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The relation between d-wave superconductivity and stripes is fundamental to the understanding
of ordered phases in cuprates [1–6]. While experimentally both phases are found in close proximity,
numerical studies on the related Fermi-Hubbard model have long been investigating whether stripes
precede, compete or coexist with superconductivity [7–9]. Such stripes are characterised by inter-
leaved charge and spin density wave ordering where fluctuating lines of dopants separate domains
of opposite antiferromagnetic order [10–12]. Here we show first signatures of stripes in a cold-atom
Fermi-Hubbard quantum simulator. By engineering a mixed-dimensional system, we increase their
typical energy scales to the spin exchange energy, enabling us to access the interesting crossover
temperature regime where stripes begin to form [13]. We observe extended, attractive correlations
between hole dopants and find an increased probability to form larger structures akin to stripes.
In the spin sector, we study correlation functions up to third order and find results consistent with
stripe formation. These higher-order correlation measurements pave the way towards an improved
microscopic understanding of the emergent properties of stripes and their relation to other compet-
ing phases. More generally, our approach has direct relevance for newly discovered high-temperature
superconducting materials in which mixed dimensions play an essential role [14–17].

I. INTRODUCTION

Low-temperature phases in cuprate materials have
been under intense scrutiny from both experimental and
theoretical investigations for over forty years while still
eluding full understanding [4–6]. The repulsive, two-
dimensional (2d), spin-1/2 Fermi-Hubbard model and its
natural extensions are widely assumed to provide min-
imal models to explain the origin of high-temperature
superconductivity in materials with insulating behaviour
in their undoped state. Meanwhile, many experimen-
tal studies in solids [1–3, 18, 19] as well as theoretical
work [9–12, 20–24] found stripe phases featuring charge
density waves in combination with incommensurate an-
tiferromagnetic (AFM) order in the doped cuprates and
Fermi-Hubbard model, competing with superconductiv-
ity [9]. At elevated temperatures, these ordered phases
give way to an even less understood normal phase, which
has been argued to feature non-Fermi liquid properties
with deconfined spin- or charge excitations [25, 26].

Ultracold atoms in optical lattices provide natural im-
plementations of the Fermi-Hubbard model with a high
degree of control over system parameters [27]. While
solid-state experiments mostly focus on spectroscopic
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and dynamical response measurements, quantum simu-
lation, especially with single-site resolution, opened up
access to new sets of microscopic observables and cor-
relation functions [28–31]. Previous studies found AFM
correlations [32–37], investigated the effect of doping on
the spin order [38–44] and observed pairing of dopants in
tailored ladder systems [45].

Here, we present the first observation of hole attrac-
tion beyond nearest-neighbouring sites and signatures of
stripes in a repulsive, 2d Hubbard system with mixed-
dimensional coupling using charge and spin correlators.
We report on collective behaviour of multiple dopants di-
rectly from real-space snapshots using higher-order cor-
relation functions.

II. EXPERIMENTAL IMPLEMENTATION

The isotropic Fermi-Hubbard model is governed by
the competition between the kinetic energy of dopants
favouring delocalisation and the magnetic energy of the
AFM spin order which is disrupted by dopant motion.
Consequently, the energy scale at which stripe order is
expected to occur is only a few percent of the tunnelling
energy [24], placing it out of reach for state-of-the-art
cold-atom quantum simulators. In particular, for tem-
peratures around the superexchange energy, the effec-
tive repulsion due to the fermionic nature of the holes
(Pauli blocking) disfavours tightly-bound hole pairs and
extended structures like stripes while favouring the for-
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FIG. 1. Mixed-dimensional Fermi-Hubbard systems. a, Illustration of the isotropic 2d Fermi-Hubbard model. Holes
delocalise within small regions and disturb their respective spin background, forming magnetic polarons. The overall hole
density is uniform and holes repel each other due to their fermionic statistics at experimentally accessible temperatures of
kBT ≈ J . There are no domain walls in the spin order. b, By raising the potential on every other lattice site along y by ∆, we
suppress tunnelling along this direction, thus removing the Pauli repulsion between holes, while preserving the superexchange
coupling Jy. The holes form collective structures, which also result in a domain wall in the AFM correlations of the system,
indicated by the AFM parity change across the stripe. c, A single raw experimental shot of spin-up (red), spin-down (blue)
atoms and doubly occupied sites (purple) as well as its reconstructed spin and charge distribution with the main system being
inside the black circle, surrounded by a low density reservoir (see SI). The green box indicates a stripe-like structure.

mation of magnetic polarons (see Fig. 1a) [38].

We tilt the balance in favour of collective charge and
spin ordering by restricting the hole motion to one di-
mension (1d), thus reducing the kinetic energy while
keeping spin couplings two-dimensional. This leads to
an increase in the characteristic energy scales of collec-
tive effects to experimentally accessible regimes as kinetic
and magnetic terms in the Hamiltonian are less frus-
trated [13, 45, 46]. In this mixed-dimensional (mixD)
setting, we thereby bias hole attraction and stripe for-
mation along the direction perpendicular to the hole mo-
tion. Thus we favour fully filled stripes while retaining
the key concepts of charge and spin density wave order-
ing associated with the stripe phase (see Fig. 1b) [23, 24].
Here we engineer a mixD setting by applying a poten-
tial offset to every other chain within the lattice. For
sufficiently large offsets, this removes nearest-neighbour
hopping along the perpendicular direction while slightly
increasing spin couplings [47, 48].

In the experiment, we realise the spin-1/2 Fermi-
Hubbard model by using 6Li atoms in an optical super-
lattice with a homogeneous, circular system of ∼ 110
sites surrounded by a low-density reservoir (see Fig. 1c).
In the limit of strong on-site interactions U , the essential
physics of the system can be captured by the t−J Hamil-
tonian using projections P onto singly occupied sites,

Ĥt−J =
∑
⟨i,j⟩,σ

P̂
(
−tijĉ†i,σ ĉj,σ + h.c.

)
P̂+

+
∑
⟨i,j⟩,σ

Jij

(
Ŝi · Ŝj −

n̂in̂j
4

)
, (1)

with tunnel couplings tij ∈ {tx, ty}, spin exchange cou-
plings Jij ∈ {Jx, Jy}, spin-up/down fermionic creation

(annihilation) operators on site i, ĉ†i,↑/↓ (ĉi,↑/↓), and on-

site spin (density) operators Ŝi (n̂i). This model suffers
from the Fermion sign problem, making it numerically

challenging to tackle even in the mixD regime [49].

Here we work at U/tx = 27(2), Jy/tx = 0.6(2) and
a filling of n ≈ 0.7 − 0.9 (hole doping δ = 1 − n)
with a temperature of kBT/tx = 0.3(1) (see SI). We
make use of an optical superlattice along y to control-
lably detune neighbouring sites by ∆ = 0.65(5)U ≫
tx, t

2d
y , thus effectively disabling nearest-neighbour tun-

nelling along y (ty ≈ 0), and leading to a spin coupling

Jy = 2(t2dy )2
(

1
U−∆ + 1

U+∆

)
, where t2dy is the tunnel cou-

pling in the 2d system without potential offsets. Due
to the staggered superlattice potential, there is also a
second-order next-nearest-neighbour hopping term along
y, which reintroduces a weak Pauli repulsion at distance
dy = 2. This term, however, is smaller than Jy, such that
it is still expected to be favourable for stripes to form (see
SI for more details on preparation and subdominant cou-
plings).

III. HOLE-HOLE CORRELATIONS

In order to reveal the charge order within the system,
we evaluate the connected, normalised two-point hole-
hole correlator

g
(2)
hh (d)− 1 =

1

Nd

∑
i

(
⟨n̂hi n̂hi+d⟩
⟨n̂hi ⟩⟨n̂hi+d⟩

− 1− oδ

)
, (2)

with hole density operator n̂hi at position i , and nor-
malisation Nd. Due to the finite size and particle num-
ber fluctuations in our system, there is a global, doping-
dependent offset oδ ≈ −0.03 on this correlator that we
subtract (see SI). A positive (negative) value of this cor-
relator indicates attraction (repulsion) between holes at
distance d.

We consider hole correlations in a mixD system with
a doping of δ = 0.18 in Fig. 2a,b. We observe a posi-
tive nearest-neighbour correlation along y, while along
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FIG. 2. Hole correlations beyond nearest neighbours.
a, Hole-hole correlations in a mixD system revealing bunching
(attraction) along y at distances dy ≥ 1 and antibunching
(repulsion) along x with δ = 0.18. The symmetrisation is
indicated by the dashed lines. A cut along y (x) is shown
in dark (light) green for mixD systems in b, with the outset
showing the equivalent data for standard 2d systems. The

dependency of the mixD correlator g
(2)
hh at distance d = (0, 1),

(1, 1), (0, 2), (0, 3) on doping is plotted in c in red, purple,
blue, grey with a doping binning of ±0.009. In a doping region
around 0.2, the correlators for distances dy > 1 are positive,
indicating longer range charge correlations. Error bars are
estimated using bootstrapping. In d we show results for the
renormalised correlator (see SI) from DMRG calculations for
a system size of Lx × Ly = 8 × 3 as a function of doping for
kBT/tx = 0.41

x we find antibunching caused by the Pauli repulsion
of the holes (see Fig. 2a). Furthermore, at larger dis-
tances dy > 1 there are positive correlations, which in-
dicates that, instead of merely forming isolated, nearest-
neighbour hole pairs, there is a finite probability that
vertically aligned hole structures are extended through
the system. Additionally, there are significant correla-
tions along the diagonals at d = (1, 1), which we inter-
pret as signs of charge fluctuations along x due to the
finite coupling tx. The correlations at dy = 2 are slightly
suppressed which we attribute to next-nearest-neighbour
hopping (see SI). Finally, the positive signal at dx = ±5
may be related to the presence of a second, vertically
aligned charge structure in the system reminiscent of a
charge density wave.

By considering 1d cuts along y and x (Fig. 2b) we
corroborate the bunching (antibunching) along y (x)
through the system in the mixD setting. For the stan-
dard 2d system (∆ = 0, Fig. 2b inset), in contrast, there
is antibunching along both directions. The anticorrela-
tions along x are enhanced by removing ty due to the
absent competition between anticorrelations along x and
y.

In order to identify whether an ideal doping level for

the emergence of stripes exists in our mixD system, we

bin our data by doping and calculate g
(2)
hh per bin (see

Fig. 2c). Both the nearest-neighbour and diagonal corre-
lations decrease with doping, indicative of the decrease
in pairing probability with doping and compatible with
a reduction of the spin correlations responsible for the
binding. For d = (0, 2), (0, 3) there is a non-trivial de-
pendence on doping with positive correlator values start-
ing at δ = 0.17. This is indicative of a possible transi-
tion from the formation of individual pairs to extended
stripes [22–24].

We compare the correlations along y to DMRG calcula-
tions of Eq. (1) on 8×3 sites, Jy/tx = 0.5, kBT/tx = 0.41
as a function of doping in Fig. 2d (see also SI for normal-
isation). While qualitatively the result is comparable to
the experimental data, quantitative differences are ex-
pected due to the strong finite size limitations in the
DMRG along y. Further differences could arise due to
the presence of the aforementioned second-order hopping
process which introduces additional repulsion between
holes as well as the statistical distribution of holes be-
tween different chains in the experiment while calcula-
tions feature balanced hole numbers.

IV. STRUCTURES BEYOND HOLE PAIRING

The connected two-point correlator g
(2)
hh only provides

limited insights into the physics of extended charge struc-
tures and how they interact with each other. We extend
the analysis by considering the two-point pair-hole and
pair-pair correlators

g
(2)
ph (d)− 1 =

1

Nd

∑
i

(
⟨n̂pi n̂hi+d⟩
⟨n̂pi ⟩⟨n̂hi+d⟩

− 1

)
,

g(2)pp (d)− 1 =
1

Nd

∑
i

( ⟨n̂pi n̂
p
i+d⟩

⟨n̂pi ⟩⟨n̂
p
i+d⟩

− 1

)
,

(3)

where we define the pair operator n̂pi = n̂h(ix,iy)n̂
h
(ix,iy+1).

These correlators, as illustrated in Fig. 3a, assume the
existence of nearest-neighbour pairs along y (established

using g
(2)
hh ) and consider the attraction or repulsion of

these pairs to other dopants or pairs. They may be seen
as fully connected and normalised two-point correlators
of pairs or ‘partially connected’ three/four-point hole cor-
relators. Note that for simplicity we neglect diagonal
pairs (i.e. n̂h(ix,iy)n̂

h
(ix±1,iy+1)), associated with fluctua-

tions along x, and may thus underestimate the amount
of order within the system.

We present the pair-hole and pair-pair correlations for
the mixD system as a function of distance along x and
y in Fig. 3b and c. For improved statistics, we include
in our analysis all hole doping levels (see SI) for which
the offset oδ of Eq. (2) becomes negligible. In both cases,
we observe positive correlations along y which extend
throughout the system, indicating that individual pairs
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FIG. 3. Multi-point correlators. a, Illustration of pair-
hole, pair-pair and hole-hole-hole correlator, where a pair is
defined as a nearest-neighbour pair of holes along y. b (c),
Symmetrised correlation map of the pair-hole (pair-pair) cor-
relator. We find an attraction of the pairs along y which
points towards the formation of larger-scale structures. Above
the map, the average over dy hints at the existence of another
charge structure at dx = 4. In the symmetrised, connected
three-point hole-hole-hole correlator with dh = (0, 1) we ob-
serve a positive signal at nearest neighbours along y in d
which indicates the existence of longer charge structures be-
yond pairs of two holes (see SI for statistical significance).
The data is evaluated over the hole doping distribution as
given in the SI.

are not repelled from other holes or each other but in-
stead align along y and tend to form stripe-like struc-
tures. Meanwhile, there is a strong anticorrelation along
x for |dy| ≤ 1, which we attribute to the antibunching of
individual holes in the same chain. We also compute the
average of the correlators over dy (top of Fig. 3b, c). This
reveals a slightly positive signal at a distance of dx = 4
which, similar to Fig. 2, may be related to the onset of a
charge density wave.

For further insights into the binding of larger struc-
tures, we consider the fully connected three-point hole-
hole-hole correlator

Cc
hhh(d

h,d) =
1

Ndh,d

∑
i

j=i+dh/2+d

(
⟨n̂hi n̂hi+dh n̂

h
j ⟩ − Cdisc

⟨n̂hi ⟩⟨n̂hi+dh⟩⟨n̂hj ⟩

)
(4)

where Cdisc removes all lower-order disconnected parts
of the correlator (see SI). We show the correlator for

dh = (0, 1) in Fig. 3d and find a positive signal at
the closest distance along y while all other distances
are negative (along x) or vanish within the error bars
(see SI). This signal directly points to extended charge
structures being favoured in excess of just individual
hole pairs.
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FIG. 4. Stripe length histograms. a Normalised his-
togram of ‘stripes’ (as defined in the text) of at least length
ℓ in mixD (green) and 2d systems (brown) at a doping
of δ = 0.083 compared to a random distribution of holes
(grey line). We compare to a mean field theory (see SI) at
kBT/tx = 0.355 (light green line). The inset shows the dif-
ference δζ(ℓ) to the random distribution (see SI). The full
doping dependence of δζ(ℓ) is shown in b where the excess
occurrences tend towards longer lengths with doping.

In order to provide additional evidence for extended,
fluctuating charge structures, we make use of the full in-
formation in our snapshots and count ‘stripes’. To this
end, we define a fully filled ‘stripe’ as a connected line
of holes along y, where the pairwise distance along x
between holes in neighbouring chains is at most 1 (see
Fig. 4a inset). We designate the length ℓ of this struc-
ture by the number of chains involved. We then consider
the fraction ζ(ℓ) of experimental realisations containing
a ‘stripe’ of at least length ℓ. In Fig. 4a we compare
the mixD (green) case with the 2d system (brown) and
randomly distributed holes (grey line, see SI) at a dop-
ing of δ = 0.083 analysed on a subsystem of 9 × 9 sites.
For mixD we find an excess of events for large ℓ consis-
tent with the tendency to form long fluctuating struc-
tures while the results obtained for the standard 2d case
are consistent with randomly distributed holes. Full nu-
merical calculations are out of reach at our system size
and temperature range, but a mean-field model of stripes
shows quantitative agreement in the low doping regime
(see green lines in Fig. 4a and SI). We next analyse the
difference to the random distribution δζ(ℓ) as a function
of doping (Fig. 4b). For all doping levels and lengths, this
signal is positive in the mixD system, indicating the in-
clination of the system to form extended structures. The
excess probability at longer lengths grows with doping as
structures of increasing lengths form.

V. SPIN SECTOR

The AFM correlations in the system and their inter-
play with charge delocalisation is crucial for the forma-
tion of stripes and leads to characteristic signatures in the
spin sector [11]. Most prominently, one expects a change
in the parity of the AFM order in the presence of stripes,
manifesting as incommensurate magnetism of the system
and splitting of the peak at (π, π) in the spin structure
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FIG. 5. Spin sector analysis. a, Hole-spin-spin correlation
map. We show the bare correlator for diagonal and selected
next-nearest spin-bonds as a function of distance from the
hole. The strongest signal is found in the sign change of the
next-nearest neighbour bond across the hole along x pointing
towards a domain wall in the local AFM pattern. Along y,
the correlations keep their expected positive sign from the
AFM pattern. b, Similarly, by considering the string spin
correlator (dark green) and normal spin-spin correlator (light
green) at distance dx = 2 (see text), we observe a change in
sign consistent with the change in parity of the AFM pattern.
Shaded regions are theory results at kBT/tx = 0.3. Error bars
are estimated using bootstrapping and are smaller than the
marker size if not visible.

factor [5] (as also known in 1d systems [50]). While our
parameter regime is not favourable to investigate struc-
ture factors (see SI), our microscopic resolution in both
spin and charge sector allows us to evaluate real-space
observables inaccessible in solid-state experiments. Most
useful in this context are higher-order spin-charge corre-
lators such as the normalised, bare 3-point hole-spin-spin
correlator

Chss(d
s,dh) =

1

Nds,dh

∑
i

j=i+dh−ds/2

⟨n̂hi Ŝz
j Ŝ

z
j+ds⟩

⟨n̂hi ⟩σ(Ŝz
j )σ(Ŝ

z
j+ds)

, (5)

where ds is the spin bond vector, dh the distance of the
bond from the dopant and we normalise by hole density
⟨n̂h⟩ and the spin standard deviation σ(Ŝz).

Previous studies have shown that, in square lattice
2d Fermi-Hubbard systems, a single mobile dopant
will be surrounded by a dressing cloud of reduced spin
correlations forming a magnetic polaron [38–40]. In 1d
systems, incommensurate magnetism leads to a change
in the parity of the AFM pattern across impurities [51].
The same feature is predicted to prevail in stripe phases,
making this correlator suited to revealing this specific
feature in our data. We show the bare hole-spin-spin
correlator as defined in Eq. (5) for the mixD system in
Fig. 5a, where specific spin bonds are shown for varying
distances from a hole. We focus on the diagonal and
next-nearest neighbour correlators. The most prominent
feature is the strongly negative correlation across the
hole along x, which is consistent with a change in the
parity of the local AFM pattern across a hole. Similarly,
the diagonal bonds in the direct vicinity of the hole also
become negative. This is another indication of fluctua-
tions along x within charge structures. Meanwhile, the

ds = (0, 2) correlations along y are largely unaffected by
the presence of a hole and retain their positive sign. The
slightly negative (positive) ds = (2, 0) (ds = (1, 1))-bond
in the background further away from the dopant is due
to the overall doping level and vanishes in the connected
correlator (see SI).

Another way to elucidate the change in spin order
across dopants employs a spin-string correlator [51, 52].
This spin-spin correlator has additional sign changes for
every hole between two spins in the same chain and is
defined as

Cstr(d) =
1

Nd

∑
i

〈
Ŝz
i

(∏d−1
j=1 R̂i+j

)
Ŝz
i+d

〉
−
〈
Ŝz
i

〉〈
Ŝz
i+d

〉
σ(Ŝz

i )σ(Ŝ
z
i+d)

,

(6)

where R̂i = eiπn̂
h
i . Note that for R̂i = 1 the common

spin-spin correlator is recovered. For systems with spin-
charge separation, this correlator reveals a hidden spin
structure in doped AFM systems [51]. The changes in
the phase of the AFM pattern for stripe phases act in
a similar fashion and can be revealed by measuring this
string correlator along the direction perpendicular to the
stripes (i.e. along x). We show both correlators at dis-
tance d = 2 in Fig. 5b as a function of doping. We ob-
serve a change to a positive sign upon employing the
string correlator that only varies weakly with doping, in
agreement with theory predictions. These features can
be directly related to the characteristic spin domain par-
ity flips present in stripe phases. Note that we observe
these features even without long-range AFM correlations
- which are only expected at lower temperatures - be-
cause stripe-like structures already energetically favour
such a local spin arrangement.

VI. CONCLUSION

We have realised a mixed-dimensional Fermi-Hubbard
model using ultracold atoms and found signatures of hole
pairing and extended charge ordering in a temperature
regime with short-ranged spin correlations, where the col-
lective behaviour of charges remains poorly understood.
We detect effective hole attraction in density correlations
and present additional evidence for the onset of fluctuat-
ing stripes and their interplay with the magnetic back-
ground using real-space observables. In addition, the
spin environment around such stripe-like structures is in
qualitative agreement with the formation of an AFM do-
main wall across the dopants both in 3-point and string
correlators. We interpret these features as signatures
of stripe formation in a cold-atom Fermi-Hubbard sys-
tem. As lower temperatures become available in exper-
iments, the same analysis shown here could be carried
out, paving the way towards more detailed studies of
stripes, extracting their precise periodicity, fluctuations
and filling. Thanks to the favourable energy scales of
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the mixD setting, quantum simulations are now in a po-
sition to study collective phenomena and provide valu-
able comparisons to recent results in theoretical calcu-
lations [9, 53]. Via the mapping to attractive interac-
tions [54], new insights into the stripe phase also directly
relate to the exotic FFLO phase [55]. Direct extensions
to bilayer mixed-dimensional systems furthermore con-
nect our work to recently discovered high-Tc compounds,
where the mixed dimensionality seems essential for the
emergence of a superconducting phase at around 80K in
bilayer nickelates [14, 15, 17].
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SUPPLEMENTARY INFORMATION

A. Experimental sequence

We prepare a spin-balanced sample of ultracold 6Li
atoms in the two lowest hyperfine states |F = 1/2,mF =
±1/2⟩ in a single layer of an optical lattice following our
previous work [45, 56]. After magnetic evaporation, we
load from a crossed dipole trap into a box potential (sur-
rounded by a reservoir with ∼ h× 2 kHz higher chemical
potential) projected with a digital mirror device (DMD,
see Fig. S1a). From this, we load into optical lattices
along x and y with ax = 1.11 µm, ay = 1.14 µm. Their
depths in the following are given in units of their re-
spective lattice recoil ER = h2/(8Ma2) where M is the
atomic mass.

In order to prepare the mixed-dimensional system de-
scribed in the main text without introducing large den-
sity inhomogeneities, we cannot directly load into the
final lattice configuration but instead follow a proce-
dure similar to [45] (see Fig. S1). We first load into
decoupled 1d chains along x by exponentially ramping
to Vx = 3ER, Vy = 35ER and a scattering length of
1160 aB, corresponding to our final on-site interactions
of U = h × 4.4(1) kHz, within 200ms. At this point we
turn on a superlattice along y (aSLy = 2ay = 2.28 µm)

to a depth of V SL
y = 2ER within 1ms. By tuning the

relative phase between the lattice and the superlattice
to the fully staggered configuration, we ensure that the
spin couplings remain the same in even and odd bonds
along y. This staggering creates a potential offset of
∆ = 0.65(5)U between neighbouring sites to suppress
tunnelling along y. We then slowly restore coupling along
y by ramping the lattices in 56ms to their final depths
of Vx = 9ER, Vy = 7ER. We make sure to keep the
interactions constant during this second ramp by adjust-
ing the scattering length accordingly, leading to a final
scattering length of 1293 aB. For any 2d system com-
parison, we perform the same ramps without turning on
the y-superlattice. For more details on our superlattice
design see [57]. For detection we freeze out the system
by ramping to Vx/y = 43.5ER within 1.5ms and perform
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FIG. S1. Lattice potential and ramps. a Pattern applied
to the DMD for potential shaping. b, Lattice ramps to pre-
pare the mixD system. We first ramp in 200ms to decoupled
1d chains before ramping to the full mixD system.
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FIG. S2. Spin correlations as a function of doping.
Nearest neighbour spin correlations along x (a) and y (b) for
different doping levels. We compare the experimental data
(grey markers) to numerical data for Css(1, 0) for different
temperatures for simulations on Lx, Ly = 8, 3 and Jy/tx = 0.5
to get an estimate for our temperature.

spin-resolved single-site detection as described in [45].

The resulting system can be accurately described by
a Fermi-Hubbard-type model with parameters (t, U , ∆)
which can be mapped onto the t-J-model of Eq. (1). For
all settings we have tunnelling tx = h × 163(10)Hz, in-
teractions U = h × 4.4(1) kHz (thus U/tx = 27(2)) and
superexchange Jx = h× 24(4)Hz. For the 2d system we
have t2dy = h × 253(13)Hz, however for ∆ ̸= 0U the ef-
fective coupling ty is negligible. The superexchange cou-
pling Jy is nonzero in both cases with J2d

y = h×58(7)Hz
for the 2d system and Jy = h × 104(23)Hz for ∆ =
0.65(5)U . Due to the strongly anisotropic spin couplings
and large U/tx, the spin correlations are not sufficiently
long-ranged to expect any signal in the spin structure
factor.

We estimate the temperature of our system using the

spin correlations Css(d) = 1
Nd

∑
i
⟨Ŝz

i Ŝ
z
i+d⟩−⟨Ŝz

i ⟩⟨Ŝz
i+d⟩

σ(Ŝz
i )σ(Ŝ

z
i+d)

as

a function of doping and compare this to MPS calcu-
lations in Fig. S2. We fit the individual doping bins to
the numerical data and extract their respective temper-
ature. As the short y-direction may be subject to finite
size effects in the DMRG calculations, we determine in-
dividual temperatures along x and y. By extracting tem-
peratures per doping level, we estimate a temperature of
kBT/tx ≈ 0.3(1) and kBT/tx ≈ 0.4(1) from the correla-
tions along x and y respectively.

B. Offset phase calibration

In order to calibrate the detuning ∆, we first need to
precisely determine the relative phase between the lat-
tice and the superlattice. For this, we load a dilute cloud
into a system of decoupled double wells along y where
Vx = 40ER, Vy = 8ER and V SL

y = 21ER leading to
an intrawell coupling of ty(ϕ = 0) = h × 724(80)Hz.
We vary the phase between the lattice and the super-
lattice and measure the normalised imbalance, i.e. the
difference in occupation between the different parts of
the double well, normalised by their summed occupation
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FIG. S3. Phase calibration. We load a dilute cloud into a
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y = 21ER)
with different phase and extract the imbalance in occupation
between neighbouring chains. At the symmetric double well
configuration (ϕ = 0) we reach zero imbalance while even
for small deviations we quickly occupy only one part of the
double well. All main experimental results are obtained for
ϕ = π/2.

(see Fig. S3). When we prepare symmetric double wells,
the imbalance approaches zero. However, when we tune
away from this configuration, we reach an imbalance of
±1 within less than 50mrad. This sharp transition indi-
cates a high degree of stability and homogeneity of the
relative superlattice phase within the system (see also [57]
for more details). For the measurements presented here,
we then work at a phase of ϕ = π/2, where the offset
between neighbouring lattice sites is highest for a given
lattice depth and the interwell and intrawell couplings
are identical.

We confirm the energy scales associated with a given
potential offset by comparing it to our interaction en-
ergy. We prepare the system at the lattice parameters
stated in the previous section and a phase of ϕ = π/2
and vary the depth of the superlattice (i.e. the poten-
tial offset) in a slightly hole doped system (see Fig. S4).
For offsets smaller than the band width, tunnelling be-
tween sites is not yet suppressed and we create a strong
imbalance. On the other hand, for large offsets around
the interaction energy, we enable resonant tunnelling be-
tween sites whenever both are occupied, thus creating
both an imbalance and doublons within the system. The
observed scales are consistent with band structure calcu-
lations based on our lattice parameters. Between these
two regimes, the imbalance approaches zero. The max-
imum in imbalance around U/2 can be explained by a
second-order process where a doublon in a lower chain
breaks into two atoms in the two adjacent chains (see
also [57]). To avoid this effect and the associated addi-
tional holes and doublons, we perform our experiments
at an offset slightly above U/2.

C. Data statistics, doping histograms

In total, we collect 11675 experimental realisations.
Out of these, 1254 were taken in a 2d system with
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FIG. S4. Offset scan. Doublon density (a) and imbalance
between chains (b) as a function of potential offset ∆ (i.e. su-
perlattice power) for a relative superlattice phase of π/2. The
peak in the doublon density coincides with the interaction en-
ergy U (grey line) at which atoms are then resonantly trans-
ferred to neighbouring chains. For small offsets, tunnelling is
not yet fully suppressed and an imbalance is created. Above
an intermediate peak at U/2 (created by a higher order pro-
cess), there is a low imbalance regime where the experiment
is performed (black line).

∆ = 0U , the remaining 10421 with ∆ = 0.65(5)U .
Within these measurements, we slightly vary the doping
level (additionally to the natural fluctuations inherent to
our preparation scheme) which yields a range of 10−30%
hole doping. To ensure that there is no overall magneti-
sation Mz =

∑
i⟨Sz

i ⟩ within the system, we check the
distribution of magnetisation normalised by the system
size, which is centred around zero and shows a width
below shot-noise (see Fig. S5).

D. Connected correlators and offsets

1. Full connected correlator expressions

We present a variety of correlators to characterise the
spin and charge order in our system. We here distin-
guish between bare, ‘partially connected’ and fully con-
nected correlators. While the bare correlator does not
subtract anything, the fully connected correlator sub-
tracts all possible lower order contributions between all
its constituents, e.g. for a two-point correlator it removes
the product of the mean operator values while for a three-
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FIG. S5. Data statistics. Histograms of doping (a) and
magnetisation (b). We take data between 10 and 30% doping
while the total magnetisation is well centred around 0.
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FIG. S6. Connected 3-point correlator. a, Fully con-
nected, symmetrised, three-point hole-spin-spin correlator.
By removing the AFM background we focus on the addi-
tional effect introduced by the dopant which is compatible
with the onset of a domain wall in the local AFM pattern
across the dopant. A comparison to DMRG calculations at
kBT/tx = 0.4 (b) shows qualitatively similar results.

point correlator it also removes all combinations of two-
point correlators. Meanwhile, ‘partially connected’ corre-
lators only subtract some specific lower-order correlators:
in this case, as we consider pairs as new objects, we don’t
subtract any correlations stemming from the individual
holes in the pair.

All these different types of correlators are then helpful
to extract slightly different information about the system.
While fully connected correlators are especially useful to
extract small signals in higher-order correlators domi-
nated by lower-order contributions, the bare correlator
may be more interesting when higher-order correlations
are actually larger than lower-order correlators.

For this reason, in addition to the ‘partially connected’
pair-hole and pair-pair correlator (Eq. (3)) and the bare
hole-spin-spin correlator (Eq. (5)), we used the fully con-
nected hole-hole-hole correlator defined as

Cc
hhh(d

h,d) =
1

Ndh,d

∑
i

j=i+dh/2+d

1

⟨n̂hi ⟩⟨n̂hi+dh⟩⟨n̂hj ⟩
×

(
⟨n̂hi n̂hi+dh n̂

h
j ⟩ − ⟨n̂hi n̂hi+dh⟩⟨n̂hj ⟩ − ⟨n̂hi ⟩⟨n̂hi+dh n̂

h
j ⟩

−⟨n̂hi n̂hj ⟩⟨n̂hi+dh⟩+ 2⟨n̂hi ⟩⟨n̂hi+dh⟩⟨n̂hj ⟩
)
. (7)

Similarly, we can define a connected hole-spin-spin cor-
relator as

Cc
hss(d

s,dh) =
1

Nds,dh

∑
i

k−j=ds,

(k+j)/2−i=dh

1

⟨n̂hi ⟩σ(Ŝz
j )σ(Ŝ

z
k )

×

(
⟨n̂hi Ŝz

j Ŝ
z
k ⟩

− ⟨n̂hi ⟩⟨Ŝz
j Ŝ

z
k ⟩ − ⟨n̂hi Ŝz

j ⟩⟨Ŝz
k ⟩ − ⟨n̂hi Ŝz

k ⟩⟨Ŝz
j ⟩

+2⟨n̂hi ⟩⟨Ŝz
j ⟩⟨Ŝz

k ⟩
)
. (8)

For this connected correlator, we observe the same main
features also shown in Fig. 5a in the main text with a

dominant negative bond across the hole (see Fig. S6).
This signal is strong enough to dominate over the AFM
background, changing the correlator sign even in the bare
correlator shown in Fig. 5. Meanwhile, the positive diag-
onal and next-nearest neighbour bonds along y far from
the hole shown in Fig. 5a now vanish as they are not re-
lated to the presence of a hole but just stem from the
AFM background. We compare this to DMRG calcula-
tions with Ly = 4, δ = 0.125, kBT/tx = 0.4 which shows
the same main features of strong anticorrelations across
the dopant and at the diagonals in the immediate vicin-
ity.

2. Offset correction

In addition to the subtraction of the disconnected part,
we also introduce an offset correction oδ on the hole-hole
correlator. This correction arises due to the doping fluc-
tuations in our finite-sized system. For each realisation,
we prepare a system with random but fixed total atom
number and magnetisation (see Fig. S5). The calculated
correlations in a finite system then obey a sum rule de-
pending on the particle number and variance.

We start by considering N fermions on V sites with
density n = N/V . The local two-point correlator

Γ(i, j) =
⟨n̂in̂j⟩
ninj

− 1 (with ni = ⟨n̂i⟩) after summing over

all possible pairs of sites i, j can be expressed as∑
i,j

Γ(i, j) =
∑
i,j

(
⟨n̂in̂j⟩
ninj

− 1

)
≈

(
⟨N̂2⟩
n2

− V 2

)
, (9)

where we used N̂2 =
∑

i,j n̂in̂j and ni ≈ nj ≈ n in our
homogeneous system. This we can relate to the variance
as

1

V 2

∑
i,j

Γ(i, j) =
Var(N̂)

N2
. (10)

If we now separate the on-site fluctuations and use
fermionic statistics where n̂2 = n̂ (and thus Γ(i, i) =
1
n − 1), we obtain

1

V 2

∑
i ̸=j

Γ(i, j) =
Var(N̂)−N(1− n)

N2
. (11)

Unless the global fluctuations of N are also fermionic
fluctuations (i.e. multinomial where Var(N̂) = N(1−n)),
the sum rule in Eq. (11) leads to a nonzero value of Γ(i, j)

for i ̸= j even at T = ∞. Note that typically Var(N̂) ∼
N or less, such that Eq. (11) is a 1/N correction, which
vanishes in the thermodynamic limit.

Identifying n̂ ≡ n̂h, we use this result in the calculation
of the hole-hole correlations in Fig. 2 and thus define the
offset oδ via

oδ =
Var(N̂h)−Nh(1− nh)

(Nh)2
, (12)
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FIG. S7. Correlator offsets. a, Correlation map of Fig. 2a
without offset correction. b, Correlator offset oδ as a func-
tion of doping. The nearest neighbour hole-hole correlator
as a function of doping with (red) and without (green) offset
correction is shown in the inset. The horizontal dashed lines
are the same correlator without binning by density in which
case the offset almost vanishes (dashed line in b).

and the corrected correlation as Eq. (2) of the main text

g
(2)
hh (d)− 1 =

1

Nd

∑
i

(
⟨n̂hi n̂hi+d⟩
⟨n̂hi ⟩⟨n̂hi+d⟩

− 1− oδ

)
, (13)

with Nd =
∑

i,j δj,i+d and Kronecker delta δi,j. Most im-
portantly, the doping dependent offset we apply is global
on all distances.

This offset correction oδ only plays a role when se-
lecting specific doping levels in a finite size system such
that the total atom number is almost fixed (Var(N̂) → 0)
and thereby leads to strong global offsets, that we hereby
compensate (see Fig. S7a). We show in Fig. S7b the offset
as a function of doping together with the nearest neigh-
bour hole-hole correlator values with and without ap-
plied offset. As indicated by the dashed lines, the offset
without selection on a density bin is negligible. For this
reason, we do not apply any corrections in Fig. 3.

3. Correlator from theory

When comparing the absolute values of hole-hole cor-
relations to simulations, care needs to be taken due to the
differences in doping, fluctuations and boundary condi-
tions. All calculations are performed with open bound-
ary conditions along x and y. Meanwhile, the potential
at the edges in the experiment has a finite width which
means that the exact position of any charge feature will
be fluctuating and therefore be washed out. As a re-

sult, we detect signals in g
(2)
hh but not in the density, in

contrast to theory where stripes show up as density fea-
tures [45]. When using connected correlators on theory
data, this will lead to reduced correlations. To analyse
numerical results, we hence use the slightly modified cor-

relator g̃
(2)
hh (d) defined as

g̃
(2)
hh (d)− 1 =

1

Nd

∑
i

(
⟨n̂hi n̂hi+d⟩
nhnh

− 1

)
(14)
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FIG. S8. Correlator map significance. Symmetrised hole-
hole (a), pair-hole (b), pair-pair (c) and hole-hole-hole (d)
correlation maps with errors. All values consistent with zero
are set to grey. The signals discussed in the main text are all
still clearly visible.

where compared to Eq. (2) we replace the normalisation
by the local densities with the global doping level nh.
This effectively assumes that the density is homogeneous
throughout the system instead of bunched at the centre
allowing for easier comparison to the experiment.

4. Statistical significance in correlation maps

The correlation maps shown in Fig. 2 and 3 do not give
any indication of which data points in the map are sta-
tistically significant or fall below the noise floor of the
measurement. To address this, we show in Fig. S8 the
same maps as in Fig. 2 and 3 where we now set all dis-
tances with signals compatible with zero (i.e. the signal
being less than 1σ away from zero) to grey. All features
mentioned in the main text are still clearly visible.

E. Additional coupling terms in the mixD
Fermi-Hubbard model

In the experiment, we realise a two-dimensional Fermi-
Hubbard model with anisotropic tunnel couplings and
energy offset on every second site along y. In the limit
of strong interactions U ≫ tx, ty used here, this is com-
monly mapped onto the t − J model. However, this ap-
proximation neglects higher-order terms that can arise in
the expansion, including a crucial second-order hopping
term. While nearest-neighbour hopping is suppressed
due to the potential offset, next-nearest neighbour hop-
ping remains resonant in a staggered potential. We ex-
perimentally confirmed the presence of this term and its
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FIG. S9. Stripe length random data comparison. a,
Comparing experimental data to randomly generated data
without any correlations. b, Comparison to randomly placed
pairs within the system. Both methods yield qualitatively the
same result as the data in the main text.

scaling t̃y = t′y +
t2y
∆ with direct next-nearest neighbour

tunnelling t′ (which is however negligible for our param-
eters) by performing single-particle quantum walks [57].
This simple expression neglects interaction effects with
atoms in the intermediate lattice site. For ∆ = 0.65(5)U

this means that t̃y ≈ 1.54t2y
U . This could in principle dis-

favour stripe formation as the weak Pauli repulsion asso-
ciated with t̃y could inhibit pairs at distance 2 such that
only dy = 1 hole pairs would form. In this experiment
the contribution can mostly be neglected as the principal
energy scale is given by Jy ≈ 3t̃y which dominates in our
parameter regime over t̃y.

F. Stripe length random data generation

To interpret the stripe length results of Fig. 4, we com-
pare to random hole distributions with different short-
ranged correlations. We first simply randomly sample
holes on 9×9 sites (see Fig. S9a) where we observe strong
positive signals in the mixD case and negative signals for
the 2d case. However, the strong Pauli repulsion along
x might have an impact on this signal. For this rea-
son, we randomly sampled holes where we included, in
Fig. 4 of the main text, the experimentally obtained an-
ticorrelations along x (see Fig. 2). Finally, we compare
to randomly placed pairs along y within the system in
Fig. S9b, exhibiting similar features. Thus we conclude
that the observed main qualitative features are relatively
insensitive to the exact details of the randomly generated
data and that we see a genuine stripe signal that cannot
be explained by random or short-ranged correlated holes.
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FIG. S10. Finite temperature DMRG. DMRG calcula-
tions for a Lx × Ly = 8× 4 system with periodic boundaries
along the short direction, temperature kBT/tx ∼ 0.4, and
Hamiltonian parameters as in the experimental setup. Shown
are the on-site hole density distributions in each leg, ⟨n̂h

i ⟩
(grey lines), as well as spin-spin correlations ⟨Ŝz

i0
Ŝz
j ⟩ (colour

coded) for reference site i0 = [x = 3, y = 2] (white frame). At
the maximum hole density distribution in the centre of the
chain, a domain wall of the AFM background forms, i.e., a
single stripe is observed.

G. Numerical simulations of the mixD t− J model

We simulate the mixD t− J model,

Ĥ = P̂

−tx
∑
⟨i,j⟩x

∑
σ=↑,↓

ĉ†i,σ ĉj,σ + h.c.

 P̂

+ Jx
∑
⟨i,j⟩x

(
Ŝi · Ŝj −

n̂in̂j
4

)

+ Jy
∑
⟨i,j⟩y

(
Ŝi · Ŝj −

n̂in̂j
4

)
, (15)

(see Eq. (1) in the main text) for Jy/tx = 0.5, Jx/Jy = 0.3
at finite temperature using matrix product states (MPS)
via mixed state purification schemes [58–60]. In partic-
ular, we expand the system by introducing one auxil-
iary site for each physical site, which allows for display-
ing mixed physical states as pure states on an enlarged
Hilbert space. A pure state in the enlarged system at
finite temperature is calculated by evolving the maxi-
mally entangled, infinite temperature state |Ψ(β = 0)⟩ in
imaginary time under the physical Hamiltonian, |Ψ(τ)⟩ =
e−τĤ |Ψ(β = 0)⟩, where τ = β/2 with β the inverse tem-

perature. Thermal expectation values ⟨Ô⟩T in the phys-
ical subset are computed by tracing out the auxiliary
degrees of freedom, i.e.,

⟨Ô⟩T =
⟨Ψ(β)|Ô|Ψ(β)⟩
⟨Ψ(β)|Ψ(β)⟩

. (16)

During the imaginary time evolution, we conserve the
particle number in each row Nℓ, ℓ = 1 . . . Ly, the to-
tal particle number in the auxiliary system N tot

aux., and

the total spin Sz,tot
phys.+aux. (the latter allowing for thermal
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FIG. S11. Hole correlations in DMRG. a, Hole density
for Ly = 3, δ = 0.25, kBT/tx = 0.41. Two separate stripes
form at this doping level. b, Hole-hole correlations vs dis-
tance, reminiscent of the structure shown in Fig. 2a. c, Hole
correlations as a function of temperature for dy = 1 (red) and
dy = 2 (blue), δ = 0.125 (dashed lines) and δ = 0.25 (solid
lines).

fluctuations of the total magnetization in the physical
system). This results in a total of Ly + 2 symmetries
employed by the DMRG implementation, leading to sig-
nificant speedups over a single global U(1) conservation
in the overall physical system [13].

The maximally entangled state needed as a starting
point of the imaginary time evolution, |Ψ(β = 0)⟩, is
generated using specifically tailored entangler Hamiltoni-
ans [13, 61]. Since these states (being projected product
states) are of low bond dimension (χ(τ = 0) ∼ O(100)),
local approximations of the Hamiltonian and subsequent
exponentiation will suffer from large projection errors.
Hence, we start by employing global methods for a single
step in imaginary time, after which the entanglement in
the system (and the bond dimension of the thermal MPS)
has sufficiently increased to switch to local methods.

Due to the mapping of the (enlarged) 2d system to a
1d chain, the bond dimension required for a fixed ac-
curacy scales exponentially with linear system size in
y−direction. For doping scans, we limit the system size
to Lx × Ly = 8× 3 with open boundaries, and hole con-
figurations Nℓ = 1, 2, 3 for each ℓ = 1, 2, 3. For a single
hole per chain, we simulate systems up to Ly = 4. As this
mixD model suffers from the Fermion sign problem, these
limited system sizes are still state-of-the-art for numeri-
cal calculations while mostly allowing general qualitative
comparison to the much larger experimental system.

In particular, we evolve |Ψ(β = 0)⟩ using global Krylov
schemes by a single step tx∆τ = 0.01. Weight cut-
offs are set to 10−10, expanding the bond dimension to
χ(τ = ∆τ) ∼ O(1000). From here on, we switch to
the local two-site TDVP method [60] with time steps
of tx∆τ = 0.03, weight and truncation cutoffs of 10−10

and 10−12, respectively, and cutting edge maximum bond
dimensions of χTDVP = 30000. We evolve the sys-
tem to τtx = 2.0, corresponding to a temperature of
kBT/tx = 0.25. Spin-spin correlations, as well as hole dis-
tributions in each leg, are exemplarily shown in Fig. S10
for kBT/tx ∼ 0.4 for a system of size Lx×Ly = 8×4 with

JµC1
µ JyC2 ∑ = 0 ∑ = 1 ∑ = 2

y
y+1

-JyC1
y -2JyC1

y -3JyC1
y + JyC

2/Ly

FIG. S12. Illustration of the effective potential be-
tween chain y with its neighbouring chain y + 1. Grey
lines illustrate energy contributions ∼ Jµ

1 C
µ
1 , µ = x, y; green

line denotes diagonal correlation with energy contributions
∼ JyC2 starting at |Σ| ≥ 2. Intra-chain energy corrections
from the Néel state ∼ JxC

x
1 are constant and not written

down explicitly in the potential.

periodic boundaries along the short direction and Nℓ = 1
for all ℓ = 1 . . . 4. At the centre of the chains, where
the hole density peaks, an AFM domain wall forms, sig-
nalling the formation of a single, fully filled stripe. For
a higher doping of δ = 0.25, (Ly = 3, open boundaries),
we show the hole density as well as hole-hole correlations
in Fig. S11a,b where the two separate stripes are visi-
ble. Results as a function of temperature are shown in
Fig. S11c for dy = 1 and dy = 2.

H. Effective descriptions of stripes in the mixD
t− J model

1. Mean field theory

In this section, we present a mean field theory (MFT)
for the stripe phase in the mixD t − J model. We focus
on describing an individual stripe in y−direction with ex-
actly one hole per chain, bound by the magnetically me-
diated confining potentials. In particular, we neglect the
interaction between multiple stripes at positions i1 and
i2, i.e., we focus on the low doping regime. To illustrate
the concept, we first consider a mean field description of
the ground state, before generalizing to finite tempera-
ture.

For tx ≫ Jx, Jy, quantum correlations between
strongly fluctuating holes and spins in squeezed space
(defined in [52, 62]) can be neglected [63–67]. Hence, we
make the ansatz

|ψ⟩ = |ψ⟩sq ⊗ |ψ⟩c , (17)

where |ψ⟩sq is the spin state of the undoped Heisenberg

model in squeezed space, and |ψ⟩c is the chargon wave
function. Our starting point for the description of the
single stripe is the variational Gutzwiller wave function,
given by

|ψ⟩c =
∞⊗

y=−∞

∣∣∣ϕ(0)〉
y
, (18)

i.e., we describe the charge sector by the product of iden-
tical single-leg wave functions

∣∣ϕ(0)〉
y
in chain y. Assum-
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ing that the stripe is centred around x = 0, we express∣∣ϕ(0)〉
y
within the string basis,

∣∣∣ϕ(0)〉
y
=

∞∑
Σ=−∞

ϕ
(0)
Σ |y,Σ⟩ , (19)

where Σ can be understood as the length of the string
measured relative to the centre of the stripe.

Within this variational ansatz, coefficients ϕ
(0)
Σ can be

found by minimizing the trial state’s energy, ⟨Ĥ⟩0 =

⟨ψ|Ĥ|ψ⟩ =
(
⟨ψ|sq ⊗ ⟨ψ|c

)
Ĥ
(
|ψ⟩sq ⊗ |ψ⟩c

)
,

⟨Ĥ⟩0
Ly

=
E0

Ly
− tx

∑
Σ

(
ϕ
(0)∗
Σ+1ϕ

(0)
Σ + c.c.

)
+
∑
Σ,Σ′

|ϕ(0)Σ |2|ϕ(0)Σ′ |2Vpot(Σ− Σ′). (20)

Here, Vpot(Σ) is the inter-chain potential defined by the
potential energy of two holes in neighbouring chains sep-
arated by the string Σ,

Vpot(Σ) = Jy

[(
|Σ| − 1 + δΣ,0

)
C2 −

(
|Σ|+ 1

)
Cy

1

]
, (21)

where Cµ
1 = ⟨ψs|Ŝi · Ŝi+eµ

|ψs⟩, µ = x, y, are nearest

neighbour, and C2 = ⟨ψs|Ŝi · Ŝi+ex+ey
|ψs⟩ diagonal spin-

spin correlations in the undoped Heisenberg model in the
ground state. Note that there are also intra-chain contri-
butions, which, however, are constant and only lead to a
trivial energy shift on top of the Heisenberg ground state
energy E0 (see Fig. S12).

By averaging over the upper and lower chain for a given
leg, we can reformulate the variational problem, Eq. (20),
as a self-consistent ground state search of the mean field
Hamiltonian per chain,

ĤMF =
E0

Ly
− tx

∑
Σ,Σ′

[
ĥ†Σ′ ĥΣ + h.c.

]
+
∑
Σ

ĥ†ΣĥΣVeff(Σ), (22)
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FIG. S14. String length distribution. Thermally aver-

aged string length distribution ⟨Σ|ρ̂(0)MF|Σ⟩ for temperatures
kBT/tx = [0.2, 0.625], and tx/Jy = 2. Thermal correlations
in the Heisenberg model are taken from DMRG calculations
with Jx/Jy = 0.3 (see Fig. S13).

where ĥ†Σ |y, 0⟩ = |y,Σ⟩ and

Veff(Σ) = 2
∑
Σ′

|ϕ(0)Σ′ |2Vpot(Σ′ − Σ). (23)

Note the factor of 2 in the potential energy, arising from
energy contributions between chains y ± 1 with chain y.
When considering the total energy of the variational wave
function, Eq. (20), however, there is no additional factor
to not double count inter-chain energy contributions.

In practice, we set a maximal cutoff for the string
length, here chosen as |Σmax| ∼ 15. By exact diagonal-
ization and self-consistently solving Eq. (22), the string

length distribution |ϕ(0)Σ |2 within the mean field picture
can be calculated.

At finite temperature, we generalize the ansatz to a
product of density matrices,

ρ̂ = ρ̂sq ⊗

( ∞⊗
y=−∞

ρ̂
(0)
MF

)
, (24)

where

ρ̂
(0)
MF =

1

Z
e−βĤMF(ρ̂

(0)
MF,T ) (25)

defines the self-consistency equation via

ĤMF(ρ̂
(0)
MF)

Ly
=
E0

Ly
− tx

∑
Σ,Σ′

[
ĥ†Σ′ ĥΣ + h.c.

]
+
∑
Σ

ĥ†ΣĥΣVeff(Σ; ρ̂
(0)
MF, T ),

Veff(Σ; ρ̂
(0)
MF, T ) =

2
∑
Σ′

⟨Σ|ρ̂(0)MF|Σ⟩Vpot(Σ
′ − Σ;T ).

(26)

Here, Cµ
1 (T ) = ⟨Ŝi · Ŝi+eµ

⟩T , µ = x, y and C2(T ) =

⟨Ŝi·Ŝi+ex+ey
⟩T entering Vpot in Eq. (21) are thermally av-

eraged two-point correlators of the 2d Heisenberg model.

Given the self-consistent solution of ρ̂
(0)
MF, the mean field

string length distribution is determined by the diagonal

elements of ρ̂
(0)
MF, i.e., pΣ = ⟨Σ|ρ̂(0)MF|Σ⟩.
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FIG. S15. Stripe length distributions for effective the-
ories. a, Difference of stripe lengths from MFT to ran-
dom distribution for temperatures of kBT/tx ∈ [0.2, 0.5] and
Jx/Jy = 0.3 and experimental data for δ = 0.083 (markers)
as in the inset of Fig. 4a of the main text. b, Stripe length
histograms using the classical MHZ estimate for temperatures
of kBT/J

y
1 ∈ [0.4, 1] which shows qualitatively similar results.

We use finite temperature DMRG methods (see pre-
vious section) to calculate thermally averaged nearest-
neighbour and diagonal correlations of the undoped
Heisenberg model with Jx/Jy = 0.3 on a Lx×Ly = 12×4
lattice with periodic boundaries along y, see Fig. S13.
Results for the corresponding mean field estimates of
the string length distributions in the stripe phase are
shown in Fig. S14 for tx/Jy = 2 and temperatures
kBT/tx = [0.2, 0.625].

Using the MFT string length distributions, we sam-
ple snapshots and compare the resulting stripe length
distributions to the experiment (see Fig. S15a). At the
expected temperature of kBT/tx ≈ 0.3, the effective de-
scription matches the experiment rather well with only
a slight overestimation of the order in the mean field de-
scription.

2. Müller-Hartmann-Zittartz estimate

To make further comparisons to statistical models, we
reduce the mixD system to a 1d, purely classical model
of fluctuating holes bound together by the effective po-
tential Vpot, Eq. (21) (Müller-Hartmann-Zittartz (MHZ)
approach). Denoting with xℓ the x−position of the doped
hole in leg ℓ (we again consider one hole per chain, i.e.
a single fluctuating domain wall), the effective Hamilto-
nian (excluding quantum fluctuations from the hopping
of the holes) for a system of size (Lx+1)× (Ly+1) reads

ĤMHZ =

Ly∑
ℓ=1

Vpot(|xℓ − xℓ+1|;T ), (27)

where again the temperature dependent correlators
Cµ

1 (T ) = ⟨Ŝi · Ŝi+eµ⟩T , µ = x, y and C2(T ) =

⟨Ŝi · Ŝi+ex+ey ⟩T enter the effective potential Vpot(|xℓ −
xℓ+1|;T ) in Eq. (21).

The partition function, Z, decouples when being ex-
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FIG. S16. Müller-Hartmann-Zittartz calculations. a,
Illustration of the MHZ estimate. Hole positions are sampled
according to the red probability distributions, whereby the
distribution for position xℓ+1 is centred around xℓ – capturing
fluctuating, extended stripes. b, Hole distance distributions,
Eq. (29), for various temperatures kBT/J

y
1 = 0.4 . . . 0.9.

pressed solely by distances dℓ = xℓ − xℓ+1,

Z =
∑
{xℓ}

Ly∏
ℓ=1

exp [−βVpot(|xℓ − xℓ+1|;T )]

=

Lx∑
d1=−Lx

· · ·
Lx∑

dLy=−Lx

Ly∏
ℓ=1

exp [−βVpot(|dℓ|;T )]

=

[
Lx∑

d=−Lx

exp [−βVpot(|d|;T )]

]Ly

= [Z1]
Ly .

(28)

The probability of finding two adjacent holes at distance
d in chains ℓ, ℓ+ 1 is given by

p(d) = exp [−βVpot(|d|;T )] /Z1, (29)

shown for various temperatures kBT/J
y
1 in Fig. S16b.

Fixing the first hole in the centre and sampling dis-
tances according to Eq. (29), we again generate snapshots
of the hole configurations. Note that, while in the MFT
fluctuating stripes pinned to the centre were described,
the classical formulation as given above captures stripes
that are not pinned to the boundary, and hence natu-
rally form extended hole configurations as illustrated in
Fig. S16a (see also Fig. 4a in the main text). We compare
the results to the experimental data in Fig. S15b where
for kBT/J

y
1 = 0.8 we observe similar features to the ex-

periment and the results from MFT for kBT/tx = 0.36.
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