the interaction
shift U = 735.2MHz of the 1u binding potential from the
energy of the non-interacting state |ee⟩ [27]. The carrier
field had a large detuning∆ge

C /2π = νC−νeg ≈ U from the
|g⟩ → |e⟩ transition. Furthermore, the carrier frequency
νC ≈ νP +735MHz was close to the transition frequency
νΨv
ge = νeg + U from singly Rydberg-excited states into
the doubly-excited macrodimer state |ge⟩, |eg⟩ → |Ψv⟩.
The remaining detuning ∆C/2π = νC − νΨv

ge as well as
δp were tunable by the frequency of the carrier and the
sideband [27]. The blue sideband did not contribute to
the experiments.

2. Details on the macrodimer state

The calculated bond length Rv = 712(5) nm ≈
√
2alat

was close to the lattice diagonal distance and macrodi-
mers could be excited at distances R0 = (−1, 1) alat as

well as R⊥ = (−1,−1) alat. The excited 1u macrodimers
had a total angular momentum projection M = ±1 of
both atoms along the interatomic axis. For orientations
R⊥, macrodimer excitation rates for M = ±1 were fi-
nite but strongly supressed and therefore neglected [27].
Along the diagonal direction R0 ∥ B, dipole selection
rules only allow for the excitation of the macrodimer
state with projection M = +1. For this orientation,
we calculate the carrier Rabi frequency of the electronic
coupling as ΩC = αΩge, with α ≈ 1.04 accounting for
the electronic structure of the macrodimer state and Ωge

the experimentally calibrated single-atom Rabi frequency
between |g⟩ and |e⟩ [27]. The probe Rabi coupling Ωp

coupling |g⟩ and |e⟩ was smaller than ΩC (Ωp ≤ 1/10ΩC

for the observed spectra and the correlations observed in
Fig. 3 and Ωp ≤ 1/3ΩC for all other correlation meas-
urements).

3. Energy scales and dissipation

Here, we discuss the energy scales and dissipation
mechanisms present in our system. The dominant energy
scales were ΩC and the kinetic energy of the lowest vibra-
tional macrodimer mode Ekin/h = 850 kHz, which is one
quarter of the vibrational frequency ωv/2π = 3.8MHz
in the binding potential. Atom pairs released from the
lowest vibrational mode into free space move with a high
relative velocity δv ≈

√
hωv/m = 125 nm/µs along their

relative coordinate R, with h the Planck constant and
m the mass of 87Rb. At the chosen lattice depth of
1000Er along all three directions, the on-site oscillation
frequency ωlat/2π = 128 kHz, was significantly smaller
than ωv. Here, Er = h2/(8ma2lat) is the recoil energy
of the optical lattice [40]. The initial ground state rel-
ative wave function Φg(R) is about eight times broader
than the mode Φv(R). Because macrodimer excitation
only compresses the relative coordinates and keeps other
coordinates unaffected, we neglected motion perpendicu-
lar to the direction of macrodimer excitation and treated
the system as one dimensional, as presented in in the
main text. Furthermore, we neglected the center of mass
coordinate.
In our system, Rydberg states |e⟩ experienced a repuls-

ive lattice potential whose magnitude is similar to the
attractive potential experienced by ground state atoms
|g⟩. Because the motional states coupled from the mac-
rodimer states have kinetic energies larger than the on-
site trapping frequency, we treated the atom pairs |ge⟩
and |eg⟩ as free particles and neglected the lattice poten-
tial. This is supported by our observations where the
macrodimeron resonance positions presented in Fig. 2
were independent of the lattice depth. The two macrodi-
meron resonances only got more pronounced at deeper
lattices. This was due to the larger motional state over-
laps between Φg(R) and Φv(R) and lower correlated back-
ground losses [32].
The theoretical macrodimer decay rate is γ ≈
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Figure 7. Further microscopic studies. (a) In Fig. 4 in the main text, macrodimers were excited in a resonant two-photon
transition using a strong coupling field and a weak tunable field, realized by modulating sidebands on the coupling laser. (b)
This scheme has also been used in our previous publication where macrodimer blockade has been observed, see Fig. [12] in

Ref. [15]. Surprisingly, the same dataset also showed correlated four-atom loss. Evaluating G(2)(δR) and G
(3)
R0

(δR) in this
dataset shows the four-atom loss signal also in the three-atom loss correlations for δR = (2,−2)alat and δR = (−3, 3)alat. (c)
For a magnetic field B and a linear light polarization ε pointing out of the atomic plane, macrodimers can be excited along
both lattice diagonal directions, as observed in the two-atom loss correlation signals G(2)(R0) and G(2)(R⊥), again using the

phase-modulated laser. Furthermore, G
(3)
R0

(−R0) and G
(3)
R⊥

(−R⊥) showed the three-atom loss signal along both directions. (d)

The macrodimers studied here can also be excited using only a single strong laser field at a detuning ∆C/2π = −367.6MHz
from the singly-excited states. After a pulse time 70µs, we again observed correlated two-atom and three-atom losses. This
excludes Rydberg antiblockade as an alternative mechanism behind the observed three-atom loss. The measurement operated
in an intermediate regime between Fig. 4 (a) and Fig. 4 (b), where dissipation is expected to be non-negligible but macrodimer
hopping was strong enough to observe three-atom loss.

1/20µs [27, 41], half of the decayed macrodimers are
expected to end up in interacting Rydberg pair states
|nS n′P ⟩ or |nDn′P ⟩ due to black-body transitions.
From the correlations observed after the short pulse time
t1 = 500 ns ≪ 1/γ in Fig. 4 (a) and also the time-
dependent study in Fig. 8, we infer that macrodimer de-
cay does not contribute to the three-atom loss mechan-
ism.

4. Correlation functions

Here, we define the correlation functions used to obtain
the microscopic signatures shown in the main text and
the supplementary material. The two-atom loss correla-
tions between empty sites at distance δR are evaluated
via

G(2)(δR) =
(
⟨ĥR′+δRĥR′⟩ − ⟨ĥR′+δR⟩⟨ĥR′⟩

)
R′

(12)

=

(〈(
ĥR′+δR − ⟨ĥR′+δR⟩

)(
ĥR′ − ⟨ĥR′⟩

)〉)
R′

.

Here, ( . )R′ denotes averaging over all sites R′ in the
lattice and ⟨ . ⟩ averaging over experimental realizations.

The projector ĥR′ evaluates to 1 (0) for an empty (occu-
pied) site at position R′.

The connected three-atom loss correlations are defined

as

G
(3)
R0

(δR) =

(〈(
ĥR′ − ⟨ĥR′⟩

)
(13)

(
ĥR′+R0

− ⟨ĥR′+R0
⟩
)(

ĥR′+δR − ⟨ĥR′+δR⟩
)〉)

R′

,

with conventions being identical as in Eq. 12. By sub-
tracting the average loss signals at the different sites, only
genuine three-atom loss leads to a signal. Correlations
between three lattice positions depend on two relative
distances. Here, we fix one distance to R0 = (−1, 1)alat
(as indicated by the subindex) and only vary the second

distance δR. Plotting G
(3)
R0

(δR) contains the relevant

correlation signalG
(3)
R0

(−R0) andG
(3)
R0

(2R0) where we ex-
pect to observe the macrotrimeron signal and also shows
its significance relative to the background at other dis-
tances. Distances where δR is zero or identical to R0

were excluded from the plots.

C. Further microscopic studies

Here, we add additional correlation measurements to
support our interpretation of the laser-induced macrodi-
mer exchange. Experimental details such as the detun-
ings ∆C and δp, and the relevant Rabi frequencies of
all measurements are shown in table I. We also provide
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the estimated ratio P2,3 of two-atom and three-atom
losses. The ratio was extracted from numerically gener-
ated samples, where two-atom and three-atom loss rates
were selected such that the simulated images reproduced
the observed correlation strengths.

1. Four-atom correlations

In addition to the previously discussed three-atom

loss G
(3)
R0

(δR) at distances δR = (1,−1)alat and δR =
(−2, 2)alat, some of the presented datasets also showed
a signal at larger distances δR = (2,−2)alat and δR =
(−3, 3)alat. In our interpretation, this signal originates
from a macrodimer delocalized over four sites due to the
strong macrodimer hopping. Because of the small over-
lap with the four-atom lattice ground state, which is even
smaller than the overlap between the three-atom ground
state and the macrotrimeron, the signal is small, but can
still be observed. The signal was particularly promin-
ent in a statistically highly significant dataset which also
showed macrodimer blockade, with experimental condi-
tions very similar to Fig. 4 (a), see Fig. 7 (b) [15].

2. Orientation dependence

We also excluded the laser propagation direction kL

to contribute to the process. We therefore rotated the
magnetic field and the UV polarization out of the atomic
plane such that macrodimers were excited along both
lattice diagonal directions R0 = (−1, 1) alat and R⊥ =
(−1,−1) alat, see Fig. 7 (c). After an illumination time
t3 = 4µs on two-photon resonance, we observed similar
two-atom and three-atom loss correlations along the di-
agonal direction parallel and orthogonal to kL. Here,

in addition to the three-atom loss correlations G
(3)
R0

(δR)
defined in Eq. 13, we evaluated three-atom loss correla-

tions G
(3)
R⊥

(δR), which quantify the loss of a third atom
conditioned on an atom pair lost at a distance R⊥.

3. Detuning dependence

Next, we switched the sideband modulation off and ex-
cited macrodimers using a single strong two-photon res-
onant light field [14, 27], probing the regime of large de-
tunings ∆C/2π ≈ U/2 between the macrodimer and the
singly-excited states, see Fig. 7 (d). We again observed
significant three-atom loss. This excludes Rydberg anti-
blockade, where the presence of a macrodimer facilitates
secondary Rydberg excitations of nearby atoms due to
the contributing interaction shifts [32, 33], because anti-
blockade sensitively depends on the laser frequency which
is far-detuned from the previous configuration using the
near-resonant sideband: At different laser frequencies,
antiblockade is expected to occur at different distances
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Figure 8. Dynamics after a macrodimer seed pulse.
(a) Signal after the t1 = 500 ns UV pulse, also shown in
Fig. 4 (a). (b) Switching the modulated sideband off but
keeping the strong and off-resonant carrier field on for addi-
tional tC = 2µs, with the overall UV power reduced to half of
its initial value, we observed no further increase of the signals

G(2)(R0) and G
(3)
R0

(−R0). Furthermore, we observed an in-
creased background in atom pair-loss correlations at other dis-
tances from excitations facilitated by the seeded Rydberg ex-
citations. (c) The background became even more pronounced
when keeping the UV laser at full power for tC = 1.5 µs. These
observations are inconsistent with alternative interpretations
of the three-atom correlation signal which rely on Rydberg
decay, where keeping the carrier field on after the pulse time
t1 is expected to increase the three-atom loss signal.

and/or orientations. However, it does not exclude our
light-induced hopping process, which now has a reduced
coupling rate but is still two-photon resonant. For most
of the measurements for small ∆C and ΩC/2π ≳ 1MHz,
the coupling between macrodimers was dominant. For an
intermediate-state detuning ∆C/2π = −367.6MHz and
ΩC/2π = 2.9(3)MHz, two-photon macrodimer hopping

rate can be approximated via Ω
(2)
h =

Ω2
C

2∆C
f̃ ≈ 2π×4 kHz,

with f̃ ≈ 0.35 the estimated motional state overlap. The
observed correlation signal (see table I) is plausible ac-
counting for the fact that excited macrodimers have only
a fnitite lifetime and are furthermore expected to loose
the spatial overlap with the lattice after several micro-
seconds because they are released from the optical trap.

4. Time-dependent correlation signal

Finally, we studied the dynamics of the signal after a
macrodimer seed. After the t1 = 500 ns pulse (see also
Fig. 4 (a)), we switched the sideband and therefore mac-
rodimer excitation from the ground state off but kept
the carrier field on and studied the further dynamics of
the correlation signal, see Fig. 8. We did not observe a
further increase of the three-atom loss correlations. This
is consistent with our expectation since the time asso-
ciated with the macrodimer hopping is larger than the
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Dataset t (µs) ΩC/2π (MHz) ∆C/2π (MHz) δp/2π (MHz) ρf G(2)(R0) G
(3)
R0

(−R0) P2,3 Images

Fig. 3 (c) 50 5.7(2) -2.6 -2.6 78% 2.40(5)× 10−2 4.8(3)× 10−3 3:1 927
Fig. 4 (a)&8 (a) 0.5 7.8(3) -5 5 75% 2.29(3)× 10−2 2.1(3)× 10−3 5:1 1358

Fig. 4 (b) 500 low -3.6 3.6 82% 2.32(3)× 10−2 −1.1(2)× 10−3 large 3435
Fig. 7 (b) 2 2.6(3) -3.6 3.6 86% 1.65(1)× 10−2 0.97(6)× 10−3 10:1 21095
Fig. 7 (c) 4 1.7(5) -3.6 3.6 80% 1.55(2)× 10−2 0.67(10)× 10−3 15:1 9433
Fig. 7 (d) 70 2.9(3) -367 367 84% 2.70(3)× 10−2 1.4(2)× 10−3 10:1 4022
Fig. 8 (b) 0.5; 2 7.8(3); 6.2(2) -5 5 69% 2.39(4)× 10−2 1.5(2)× 10−3 7:1 1335
Fig. 8 (c) 0.5; 1.5 7.8(3); 8.8(3) -5 5 67% 2.50(4)× 10−2 1.5(2)× 10−3 7:1 1415

Table I. Further experimental details. Illumination times t, Rabi frequency ΩC, detunings ∆C and δp, final densities ρf after

the UV pulse, correlations G(2)(R0) and G
(3)
R0

(−R0), the estimated ratio P2,3 between two-atom and three-atom events in order
to get similar correlation signals when sampling from numerically generated images, and the number of experimental shots. The

negative G
(3)
R0

(−R0) signal for low ΩC can be understood from pair losses alone and was also found in our simulated images:
Atoms at a distance R0 from a previously excited macrodimer have one less neighbor to form another subsequent macrodimer
excitation, leading to a negative correlation signal. For the dataset presented in Fig. 7 (c) where macrodimers were excited along

two directions, the correlation strengths perpendicular toR0 wereG
(2)(R⊥) = 1.30(2)×10−2 andG

(3)
R⊥

(−R⊥) = 0.75(10)×10−3.
Correlations were analyzed in a region-of-interest of 11× 11 or 15× 15 lattice sites in the center of the lattice. Statistical errors
on the correlation signals were calculated using a bootstrap algorithm (delete-1 jackknife).

time of the seed pulse t1, suggesting excitations which
have a large overlap with macrodimerons and macrotri-
merons as stable eigenstates of the coupled light-matter
Hamiltonian, instead of isolated macrodimers which then
undergo hopping dynamics. Furthermore, the observa-
tions are inconsistent with alternative mechanisms based
on Rydberg decay where an increase of the correlation
signals would be expected.

In the same datasets, we also observed a slight decrease
of the overall density and an increase of the two-atom loss
correlation background between nearby sites (not only at
distance R0). In our interpretation, the background cor-
relations originated from secondary Rydberg excitations
created by our ∆ge

C /2π ≈ 730MHz detuned carrier field
and were facilitated by the macrodimer seed pulse [32].
Without the initial seed pulse, no dynamics was observed
on this short timescale.

D. Further spectroscopic studies

Here, we present three additional atom loss spectra
showing the presence of macrodimerons.

First, we tried to spectroscopically resolve the small
difference expected from the calculated two-atom spectra
and the three-atom spectra, see Fig. 2 (c) and Fig. 3 (b)
in the main text. We therefore initialized an atomic ar-
rangement where every third lattice row was unoccupied
and compare the spectrum with the one observed in the
unity-filled lattice. For the density-modulated arrange-
ment where macrodimer exchange cannot occur and mac-
rotrimeron contributions are absent, all physics should
be captured by the two-atom Fano model introduced in
Eq. 1. We again measured atom loss for varying mod-
ulation frequencies while keeping the carrier frequency
constant. To avoid systematic shifts from drifting exper-
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Figure 9. Dependence on the atom arrangement. We
compared the spectrum for ΩC/2π = 6.2MHz in Fig. 2 (a)
measured in an unity-filled atomic Mott insulator with the
signal obtained from an arrangement where every third lat-
tice row was unoccupied and three-atom contributions were
absent (as shown in the exemplary images of the prepared
atom configurations). Again, the sideband frequency was var-
ied while the carrier field was kept unchanged (see left insets).
The uncertainy of the fitted resonance position (insets) was
similar as the observed shift between both configurations. All
error bars on data points represent one s.e.m., errors on the
resonance position represent estimated fit errors.

imental conditions, the images of both initial arrange-
ments were taken alternately. Because the observed shift
for the resonance at δp < 0 between both configura-
tions is as large as the uncertainty of the fit, we can-
not claim to resolve the macrotrimeron spectroscopically.
We found that the two resonances shifted by the strong
coupling field are more pronounced in the Mott insulating
state. We attribute this to the ratio between the available
macrodimers and singly-excited Rydberg atoms, which is
twice as large in the Mott insulating state.

Second, we performed a reference spectroscopy start-
ing from the Mott insulator where we keep the modu-
lation frequency at the interaction shift U and vary the
overall laser frequency instead, see Fig. 10. Here, if the
probe field is on resonance with the |g⟩ → |e⟩ transition
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Figure 10. Spectroscopy for fixed sideband frequency.
(a) In contrast to Fig. 2 (a) where only the sideband fre-
quency was varied, the sideband frequency was set equal
to the interaction shift U and the overall laser frequency
was varied (as indicated in the inset). In this configuration
where both detunings δp = ∆C are equal, all resonances are
slightly closer. The spectra were recorded at coupling rates
ΩC/2π = [2.5, 4.3, 5.1, 5.8] MHz. The correlations shown in
Fig. 3 (c) were measured at the left peak for ΩC = 5.8MHz
with δp/2π = −2.6MHz. (b) As one can see from the fit
(orange dashed line), the splitting again depends linearly on
ΩC. For this dataset, the theoretical prediction (solid blue
line) agrees well with the observations. Error bars on data
points represent one s.e.m.

transition where δp = 0, also the carrier field is reson-
ant with the |ge⟩, |eg⟩ → |Ψv⟩ transition where ∆C = 0.
Now, varying the overall laser frequency during the spec-
troscopy tunes both detunings δp = ∆C equally. The
spectra look qualitatively similar as in Fig. 2 (a). The
only difference is that the resonances appear at slightly
lower detunings |δp|.

The discussion in the main text neglected contribu-
tions of higher vibrational macrodimer modes. In a last
measurement, we performed spectroscopy over a wider
frequency range where also higher modes became reson-
ant with the laser light, see Fig. 11 (a). As in the pre-
vious paragraph and Fig. 10, the overall laser frequency

was varied. Due to the spatial overlap with the lattice
ground state, the lowest vibrational mode still contrib-
utes the most. In the corresponding calculations shown
in Fig. 11 (b), different vibrational states remain un-
coupled and hybridize individually into macrodimerons
because of their orthogonality. Accounting also for the
R−dependency of the optical coupling discussed in Fig. 6
in principle modifies the vibrational modes in the bind-
ing potential and enables coupling between different vi-
brational states.
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Figure 11. Spectra including higher vibrational
modes. (a) Additional spectra for Rabi couplings ΩC/2π =
4.1(2)MHz (left) and ΩC/2π = 5.7(2)MHz (right) including
a wider detuning range. As in Fig. 10, the overall UV laser
frequency was varied and the phase modulation frequency re-
mained fixed and equal to the interaction shift U (see inset).
The solid (dashed) gray lines indicates the theoretical posi-
tion of the even (odd) vibrational macrodimer levels in the
absence of light shifts. All error bars on data points repres-
ent one s.e.m. (b) The corresponding calculated two-atom
spectra obtained when including the six lowest vibrational
states. The Rabi frequencies were identical as in the pictures
above. While macrodimerons corresponding to the lowest vi-
brational mode are still dominating the spectrum, also signals
of higher modes appear. Their contribution explains the ob-
served broadening of the central line at δp ≈ 0 towards negat-
ive detunings, see also Fig. 5 as well as Fig. 2 (a) in the main
text and Fig. 10 (a).
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