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Efficient characterization of higher dimensional many-body physical states presents significant
challenges. In this Letter, we propose a new class of projected entangled pair states (PEPS) that
incorporates two isometric conditions. This new class facilitates the efficient calculation of general local
observables and certain two-point correlation functions, which have been previously shown to be
intractable for general PEPS, or PEPS with only a single isometric constraint. Despite incorporating
two isometric conditions, our class preserves the rich physical structure while enhancing the analytical
capabilities. It features a large set of tunable parameters, with only a subleading correction compared to that
of general PEPS. Furthermore, we analytically demonstrate that this class can encode universal quantum
computation and can represent a transition from topological to trivial order.
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Introduction—Efficiently representing strongly corre-
lated many-body quantum states and extracting their
relevant physical properties remain a pivotal challenge in
dimensions higher than one. Tensor network methods offer
an approach to address this problem. Following the
successful application of 1D matrix product states (MPS)
[1–3], Ref. [4] introduced their higher-dimensional gener-
alization, projected entangled pair states (PEPS). These
states satisfy an entanglement area law [5] and are
considered a robust ansatz for representing ground states
of gapped local Hamiltonians [6–14]. PEPS also play an
important role in quantum dynamics [15–17], statistical
mechanics [18–21], the classification of phases [22–25],
and quantum machine learning [26–28].
Despite their advantages, finite PEPS still suffer from the

rapid growth of the computational resources required for the
calculation of physical quantities, such as expectation values
of local observables. Inpractice, even approximate algorithms
on finite PEPS are costly and the errors are often hard to
control [29–31]. This limitation also holds for translationally
invariant systems [32]. It has been shown that the exact
contraction of a general PEPS is #P-hard [33], even for typical
instances [34], which serves as a fundamental limitation.
One way to address this challenge is to consider some

subclass of PEPS. One such class is the isometric PEPS

(iso-PEPS) [35,36], which extends the canonical form of
1D MPS to higher dimensions. Their isometric nature
allows for the preparation of all iso-PEPS through sequen-
tial unitary circuits [37]. This sequential generation defines
a time axis in the iso-PEPS and thus facilitates the
backward contraction along this time direction [36].
Despite being typically short-range correlated [38], the
iso-PEPS family can capture states with complex correla-
tions, such as topological models and the associated phase
transitions [39,40].
However, the computation of the local observables for

iso-PEPS is not always efficient. Indeed, this task in two
dimensions is shown to be BQP-complete [41], which,
subject to standard complexity theory assumptions, indi-
cates that it is hard to simulate classically. Although in
principle, some classical algorithms, like the Moses move
[36,42], can be used to approximate the result, the errors
may remain uncontrolled [43]. This restricts the practical
utility of iso-PEPS and motivates the search for new classes
of contractible PEPS.
In this Letter, we introduce dual-isometric PEPS (DI-

PEPS), a new subclass of iso-PEPS that enhances the
computational tractability of tensor networks in higher
dimensions, especially for computing local observables
and certain two-point correlation functions. The class is
defined by imposing an additional isometric condition onto
iso-PEPS, which reduces the calculation of the above
quantities in the 2D tensor network to a 1D tensor network.
The latter is manageable and can be efficiently computed.
More broadly, the dual-isometric condition is analogous to
dual-unitary gates [44], a class of exactly solvable quantum
circuits, and can be seen as a natural extension of these
ideas to PEPS. Furthermore, our Letter reveals that the
DI-PEPS preserve the rich physical structure of iso-PEPS
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despite the additional constraint. For this, we show that
DI-PEPS can encode universal quantum computations after
postselection. As a result, their output probability cannot be
efficiently sampled on a classical computer. Additionally, by
counting the number of free parameters ofDI-PEPS,we show
that this number is only reduced at subleading order as
compared to conventional PEPS. Lastly,we develop a class of
DI-PEPS which exhibits topological order and has a non-
trivial transition to decoupled 1D chains. These findings
underscore the DI-PEPS as a potent framework for inves-
tigating quantum many-body physics, offering new avenues
for understanding and manipulating complex quantum
systems.
PEPS and the folded picture—We consider PEPS speci-

fied by a rank-5 tensor Tp
lbrt for each vertex ðx; yÞ of a 2D

square lattice. The index p represents the physical degree of
freedom with dimension d, and l, b, r, t (left, bottom, right,
top) label the virtual degrees of freedom, each χ dimen-
sional [Fig. 1(a)]. Here x∈ f1;…; Ng and y∈ f1;…;Mg.
The wave function is obtained by locally contracting all the
virtual degrees of freedom [Fig. 1(b)]. At the boundary, the
virtual space is isometrically mapped to the physical
space; we explain this choice later. Thus, there are in total
ðN þ 2Þ × ðM þ 2Þ − 4 physical sites.
Our setting and results become more transparent via

vectorizing; in graphical notation, this corresponds to
“folding” [Fig. 1(c)]. Given a fixed computational basis,
an observable is vectorized to hOj via

P
ij Oijjiihjj ↦P

ij Oijhijhjj. States are similarly mapped to a bipartite
vector such that

ð1Þ

Graphically, T� is folded in front of T, thereby form-

ing .

Iso-PEPS—Here we briefly review iso-PEPS [36], which
is a subclass of PEPS satisfying the isometric condition

X
r;t;p

Tp
l1b1rt

T�p
l2b2rt

¼ δl1;l2δb1;b2 ; ð2Þ

shown also graphically in Fig. 1(d). This class can be
understood as the 2D analog of the canonical form in MPS.
Equation (2) directly implies that iso-PEPS can be con-
tracted starting from the top-right direction until an
observable is met [36].
Physically, every iso-PEPS tensor can be sequentially

generated in depth OðN þMÞ via a unitary gate [37]

Uprt
lbj0i ¼ Tp

lbrt ð3Þ

with one of its inputs initialized to j0i. Calculating expect-
ation values of local observables in iso-PEPS is as hard as
quantum computation since an expectation value of a bulk
operator may correspond to a late-time expectation value in
the associated sequential circuit; indeed, this task was
recently shown to be BQP-complete [41]. Note that the
isometric property implies that only a local observable near
the bottom or left boundary of the PEPS can be efficiently
calculated [36]. In the sequential quantum circuit picture,
this only involves a contribution from the gates on the light
cone [37].
Dual-isometric PEPS—In this Letter, we introduce a new

subclass of iso-PEPS called dual-isometric PEPS (DI-
PEPS). This is done by requiring another (dual) isometric
condition

X
l;t;p

Tp
lb1r1t

T�p
lb2r2t

¼ δr1;r2δb1;b2 ; ð4Þ

as shown in Fig. 1(e). This is in analogy to dual-unitary
circuits, where each gate can be interpreted as a valid
evolution along a second “time” direction. DI-PEPS thus
admit an additional sequential preparation direction.
Although we primarily focus on this class, the dual
condition of Eq. (4) can be generalized to

X
l1;l2;t;p

Tp
l1b1r1t

Sl1;l2T
�p
l2b2r2t

¼ Sr1;r2δb1;b2 ; ð5Þ

where S is a positive semidefinite matrix (see Ref. [45]). We
refer to this enlarged class as generalized DI-PEPS.
The key point is that the dual condition, together with

Eq. (2), allows an efficient calculation of expectation values
of local observables. This becomes transparent in the folded
picture, where the expectation value is expressed as

FIG. 1. (a) Rank-5 tensor T of a PEPS. The complex conjugate
of T is denoted by T�. (b) The physical state from the contracted
local PEPS tensors, with the virtual space mapped to the physical
one on the boundary. (c) The local contraction of bra and ket
PEPS states, with its folded notation shown on the right. The
bottom panel shows the local expectation value of an observable
(black square). The black dot on the right-hand side represents its
vectorized form. (d) Isometric condition in the unfolded and
folded picture. (e) Dual isometric condition.
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ð6Þ

Starting from the top-left corner, we can use Eq. (4)

[Fig. 1(e)] to simplify the configuration as .

This procedure can be iterated, as now the same equation can
be used in the next row and column. Following this
simplification procedure, one finds that all the tensors on
the left and right sides of the observable simplify by Eqs. (4)
and (2), respectively, resulting in

ð7Þ

This is just a 1D tensor network, which can be efficiently
contracted inOðMÞ. This result also holds for local operators
with support larger than 1. In that case, Eq. (7) includes more
than one column but with constant (i.e., system-size inde-
pendent) width.
Our next point of interest is two-point correlation

functions, which play a key role in characterizing
many-body properties. They can be graphically
expressed as

ð8Þ

With the isometric and dual-isometric conditions, one can
simplify the diagram from the top-left and top-right corners
similarly as before. The final result is

ð9Þ

Here we assume that the two operators are located at
ðx1; y1Þ and ðx2; y2Þ, respectively. The reduced 2D part of
the tensor network is of size t1 × t2, with t1 ¼ jx2 − x1j and
t2 ¼ minfy1; y2g. If either t1 or t2 is constant, the correlator
still reduces to an efficiently contractible 1D tensor network
with a possibly increased, but constant, bond dimension.
Similar as above, the generalized DI-PEPS (5) preserve the
solvability of 1- and 2-point correlations, see Ref. [45].
Not only in our case but also in general, the calculation

of local or multipoint expectation values in 2D PEPS can be
interpreted as a circuit of 1þ 1D completely positive maps
acting over the virtual space; in general, however, these are
not trace-preserving. This is established by interpreting
tensor-network diagrams, such as the one in Eq. (8), along a
45° counterclockwise rotated direction, and defining Kraus
operators (indexed by p) as Ep

tr;lb ¼ Tp
lbrt. Pictorially, this

can be expressed as

ð10Þ

where the right side depicts the completely positive map in
the folded picture. For the case of iso-PEPS, this map is in
addition trace-preserving, i.e., it corresponds to a physical
evolution. From this point of view, the solvability of
DI-PEPS can be connected with the simplifying properties
of two-unital space channels from Ref. [54].
The boundary condition of Fig. 1(b) also obtains a

physical interpretation at this stage. Viewing the PEPS as a
quantum circuit, the boundary conditions correspond to
initially preparing N þM EPR-pairs, and inputting half of
each pair to the circuit.
Examples of DI-PEPS—First, a known special subfamily

of DI-PEPS is perfect tensors [55–57], and their generaliza-
tions [58], originally developed in the context of theAdS/CFT
correspondence. However, this subfamily requires an iso-
metric condition under any bipartition, which is a much
stronger constraint than that of generic DI-PEPS. Second,
sequentially generated states (SGS) [59] are also a subfamily
of generalized DI-PEPS from Eq. (5) (see Ref. [45]).
As mentioned in Eq. (3), DI-PEPS can be prepared with

a sequential quantum circuit with the additional conditionP
ptl U

pr1t
lb1j0iðU

pr2t
lb2j0iÞ� ¼ δb1;b2δr1;r2 , pictorially expressed as

. Some classes of unitary gates satisfying the

above are:
Permutation-phase gates: U ¼ P231D composed with

arbitrary single site gates, where P231 is the shift-permu-

tation and D is an arbitrary diagonal gate in the

computational basis. This family generalizes dual-unitary
gates, for which P21 is just the SWAP [44], to a tripartite
setting.
3-qubit gates (d ¼ χ ¼ 2):We take a nonexhaustive ansatz

U ¼ Q
α expðiQασ

α
2σ

α
3Þ
Q

β expðiJβσβ1σβ2Þ, where α, β run
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over 1,2,3 andσαm is theαPaulimatrix acting on themth qubit.
We find that Q1 ¼ 0; Q2 ¼ π=4; J3 ¼ π=4 or Q2 ¼
π=4; cos 2J1 cos 2Q3 ¼ cos 2J2 cos 2Q3 ¼ 0 satisfies the
condition. Additional arbitrary single site unitaries on all
five legs but the ancillary one associated with j0i are allowed.
Controlled-dual unitaries:Uprt

lba¼ð1= ffiffiffi
d

p ÞPijiiphijaVi
tr;lb,

composedwith arbitrary single site gates, whereVi is a dual-
unitary gate [44], i.e., it is unitary and also satisfiesP

tl V
i
tr1;lb1

V�i
tr2;lb2

¼ δr1;r2δb1;b2 . More generally, any triuni-
tary quantum gate [60] and multidirectional unitary gate
(after grouping some indices) [61] is an example generating
DI-PEPS.
Next, we discuss another interesting example, which is

not constructed from unitary gates, but from the “plumbing
tensor” [40] which is a special PEPSwithD ¼ χ4. The local
tensor Tp

lbrt is determined by another rank-4 tensor W as

Tp
lbrt ¼ Tp1p2p3p4

lbrt ¼ δl;p1δb;p2δr;p3δt;p4Wlbrt; ð11Þ

where pi ¼ 1;…; χ. Graphically, with

denoting the delta tensor which is nonvanishing only if all
three legs take the same value. The elements of theW matrix
are restricted by Eqs. (2) and (4) (see Ref. [45] for its specific
form). Now, if we place the W tensor at the vertices of a
square lattice, the physical degrees of freedom lay on the
edges [62]. Notably, the simplest case χ ¼ 2 includes the
toric code tensor [40,63] as an example of DI-PEPS.Wewill
return to the topological properties of this class later.
Parameter counting and computational complexity—

Here we argue about the richness of DI-PEPS, despite
them having analytically accessible correlation functions.
As with every PEPS, the representation of the state in terms
of tensors is nonunique. We take into account this so-called
gauge freedom by introducing a corresponding canonical
form for the family of generalized DI-PEPS [see Eq. (5)
and [45] ]. The resulting number of free real parameters of a
normal [64] generalized DI-PEPS (formed by repeating
the same tensor) is 2ðd − 1Þχ4. Compared to the number of
free real parameters 2dχ4 − 4χ2 þ 2 of a normal PEPS [45],
we see that DI-PEPS cover a large subclass of nor-
mal PEPS.
We further consider the computational complexity of DI-

PEPS. Although one- and two-point correlators can be
efficiently computed, we demonstrate that sampling of a
DI-PEPS cannot be efficiently simulated in a classical
computer. Following Ref. [41], we show that the DI-PEPS
can encode universal quantum computations with post-
selection. Thus, according to Ref. [65], the output prob-
ability distribution cannot be sampled to a multiplicative
precision by a classical computer efficiently, unless the
polynomial hierarchy collapses to its third level, i.e.,
postBQP ¼ postBPP. While the proof and further dis-
cussion are available in [45], here we sketch the main
points. Based on the previous discussion, we can interpret

the PEPS as a 1þ 1D quantum circuit in the virtual (bond)
space, while at the last layer the boundary bond outputs the
computation result to physical space. We choose the
DI-PEPS constructed from the controlled-dual-unitary
gates (example above), thus we encode a dual-unitary
circuit into the DI-PEPS. The result follows since the
dual-unitary circuits are universal with postselection [66].
This computational complexity also persists for DI-PEPS
with further symmetry constraints, such as global U(1)
symmetry [45]. This is achieved by encoding the above
construction into a single block of the symmetric DI-PEPS.
DI-PEPS, topological states, and locality—In this sec-

tion, we consider in detail a χ ¼ 2 subfamily of the
DI-PEPS constructed from the plumbing tensor of
Eq. (11), with a special focus on its topological properties.
To this end, we impose a Z2 symmetry on the W tensor

ð12Þ

This symmetry restricts its form to

Wlb;rt ¼

0
BBBBB@

ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
ffiffiffi
β

p ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p ffiffiffi
α

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − β

p ffiffiffi
β

p

1
CCCCCA
; ð13Þ

with α; β∈ ½0; 1�, where we omit the complex phases of
each element since they are irrelevant to the topological
degeneracy.
Our aim is to probe the topological order of the above

subfamily. Each PEPS corresponds to a ground state of a
local parent Hamiltonian [2]. A PEPS is said to be
topologically ordered if the parent Hamiltonian has topo-
logical degeneracy in its ground state subspace, which can
be characterized by the transfer operator T [24,67]. Parallel
to Ref. [24], here we put the PEPS on a cylinder. We cut out
one loop around the cylinder and contract it with its
complex conjugate over the physical degrees to form the
transfer operator in the doubled virtual space,

ð14Þ

According to the Z2 symmetry, the transfer operator can be

block diagonalized into Tp0;ϕ0
p;ϕ , where p, p0 denote the parity

of the ket and bra state, respectively; ϕ;ϕ0 ¼ 0; π denote
whether a flux is threading the cylinder, i.e., if an additional
σ3 is present in the ket and (or) bra virtual space. Because of

PHYSICAL REVIEW LETTERS 133, 190401 (2024)

190401-4



the delta tensor in Eq. (11), we immediately see that p ¼ p0
and the transformation ϕðϕ0Þ → ϕðϕ0Þ þ π does not change
the transfer operator. Thus, we only need to distinguish four
transfer operators T eϕ

eϕ; T
oϕ
oϕ; T

eϕþπ
eϕ ; T oϕþπ

oϕ .
The key point is that the leading eigenvalues λpϕ

0
pϕ and the

corresponding degeneracy in each block determine the
topological properties of the tensor. This is since they
encode, in the thermodynamic limit, the inner product of
the states corresponding to different choices of p;ϕ, which
indicates anyon condensation and confinement [68].
If α ¼ β ¼ 1

2
, the resulting state is the toric code [40,63]

with nontrivial topological order. At this point,
jλeϕeϕj ¼ jλoϕoϕj ¼ 1; jλeϕþπ

eϕ j ¼ jλoϕþπ
oϕ j ¼ 0 and the blocks

with the largest eigenvalues, T eϕ
eϕ; T

oϕ
oϕ are nondegenerate.

The lines α ¼ 1 or β ¼ 1, and the point α ¼ β ¼ 0 are in the
trivial phase, since they correspond to decoupled 1D chains,
each in a GHZ state. Those points have exponentially many
degeneracies in the leading eigenvalues of the transfer
operators T eϕ

eϕ; T
oϕ
oϕ with respect to the vertical length M

and we refer to them as the GHZ points. In the Supplemental
Material [45], we moreover analytically show that except for
the GHZ points mentioned above, it always holds that
jλeϕeϕj ¼ jλoϕoϕj > jλeϕþπ

eϕ j ¼ jλoϕþπ
oϕ j and the blocks with the

largest eigenvalues, T eϕ
eϕ; T

oϕ
oϕ are nondegenerate. We achieve

that by mapping it to a frustration-free Hamiltonian. We also
calculate the full spectrum of the transfer operators along the
line α ¼ β or α ¼ 1 − β in [45]. Thus we can conclude that
the DI-PEPS of Eq. (13) exhibit the same topological phase
as the toric code, except from the GHZ points. At those
points we have a crossing from a topological phase with
degeneracy 4 to a decoupled phase with exponentially many
degeneracies. This explicitly demonstrates that DI-PEPS
contain topological phases.
Another interesting question is the locality of parent

Hamiltonians for a given family of PEPS. Note that even
states with long-range topological order [63,69,70] admit
local parent Hamiltonians. In principle, the parent
Hamiltonian can be obtained by blocking [2], which,
however, may lead to terms with larger supports. For
example, if d ¼ χ ¼ 2, generally it is sufficient to block
4 × 5 tensors and the resulting parent Hamiltonian is
locally supported on these 20 sites, which can be slightly
decreased by a costly numerical procedure [71]. Our
examples from Eq. (13) with nonvanishing α, β admit an
analytical form of the parent Hamiltonians which are at
most 8-local. In particular, if α ¼ 1 − β, this can be
improved to a 4-local Hamiltonian. We illustrate the latter
here while the general case follows a similar argument [45].
The state with α ¼ 1 − β can be obtained by acting with a
single-body operator Uv ¼ esσ

3

on each vertical edge of the
toric code, with s ¼ 1

4
ln½α=ð1 − αÞ�. Thus, the parent

Hamiltonian of our state can be related to the toric code
one via the transformation h ¼ Q

v U
−1†
v hTCU−1

v . Here h

and hTC are local terms of the parent Hamiltonians of our
state and the toric code, respectively, and v belongs to the
vertical edges which overlap with hTC. The above trans-
formation does not change the locality of h which remains
4 as for hTC [63].
Discussion and outlook—In this Letter, we proposed a

new class of PEPS called DI-PEPS, with two isometric
conditions. These PEPS allow for efficient computations
of local and certain two-point correlation functions.
Furthermore, we have shown that this class exhibits
interesting physical properties. It has a large number of
free parameters, encodes universal quantum computation
after postselection and can represent interesting transitions
from topological to trivial order.
It remains an important open question how well the

DI-PEPS perform as an ansatz for variational methods, both
for ground states and the dynamics. On one hand, the
restriction from PEPS to DI-PEPS decreases expressivity.
On the other hand the efficient way to obtain reduced
density matrices allows for bigger bond dimensions.
Let us now discuss possible generalizations. We imposed

isometric conditions from top-right and top-left. Actually, one
can rotate the tensor and consider the isometric conditions
from any two adjacent corners, e.g., top-right and bottom-
right. Aswith iso-PEPS [36], different choices can bemade in
different parts of the state. However, if one considers the
isometric conditions from two diagonal corners (e.g., top-
right and bottom-left), the expectation values of local observ-
ables are simplified to a contraction of a single tensor. Thus,
we expect this class to be less expressive.
Moreover, we can impose additional isometric conditions,

from bottom-left and (or) bottom-right. In this case, higher-
point correlation functions are also tractable. One can figure
out that for a PEPS with n-isometric conditions, all the
(n − 1)-point correlation functions are solvable. Although in
ourLetterwe focuson the 2Dsquare lattice, thegeneralization
to higher dimensions or different lattices is also interesting.
We may consider the 3D simple cubic lattice, or the triangle
lattice where one can define up to six isometric conditions.
Lastly, the equivalence between PEPS and 1þ 1D quan-

tum completely positive maps may guide us to construct new
classes of solvable local quantum evolutions for any solvable
PEPS. As an example, we look at sequentially generated

states (SGS) [59], which satisfy . We can use

ourproposedduality todefine a newkindof solvable quantum

maps with the property . This class allows the

efficient calculation of local and two-point expectation values
(see also [72]). Importantly, this class is solvable even for
nontrace preserving dynamics, for example, including
measurements.
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[2] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete,
Matrix product states and projected entangled pair states:
Concepts, symmetries, theorems, Rev. Mod. Phys. 93,
045003 (2021).

[3] J. Haegeman and F. Verstraete, Diagonalizing transfer
matrices and matrix product operators: A medley of exact
and computational methods, Annu. Rev. Condens. Matter
Phys. 8, 355 (2017).

[4] F. Verstraete and J. I. Cirac, Renormalization algorithms for
quantum-many body systems in two and higher dimensions,
arXiv:cond-mat/0407066.

[5] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[6] H. Niggemann, A. Klümper, and J. Zittartz, Quantum phase
transition in spin-3=2 systems on the hexagonal lattice—
optimum ground state approach, Z. Phys. B Condens.
Matter 104, 103 (1997).

[7] F. Verstraete and J. I. Cirac, Matrix product states represent
ground states faithfully, Phys. Rev. B 73, 094423 (2006).

[8] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac,
Criticality, the area law, and the computational power of
projected entangled pair states, Phys. Rev. Lett. 96, 220601
(2006).

[9] M. B. Hastings, An area law for one-dimensional quantum
systems, J. Stat. Mech. (2007) P08024.

[10] F. G. Brandao and M. Horodecki, Exponential decay of
correlations implies area law, Commun. Math. Phys. 333,
761 (2015).

[11] A. Molnar, N. Schuch, F. Verstraete, and J. I. Cirac,
Approximating Gibbs states of local Hamiltonians effi-
ciently with projected entangled pair states, Phys. Rev. B
91, 045138 (2015).

[12] A. Anshu, A. W. Harrow, and M. Soleimanifar, Entangle-
ment spread area law in gapped ground states, Nat. Phys. 18,
1362 (2022).

[13] A. Anshu, I. Arad, and D. Gosset, An area law for 2d
frustration-free spin systems, in Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing
(Association for Computing Machinery, New York, 2022),
pp. 12–18.

[14] M. J. O’Rourke and G. K.-L. Chan, Entanglement in the
quantum phases of an unfrustrated Rydberg atom array, Nat.
Commun. 14, 5397 (2023).

[15] I. Pižorn, L. Wang, and F. Verstraete, Time evolution of
projected entangled pair states in the single-layer picture,
Phys. Rev. A 83, 052321 (2011).

[16] R. T. Ponnaganti, M. Mambrini, and D. Poilblanc, Real-time
dynamics of a critical resonating valence bond spin liquid,
Phys. Rev. B 106, 195132 (2022).

[17] R. T. Ponnaganti, M. Mambrini, and D. Poilblanc, Tensor
network variational optimizations for real-time dynamics:
Application to the time-evolution of spin liquids, SciPost
Phys. 15, 158 (2023).

[18] M. Levin and C. P. Nave, Tensor renormalization group
approach to two-dimensional classical lattice models, Phys.
Rev. Lett. 99, 120601 (2007).

[19] Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and T.
Xiang, Second renormalization of tensor-network states,
Phys. Rev. Lett. 103, 160601 (2009).

[20] H. H. Zhao, Z. Y. Xie, Q. N. Chen, Z. C. Wei, J. W. Cai, and
T. Xiang, Renormalization of tensor-network states, Phys.
Rev. B 81, 174411 (2010).

[21] H.-H. Zhao, Z.-Y. Xie, T. Xiang, and M. Imada, Tensor
network algorithm by coarse-graining tensor renormaliza-
tion on finite periodic lattices, Phys. Rev. B 93, 125115
(2016).

[22] X. Chen, Z.-C. Gu, and X.-G. Wen, Classification of gapped
symmetric phases in one-dimensional spin systems, Phys.
Rev. B 83, 035107 (2011).
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