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The propagation of errors severely compromises the reliability of quantum computations. The
quantum adiabatic algorithm is a physically motivated method to prepare ground states of classical
and quantum Hamiltonians. Here, we analyze the proliferation of a single error event in the
adiabatic algorithm. We give numerical evidence using tensor network methods that the intrinsic
properties of adiabatic processes effectively constrain the amplification of errors during the evolution
for geometrically local Hamiltonians. Our findings indicate that low energy states could remain
attainable even in the presence of a single error event, which contrasts with results for error
propagation in typical quantum circuits.

Introduction.—Current quantum hardware is increas-
ingly becoming competitive with classical computational
capabilities [1, 2]. A key bottleneck towards practical
applications are hardware errors and their proliferation
during the computation. Interestingly though, the
susceptibility towards hardware noise can vary strongly
depending on the specific algorithm used and the type
of error. The adiabatic algorithm [3] is a paradigmatic
model of quantum computation, where the proliferation
of errors remains unexplored.

Hardware noise in quantum computers has severe
implications for the ability to perform useful quantum
computations. It was realized early on that in the
presence of depolarizing-like noise, the computational
state approaches the maximally mixed state exponen-
tially fast [4]. This was found to put stringent limitations
on the ability to solve classical optimization problems on
noisy quantum computers with an advantage compared
to classical computers using variational or adiabatic
algorithms [5, 6]. The situation can be even worse due to
the propagation of errors since even a single error in the
middle of the circuit can proliferate during the quantum
computation and render the computation useless. This
phenomenon was recently studied in the random circuit
model [7, 8]. In practice, though, gates are not drawn
from a random distribution, but depend on the particular
algorithm.

Analogue quantum simulators are a particularly in-
teresting class of quantum devices that probe physics
that is often not accessible by classical methods [9–11].
The prospect of current quantum simulators providing
a quantum computational advantage has been recently
studied [12, 13], and there is evidence that quantum
simulators can solve certain problems in physics stably
and robustly to errors for intensive observables [14, 15].
In this context, the quantum adiabatic algorithm plays
a very relevant role. The algorithm relies on smoothly
interpolating from a trivial initial Hamiltonian H0 to-
wards a target Hamiltonian HT in order to prepare its
ground state. If the ground state during the evolution

is separated by a spectral gap from higher eigenstates,
the adiabatic theorem guarantees that the ground state
of the target Hamiltonian can be prepared with an
evolution time that scales inverse polynomially with the
gap [3, 16–20]. Interestingly, the adiabatic algorithm has
some robustness to hardware noise, in particular against
decoherence and control errors [21–24].

In this Letter, we provide an analysis of the prolifer-
ation of errors in the quantum adiabatic algorithm for
local Hamiltonians. As a figure of merit, we consider
the energy error δE , defined as the difference between
the observed energy after a noisy evolution and the
noiseless evolution [25]. In our analysis, we focus on a
single error as with random circuits this can already have
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FIG. 1. (a) A single depolarized qubit in a circuit of Haar-
random gates can render the whole computation unreliable
due to the proliferation of the error. If a deep quantum circuit
provides a solution to a problem, e.g. the minimization of a
cost function C, the noisy circuit propagates the error and
prepares a state with an extensive error δE = |C(no error) −
C(error)|. (b) The quantum adiabatic algorithm follows
a different paradigm, where the ground state of an initial
Hamiltonian is slowly transformed into a target state. The
cartoon shows a low-energy state as the output of an adiabatic
sweep in the presence of a single error. Darker shades of blue
in the middle of the spectrum indicate a higher density of
states, typical for local Hamiltonians. We give evidence that
error proliferation in the adiabatic algorithm is constrained,
yielding a subextensive growth of the energy error.
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catastrophic consequences for sufficiently deep circuits,
on average resulting in a state that is locally indistin-
guishable from the maximally mixed state. Thus, a
single depolarized qubit results in an extensive energy
error when interpreting the computation as a variational
quantum circuit [Fig. 1(a)]. We then give numerical
evidence that for the adiabatic algorithm with a local
Hamiltonian, the energy error does not scale extensively
as in random circuits, but at a lower rate [cf. Fig. 1(b,c)].
For an adiabatic path within the integrable parameter
range of the Hamiltonian, we explain these findings with
a proof showing that a single noise event yields an
energy error that is bounded by a constant, independent
of system size. Our analysis combines analytical tools
with large scale simulations using matrix product states
(MPS) of up to 100 spins. The results give clear evidence
that error propagation is constrained in the adiabatic
algorithm.

Single error model.—To study the proliferation of
errors, we consider a single error during the quantum
computation. A single erroneous qubit can have severe
consequences for the output of the computation. When
a quantum circuit creates entanglement, the error propa-
gates through the circuit and is bounded by a causal light
cone. An error is generically expected to impact every
qubit in the light cone. This can be made precise for
random circuits, which are good models for variational
quantum algorithms [26–28]. For these random circuits,
the average state after a single depolarized qubit in a deep
circuit is locally indistinguishable from the completely
mixed state ρ = 1⊗n/2n. This builds on previous
results [7], and we include the proof for completeness in
the Supplement [29]. If the noiseless circuit prepares the
ground state of a target Hamiltonian, the noisy circuit
prepares a state that has an energy difference δE ∼ n
with the target state.

Numerical simulations of adiabatic algorithms.—The
quantum adiabatic algorithm is of very different nature
than random circuits. It is then natural to ask about
error proliferation in the quantum adiabatic algorithm
using the single error model. We limit our investigations
mostly to the antiferromagnetic ZZXZ model

HZZXZ = J
∑
i

σz
i σ

z
i+1 +Bx

∑
i

σx
i +Bz

∑
i

σz
i , (1)

and perform numerical simulations using the TEBD algo-
rithm [30]. The ZZXZ model is non-integrable when both
field strengths Bx, Bz are finite, and features a second
order phase transition from the disordered phase into the
antiferromagnetic phase [Fig. 2(a)]. The adiabatic gap
vanishes as ∆ad ∼ 1/n [31]. For both trajectories in the
phase diagram, we consider linear sweep schedules with a
total evolution time T such that the noiseless evolution is
approximately adiabatic for large T [Fig. 2(b,c)]. Next,
we include a single error early in the dynamics and
show the resulting excess energy δE in Fig. 2(d,e). We
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FIG. 2. (a) Phase diagram of the mixed field Ising model
(ZZXZ) showing two sweeps of the adiabatic algorithm. The
sweep along Bz = 0 considers the transverse field Ising model
(TFIM). (b) Energy density above the ground state for a
noiseless, linear adiabatic sweep in the TFIM, converging
asymptotically to the ground state energy. (c) Same data for
the ZZXZ model, corresponding to the blue arrow in the phase
diagram. (d) The excess energy δE in the single error model
plateauing for the TFIM as a function of evolution time T .
(e) Same data for the ZZXZ model in an adiabatic path from
HZZXZ(J = Bz = 0, Bx = 1) to HZZXZ(J = 3, Bx = Bz = 1).
(f) The excess energy δE increases sublinear as a function
of system size n for the TFIM. The evolution time is scaled
as T = n2/40 to remain adiabatic. (g) The ZZXZ model
also shows a sublinear increase of δE with n, implying a
constrained proliferation of errors (T = n2/20).

consider the unitary error operator σy on a qubit in the
middle of the chain early in the dynamics, as indicated
in Fig. 2(a) [32]. We observe that δE in the adiabatic
limit does not grow larger for longer evolution times,
i.e. deeper circuits. When increasing the system size,
the evolution times needs to be rescaled with T ∼ n2 to
remain adiabatic [18]. The numerical results in Fig. 2(f,g)
show that the excess energy as a function of system size
clearly increases slower than linear, implying that every
qubit is impacted by noise more weakly than it would be
in the case of a random circuit.
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FIG. 3. (a) Adiabatic loop in the disordered phase of the mixed field Ising model (△αβγ, solid line) and another loop that
crosses the phase transition twice (△αβ′γ, dashed). (b) Simulated dynamics (exact diagonalization) for an adiabatic loop in
the disordered phase with an noisy qubit in the beginning. Population is transferred to low-energy excited states, but remains
in the first two excitations spaces. (c) Population as a function of total evolution time T (per leg) for the k = 1, 2, 3 excitation
space and everything above. The tensor network simulations are for the same loop as in (b) and confirm that the error does
not proliferate to higher excited states for deep circuits and large system sizes. (d) Similar simulations for the loop crossing
the phase transition showing a strong similarity to the noncritical loop. For the critical loop, the dynamics are becoming
approximately adiabatic (50 spins: 99.8% ground state fidelity at T = 5000; 98.6% for 70 spins). We observe small leakage into
the third excitation space in this regime. Note that the populations feature an oscillation for small T , induced by a phase shift
which depends on T through the sweep velocity at the avoided-level crossings, additional data in [29].

For a particular class of models, we prove the con-
strained proliferation of errors in the adiabatic algorithm.
We consider fermionic Gaussian Hamiltonians (FGH)
that are of the form HFGH =

∑
i,j hijcicj , where the

ci are Majorana operators fulfilling fermionic anticom-
mutation relations. For unitary dynamics generated
by Hamiltonians of this class, we show that the excess
energy δE due to a single error is bounded by a constant,
independent of the system size. The local noise operator
can be expressed as a polynomial in the fermionic modes
on those sites where the noise operator has support.
The unitary evolution then merely dresses the excitation
during the adiabatic algorithm without increasing the
degree of the polynomial. Hence, the energy error after
the dynamics is still independent of the system size;
we include a formal version of this proposition in the
Supplement [29]. The adiabatic sweep in Fig. 2 along
the Bz = 0 axis implements the transverse field Ising
model, which can be brought into the form of a HFGH

through the Jordan-Wigner transformation [33].
Low energy excitations.—Motivated by the analysis

of Gaussian models, we continue to investigate non-
integrable models by analyzing excitations on top of the
ground state. For convenience, we consider, as starting
and ending states for the adiabatic algorithm, points
in the phase diagram where the spectrum is given by

product states. For these states we can easily define

the k-excitation space V
(k)
|p⟩ , which is the space spanned

by all states obtained by applying a total of k different
single-site excitations to the state |p⟩. Concretely, for an
operator σα

i acting on the ith spin, the 1-excitation space

is V
(1)
|p⟩ = span[σα

1 |p⟩ , . . . , σα
n |p⟩].

The initial state of the adiabatic algorithm is a product
state and we cycle through the phase diagram back to the
starting point, as shown in Fig. 3(a). First, we consider a
loop (△αβγ) that remains within the disordered phase of
the Ising model. In Fig. 3(b), we show a spectrum along
this loop for a small system of 10 spins. The noise gate
σy is applied on a qubit in the center of the chain at the
beginning of the evolution. The populated eigenstates
are clearly restricted to low-energy states. At the end of
the loop the population is contained within the first two
bands of eigenstates above the ground state. This holds
also when scaling up the system size to up to 70 spins
in Fig. 3(c). We can quantify that the first and second
excitation spaces are populated with approximately 40%
and 60%, respectively, in the limit of a slow sweep. Next,
in Fig. 3(a,d), we show the behavior of a loop (△αβ′γ)
that crosses the critical region. We observe that the
containment of errors to the low energy subspace is still
valid in this case. Concretely, when the dynamics are
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approximately adiabatic at large T , the state occupies
nearly exclusively the lowest two energy subspaces above
the ground state. A small share of the population of 2%
is found in the k = 3 subspace for 50 spins, and 3% for
70 spins, respectively. The overlap squared with higher
energy states is of the order of 10−4 and decays further
when the dynamics are even slower.

As a remark regarding the spectrum in Fig. 3(b), we
note that even though there are in principle additional
lines crossing with populated eigenstates, the population
is contained to low energy states. This is because the
proliferation of errors in an adiabatic algorithm also
depends on the matrix elements of the Hamiltonian Vij =
⟨ϕi(s)|∂H(s)/∂s|ϕj(s)⟩ that govern transitions between
the eigenstates (we define H(s) |ϕi(s)⟩ = λi(s) |ϕi(s)⟩).
Symmetries of the Hamiltonian render some Vij zero and
prevent population from being transferred to higher ener-
gies. In particular, we consider the translation operator
T that shifts the system by one site. The eigenvalues
of T define the momentum q as T |φ⟩ = exp(iπq) |φ⟩.
For translationally invariant system [H(s), T ] = 0 for
all s and the eigenstates {|ϕi(s)⟩}i have a well-defined
momentum q. Different momentum sectors are effectively
decoupled, creating a finite gap between the first eigen-
state of the q = 0 sector and higher eigenstates. The
models in the numerical benchmark have open boundary
conditions, hence, they are approximately translationally
invariant for large system sizes.

Further studies on non-integrable models.—Most of
the numerical experiments up to this point targeted the
disordered phase of the mixed field Ising model. To show
that the robustness of the adiabatic algorithm appears to
be a more general feature, we also consider other phases.
First, we consider the antiferromagnetic phase, where we
start in the ground state of the Ising model with zero field
strengths [Fig. 4(a)]. At this point, the ground state is
again a product state and the excitation space is again
defined as the first eigenenergy space above the ground
state. We consider an adiabatic loop back to the initial
point and observe a high population in the first excitation
space that is approximately independent of system size
[Fig. 4(b)]. Note that, in the antiferromagnetic phase,
whether an odd or even spin is subjected to noise
influences how much the energy of the system increases
immediately due to the noise event, influencing the excess
energy at the end of the computation [29].

Additionally, we consider the disordered phase
of a non-integrable Heisenberg model HHeis =
1/2

∑
i(Jσ

x
i σ

x
i+1+Jσ

y
i σ

y
i+1+Jzσ

z
i σ

z
i+1)+Bx

∑
i σ

x
i [34].

Note that the magnetic field is not aligned with the z
direction of the spins, which breaks Bethe-integrability.
We consider an adiabatic loop in the disordered phase
and observe near-perfect containment in the first excita-
tion space [Fig. 4(c,d)], which can be explained by few
energy lines crossing during the evolution and only small
coupling between these eigenenergies.
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FIG. 4. (a) Adiabatic loop within the antiferromagnetic
phase of the mixed field Ising model. (b) The noisy evolution
is largely contained in the first two excitation spaces. We
note that error proliferation is dependent on whether the error
occurs on an even or odd site of a Néel state. The data here
is for the benign case and additional data is included in [29].
(c) Adiabatic loop in the disordered phase of a non-integrable
Heisenberg model. Critical lines are again shown in red, and
the disordered phase is found for large, positiveBx/J . (d) For
the loop in the disorder phase of this model, the population
is fully contained in the first excitation space.

Discussion and outlook.—The study of noise in quan-
tum systems is a complex matter that remains very
relevant while the hardware is being built up to practical
quantum error correction. In this Letter, we provide a
novel perspective on error propagation in a physically
inspired quantum algorithm. We study the single error
model and show that the adiabatic algorithm behaves
strikingly different than a random circuit. We consider
the excess energy as a figure of merit and show that
the excess energy for integrable, free fermionic models
can be bounded by a constant. Interestingly, the non-
integrable models in our benchmark also show a signif-
icantly constrained proliferation of errors. We remark
that in the presence of depolarizing noise, there are no-
go results that cannot be avoided [4, 35]. If this is not
the case, however, our results could provide evidence that
the adiabatic algorithm works well in practice [36].

We show that a single error can be understood as a
dressed excitation on top of the ground state for fermionic
Gaussian Hamiltonians. Our results suggest that this
behavior also applies approximately for integrable mod-
els. We leave for future studies to make the observation
rigorous. Also, we have only considered a single error,
and expect that if there are few errors, e.g. that as long
as the errors are not extensive, the result would hold
since they would not interact with each other. However,
this is an interesting question that deserves to be studied
further.
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A key feature of the quantum adiabatic algorithm
for physical models is that it does not create volume
law entanglement, which is desirable in the presence of
hardware noise as entanglement accelerates the prolif-
eration of errors [7]. Further research could explore if
there exists a deeper connection behind the constrained
proliferation of errors and the limited entanglement
during the algorithm. Another possible directions is to
relate the robustness of the adiabatic algorithm to an
approximate conservation of energy in the presence of a
slowly changing Hamiltonian.

More generally, our study highlights that the choice
of the algorithm can have substantial consequences for
how strongly noise affects the results of a quantum
computation. Our results motivate the design of quan-
tum algorithms that are particularly resilient to noise,
possibly by relying on similar physical mechanisms as in
the adiabatic algorithm.
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[7] G. González-Garćıa, R. Trivedi, and J. I. Cirac, Error
Propagation in NISQ Devices for Solving Classical Opti-
mization Problems, PRX Quantum 3, 040326 (2022).
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Supplemental Material:
The quantum adiabatic algorithm

suppresses the proliferation of errors

1. SINGLE ERROR IN RANDOM CIRCUITS

We consider the propagation of errors in a quantum
circuit where every gate is drawn from a Haar-random
distribution. This scenario was analyzed in Ref. [7]. We
build upon their results to show that the energy error
in the final state after a single depolarized qubit in the
circuit scales extensively with the system size n. Without
loss of generality, we focus on the 1D case.

Importantly, we assume a brick-wall layer structure
of the circuit and gates that act on two neighboring
qubits simultaneously. The twirl of a two-qubit quantum
channel M over the Haar distribution is again a two-
qubit depolarizing channel as

Ed(ρ) =
∫
U
dU [U†MU ](ρ) (S1)

We restate the three possible outcomes:

1. If no error occurs [M(ρ) = ρ], then Ed(ρ) = ρ;

2. If two errors occur [M(ρ) = Tr(ρ)1⊗2/4], then
Ed(ρ) = Tr(ρ)1⊗2/4;

3. If an error occurs in one of the two qubits [e.g. on
the first M(ρ) = 1/2⊗ Tr1(ρ)], then

Ed(ρ) =
1

5
ρ+

4

5
Tr(ρ)

1⊗2

4
. (S2)

The error propagation can be modeled by a Markov
chain as follows. We consider a string of zeros and ones,
such that a “0” represents a noiseless qubit and a “1”
represents a noisy qubit. As the state X of the Markov
chain we consider the number of ones in the string. Then,
the state X = 0 represents a noiseless system, and a
system with a single depolarized qubit is in the X = 1
state. Lemma 2 in Ref. [7] states the transition matrix
for the states X. We summarize in words: From X = 1
the state goes to X = 0 with probability 1/5, and with
probability 4/5 the error propagates (X = 2). The steady
states of the chain are the X = 0 and the X = n states.
The probability of reaching X = 0 after t applications of
the Markov chain can be bounded (Lemma 3 in Ref. [7]):

Pr(Xt = 0|Xt = 1) ≤ 1

4
∀t. (S3)

The average number of depolarized qubits at time t ⟨q(t)⟩
is then given as

⟨q(t)⟩ ≈ 3

4
min

(
6t

5
, n

)
, (S4)

which is approximate [7]. This implies, on average, with a
probability of more than 75%, a single depolarized qubit
is equivalent as the completely mixed state ρm = 1⊗n/2n.
The final step in our argument is that for a local

Hamiltonian H, the difference between the ground state
energy E0 and the highest eigenenergy E2n−1 is exten-
sive: E2n−1 −E0 ∼ n. Without loss of generality we can
assume H to be traceless, such that the energy of the
completely mixed state is Em = Tr(Hρm) = 0. Hence, a
single depolarized qubit propagates the error in random
circuits such that, on average, the energy of the prepared
states Enoisy under the Hamiltonian H differs from the
target state energy E0 as δE = Enoisy − E0 ∼ n.

2. NO ERROR PROPAGATION IN GAUSSIAN
SYSTEMS

Here we present the argument that Gaussian fermionic
systems do not give rise to error propagation scaling with
the system size. The setting is as follows: we consider a
lattice system defined by local fermionic modes aj , a

†
j , an

initial Gaussian state |init⟩ (for instance the vacuum state
aj |init⟩ = 0 ∀j) and a fermionic Gaussian Hamiltonian,

H =
∑
i,j

hija
†
iaj + h̃ija

†
ia

†
j +H.c., (S1)

whose ground state |GS⟩ is therefore a Gaussian state. In
fact, any Hamiltonian of this form can be diagonalized
by a change of basis of the modes,

H =
∑
k

ωkb
†
kbk, (S2)

where bk, b
†
k are linear combinations of the original modes

aj , a
†
j . We will assume that the single particle energies

are bounded, maxk ωk = O (1), as is the case in most
physically relevant models, e.g. translationally invariant
systems, where ωk corresponds to the dispersion relation.

Now assume there exists a Gaussian unitary U , rep-
resenting our algorithm, such that U |init⟩ = |GS⟩. A
unitary is Gaussian if it preserves the family of Gaussian
states: such maps amount once again to linear transfor-
mations of the fermionic modes. The precise nature of
U is not important for the argument: it may have been
obtained from a variational circuit U =

∏
uj , or as a

result of adiabatic evolution U = T exp(−i
∫ s

0
dsH(s))

along a path of Gaussian Hamiltonians H(s).
Lastly, consider a local noise operator N supported

on s = O (1) sites (without loss of generality, and for
notational convenience, we take them to be the sites
labeled 1, . . . , s). N can therefore be expressed as a
polynomial in the fermionic modes on these sites

N =

2s∑
n=1

∑
i1,...,in

r
(n)
i1,...,in

αi1 . . . αin (S3)
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where α = (a1, a2, . . . , as, a
†
1, a

†
2, . . . , a

†
s) is the vector

of the creation-annihilation operators on sites 1, . . . , s
and the r(n) are the coefficients of each monomial.
Importantly, this polynomial will be of bounded degree
2s, as there are only s fermionic modes in its support.

If the noise event takes place at the beginning of our
protocol, the final state will be

UN |init⟩ = UNU†U |init⟩ = UNU† |GS⟩ . (S4)

We want to argue that the energy difference with the
ground state is bounded for this state. The key to the
argument is that UNU† is once again a polynomial of
bounded degree 2s in aj , a

†
j , since U merely implements

a linear transformation of the modes. Furthermore, this
property is preserved when changing to the eigenbasis
bj , b

†
j , which amounts to another linear transformation.

Thus, the state prepared by the noisy protocol is of the
form (

r(0) + r
(1)
k b†k + r

(2)
kk′b

†
kb

†
k′ + . . .

)
|GS⟩ , (S5)

which is a superposition of states with at most 2s
excitations and thus bounded energy difference with the
ground state,

δE ≤ 2smax
k

ωk = O (1) . (S6)

3. BOUND ON POPULATED STATES FOR A
LOCAL ERROR

For completeness, we briefly state results that bound
the overlap with high energy states when the ground state
is perturbed locally.

Consider a state |ψ(s)⟩ during the adiabatic algorithm
before the noise event occurs. The Hamiltonian H(s)
generating the dynamics is at all times assumed to be
(geometrically) local. Let λ(s) be the energy of the
state during the protocol. Then, an arbitrary error
on a single qubit at time s∗ can increase the energy
at most by some c which depends on the locality and
norm of the Hamiltonian, but is independent of system
size. Concentration bounds for quantum states exist that
bound the overlap of this state with high energy states:
For a state on a D-dimensional lattice, with correlation
length σ, and m local terms in the Hamiltonian, the
overlap

√
pf with the eigenspace of energy f is bounded

as

√
pf ≤ exp

{
−
[
(λ(s∗) + c− f)2σ

]1/(D+1)

m1/(D+1)Dσ

}
(S1)

when |λ(s∗)+c−f | > 2D
√
mσ [40]. For one-dimensional

gapped systems, the overlap with higher excited states
then decays exponentially.

4. DETAILS ON THE NUMERICAL
SIMULATIONS

We implement the numerical simulations using the
TEBD algorithm [30] and ITensor [41]. We do not set
a maximal bond dimension during the dynamics, and
only use a precision cutoff of ϵ = 10−8 for truncating
bonds when updating tensors in the simulations. As
the dynamics after a single noise event do not follow the
ground state trajectory, a strict area law does not apply.
These violations of the area law then lead to a larger bond
dimensions required in these simulations compared with
the noiseless case. Ground states are computed using the
DMRG algorithm [37] up to numerical precision.
The single noise event is modeled by the application

of a σy
i operator acting on the ith qubit. This error can

be related to depolarizing noise, which corresponds to
the application of a random Pauli matrix via quantum
trajectory method [42]. Closed system dynamics with
all three Pauli operators on the ith qubit suffice for the
simulation of the depolarized qubit. Note that early
in the sweep, the commutator [σy

i , HZZXZ(s = 0)] is
the largest for the three Pauli operators. Therefore,
we focus on σy

i , which can be related to a bound on
the excess energy due to a depolarized qubit. See also
Fig. 21(b) in [38] where the different Pauli noise operators
are compared for the same model.
Hereafter, we give additional details regarding the

numerical simulations.

Noiseless data for the critical adiabatic loop in the
Ising model

We include the ground state fidelity and the subspace
populations for a noiseless adiabatic algorithm following
the critical loop (△αβ′γ) in Fig.˜3(d). This is to
showcase the regime where the dynamics are sufficiently
adiabatic. Note that the dynamics on 70 spins become
approximately adiabatic for an evolution time per leg of
the triangle of around T = 5000, even though there is
an initial peak where the ground state population in the
noiseless case reaches 80% at time T = 200 already. This
is due to interference of the low energy states when the
second small gap is passed, giving rise to an oscillation
of the ground state fidelity as a function of the evolution
time. The induced phase shift at the avoided level
crossing depends on the velocity at the crossing and gives
rise to so-called Stückelberg oscillations [39].

Details on the antiferromagnetic phase in the Ising
model

We comment on a subtlety regarding the prolifera-
tion of a single error in the antiferromagnetic phase of
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a

b

FIG. S1. Complementary data to Fig. 3(d) for the critical loop △αβ′γ. We show the ground state fidelity and the subspace
populations for both the noiseless and the noisy dynamics.
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FIG. S2. Comparison of the population in the first excitation
spaces above the ground state after a quasi-adiabatic loop in
the antiferromagnetic phase of the mixed-field Ising model.
The blue curves correspond to the case where the position
of the erroneous qubit is such that a |↑⟩ gets flipped into a
|↓⟩, and vice-versa for the red lines. Different energy lines
get populated for the two cases during the ensuing adiabatic
algorithm, resulting in higher or lower final excess energy.

the Ising model considered in the main text. In our

simulations we apply the error to a center qubit at
position i = n/2. If the system size is (n mod 4) = 0,
the error is applied to a qubit at an even index, for
(n mod 4) = 2 the index is odd. The adiabatic path
through the antiferromagnetic phase in Fig. 4(a) starts
at H0 =

∑
i σ

z
i σ

z
i+1, which has a twofold degenerate

ground state. We initialize the adiabatic algorithm in
the state |↑1↓2 . . . ↓n−1↑n⟩. Then, depending on the
system size, the error either acts as σy

i |. . . ↑i−1↓i↑i+1⟩
or σy

i |. . . ↓i−1↑i↓i+1⟩. As evidenced by a perturbative
argument, under the presence of a field

∑
i σ

z
i , at the

beginning of the adiabatic algorithm, the energy lines
split depending on the local longitudinal (and transverse)
fields. Then, whether the error effectively flips a up-spin
into a down-spin, or vice-verse, leads to the dynamics
following larger- or lower-lying energy lines. In Fig. 4(b),
we observe that the adiabatic algorithm can be relatively
robust to a single error in the antiferromagnetic phase. In
this case, the population in the first two excitation spaces
is approximately 90% and mostly low-lying energy states
are populated after the dynamics. However, if the system
size is (n mod 4) = 0, then the error leads to overlap
with slightly higher energy lines immediately after the
error, which in turn, give rise to higher energies after
the evolution. For this case, the population in the first
two excitation spaces is significantly lower as it can be
observed in Fig. S2.
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