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Many-body open quantum systems, described by Lindbladian master equations, are a rich class of
physical models that display complex equilibrium and out-of-equilibrium phenomena which remain
to be understood. In this paper, we theoretically analyze noisy analogue quantum simulation of
geometrically local open quantum systems and provide evidence that this problem is both hard to
simulate on classical computers and could be approximately solved on near-term quantum devices.
First, given a noiseless quantum simulator, we show that the dynamics of local observables and the
fixed-point expectation values of rapidly-mixing local observables in geometrically local Lindbladians
can be obtained to a precision of ε in time that is poly(ε−1) and uniform in system size. Furthermore,
we establish that the quantum simulator would provide an exponential advantage, in run-time scaling
with respect to the target precision and either the evolution time (when simulating dynamics) or
the Lindbladian’s decay rate (when simulating fixed-points) over any classical algorithm for these
problems unless BQP = BPP. We then consider the presence of noise in the quantum simulator in
the form of additional geometrically-local Linbdladian terms. We show that the simulation tasks
considered in this paper are stable to errors, i.e. they can be solved to a noise-limited, but system-size
independent, precision. Finally, we establish that there are stable geometrically local Lindbladian
simulation problems such that as the noise rate on the simulator is reduced, classical algorithms
must take time exponentially longer in the inverse noise rate to attain the same precision unless
BQP = BPP.

I. INTRODUCTION

An extensive body of results suggest that, with a fault-
tolerant quantum computer, several many-body prob-
lems relating to both dynamics and equlibrium proper-
ties can be efficiently simulated [1, 2]. However, despite
the recent experimental demonstrations of quantum error
correction to build logical qubits [3–7], building a large-
scale fault-tolerant quantum computer still remains a
massive technological challenge. At the same time, there
has been increasing interest in using available quantum
devices without error correction to obtain approximate
solutions to quantum many-body problems. A major ef-
fort in this direction is to use quantum devices as “ana-
logue quantum simulators”, where the target many-body
Hamiltonian is configured on a (semi-) programmable
quantum device, and due to its own physics the quan-
tum device simulates the target many-body problem [8].

Most of the focus of analogue quantum simulation has
been confined to simulating closed many-body systems
i.e. many-body problems that are specified by a Hamil-
tonian. The goal is typically to measure an intensive
observable in either a non-equilibrium state associated
with the Hamiltonian (such as the state generated by
time-evolving an initial product state under the Hamil-
tonian), or an associated equilibrium state (such as its
Gibb’s state or ground state). The mappings of a vari-
ety of physically interesting Hamiltonians arising in solid-
state physics, condensed matter physics and high energy
physics onto existing quantum computing platforms such
as trapped ions, superconducting qubits, or atomic sys-

tems have been extensively developed [1, 8–12].

However, closed many-body systems are just a special
case of open many-body systems, which can be modelled
by Lindblad master equations. Dynamics and equilib-
rium properties of open many-body systems have a num-
ber of physical effects – such as driven-dissipative phase
transitions [13, 14], super and sub-radiance [15–19], and
exceptional spectral points [20–24] – that are qualita-
tively different from closed systems and make them inde-
pendently interesting target problems for quantum sim-
ulation. Furthermore, there is evidence to suggest that
open quantum system problems could inherently be more
robust to noise than closed quantum system problems
[25]. In particular, if a quantum simulator is implement-
ing only a Hamiltonian, then well-known no-go results
indicate that due to entropy accumulation in the pres-
ence of a constant rate of depolarizing noise, the simula-
tor state converges exponentially with simulation time to
the maximally mixed state [26–30]. However, these no-
go theorems are not applicable to a quantum simulator
implementing a Lindbladian, since the simulator dynam-
ics inherently could counter the accumulation of entropy
due to external noise.

Several proposals for implementing the digital quan-
tum simulation of Markovian [31–37] and non-Markovian
open quantum systems [38, 39] on fault-tolerant quan-
tum computers have been recently developed. Analogue
quantum simulation of open quantum systems has also
been investigated [40–42], although it has not received as
much attention as its closed system counterpart. A rela-
tively simple way of simulating a given Lindbladian is to
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FIG. 1. Diagrammatic depiction of the analogue quantum simulator. (a) The target Lindbladian acting on a lattice of sites
is the sum of dissipator Linbdladians DLα , each corresponding to a geometrically local jump operator Lα. (b) The analog
quantum simulator approximates each Lindbladian DLα by implementing a Hamiltonian ωVα that couples the sites (blue) on
the lattice region to an ancilla qubit (purple) that undergoes dissipation resetting it to ∣0⟩. (c) Noise due to unwanted coupling
to an environment is modeled as additional local Lindbladians Nβ of strength δ each acting on regions that may include both
simulated lattice sites and ancillae.

use a set of ancillae, each continuously reset to its ground
state (i.e. experiencing an amplitude damping channel),
and couple the ancillae to the system qubits via a Hamil-
tonian that depends on the jump operators in the target
Lindbladian. By tuning the rate of amplitude damp-
ing in comparison to the strength of the Hamiltonian,
an approximation of the target Lindbladian dynamics
can be implemented on this system. Since implementing
both amplitude-damping dissipation and a Hamiltonian
interaction is possible on many experimental platforms,
this method is particularly suitable for analogue quantum
simulation of open quantum systems. This method has
been used to implement dissipative quantum memories
[40], and identified as a strategy for Lindbladian simu-
lation [41]. However, it remains unclear if, and under
what circumstances, this experimentally simple analogue
quantum simulation protocol can provide a good approx-
imation to target many-body Lindbladians, especially in
the presence of errors in the quantum simulators.

In this paper, we analyze the analogue quantum simu-
lation of open quantum systems, both in the noiseless and
noisy settings and rigorously prove accuracy guarantees
on the quantum simulation protocol. We first consider
the noiseless setting, where a user-specified Hamiltonian
and an amplitude damping channel can be perfectly im-
plemented on the analog quantum simulator. We estab-
lish that a generic k−local Lindbladian implemented on
n qubits for time t can be simulated with an overhead
in simulation time which is at most polynomial in the
number of qubits n and the evolution time t. This sim-
ulation also incurs an overhead in ancilla qubits that is
equal to the number of Lindblad jump operators, which
is typically poly(n). We then focus on the case of a spa-
tially local Lindbladian on a lattice and show that, as
a consequence of Lieb-Robinson bounds [43, 44], local
observables on an analogue quantum simulator can be
measured in a simulation time that scales polynomially
with t but is uniform in the system size n. For geomet-
rically local Lindbladians, we also consider the problem
of measuring either long-time dynamics of the local ob-

servable, or its fixed point expectation value. We show
that, under the assumption of rapid mixing [45, 46], this
can again be done on an analogue quantum simulator in
a simulation time that is uniform in the system size n.
Our main theoretical technical contribution that enables
us to establish these results is to develop a rigorous analy-
sis of adiabatic elimination of the damped ancillae which
explicitly leverages the finite Lieb-Robinson velocity in
the target system.

Simultaneously, we build upon the quantum-circuit to
Lindbladian mapping developed in Ref. [47] and show
that unless Bounded Quantum Polynomial Time (BQP)
= Bounded Probabilistic Polynomial Time (BPP), we do
not expect there to be a classical algorithm that has a
run-time which is polynomially in both the inverse pre-
cision ε−1 and the evolution time t (when simulating
dynamics) or the inverse Lindbladian’s decay rate γ−1
(when simulating fixed-points) and consequently we ex-
pect there to be an exponential separation between the
run-time of the quantum simulator and the best possible
classical algorithm. This holds true even when restrict-
ing ourselves to the physically relevant setting of time-
independent and spatially local 2D Lindbladians. To es-
tablish this result for 2D local Lindbladians, we adapt
the circuit-to-2D-Hamiltonian-ground-state mapping de-
veloped in Ref. [48] to the dissipative setting and theoret-
ically establish that the resulting master equation mixes
in a time that scales polynomially in the system size.

Finally, we consider the presence of errors or noise
in the quantum simulator, which can either be coherent
configuration errors or incoherent errors due to interac-
tion with an external environment. Since typically every
qubit on the quantum simulator would be noisy, there are
extensively many errors on the simulator. In the worst
case, these errors could accumulate and result in the ob-
servable being measured on an n-qubit quantum simula-
tor incurring an error ∼ δ × n. Consequently, as the sys-
tem size is increased (e.g. to simulate the thermodynamic
limit of a many-body observable), any constant error rate
δ would cause the simulated observable to diverged from
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its true value. However, we establish that when com-
puting dynamics of local observables or the fixed point
expected value of rapidly mixing local observables, a
noisy quantum simulator incurs a system-size indepen-
dent error that decreases polynomially with the noise
rate. Thus, these simulation task are stable in the sense
defined in Ref. [25] and can be solved using near-term
experimental platforms to a hardware-error limited pre-
cision. Finally, by combining these stability results with
the circuit-to-2D-geometrically-local-Lindbladian encod-
ing, we also establish that to solve these problems to the
same precision as achieved by the noisy quantum device,
any classical algorithm would require time that scales ex-
ponentially with the hardware error rate.

II. SUMMARY OF RESULTS

A. Theoretical results

Throughout this paper, we will concern ourselves with
simulating a Lindladian. Any Lindbladian over a Hilbert
space H (dim(H) < ∞) can be specified by a set of jump
operators L1, L2 . . . LM , and a Hamiltonian Hsys(t). The
corresponding Lindbladian master equation is

d

dt
ρ(t) = −i[Hsys, ρ(t)] +

M

∑
α=1
DLα(ρ(t)), (1a)

where ρ(t) is the time-dependent density matrix of the
physical system under consideration and, for any opera-
tor A, the dissipator corresponding to A is the superop-
erator

DA(X) = AXA
†
−
1

2
{X,A†A}. (1b)

We assume that the time-unit in the physical problem
is normalized such that ∣∣Lα∣∣ ≤ 1 for all α. For typical
problems in physics the qubits are laid out in a lattice
and the jump operators are typically local operators that
are supported on a subset of neighbouring qubits and the
Hamiltonian is also geometrically local i.e. a sum of such
local jump operators.

If a quantum simulator could configure any specified
dissipator, there would be a direct mapping between the
target master equation and the quantum simulator. How-
ever, in most experimentally available systems the quan-
tum simulator can controllably implement a (family of)
Hamiltonians and simple single qubit dissipators, neces-
sitating an experimentally simple way of mapping a Lind-
bladian to a quantum simulator.

This problem has been addressed previously — in par-
ticular, Ref. [40] identified that a dissipator DLα can be
effectively implemented by using an ancilla qubit with
a large amplitude damping dissipation (i.e. a dissipator
that maps ∣1⟩ of the ancilla to ∣0⟩) and coupling it weakly
to the system with a Hamiltonian that depends on the
jump operator Lα. More specifically, to simulate the

Lindbladian in Eq. 1 over Hilbert space HS , we define
another Hilbert space HA = (C2)⊗M of M ancilla qubits
and consider the following Lindbladian over HS ⊗HA

d

dt
ρω(t) = Lω(ρω(t)) (2a)

with

Lω(X) = −iω
2
[Hsys,X] − iω[

M

∑
α=1

Vα,X] + 4
M

∑
α=1
Dσα(X),

(2b)

where σα = ∣0α⟩⟨1α∣ is the lowering operator on the αth

ancillary qubit,

Vα = Lασ
†
α +L

†
ασα (2c)

is the interaction Hamiltonian between the αth ancilla
and the system, and the dimentionless parameter ω con-
trols the strength of the interaction between the ancillae
and the system.
The parameter ω also controls the extent to which the

reduced state of the system, TrA(ρω(t)), is a faithful ap-
proximation of the target state ρ(t) satisfying Eq. 1a. To
see this physically, we treat the ancillae as an environ-
ment for the system qubits. The limit of small ω then
corresponds to the limit of weak system-environment in-
teraction in which we expect the ancillae to behave like
a bath describable by the Born-Markov approximation
[49]. Equivalently, we expect TrA(ρω(t)) to satisfy a
Markovian master equation. Consequently, as we will
rigorously establish in this paper with a concrete bound
for finite ω, it is true that a smaller ω guarantees a more
accurate simulation of the target quantum dynamics. In
particular,

lim
ω→0

TrA(ρω(
t

ω2
)) = ρ(t). (3)

It is important to note that Eq. 3 suggests that even for a
fixed time t, the simulation time needed on the quantum
simulator increases on decreasing ω, i.e. the greater the
accuracy required in simulating the target master equa-
tion, the slower the quantum simulator will be.
While this provides a qualitative reason why a quan-

tum simulator can reproduce the dynamics of the target
system, it leaves open several theoretical questions that
are important from the point of view of current experi-
ments. First, can we provide concrete run-time bounds
on the quantum simulator and gauge its performance for
various physically relevant models? And is it true that an
analogue open quantum system simulator can potentially
provide a quantum advantage over classical algorithms
for physically relevant models? Second, does the pres-
ence of errors (coherent or incoherent) catastrophically
impact the performance of the analogue open quantum
simulator, and if not, is the analogue open quantum sim-
ulator stable to errors for any problems which are both
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physically interesting and classically hard? This question
is even more important in view of Eq. 3 which suggests
that the quantum simulation time must be increased to
increase the accuracy of the simulation, and hence it is
possible that even a small but constant error rate could
accumulate over this long simulation time and result in
the simulator’s output being completely incorrect. It is
therefore crucial to understand if and under what circum-
stances this quantum simulation protocol could be stable
to errors in the quantum simulator and trusted to pro-
duce a faithful approximation of the target problem. In
this paper, we provide answers to all of these questions.

1. Noiseless setting

Dynamics. We first analyze the noiseless quantum
simulator and provide concrete run-time bounds for the
simulation tasks considered in this paper. We will also
provide complexity-theoretic evidence of quantum advan-
tage, even for the physically motivated restricted settings
that we consider in this paper. We begin by consider-
ing the general Lindblad master equation (Eq. 1) as the
simulation target. Our goal is to obtain the full density
matrix at time t to a given precision ε in trace-norm. As-
suming that ∣∣Lα∣∣ ≤ 1 for all α, we establish the following
simulation time bound on the analogue open quantum
simulator.

Proposition 1. With all the ancillae initial-
ized to the state ∣0⟩ and for any time t > 0,
∣∣ρ(t) −TrA(ρω(t/ω2))∣∣1 ≤ ε can be obtained with

ω = Θ
⎛
⎜
⎝

ε1/2

(M + 4M ∣∣Hsys∣∣t + 4M2t)
1/2
⎞
⎟
⎠
,

which implies that the required run-time on the simulator
tsim = t/ω

2 scales as

tsim = Θ(
Mt + 4M ∣∣Hsys∣∣t

2 + 4M2t2

ε
) .

Importantly, in this general setting and if the required
target is the full quantum state to a desired precision,
then the analogue quantum simulator must run for a
time that increases with the number of jump operators
M , which in a typical n-qubit problem scales as poly(n).
Furthermore, we expect this scaling to be tight as far as a
target precision in the full many-body state is concerned
since we incur an extensive error in using damped ancillae
to mimic a Markovian environment. Finally, we remark
that our bound on the quantum simulation time exhibits
a quadratic slowdown for the analogue quantum simula-
tor with respect to the target dynamics i.e. tsim ∼ t

2 —
this is expected and consistent with lower bounds on dig-
ital quantum simulation time for Lindbladians previously
described in Ref. [35].

The key technical tools that we develop in this pa-
per that enabled us to prove this proposition is (1) a

procedure to rigorously adiabatically eliminate the an-
cillae while accounting for the adiabatic elimination er-
rors in terms of the excitation number in the ancillae
together with (2) an excitation number bound on the
ancillae which decreases sufficiently fast with ω. This
analysis approach also forms the basis of the proof of the
better run-time bounds for spatially local Lindbladians
provided in the propositions that follow.
We remark that, to the best of our knowledge, such an

analogue simulation protocol has been analyzed previ-
ously only in Refs. [41, 50] and [40]. In Refs. [41, 50], the
bounds provided effectively do not explicitly evaluate the
dependence of the simulator time tsim on the target time
t compared to the result in Proposition 1. Furthermore,
our proof of this proposition also significantly differs from
Refs. [41, 50] and is more amenable to the analysis of ge-
ometrically local models considered in the remainder of
this paper. Additionally, in Ref. [40], the authors also
considered an encoding similar to the one considered in
Proposition 1, but their error analysis followed a signif-
icantly different approach and was restricted to a single
jump operator.
Next, we consider geometrically local models, which

frequently appear in the study of many-body open quan-
tum systems in physics. We make the assumption that
the system S consists of a set of qubits arranged on a
lattice Zd and the target Lindbladian L is assumed to be
of the form

L =∑
α

Lα,

where Lα is a Lindbladian corresponding to a jump op-
erator Lα, with ∣∣Lα∣∣ ≤ 1, and Hamiltonian hα with
∣∣hα∣∣ ≤ 1. Both Lα and hα are assumed to be sup-
ported on qudits in Sα which has a diameter a, i.e.
diam(Sα) = maxx,y∈Sα d(x, y) ≤ a, where d(x, y) is the
Manhattan distance between x, y. Such models have a
finite velocity at which correlations can propagate across
the lattice, formalized by the well-known Lieb-Robinson
bounds [43].

In the following we analyze the restricted problem of
measuring local observables in the dynamics and fixed
points of these Lindbladians. The physical motivation
behind this choice stems from the fact that in many-body
physics settings it is typically of interest to only measure
intensive order parameters that are expressible as single
(or weighted sums of) local observables. Consider first
the problem of using the analogue quantum simulator to
compute a local observable, at time t, for a spatially local
Lindbladian. Given that a spatially local Lindbladian has
a finite Lieb-Robinson velocity, it could be expected that
the choice of ω needed to obtain a good approximation
for a local observable, instead of depending on the total
number of jump operators in the Lindbladians as sug-
gested by Proposition 1, should depend on the number
jump operators within the light-cone until time t. How-
ever, a closer look at the quantum simulator Lindbladian
(Eq. 2) reveals that its Lieb-Robinson velocity, being de-
pendent on the norm of the interaction terms between
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different qubits, scales as ω, while the total simulation
time scales as t/ω2. Consequently, it would appear that
the effective light cone of a local observable on the ana-
logue quantum simulator would scale as ω × t/ω2 = t/ω,
which would diverge as we take ω → 0 to increase the
accuracy of the quantum simulation.

Despite this issue, in the next proposition, we show
that the parameter ω needed to estimate a local observ-
able at t under evolution with a spatially local Lindbla-
dian can be chosen to be uniform in the system size
(i.e. number of jump operators). More specifically, we
consider local observables (i.e. observables that are sup-
ported on a geometrically local subset of system qubits)

(a)

(b)

Ancillas in 
general state

Ancillas in low-
excitation state

FIG. 2. (a) In a system evolving under the target Lindbladian
L, the support of a local observable O spreads in the Heisen-
berg picture in a “light-cone” with a Lieb-Robinson velocity
scaling as ∼ ∣∣Lα∣∣. (b) In the quantum simulator we analyze,
the Lieb-Robinson velocity scales as ∼ ω∣∣Vα∣∣ ∼ ω; however
the simulator also runs slower by a factor of 1/ω2, leading to
a diverging Lieb-Robinson light-cone as we take ω → 0. Our
analysis shows that the effective light-cone is no longer diverg-
ing if we account for the ancillae (red) being heavily damped
and thus in a low-excitation state.

and establish that

Proposition 2. Suppose L is a d−dimensional geomet-
rically local Lindbladian and O with ∣∣O∣∣ ≤ 1 is a local ob-
servable. To achieve an additive error ε in the expected
local observable with the analogue quantum simulator, we
need to choose

ω = Θ (t−(d+1/2)
√
ε)

and this corresponds to a simulator evolution time

tsim = t/ω
2
= O (t2d+2ε−1) ,

which is uniform in the system size.

The key physical insight that allows us to side-step the
issue of the diverging light-cone as ω → 0 is that the
light-cone predicted by the Lieb-Robinson bound upper
bounds the spread of a local observable for any initial
state of the ancillae. However, in the analogue quantum
simulation experiment, the ancillae are initialized to ∣0⟩
— moreover, they are strongly damped by the amplitude
damping channel applied on them and thus remain ap-
proximately in ∣0⟩ throughout the evolution of the sim-
ulator. At a qualitative level, restricting the quantum
states of interest to only slightly excited ancillae results
in a much slower growth of the light cone on the quan-
tum simulator than predicted by a direct application of
the Lieb-Robinson bounds. Our key technical contribu-
tion in the proof of Proposition 2 is to make this expec-
tation precise by combining the rigorous adiabatic elimi-
nation of ancillae developed in the proof of Proposition 1
together with the Lieb-Robinson bounds for dissipative
systems [43].
Steady state under rapid mixing. Similarly, we can con-

sider the quantum simulation of long-time dynamics of
local observables that are rapidly mixing in a geomet-
rically local Lindbladian. Rapidly mixing Lindbladians
were introduced in Ref. [45] as the dissipative counter-
parts to gapped Hamiltonians. It has been established
that the fixed points of rapidly mixing Lindbladians have
properties similar to those of ground states of gapped
Hamiltonians, such as the stability of local observables
to local perturbations in the Lindbladian [45, 46] and a
mutual information area law for the fixed point [51], and
have also been proposed as a key tool to rigorously define
phases of mixed many-body states [52].
More specifically, a local observable O in a spatially

local Lindbladian L, with a unique fixed point σ, is con-
sidered to be rapidly mixing if it converges exponentially
fast to Tr(Oσ); i.e.

∣Tr(OeLt(ρ(0)) −Tr(Oσ)∣ ≤ k(∣SO ∣, γ)e
−γt, (4)

where SO is the support of observable O, ∣SO ∣ is the
number of lattice sites in SO (i.e. its volume), and
k(l, γ) is O(poly(l)) for a fixed γ, and, for some κ > 0,
O(exp(γ−κ)) as γ → 0 for a fixed l. The parameter γ
controls the rate of convergence of the local observable
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to the fixed point. For observables and spatially local
Lindbladians that satisfy Eq. 4, we establish that the ω
needed to estimate the observable, at any time t, depends
entirely on the precision required in the observable and
is uniform in both system size n as well as time t.

Proposition 3. Suppose L is a d−dimensional geomet-
rically local Lindbladian and O with ∣∣O∣∣ ≤ 1 is a local ob-
servable supported on O(1) lattice sites satisfying rapid
mixing (Eq. 4). To achieve an additive error ε in the ex-
pectation value of O at time t with the analogue quantum
simulator, we need to choose

ω = Θ (γ(d+1/2)(κ+1)
√
ε)

which corresponds to a simulator evolution time

tsim = t/ω
2
= O (tγ−(2d+1)(κ+1)ε−1) .

Since rapidly mixing local observables (Eq. 4) are
within ε of their fixed point expectation value Tr(Oσ)

in time t = Θ (γ−(κ+1)) +Θ(γ−1 log(ε−1)), an immediate
consequence of the run-time bound in Proposition 3 is
that analogue quantum simulators can be used to effi-
ciently simulate such observables. More specifically,

Corollary 3.1. For a d−dimensional geometrically local
Lindbladian, an analogue quantum simulator can com-
pute the fixed point expected value of a rapidly mixing
local observable O (Eq. 4), with ∣∣O∣∣ ≤ 1, to precision ε in
simulator evolution time

tsim = O (γ
−(2d+2)(κ+1)ε−1 log(ε−1)) .

The proof of this Proposition 3 builds on the proof of
Proposition 2 together with an application of the rapid
mixing assumption in Eq. 4. To show that ω can be cho-
sen to be uniform in time, we separately analyze the error
incurred by the quantum simulator in the short-time and
the long-time regimes. In the short-time regime, the ob-
servable error can be estimated with the same approach
used to prove Proposition 2 and the long-time regime is
handled using the rapid mixing property (Eq. 4).

Quantum Advantage. Propositions 2 and 3 show that,
for the specific problem of spatially local Lindbladians,
significantly better run-time bounds that are uniform in
the system size can be obtained when compared to the
general setting addressed in Proposition 1. However, this
immediately raises the question of whether we even ex-
pect a quantum advantage over classical algorithms in
these restricted settings. In our next proposition, we
show that there is indeed complexity-theoretic evidence
for quantum advantage with respect to physically rele-
vant problem parameters even in these restricted settings.

Proposition 4. There cannot exist a classical algorithm
that can, for every geometrically local 2D Lindbladian
and a corresponding rapidly mixing local observable, com-
pute the fixed point expected value of the local observable
to additive error ε in time poly(γ−1, ε−1), unless BQP =
BPP.

Again, since from Eq. 4 it follows that rapidly mix-
ing local observables reach a precision ε in time t =
Θ(γ−(κ+1) log(ε−1)), Proposition 4 also implies the hard-
ness of measuring local observables in dynamics, as is
made precise by the following corollary.

Corollary 4.1. There cannot exist a classical algorithm
that can compute every local observable at any given time
t in every 2D Lindbladian to additive error ε in time
poly(t, ε−1) unless BQP = BPP.

Our proof of Proposition 4 follows the strategy of en-
coding any given quantum circuit on n qubits and depth
poly(n) into the unique fixed point of a 2D geometrically
local Lindbladian. Furthermore, we also exhibit a local
observable whose expected value in the fixed point deter-
mines the probability of a pauli-Z measurement on the
first qubit of an encoded circuit resulting in a 1. Since
every decision problem in the BQP class can be solved
by measuring only one qubit at the circuit output, this
encoding establishes an equivalence between the classical
hardness of simulating a poly(n) depth quantum circuit
and the fixed point of a geometrically local 2D Lind-
bladian. With this encoding, we can see that if there
indeed existed a classical algorithm to obtain a rapidly
mixing observable in the fixed point of a geometrically
local Lindbladian to a precision ε in time polynomial in
both γ−1 and ε−1, then these parameters could be chosen
as polynomials of n such that the encoding Lindbladian
and local observable would also satisfy Eq. 4 and thus
we would obtain a classical algorithm to simulate any
poly(n) depth quantum circuit, implying BQP = BPP.

Our key technical contribution to the proof of Proposi-
tion 4, therefore, is an encoding of a quantum circuit on
n qubits and of depth poly(n) into the fixed point of a
geometrically local 2D Lindbladian, as well as a rigorous
analysis of the convergence of the resulting Lindbladian
to its fixed point. This builds on Refs. [47] and [48]. In
particular, in Ref. [47], the authors demonstrated a strat-
egy to encode a given quantum circuit into the unique
fixed point of a 5-local (but not geometrically local) Lind-
bladian and analyzed the spectrum of the Lindbladian to
assess its convergence to the fixed point. We extend this
construction to geometrically local 2D Lindbladian by
adapting the construction provided in Ref. [48], where
they encoded a quantum circuit into the unique ground
state of a 2D geometrically local Hamiltonian. Further-
more, we provide a detailed convergence analysis of the
2D geometrically local Lindbladian, which is significantly
different from the analysis of the gap of the geometrically
local Hamiltonian constructed in Ref. [48].

The simulation times of the noiseless quantum simu-
lator for all of these problems and complexity-theoretic
limitations of classical algorithms are summarized in Ta-
ble I.
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2. Noisy setting

Next, we address the stability of the quantum simu-
lation protocol to noise in the quantum simulator. The
notion of stability in quantum simulation tasks has been
considered previously in Ref. [25] — a physically mean-
ingful and stable quantum simulation task is one in which
in the presence of a constant rate of error δ on the simu-
lator, the error in the observable being measured is only
perturbed by an amount f(δ) ≤ O(poly(δ)) dependent
on the error rate δ, and does not grow with the num-
ber of qubits in the simulator. The observable can thus
be computed to a hardware-limited and system-size inde-
pendent precision, f(δ), on a noisy quantum simulator.
Physically, a stable quantum simulation task is a special
computational task where the quantum simulator avoids
an accumulation of errors incurred on all the qubits —
such an accumulation would typically yield an observable
error that grows not only with δ but also with the sys-
tem size n, and would be a worst case scenario for the
performance of the quantum simulator.

We start by considering a concrete but general and re-
alistic error model for the analogue quantum simulator.
There can be two sources of errors — coherent errors on
the quantum simulator which lead to the incorrect con-
figuration of Hamiltonian interactions between different
qubits, or incoherent errors that arise from the interac-
tion of the simulator qubits with an external environ-
ment. In order to model both of these sources of errors,
we will assume that the quantum simulator implements
the Lindbladian Lω,δ instead of the Lindbladian Lω with

Lω,δ = Lω + δN , (5a)

where δ is the error rate and N is itself a spatially local
Lindbladian given by

N =
M ′

∑
β=1
Nβ , (5b)

where each term Nβ is a local Lindbladian acting on
the system and ancillae and the number of these term
M ′ ≤ O(n) with n being the number of qubits. We
may consider δ to be the error rate since it mediates
the strength of N , which describes decohering interac-
tions with an environment. We assume the normalization
∣∣Nβ ∣∣◇ ≤ 1. In general, Nβ(X) = −i[vβ ,X] + ∑j DQj,β

—
the Hamiltonian term vβ in Nβ corresponds to coherent
errors in the quantum simulator that perturb the Hamil-
tonians, and the jump operators Qj,β can model different
incoherent errors in the Lindbladian. We now revisit the
problem of computing local observables in dynamics and
fixed points, and analyze how the presence of errors and
noise effects the results of the computation. We will show
that the analogue quantum simulator is stable for both
the problem of local observables in dynamics of geometri-
cally local Lindbladians as well as that of rapidly mixing

local observables in fixed points. In the next two proposi-
tions, we establish that the quantum simulator is robust
to both coherent and incoherent errors — in particular,
we show that in the presence of hardware error at rate δ,
we can pick the parameter ω = poly(δ), and uniform in
the system size, to obtain a precision ε in the observable
that also scales as O(δc), for some constant c > 0, and is
uniform in system size. More specifically, for the prob-
lem of dynamics of geometrically local Lindbladians, we
establish that

Proposition 5. Suppose L is a d−dimensional geomet-
rically local Lindbladian and O with ∣∣O∣∣ ≤ 1 is a local
observable. Then, in the presence of noise with noise
rate δ, the expected local observable at time t can be
obtained to a precision ε = O (δ1/2t2d+1), independent
of the system size, with the analogue quantum simula-
tor. Furthermore, to obtain this precision, we need to
choose ω = Θ(δ1/4) which results in a simulator run-time

tsim = t/ω
2 = O(tδ−1/2).

We establish a similar stability result for the problem
of long-time dynamics of rapidly mixing observables (de-
fined in Eq. 4), i.e. these observables can be obtained
on quantum simulators to a precision ε that scales as
poly(δ) and is independent of the system size n as well
as the time t.

Proposition 6. Suppose L is a d−dimensional geomet-
rically local Lindbladian and O with ∣∣O∣∣ ≤ 1 is a local ob-
servable supported on O(1) lattice sites satisfying rapid
mixing (Eq. 4). Then, in the presence of noise with noise
rate δ, the expected local observable at any time t can be
obtained to a precision ε = O(δ1/2γ−(κ+1)(2d+1)), inde-
pendent of n and t, with the analogue quantum simula-
tor. Furthermore, to obtain this precision, we need to
choose ω = Θ(δ1/4) which results in a simulator run-time

tsim = t/ω
2 = O(tδ−1/2).

For rapidly mixing observables, Eq. 4 implies that after
t ≥ Θ (γ−(κ+1)) log(ε−1), the expected value of the observ-
able at time t is ε-close to its fixed point expected value.
Consequently, from Proposition 6, it immediately follows
that the problem of measuring the fixed point expecta-
tion value of such observables is also stable to errors.
More specifically, we obtain that

Corollary 6.1. Suppose L is a d−dimensional geomet-
rically local Lindbladian and O with ∣∣O∣∣ ≤ 1 is a lo-
cal observable supported on O(1) lattice sites satisfy-
ing rapid mixing (Eq. 4). Then, in the presence of
noise with noise rate δ, the fixed point expected value
of the local observable can be obtained to a precision
ε = O (δ1/2γ−(κ+1)(2d+1)), independent of n, with the ana-
logue quantum simulator with a simulator run-time tsim =
O (γ−(κ+1)δ−1/2 log(δ−1)) +O (γ−(κ+1)δ−1/2 log(γ−1)).

Quantum advantage with errors. Even for a stable
quantum simulation task, the observable of interest can-
not be determined to an arbitrary precision on a noisy
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Problem Simulator run-time Quantum advantage

General Lindbladian and
observable (Dynamics)

O(ε−1Mt) +O(M2t2) +
O(M ∣∣Hsys∣∣t

2
)

—

Geometrically Local Lindbladian
on Zd, local observable
(Dynamics)

O (t2d+2ε−1)
No poly(t, ε−1) classical algorithm
for d ≥ 2.

Geometrically Local Lindbladian
on Zd, rapidly-mixing local
observable (Dynamics)

O (tγ−(κ+1)(2d+1)ε−1)
No poly(t, γ−1, ε−1) classical
algorithm for d ≥ 2.

Geometrically Local Lindbladian
on Zd, rapidly-mixing local
observable (Fixed points)

O (γ−(κ+1)(2d+2)ε−1 log(ε−1))
No poly(γ−1, ε−1) classical
algorithm for d ≥ 2.

TABLE I. Summary of the upper bounds on the simulator run-time for the problems considered in Propositions 1-3, as well as
the classical hardness results for these problems following from Proposition 4.

Problem Noise-limited precision Simulator run-time No poly(δ−1) algorithm for
(in 2D)

Geometrically Local
Lindbladian on Zd, local
observable (Dynamics)

O(δ1/2t2d+1) O(tδ−1/2) t = O(δα−1/10) for any α > 0.

Geometrically Local
Lindbladian on Zd,
rapidly-mixing local
observable (Dynamics)

O(δ1/2γ−(κ+1)(2d+1)) O(tδ−1/2) —

Geometrically Local
Lindbladian on Zd,
rapidly-mixing local
observable (Fixed points)

O(δ1/2γ−(κ+1)(2d+1)) Õ(γ−(κ+1)δ−1/2) γ−1 = O(δα−1/(10(κ+1))) for any
κ,α > 0.

TABLE II. Summary of the results from the analysis of noisy open quantum simulator for the dynamics and fixed points of
geometrically local Lindbladians. The table lists the estimates of noise-limited precision and simulator run-time as a function
of the noise-rate δ that follow from Propositions 5-6, as well as the family of problems as a function of δ that where there is
expected to be no poly(δ−1) classical algorithm. The Õ in the last row suppresses polynomial factors of log(γ−1) and log(δ−1).

quantum simulator, but only to a precision ε(δ) that
scales polynomially with the hardware error rate δ. Fur-
thermore, as exhibited in Propositions 5 and 6, the noisy
quantum simulator solves these problems in simulation
time O(poly(δ−1)). To compare the performance of the
noisy quantum simulator with classical algorithms, we
take the perspective laid out in Ref. [25] — i.e. if the
run-time of the (best) classical algorithm to solve the
considered problem under to the hardware-error limited
precision ε(δ) also scales as poly(δ−1), then the noisy
quantum simulator does not provide an exponential ad-
vantage over classical algorithms. On the other hand, if
the classical run-time scales exponentially with δ−1, then
the quantum simulator could provide an exponential ad-
vantage over the classical algorithm if it is of interest to
compute the target observable to only the noise limited
precision. Stated differently, this notion of quantum ad-
vantage implies that as the noise rate δ is reduced the
classical algorithm would find it exponentially harder to
compute the observable to the noise-limited precision.

Our main result is to show that this notion of quan-
tum advantage holds for certain families of problems of
computing local observables in dynamics or fixed point of
geometrically local 2D Lindbladians that are also stable
to noise on the quantum simulator. In particular, for the

problem of fixed points, we show that

Proposition 7. For a given α,κ > 0, consider the family
of geometrically local 2D Lindbladians and corresponding
rapidly mixing observables indexed by δ → 0 satisfying
Eq. 4 with γ−1 ≤ O(δα−1/(10(κ+1))). Then, the fixed point
expectation value of the observable can be estimated by an
analogue quantum simulator with noise rate δ to a noise-
limited precision O(δα(κ+1)) (which → 0 as δ → 0) in
simulator run-time O(poly(δ−1)) and there cannot exist
a poly(δ−1) randomized classical algorithm to estimate
this local observable to the same precision for any α,κ > 0
unless BQP = BPP.

From a physical standpoint, the constraint γ−1 ≤
O(δα−1/(10(κ+1))), for α < 1/(10(κ + 1)), simply states
that a quantum simulator with lower noise can be used to
simulate the fixed point expected value of a rapidly mix-
ing local observable that takes longer to reach its fixed
point value while still obtaining a hardware-limited pre-
cision which decreases polynomially with δ. This propo-
sition, which rigorously proves the notion of noisy quan-
tum advantage laid out in Ref. [25], follows almost di-
rectly from the quantum-circuit-to-2D-Lindbladian en-
coding developed for the proof of Proposition 4. The
only additional detail in proving this proposition is to



9

show that, given any quantum circuit on N qubits with
depth T = poly(N), the encoding Lindbladian can be em-
bedded into the family of problems considered in Propo-
sition 7 while accounting for the additional constraint on
γ. We show that this is possible simply by choosing α,κ
depending on the degree of the polynomial of N describ-
ing the depth T , and then choosing N depending on δ
as N = poly(δ−1). This implies that if there did exist a
poly(δ−1) classical algorithm to simulate this family of
problems for any α,κ > 0, then it could also simulate an
arbitrary poly(N) depth quantum circuit, thus implying
BQP = BPP. Furthermore, we also establish an impli-
cation of Proposition 7 i.e. a similar notion of quantum
advantage holds for the problem of dynamics of local ob-
servables. More specifically,

Corollary 7.1. For a given α > 0, consider the fam-
ily of geometrically local 2D Lindbladians, local observ-
able and evolution time t indexed by δ → 0 such that
t ≤ O(δα−1/10). Then, the fixed point expectation value
of the observable can be estimated by an analogue quan-
tum simulator with noise rate δ to a noise-limited preci-
sion O(δ5α) (which → 0 as δ → 0) in simulator run-time
O(poly(δ−1)) and there cannot exist a poly(δ−1) random-
ized classical algorithm to estimate this local observable
to the same precision for any α > 0 unless BQP = BPP.

We summarize the results pertaining to noisy quantum
simulation of geometrically local Lindbladians in Table
II.

B. Numerical example

As an illustrative example of the analogue quantum
simulation and the impact of noise on the simulator, we
study the analogue quantum simulation of a gaussian
fermion model. We choose a gaussian fermion model
since it can be numerically simulated efficiently for large
system sizes [14, 53], allowing us to verify the scalings
predicted by Propositions 1, 2, 4, and 5. We consider a
family of target Lindbladians on n = 2L + 1 fermions ar-
ranged on a 1D lattice and described by the Hamiltonian

Hsys =
L

∑
x=−L

K(a†
xax+1 + h.c.) +

L

∑
x=−L

J(axax+1 + h.c.),

where ax is the annihilation operator on the fermionic
mode at x, and we assume periodic boundary conditions
and therefore set ax=L+1 ≅ ax=−L. We associate one 2-
fermion jump operator per site x, Lx, given by

Lx = λ0ax + λ1ax+1.

The parameters J,K,λ0 and λ1 specify the model. We
will consider the problem of measuring the observable O
given by

O =
1

n
∑
x

a†
xax,

n
n
n
n

10 20 30 40
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0.2
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n

FIG. 3. The particle density observable O in the fixed point
of the dissipative fermionic system as a function of the cou-
pling parameter J , while setting K = 1, λ0 = 1.1 and λ = 1.
The inset shows the convergence of the particle-density ob-
servable to its thermodynamic limit. Note that, due to the
fast convergence of O to the thermodynamic limit, the curves
for n = 21 and 41 overlap with eachother.

which measures the particle density (i.e. the particle
number per unit lattice size), in the fixed point of this
dissipative system. Figure 3 shows this observable as a
function of the parameter J — at J = 0, since the Hamil-
tonian Hsys is particle number conserving and the jump
operators annihilate any fermions on the lattice, the par-
ticle density in the fixed point is 0 and becomes non-zero
when J ≠ 0. Furthermore, as shown in Fig. 3, this ob-
servable also has a well defined thermodynamic limit and
converges exponentially to this limit.
To perform a quantum simulation of this model, as

described in the previous subsection, we introduce ancil-
lary fermions with annihilation operators bx and couple
them to the system fermions. The quantum simulator
dynamics is given by the Lindbladian

Lω(X) = −iω
2
[Hsys,X] +∑

x

(4Dbx(X) − iω[Vx,X]),

(6)

where Vx = b
†
xLx + L

†
xbx. The quantum simulator be-

comes increasingly accurate as ω → 0 — this is numeri-
cally demonstrated in Fig. 4a for different system sizes,
where we compare the expected value of O in the fixed
point of the simulator Lindbladian Lω to its expected
value in the fixed point of the target Lindbladian L. Fur-
thermore, the scalings of the observable error incurred on
the quantum simulator with the system size n and the
parameter ω are studied in Fig. 4b and c. We note from
Fig. 4b that the for a fixed ω, the observable error sat-
urates on increasing the system size. This uniformity
with system size is consistent with our expectation from
Proposition 3. Furthermore, consistent with the Propo-
sition 3, Fig. 4c shows that the observable error, in the
limit of large system-size, scales polynomially with ω.

Next, we add noise to the quantum simulator and an-
alyze its impact on the performance of the quantum sim-
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Ideal

n
n
n

(a) (b) (c)

J = 0.5

J = 5

J = 0.5

J = 5

FIG. 4. Numerical studies of the performance of the noiseless analogue quantum simulator described by Eq. 6. (a) The particle
density observable as a function of J — the solid line shows the target (ideal) observable and dotted-dashed lines show the
observable measured on the quantum simulator for different ω. (b) The observable error incurred by the quantum simulator as
a function of the system size, indicating that the error becomes independent of n as n→∞. (c) The observable error for large
n as a function of ω, showing that the error scales polynomially with ω (note that both the axes are shown on log-scale).

ulator. We consider single-site depolarizing noise acting
on the fermions at a rate δ — this can be theoretically
modelled by assuming that the quantum simulator has a
Lindbladian Lω,δ

Lω,δ = Lω + δ∑
x

(Trx(⋅) ⊗
Ix
2
− id). (7)

Such a Lindbladian has hermitian jump operators that
are quadratic in the fermionic annihilation/creation op-
erator and can be simulated following the formalism in
Ref. [14]. In Fig. 5, we numerically study the deviation
in the observable O computed in the fixed point of Lω,δ

from its expected value in the fixed point of L. Figure 5a
shows the dependence of the measured observable on the
parameter ω in the presence of noise. For a fixed δ, un-
like the noiseless case, reducing ω no-longer results in
an increasingly accurate simulation. We instead observe
that there is an optimal ω, that is dependent on δ, at
which the noisy quantum simulator best approximates
the target observable. Figure 5b shows the scaling of the
observable error at this optimal point with the parameter
δ. Consistent with Proposition 6, we see that the observ-
able error becomes independent of the system size n as
n → ∞, and the error in the large n limit scales polyno-
mially with δ. The choice of ω that achieves this optimal
error is also shown in Fig. 5, and we see it too becomes
independent of n as n→∞ and scales polynomially with
δ consistent with Proposition 6.

III. NOTATION AND PRELIMINARIES

Given a Hilbert space H, we will denote by L(H) the
set of bounded linear operators from H → H, define
M(H) to be the set of the bounded Hermitian opera-
tors from H → H and define D1(H) as the set of valid

density matrices on H. We will typically use the † su-
perscript to indicate the adjoint, or Hermitian conjugate,
of an operator or superoperator. However in some cases,
more compact expression can obtained by using the fol-
lowing notation — for some operator or superoperator
X, we define X(−) ∶=X and X(+) ∶=X†. Furthermore we
will use +̄ = − and −̄ = +. For example, X(ū) ∶= X† for
u = −.
While dealing with mixed states and their dynamics,

it will often be convenient to adopt the vectorized nota-
tion, where we map operators on a (finite-dimensional)
Hilbert space to state via ρ = ∑il,ir ρil,ir ∣il⟩⟨ir ∣ → ∣ρ⟫ =
∑il,ir ρil,ir ∣il, ir⟩. Superoperators, such as Lindladians
or channels, will map to ordinary operators in this pic-
ture. Given an operator X ∈ M(H), we will define
Xl,Xr ∈ M(H ⊗ H) by Xl∣ρ⟫ = (X ⊗ I)∣ρ⟫ = ∣Xρ⟫ and
Xr ∣ρ⟫ = (I ⊗X

T)∣ρ⟫ = ∣ρX⟫. Xl(Xr) can also be inter-
preted as a superoperator which left (right) multiplies its
argument with X i.e. Xl(Y ) =XY and Xr(Y ) = Y X. A
Lindbladian superoperator L specified by a Hamiltonian
H and jump operators {Lα}α∈{1,2...M},

L(X) = −i[H,X] +
M

∑
α=1
(LαXL

†
α −

1

2
{X,L†

αLα}),

can be vectorized

L = −i(Hl−Hr)+
m

∑
α=1
(Lα,lL

†
α,r−

1

2
(L†

α,lLα,l +Lα,rL
†
α,r)).

The adjoint of the Lindbladian (with respect to the
Hilbert-Schmidt inner product), L† will be given by

L
†
(X) = i[H,X] +

M

∑
α=1
(L†

αXLα −
1

2
{L†

αLα,X}).

The adjoint of the Lindbladian, by definition, will satisfy
Tr(AL(B)) = Tr(L†(A)B) and that L†(I) = 0. In the
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(a) (b)

FIG. 5. Numerical studies of the performance of a noisy quantum simulator described by Eq. 7. (a) The dependence of the
particle density observable on ω with the dashed line indicating the target observable. In the presence of noise there is an
optimal ω depending on δ at which this error is the lowest. (b) The (smallest) observable error as a function of the noise rate
δ, as well as the choice of ω that yields this error.

vectorized notation, L† will be expressed as

L
†
= i(Hl−Hr)+

m

∑
α=1
(L†

α,lLα,r−
1

2
(L†

α,lLα,l +Lα,rL
†
α,r)).

Norms. ∣∣A∣∣p denotes the Schatten p-norm of an op-
erator A. We will denote the operator norm, which is
also the Schatten-∞ norm, by ∣∣A∣∣ without an subscript.
∣∣A∣∣p→q ∶=maxO,∣∣O∣∣p=1 ∣∣A(O)∣∣q indicates the norm of a su-

peroperator A. We define the completely-bounded norm
of a superoperator A as ∣∣A∣∣cb,p→q ∶= supn≥2 ∣∣A ⊗ idn∣∣p→q.
The diamond norm is the completely bounded 1 → 1
norm — for the diamond norm, we will use the standard
notation ∣∣A∣∣◇ ∶= ∣∣A∣∣cb,1→1.

Lattices in this work are lattice graphs. d(x, y) for
two lattice sites x and y denotes the Manhattan distance
between x and y, i.e. the graph path length to reach y
from x. We write the distance between a set of lattice
sites S and a single site x as d(S,x) ∶= miny∈S(d(x, y)).
The distance between two sets of lattice sites S1 and
S2 is accordingly d(S1, S2) ∶= minx∈S1,y∈S2(d(x, y)). The
diameter of set of lattice sites S is written diam(S) ∶=

maxx∈S,y∈S(d(x, y)).
For two real-valued functions f(x) and g(x), we will

write f(x) ≤ O(g(x)) to indicate that there exists C,x0 ∈
R such that f(x) ≤ Cg(x) for all x > x0. Similarly f(x) ≥
Ω(g(x)) indicates that there exists C,x0 ∈ R such that
f(x) ≥ Cg(x) for all x > x0. Finally f(x) = Θ(g(x))
indicates Ω(g(x)) ≤ f(x) ≤ O(g(x)).
For notational conciseness, we will often use a short-

hand for list of indices — the list {m,m + 1,m + 2 . . . n}
will be abbreviated as [m ∶ n].

IV. ANALYSIS OF THE NOISELESS
SIMULATOR

A. Rigorous adiabatic elimination of the ancilla

We begin with analyzing the analogue open quantum
simulator in the absence of any noise. Supposing sys-
tem qubits S starts in the state ρ(0) at time t = 0, we
wish to simulate the state ρ(t) = eLtρ(0). To begin the
analysis, we set up equations of motion for TrA(ρω(t))
and TrA(σαρω(t)). Following from the definition of Lω

in Eq. 2, we have that

d

dt
TrA(ρω(t)) = −iω∑

α
∑

u∈{+,−}
[L(u)α ,TrA(σ(ū)α ρω(t))] − iω

2
[Hsys,TrA(ρω(t))], (8a)

d

dt
TrA(σαρω(t)) = −2TrA(σαρω(t)) − iωLαTrA(ρω(t)) − iω2

[Hsys,TrA(σαρω(t))] + ω∑
α′
Eα,α′(t), (8b)

d

dt
TrA(σ†

αρω(t)) = −2TrA(σ
†
αρω(t)) + iωTrA(ρω(t))L

†
α − iω

2
[Hsys,TrA(σ†

αρω(t))] + ω∑
α′
E†

α,α′(t), (8c)

where

Eα,α′(t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

i{Lα,TrA(nαρω(t))} α = α′

−i ∑
u∈{+,−}

[L
(u)
α′ ,TrA(σασ

(ū)
α′ ρω(t))] α ≠ α′

(9)

with nα = σ
†
ασα being the excitation number operator at
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the αth ancillary qubit.
To develop concrete error bound on the deviation of

the quantum simulator and the target dynamics, we will
carefully analyze the remainder Rω(t) defined by

Rω(t) ∶=
d

dt
TrA(ρω(t)) − ω2

LTrA(ρω(t)), (10)

which can be physically interpreted as the error in the
rate of change of the reduced state of the system qubits
S on the analogue quantum simulator compared to the
target Lindbladian. The next lemma provides an expres-
sion for Rω(t), which we will repeatedly use throughout
this paper while analyzing the analogue quantum simu-
lator. This expression follows directly from Eqs. 8 — a
detailed proof of this is provided in Appendix A.

Lemma 1. For any t > 0, the remainder Rω(t) satisfies

Rω(t) = ω
2
∑
α

e−2tqα + ω4
∑

j∈{1,2}
∑
α
∫

t

0
e−2(t−s)Q(j)α,Hsys

(s)ds

+ ω4
∑

j∈{3,4}
∑
α,α′
∫

t

0
e−2(t−s)Q(j)α,α′(s)ds. (11a)

where

qα = −DLα(ρ(0)),

Q
(1)
α,h(t) = −

1

ω
[L†

α, [h,TrA(σαρω(t))]] + h.c.,

Q
(2)
α,h(t) = −

i

2
[L†

α, Lα[h,TrA(ρω(t))]] + h.c.,

Q
(3)
α,α′(t) =

i

ω
∑

u∈{+,−}
DLα
([L

(u)
α′ ,TrA(σ

(ū)
α′ ρω(t))]),

If α = α′,

Q
(4)
α,α′(t) =

2

ω2
(DL†

α
−DLα)(TrA(nαρω(t))),

If α ≠ α′,

Q
(4)
α,α′(t) = −

1

ω2∑
u,u′

∈{+,−}

[L(u)α , [L
(u′)
α′ ,TrA(σ

(ū)
α σ

(ū′)
α′ ρω(t))]].

To theoretically analyze the fidelity of the quantum
simulation, we thus need to provide an upper bound
on ∣∣R(t)∣∣1 which → 0 as ω → 0. From the ex-
pression provided in Lemma 1, we see that the terms

Q
(1)
α,Hsys

,Q
(2)
α,Hsys

,Q
(3)
α,α′ and Q

(4)
α,α′ , which contribute to

the remainder, depend on the operators TrA(nαρω(t)),
TrA(σαρω(t)), TrA(σ

†
α′σαρω(t)) and TrA(σασα′ρω(t)).

We expect these operators to be small — to see this phys-
ically, we note that if all the ancillae were exactly in ∣0⟩
at time t, then all of these operators would be exactly 0.
In the analogue simulation, the ancillae are only weakly
coupled to the system, with the coupling strength ∼ ω,
while simultaneously being strongly damped. Thus, we
could expect the ancillae to never be significantly excited
during the simulation, and consequently we expect the

operators Q
(1)
α,Hsys

,Q
(2)
α,Hsys

,Q
(3)
α,α′ and Q

(4)
α,α′ to be small.

The next lemma translates this physical intuition into a
rigorous upper bound,

Lemma 2. Suppose ρω(t) is the joint state of the system
and ancilla qubits with the ancilla qubits initially being in
state ∣0⟩, then for all α,α′

∣∣TrA(σαρω(t))∣∣1 ≤
ω

2
and ,

∣∣TrA(σ†
ασα′ρω(t))∣∣1, ∣∣TrA(σασα′ρω(t))∣∣1 ≤

ω2

4
.

To obtain these upper bounds, we develop a set of
input-output equations for the ancilla lowering operator
σα. These are analogous to the input-output equations
used in quantum optics [49]. We provide a detailed proof
of the lemma in Appendix A — to illustrate the basic
idea behind the proof, we explicitly bound ∣∣σαρω(t)∣∣1.
We begin by noting that

σαρω(t) = Eω(t,0)(σα,l(t)(ρ(0))),

where Eω(t, s) = e
Lω(t−s) is the channel generated by the

Lindbladian of the quantum simulator and σα,l(t) is a
superoperator defined by

σα,l(t) = E
−1
ω (t,0)σα,lEω(t,0),

where, as defined in section III, σα,l(X) = σαX is a su-
peroperator that left-multiplies its argument by σα. We
can now obtain a “Heisenberg-like” equation of motion
for σα,l(t):

d

dt
σα,l(t) = E

−1
ω (t,0)(σα,lLω − Lωσα,l)Eω(t,0),

= −iωE−1ω (t,0)[σα,l, Vα,l − Vα,r]Eω(t,0)+

4E−1ω (t,0)[σα,l,Dσα]Eω(t,0),
(1)
= −2σα,l(t) − iωE

−1
ω (t,0)Lα,l[σα,l, σ

†
α,l]E

−1
ω (t,0),

where in obtaining (1) we have used the fact that σα,l
commutes with Vα,r (since it left multiplies while Vα,r
right multiplies) and with itself, and that [σα,l,Dσα] =

σα,l/2. Integrating this equation, we can obtain that

σα,l(t) = e
−2tσα,l−

iω∫
t

0
e−2(t−s)E−1ω (s,0)Lα,l[σα,l, σ

†
α,l]Eω(s,0)ds,

which can be considered to be an input-output equation
for σα since it relates its action on the quantum state at
time t to its action on the initial state at t = 0. Now,
since σα annihilates the initial state, i.e. σαρ(0) = 0, we
obtain that

σαρω(t)

= −iω∫
t

0
e−2(t−s)Eω(t, s)(Lα[σα, σ

†
α]Eω(s,0)(ρ(0)))ds.
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We can now bound TrA(σαρω(t)) — in particular, us-
ing the fact that ∣∣[σα, σ

†
α]∣∣ ≤ 1, ∣∣Lα∣∣ ≤ 1 and that

∣∣Eω(t, s)(X)∣∣1 ≤ ∣∣X ∣∣1 (i.e. trace norm is contractive un-
der application of quantum channels), we obtain that

∣∣TrA(σαρω(t))∣∣1 ≤ ω∫
t

0
e−2(t−s)∣∣ρ(s)∣∣1ds =

ω

2
,

which is the bound provided in Lemma 2. A sim-
ilar procedure can be followed to obtain bounds on
∣∣TrA(σ†

ασα′ρω(t))∣∣1 and ∣∣TrA(σασα′ρω(t))∣∣1.

Proposition 1, repeated. With all the ancillae ini-
tialized to the state ∣0⟩ and for any time t > 0,
∣∣ρ(t) −TrA(ρω(t/ω2))∣∣1 ≤ ε can be obtained with

ω = Θ
⎛
⎜
⎝

ε1/2

(M + 4M ∣∣Hsys∣∣t + 4M2t)
1/2
⎞
⎟
⎠
,

which implies that the required simulation time on the
simulator tsim = t/ω

2 scales as

tsim = Θ(
Mt + 4M ∣∣Hsys∣∣t

2 + 4M2t2

ε
).

Proof. We note that the remainder defined in Eq. 10,

d

dt
TrA(ρω(t)) − ω2

LTrA(ρω(t)) = Rω(t),

can be integrated to obtain

TrA(ρω(
t

ω2
)) = ρ(t) + ∫

t/ω2

0
eL(t−ω

2s)(Rω(s))ds,

(12)

where ρ(t) = eLt(ρ(0)) is the target state to be simu-
lated. Using the contractivity of the trace norm under
the quantum channel eLt, we obtain that

∥TrA(ρω(
t

ω2
)) − ρ(t)∥

1

≤ ∫

t/ω2

0
∣∣Rω(s)∣∣1ds. (13)

We can now use the explicit expression for Rω in
Lemma 1 together with Lemma 2 to bound ∣∣Rω(s)∣∣1
term by term. Consider first bound on qα — note that
since ∣∣Lα∣∣ ≤ 1, ∣∣qα∣∣1 ≤ 2. Next, consider bounds on

∣∣Q
(j)
α,Hsys

(s)∣∣
1
for j ∈ {1,2} — we obtain that

∣∣Q
(1)
α,Hsys

(s)∣∣
1
≤
8

ω
∣∣Hsys∣∣∥TrA(σ(ū)α ρω(s))∥1 ≤ 4∣∣Hsys∣∣,

∣∣Q
(2)
α,Hsys

(s)∣∣ ≤ ∣∣[L†
α, Lα[Hsys,TrA(ρω(t))]]∣∣ ≤ 4∣∣Hsys∣∣.

Similarly, a bound on ∣∣Q
(3)
α,α′(s)∣∣1 can be obtained via

∣∣Q
(3)
α,α′(s)∣∣1 ≤

1

ω
∑

u∈{+,−}
4∥TrA(σ

(ū)
α′ ρω(s))∥1

≤ 4.

Consider next ∣∣Q
(4)
α,α′(s)∣∣1 — for α ≠ α′, we obtain that

∣∣Q
(4)
α,α′(s)∣∣1 ≤

4

ω2 ∑
u,u′∈{+,−}

∥TrA(σ(ū)α σ
(ū′)
α′ ρω(s))∥

1
≤ 4.

For α = α′, it similarly follows that

∣∣Q
(4)
α,α(s)∣∣1 =

2

ω2
∣∣(DL†

α
−DLα)(TrA(nαρω(t))∣∣1,

≤
8

ω2
∣∣TrA(nαρω(t))∣∣1 ≤ 4.

With these bounds, we obtain that

∣∣Rω(s)∣∣1

≤ 2Mω2e−2s + ω4
∫

s

0
e−2(s−s

′)(8M ∣∣Hsys∣∣ + 8M
2)ds′,

≤ 2Mω2e−2s + 4Mω4s(∣∣Hsys∣∣ +M).

Using this bound on ∣∣Rω(s)∣∣1 together with Eq. 13, we
obtain that

∥TrA(ρω(
t

ω2
)) − ρ(t)∥

1

≤ (Mω2
+4Mω2

∣∣Hsys∣∣t+4M
2ω2t),

from which the theorem statement follows.

B. Geometrically local models

In this subsection, we confine ourselves to geometri-
cally local models, which frequently appear in the study
of many-body open quantum systems in physics. We
make the assumption that the system S consists of a set
of qubits arranged on a lattice Zd and the target Lind-
bladian L is assumed to be of the form

L =∑
α

Lα, (14a)

where Lα is a Lindbladian correspond to a jump operator
Lα i.e.

Lα(X) = −i[hα,X] + DLα(X), (14b)

with ∣∣Lα∣∣ ≤ 1, and Hamiltonian hα with ∣∣hα∣∣ ≤ 1. The
operators Lα and hα are assumed to be supported on
qudits in Sα, which has a maximum diameter of a,

diam(Sα) = max
x,y∈Sα

d(x, y) ≤ a.

Such models are known have a finite velocity at which
correlations can propagate across the lattice, formal-
ized by the well-known Lieb-Robinson bounds. While
originally derived for geometrically local Hamiltonian
(i.e. closed) systems, Lieb-Robinson bounds have been
extended to open quantum systems [43]. Below, we quote
a Lieb-Robinson bound from Ref. [44], which we will use
in the remainder of this section. To compactly express
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this bound, following Ref. [44], it is convenient to define
the degree of a subset S ⊆ Zd

∂S = ∣{α∣Sα ∩ S ≠ ∅}∣ and Z =max
α

∂(Sα).

∂S is thus the number of terms in the Lindbladian that
act on the qudits in S, and consequently Z is an upper
bound on the number of terms in the Lindbladian that
intersect with any one term in the Lindbladian. For no-
tational convenience, given a set S ⊂ Zd of lattice sites,
we will define

ηS =
∂S
Z
.

The Lieb-Robinson bound from Ref. [44] is precisely
stated below.

Lemma 3. Suppose K is a superoperator supported on
region SK and satisfies K(I) = 0, and O is a local observ-
able, with ∣∣O∣∣ ≤ 1, supported on region SO, then

∣∣KeL
†t
(O)∣∣ ≤ ηSO

∣∣K∣∣cb,∞→∞ exp(4eZt −
d(SK, SO)

a
).

The superoperator K that will typically arise in our anal-
ysis throughout this paper would either be commutator
K(X) = [K,X] with some operator supported on SK or

the adjoint of a Lindbladian supported on SK i.e. K = L†
K

for a Lindbladian superoperator LK. Both of these ex-
amples can be seen to satisfy K(I) = 0.
As we will outline in the rest of this section, while an-

alyzing both quantum simulation of dynamics and fixed
point, our strategy would be to use the Lieb-Robinson
bounds to obtain an upper bound, that is uniform in the
system size n, on the remainder calculated in Lemma 1.
However, we note that the remainder expression, unlike
the Lieb-Robinson bounds, has contributions from terms

such as Q
(3)
α,α′ ,Q

(4)
α,α′ , that involve the consecutive appli-

cation of two superoperators supported on two different
regions of the lattice. Motivated from this observation,
we will need a Lieb-Robinson bound that accounts for the
application of two superoperators on a Heisenberg picture
observable as opposed to a single superoperator. We pro-
vide this in the lemma below, and it follows straightfor-
wardly from the Lieb-Robinson bound in Lemma 3.

Lemma 4. KX and KY are superoperators supported
on regions X and Y such that KX(I) = KY (I) = 0 and
diam(X),diam(Y ) ≤ a, then for any local observable O,
with ∣∣O∣∣ ≤ 1, supported on region SO

∣∣KXKY e
L†t
(O)∣∣ ≤ eηSO

∣∣KX ∣∣cb,∞→∞∣∣KY ∣∣cb,∞→∞×

exp(4eZt −
1

2a
(d(X,SO) + d(Y,SO))).

1. Dynamics

With the two Lieb-Robinson bounds in Lemmas 3 and
4, we can now analyze the remainder expression given

in Lemma 1 to obtain bounds that are uniform in the
system size n when we are interested in obtaining local
observables. In particular, for a local observable O, let
us consider the error between its ideal expected value

⟨O⟩ideal ∶= Tr[Oe
Lt
(ρ(0))],

and the expected value on the quantum simulator after
evolving it for time t/ω2,

⟨O⟩sim = Tr[Oρω(
t

ω2
)] = Tr[OTrA(ρω(

t

ω2
))]. (15)

Using the integral form of the remainder definition,
Eq. 12, we can express the error between ⟨O⟩ and ⟨O⟩sim
as

∣⟨O⟩ideal − ⟨O⟩sim∣ = ∣∫
t/ω2

0
Tr(OeL(t−ω

2s)
Rω(s))ds∣,

=
1

ω2
∣∫

t

0
Tr(O(t − s)TrA(Rω(

s

ω2
)))ds∣, (16)

where O(t) = eL
†t(O) is the Heisenberg picture evolu-

tion of the observable O under the target Lindbladian L.
Using Lemma 1, which expresses the remainder Rω(s)

in terms of the operators qα, Q
(1)
α,Hsys

(s), Q
(2)
α,Hsys

(s),

Q
(3)
α,α′(s), and Q

(4)
α,α′(s), which can be individually an-

alyzed. The next lemma shows that using Rω(s) as
provided in Lemma 1 together with the Lieb-Robinson
bounds (Lemmas 3 and 4) provides an upper bound uni-
form in the system size.

Lemma 5. Suppose O is a local observable with ∣∣O∣∣ ≤ 1
supported on SO, and for τ > 0, let O(τ) = exp(L †τ)(O)
where L is a geometrically local Lindbladian of the form
in Eq. 14. Then for qα as defined in Lemma 1, then there
is a non-decreasing piecewise continuous function ν such
that ν(t) ≤ O (td) as t→∞ and

∑
α

∣Tr(O(τ)qα)∣ ≤ ν(τ),

and for j ∈ {1,2,3,4}

∑
α,α′
∣Tr(O(τ)Q

(j)
α,α′(s))∣ ≤ ν

2
(τ),

where, for j ∈ {3,4}, Q
(j)
α,α′ is defined in Lemma 1 and for

j ∈ {1,2}, we define Q
(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h is defined

in Lemma 1.

This lemma follows directly from the application of
the Lieb-Robinson bounds. The proof of this lemma is
detailed in Appendix B, but we provide a sketch here.
Consider first ∑α ∣Tr(O(τ)qα∣ — using the explicit ex-
pression for qα from Lemma 1, we obtain that

∑
α

∣Tr(O(τ)qα∣ = ∑
α

∣Tr[O(τ)Lα(ρ(0))]∣,

= ∑
α

∣Tr[L†
α(O(τ))ρ(0)]∣,

= ∑
α

∣∣L
†
α(O(τ))∣∣. (17)
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Now, we can use the Lieb-Robinson bound in Lemma 3,
together with ∣∣L†

α∣∣cb,∞→∞ ≤ 4 to obtain

∑
α

∣Tr(O(τ)qα∣

≤ 4∑
α

min(ηSO
exp(4eZτ −

d(Sα, SO)

a
),1). (18)

However, the summation in the above equation is sim-
ply a summation over an exponential over the lattice
Zd, which will be convergent and independent of the
size of system. A careful analysis of this summation,
performed in Appendix B, yields that, as stated in the
lemma, it can be upper bounded by a non-decreasing
function which is O(τd). Similarly, as an example, con-

sider ∑α,α′ Tr(O(τ)Q
(3)
α,α′(s))— by using the explicit ex-

pression for Q
(3)
α,α′(s) from Lemma 1, we obtain that

∑
α,α′
∣Tr(O(τ)Q

(3)
α,α′(s))∣

=
1

ω
∑
α,α′

∑
u∈{−,+}

∣Tr(O(τ)DLα([L
(u)
α′ ,TrA(σ

(ū)
α′ ρω(τ))]))∣,

=
1

ω
∑
α,α′

∑
u∈{−,+}

∣Tr([D†
Lα
(O(τ)), L

(u)
α′ ]TrA(σ

(ū)
α′ ρω(τ)))∣,

≤
1

ω
∑
α,α′

∑
u∈{−,+}

∣∣[D
†
Lα
(O(τ)), L

(u)
α′ ]∣∣∣∣TrA(σ

(ū)
α′ ρω(τ))∣∣1,

≤
1

2
∑
α,α′

∑
u∈{−,+}

∣∣[D
†
Lα
(O(τ)), L

(u)
α′ ]∣∣,

where in the last step we have used Lemma 2. We

can note that both D†
Lα

and [⋅, L
(u)
α′ ] are superop-

erators that are respectively supported on Sα and
Sα′ and have the identity operator in their kernel.
Thus from Lemma 4, as well as using the fact that

∣∣D
†
Lα
∣∣
cb,∞→∞, ∣∣[L

(u)
α , ⋅]∣∣cb,∞→∞ ≤ 2 we obtain that

∑
α,α′
∣Tr(O(τ)Q

(3)
α,α′(s))∣

≤ 2 ∑
α,α′

min(eηSO
exp(4eZτ−

1

2a
(d(Sα, SO) + d(Sα′ , SO))),1).

This summation, which is approximately a double sum-
mation of a two-dimensional exponential function on a
lattice, can again be analyzed and upper bounded by a
non-decreasing function that grows as O(τ2d). The rest
of the Lemma 5 can be proved similarly — the proofs are
outlined in detail in Appendix B.

Proposition 2, repeated. Suppose L is a
d−dimensional geometrically local Lindbladian and
O with ∣∣O∣∣ ≤ 1 is a local observable. To achieve an
additive error ε in the expected local observable at time t
with the analogue quantum simulator, we need to choose
ω = Θ(t−(2d+1)

√
ε) which corresponds to a simulator

evolution time tsim = t/ω
2 = Θ(t4d+3ε−1).

Proof. The proposition follows by combining the expres-
sion of Rω(s) from Lemma 1 with Eq. 12 and then us-
ing Lemma 5. Using Hsys = ∑α hα, we first decompose

Q
(j)
α,Hsys

= ∑α′ Q
(j)
α,hα′

for j ∈ {1,2}, where Q
(j)
α,h is defined

in Lemma 1. For notational convenience, for j ∈ {1,2}

we will define Q
(j)
α,α′ = Q

(j)
α,hα′

. From Eq. 1 and Lemma 1,

it follows that

∣⟨O⟩ideal − ⟨O⟩sim∣ ≤ ∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣ + ω2
4

∑
j=1
∑
α,α′
∣∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)Tr(O(t − s)Q(j)α,α′(s
′
))ds′∣,

(19)

(1)
≤ ∫

t

0
ν(t − s)e−2s/ω

2

ds + 4ω2
∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)ν2(t − s)ds′,

(2)
≤ ν(t)∫

t

0
e−2s/ω

2

ds + 4ω2ν2(t)∫
t

0
∫

s/ω2

0
e−2(s/ω

2−s′)ds′ ≤
ω2

2
ν(t) + 2ω2tν2(t),

where in (1) we have used Lemma 5 — in particular, the
fact that ν(t) is a piecewise continuous function and thus
can be integrated to give a legitimate upper bound. In
(2), we have used the fact that the function ν(t), intro-
duced in Lemma 5, is an non-decreasing function. Not-
ing, again from Lemma 5, that ν(t) ≤ O(td), we obtain
that ∣⟨O⟩ideal − ⟨O⟩sim∣ ≤ ω

2O(t2d+1) — consequently, to
attain a precision ε in the simulated observable, we need

to choose ω = Θ(t−(d+1/2)ε1/2) which corresponds to a
quantum simulation time of tsim = Θ(t

2d+1ε−1)

2. Long-time dynamics and fixed point

Next, we consider the question of simulating long-time
dynamics and fixed point of a spatially local Lindbladian,
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which is also rapidly mixing. As outlined in section IIA,
a local observable in a spatially local Lindbladian L, with
a unique fixed point σ, is considered to be rapidly mixing
if it satisfies, for any initial state ρ(0),

∣Tr(OeLt(ρ(0)) −Tr(Oσ)∣ ≤ k(∣SO ∣, γ)e
−γt,

where k(l, γ) is a function that is poly(l) for a fixed γ and
exp(O(γ−κ)) for a fixed l. Since the rapid mixing condi-
tion is satisfied for any initial state ρ(0), it can equiva-
lently be reformulated in the Heisenberg picture

∣∣O(t) −Tr(Oσ)I ∣∣ ≤ k(∣SO ∣, γ)e
−γt, (20)

where O(t) = eL
†t(O) is the Heisenberg-picture observ-

able corresponding to O. For the problem of simulating
such rapidly mixing observables at time t in geometri-
cally local Lindbladians, we show that the ω required is
uniform in both system size and time. This also allows us
to use the quantum simulator to approximate the fixed
point expectation value of the local observable.

To establish this result, we start from Eq. 19 for the
observable error, analyze it term by term and provide a
bound uniform in t. The key lemma, which is the coun-
terpart of Lemma 5 for dynamics, that we establish is
the following

Lemma 6. Suppose O is a local observable with ∣∣O∣∣ ≤ 1
supported on SO, and for τ > 0, let O(τ) = exp(L †τ)(O)
where L is a geometrically local Lindbladian of the form
in Eq. 14. Furthermore, suppose O is rapidly mixing
with respect to L and satisfies Eq. 20 with k(∣SO ∣, γ) ≤
O(exp(γ−κ)) as γ → 0. Then for qα as defined in
Lemma 1,

∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣ ≤ ω2λ(1)(γ),

where λ(1)(γ) ≤ O(γ−d(κ+1)) as γ → 0; and for j ∈
{1,2,3,4}

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(j)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣

≤ λ(2)(γ),

where λ(2)(γ) ≤ O(γ−(2d+1)(κ+1)) as γ → 0 and for j ∈

{3,4}, Q
(j)
α,α′ is defined in Lemma 1, and for j ∈ {1,2}, we

define Q
(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h is defined in Lemma 1.

Importantly, this lemma establishes bounds on the er-
ror terms appearing in Eq. 19 that are uniform in the time
t — this is a consequence of not only the spatial locality
of the target Lindbladian, but also an explicit account-
ing of the rapid mixing of the target observable (Eq. 20).
We provide a detailed proof of this lemma in Appendix B
— below, we illustrate how we obtain bounds uniform in
t. The key idea is instead of using the Lieb-Robinson
bounds to obtain an upper bound on the observable er-
ror for any time, we use it for only short times and use

the rapid mixing property (Eq. 20) to upper bound the
observable error for long times. For instance, consider
upper bounding

∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣

= ∑
α

∣∫

t

0
Tr(O(s)qα)e

−2(t−s)/ω2

ds∣. (21)

Suppose tα is a time cutoff for separating long times from
short times, which we will choose later and possibly allow
it to vary with α. We then split the integral with respect
to time in Eq. 21 into a short time integral e≤α(t, tα) and
a long time integral e≥α(t, tα) i.e.

∣∫

t

0
Tr(O(s)qα)e

−2(t−s)/ω2

ds∣ ≤ e≤α(t, tα) + e
≥
α(t, tα),

where

e≤α(t, tα) = ∣∫
min(t,tα)

0
Tr(O(s)qα)e

−2(t−s)/ω2

ds∣ and

e≥α(t, tα) = ∣∫
t

min(t,tα)
Tr(O(s)qα)e

−2(t−s)/ω2

ds∣.

The short-time integral, e≤α(t, tα), can be analyzed simi-
lar to the case of dynamics — more specifically, proceed-
ing similar to the analyses in Eqs. 17 and 18, we obtain
that

e≤α(t, tα)

≤ 2ω2min(ηSO
exp(4eZmin(t, tα) −

d(Sα, SO)

a
),1),

(1)
≤ 2ω2min(ηSO

exp(4eZtα −
d(Sα, SO)

a
),1). (22)

where in (1) we have used the fact that
min(ηSO

exp(4eZs−d(Sα, SO)/a),1) is a non-decreasing
function of s.
Next, for bounding the long-time integral, e≥α(t, tα), we

explicitly use the rapid-mixing property of O (Eq. 20) —
in particular, we note that for

∣Tr(O(s)qα)∣

= ∣Tr((O(s) −Tr(Oσ)I)qα) +Tr(Oσ)Tr(qα)∣,

≤ ∣Tr((O(s) −Tr(Oσ)I)qα)∣ + ∣Tr(qα)∣∣Tr(Oσ)∣,
(1)
≤ ∣∣O(s) −Tr(Oσ)I ∣∣∣∣qα∣∣1,
(2)
≤ 4k(∣SO ∣, γ)e

−γs, (23)

where in (1) we have used the expression for qα from
Lemma 1 to obtain Tr(qα) = Tr(Lα(ρ(0))) = 0 and in (2)
we have used the fact that, by assumption, O is a rapid
mixing observable and hence satisfies Eq. 4. Now, note
that if t ≤ tα (or min(t, tα) = t),

e≥α(t, tα) = 0.
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On the other hand, if t ≥ tα (or min(t, tα) = tα),

e≥α(t, tα) ≤ ∫
t

tα
∣Tr(O(s)qα)∣e

−2(t−s)/ω2

ds,

≤ 4k(∣SO ∣, γ)∫
t

tα
e−γse−2(t−s)/ω

2

ds,

≤ 4k(∣SO ∣, γ)e
−γtα
∫

t

tα
e−2(t−s)/ω

2

ds,

≤ 2ω2k(∣SO ∣, γ)e
−γtα . (24)

Furthermore, it is also true that for t ≥ tα,

e≥α(t, tα) ≤ ∫
t

tα
∣Tr(O(s)qα)∣e

−2(t−s)/ω2

ds,

≤ ∫

t

tα
∣∣O∣∣∣∣qα∣∣1e

−2(t−s)/ω2

ds ≤ 2ω2. (25)

Combining Eqs. 23, 24 and 25, we obtain that for any
t, tα,

e≥α(t, tα) ≤ 2ω
2min(k(∣SO ∣, γ)e

−γtα ,1). (26)

We note already that the bounds on both the short-time
integral (Eq. 22) and the long-time integral (Eq. 26) are
independent of the time t, but instead depend on the
time cutoff tα that separate long times from short times.
We can now choose tα in such as a way that ∑α e

≤
α(t, tα)

and ∑α e
≥
α(t, tα) are uniform in system size. A specific

choice for tα is to choose them to be

tα =
1

8eZa
d(Sα, SO),

i.e. choose the time-cutoff to grow with distance of Sα

from the observable. With this choice, we note that

∑
α

e≤α(t, tα) ≤ 2ω
2
∑
α

min(ηSO
exp( −

d(Sα, SO)

2a
),1),

∑
α

e≥α(t, tα)

≤ 2ω2
∑
α

min(k(∣SO ∣, γ) exp( −
γd(Sα, SO)

8eZa
),1),

both of which, since they are sums of a decaying exponen-
tial function on a lattice, converge and are independent
of the system size. As is shown in Appendix B, the other
error terms can be analyzed similarly. Furthermore, a
more careful analysis of these summations allow us to
also calculate their scaling with the parameter γ to ob-
tain the exact upper bounds quoted in Lemma 6.

With Lemma 6, we can now establish the following
proposition.

Proposition 3, repeated. Suppose L is a
d−dimensional geometrically local Lindbladian and
O with ∣∣O∣∣ ≤ 1 is a local observable supported on O(1)
lattice sites satisfying rapid mixing (Eq. 4). To achieve
an additive error ε in the expected local observable at

time t with the analogue quantum simulator, we need to
choose

ω = Θ (γ(d+1/2)(κ+1)
√
ε)

which corresponds to a simulator evolution time

tsim = t/ω
2
= Θ (tγ−(κ+1)(2d+1)ε−1) .

Proof. This proposition can now be proved by directly
combining Lemma 6 and Eq. 19 — in particular, we ob-
tain that for any time t,

∣⟨O⟩ideal − ⟨O⟩sim∣ ≤ ω
2 (λ(1)(γ) + 4λ(2)(γ)) .

In the limit of γ → 0, we obtain that ∣⟨O⟩ideal − ⟨O⟩sim∣ ≤

ω2O (γ−(2d+1)(κ+1)). Thus, to obtain a precision ε in the
simulated observable i.e. to achieve ∣⟨O⟩ideal − ⟨O⟩sim∣ ≤ ε,

we need to choose ω = Θ (ε1/2γ(d+1/2)(κ+1)).

C. Quantum advantage over classical algorithms

As discussed in the previous subsection, in the prob-
lems of local observables constant time dynamics in spa-
tially local Lindbladians, as well as in long-time dynam-
ics and fixed points for rapidly mixing Lindbladians, an
analogue quantum simulator can be very efficient even
obtaining a run-time that is independent of the system
size. It is a natural question to ask if these problems are
hard to solve on a classical computer, so that we can ex-
pect a quantum advantage with the analogue quantum
simulation method discussed so far. In this section, we
establish that, subject to the complexity assumption of
BQP ≠ BPP, we indeed expect exponential advantage
with a quantum simulator in both of these problems.
The separation between the runtime of the analogue

quantum simulator and classical algorithms is based on
a technique to encode a quantum circuit on N qubits
and of depth T = poly(N) into the fixed point of a ge-
ometrically local Lindbladian in two dimensions. This
problem has been previously addressed for 5-local (but
not geometrically local) Lindbladians [47]. A related line
of work encoded a quantum circuit on N qubits and of
depth poly(N) into the ground state of geometrically lo-
cal Hamiltonians, starting with Hamiltonians in two di-
mensions [48, 54], followed by Hamiltonians even in one
dimension [55]. We build upon the techniques developed
in Ref. [47] for quantum circuit to 5-local Lindbladian
encoding, and in Ref. [48] for quantum circuit to 2D spa-
tially local Hamiltonian encoding and encode a quantum
circuit into the fixed point of a 2D spatially local Lindbla-
dian. Furthermore, one of our key technical contribution
is to establish that the resulting Lindbladian has a mix-
ing time of at most poly(N), where N is the number of
qubits in the circuit, and its depth is poly(N). More pre-
cisely, we consider circuits of architecture shown in Fig. 6
and establish that
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Round 1 Round 2 Round R

FIG. 6. Circuit architecture of the circuit being encoded into the geometrically local Lindbladian. In each round, the unitaries
are applied in sequence, first on the first qubit, then on qubits 2 and 3, then on qubits 3 and 4 and so on.

Lemma 7. Suppose we are given a quantum circuit C
on N qubits with architecture shown in Fig. 6 and with
R rounds of gates. Then, there exists a two-dimensional
spatially local Lindbladian L on NR 6-level qudits with a
unqiue fixed point σ, as well as a local observable O such
that

Tr(Oσ) =
1

2NR
zC ,

where zC is the expected value of a pauli-Z operator on
the last qubit at the output of C. Furthermore, for any
initial state ρ(0) of the two-dimensional grid of qudits,

∣∣eLt(ρ(0)) − σC ∣∣1 ≤ c0(N,R) exp(−γ0(N,R)t),

where c0(N,R) = O(N
6R2 exp(O(NR))) and γ0(N,R) =

Θ(N−3R−3).

We point out that the assumed circuit architecture
(Fig. 6) is not restrictive — any quantum circuit on N
qubits and depth poly(N) can be expressed in this for-
mat with at most poly(N) rounds. Furthermore, for
quantum circuits with R = poly(N) rounds, Lemma 7
shows that it takes time t = O(poly(N) log(ε−1)) for the
encoding Lindbladian L to converge ε−close to its fixed
point σ. Then, measuring the local observable O to a
precision of 1/2NR = 1/poly(N) effectively measures the
Z operator on the last qubit at the output of the quan-
tum circuit. Since, for any decision problem in the BQP
complexity class, measuring the Z operator in the last
qubit is the only required measurement for solving the
problem, Lemma 7 indicates that being able to take a
local observable in the fixed point of any spatially lo-
cal two-dimensional Lindbladian, even restricting to the
class of Lindbladians that converge to the fixed point
in time that scales at most polynomially in the system
size, is sufficient resource to perform an arbitrary quan-
tum computation. The construction of this Lindbladian
closely follows the circuit-to-Hamiltonian ground state
mapping presented in Ref. [48]. We detail this construc-
tion, the calculation of its fixed point, as well as analysis
of the convergence rate of the Lindbladian to its fixed
point in Appendix C. Based on this lemma, we obtain
the following proposition.

Proposition 4, repeated. There cannot exist a classi-
cal algorithm that can, for every geometrically local 2D

Lindbladian and a corresponding rapidly mixing local ob-
servable, compute the fixed point expected value of the lo-
cal observable to additive error ε in time poly(γ−1, ε−1),
unless BQP = BPP.

Proof. Assume the contrary i.e. that there is a random-
ized classical algorithm that can obtain the fixed point
expectation of a rapidly mixing local observable to an
additive error ε in time poly(γ−1, ε−1). In such case,
any decision problem ∈ BQP could be solved with this
algorithm. To see this, note that the decision problem
parameterized by the problem size m could be solved by
measuring one qubit at the output of a quantum circuit
on N = poly(m) qubits with R = poly(m) rounds. By
Lemma 7, the expectation value of the pauli-Z operator
on the output qubit in such a quantum circuit can then
be embedded into the expectation fixed point value of a
rapidly mixing local observable with γ = poly(m). Fur-
thermore, as given by Lemma 7, the expected of value
of this observable is 1/(2NR) ≤ O(1/poly(m)) times
smaller than the expected value of the pauli-Z operator,
and thus needs to be computed to an O(1/poly(m)) pre-
cision to effectively simulate the encoded circuit. Since
this can be done with a randomized poly(γ−1, ε−1) clas-
sical algorithm in poly(m) time, we contradict the com-
plexity assumption of BQP ≠ BPP.

V. STABILITY TO ERRORS

A. Stability analysis

Next, we consider the impact of noise on the quantum
simulator. We will consider the model of the noisy quan-
tum simulator given in Eq. 5 — the quantum simulator
Lindbladian, in the presence of errors, will be given by

Lω,δ = Lω + δ∑
β

Nβ ,

where Nβ is a Lindbladian acting on (both system and
ancilla) qubits in a geometrically local region S′β . We

will assume that the subset S′β at most intersects with

Z ′ other subsets S′β or Sα, where Sα are the subsets of
data-qubits on which the target Lindbladian is defined
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(i.e. Eq. 14). More specifically, for all β,

∣{β′ ∶ Sβ ∩ S
′
β′ ≠ ϕ}∣ + ∣{α ∶ Sβ ∩ Sα ≠ ϕ}∣ ≤ Z

′.

In the remainder of this subsection, we will carefully ana-
lyze the error incurred in using the noisy quantum simu-
lator. Our goal would be to show that, despite the hard-
ware error rate δ ≠ 0, the quantum simulator can still
obtain local observables to a precision that depends only
on the hardware error rate and not on the system size.

Our analysis of the stability relies strongly on the ex-
tension of Lemmas 1 and 2 to the noisy setting i.e. where
the quantum simulator dynamics are described by the
Lindbladian in Eq. 5. In particular, as is shown in Ap-
pendix D, Lemma 1 can be modified to obtain an upper
bound on the remainder, Rω,δ(t), corresponding to the
time evolution of the noisy quantum simulator i.e.

Rω,δ(t) =
d

dt
TrA(ρω,δ(t)) − ω

2
LTrA(ρω,δ(t)).

More specifically, we obtain that

Lemma 8. If the ancillae are initially in ∣0⟩ then

Rω,δ(t) = Rω(t) + δ∑
β

K
(0)
β (t)+

δ∑
α,β

2

∑
j=1

ωj
∫

t

0
e−2(t−s)K(j)α,β(s)ds,

where Rω(t) is as defined in Lemma 1 but with ρω → ρω,δ

and

K
(0)
β (t) = TrA(Nβ(ρω,δ(t)),

K
(1)
α,β(t) = −i[L

†
α,TrA(σαNβ(ρω,δ))] + h.c.,

K
(2)
α,β(t) =

1

2
[L†

α, LαTrA(Nβ(ρω,δ(t))] + h.c..

Another key ingredient in the stability analysis is the fol-
lowing modification of Lemma 2, whose proof is presented
in Appendix D.

Lemma 9. Suppose ρω,δ(t) is the joint state of the sys-
tem and ancilla qubits with the ancilla qubits initially
being in the state ∣0⟩, then for all α,α′,

∣∣TrA(σαρω,δ(t))∣∣1 ≤
ω

2
+Z

′δ and ,

∣∣TrA(σασα′ρω,δ(t))∣∣1, ∣∣TrA(σ
†
ασα′ρω,δ(t))∣∣1 ≤

ω2

4
+
ωZ ′δ
2
+Z

′δ.

It should be noted that on setting the hardware noise δ
to 0, the bounds in Lemma 9 reproduce the bounds in
the noiseless case obtained in Lemma 2.

Dynamics. Next, we can analyze the modified remain-
der provided in Lemma 8 term by term and explicitly
use the Lieb-Robinson bounds (Lemmas 3 and 4) to ob-
tain bounds that are uniform in the system size. We first
establish an extension of Lemma 5 to the noisy setting.

Lemma 10. Suppose O is a local observable on the
system qubits with ∣∣O∣∣ ≤ 1 supported on SO, and for
τ > 0, let O(τ) = exp(L †τ)(O) where L is a geomet-
rically local target Lindbladian of the form in Eq. 14.
Then for qα as defined in Lemma 1, then there are non-
decreasing piecewise continuous function ν, ν′ such that
ν(t), ν′(t) ≤ O(td) as t→∞ and for ω ≤ 2

∑
α

∣Tr(O(τ)qα)∣ ≤ ν(τ) and,

∑
α,α′
∣Tr(O(τ)Q

(j)
α,α′(s))∣ ≤ (1 +

2δZ ′

ω
+
4δZ ′

ω2
)ν2(τ).

where, for j ∈ {3,4}, Q
(j)
α,α′ is defined in Lemma 1 with

ρω → ρω,δ and for j ∈ {1,2}, we define Q
(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h is defined in Lemma 1 with ρω → ρω,δ. Fur-

thermore,

∑
β

∣Tr(O(τ)K
(0)
β (s)∣ ≤ ν

′
(τ) and ,

∑
α,β

∣Tr(O(τ)K
(j)
α,β(s)∣ ≤ (ν

′
(τ))2,

where K
(0)
β and K

(j)
α,β for j ∈ {1,2} are defined in

Lemma 8.

In this lemma, the bounds on ∑α ∣Tr(O(τ)qα)∣ and

∑α,α′ ∣Tr(O(τ)Q
(j)
α,α′(s))∣ can be obtained by closely fol-

lowing the proof of Lemma 5, but with an application of

Lemma 9 instead of 2. To obtain ∑β ∣Tr(O(τ)K
(0)
β (s)∣,

we note that since O(τ) = exp(L†τ)(O) is an operator
that acts entirely on the system qubits,

∣Tr(O(τ)K
(0)
β (s)∣

= ∣Tr((O(τ) ⊗ IA)Nβ(ρω,δ(s))∣,

= ∣Tr(N †
β(O(τ) ⊗ IA)ρω,δ(s))∣,

≤ ∣∣N
†
β(O(τ) ⊗ IA)∣∣ = ∣∣Ñ

†
β(O(τ))∣∣,

where Ñ †
β , defined by Ñ †

β(X) = Nβ(X⊗IA), is a superop-
erator acting entirely on the system qubits. Although Ñ †

β

isn’t necessarily the adjoint of a Lindbladian superopera-
tor (like Nβ), it has the identity (on the system qubits) in

its kernel i.e. Ñ †
β(I) = 0. Furthermore, since N †

β is sup-

ported on S′β , Ñ
†
β is supported only on the system qubits

contained in S′β , which we denote by S̃′β . Now, with an

application of the Lieb-Robinson bounds (Lemma 3), we
obtain that

∣Tr(O(τ)K
(0)
β (s)∣ ≤min(ηSO

exp(4eZτ −
d(SO, S̃

′
β)

a
),1),

where we have used that ∣∣Ñ †
β ∣∣cb,∞→∞ ≤ ∣∣N

†
β ∣∣cb,∞→∞ ≤

1. This bound immediately yields an upper bound on
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∑β ∣Tr(O(τ)K
(0)
β (s)∣ which is uniform in the system size,

since it reduces it to the summation of a decaying ex-
ponential on a lattice. An analysis of the scaling of this
upper bound with τ , together with similar bounds on

∑α,β ∣Tr(O(τ)K
(j)
α,β(s)∣ is provided in Appendix D.

Proposition 5, repeated. Suppose L is a
d−dimensional geometrically local Lindbladian and
O with ∣∣O∣∣ ≤ 1 is a local observable. Then, in the
presence of noise with noise rate δ, the expected local
observable with the analogue quantum simulator can

be obtained to a precision ε = O(δ1/2t2d+1). Fur-
thermore, to obtain this precision, we need to choose
ω = Θ(δ1/4) which results in a simulator run-time

tsim = t/ω
2 = Θ(tδ−1/2).

Proof. Given a local observable, the error between the
target expectation value ⟨O⟩target and the expectation
value obtained on a noisy simulator, ⟨O⟩sim can be
bounded by Eq. 16, with the modified remainder Rω,δ

from Lemma 8 instead of Rω:

∣⟨O⟩target − ⟨O⟩sim∣ =
1

ω2
∣∫

t

0
Tr(O(t − s)TrA(Rω,δ(

s

ω2
)))ds∣,

≤ ∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣ + ω2
4

∑
j=1
∑
α,α′
∣∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)Tr(O(t − s)Q(j)α,α′(s
′
))ds′ds∣+

δ

ω2∑
β

∣∫

t

0
Tr(O(t − s)K

(0)
β (

s

ω2
))ds∣ +

δ

ω2

2

∑
j=1
∑
α,β

ωj
∣∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)Tr(O(t − s)K(j)α,β(s
′
))ds′ds∣, (27)

(1)
≤ ∫

t

0
ν(t − s)e−2s/ω

2

ds + 4ω2
∫

t

0
∫

s/ω2

0
(1 +

2δZ ′

ω
+
4δZ ′

ω2
)e−2(s/ω

2−s′)ν2(t − s)ds′ds+

δ

ω2 ∫

t

0
ν′(t − s)ds +

δ

ω2

2

∑
j=1

ωj
∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)ν′2(t − s)ds′ds,

(2)
≤ ν(t)∫

t

0
e−2s/ω

2

ds +
δ

ω2
ν′(t)∫

t

0
ds + (4(ω2

+ 2ωδZ ′ + 4δZ ′)ν2(t) +
δ

ω
(1 + ω)ν′2(t))∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)ds′ds,

≤
1

2
ω2ν(t) +

t

2
(4(ω2

+ 2ωδZ ′ + 4δZ ′)ν2(t) +
δ

ω
(1 + ω)ν′2(t) +

2δ

ω2
ν′(t)),

where in (1) we have used Lemma 10 and in (2), we have
used the fact that the functions ν(t), ν′(t) appearing in
Lemma 10 are non-decreasing in t. From this bound,
which is uniform in the system size n, it can be seen
that, for a fixed t, a choice of ω scaling as Θ(δ1/4) min-
imizes the error ∣⟨O⟩target − ⟨O⟩sim∣ as δ → 0. Further-
more, with this choice of ω, we obtain an observable error
of O(δ1/2t2d+1), as δ → 0 and t →∞, independent of the
system size.

Long-time dynamics and fixed point. Next, we consider
rapidly mixing observables (Eq. 20) and analyze stabil-
ity of these observables for long-time dynamics or fixed
points. For this, we will establish the following modifica-
tion of Lemma 6 to the account for noise in the quantum
simulator.

Lemma 11. Suppose O is a local observable with ∣∣O∣∣ ≤ 1
supported on SO, and for τ > 0, let O(τ) = exp(L †τ)(O)
where L is a geometrically local Lindbladian of the form
in Eq. 14. Furthermore, suppose O is rapidly mixing
with respect to L and satisfies Eq. 20 with k(∣SO ∣, γ) ≤

O(exp(γ−κ)). Then for qα as defined in Lemma 1,

∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣ ≤ ω2λ(1)(γ),

where λ(1)(γ) ≤ O(γ−d(κ+1)) as γ → 0 and for j ∈
{1,2,3,4}

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(j)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣

≤ (1 +
2Z ′δ
ω
+
4Z ′δ
ω2
)λ(2)(γ),

where λ(2)(γ) ≤ O(γ−(2d+1)(κ+1)) as γ → 0 and for j ∈

{3,4}, Q
(j)
α,α′ is defined in Lemma 1 but with ρω → ρω,δ

and for j ∈ {1,2}, we define Q
(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h

is defined in Lemma 1 but with ρω → ρω,δ. Furthermore,

∑
β

∣∫

t

0
Tr(O(t − s)K

(0)
β (

s

ω2
))ds∣ ≤ λ′(1)(γ)
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where λ′(1)(γ) ≤ O(γ−(d+1)(κ+1)) as γ → 0 and for j ∈
{1,2},

∑
α,β

∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)K

(j)
α,β(s

′
))e−2(s/ω

2−s′)ds′ds∣

≤ λ′(2)(γ),

where λ′(2)(γ) ≤ O(γ−(2d+1)(κ+1)) as γ → 0.

The proof of this lemma closely follows the same strat-
egy as the proof of Lemma 6 for the noiseless case and is
detailed in Appendix D. With this lemma, we can then
establish the stability of the quantum simulator while
simulating the long-time dynamics or fixed point expec-
tation values of rapidly mixing observables.

Proposition 6, repeated. Suppose L is a
d−dimensional geometrically local Lindbladian and
O with ∣∣O∣∣ ≤ 1 is a local observable supported on O(1)
lattice sites satisfying rapid mixing (Eq. 4). Then, in
the presence of noise with noise rate δ, the expected local
observable at any time t can be obtained to a precision
ε = O(δ2/3γ−(κ+1)(2d+1)), independent of n and t, with
the analogue quantum simulator. Furthermore, to obtain
this precision, we need to choose ω = Θ(δ1/3) which

results in a simulator run-time tsim = t/ω
2 = O(tδ−2/3).

Proof. To bound the observable error, we start from
Eq. 27 and use Lemma 11 — we then obtain

∣⟨O⟩target − ⟨O⟩sim∣ ≤

ω2λ(1)(γ) + 4(ω2
+ 2Z ′δ + 4Z ′δ)λ(2)(γ)+

δ

ω2
λ′(1)(γ) +

δ

ω
(1 + ω)λ′(2)(γ).

From this bound, which is uniform in the system size n,

as well as the scalings of λ(j)(γ), λ′(j)(γ) from Lemma 11
it can be seen that, for a fixed γ, a choice of ω scaling as
Θ(δ1/4) minimizes the error ∣⟨O⟩target − ⟨O⟩sim∣ as δ → 0.
Furthermore, with this choice of ω, we obtain an observ-
able error of O(δ1/2γ−(κ+1)(2d+1)), as δ → 0 and γ → 0,
independent of the system size.

B. Quantum advantage in the presence of noise

As shown in the previous subsection, even though the
dynamics and fixed point of geometrically local Lindbla-
dians could be stable to noise and errors on the analogue
quantum simulator, a noisy quantum simulator cannot
simulate observables perfectly but only to a noise-limited
precision. We now adopt the perspective in Ref. [25],
and ask if there are family of stable Lindbladian prob-
lems where a reduction in the noise rate δ results in clas-
sical algorithms requiring an exponentially longer time
to achieve this noise-limited precision. In showing that
these problems exist (subject to the complexity assump-
tion of BQP ≠ BPP), we will leverage the quantum-circuit
to 2D Lindbladian mapping presented in Lemma 7.

We first consider the problem of rapidly mixing local
observables in the Lindbladian fixed point in 2D. From
Proposition 6, it follows that, given δ > 0, as long as γ−1 ≤
O(δα−1/(10(κ+1))) for α > 0, the noise-limited precision in

the estimated observable ε ≤ O(δα(κ+1)) → 0 as δ → 0.
Physically, this corresponds to the intuitively expected
fact that a simulator with lower noise rate δ can be used
to solve problems which have a smaller decay rate γ (or
equivalently those that take longer to reach their fixed
point) without accumulating a large error. Now, using
Lemma 7 we establish that there cannot exist a classical
algorithm which for any α,κ > 0 can compute the rapidly
mixing local observable to a precision of O(δα) in time
poly(δ−1) unless BQP=BPP.

Proposition 7, repeated. For a given α,κ > 0, con-
sider a sequence of geometrically local 2D Lindbladians
and corresponding rapidly mixing observables indexed by
δ → 0 satisfying Eq. 20 with γ−1 ≤ O(δα−1/(10(κ+1))), then
the fixed point expectation value of the observable can be
estimated by an analogue quantum simulator with noise
rate δ to a noise-limited precision O(δα(κ+1)) (which → 0
as δ → 0) in simulator run-time O(poly(δ−1)) and there
cannot exist a poly(δ−1) randomized classical algorithm
to estimate this local observable to the same precision for
any α,κ > 0 unless BQP = BPP.

Proof. The estimate of the noise-limited precision and the
quantum simulator run-time follows immediately from
corollary 6.1 of propositin 6. We now show the classical
hardness of this sequence of problems. Assume that such
a classical algorithm did in fact exist — then, we can use
it to simulate the outcome of measuring an output qubit
in an arbitrary poly-depth quantum circuit. To see this,
suppose we had a quantum circuit C with architecture
shown in Fig. 6 on N qubits with R ≤ O(Nm) rounds for
some m > 0. We can then use the Lemma 7 to produce a
2D geometrically local Lindbladian L and a rapidly mix-
ing local observable O which satisfies the rapid-mixing
condition (Eq. 4) with κ = 1/3 and γ−1 ≤ O(N3(m+1)).
Being able to simulate the local observable O to a pre-
cision of O((NR)−1) = O(N−(m+1)) would allow us to
estimate, upto an O(1) additive error, the probability of
the output qubit (which is arbitrarily chosen to be the
first qubit) to be in 1 thus successfully simulating the
quantum circuit.

Now, if we indeed had a classical algorithm that did
satisfy the conditions in the proposition, then for a small
δ > 0, we could use it simulate this Lindbladian for N be-
ing chosen as a function, Nδ, of δ to satisfy the constraint
γ−1 ≤ O(δα−1/(10(κ+1))) i.e.

N
3(m+1)
δ ≤ O(δα−3/40),

and to satisfy the requirement that precision ε =
O(δα(κ+1)) be at-least O((NR)−1), we impose that

δ4α/3 ≤ O(N−(m+1)δ ).

We note that both of these requirements can be satisfied
by using α = 3/200 and Nδ = Θ(δ

−1/(50(m+1))).
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Thus, if there did exist a poly(δ−1) classical algorithm
to simulate the rapidly mixing Lindbladian problem, even
with the constraint on γ−1 as stated in the proposition to
ensure a vanishing noise-limited error as δ → 0, for any
α,κ > 0, we could simulate the outcome of measurement
of an output qubit in an arbitrary poly-depth quantum
circuit, which would imply that BQP=BPP.

Similarly, we can use Proposition 7 to establish a sim-
ilar result for dynamics of geometrically local Lindbladi-
ans.

Corollary 7.1, repeated. For a given α > 0, consider
the family of geometrically local 2D Lindbladians, local
observable and evolution time t indexed by δ → 0 such
that t ≤ O(δα−1/10). Then, the fixed point expectation
value of the observable can be estimated by an analogue
quantum simulator with noise rate δ to a noise-limited
precision O(δ5α) (which → 0 as δ → 0) in simulator run-
time O(poly(δ−1)) and there cannot exist a poly(δ−1)
randomized classical algorithm to estimate this local ob-
servable to the same precision for any α > 0 unless BQP
= BPP.

Proof. The estimate of the noise-limited precision and the
quantum simulator run-time follows immediately from
Proposition 5. To show the classical hardness of this
sequence of problems, note that if such a classical algo-
rithm did exist, then it could be used to simulate the
sequence of fixed point problems in Proposition 7 to the
corresponding noise-limited precision corresponding to
α,κ > 0 by simply choosing t = Θ(γ−(κ+1) log(δ−1)) ≤
O(δα

′−1/10 log(δ−1)) where α′ = (κ+1)α′ and thus imply-
ing that BQP = BPP.

VI. CONCLUSION

In conclusion, we have provided an analysis of ana-
logue quantum simulation of physically motivated open
quantum system simulation problems. Our analysis de-
veloped tools to study both a noiseless quantum simula-

tor, as well as a noisy quantum simulator and provided
rigorous accuracy guarantees on the observables being
measured on the quantum simulator. Furthermore, we
also provided complexity theoretic evidence of classical
hardness of the physically motivated problems that we
considered. Our results provide theoretical evidence for
the possibility of using near-term quantum devices for
solving physically interesting and classically hard open
system simulation problems, while remaining stable to
noise. Our paper also introduces several new technical
results that could be of independent interest — the ac-
curacy and stability guarantees that we develop in this
paper were based on developing a mathematically rig-
orous adiabatic elimination analysis that could account
for Lieb-Robinson bounds, and the classical hardness re-
sults were built on a quantum circuit to 2D Lindbladian
encoding together with its convergence analysis.
Our work leaves several important theoretical ques-

tions open — most importantly, can we develop certifi-
able analogue simulation protocols for the analogue sim-
ulation for the fixed point of Lindbladians that are not
rapidly mixing, and are these protocols stable to errors?
A possible approach to this problem, which we leave for
future work, is to identify a set of reasonable assumptions
on the spectrum of Lindbladians, that may not be rapid
mixing, but which still allow for analytical results re-
lated to their stability. An alternative could be studying
Lindbladians showing dissipative phase transitions nu-
merically near the phase transition, and understand if
(and which) local observables are stable.
Furthermore, another direction would be extending

the classical hardness results to 1D geometrically local
Lindbladians by encoding a quantum circuit in the fixed
point of such a Lindbladian, thereby making the case
for quantum advantage in simpler (i.e. 1D) experimental
setups. This should in principle be possible by adapt-
ing the techniques developed for the corresponding re-
sult that encodes a quantum circuit to the ground state
of a 1D Hamiltonian [55]. Furthermore, extending classi-
cal hardness results to translationally invariant Lindbla-
dians, along the lines of similar results in Hamiltonian
ground states [56], also remain open.

[1] Christian W Bauer, Zohreh Davoudi, Natalie Klco, and
Martin J Savage. Quantum simulation of fundamental
particles and forces. Nature Reviews Physics, 5(7):420–
432, 2023.

[2] Christian W Bauer, Zohreh Davoudi, A Baha Bal-
antekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A
De Jong, Patrick Draper, Aida El-Khadra, Nate
Gemelke, Masanori Hanada, et al. Quantum simula-
tion for high-energy physics. PRX quantum, 4(2):027001,
2023.

[3] VV Sivak, Alec Eickbusch, Baptiste Royer, Shraddha
Singh, Ioannis Tsioutsios, Suhas Ganjam, Alessandro Mi-
ano, BL Brock, AZ Ding, Luigi Frunzio, et al. Real-time
quantum error correction beyond break-even. Nature,

616(7955):50–55, 2023.
[4] William P Livingston, Machiel S Blok, Emmanuel Flurin,

Justin Dressel, Andrew N Jordan, and Irfan Siddiqi. Ex-
perimental demonstration of continuous quantum error
correction. Nature communications, 13(1):2307, 2022.

[5] Xing-Can Yao, Tian-Xiong Wang, Hao-Ze Chen, Wei-
Bo Gao, Austin G Fowler, Robert Raussendorf, Zeng-
Bing Chen, Nai-Le Liu, Chao-Yang Lu, You-Jin Deng,
et al. Experimental demonstration of topological error
correction. Nature, 482(7386):489–494, 2012.

[6] Dolev Bluvstein, Simon J Evered, Alexandra A Geim, So-
phie H Li, Hengyun Zhou, Tom Manovitz, Sepehr Ebadi,
Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter,
et al. Logical quantum processor based on reconfigurable



23

atom arrays. Nature, 626(7997):58–65, 2024.
[7] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh,

A. Hankin, J. P. Gaebler, D. Francois, A. Chernogu-
zov, D. Lucchetti, N. C. Brown, T. M. Gatterman, S. K.
Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes,
and R. P. Stutz. Realization of Real-Time Fault-Tolerant
Quantum Error Correction. Phys. Rev. X, 11(4):041058,
December 2021.

[8] Andrew J Daley, Immanuel Bloch, Christian Kokail, Stu-
art Flannigan, Natalie Pearson, Matthias Troyer, and
Peter Zoller. Practical quantum advantage in quantum
simulation. Nature, 607(7920):667–676, 2022.

[9] Iulia Buluta and Franco Nori. Quantum simulators. Sci-
ence, 326(5949):108–111, 2009.

[10] Andrew A. Houck, Hakan E. Türeci, and Jens Koch. On-
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Pérez, Roberta Zambrini, and Sabrina Maniscalco.
Quantum simulation of dissipative collective effects on
noisy quantum computers. Prx quantum, 4(1):010324,
2023.

[34] Nishchay Suri, Joseph Barreto, Stuart Hadfield, Nathan
Wiebe, Filip Wudarski, and Jeffrey Marshall. Two-
unitary decomposition algorithm and open quantum sys-
tem simulation. Quantum, 7:1002, 2023.

[35] Richard Cleve and Chunhao Wang. Efficient quan-
tum algorithms for simulating lindblad evolution. arXiv
preprint arXiv:1612.09512, 2016.

[36] Andrew M Childs and Tongyang Li. Efficient simulation
of sparse markovian quantum dynamics. arXiv preprint
arXiv:1611.05543, 2016.

[37] Xiantao Li and Chunhao Wang. Simulating markovian
open quantum systems using higher-order series expan-
sion. arXiv preprint arXiv:2212.02051, 2022.

[38] Rahul Trivedi. Description and complexity of non-
markovian open quantum dynamics. arXiv preprint
arXiv:2204.06936, 2022.

[39] Xiantao Li and Chunhao Wang. Succinct description
and efficient simulation of non-markovian open quan-
tum systems. Communications in Mathematical Physics,
401(1):147–183, 2023.

[40] Fernando Pastawski, Lucas Clemente, and Juan Ignacio
Cirac. Quantum memories based on engineered dissipa-
tion. Phys. Rev. A, 83:012304, Jan 2011.

[41] Paolo Zanardi, Jeffrey Marshall, and Lorenzo Cam-



24

pos Venuti. Dissipative universal lindbladian simulation.
Phys. Rev. A, 93:022312, Feb 2016.

[42] Zhiyan Ding, Xiantao Li, and Lin Lin. Simulating open
quantum systems using hamiltonian simulations. arXiv
preprint arXiv:2311.15533, 2023.

[43] David Poulin. Lieb-robinson bound and locality for gen-
eral markovian quantum dynamics. Physical review let-
ters, 104(19):190401, 2010.

[44] Thomas Barthel and Martin Kliesch. Quasilocality and
efficient simulation of markovian quantum dynamics.
Phys. Rev. Lett., 108:230504, Jun 2012.

[45] Toby S. Cubitt, Angelo Lucia, Spyridon Michalakis, and
David Perez-Garcia. Stability of local quantum dissipa-
tive systems. Communications in Mathematical Physics,
337(3):1275–1315, Aug 2015.

[46] Angelo Lucia, Toby S Cubitt, Spyridon Michalakis,
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of phases for mixed states via fast dissipative evolution.
Quantum, 3:174, 2019.

[53] Sergey Bravyi and Robert König. Classical simulation
of dissipative fermionic linear optics. arXiv preprint
arXiv:1112.2184, 2011.

[54] Roberto Oliveira and Barbara M Terhal. The complexity
of quantum spin systems on a two-dimensional square
lattice. arXiv preprint quant-ph/0504050, 2005.

[55] Dorit Aharonov, Daniel Gottesman, Sandy Irani, and Ju-
lia Kempe. The power of quantum systems on a line.
Communications in mathematical physics, 287(1):41–65,
2009.

[56] Daniel Gottesman and Sandy Irani. The quantum and
classical complexity of translationally invariant tiling and
hamiltonian problems. In 2009 50th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 95–
104. IEEE, 2009.

[57] Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vya-
lyi. Classical and quantum computation. Number 47.
American Mathematical Soc., 2002.



25

Appendix A: Detailed proofs from section IV

Lemma 1, repeated. For any t > 0, the remainder Rω(t) =
d
dt
TrA(ρω(t)) − ω2LTrA(ρω(t)) satisfies

Rω(t) = ω
2
∑
α

e−2tqα + ω4
∑

j∈{1,2}
∑
α
∫

t

0
e−2(t−s)Q(j)α,Hsys

(s)ds

+ ω4
∑

j∈{3,4}
∑
α,α′
∫

t

0
e−2(t−s)Q(j)α,α′(s)ds. (A1a)

where

qα = −DLα(ρ(0)),

Q
(1)
α,h(t) = −

1

ω
[L†

α, [h,TrA(σαρω(t))]] + h.c.

Q
(2)
α,h(t) = −

i

2
[L†

α, Lα[h,TrA(ρω(t))]] + h.c..

Q
(3)
α,α′(t) =

i

ω
∑

u∈{+,−}
DLα
([L

(u)
α′ ,TrA(σ

(ū)
α′ ρω(t))]),

If α = α′,Q(4)α,α′(t) =
2

ω2
(DL†

α
−DLα)(TrA(nαρω(t))),

If α ≠ α′,Q(4)α,α′(t) = −
1

ω2 ∑
u,u′

∈{+,−}

[L(u)α , [L
(u′)
α′ ,TrA(σ

(ū)
α σ

(ū′)
α′ ρω(t))]].

Proof. In order to find Rω(t), we start from the equations of motion for TrA(ρω(t)) and TrA(σαρω(t)) as given in
Eqs. 8a,b. We first integrate Eq. 8b to obtain

TrA(σαρω(t)) = ∫
t

0
e−2(t−s)( − iω2

[Hsys,TrA(σαρω(s))] − iωLαTrA(ρω(s)) + ω∑
α′
Eα,α′(s))ds, (A2)

where we have used the fact that σαρω(0) = 0, since the ancillae are initialized in ∣0⟩. Next we note that, from
integration by parts and the expression for d

dt
TrA(ρω(t)) in Eq. 8a, it follows that

∫

t

0
e−2(t−s)LαTrA(ρω(s))ds

=
1

2
LαTrA(ρω(t)) −

e−2t

2
LαTrA(ρω(0)) −

1

2
∫

t

0
e−2(t−s)Lα

d

ds
TrA(ρω(s))ds,

=
1

2
LαTrA(ρω(t)) −

e−2t

2
LαTrA(ρω(0)) −

iω2

2
∫

t

0
e−2(t−s)Lα[Hsys,TrA(ρω(s))]ds +

iω

2
∑
α′
∫

t

0
e−2(t−s)Fα,α′(s)ds,

(A3)

where

Fα,α′(s) = ∑
u∈{+,−}

Lα[L
(u)
α′ ,TrA(σ

(ū)
α′ ρω(s))]. (A4)

From Eqs. A2 and A3, we now obtain that

TrA(σαρω(t)) = −
iω

2
LαTrA(ρω(t)) +

iω

2
e−2tLαρ(0)

+ ∫

t

0
e−2(t−s)

⎛

⎝
− iω2

[Hsys,TrA(σαρω(s)))] −
ω3

2
Lα[Hsys,TrA(ρω(s))] +∑

α′
(ωEα,α′(s) +

ω2

2
Fα,α′(s))

⎞

⎠
ds. (A5)

We now consider the remainder Rω(t) — using the definition of the remainder (Eq. 10) together with Eq. 8a, we
obtain that

Rω(t) =
d

dt
TrA(ρω(t)) − ω2

LTrA(ρω(t)) = ∑
α

((−iω[L†
α,TrA(σαρω(t))] + h.c) − ω

2
DLαTrA(ρω(t))). (A6)
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It follows from Eq. A5 that

− iω[L†
α,TrA(σαρω(t))] = −

ω2

2
[L†

α, LαTrA(ρω(t))] +
ω2

2
e−2t[L†

α, Lαρ(0)] + ∫
t

0
e2(t−s)( − ω3

[L†
α, [Hsys,TrA(σαρω(t))]

− i
ω4

2
[L†

α, Lα[Hsys,TrA(ρω(s))]] − i∑
α′
(ω2
[L†

α,Eα,α′(s)] +
ω3

2
[L†

α, Fα,α′(s)]))ds, (A7)

Using Eqs. A6 and A7a, b, we note that −[L†
α, LTrA(ρω(s))]/2 + h.c = DLα and so arrive at

Rω(t) = ∑
α

(ω2e−2tqα + ω4
∫

t

0
e−2(t−s) (Q(1)α,Hsys

(s) + ω4
Q
(2)
α,Hsys

(s))ds) + ω4
∑
α,α′
∫

t

0
e−2(t−s)(Q(3)α,α′(s) +Q

(4)
α,α′(s))ds,

(A8)

where

qα ∶=
1

2
[L†

α, Lαρ(0)] + h.c.,

Q
(1)
α,Hsys

(t) ∶= −
1

ω
[L†

α, [Hsys,TrA(σαρω(t))]] + h.c.,

Q
(2)
α,Hsys

(t) ∶= −
i

2
[L†

α, Lα[Hsys,TrA(ρω(t))]] + h.c.,

Q
(3)
α,α′(t) ∶=

−i

2ω
[L†

α, Fα,α′(t)] + h.c,

Q
(4)
α,α′(t) ∶= −

i

ω2
[L†

α,Eα,α′(t)] + h.c.. (A9)

The expressions for qα, Q
(1)
α,Hsys

(t), Q
(2)
α,Hsys

(t), Q
(3)
α,α′(t), and Q

(4)
α,α′(t) can be seen to be the same as those provided

in the lemma statement.

Lemma 2, repeated. Suppose ρω(t) is the joint state of the system and ancilla qubits with the ancilla qubits initially
being in state ∣0⟩, then for all α,α′

∣∣σαρω(t)∣∣1 ≤
ω

2
and ∣∣TrA(σ†

ασα′ρω(t))∣∣1, ∣∣TrA(σασα′ρω(t))∣∣1 ≤
ω2

4
.

Proof. The proof of the bound on ∣∣σαρω(t)∣∣1 is provided after the statement of Lemma 2 in Subsection IVA. Here

we bound ∣∣TrA(σ†
ασα′ρω(t))∣∣ and ∣∣TrA(σασα′ρω(t))∣∣ for any α,α′. It is convenient to define the “Heisenberg-like”

picture of any operator or superoperator O to be O(t) ∶= E−1ω (t,0)OEω(t,0). Accordingly we may write in vectorized
form that, for u ∈ {−,+},

d

dt
(σ(u)α,u(t)σα′,l(t)) = [σ

(u)
α,u(t)σα′,l(t),Lω(t)] = −4σ

(u)
α,u(t) − iωLα′,l(t)σ

z
α′,l(t)σ

(u)
α,u(t) + uiωL

(u)
α,u(t)σ

z
α,u(t)σα′,l(t),

where we interpret the subscripts as − = l,+ = r and σz
α ∶= [σα, σ

†
α] is the pauli-Z operator acting on ancilla qubit α.

Integrating the above equation, we obtain a relation between σ
(u)
α,u(t)σα,l(t) and σ

(u)
α,uσα,l,

σ(u)α,u(t)σα,l(t) = e
−4tσ(u)α,uσα′,l + iω∫

t

0
e−4(t−t

′) (−Lα′,l(t
′
)σz

α′,l(t
′
)σ(u)α,u(t

′
) + uL(u)α,u(t

′
)σz

α,u(t
′
)σα′,l(t

′
))dt′.

We express the bound on ∣∣TrA(σ
(u)
α σα′ρω(t))∣∣1 in vectorized form using the above equation as

∣∣⟪TrA∣σ
(u)
α,l σα′,l∣ρω(t)⟫∣∣1

= ∣∣⟪TrA∣Eω(t,0)σ(u)α,u(t)σα,l(t)∣ρ(0)⟫∣∣1

≤ ω∫
t

0
e−4(t−t

′) (∣∣⟪TrA∣Eω(t,0)Lα′,l(t
′
)σz

α′,l(t
′
)σ(u)α,u(t

′
)∣ρ(0)⟫∣∣

1
+ ∣∣⟪TrA∣Eω(t,0)L(u)α,u(t

′
)σz

α,u(t
′
)σα′,l(t

′
)∣ρ(0)⟫∣∣

1
)dt′,

(A10)

where we have used the assumption that ρ(0) is initialized with all ancilla in vacuum to apply σα′,l∣ρ(0)⟫ = 0. Using
the bound ∣∣σαρω(t

′)∣∣1 ≤ ω/2 for any α from the first part of Lemma 2 in conjunction with the contracting effect of
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channels on the 1-norm, we have ∣∣σα,l(t)∣ρ(0)⟫∣∣1, ∣∣σ
†
α,r(t)∣ρ(0)⟫∣∣1 ≤ ω/2 for any α and t ≥ 0. Inserting these bounds

into the above equation and applying the assumption ∣∣Lα∣∣ ≤ 1, we find

∣∣TrA(σ(u)α σαρ(t))∣∣1 ≤ ω∫
t

0
e−4(t−t

′)
(
ω

2
+
ω

2
)dt′ ≤

ω2

4
. (A11)

The lemma statement is obtained by either setting u = − or u = +.

Appendix B: Detailed proofs of lemmas from section IVB

Throughout this appendix, we will focus on geometrically local Lindbladians introduced in section IVB. These will
be Lindbladians of the form

L =∑
α

Lα,

where we will assume that Lα(X) = −i[hα,X] + DLα(X) for operators hα, Lα supported on Sα. Furthermore, we
will assume that diameter diam(Sα) ≤ a for all α, and the degree ∂(Sα) = {α

′ ∶ Sα ∩ Sα′ = ϕ} ≤ Z for all α. As was
mentioned in section IVB, a key ingredient in our analysis is the Lieb-Robinson bound from Ref. [44].

Lemma 3, repeated. Suppose K is a superoperator supported on region SK and satisfies K(I) = 0, and O is a local
observable, with ∣∣O∣∣ ≤ 1, supported on region SO, then

∣∣KeL
†t
(O)∣∣ ≤ ηSO

∣∣K∣∣cb,∞→∞ exp(4eZt −
d(SK, SO)

a
).

An immediate consequence of this lemma is the following modified “2-point” Lieb-Robinson bound.

Lemma 4, repeated. KX and KY are superoperators supported on regions X and Y such that KX(I) = KY (I) = 0
and diam(X),diam(Y ) ≤ a, then for any local observable O, with ∣∣O∣∣ ≤ 1, supported on region SO

∣∣KXKY e
L†t
(O)∣∣ ≤ eηSO

∣∣KX ∣∣cb,∞→∞∣∣KY ∣∣cb,∞→∞ exp(4eZt −
1

2a
(d(X,SO) + d(Y,SO))).

Proof. Note that

∣∣KXKY e
L†t
(O)∣∣ ≤ ∣∣KX ∣∣cb,∞→∞∣∣KY e

L†t
(O)∣∣ ≤

∂(SO)

Z
∣∣KX ∣∣cb,∞→∞∣∣KY ∣∣cb,∞→∞ exp(4eZt −

1

a
d(Y,SO)). (B1)

Next, consider the case X ∩ Y = ∅, then KXKY = KYKX . In this case, the above equation holds with X and Y
swapped i.e.

∣∣KXKY e
L†t
(O)∣∣ ≤

∂(SO)

Z
∣∣KX ∣∣cb,∞→∞∣∣KY ∣∣cb,∞→∞ exp(4eZt −

1

a
d(X,SO)). (B2)

Multiplying Eqs. B1 with B2, we obtain that

∣∣KXKY e
L†t
(O)∣∣ ≤

∂(SO)

Z
∣∣KX ∣∣cb,∞→∞∣∣KY ∣∣cb,∞→∞ exp(4eZt −

1

2a
(d(X,SO) + d(Y,SO))) (B3)

Consider now the case when X ∩ Y ≠ ∅. In this case, we can treat KXKY as a superoperator supported on X ∪ Y .
From the Lieb-Robinson bounds, it then follows that

∣∣KXKY e
L†t
(O)∣∣ ≤

∂(SO)

Z
∣∣KXKY ∣∣cb,∞→∞ exp(4eZt −

1

a
d(X ∪ Y,SO)). (B4)

We note that ∣∣KXKY ∣∣cb,∞→∞ ≤ ∣∣KX ∣∣cb,∞→∞∣∣KY ∣∣cb,∞→∞. Next, we note that

d(X ∪ Y,SO) =min(d(X,SO), d(Y,SO) =min(d(x0, SO), d(y0, SO)),
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where x0 = argminx∈Xd(x,SO) and y0 = argminy∈Y d(y,SO). Since diam(X),diam(Y ) ≤ a, we have d(x0, y0) ≤
a and so min(d(x0, SO), d(y0, SO)) ≥ d(x0, SO) − d(x0, y0) = d(X,S0) − a. By the same logic we also have
min(d(x0, SO), d(y0, SO)) ≥ d(Y,S0) − a and consequently we have that

d(X ∪ Y,SO) ≥
1

2
(d(X(SO)) + d(Y (SO))) − a.

Therefore, from Eq. B4, we obtain that when X ∩ Y ≠ ∅,

∣∣KXKY e
L†t
(O)∣∣ ≤

e∂(SO)

Z
∣∣KX ∣∣cb,∞→∞∣∣KY ∣∣cb,∞→∞ exp(4eZt −

1

2a
(d(X,SO) + d(Y,SO))). (B5)

From Eqs. B3 and B5, the lemma statement follows.

An upper bound on the sum of an exponential function over a d−dimensional lattice is a useful technical result.

Lemma 12. Suppose S̃α, for α ∈ N, are subsets of Zd which satisfy that for some Z̃ > 0, ∂S̃α
= ∣{α′ ∶ S̃α ∩ S̃α′ ≠ ϕ}∣ ≤ Z̃

for all α ∈ N. Suppose S ⊆ Zd with ∣S∣ < ∞ is a fixed subset of Zd. For any k ∈ {1,2 . . .}, m ∈ {0,1} and T,λ, x ≥ 0,
define

ξ
(m,k)
λ,x (T ) = ∑

α1,α2...αk

dmα1,α2...αk
min(x exp(T −

1

λ
dα1,α2...αk

),1),

where dα1,α2...αk
= ∑

k
j=1 d(S, S̃αj). Then,

ξ
(m,k)
λ,x (T ) ≤max(x,1)kkm(ν(0)(λ,T ))

k−m
(ν(1)(λ,T ))

m
,

where, ν(m)(λ,T ) are piecewise continuous non-decreasing functions of λ (for a fixed T ) and T (for a fixed λ) which

only depend on Z̃ and d. Furthermore,

ν(m)(λ,T ) ≤ O((λT )m+d) as λ,T →∞ and ν(m)(λ,0) ≤ O(λm+d) as λ→∞.

Proof. We can reduce the multiple summation to a single summation — and important fact that we will use here is
that for 0 < x1, x2 . . . xk ≤ 1 and A > 1,

min(Ax1x2 . . . xk,1) ≤min(Ax1,1)min(Ax2,1) ⋅ ⋅ ⋅
k

∏
i=1

min(Axi,1). (B6)

To see that Eq. B6 is true, consider two cases — if Ax1x2 . . . xk ≥ 1, then for any i ∈ [1 ∶ k],

Axi ≥
1

x1 . . . xi−1xi+1 . . . xk
≥ 1 Ô⇒ min(Axi,1) = 1

and hence satisfies Eq. B6. On the other hand if Ax1x2 . . . xk ≤ 1, then we again have that

min(Ax1x2 . . . xk,1) = Ax1x2 . . . xk ≤∏
i∈S
Axi for any S ⊆ [1 ∶ k] Ô⇒ min(Ax1x2 . . . xk,1) ≤

k

∏
i=1

min(Axi,1).

where we have used that 0 < xi ≤ 1 and A > 1. Now, noting that for any x, y > 0, min(y, x) ≤ max(x,1)min(y,1).
Using this together with Eq. B6, we obtain that,

ξ
(0,k)
λ,x (T ) = ∑

α1,α2...αk

min(x exp(T −
1

λ
dα1,α2...αk

),1)

≤max(x,1) ∑
α1,α2...αk

k

∏
i=1

min( exp(T −
1

λ
d(S̃αi , S)),1),

≤max(x,1)k(∑
α

min( exp(T −
1

λ
d(S̃α, S)),1))

k

. (B7a)
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and

ξ
(1,k)
λ,x (T ) = ∑

α1,α2...αk

dα1,α2...αk
min( exp(T −

1

λ
dα1,α2...αk

), x)

≤max(x,1) ∑
α1,α2...αk

(
k

∑
i=1
d(S̃αi , S))

k

∏
i=1

min( exp(T −
1

λ
d(S̃αi

, S)),1),

= kmax(x,1) ∑
α1,α2...αk

d(S̃α1 , S)
k

∏
i=1

min( exp(T −
1

λ
d(S̃αi , S)),1),

≤ kmax(x,1)k(∑
α

min( exp(T −
1

λ
d(S̃α, S)),1))

k−1
∑
α

d(S̃α, S)min( exp(T −
1

λ
d(S̃α, S)),1). (B7b)

Having reduced the multiple summation to a single summation, we re-express the single summation with respect to
α with a summation with respect to the grid distances. In particular, we note that

∑
α

dm(S̃α, S)min( exp(T −
1

λ
d(S̃α, S)),1) =

∞
∑
n=0

nmmin( exp(T −
1

λ
n),1)∣{α ∶ d(S̃α, S) = n}∣. (B8)

We next upper bound ∣{α ∶ d(S̃α, S) = n}∣ — note that

∣{α ∶ d(S̃α, S) = n}∣
(1)
≤ Z̃∣{x ∈ Zd

∶ d(x,S) = n}∣
(2)
≤ Z̃∣S∣∣{x ∈ Zd

∶ d(x,0) = n}∣, (B9)

where in (1) we have used the fact that any one site x ∈ Zd can be in at most Z̃ sets S̃α (since otherwise there would

be more than Z̃ sets S̃α that would intersect each other), and in (2) we have simply upper bounded the number of
sites at a distance of n from S by the number of sites at a distance of n from any site in S.

A bound on ∣{x ∈ Zd ∶ d(x,0) = n}∣ can be obtained by noting that, since d(x, y) = ∑
d
i=1 ∣xi − yi∣ is the Manhattan

distance on the lattice,

∣{x ∈ Zd
∶ d(x,0) = n}∣ = ∣{x ∈ Zd

∶
d

∑
i=1
∣xi∣ = n}∣ ≤ 2

d
∣{x ∈ Nd

0 ∶
d

∑
i=1
xi = n}∣,

= 2d(
n + d − 1

d − 1
) ≤

2d

(d − 1)!
(n + d − 1)d−1. (B10)

Combining Eqs. B9 and B10, we obtain that

∣{α ∶ d(S̃α, S) = n}∣ ≤
2dZ̃∣S∣

(d − 1)!
(n + d − 1)d−1.

Returning to Eq. B8, we obtain that

∑
α

dm(S̃α, S)min( exp(T −
1

λ
d(S̃α, S)),1) ≤

2dZ̃∣S∣

(d − 1)!

∞
∑
n=0

min( exp(T −
1

λ
n),1)nm(n + d − 1)d−1, (B11)

Now, we note that

∞
∑
n=0

min( exp(T −
n

λ
),1)nm(n + d − 1)k

(1)
≤

⌈λT ⌉
∑
n=0

nm(n + d − 1)d−1 +
∞
∑

n=⌊λT ⌋
nm(n + d − 1)d−1 exp(T −

n

λ
),

≤

⌈λT ⌉
∑
n=0

nm(n + d − 1)d−1 +
∞
∑
n=0
(n + ⌊λT ⌋)m(n + ⌊λT ⌋ + d − 1)d−1 exp(T −

⌊λT ⌋

λ
−
n

λ
),

(2)
≤

⌈λT ⌉
∑
n=0

nm(n + d − 1)d−1 +
∞
∑
n=0
(n + ⌊λT ⌋)m(n + ⌊λT ⌋ + d − 1)d−1 exp(−n/λ),

(3)
≤ Ym(⌈λT ⌉) + 2

d−2
∑

σ,σ′∈{0,1}
⌊λT ⌋(1−σ)m(d − 1 + ⌊λT ⌋)(1−σ

′)(d−1)Xσm+σ′(d−1)(λ), (B12)
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where for p ∈ {0,1,2 . . .} and m ∈ {0,1}

Xp(λ) =
∞
∑
n=0

np exp(−n/λ) and Ym(z) =
⌈z⌉
∑
n=0

nm(n + d − 1)d−1.

In (1), we have split the summation over n into two summation — one summation involving only n ≤ ⌈λT ⌉, where we
have used min(exp(T − n/λ),1) ≤ 1, and the other summation involving n ≥ ⌊λT ⌋, where we have used min(exp(T −
n/λ),1) ≤ exp(T −n/λ). In (2), we have used the fact that λT ≤ ⌊λT ⌋, and thus exp(T − ⌊λT ⌋/λ) ≤ 1. In (3), we have

used the fact that for a, b > 0, (a + b)d ≤ 2d−1(ad + bd). We will now pick the functions ν(m)(λ,T ) from the lemma
statement to be,

ν(m)(λ,T ) =
2dZ̃∣S∣

(d − 1)!
(Ym(⌈λT ⌉) + 2

d−2
∑

σ,σ′∈{0,1}
⌊λT ⌋(1−σ)m(d − 1 + ⌊λT ⌋)(1−σ

′)(d−1)Xσm+σ′(d−1)(λ)).

From Eqs. B7, B11 and B12, it follows that the lemma statement holds with this choice of ν(m)(λ,T ). Furthermore,

since the dependence of ν(m)(λ,T ) on T is entirely through ⌊λT ⌋ and ⌈λT ⌉, it follows that it is a piecewise continuous

function of T for a fixed λ. It is also clear that ν(m)(λ,T ) is non-decreasing in T for a fixed λ. Finally, to understand

the asymptotic behavior of ν(m)(λ,T ) as λ,T → ∞, we note that Xp(λ) ≤ O(λ
p+1) and Ym(⌈λT ⌉) ≤ O((λT )

m+d).
Therefore, we have that

ν(m)(λ,T ) ≤ O((λT )m+d) + ∑
σ,σ′∈{0,1}

O((λT )(1−σ)m+(1−σ
′)(d−1)

)O(λ(σm+σ
′(d−1)+1)

),

≤ O((λT )m+d) + ∑
σ,σ′∈{0,1}

O((λT )(1−σ)m+(1−σ
′)(d−1)

)O((λT )(σm+σ
′(d−1)+1)

),

≤ O((λT )m+d).

Furthermore, for T = 0,

ν(m)(λ,0) =
2dZ̃∣S∣

(d − 1)!
(Ym(0) + 2

d−2
(d − 1)d−1Xm(λ) + 2

d−2Xm+d−1(λ)) ≤ O(λm+d) as λ→∞.

This concludes the proof of the lemma.

1. Proof of Lemma 5

In this appendix, we will establish Lemma 5. We first establish the following

Lemma 13. Suppose O is a local observable with ∣∣O∣∣ ≤ 1 supported on SO, and for τ > 0, let O(τ) = exp(L †τ)(O)

where L is a geometrically local Lindbladian of the form in Eq. 14. Then for qα(s),Q
(j)
α,α′(s), with Q

(1)
α,α′ = Q

(1)
α,hα′

and

Q
(2)
α,α′ = Q

(2)
α,hα′

, as defined in Lemma 1,

∣Tr(O(τ)qα(s))∣ ≤ 2min(ηSO
exp(4eZτ −

d(Sα, SO)

a
),1) for any α,

and

∣Tr(O(τ)Q
(j)
α,α′(s))∣ ≤ 4min(eηSO

exp(4eZτ −
1

2a
(d(Sα, SO) + d(Sα′ , SO))),1) for any α,α′, j.

Proof. Using the Lieb-Robinson bounds (Lemma 3) together with the fact that ∣∣DLα ∣∣∞→∞ ≤ 2, we obtain that

∣Tr(O(τ)qα)∣ = ∣Tr(O(τ)DLα(ρ(0)))∣ ≤ ∣∣D
†
Lα
(O(τ))∣∣∣∣ρ(0)∣∣1,

≤ 2min(ηSO
exp(4eZτ −

d(Sα, SO)

a
),1).
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Next, consider Tr(O(τ)Q
(1)
α,α′(s)). For any α,α

′ we obtain that

∣Tr(O(τ)Q
(1)
α,α′(s))∣ ≤

2

ω
∣Tr(O(τ)[L†

α, [hα′ ,TrA((σαρω(s))]])∣,

≤
2

ω
∥[hα′ , [L

†
α,O(τ)]]∥∥TrA((σαρω(s))∥1,

≤ ∥[hα′ , [L
†
α,O(τ)]]∥,

where, in the last step, we have used Lemma 2. Next, we can use Lemma 4 together with the fact that

∣∣[hα′ , ⋅]∣∣cb,∞→∞, ∣∣[L
(±)
α , ⋅]∣∣cb,∞→∞ ≤ 2 to obtain

∣Tr(O(τ)Q
(1)
α,hα′

(s))∣ ≤ 4∣∣O∣∣min(eηSO
exp(4eZτ −

1

2a
(d(Sα, SO) + d(Sα′ , SO))),1).

Next, for any α,α′, we obtain that,

∣Tr(O(τ)Q
(2)
α,α′(s))∣ ≤ ∣Tr(O(τ)[L

†
α, Lα[hα′ , ρω(s)]])∣,

≤ ∣∣[hα′ , [L
†
α,O(τ)]Lα]∣∣∣∣TrA(ρω(s))∣∣1,

≤ 4∣∣O∣∣min(eηSO
exp(4eZτ −

1

2a
(d(Sα, SO) + d(Sα′ , SO))) ,1) .

Next, we bound ∣TrA(Q
(3)
α,α′)∣. For any α,α

′, we obtain that

∣Tr(O(τ)Q
(3)
α,α′(s))∣ ≤

1

ω
∑

u∈{+,−}
∣Tr(O(τ)DLα ([L

(u)
α′ ,TrA(σ

(ū)
α′ ρω(s))]))∣,

≤
1

ω
∑

u∈{+,−}
∥[L

(u)
α′ ,D

†
Lα
(O(τ))]∥∥TrA(σ

(ū)
α′ ρω(s))∥1

,

≤
1

2
∑

u∈{+,−}
∥[L

(u)
α′ ,D

†
Lα
(O(τ))]∥,

where, in the last step, we have used Lemma 2. Next, we use Lemma 4 together with ∣∣[L
(u)
α , ⋅]∣∣cb,∞→∞ ≤ 2 and

∣∣D
†
Lα
∣∣
cb,∞→∞ ≤ 2 to obtain

∣Tr(O(τ)Q
(3)
α,α′(s))∣ ≤ 4∣∣O∣∣min(eηSO

exp(4eZτ −
1

2a
(d(Sα, SO) + d(Sα′ , SO))),1).

Next we bound ∣Tr(O(τ)Q
(4)
α,α′(s))∣1. For α ≠ α

′

∣Tr(O(τ)Q
(4)
α,α′(s))∣ ≤

1

ω2
∣Tr(O(τ)[L(u)α , [L

(u′)
α′ ,TrA(σ

(ū)
α σ

(ū′)
α′ ρω(s))]])∣,

≤
1

ω2 ∑
u,u′∈{−,+}

∥[L
(u′)
α′ , [L

(u)
α ,O(τ)]]∥∥TrA(σ(ū)α σ

(ū′)
α′ ρω(s))∥

1
,

≤
1

4
∑

u,u′∈{−,+}
∥[L

(u′)
α′ , [L

(u)
α ,O(τ)]]∥,

where in the last step we have used Lemma 2. Furthermore, from Lemma 4 and the fact that ∣∣[L
(u)
α , ⋅]∣∣cb,∞→∞ ≤ 2 it

follows that

∣Tr(O(τ)Q
(4)
α,α′(s))∣ ≤ 4∣∣O∣∣min(eηSO

exp(4eZτ −
1

2a
(d(Sα, SO) + d(Sα′ , SO))),1). (B13)

Similarly, for α = α′,

∣Tr(O(τ)Q(4)α,α(s))∣ ≤
2

ω2
∣Tr(O(τ)(DLα −DL†

α
)(TrA(nαρω(s))))∣,

≤
2

ω2
∣∣(DLα −DL†

α
)
†(O(τ))∣∣∣∣TrA(nαρω(s))∣∣1,

≤
1

2
∣∣(DLα −DL†

α
)
†(O(τ))∣∣,
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where, again, in the last step, we have used Lemma 2. Next, we can use Lemma 3 together with the fact that
∣∣(DLα −DL†

α
)†∣∣

cb,∞→∞ ≤ 4, we obtain that

∣Tr(O(τ)Q(4)α,α(s))∣ ≤ 2∣∣O∣∣min(ηSO
exp(4eZτ −

1

a
d(Sα, SO)),1). (B14)

Eqs. B14 and B13 together establish establish a bound on ∣Tr(O(τ)Q
(4)
α,α′(s))∣ for any α,α

′ and is consistent with the
lemma statement.

Lemma 5, repeated. Suppose O is a local observable with ∣∣O∣∣ ≤ 1 supported on SO, and for τ > 0, let O(τ) =
exp(L †τ)(O) where L is a geometrically local Lindbladian of the form in Eq. 14. Then for qα as defined in Lemma 1,
then there is a non-decreasing piecewise continuous function ν such that ν(t) ≤ O(td) as t→∞ and

∑
α

∣Tr(O(τ)qα)∣ ≤ ν(τ),

and for j ∈ {1,2,3,4}

∑
α,α′
∣Tr(O(τ)Q

(j)
α,α′(s))∣ ≤ ν

2
(τ),

where, for j ∈ {3,4}, Q
(j)
α,α′ is defined in Lemma 1 and for j ∈ {1,2}, we define Q

(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h is defined

in Lemma 1.

Proof. We will prove this lemma using Lemmas 12 and 13. Consider first

∑
α

∣Tr(O(τ)qα)∣ ≤ 2∑
α

min(ηSO
exp(4eZτ −

d(Sα, SO)

a
),1),

= 2ξ(0,1)a,ηSO
(4eZτ) ≤ 2max(ηSO

,1)ν(0)(a,4eZτ) ≤ 2emax(ηSO
,1)ν(0)(2a,4eZτ), (B15)

where in the last step, we have used the fact that as per Lemma 12 ν(0)(λ,T ) is a non-decreasing function of λ for a
fixed T . Similarly, for j ∈ {1,2,3,4},

∑
α1,α2

∣Tr(O(τ)Q
(j)
α,α′(s)∣,

≤ 4 ∑
α,α′

min(eηSO
exp(4eZτ −

d(Sα, SO) + d(Sα′ , SO)

2a
),1),

= 4ξ
(0,2)
2a,eηSO

(2a,4eZτ) ≤ 4(max(eηSO
,1))

2
(ν(0)(2a,4eZτ))

2
≤ 4e2(max(ηSO

,1))
2
(ν(0)(2a,4eZτ))

2
. (B16)

From Eqs. B15 and B16, it follows that choosing ν(τ) = 2emax(ηSO
,1)ν(0)(2a,4eZτ) satisfies the lemma statement. It

can also be noted that, from the asymptotics of ν(0)(λ,T ) in Lemma 12, ν(τ) ≤ O(τd) and that since ν(0)(λ,T ), for a
fixed λ, is a non-decreasing and piecewise continuous function of T , ν(τ) is also a piecewise continuous non-decreasing
function of τ .

2. Proof of Lemma 6

In this appendix, we will outline a proof of Lemma 6. A convenient technical lemma to use for this proof is below.

Lemma 14. Suppose O is a spatially local observable and let O(τ) = exp(L †τ)(O) be its Heisenberg-picture evolution
with respect to a geometrically local Lindbladian L of the form of Eq. 14 and with fixed point σ. Suppose that O obeys
the local rapid mixing condition (Eq. 20). Furthermore, suppose σω(s) is a time-dependent operator which satisfies

∣∣σω(s)∣∣1 ≤ f(ω) for some f(ω) > 0. Furthermore, let Kα,Jα′ be superoperators supported on S̃α and S̃α′ respectively

which satisfy K †
α (I) = J

†
α′ (I) = 0 and ∣∣Kα∣∣◇, ∣∣Jα∣∣◇ ≤ 2 and ∀α ∶ ∣{α′ ∶ S̃α ∩ S̃α′ ≠ ∅}∣ ≤ Z̃ for some Z ′ > 0. Then,

(a) For any t > 0,

∑
α

∣∫

t

0
e−2s/ω

2

Tr(O(t − s)Kα(σω(s)))ds∣ ≤ ω
2f(ω)ζ(1)(γ), (B17)

where if k(∣SO ∣, γ), defined in Eq. 20, is O(exp(γ−κ)) as γ → 0, then ζ(1)(γ) ≤ O(γ−d(κ+1)) as γ → 0.
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(b) For any t > 0,

∑
α

∣∫

t

0
Tr(O(t − s)Kα(σω(s)))ds∣ ≤ f(ω)ζ

(2)
(γ), (B18)

where if k(∣SO ∣, γ), defined in Eq. 20, is O(exp(γ−κ)) as γ → 0, then ζ(2)(γ) ≤ O(γ−(d+1)(κ+1)) as γ → 0.

(c) For any t > 0,

∑
α,α′
∣∫

t

0
∫

s

0
e−2(s−s

′)/ω2

Tr(O(t − s)KαJα′(σω(s
′
)))ds′ds∣ ≤ ω2f(ω)ζ(3)(γ), (B19)

where if k(∣SO ∣, γ), defined in Eq. 20, is O(exp(γ−κ)) as γ → 0, then ζ(3)(γ) ≤ O(γ−(κ+1)(2d+1)).

In Eqs. B17-B19, the functions ζ(1)(γ), ζ(2)(γ) and ζ(3)(γ) depend on Z, a, and Z̃.

Proof. (a) The idea behind this proof is similar to the example detailed in the main text i.e. to separate out the
integral in the summation with into a short-time and long-time integral. The short-time integral is upper bounded
using the Lieb-Robinson bounds, and the long-time integral is bounded using the local rapid-mixing property (Eq. 20).
We begin by noting that

∣∫

t

0
e−2s/ω

2

Tr(O(t − s)Kα(σω(s)))ds∣ = ∣∫
t

0
e−2(t−s)/ω

2

Tr(O(s)Kα(σω(t − s)))ds∣ ≤ e
≤
α(t, tα) + e

≥
α(t, tα), (B20)

where

e≤α(t, tα) = ∣∫
min(t,tα)

0
e−2(t−s)/ω

2

Tr(O(s)Kα(σω(t − s)))ds∣,

e≤α(t, tα) = ∣∫
t

min(t,tα)
e−2(t−s)/ω

2

Tr(O(s)Kα(σω(t − s)))ds∣,

and tα > 0 is to be chosen later. We bound e≤α(t, tα) using Lieb-Robinson bounds. First we note that by Lemma 3,

∣Tr(O(s)Kα(σω(t − s)))∣ ≤ ∣∣K
†
αO(s)∣∣∣∣σω(t − s)∣∣1 ≤ 2f(ω)min(ηSO

exp(4eZs −
d(SO, S̃α)

a
) ,1) . (B21)

This allows us to bound e≤α(t, tα):

e≤α(t, tα) ≤ 2f(ω)ηSO ∫

min(t,tα)

0
e−2(t−s)/ω

2

min(ηSO
exp(4eZs −

d(SO, S̃α)

a
) ,1)ds,

≤ 2f(ω)min(ηSO
exp(4eZmin(t, tα) −

d(SO, S̃α)

a
) ,1)∫

min(t,tα)

0
e−2(t−s)/ω

2

ds,

≤ ω2f(ω)min(ηSO
exp(4eZtα −

d(SO, S̃α)

a
) ,1) (B22)

We bound e≥α(t, tα) using the local rapid mixing condition. Note that

∣Tr(O(s)Kα(σω(t − s)))∣

≤ ∣Tr(Oσ)Tr(Kα(σω(t − s)))∣ + ∣Tr((O(s) −Tr(Oσ)I)Kα(σω(t − s)))∣,
(1)
= ∣∣O(s) −Tr(Oσ)I ∣∣∣∣Kα∣∣◇∣∣σω(t − s)∣∣1,
(2)
= 2f(ω)k(∣SO ∣, γ)e

−γs, (B23)

where in (1) we have the fact that for any operator X, Tr(Kα(X)) = Tr(K
†
α(I)X) = 0 and in (2), we have used Eq. 20.

For t ≤ tα, since min(t, tα) = t, it follows immediately that

e≥α(t, tα) = 0. (B24)
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For t ≥ tα, we can obtain two upper bounds on e≥α(t, tα). The first upper bound is using Eq. B23 which yields,

e≥α(t, tα) ≤ 2f(ω)k(∣SO ∣, γ)∫
t

tα
e−γse−2(t−s)/ω

2

ds ≤ ω2f(ω)k(∣SO ∣, γ)e
−γtα . (B25)

Alternatively, we can also bound

e≥α(t, tα) ≤ ∫
t

tα
e−2(t−s)/ω

2

∣Tr(O(s)Kα(σω(t − s)))∣ds ≤ ∫
t

tα
e−2(t−s)/ω

2

∣∣O∣∣∣∣Kα∣∣◇∣∣σω(t − s)∣∣1ds ≤ ω
2f(ω). (B26)

From the bounds in Eqs. B24, B25 and B26, we obtain that,

e≥α(t, tα) ≤ ω
2f(ω)min (k(∣SO ∣, γ)e

−γtα ,1) for any t, tα.

Combining the bounds for the short-time and long-time integrals, we obtain that

∑
α

∣∫

t

0
e−2s/ω

2

Tr(O(t − s)Kα(σω(s)))ds∣

≤ ω2f(ω)∑
α

(min(ηSO
exp(4eZtα −

d(SO, S̃α)

a
),1) +min (k(∣SO ∣, γ)e

−γtα ,1)),

≤ ω2f(ω)∑
α

(min(ηSO
exp(4eZtα −

d(SO, S̃α)

a
),1) +min ( exp (Tγ − γtα),1)), (B27)

where Tγ = log(max(k(∣SO ∣, γ),1))— note also that Tγ > 0. We now pick tα = d(SO, S̃α)/(8eZa) and apply Lemma 12
to obtain

∑
α

∣∫

t

0
e−2s/ω

2

Tr(O(t − s)Kα(σω(s)))ds∣ ≤ ω
2f(ω)(ξ

(0,1)
2a,ηSO

(0) + ξ
(0,1)
8eZaγ−1,1

(Tγ)),

≤ ω2f(ω) (max(ηSO
,1)ν(0)(2a,0) + ν(0)(8eZaγ−1, Tγ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ζ(0)(γ)

. (B28)

Now, if k(∣SO ∣, γ) ≤ O(exp(γ
−κ)) as γ → 0, then Tγ ≤ O(γ

−κ). Therefore, as γ → 0

ζ(0)(γ) =max(ηSO
,1)ν(0)(2a,0) + ν(0)(8eZaγ−1, Tγ) ≤ O((γ−1Tγ)d) ≤ O(γ−d(κ+1)),

which proves part (a) of the lemma. Note that ζ(0)(γ) also depends on Z̃ through ν(0)(λ,T ).
(b) We proceed similarly to part (a), and note that

∣∫

t

0
Tr(O(t − s)Kα(σω(s))ds∣ = ∣∫

t

0
Tr(O(s)Kα(σω(t − s))ds∣ ≤ e

≤
α(t, tα) + e

≥
α(t, tα),

where

e≤α(t, tα) = ∣∫
min(t,tα)

0
Tr(O(s)Kα(σω(t − s)))ds∣,

e≥α(t, tα) = ∣∫
t

min(t,tα)
Tr(O(s)Kα(σω(t − s)))ds∣,

where tα > 0 is to be chosen later. We proceed similarly to part (a). To bound e≤α(t, tα), we use Eq. B21 to obtain

e≤α(t, tα) ≤ 2f(ω)∫
min(t,tα)

0
min(ηSO

exp(4eZs −
d(SO, S̃α)

a
) ,1)ds,

≤ 2f(ω)min(ηSO
exp(4eZmin(t, tα) −

d(SO, S̃α)

a
) ,1)∫

min(t,tα)

0
ds,

≤ 2f(ω)tαmin(ηSO
exp(4eZtα −

d(SO, S̃α)

a
) ,1) . (B29)
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Next we bound e≥α(t, tα). If t ≤ tα, then min(t, tα) = t and we have

e≥α(t, tα) = 0. (B30)

If instead t ≥ tα, we can use Eq. B23 to write

e≥α(t, tα) ≤ 2f(ω)k(∣SO ∣, γ)∫
t

tα
e−γsds ≤ 2f(ω)k(∣SO ∣, γ)γ

−1e−γtα .. (B31)

Combining Eqs. B30 and B31, we obtain that

e≥α(t, tα) ≤ 2f(ω)γ
−1k(∣SO ∣, γ)e

−γtα for any t, tα. (B32)

We now pick

tα = T
′
γ +

d(SO, S̃α)

8eZa
,

where T ′γ = γ
−1max(log(γ−1k(∣SO ∣, γ))). We accordingly obtain the following expressions for the short-time and

long-time integrals:

∑
α

e≤α(t, tα) ≤ f(ω) (2T
′
γξ
(0,1)
2a,ηSO

(4eZT ′γ) +
1

4eZa
ξ
(1,1)
2a,ηSO

(4eZT ′γ)) ,

∑
α

e≥α(t, tα) ≤ 2f(ω)ξ
(0,1)
8eZaγ−1,1

(0), (B33)

where we have used ξ
(m,k)
λ,x (t) from Lemma 12. Using Lemma 12 we obtain that,

∑
α

∣∫

t

0
Tr(O(t − s)Kα(σω(s)))ds∣ ≤ ∑

α

e≤α(t, tα) + e
≥
α(t, tα) ≤ f(ω)ζ

(2)
(γ),

where

ζ(2)(γ) =max(ηSO
,1) (2T ′γν

(0)
(2a,4eZT ′γ) +

1

4eZ
ν(1)(2a,4eZT ′γ) + 2ν

(0)
(8eZaγ−1,0)) .

Note that ζ(2)(γ) also depends on Z̃ through its dependence on ν(m)(λ,T ). If k(∣SO ∣, γ) ≤ O(exp(γ
−κ)) as γ → 0,

then T ′γ ≤ O(γ
−(κ+1)) and so, using the asymptotics of ν(m)(λ,T ) from Lemma 12, we obtain that

ζ(2)(γ) ≤ O(γ−(κ+1)) ×O(γ−d(κ+1)) +O(γ−(d+1)(κ+1)) +O(γ−d) ≤ O(γ−(d+1)(κ+1)),

which establishes the lemma.
(c) We begin by rewriting

∣∫

t

0
∫

s

0
e−2(s−s

′)/ω2

Tr(O(t − s)KαJα′(σω(s
′
)))ds′ds∣ = ∣∫

t

0
∫

t

s
e−2(s

′−s)/ω2

Tr(O(s)KαJα′(σω(t − s
′
)))ds′ds∣, (B34)

where we have made the change of variables s → t − s and s′ → t − s′. Next, we define the short-time and long-time
integrals as follows:

∣∫

t

0
∫

t

s
e−2(s

′−s)/ω2

Tr(O(s)KαJα′(σω(t − s
′
)))ds′ds∣ ≤ e≤α,α′(t, tα,α′) + e

≥
α,α′(t, tα,α′),

where

e≤α,α′(t, tα,α′) = ∣∫
min(t,tα,α′)

0
∫

t

s
e−2(s

′−s)/ω2

Tr(O(s)KαJα′(σω(t − s
′
)))ds′ds∣,

e≥α,α′(t, tα,α′) = ∣∫
t

min(t,tα,α′)
∫

t

s
e−2(s

′−s)/ω2

Tr(O(s)KαJα′(σω(t − s
′
)))ds′ds∣,
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and tα,α′ > 0 will be chosen later. Consider first e≤α,α′(t, tα,α′) — this can be upper bounded using the Lieb-Robinson

bounds. Applying Lemma 4 and using ∣∣K†
α∣∣cb,∞→∞, ∣∣J

†
α ∣∣cb,∞→∞ ≤ 2, we see that

∣Tr(O(s)KαJα′(σω(t − s
′
)))∣ ≤ ∥J

†
α′K

†
α(O(s))∥∥σω(t − s

′
)∥1,

≤ 4f(ω)min(eηSO
exp(4eZs −

1

2a
(d(SO, S̃α) + d(SO, S̃α′)) ,1) ,

leading to the bound on e≤α,α′(t, tα,α′):

e≤α,α′(t, tα,α′) ≤ 4f(ω)∫
min(t,tα,α′)

0
∫

t

s
e−2(s

′−s)/ω2

min(eηSO
exp(4eZs −

1

2a
(d(SO, S̃α) + d(SO, S̃α′))) ,1)ds

′ds,

≤ 4f(ω)min(eηSO
exp(4eZtα,α′ −

1

2a
(d(SO, S̃α) + d(SO, S̃α′))) ,1)∫

min(t,tα,α′)

0
∫

t

s
e−2(s

′−s)/ω2

ds′ds,

≤ 2ω2f(ω)tα,α′min(eηSO
exp(4eZtα,α′ −

1

2a
(d(SO, S̃α) + d(SO, S̃α′))) ,1). (B36)

Next we consider e≥α,α′(t, tα,α′) — again, to upper bound this term, we use the local rapid mixing property (Eq. 20).

For any 0 ≤ s, s′ ≤ t, we have

∣Tr(O(s)KαJα′(σω(t − s
′
)))∣ ≤ ∣Tr(Oσ)Tr(KαJα′(σω(t − s

′
))∣ + ∣Tr((O(s) −Tr(Oσ)I)KαJα′(σω(t − s

′
)))∣,

(1)
≤ ∣∣O(s) −Tr(Oσ)I ∣∣∣∣Kα∣∣◇∣∣Jα′ ∣∣◇∣∣σω(t − s

′
)∣∣1,

(4)
≤ f(ω)k(∣SO ∣, γ)e

−γs. (B37)

where in (1) we have used the fact that J †
α′(I) = 0 and therefore for any X, Tr(Jα′(X)) = Tr(J

†
α′(I)X) = 0. In (2),

we have used Eq. 20. Now, for t < tα,α′ , min(t, tα,α′) = t and therefore

e≥α,α′(t, tα,α′) = 0. (B38)

Next, for t ≥ tα,α′ , using Eq. B37, we obtain that

e≥α,α′(t, tα,α′) ≤ 4f(ω)k(∣SO ∣, γ)∫
t

tα,α′
∫

t

s
e−2(s

′−s)/ω2

e−γsds′ds,

≤ 2ω2f(ω)k(∣SO ∣, γ)∫
t

tα,α′
e−γsds

≤ 2γ−1ω2f(ω)k(∣SO ∣, γ)e
−γtα,α′ . (B39)

From the bounds in Eq. B38 and B39, we obtain that

e≥α,α′(t, tα,α′) ≤ 2γ
−1ω2f(ω)k(∣SO ∣, γ)e

−γtα,α′ for any t, tα,α′ .

We now pick

tα,α′ = T
′
γ +

1

16eZa
(d(SO, S̃α) + d(SO, S̃α′))

where T ′γ = γ
−1max ( log(γ−1k(∣SO ∣, γ),1)). With this choice, we obtain the following expressions for the long-time

and short-time integrals:

∑
α,α′

e≤α,α′(t, tα,α′) ≤ ω
2f(ω)(2T ′γξ

(0,2)
4a,eηSO

(4eZT ′γ) +
1

8eZa
ξ
(1,2)
4a,eηSO

(4eZT ′γ)),

∑
α,α′

e≥α,α′(t, tα,α′) ≤ 2ω
2f(ω)ξ

(0,2)
16eγ−1Za,1

(0),

where we have used ξm,k
λ,x (t) defined in Lemma 12. Using Lemma 12, we obtain that

∑
α,α′
∣∫

t

0
∫

s

0
e−2(s−s

′)/ω2

Tr(O(t − s)KαJα′(σω(s
′
)))ds′ds∣ ≤ ∑

α,α′
(e≤α,α′(t, tα,α′) + e

≥
α,α′(t, tα,α′)) ≤ ω

2f(ω)ζ(3)(γ),
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where

ζ(3)(γ) =max(eηSO
,1)2 (2T ′γ (ν

(0)
(4a,4eZT ′γ))

2
+

1

4eZa
ν(0)(4a,4eZT ′γ)ν

(1)
(4a,4eZT ′γ)) + 2 (ν

(0)
(16eγ−1Z))

2
.

Note that ζ(3)(γ) also depends on Z̃ through its dependence on ν(m)(γ). If k(∣SO ∣, γ) ≤ O(exp(γ
−κ)) as γ → 0,

Tγ ≤ O(γ
−(κ+1)) and using the asymptotics of ν(m)(λ,T ) from Lemma 12, we obtain that

ζ(3)(γ) ≤ O (γ−(κ+1)) ×O (γ−2d(κ+1)) +O (γ−d(κ+1)) ×O (γ−(d+1)(κ+1)) +O (γ−2d) ≤ O (γ−(2d+1)(κ+1)) ,

which establishes the lemma.

Lemma 6, repeated. Suppose O is a local observable with ∣∣O∣∣ ≤ 1 supported on SO, and for τ > 0, let O(τ) =
exp(L †τ)(O) where L is a geometrically local Lindbladian of the form in Eq. 14. Furthermore, suppose O is rapidly
mixing with respect to L and satisfies Eq. 20 with k(∣SO ∣, γ) ≤ O(exp(γ

−κ)) as γ → 0. Then for qα as defined in
Lemma 1,

∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣ ≤ ω2λ(1)(γ),

where λ(1)(γ) ≤ O(γ−d(κ+1)) as γ → 0; and for j ∈ {1,2,3,4}

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(j)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ λ(2)(γ),

where λ(2)(γ) ≤ O(γ−(2d+1)(κ+1)) as γ → 0 and for j ∈ {3,4}, Q
(j)
α,α′ is defined in Lemma 1, and for j ∈ {1,2}, we define

Q
(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h is defined in Lemma 1.

Proof. Noting from Lemma 1 that qα = DLα(ρ(0)), and that ∣∣ρ(0)∣∣1 = 1, from the application of Lemma 14(a), we
obtain that

∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣ ≤ ω2ζ(1)(γ),

and thus we may choose λ(1)(γ) = ζ(1)(γ). By Lemma 14, so long as k(∣SO ∣, γ) ≤ O (exp(γ
−κ)) as γ → 0, then

ζ(1)(γ) ≤ O (γ−d(κ+1)) as γ → 0. Next, we note that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(j)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ =
1

ω2 ∑
α,α′
∣∫

t

0
∫

s

0
Tr(O(t − s)Q

(j)
α,α′(

s′

ω2
))e−2(s−s

′)/ω2

ds′ds∣

(B40)

We can now consider j ∈ {1,2,3,4} separately — for j = 1, we have from Lemma 1 that Q
(1)
α,α′(s

′/ω2) = KαJα′(σω(s
′))+

h.c. with Kα(X) = [L
†
α,X], Jα′(X) = [hα′ ,X] and σω(s

′) = −ω−1TrA(σαρω(s′/ω2)). We note that ∣∣Kα∣∣◇, ∣∣Jα′ ∣∣◇ ≤ 2
and that, by Lemma 2, ∣∣σω(s

′)∣∣1 ≤ 1/2. Thus, from Eq. B40 and Lemma 14(c), we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(1)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ ζ(3)(γ). (B41)

Similarly, for j = 2, we have from Lemma 1 that Q
(2)
α,α′(s

′/ω2) = KαJα′(σω(s
′)) + h.c. where Kα(X) = [L

†
α, LαX],

Jα′(X) = [hα′ ,X] and σω(s
′) = −iTrA(ρω(s′/ω2))/2. We note that ∣∣Kα∣∣◇, ∣∣Jα′ ∣∣◇ ≤ 2 and that ∣∣σω(s

′)∣∣1 ≤ 1/2. Thus,
from Eq. B40 and Lemma 14, we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(2)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ ζ(3)(γ). (B42)

For j = 3, we have from Lemma 1 that Q
(3)
α,α′(s

′/ω2) = ∑u∈{−,+}K
(u)
α J

(u)
α′ (σ

(u)
ω (s

′)) where K(u)α = DLα , J
(u)
α′ (X) =

[L
(u)
α′ ,X] and σ

(u)
ω (s

′) = iω−1TrA(σ
(ū)
α′ ρω(s

′/ω2)). We note that ∣∣K
(u)
α ∣∣◇, ∣∣J

(u)
α′ ∣∣◇ ≤ 2 and, using Lemma 2, ∣∣σ

(ū)
ω (s

′)∣∣1 ≤
1/2. Thus, from Eq. B40 and Lemma 14, we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(3)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ ζ(3)(γ). (B43)
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FIG. 7. Architecture of the circuit being encoded into the Lindbladian assumed in section C 1. The identity gates are treated
as separate time-steps. Any poly(N) depth quantum circuit on N qubits can be brought into this architecture with at-most a
poly(N) overhead in the circuit depth.

Finally, for j = 4, we have from Lemma 1 that Q
(4)
α,α′(s

′/ω2) = ∑u,u′∈{−,+}KαJ
(u,u′)
α′ (σ

(u,u′)
ω (s′))+h.c. according to the

following definitions: We define Kα(X) = [L
†
α,X]. J

(u,u′)
α′ (X) = L(u)X if u′ = − and J

(u,u′)
α′ (X) = XL(u) if u′ = +.

Finally, σ
(u,u′)
ω (s′) = ω−2TrA(σ

(ū)
α σαρω,δ(s

′/ω2)) if α = α′ and σ
(u,u′)
ω (s′) = u′ω−2TrA(σ

(ū)
α′ σαρω,δ(s

′/ω2)) if α ≠ α′.
We note that for any u,u′, ∣∣Kα∣∣◇, ∣∣J

(,′)
α′ ∣∣◇ ≤ 2 and, using Lemma 2, ∣∣σ

(u,u′)
ω (s′)∣∣1 ≤ 1/4. Thus, applying Eq. B40 and

Lemma 14(c), we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(4)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ 2ζ(3)(γ). (B44)

By Lemma 14, so long as k(∣SO ∣, γ) ≤ O (exp(γ
−κ)) as γ → 0, then ζ(3)(γ) ≤ O (γ−(2d+1)(κ+1)) as γ → 0. Considering

Eqs. B41-B44, we may choose λ(2)(γ) = 2ζ(3)(γ) to satisfy the lemma statement.

Appendix C: Circuit-to-geometrically local Lindbladian encoding

In this appendix, we construct an encoding of a quantum circuit into a 2D geometrically local Lindbladian with
a unique fixed point. We prove a useful result about its convergence to fixed point. Our construction follows
from combining the dissipative quantum computing gadgets in Ref. [47] with the quantum circuit to Hamiltonian
encoding in Ref. [48]. We remark that Ref. [47] already suggested, in its supplementary, that it should be possible
to perform dissipative quantum computation with just a 2D nearest-neighbor Lindbladian but did not provide an
explicit construction. We fill that gap in this appendix.

1. Review of the O(logN)-local

As a review of the basic construction and proof technique involved in encoding a quantum circuit into the fixed
point of an Lindbladian, we first analyze the 5-local construction in Ref. [47]. While Ref. [47] laid out the circuit
to Lindbladian encoding and analyzed the eigenvalue spectrum of the resulting Lindbladian, they did not explicitly
bound the error between the state obtained by evolution under the Lindbladian and the fixed point. This subsection
also serves to fill this gap.

We will begin by first reviewing the circuit to Lindbladian encoding that is a slight modification of the one shown in
Ref. [47] — consider a quantum circuit on N qubits and of depth T = poly(N). In preparation for the analysis of the
geometrically local Lindbladian, we will assume the unitaries U1, U2 . . . UT applied in each time-step of the circuit are
in the architecture as shown in Fig. 7. We will construct a master equation on the Hilbert space (C2)⊗N ⊗CT+1 of N
data qubits and a (T + 1)−level system, which will be the clock qudit. We consider a Lindbladian Lref with two sets
of jump operators, first, {Sα}α∈{1,2...N} encoding the initialization of the data qubits to ∣0⟩ and second, {Lt}t∈{1,2...T}
to encode the quantum gates:

Lref =
N

∑
α=1
DSα +

T

∑
s=1
DLs , (C1a)

Sα = ∣0α⟩⟨1α∣ ⊗
α−1
∑
t=0
∣t⟩⟨t∣ for α ∈ [1 ∶ N], (C1b)

Ls = Us ⊗ ∣s⟩⟨s − 1∣ + h.c. if s ∈ [1 ∶ T ]. (C1c)
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As we will demonstrate below, the unique fixed point of this master equation is given by the state

σ =
1

T + 1

T

∑
s=0
∣ϕs⟩⟨ϕs∣ ⊗ ∣s⟩⟨s∣ , (C2)

where ∣ϕs⟩ = UsUs−1 . . . U1 ∣0⟩
⊗N

, with ∣ϕ0⟩ = ∣0⟩
⊗N

Furthermore, we will also establish an upper bound on
∣∣eLreft −Tr(⋅)σ∣∣1→1 to assess the time taken to converge to the fixed point. We remark that our analysis closely
follows Ref. [47], where they calculated the eigenvalues Lref. However, since the eigenvector matrix of a Lindbla-
dian superoperator is not necessarily unitary and can be badly conditioned, just the eigenvalues are not enough
bound the error ∣∣eLreft −Tr(⋅)σ∣∣1→1. Below, we build on the analysis in Ref. [47] and provide a concrete bound on

∣∣eLreft −Tr(⋅)σ∣∣1→1.
To proceed with our analysis, we need the following technical lemma.

Lemma 15. Suppose M ∈ Rk×k is the tridiagonal matrix given by

M ≅
k−2
∑
i=0
( ∣i⟩⟨i + 1∣ + ∣i + 1⟩⟨i∣ − ∣i⟩⟨i∣ − ∣i + 1⟩⟨i + 1∣ ),

then

∣∣ exp(Mt) − ∣ξ⟩⟨ξ∣ ∣∣op ≤ exp( − 4t sin
2
(
π

2k
)) = exp( −Ω(

t

k2
)) as k →∞,

where ∣ξ⟩ = k−1/2∑k−1
n=0 ∣n⟩. Furthermore, if d ∈ Rk is a vector with only non-negative elements and with smallest

non-zero element d0 then

∣∣ exp((M − diag(d))t)∣∣op ≤ exp( −
t

k
min(d0,4 sin

2
(
π

2k
))) = exp( −Ω(

t

k3
)) as k →∞.

Proof. We can analytically diagonalize M — consider the vector ∣vn⟩ ∈ Rk, for n ∈ {0,1,2 . . . k − 1} given by

∣vn⟩ = (
2

k
)

1/2 k−1
∑
m=0

cos(
πn

k
(m +

1

2
)) ∣m⟩ ,

∣vn⟩ is an eigenvector of M with eigenvalue λn = −4 sin
2
(nπ/2k). Note that ∣v0⟩ = ∣ξ⟩ with λ0 = 0. It then follows

immediately from the diagonalization of M that

∣∣ exp(Mt) − ∣ξ⟩⟨ξ∣ ∣∣op = ∥
k−1
∑
m=1

eλmt
∣vm⟩⟨vm∣∥

op

= exp(λ1t) = exp( − 4t sin
2
(
π

2k
))

To bound ∣∣ exp((M − diag(d))t)∣∣, we use Ref. [57] Lemma 14.4 which is as follows: Suppose A1,A2 ⪰ 0 are non-
negative operators with the minimum positive eigenvalue being at least c0. Suppose N1,N2 are the null spaces
of A1,A2 respectively and θ = cos−1 (max∣n1⟩∈N1

max∣n2⟩∈N2
∣ ⟨n1∣n2⟩∣/∣∣n1∣∣∣∣n2∣∣) be the angle between N1,N2, then

λmin(A1 + A2) ≥ 2c0 sin
2
(θ/2). We now apply this with A1 = diag(d) and A2 = −M . Note that this implies that

c0 =min(d0,4 sin
2
(π/2k)) and cos θ ≤ (k − 1)/k. Thus, we obtain that

λmax(M − diag(d)) = −λmin(−M + diag(d)) ≤ −
1

k
min(d0,4 sin

2
(
π

2k
)).

Now, using the fact that ∣∣ exp((M − diag(d))t)∣∣ ≤ exp(λmax(M − diag(d))t), the lemma statement follows.

Lemma 16 (Expanding on Ref. [47]). The state σ described in Eq. C2 is the unique fixed point of the lindbladian in
Eq. C1, and for sufficiently large T,N ,

∣∣eLt −Tr(⋅)σ∣∣1→1 ≤ c0(T,N) exp(−a0(T )t),

where

c0(T,N) = 64(T + 1)
1/2N429N/2 and a0(T ) =

4

T + 1
sin2 (

π

2(T + 1)
)
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Proof. In this proof, we will work with the vectorized notation introduced in section III. In both vectorized and
unvectorized states or operators, we will consistently write the operator acting on the space of the data qubits to
the left of the tensor product ⊗, and the operator acting on the clock qudit on the right of the tensor product ⊗.
Following Ref. [47], as a first step, we introduce the unitary

V =
T

∑
s=0

UsUs−1 . . . U0 ⊗ ∣s⟩⟨s∣ ,

with U0 = I. Note that ∀α ∈ [1 ∶ N] ∶

V †SαV =
α−1
∑
t=0

V †( ∣0α⟩⟨1α∣ ⊗ ∣t⟩⟨t∣ )V,

=
α−1
∑
t=0

U †
0U

†
1 . . . U

†
t (∣0α⟩⟨1α∣)UtUt−1 . . . U0 ⊗ ∣t⟩⟨t∣ ,

(1)
=

α−1
∑
t=0
∣0α⟩⟨1α∣ ⊗ ∣t⟩⟨t∣ , (C3)

where in (1), we have used the fact that the unitaries U1 . . . Uα−1 act only on qubits 1,2 . . . α−1 due to the assumption
that the circuit is of the form shown in Fig. . Furthermore, ∀s ∈ [1 ∶ T ] ∶

L̃s = V
†LsV = V

†(Us ⊗ ∣s⟩⟨s − 1∣ )V + h.c. = ∣s⟩⟨s − 1∣ + h.c.. (C4)

Therefore, we obtain that

L̃ref ∶= V
†
l V

T
r LrefVlV

∗
r =

N

∑
α=1
DSα +

T

∑
s=1
DL̃s

. (C5)

Next, we diagonalize the Lindbladian in the space of the data qubits. For this, we consider the following (non-unitary)
transformation

X =
N+1
∑
j=1

XjXj+1 . . .XN ⊗Πj ,

where for j = N + 1, XjXj+1 . . .XN ∶= I and

Xi = P
0
i,lP

0
i,r + σi,lσi,r − P

1
i,lP

1
i,r + P

0
i,lP

1
i,r + P

1
i,lP

0
i,r, and

Π1 =
T

∑
s=0
∣slsr⟩⟨slsr ∣ ,Πj =

j−1
∑
s=0
( ∣jlsr⟩⟨jlsr ∣ + ∣sljr⟩⟨sljr ∣ ) and ΠN+1 = I −

N

∑
j=1

Πj ,

with Pα
i,λ = ∣αi,λ⟩⟨αi,λ∣, for α ∈ {0,1}, λ ∈ {l, r}. It can be checked that Xi satisfies XiDσiXi = −(P

1
i,r +P

1
i,l)/2 and that

Xi =X
−1
i (and therefore X =X−1). Next, we compute XDSαX and XDL̃s

X — note that DSα is explicitly given by

DSα = Dσα ⊗
α−1
∑

s,s′=0
∣sls

′
r⟩⟨sls

′
r ∣ −

1

2
(P 1

α,l ⊗
α−1
∑
s=0

T

∑
s′=α
∣sls

′
r⟩⟨sls

′
r ∣ + P

1
α,r ⊗

α−1
∑
s=0

T

∑
s′=α
∣s′lsr⟩⟨s

′
lsr ∣ )

To compute XDSαX, we observe that for α ∈ [1 ∶ N]

Πj(
α−1
∑

s,s′=0
∣sls

′
r⟩⟨sls

′
r ∣ )Πj′ = 0 if j ≠ j′ or j = j′ > α, (C6a)

Πj(
α−1
∑
s=0

T

∑
s′=α
∣sls

′
r⟩⟨sls

′
r ∣ )Πj′ = Πj(

α−1
∑
s=0

T

∑
s′=α
∣s′lsr⟩⟨s

′
lsr ∣ )Πj′ = 0 if j ≠ j′ or j = j′ ≤ α (C6b)
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Therefore, we obtain that, for all α ∈ [1 ∶ N]

XDSαX
−1
=X(Dσα ⊗

α−1
∑

s,s′=0
∣sls

′
r⟩⟨sls

′
r ∣ )X −

1

2
X(P 1

α,l ⊗
α−1
∑
s=0

T

∑
s′=α
∣sls

′
r⟩⟨sls

′
r ∣ )X −

1

2
X(P 1

α,r ⊗
α−1
∑
s=0

T

∑
s′=α
∣s′lsr⟩⟨s

′
lsr ∣ )X,

=XαDσαXα ⊗
α−1
∑

s,s′=0
∣sls

′
r⟩⟨sls

′
r ∣ −

1

2
(P 1

α,l ⊗
α−1
∑
s=0

T

∑
s′=α
∣sls

′
r⟩⟨sls

′
r ∣ + P

1
α,r ⊗

α−1
∑
s=0

T

∑
s′=α
∣s′lsr⟩⟨s

′
lsr ∣ ),

= −
1

2
(P (1)α,r + P

(1)
α,l ) ⊗

α−1
∑

s,s′=0
∣sls

′
r⟩⟨sls

′
r ∣ −

1

2
(P 1

α,l ⊗
α−1
∑
s=0

T

∑
s′=α
∣sls

′
r⟩⟨sls

′
r ∣ + P

1
α,r ⊗

α−1
∑
s=0

T

∑
s′=α
∣s′lsr⟩⟨s

′
lsr ∣ ),

= −
1

2
(P
(1)
α,l ⊗

α−1
∑
s=0
∣sl⟩⟨sl∣ + P

(1)
α,r ⊗

α−1
∑
s=0
∣sr⟩⟨sr ∣ ).

Furthermore, it can also be easily seen that for any s ∈ [1 ∶ T ] and j ∈ [1 ∶ N + 1], [Πj ,DL̃s]] = 0, and DL̃s
acts as

identity on the space of the data qubits. Therefore, we obtain that XDL̃s
X−1 = DL̃s

.
Thus, by performing the transformation given by X, the vectorized Lindbladian is now diagonal on the space of

the data qubits. In particular, we can express

XL̃refX
−1
= ∑

x,y∈{0,1}N
∣xlyr⟩⟨xlyr ∣ ⊗ Ax,y,

where for x, y ∈ {0,1}N , Ax,y ∈ L(CT+1 ⊗CT+1) given by

Ax,y = −
1

2

T

∑
s=0

fs(x) ∣sl⟩⟨sl∣ −
1

2

T

∑
s=0

fs(y) ∣sr⟩⟨sr ∣ +
T

∑
s=1
D∣s−1⟩⟨s∣+h.c.,

where fs(x) = xs+1 + xs+2 . . . xN if 0 ≤ s ≤ N − 1 and fs(x) = 0 if s ≥ N . Furthermore, Ax,y is block diagonal — to see
this, we perform the following decomposition

CT+1
⊗CT+1

= S
(0)
∪ ( ⋃

t∈[1∶T ]
S
(1)
t ) ∪ ( ⋃

t,s∈[0∶T ]
∣t−s∣≥2

S
(2)
t,s ),

where

S
(0)
= span({∣t, t⟩ for t ∈ [0 ∶ T ]}) ≅ CT+1,

S
(1)
t = span({∣t, t − 1⟩ , ∣t − 1, t⟩}) ≅ C2 for t ∈ [1 ∶ T ],

S
(2)
t,s = span({∣t, s⟩}) ≅ C

1 for t, s ∈ [0 ∶ T ] with ∣t − s∣ ≥ 2.

Then, we can note that ∀x, y ∈ {0,1}N , Ax,y is block diagonal on the subspaces S(0),S(1)t ,S
(2)
t,s . Furthermore,

Ax,y ∣S(0) ≅ −
1

2

N−1
∑
s=0
(fs(x) + fs(y)) ∣s⟩⟨s∣ +

T

∑
s=1
( ∣s − 1⟩⟨s∣ + ∣s − 1⟩⟨s∣ − ∣s⟩⟨s∣ − ∣s − 1⟩⟨s − 1∣ ), (C7a)

Ax,y ∣S(1)t

≅ −(2 −
1

2
(δt,1 + δt,T ))I + ∣1⟩⟨0∣ + ∣0⟩⟨1∣ −

1

2
((ft(x) + ft−1(x)) ∣0⟩⟨0∣ + (ft(y) + ft−1(y)) ∣1⟩⟨1∣ ), (C7b)

Ax,y ∣S(2)t,s

≅ −
1

2
(4 − δt,0 − δt,T − δs,0 − δs,T ) −

1

2
(ft(x) + fs(y)). (C7c)

We now immediately obtain the eigenvalues of Lref, which are just the eigenvalues of the block diagonal operator
Ax,y. It can be noted that Ax,y ∣S(1)t

⪯ −I/2 and Ax,y ∣S(2)t,s
≤ −1 for any x, y, s, t. Finally, it also follows from Lemma 15

that only Ax=0,y=0∣S(0) has a zero eigenvalue, with the eigenvector ∣ξ⟫ = (T + 1)−1/2(∣0l0r⟩ + ∣1l1r⟩ + . . . ∣TlTr⟩). This

allows us to obtain the fixed point of Lref (where an additional factor of (T + 1)−1/2 is introduced to make the fixed
point a normalized density matrix),

∣σ⟫ =
1

√
T + 1

V X ∣0l0r⟩
⊗N
⊗ ∣ξ⟫ =

1
√
T + 1

VlV
∗
r ∣0l0r⟩

⊗N
⊗ ∣ξ⟫,
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from which it follows that

σ =
1

T + 1
V ((∣0⟩⟨0∣)⊗N ⊗

T

∑
t=0
∣t⟩⟨t∣ )V †

=
1

T + 1

T

∑
t=0
∣ϕt⟩⟨ϕt∣ ⊗ ∣t⟩⟨t∣ .

Next, we bound ∣∣eLreft −Tr(⋅)σ∣∣1→1. Out of the two transformations used to diagonalize Lref in the Hilbert space of
the data qubits, the unitary V does not effect this norm i.e.

∣∣eLreft −Tr(⋅)σ∣∣1→1 = ∣∣e
L̃t
−Tr(⋅)σ̃∣∣1→1, (C8)

where L̃ is defined in Eq. C5 and σ̃ = (T +1)−1(∣0⟩⟨0∣)⊗N ⊗∑T
t=0 ∣t⟩⟨t∣. Furthermore, we can note that, in the vectorized

picture, Tr(⋅)σ̃ = ∣σ̃⟫⟪I ∣, where ∣σ̃⟫ = (T + 1)−1 ∣0l0r⟩
⊗N
⊗ ∑

T
t=0 ∣tltr⟩ = (T + 1)

−1/2 ∣0l0r⟩
⊗N
⊗ ∣ξ⟫. Also note that

X ∣σ̃⟫ = ∣σ̃⟫ and ⟪I ∣X = ⟨0l0r ∣
⊗N
⊗∑

T
t=0 ⟨tltr ∣ = (T + 1)

1/2 ⟨0l0r ∣
⊗N
⊗ ⟪ξ∣.

∣∣eL̃reft −Tr(⋅)σ̃∣∣1→1 =

XXXXXXXXXXXX

X[ ∑
x,y∈{0,1}N

∣xlyr⟩⟨xlyr ∣ ⊗ e
Ax,yt]X − ∣σ̃⟫⟪I ∣

XXXXXXXXXXXX1→1

,

=

XXXXXXXXXXXX

X[ ∑
x,y∈{0,1}N

∣xlyr⟩⟨xlyr ∣ ⊗ e
Ax,yt − ( ∣0l0r⟩⟨0l0r ∣ )

⊗N
⊗ ∣ξ⟫⟪ξ∣]X

XXXXXXXXXXXX1→1

,

≤ ∣∣X ∣∣
2
1→1

XXXXXXXXXXXX

∑
x,y∈{0,1}N

∣xlyr⟩⟨xlyr ∣ ⊗ e
Ax,yt − ( ∣0l0r⟩⟨0l0r ∣ )

⊗N
⊗ ∣ξ⟫⟪ξ∣

XXXXXXXXXXXX1→1

,

≤ (2N(T + 1))1/2∣∣X ∣∣21→1

XXXXXXXXXXXX

∑
x,y∈{0,1}N

∣xlyr⟩⟨xlyr ∣ ⊗ e
Ax,yt − ( ∣0l0r⟩⟨0l0r ∣ )

⊗N
⊗ ∣ξ⟫⟪ξ∣

XXXXXXXXXXXX2→2

,

≤ (2N(T + 1))1/2∣∣X ∣∣21→1 ∑
x,y∈{0,1}N

∥∣xlyr⟩⟨xlyr ∣ ⊗ Qx,y(t)∥2→2,

= (2N(T + 1))1/2∣∣X ∣∣21→1 ∑
x,y∈{0,1}N

∥Qx,y(t)∥2→2 (C9)

where

Qx,y(t) = {
eA0N,0N

t
− ∣ξ⟫⟪ξ∣ if x = 0N and y = 0N ,

eAx,yt otherwise.

Note that, for any superoperator E , ∣∣E∣∣2→2 coincides with its operator norm when interpreted as an operator in the
vectorized picture. This fact together with Lemma 15 allows us, for sufficiently large T , to provide the upper bound

∣∣Qx,y ∣∣2→2 ≤ exp( −
4t

T + 1
sin2 (

π

2(T + 1)
)) ∀x, y ∈ {0,1}N .

Therefore, we obtain that

∣∣eL̃reft −Tr(⋅)σ̃∣∣1→1 ≤ (T + 1)
1/225N/2∣∣X ∣∣21→1 exp( −

4t

T + 1
sin2 (

π

2(T + 1)
))

It remains to bound ∣∣X ∣∣1→1 (recall that X is interpreted as a superoperator) — we start with the simple upper bound

∣∣X ∣∣1→1 ≤ ∣∣I ⊗ΠN+1∣∣◇ +
N

∑
j=1
(

N

∏
i=j
∣∣Xi∣∣◇)∣∣I ⊗Πj ∣∣1→1 ≤ 1 +

N

∑
j=1
(1 +

N

∏
i=j
∣∣Xi∣∣◇)∣∣I ⊗Πj ∣∣1→1 (C10)

The diamond norm ∣∣Xi∣∣◇ can be computed explicitly. For this, we note that, as a single qubit superoper-
ator, Xi(Ω) = Ω + ⟨0i∣Ω ∣0i⟩ ⊗ (∣0i⟩⟨0i∣ − 2 ∣1i⟩⟨1i∣). Therefore, for Ω on a possibly larger space, ∣∣Xi(Ω)∣∣1 ≤
∣∣Ω∣∣1 + ∣∣ ⟨0i∣Ω ∣0i⟩ ⊗ (∣0i⟩⟨0i∣ − 2 ∣1i⟩⟨1i∣)∣∣1 ≤ ∣∣Ω∣∣1 + 3∣∣ ⟨0i∣Ω ∣0i⟩ ∣∣1 ≤ 4∣∣Ω∣∣1, which yields ∣∣X ∣∣◇ ≤ 4. Consequently, we
obtain from Eq. C10 that

∣∣X ∣∣1→1 ≤ 1 +
N

∑
j=1
(1 + 4N−j+1)∣∣Πj ∣∣◇. (C11)
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Next, we provide upper bounds on ∣∣I⊗Πj ∣∣. Note first that Π1, as a superoperator on CT+1, is a channel since it
admits the Kraus representation

Π1(X) =
T

∑
s=0
∣s⟩⟨s∣X ∣s⟩⟨s∣ .

Therefore, we obtain that ∣∣Π1∣∣◇ ≤ 1. Next, we note that Πj for j ∈ [2 ∶ N] can be expressed as

Πj(X) =
j−1
∑
s=1
( ∣j⟩⟨j∣X ∣s⟩⟨s∣ + ∣s⟩⟨s∣X ∣j⟩⟨j∣ ),

and consequently we obtain that

∣∣(Πj ⊗ I)(X)∣∣1 ≤
j−1
∑
s=1
(∣∣ ∣j⟩⟨j∣X ∣s⟩⟨s∣ ∣∣1 + ∣∣ ∣s⟩⟨s∣X ∣j⟩⟨j∣ ∣∣1) ≤ 2(j − 1) Ô⇒ ∣∣Πj ∣∣◇ ≤ 2(j − 1).

Using these bounds for ∣∣Πj ∣∣◇ together with Eq. C11, we then obtain that

∣∣X ∣∣1→1 ≤ 1 +
N

∑
j=1
(1 + 4N−j+1)2(j − 1) ≤ 1 + 2N2

(1 + 4N) ≤ 8N24N . (C12)

Combining Eqs. C8, C9 and C12, we obtain the lemma statement.

From Lemma 16, it follows that starting from any initial state ρ(0), ρ(t) = eLreftρ(0) is an ε approximation to the fixed
point σ given in Eq. C2 after time t = Θ(T 3 log(ε−1)) +Θ(T 3 logT ) +Θ(T 3 logN) +Θ(T 3N). Then, the fixed point
can be used to effectively perform the quantum computation by first measuring the clock qudit on the computational
basis and post-selecting on the measurement outcome being ∣T ⟩ — if successful, the data qubits will then be in the
state ∣ϕT ⟩ that would have been obtained at the output of the encoded quantum circuit. Since the probability of the
clock qudit being in ∣T ⟩ is 1/(T + 1), this can be repeated O(T ) ≤ O(poly(N)) to have successfully prepare ∣ϕT ⟩ on
the data qubits.

2. 2D local Lindbladian

Construction. Consider a quantum circuit on N qubits, with depth poly(N). As described in Ref. [48], we use the
fact that any quantum circuit (Fig. 9a) can be brought into a specific topology shown in Fig. 9b, where a quantum
gate first acts on qubits 1, 2, then on 2, 3, then on 3, 4 and so on, using SWAP gates and with at most a polynomial
overhead in the depth. We assume that the quantum circuit, in expressed in this format, has depth NR, where R is
poly(N), where each round is composed of 1 single qubit and N − 1 two qubit gates. We will encode this circuit into
a 2D dissipative system with only spatially local jump operators — we consider NR qudits with d = 6 arranged in
a 2D grid with N rows and R columns. The qudit internal states will be denoted by {∣0⟩ , ∣1⟩ , ∣0̄⟩ , ∣1̄⟩ , ∣×⟩ , ∣⊙⟩}. We
make the following remarks about notation used in this subsection:

(a) For z ∈ {0,1, 0̄, 1̄,×,⊙}, ∣zx,y⟩ will mean that the qudit at the xth column and yth row is in the state z.

(b) We will also define the operators π = ∣0⟩⟨0∣ + ∣1⟩⟨1∣ and π̄ = ∣0̄⟩⟨0̄∣ + ∣1̄⟩⟨1̄∣, and πx,y or π̄x,y denote the operators

π or π̄ respectively when applied to the qudit in the xth row and yth column.

(c) We will refer to the qudit being in ∣×⟩ , ∣⊙⟩, barred 0/1 and unbarred 0/1 as being of distinct types. Thus, an
operation that changes the ‘type’ of a qudit could be an operation that converts a qudit from × to ⊙ or from
barred 0/1 to × etc. Likewise, an operation that simply rotates a qudit within the space of barred (or unbarred)
0/1 states will not change its type.

(d) We will often use operators defined on qudits that are horizontally adjacent, vertically adjacent or arranged on
a plaquette. It will be convenient and visually clearer to express tensor products of operators as a matrix of
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Round 1 Round 2

(a)

(b)

Use SWAP and pad with 
Identity gates

(c)

Internal States

Encode into 
a 2D lattice

FIG. 8. Schematic depiction of the circuit to geometrically local Lindbladian encoding. Given an arbitrary quantum circuit on
N qubits and depth poly(N) (a), it can always be mapped to a quantum circuit on N qubits with architecture shown in (b)
where the quantum gates are applied on the qubits sequentially and in several rounds. The total number of rounds needed for
a circuit that was originally of depth poly(N) is at most poly(N). Finally, this circuit is then encoded into a geometrically
local Lindbladian on 2D grid of 6-level qudits as shown in (c).

operators associated with the coordinate of the lower leftmost vertex. For example,

[
D C
A B

]
x,y

∶= Ax,y−1 ⊗Bx,y ⊗Cx−1,y ⊗Dx−1,y−1
A B

CD

(x, y)(x − 1, y)

(x − 1, y − 1) (x, y − 1)

,

[A B]
x,y
∶= Ax,y−1 ⊗Bx,y

A B
(x, y)(x − 1, y)

,

[
A
B
]
x,y

∶= Ax−1,y ⊗Bx,y

A

B

(x, y − 1)

(x, y)

,

[A]
x,y
∶= Ax,y

A
(x, y)

.
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Often, for convenience, we will omit elements in the matrix — the omitted elements should be interpreted as
identity operators on the corresponding qudits. For example,

⎡
⎢
⎢
⎢
⎢
⎣

A
B C D

E

⎤
⎥
⎥
⎥
⎥
⎦x,y

= Ax−1,y−2 ⊗Bx−2,y−1 ⊗Cx−1,y−1 ⊗Dx,y−1 ⊗Ex−1,y or B C

A

D

E
(x, y)(x − 2, y)

(x − 2, y − 2) (x, y − 2)

,

First, we map the quantum circuit on N qubits into a larger quantum circuit on the NR qudits with the property
that we only ever apply a gate between two (horizontally or vertically) neighbouring qudits and every neighbouring
pair of qudits experience a gate only once (note that any one qudit might experience multiple two-qudit gates, but
they will always be with a different second qudit). Similar to the situation with Hamiltonians, this will avoid the
need of an explicit clock qudit. Also similar to the situation with Hamiltonian encodings, we point out that removing
the clock qudit to allow for a geometrically local Lindbladian would come at the cost of a much larger Hilbert space
than that of the encoded qubits — consequently, only a small subspace of this large Hilbert space will be used for
the encoded computation. We will provide a precise definition of this subspace later — in the following qualitative
description of the how to construct the encoding Lindbladian, we will simply refer to as the “space of valid states”.

Initially, all the qudits other than those in the first column will be in ∣⊙⟩, all the qudits in the first column will be
in ∣0⟩:

∣Ψ⟩ =
N

⊗
x=1
( ∣0x,1⟩ ⊗

R

⊗
y=2
∣⊙x,y⟩ ). (C13)

We then apply the first round of unitaries, U
(1)
1 , U

(1)
12 , U

(1)
23 . . . U

(1)
N−1,N and simultaneously transform the qudit state

from ∣a⟩ → ∣ā⟩ for a ∈ {0,1}. This is accomplished by applying the operators:

L
(1)
1 =

1

∑
a,b=0
(U
(1)
1 )a,b

[
∣ā⟩⟨b∣ ∣⊙⟩⟨⊙∣
π

]
2,2

+ h.c., (C14)

L
(1)
y,y+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

∑
a,a′,b,b′=0

(U
(1)
y,y+1)a,a′;b,b′

⎡
⎢
⎢
⎢
⎢
⎣

∣ā⟩⟨b̄∣
∣ā′⟩⟨b∣ ∣⊙⟩⟨⊙∣
π

⎤
⎥
⎥
⎥
⎥
⎦2,y+2

+ h.c. if y ∈ [1 ∶ N − 2],

1

∑
a,a′,b,b′=0

(U
(1)
y,y+1)a,a′;b,b′ [

∣ā⟩⟨b̄∣
∣ā′⟩⟨b∣ ∣⊙⟩⟨⊙∣]

2,y+1
+ h.c. if y = N − 1

(C15)

Note that these operators perform two tasks — first, they apply the unitaries U
(1)
1 , U

(1)
1,2 . . . U

(1)
N−1,N and second, they

also check if the qudit whose type is being changed is horizontally and vertically adjacent to a qudit in the correct

“type”. After application of the operators L
(1)
1 , L

(1)
1,2 . . . L

(1)
N−1,N , all the qudits in the first row will be in the states

∣0̄⟩ , ∣1̄⟩. We also note that the order in which the operators L
(1)
1 , L

(1)
1,2 . . . L

(1)
n−1,n are applied does not matter if we

apply sufficiently large number of them — this is because the operator L
(1)
x,x+1 only applies U

(1)
x,x+1 if the ith qudit in

the first column is in an barred state, and the (x + 1)th qudit is in an unbarred state, else it annihilates the state
(i.e. maps the state to 0). Furthermore, only if this unitary is successfully applied would the (x + 1)th qudit will be
mapped to a barred state, and consequently the only next operator that will act without annihilating the state is

V
(1)
x+1,x+2. Consequently, the choice of operators in Eq. C14 naturally enforces the ordering of the unitaries in circuit

being encoded. Another important point about the operators constructed in Eq. C14 is that the operators also check
if the qudit whose type is being changed is horizontally and vertically adjacent to a valid type — in particular, this
qudit should have a barred state vertically above it, an unbarred state vertically below it and a ∣⊙⟩ state horizontally
to its right. While this check might seem vacuous if the initial state is valid, it becomes important if the initial state
is invalid and needs to be brought into the valid subspace via additional jump operators (which we describe below).

Next, we apply operators that swap the barred states from the first column to unbarred states in the second column,
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(a)

(b)

(c)

FIG. 9. Schematic depiction of the jump operators used to implement the circuit. (a) In the first round, the qudits are initially

in the state shown in ∣Ψ0⟩. The gates are then applied through the jump operators L
(1)
1 , L

(1)
1,2 , L

(1)
2,3 . . . which change the state

of the qudits in the first column and also convert them from unbarred to barred states. (b) In the second round, the qudits are

swapped from the first column to the second column by the jump operators L
(1,2)
1 , L

(1,2)
2 . . . — simultaneously, the qudits in

the first column are converted to × and the qudits in the second column are converted to unbarred states. (c) Next, we apply

the jump L
(2)
1 , L

(2)
1,2 , L

(2)
2,3 . . . which execute the second round of gates. The gray-shaded qudits are the qudits whose state can

be changed by the applied operation, and the pink-shaded qudits are qudits whose state does not change on the application of
the jump operator but are checked to be in the valid state by each jump operator. In particular, a gray shaded qudit whose
type is being changed is always surrounded by a gray or pink-shaded qudit in our construction.
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and simultaneously map the states in the first column to ∣×⟩. This is accomplished by applying the operators

L(1,2)y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑a∈{0,1}

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

π̄ ∣⊙⟩⟨⊙∣

∣×⟩⟨ā∣ ∣a⟩⟨⊙∣ ∣⊙⟩⟨⊙∣

∣×⟩⟨×∣ π

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦3,y+1

if y ∈ [2 ∶ N − 1],

∑a∈{0,1} [
∣×⟩⟨ā∣ ∣a⟩⟨⊙∣ ∣⊙⟩⟨⊙∣

∣×⟩⟨×∣ π
]

3,y+2
if y = 1,

∑a∈{0,1} [
π̄ ∣⊙⟩⟨⊙∣

∣×⟩⟨ā∣ ∣a⟩⟨⊙∣ ∣⊙⟩⟨⊙∣
]

3,y

if y = N,

(C16)

In the next step, we again apply a round of operators similar to Eq. C14 on the second column, followed by operators
similar to Eq. C16 on the second and third columns. More specifically, we apply the jump operators,

L
(x)
1 =

1

∑
a,b=0
(U
(x)
1 )a,b

[
∣×⟩⟨×∣ ∣ā⟩⟨b∣ ∣⊙⟩⟨⊙∣

π
]
x+1,2

, L
(x)
y,y+1 =

1

∑
a,a′,b,b′=0

(U
(x)
y,y+1)a,a′;b,b′

⎡
⎢
⎢
⎢
⎢
⎣

∣ā⟩⟨b̄∣
∣×⟩⟨×∣ ∣ā′⟩⟨b′∣ ∣⊙⟩⟨⊙∣

π

⎤
⎥
⎥
⎥
⎥
⎦x+1,y+2

,

(C17a)

L(x,x+1)y = ∑
a∈{0,1}

⎡
⎢
⎢
⎢
⎢
⎣

π̄ ∣⊙⟩⟨⊙∣

∣×⟩⟨×∣ ∣×⟩⟨ā∣ ∣a⟩⟨⊙∣ ∣⊙⟩⟨⊙∣
∣×⟩⟨×∣ π

⎤
⎥
⎥
⎥
⎥
⎦x+2,y+1

(C17b)

where any single qudit operator in these expressions which is defined outside the lattice should be treated as identity.
For simplicity, we will often denote the set containing all of these jump operators by {Lt ∶ t ∈ T }, with the set T
indexing different jump operators.
We define S as the set of states which are of the form shown in Fig. 10 with the barred or unbarred 0/1 qubits being

in a possibly entangled state. S contains the states that are obtained from the application of the jump operators

L
(x)
y,y+1 and L

(x,x+1)
y to the initial state ∣Ψ0⟩ and will be referred to the space of “valid” configurations. Furthermore,

S ≅ (C2)⊗N ⊗ C⊗2NR+1 i.e. every state in S is a linear combination of states of the form ∣ψ⟩ ⊗ ∣γt⟩, where ∣γt⟩ for
t ∈ {0,1,2 . . .2NR} indicates the “shape” of the state (i.e. which qudits are barred 0/1, unbarred 0/1, ⊙ or ×) and ∣ψ⟩
is a N−qubit entangled state. We can also think of the states {∣γt⟩}t∈[0∶(2nR+1)] as the state of a clock, even though
we do not have any explicit qubits designated to be the clock. Similar to the 5-local case, we will need to penalize
invalid configurations. As is shown Ref. [48], the invalid configurations in the 2D encoding can be checked 2-locally.
In particular, the show the following lemma.

Lemma 17 (Claim 4.2 of Ref. [48]). A computational basis state ∣x⟩ ∈ {×,⊙,0,1, 0̄, 1̄} is a valid state (i.e. ∣x⟩ ∈ S)
if none of the following two-qudit horizontally or vertically adjacent configurations are present in ∣x⟩ (a or b denotes
unbarred 0 or 1 state and ā or b̄ denotes barred 0 or 1 state):

1. (⊙, a), (⊙, ā), since in all valid states, a qudit in the state ⊙ is to the right of all the other qudits.

2. (a,×), (ā,×), since in all valid states, a qudit in the state × is to the left of all the other qudits.

3. (⊙,×), (×,⊙) since in all valid states, qubits in × and qubits in ⊙ are separated by a barred or unbarred qudit.

4. (a, b), (ā, b), (a, b̄) or (ā, b̄) since there is only one qudit in a barred or unbarred 0/1 state per row.

5. (⊙
ā
), (×

ā
), ( b

ā
) since only a barred 0/1 qudit can be vertically above a barred 0/1 qudit.

6. ( a⊙), (
a
×) since only an unbarred 0/1 qudit can be vertically below an unbarred 0/1 qudit.

7. (⊙× ), (
×
⊙) since qudits in ⊙ state and × state cannot be vertically adjacent.

8. ( ā⊙), (
×
a
) since there is no ⊙ qudit below a barred 0/1 qudit and no × qudit above an unbarred 0/1 qudit.

9. ⊙ in the first column of qudits and × in the last column of qudits.

For each of the invalid configurations from 1 to 9, which we now construct a jump operator which maps the invalid
qudits’ state to valid qudit states by just changing the state of one of the qudits. More importantly, for a set of two
neighbouring vertical qudits that are in an invalid configuration, we will make the choice to change the bottom qudit
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Configuration Jump operator(s) Configuration Jump operator(s)

(⊙, a) ∣⊙,⊙⟩⟨⊙, a∣ (
⊙
ā
)

1√
3
∣
⊙
z
⟩⟨
⊙
ā
∣ , z ∈ {⊙,0,1}

(⊙, ā) ∣⊙,⊙⟩⟨⊙, ā∣ (
×
ā
) ∣

×
× ⟩⟨

×
ā
∣

(a,×) ∣a,⊙⟩⟨a,×∣ (
b
ā
)

1√
2
∣
b
z
⟩⟨

b
ā
∣ , z ∈ {0,1}

(ā,×) ∣ā,⊙⟩⟨ā,×∣ (
a
⊙)

1√
2
∣
a
z
⟩⟨

a
⊙ ∣ , z ∈ {0,1}

(⊙,×) ∣⊙,⊙⟩⟨⊙,×∣ (
a
×)

1√
2
∣
a
z
⟩⟨

a
× ∣ , z ∈ {0,1}

(×,⊙) 1√
5
∣×, z⟩⟨×,⊙∣ , z ∈ {×,0,1, 0̄, 1̄} (

⊙
× )

1√
3
∣
⊙
z
⟩⟨
⊙
× ∣ , z ∈ {⊙,0,1}

(a, b) ∣a,⊙⟩⟨a, b∣ (
×
⊙) ∣

×
× ⟩⟨

×
⊙ ∣

(ā, b) ∣ā,⊙⟩⟨ā, b∣ (
ā
⊙)

1√
5
∣
ā
z
⟩⟨

ā
⊙ ∣ , z ∈ {×,0,1, 0̄, 1̄}

(a, b̄) ∣a,⊙⟩ ⟨a, b̄∣ (
×
a
) ∣

×
× ⟩⟨

×
a
∣

(ā, b̄) ∣ā,⊙⟩⟨ā, b̄∣

(⊙1,1)
1
2
∣z1,1⟩ ⟨⊙1,1∣ z ∈ {0,1, 0̄, 1̄} (×R,1)

1
2
∣zx,R⟩⟨×1,R∣ for z ∈ {0,1, 0̄, 1̄}

TABLE III. Jump operators corresponding to different invalid configurations. Each of the horizontal two-qudit jump operator
corrects the invalid configuration by changing the right-most qudit, and the vertical two-qudit jump operator corrects the
invalid configuration by changing the bottom-most qudit.

to make the configuration valid and for a set of two neighbouring horizontal qudits that are in an invalid configuration,
we will make the choice to change the left qudit to make the configuration valid. This can be accomplished by adding
the jump operators shown in the table below corresponding to each of the two-qudit invalid configurations. We will
denote the set of jump operators penalizing these incorrect configurations by {Pj ∶ j ∈ J } — this set will include
the horizontal and vertical two-qudit jump operators at every point on the lattice, as well as the single qudit jump
operators on the first and last column of the lattice.

Finally, to initialize the qubits to ∣Ψ0⟩, we add jump operators {Sα}α∈[1∶N] which act only on the first column of
qudits and map them to unbarred 0 from unbarred 1 i.e Sα = ∣01,α⟩⟨11,α∣.

Analysis. We begin by establishing that the operators {Pj}j∈J enforce that, at long times, the state of the qudits
is in the valid subspace. For this, we consider the operator F , which counts the number of invalid configurations in
the state of the qudits:

F = ∑
j∈J

P †
j Pj ,

and analyze its dynamics in the Heisenberg picture. We will use the following technical lemma.

Lemma 18. Suppose x1(t), x2(t), x3(t) . . . xn(t) ≥ 0, with xi(0) ≤ 1 ∀i ∈ [1 ∶ n], satisfy the inequalities

d

dt
x1(t) ≤ −α1x1(t) and

d

dt
xi(t) ≤ −αixi(t) +

i−1
∑
j=1

βi,jxj(t),

where αi ≥ α > 0, βi,j ≥ 0,∑j βi,j ≤ β for some α,β > 0 and ∀i, then

xi(t) ≤ (max(1,2β/α))ne−αt/2 for all t ≥ 0, i ∈ [1 ∶ n].

FIG. 10. Schematic depiction of typical valid states i.e. states that lie in the subspace S and are reached on applying the jump
operators {Lt ∶ t ∈ T } on the initial state ∣Ψ0⟩.
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Proof. We immediately obtain that x1(t) ≤ x1(0)e
−α1t ≤ e−αt. We can rewrite the inequalities for x2(t), x3(t) . . . xn(t)

as integral inequalities:

xi(t) ≤ e
−αit +

i−1
∑
j=1

βi,j ∫
t

0
xj(s)e

−αi(t−s)ds ≤ e−αt +
i−1
∑
j=1

βi,j ∫
t

0
xj(s)e

−α(t−s)ds.

Define x̃i(t) =maxj∈[1∶i] xj(t) — we then obtain that x̃1(t) ≤ e
−αt and for i ≥ 2,

x̃i(t) ≤ e
−αt
+

i−1
∑
j=1

βi,j ∫
t

0
x̃i−1(s)e−α(t−s)ds ≤ e−αt + β ∫

t

0
x̃i−1(s)e−α(t−s)ds.

We can integrate these equations recursively to obtain that ∀i ∈ [1 ∶ n],

xi(t) ≤ x̃i(t) ≤ (1 + βt +
β2t2

2!
+
β3t3

3!
+ . . .

βi−1ti−1

(i − 1)!
)e−αt,

Noting that for t ≥ 0 and i ∈ [1 ∶ n], (βt)i = (αt/2)i(2β/α)i ≤ (max(1,2β/α))n(αt/2)i, we obtain that

xi(t) ≤ (max(1,2β/α))n(1 +
αt

2
+
α2t2

2!22
+
α3t3

3!23
. . .

αi−1ti−1

(i − 1)!2i−1
)e−αt ≤ (max(1,2β/α))ne−αt/2,

which establishes the lemma statement.

Lemma 19. For any initial state ρ(0) of the 2D grid of qudits, ⟨F (t)⟩ = Tr(FeLt(ρ(0))) ≤ (NR + 1)20NR+1e−t/5.

Proof. It will be convenient to define the sets J
(H)
x,y = {j ∈ J ∶ Pj is a 2-qudit operator supported on (x − 1, y), (x, y)}

and J
(V )
x,y = {j ∈ J ∶ Pj is a 2-qudit operator supported on (x, y − 1), (x, y)}. We first re-express F as

F = π⊙1,1 + π
×
R,1 + ∑

x∈[1∶R]
y∈[1∶N]

Fx,y,

where π⊙x,y = ∣⊙x,y⟩⟨⊙x,y ∣, π
×
x,y = ∣×x,y⟩⟨×x,y ∣ and

Fx,y = δx≠1F (H)x,y + δy≠1F
(V )
x,y where

for x ≠ 1 ∶ F (H)x,y = ∑

j∈J (H)x,y

P †
j Pj = [π + π̄ + ∣⊙⟩⟨⊙∣ π + π̄ + ∣×⟩⟨×∣]x,y + [∣×⟩⟨×∣ ∣⊙⟩⟨⊙∣]x,y and

for y ≠ 1 ∶ F (V )x,y = ∑

j∈J (V )x,y

P †
j Pj = [

∣⊙⟩⟨⊙∣ + ∣×⟩⟨×∣ + π
π̄

]
x,y

+ [
∣×⟩⟨×∣ + π + π̄
∣⊙⟩⟨⊙∣

]
x,y

+ [
∣×⟩⟨×∣

π
]
x,y

+ [
π + ∣⊙⟩⟨⊙∣
∣×⟩⟨×∣

]
x,y

. (C18)

Here, we define δa≠b = 1 − δa,b. We also define

L
(H)
x,y = ∑

j∈J (H)x,y

DPj and L(V )x,y = ∑

j∈J (V )x,y

DPj . (C19)

As laid out in Table III, since for any horizontally (vertically) invalid two-qudit configuration, the horizontal (vertical)
two-qudit jump operators Pj correct it by changing the right (bottom) qudit, it follows that

If (x′, y′) ∉ {(x − 1, y), (x, y)}, then ∀ j ∈ J (H)x′,y′ ∶ [Pj , F
(H)
x,y ] = 0 Ô⇒ L

(H)†
x′,y′ (F

(H)
x,y ) = 0, (C20a)

If (x′, y′) ∉ {(x, y − 1), (x, y)} then ∀ j ∈ J (H)x′,y′ ∶ [Pj , F
(V )
x,y ] = 0 Ô⇒ L

(H)†
x′,y′ (F

(V )
x,y ) = 0, (C20b)

If (x′, y′) ∉ {(x, y − 1), (x, y)} then ∀ j ∈ J (V )x′,y′ ∶ [Pj , F
(V )
x,y ] = 0 Ô⇒ L

(V )†
x′,y′ (F

(V )
x,y ) = 0, (C20c)

If (x′, y′) ∉ {(x − 1, y), (x, y)}, then ∀ j ∈ J (V )x′,y′ ∶ [Pj , F
(H)
x,y ] = 0 Ô⇒ L

(V )†
x′,y′ (F

(H)
x,y ) = 0. (C20d)

These relationships are depicted in Fig. 11 which shows, for a given horizontal or vertical edge associated with a
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(a) (b)

FIG. 11. Schematic depiction of which jump operators Pj effect error number operators F
(H)
x,y , F

(V )
x,y corresponding to a given

edge. The edges whose associated Pj can change F
(H)
x,y , F

(V )
x,y corresponding to a dark edge are shown in gray, while the Pj

operators associated with the dotted edges do not impact the error number operator corresponding to the dark edge.

F
(H/V )
x,y , which edges are associated with terms L

(H/V )†
x,y that result in a non-zero value when applied on the F

(H/V )
x,y .

Furthermore, it can be verified by explicit computation that

∑
z∈{0,1,0̄,1̄}

D
†
∣zR,1⟩⟨×R,1∣ (F

(H)
R,1 ) = 0. (C21)

It can also be noted that, as a consequence of the specific choice of Lt (Eqs. C17) which checks the validity of the
qudits horizontally and vertically adjacent to the qudit whose type is being changed,

[F (H)x,y , Lt] = 0 = [F
(V )
x,y , Lt] ∀ t ∈ T . (C22)

Furthermore, since F
(H)
x,y and F

(V )
x,y are expressible entirely in terms of the projector π = ∣0⟩⟨0∣ + ∣1⟩⟨1∣, as opposed to

the individual projectors ∣0⟩⟨0∣ and ∣1⟩⟨1∣, it also follow that

[F (H)x,y , Sα] = 0 = [F
(V )
x,y , Sα] ∀α ∈ A. (C23)

We now obtain upper bounds on ⟨F
(H)
x,y (t)⟩ = Tr(F

(H)
x,y ρ(t)) and ⟨F

(V )
x,y (t)⟩ = Tr(F

(V )
x,y ρ(t)). It follows from Eqs. C20,

C21, C22 and C23 that ∀x ∈ [2 ∶ R], y ∈ [1 ∶ N],

d

dt
⟨F (H)x,y (t)⟩ + ⟨F

(H)
x,y (t)⟩ = δx≠2Tr(L

(H)†
x−1,y(F

(H)
x,y )ρ(t)) + δy≠1Tr(L

(V )†
x,y (F

(H)
x,y )ρ(t)) + δy≠1Tr(L

(V )†
x−1,y(F

(H)
x,y )ρ(t))+

1

4
δx,2δy,1 ∑

z∈{0,1,0̄,1̄}
Tr(D†

∣z1,1⟩⟨⊙1,1∣(F
(H)
x,y )ρ(t)), (C24a)

and ∀x ∈ [1 ∶ R], y ∈ [2 ∶ N],

d

dt
⟨F (V )x,y (t)⟩ + ⟨F

(V )
x,y (t)⟩ = δy≠2Tr(L

(V )†
x,y−1(F

(V )
x,y )ρ(t)) + δx≠1Tr(L

(H)†
x,y (F

(V )
x,y )ρ(t)) + δx≠1Tr(L

(H)†
x,y−1(F

(V )
x,y )ρ(t))+

1

4
δx,1δy,2 ∑

z∈{0,1,0̄,1̄}
Tr(D†

∣z1,1⟩⟨⊙1,1∣(F
(V )
x,y )ρ(t)) +

1

4
δx,Rδy,2 ∑

z∈{0,1,0̄,1̄}
Tr(D†

∣zR,1⟩⟨×R,1∣(F
(V )
x,y )ρ(t)) (C24b)

where we have used the fact that L
(H)†
x,y (F

(H)
x,y ) = −F

(H)
x,y and L

(V )†
x,y (F

(V )
x,y ) = −F

(V )
x,y . We can upper bound some of the

terms on the right hand side of Eqs. C24a and b with a simple argument — note that

Tr(L
(H)†
x−1,y(F

(H)
x,y )ρ(t)) = ∑

j∈J (H)x−1,y

Tr(P †
j F
(H)
x,y Pjρ(t)) −Tr(F

(H)
x−1,yF

(H)
x,y ρ(t)),

(1)
≤ ∑

j∈J (H)x−1,y

Tr(F (H)x,y Pjρ(t)P
†
j )

(2)
≤ ∑

j∈J (H)x−1,y

Tr(Pjρ(t)P
†
j ) = ⟨F

(H)
x−1,y(t)⟩, (C25)

where in (1) we have used the fact that F
(H)
x−1,yF

(H)
x,y ⪰ 0, and in (2) we have used the fact that ∣∣F ∣∣

(H)
x,y ≤ 1 and

consequently for any σ ⪰ 0,Tr(F
(H)
x,y σ) ≤ ∣∣F

(H)
x,y ∣∣∣∣σ∣∣1 ≤ Tr(σ). Proceeding similarly, we can obtain the upper bounds

Tr(L
(V )†
x−1,y(F

(H)
x,y )ρ(t)),Tr(L

(V )†
x,y−1(F

(V )
x,y )ρ(t)) ≤ ⟨F

(V )
x,y−1(t)⟩,Tr(L

(H)†
x−1,y(F

(V )
x,y )ρ(t)) ≤ ⟨F

(H)
x−1,y(t)⟩. (C26)
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Furthermore,

∑
z∈{0,1,0̄,1̄}

Tr(D†
∣z1,1⟩⟨⊙1,1∣(F

(V )
1,2 )ρ(t)), ∑

z∈{0,1,0̄,1̄}
Tr(D†

∣z1,1⟩⟨⊙1,1∣(F
(H)
2,1 )ρ(t)) ≤ 4⟨π

⊙
1,1(t)⟩, (C27)

and

∑
z∈{0,1,0̄,1̄}

Tr(D†
∣zR,1⟩⟨×R,1∣(F

(V )
R,2 )ρ(t)) ≤ 4⟨π

×
R,1(t)⟩ (C28)

Using these bounds and Eq. C24, we obtain that ∀ x ∈ [2 ∶ R], y ∈ [1 ∶ N],

d

dt
⟨F (H)x,y (t)⟩ + ⟨F

(H)
x,y (t)⟩ ≤ δx≠2⟨F

(H)
x−1,y(t)⟩ + δy≠1⟨F

(V )
x−1,y(t)⟩ + δy≠1Tr(L

(V )†
x,y (F

(H)
x,y )ρ(t)) + δx,2δy,1⟨π

⊙
1,1(t)⟩, (C29a)

and ∀x ∈ [1 ∶ R], y ∈ [2 ∶ N],

d

dt
⟨F (V )x,y (t)⟩ + ⟨F

(V )
x,y (t)⟩ ≤ δy≠2⟨F

(V )
x,y−1(t)⟩ + δx≠1⟨F

(H)
x,y−1(t)⟩ + δx≠1Tr(L

(H)†
x,y (F

(V )
x,y )ρ(t)) + δx,1δy,2⟨π

⊙
1,1(t)⟩+

δx,Rδy,2⟨π
×
R,1(t)⟩. (C29b)

We will now arrange these inequalities into a sequence which is of the form analyzed in Lemma 18, and then use
this lemma to obtain an upper bound on ⟨F (t)⟩. We will first consider the first column of qudits and upper bound

⟨F
(V )
1,y (t)⟩, as well as ⟨π

⊙
1,1(t)⟩. For ⟨π

⊙
1,1(t)⟩, we obtain that

d

dt
⟨π⊙1,1(t)⟩ + ⟨π

⊙
1,1(t)⟩ = 0. (C30)

Specializing Eq. C29b to the first column of qudits (x = 1), we obtain

d

dt
⟨F1,y(t)⟩ + ⟨F1,y(t)⟩ ≤ δy≠2⟨F1,y−1(t)⟩ + δy,2⟨π⊙1,1(t)⟩, (C31)

where we have used the fact that F1,y = F
(V )
1,y .

We next consider inequalities for all the remaining columns. For ⟨F
(H)
x,1 (t)⟩ = ⟨Fx,1(t)⟩, we obtain from Eq. C29a

that

d

dt
⟨Fx,1(t)⟩ + ⟨Fx,1(t)⟩ ≤ δx≠2⟨Fx−1,1(t)⟩ + δx,2⟨π⊙1,1(t)⟩. (C32)

To use Eqs. C29a, b when y ∈ [2 ∶ N], we need to provide upper bounds on Tr(L
(H)†
x,y (F

(V )
x,y )ρ(t)) and

Tr(L
(V )†
x,y (F

(H)
x,y )ρ(t)). While these terms could be bounded by following the argument in Eq. C25, the bound thus

obtained is too loose to be useful. Instead, a more careful analysis is needed — in particular, one important fact

that we will use is that if F
(V )
x−1,y and F

(H)
x,y−1 have small expected value (i.e. the invalid configurations on the edges

((x−1, y−1), (x−1, y)) and ((x−1, y−1), (x, y−1))) are unlikely), then the probable configurations on the diagonally
opposite sites (x − 1, y), (x, y − 1) are also constrained. This can be made formal by noting the simple inequality

Tr([
∣×⟩⟨×∣ + π + π̄

∣⊙⟩⟨⊙∣ + π + π̄
]
x,y

ρ(t))

= Tr([
∣⊙⟩⟨⊙∣ + π + π̄ ∣×⟩⟨×∣ + π + π̄
∣⊙⟩⟨⊙∣ + π + π̄

]
x,y

ρ(t)) +Tr([
∣×⟩⟨×∣ ∣×⟩⟨×∣ + π + π̄

∣⊙⟩⟨⊙∣ + π + π̄
]
x,y

ρ(t)),

≤ Tr( [∣⊙⟩⟨⊙∣ + π + π̄ ∣×⟩⟨×∣ + π + π̄]
x,y−1 ρ(t)) +Tr([

∣×⟩⟨×∣

∣⊙⟩⟨⊙∣ + π + π̄
]
x−1,y

ρ(t)),

≤ ⟨F
(H)
x,y−1(t)⟩ + ⟨F

(V )
x−1,y(t)⟩. (C33)

Equation C33 can be interpreted as indicating that if the configurations on the edges ((x − 1, y − 1), (x − 1, y)) and

((x− 1, y − 1), (x, y − 1)) are valid (i.e. ⟨F (H)(x, y)⟩ = ⟨F (V )x,y ⟩ = 0), then the diagonally opposite vertices, (x− 1, y) and
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(x, y − 1), cannot have the configurations (a, b) where a ∈ {⊙, 0̄, 1̄,0,1} and b ∈ {×, 0̄, 1̄,0,1}. We now consider upper

bounding Tr(L
(V )†
x,y (F

(H)
x,y )ρ(t)):

Tr(L(V )†x,y (F
(H)
x,y )ρ(t)) = ∑

j∈J (V )x,y

Tr(P †
j F
(H)
x,y Pjρ(t)) −Tr(F

(H)
x,y F

(V )
x,y ρ(t)),

=
1

3
Tr([

∣⊙⟩⟨⊙∣

∣×⟩⟨×∣ π̄ + ∣×⟩⟨×∣
]
x,y

ρ(t)) +
2

3
Tr([

∣⊙⟩⟨⊙∣

π + π̄ + ∣⊙⟩⟨⊙∣ π̄
]
x,y

ρ(t)) +Tr([
π + ∣×⟩⟨×∣

π + π̄ + ∣⊙⟩⟨⊙∣ π̄
]
x,y

ρ(t))

+Tr([
∣×⟩⟨×∣

π + π̄ + ∣⊙⟩⟨⊙∣ π + ∣⊙⟩⟨⊙∣
]
x,y

ρ(t)) +Tr([
π̄

π + π̄ + ∣⊙⟩⟨⊙∣ ∣×⟩⟨×∣
]
x,y

ρ(t)) −Tr(F (H)x,y F
(V )
x,y ρ(t)),

(1)
≤

1

3
Tr([

∣⊙⟩⟨⊙∣

∣×⟩⟨×∣ π̄ + ∣×⟩⟨×∣
]
x,y

ρ(t)) +Tr([
π̄

π + π̄ + ∣⊙⟩⟨⊙∣ ∣×⟩⟨×∣
]
x,y

ρ(t)) +Tr([
∣×⟩⟨×∣

π + π̄ + ∣⊙⟩⟨⊙∣ ∣⊙⟩⟨⊙∣
]
x,y

ρ(t)),

≤
1

3
Tr([

∣⊙⟩⟨⊙∣

π̄ + ∣×⟩⟨×∣
]
x,y

ρ(t)) +Tr([
π̄ + ∣×⟩⟨×∣

π + π̄ + ∣⊙⟩⟨⊙∣
]
x,y

ρ(t)),

(2)
≤

1

3
⟨F (V )x,y (t)⟩ + ⟨F

(H)
x−1,y(t)⟩ + ⟨F

(V )
x,y−1(t)⟩, (C34a)

where to obtain (1), we need to use the explicit expression for F
(H)
x,y F

(V )
x,y to cancel terms from ∑j∈J (V )x,y

P †
j F
(H)
x,y Pj ,

and in (2) we have used the bound from Eq. C33. Proceeding similarly, we can upper bound Tr(L
(H)†
x,y (F

(V )
x,y )ρ(t)):

Tr(L(H)†x,y (F
(V )
x,y )ρ(t)) = ∑

j∈J (H)x,y

Tr(P †
j F
(V )
x,y Pjρ(t)) −Tr(F

(V )
x,y F

(H)
x,y ρ(t)),

= Tr([
∣×⟩⟨×∣ + π + π̄

∣⊙⟩⟨⊙∣ + π + π̄ ∣×⟩⟨×∣ + π + π̄
]ρ(t))

x,y

+
3

5
Tr([

∣⊙⟩⟨⊙∣ + π + 4
3
∣×⟩⟨×∣

∣×⟩⟨×∣ ∣⊙⟩⟨⊙∣
]ρ(t))

x,y

−Tr(F (V )x,y F
(H)
x,y ρ(t)),

≤ Tr([
∣×⟩⟨×∣ + π + π̄

∣⊙⟩⟨⊙∣ + π + π̄ ∣×⟩⟨×∣ + π + π̄
]ρ(t))

x,y

+
3

5
Tr([

∣⊙⟩⟨⊙∣

∣×⟩⟨×∣ ∣⊙⟩⟨⊙∣
]ρ(t))

x,y

,

≤ Tr([
∣×⟩⟨×∣ + π + π̄

∣⊙⟩⟨⊙∣ + π + π̄
]ρ(t))

x,y

+
3

5
Tr( [∣×⟩⟨×∣ ∣⊙⟩⟨⊙∣]ρ(t))

x,y

,

≤
3

5
⟨F (H)x,y (t)⟩ + ⟨F

(H)
x−1,y⟩ + ⟨F

(V )
x,y−1(t)⟩. (C34b)

From Eqs. C34a, b together with Eqs. C29a, b, we obtain that for x ∈ [2 ∶ R − 1], y ∈ [2 ∶ N]

d

dt
⟨Fx,y(t)⟩ +

2

5
⟨Fx,y(t)⟩ ≤ 2(⟨Fx−1,y(t)⟩ + ⟨Fx,y−1(t)⟩) + δx,Rδy,2⟨π×R,1(t)⟩. (C35)

Finally, we can similarly obtain an inequality for ⟨π×1,R(t)⟩ from

d

dt
⟨π×R,1(t)⟩ + ⟨π

×
1,R(t)⟩ ≤ Tr(L

(H)†
R,1 (π

×
R,1)ρ(t)) ≤ ⟨FR,1(t)⟩. (C36)

Now, we can see that the inequalities in Eqs. C30, C31, C32, C35 and C36 sat-
isfy the conditions of Lemma 18 with x1(t), x2(t), x3(t) . . . xn(t) being chosen as
⟨π⊙1,1(t)⟩, ⟨F1,2(t)⟩, ⟨F1,3(t)⟩ . . . ⟨F1,N(t)⟩, ⟨F2,1(t)⟩, ⟨F2,2(t)⟩ . . . ⟨F2,N(t)⟩ . . . ⟨FR−1,1(t)⟩, ⟨FR−1,2(t)⟩ . . . ⟨FR−1,N(t)⟩,
⟨FR,1(t)⟩, ⟨π

×
R,1(t)⟩, ⟨FR,2(t)⟩ . . . ⟨FR,N(t)⟩ and with α = 2/5, β = 4. We thus obtain from 18 that

⟨Fx,y(t)⟩, ⟨π
⊙
1,1(t)⟩, ⟨π

×
R,1(t)⟩,≤ 20

NR+1e−t/5 Ô⇒ ⟨F (t)⟩ ≤ (NR + 1)20NR+1e−t/5,

which proves the lemma.

We can now finally prove Lemma 7 from the main text.

Lemma 7, repeated. Suppose we are given a quantum circuit C on N qubits with architecture shown in Fig. depth
and with R rounds of gates. Then, there exists a two-dimensional spatially local Lindbladian L on NR 6-level qudits
with a unqiue fixed point σ, as well as a local observable O such that

Tr(Oσ) =
1

2NR
zC ,
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where zC is the expected value of a pauli-Z operator on the last qubit at the output of C. Furthermore, for any initial
state ρ(0) of the two-dimensional grid of qudits,

∣∣eLt(ρ(0)) − σC ∣∣1 ≤ c0(N,R) exp(−γ0(N,R)t),

where c0(N,R) = O(N
6R2 exp(O(NR))) and γ0(N,R) = Θ(N

−3R−3).

Proof. We first bound the 1-norm distance between ρ(t) = eLt(ρ0) and ΠSρ(t)ΠS to show that as t →∞, due to the
action of the penalizing jump operators, ρ(t) evolves to be almost supported in the valid subspace S. For this, we
will use Lemma 19 — note that by definition of S, a state ∣ψ⟩ ∈ S⊥ is orthogonal to the kernel of at least one of the

projectors P †
j Pj and thus ⟨ψ∣F ∣ψ⟩ ≥ ⟨ψ∣P †

j Pj ∣ψ⟩ = ⟨ψ∣ψ⟩. Also, we observe that F −ΠS⊥ ⪰ 0 since for any ∣ψ⟩ ≠ 0,

⟨ψ∣ (F −ΠS⊥) ∣ψ⟩ = ⟨ψ∣F ∣ψ⟩ − ⟨ψ∣ΠS⊥ ∣ψ⟩ ,

(1)
= ⟨ψ∣ΠS⊥FΠS⊥ ∣ψ⟩ − ⟨ψ∣ΠS⊥ ∣ψ⟩ ,

≥ ⟨ψ∣ΠS⊥ΠS⊥ ∣ψ⟩ − ⟨ψ∣ΠS⊥ ∣ψ⟩ = 0,

where, in (1) we have used the fact that, since PjΠS = 0 ∀ j ∈ J , FΠS = ΠSF = 0 Ô⇒ ΠS⊥FΠS⊥ = F . Using F ⪰ ΠS⊥ ,
we obtain that

Tr(ΠS⊥ρ(t)) ≤ Tr(Fρ(t)) ≤ (NR + 1)20NR+1e−t/5.

Suppose for ρ ∈ D1((C6)⊗NR), ρ(t) = eLt(ρ), then

∣∣ρ(t) −ΠSρ(t)ΠS ∣∣1 ≤ ∣∣ΠS⊥ρ(t)∣∣1 + ∣∣ΠSρ(t)ΠS⊥ ∣∣1,

≤
√
Tr(ΠS⊥ρ(t))Tr(ρ(t)) +

√
Tr(ΠS⊥ρ(t))Tr(ΠSρ(t)),

≤ 2
√
Tr(ΠS⊥ρ(t)) ≤ 2(NR + 1)1/220(NR+1)/2e−t/10, (C37)

Next, it is convenient to introduce the superoperators PS and QS defined by

PS(X) = ΠSXΠS and QS = id − PS .

PS can be interpreted to project an operator onto another operator that is entirely supported on S. Now, the master
equation can be expressed as the following two equations:

d

dt
PS(ρ) = PSLPS(ρ) + PSLQS(ρ), (C38a)

d

dt
QS(ρ) = QSLPS(ρ) +QSLQS(ρ), (C38b)

Furthermore, since ∀ j ∈ J ∶ PjΠS = 0, it immediately follows that

DPjPS(X) = PjΠSXΠSP
†
j −

1

2
{P †

j Pj ,ΠSXΠS} = 0. (C39)

Since ∀ α ∈ A, t ∈ T ∶ [Lt,ΠS] = [Sα,ΠS] = 0, DSαPS = PSDSα , DLtPS = PSDLt . Thus, we obtain that

QSLPS = ∑
α∈A
QSDSαPS + ∑

t∈T
QSDLtPS + ∑

j∈J
QSDPjPS ,

= ∑
α∈A
QSPSDSα + ∑

t∈T
QSPSDLt = 0,

where we have used that QSPS = 0. Similarly,

∣∣PSLQS ∣∣1→1 =

XXXXXXXXXXX

∑
α∈A
PSDSαQS +

T

∑
t=1
PSDLtQS + ∑

j∈J
PSDPjQS

XXXXXXXXXXX1→1

,

=

XXXXXXXXXXX

∑
α∈A
PSQSDSα + ∑

t∈T
PSQSDLt + ∑

j∈J
PSDPjQS

XXXXXXXXXXX1→1

,

=

XXXXXXXXXXX

∑
j∈J
(PSDPj − PSDPjPS)

XXXXXXXXXXX1→1

,

≤ ∑
j∈J
(∣∣PSDPj ∣∣1→1

+ ∥PSDPjPS∥1→1
),

(1)
≤ 2∑

j∈J
∣∣DPj ∣∣1→1

(2)
≤ 4∑

j∈J
∣∣Pj ∣∣

2
≤ 4∣J ∣,
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where in (1) we use that ∣∣PS ∣∣1→1 ≤ 1 and in (2) we use that ∣∣DPj ∣∣1→1
≤ 2∣∣Pj ∣∣

2
= 2. Finally, it also follows that

PSDLtPS = DΠSLtΠS and PSDSαPS = DΠSSαΠS ∀ t ∈ T , α ∈ A. To see this, note that since any A ∈ {Sα}α∈A∪{Lt}t∈T
commutes with ΠS ,

PSDAPS(X) = ΠSAΠSXΠSA†ΠS −
1

2
(ΠSA†AΠSXΠS +ΠSA†AΠSXΠS),

= ΠSAΠSXΠSA†ΠS −
1

2
(ΠSA†ΠSAΠSXΠS +ΠSA†ΠSAΠSXΠS),

= DΠSAΠS (X). (C40)

From Eqs. C39 and C40, it then follows that

LS ∶= PSLPS = ∑
α∈A
PSDSαPS + ∑

t∈T
PSDLtPS = ∑

α∈A
DΠSSαΠS + ∑

t∈T
DΠSLtΠS .

Furthermore, LS , which is a Lindbladian superoperator corresponding to the restriction of the full Linbladian L onto
the valid subspace of states, is by construction unitarily equivalent to Lref with each gate (including the identity gates)
in Fig. 9b treated as an independent time-step.

Using Eq. C38, we can now bound ∣∣eLt(ρ0) − σ∣∣1. From Eq. C38a, we obtain that QS(ρ(t)) = eQSLQS (ρ0) and
from Eq. C38b, we obtain that

PS(ρ(t)) = eLStPS(ρ0) + ∫
t

0
ePSLPS(t−t

′)
PSLQS(ρ(t′))dt′. (C41)

Now, since LS is unitarily equivalent to Lref, we can use Lemma 16 to obtain that for any A ∈ L((C6)⊗NR;S)

eLSt(A) = Tr(A)σ + χt(A), where ∣∣χt∣∣1→1 ≤ c0(T,N)e
−a0(T )t,

where T = 2NR and c0(T,N), a0(T ) are defined in Lemma 16. With this decomposition, we obtain from Eq. C41
that

PS(ρ(t))

= [Tr(PS(ρ0)) + ∫
t

0
Tr(PSLQS(ρ(t′)))dt′]σ + χt(PS(ρ0)) + ∫

t

0
χt−t′(PSLQS(ρ(t′))dt′,

(1)
= [Tr(PS(ρ0)) − ∫

t

0
Tr(QSLQS(ρ(t′)))dt′]σ + χt(PS(ρ0)) + ∫

t

0
χt−t′(PSLQS(ρ(t′))dt′,

(2)
= [Tr(PS(ρ0)) − ∫

t

0
Tr(

d

dt
QS(ρ(t′)))dt′]σ + χt(PS(ρ0)) + ∫

t

0
χt−t′(PSLQS(ρ(t′))dt′,

= Tr(ρ0)σ −Tr(QS(ρ(t))) + χt(PS(ρ0)) + ∫
t

0
χt−t′(PSLQS(ρ(t′))dt′,

where in (1) we have used the fact that Tr(PSL(⋅)) = Tr(L(⋅)) −Tr(QSL(⋅)) = −Tr(QSL(⋅)), since every operator in
the image of a Lindbladian is traceless and in (2), we have used Eq. C38b. Noting that ∣∣PS(ρ(0))∣∣1 = ∣∣ΠSρ(0)ΠS ∣∣1 ≤ 1,
from Eq C37, ∣∣QS(ρ(t))∣∣1 ≤ 2(NR + 1)

1/210NR+1e−t/5, and we obtain

∣∣PS(ρ(t)) −Tr(ρ0)σ∣∣1

≤ ∣∣QS(ρ(t))∣∣1 + ∣∣χt(PS(ρ(0)))∣∣1 + ∥∫
t

0
χt−t′(PSLQS(ρ(t′))dt′∥

1
,

≤ 2(NR + 1)1/210NR+1e−t/5 + ∣∣χt∣∣1→1∣∣PS(ρ(0))∣∣1 + ∫
t

0
∣∣χt−t′ ∣∣1→1∣∣PSLQS ∣∣1→1∣∣QS(ρ(t

′
))∣∣1dt

′,

≤ 2(NR + 1)1/210NR+1e−t/5 + ∣∣χt∣∣1→1∣∣PS(ρ(0))∣∣1 + ∫
t

0
∣∣χt−t′ ∣∣1→1∣∣PSLQS ∣∣1→1∣∣QSρ(t

′
)∣∣1dt

′,

≤ 2(NR + 1)1/210NR+1e−t/5 + c0(T,N)e−a0(T )t∣∣PS(ρ(0))∣∣1 + 8∣J ∣(NR + 1)
1/210NR+1c0(T,N)∫

t

0
e−a0(T )(t−t′)e−t

′/5dt′,

≤ 2(NR + 1)1/210NR+1e−t/5 + c0(T,N)e−a0(T )t +
40∣J ∣(NR + 1)1/210NR+1c0(T,N)

1 − 5a0(T )
(e−t/5 − e−a0(T )t),
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Finally, we obtain from ∣∣eLt(ρ0) −Tr(ρ0)σ∣∣1 ≤ ∣∣QS(ρ(t))∣∣1 + ∣∣PS(ρ(t))∣∣1 that

∣∣eLt(ρ0) −Tr(ρ0)σ∣∣1 ≤ 4(NR + 1)
1/210NR+1e−t/5+c0(T,N)e−a0(T )t+

40∣J ∣(NR + 1)1/210NR+1c0(T,N)
1 − 5a0(T )

(e−t/5−e−a0(T )t).

From this bound, we obtain that as N,R →∞,

∣∣eLt(ρ0) −Tr(ρ0)σ∣∣1 ≤ O(N
6R2 exp(O(NR))) exp ( −Ω(N−3R−3)t).

Finally, we construct a local observable whose expected value is the expected value of the pauli Z-operator on the last
qubit at the output of the quantum circuit — this local observable will be O = ∣1̄R,N ⟩⟨1̄R,N ∣ − ∣0̄R,N ⟩⟨0̄R,N ∣ and it acts
on the lower right-most qudit on the 2D grid. To see that this observable indeed measures the pauli Z-operator on
the last qubit of the encoded circuit, recall from Lemma 16 that the fixed point of the Lindbladian contains a mixture
of the (valid) state of the qudits corresponding to different time-steps of the encoded circuit. Note that in all of these
time-steps except for the last one, the lower rightmost qudit is in the state ∣×⟩ or in an unbarred 0/ state and thus
yields a 0 expected value for the observable O. Consequently, the expected value of O in the fixed point only has a
contribution from the state at the last time-step and is equal to the expected value of the pauli-Z on the last qubit
of the encoded circuit multiplied by a normalization factor of 1/2NR, which arises from the fact that the fixed point
contains a convex combination of the state of the qudits at all time-steps.

Appendix D: Stability to noise and errors

As detailed in the main text, we will asssume that the quantum simulator due to noise, instead of implementing Lω,
will implement the Lindbladian Lω,δ

Lω,δ = Lω + δ∑
β

Nβ ,

where Nβ , which itself is a Lindbladian, acts on (system and ancilla) qubits and is supported on S′β and δ is the noise

rate. We will assume that there is a Z ′ ≥ 0 such that

∣{β′ ∶ S′β′ ∩ S
′
β ≠ ϕ}∣ + ∣{α ∶ S

′
β′ ∩ Sα ≠ ϕ}∣ ≤ Z

′ for all β.

i.e. S′β intersects with at most Z ′ other subsets S′β or Sα (on which the jump operators Lα and Hamiltonian terms hα
corresponding to the target Lindbladian are supported). In particular, this implies that any one ancilla qubit is in the
support of at most Z ′ Lindbladians Nβ . We will denote by Eω,δ(t, s) = exp(Lω,δ(t − s)) and ρω,δ(t) = Eω,δ(t,0)ρ(0),
where we will again assume the ancillae to initially be in the ∣0⟩ state. We first modify the remainder expression given
in Lemma 1 for the noiseless case.

Lemma 8, repeated. If the ancillae are initially in ∣0⟩ then

d

dt
TrA(ρω,δ(t)) − ω

2
LTrA(ρω,δ(t)) = Rω(t) + δ∑

β

K
(0)
β (t) + δ∑

α,β
∫

t

0
e−2(t−s) (ωK(1)α,β(s) + ω

2
K
(2)
α,β(s))ds,

where Rω(t) is as defined in Lemma 1 but with ρω → ρω,δ and

K
(0)
β (t) = TrA(Nβ(ρω,δ(t)),

K
(1)
α,β(t) = −i[L

†
α,TrA(σαNβ(ρω,δ(t)))] + h.c.,

K
(2)
α,β(t) =

1

2
[L†

α, LαTrA(Nβ(ρω,δ(t))] + h.c..

Proof. We follow the method as in the proof of Lemma 1. We begin by writing the equations of motion for TrA(ρω,δ(t))
and TrA(σαρω,δ(t)),

d

dt
TrA(ρω,δ(t)) = −ω∑

α

(i[L†
α,TrA(σαρω,δ(t))] + h.c.) − iω

2
[Hsys,TrA(ρω,δ(t))] + δ∑

β

TrA(Nβ(ρω,δ(t))), (D1a)

d

dt
TrA(σαρω,δ(t))

= −2TrA(σαρω,δ(t)) − iωLαTrA(ρω,δ(t)) − iω
2
[Hsys,TrA(σαρω,δ(t))] + ω∑

α′
Eα,α′(t) + δ∑

β

TrA(σαNβ(ρω,δ(t))).

(D1b)
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We now consider the remainder Rω,δ(t) — using the definition of the remainder (Eq. 10) together with Eq. 8a, we
obtain that

Rω,δ(t) =
d

dt
TrA(ρω,δ(t)) − ω

2
LTrA(ρω,δ(t))

= ∑
α

((−iω[L†
α,TrA(σαρω,δ(t))] + h.c) − ω

2
DLαTrA(ρω,δ(t))) + δ∑

β

TrA(Nβ(ρω,δ(t))). (D2)

Integrating Eq. D1b, we find

TrA(σαρω,δ(t))

= ∫

t

0
e−2(t−s)( − iω2

[Hsys,TrA(σαρω(s))] − iωLαTrA(ρω(s)) + ω∑
α′
Eα,α′(s) + δ∑

β

TrA(σαNβ(ρω,δ(s))))ds. (D3)

Using integration by parts and the expression for d
dt
TrA(ρω,δ(t)) from Eq. D1a, we obtain

− iω∫
t

0
e−2(t−s)LαTrA(ρω,δ(s))ds = −i

ω

2
LαTrA(ρω,δ(t)) + i

ω

2
e−2tρ(0) + i

ω

2
∫

t

0
e−2(t−s)Lα

d

ds
TrA(ρω,δ(s))ds,

= −i
ω

2
LαTrA(ρω,δ(t)) + i

ω

2
e−2tTrA(ρ(0)) −

ω3

2
∫

t

0
e−2(t−s)Lα[Hsys,TrA(ρω,δ(s))]ds +

ω2

2
∑
α′
∫

t

0
e−2(t−s)Fα,α′(s)ds

+ i
ωδ

2
∑
β
∫

t

0
e−2(t−s)LαTrA(Nβ(ρω,δ(s)))ds. (D4)

Inserting Eq. D4 into Eq. D3, we obtain

−iω[L†
α,TrA(σαρω,δ(t))] = −

ω2

2
[L†

α, LαTrA(ρω,δ(t))] +
ω2

2
e−2t[L†

α, Lαρ(0)]

+ ∫

t

0
e2(t−s)( − ω3

[L†
α, [Hsys,TrA(σαρω,δ(t))] − i

ω4

2
[L†

α, Lα[Hsys,TrA(ρω,δ(s))]])ds

+ ∫

t

0
e−2(t−s) (−i∑

α′
(ω2
[L†

α,Eα,α′(s)] +
ω3

2
[L†

α, Fα,α′(s)])ds

+∑
β
∫

t

0
e−2(t−s) (−iωδ[L†

α,TrA(σαNβ(ρω,δ(s)))] +
ω2δ

2
LαTrA(Nβ(ρω,δ(s))))ds, (D5)

Using Eq. D5 and Eq. D2, we note that −[L†
α, LαTrA(ρω,δ(t))]/2 + h.c = DLα and so arrive at

Rω,δ(t) = ∑
α

(ω2e−2tqα + ω4
∫

t

0
e−2(t−s) (Q(1)α,Hsys

(s) +Q
(2)
α,Hsys

(s))ds) + ω4
∑
α,α′
∫

t

0
e−2(t−s)(Q(3)α,α′(s) +Q

(4)
α,α′(s))ds

+ ω2δ∑
β

K
(0)
β (t) + δ∑

α,β
∫

t

0
e−2(t−s) (ωK(1)α,β(s) + ω

2
K
(2)
α,β(s)) , (D6)

where qα, Q
(1)
α,Hsys

(t), Q
(2)
α,Hsys

(t), Q
(3)
α,α′(t), and Q

(4)
α,α′(t) are defined in Lemma 1 (with the substitution ρω(t) →

ρω,δ(t)) and K
(0)
β (t), K

(1)
α,β(t), K

(2)
α,β(t) are defined in the statement of this lemma.

Next we provide bounds on the excitation of the ancillae in the presence of noise. The following lemma is the
counterpart of Lemma 2 in the noiseless case.

Lemma 9, repeated. Suppose ρω,δ(t) is the joint state of the system and ancilla qubits with the ancilla qubits
initially being in the state ∣0⟩, then for all α,α′,

∣∣σαρω,δ(t)∣∣1 ≤
ω

2
+Z

′δ and ∣∣TrA(σασα′ρω,δ(t))∣∣1, ∣∣TrA(σ
†
ασα′ρω,δ(t))∣∣1 ≤

ω2

4
+
ωZ ′δ
2
+Z

′δ.

Proof. The proof follows the same steps as the proof of Lemma 2. We will denote by ∣0A⟫ the vectorization of ∣0⟩⟨0∣
on all the ancilla qubits. It will be convenient to note the following for σα,l(t) = E

−1
ω,δ(t,0)σα,lEω,δ(t,0). We can now
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obtain

d

dt
σα,l(t) = E

−1
ω,δ(t,0)[σα,l,Lω,δ]Eω,δ(t,0),

= −2σα,l(t) − iωE
−1
ω,δ(t,0)[σα,l, σ

†
α,l]Lα,lEω,δ(t,0) + δE

−1
ω,δ(t,0)[σα,l,N]Eω,δ(t,0).

This can be integrated to obtain

σα,lEω,δ(t,0) = Eω,δ(t,0)σα,le
−2t
+ ∫

t

0
e−2(t−s)Eω,δ(t, s)( − iω[σα,l, σ

†
α,l]Lα,l + δ[σα,l,N])Eω,δ(s,0)ds. (D7)

Consider now upper bounding ∣∣TrA(σαρω,δ(t))∣∣1. We can first upper bound

∣∣TrA(σαρω,δ(t))∣∣1 ≤ ∣∣⟪TrA∣σα,lEω,δ(t,0)∣0A⟫∣∣◇,

where ⟪TrA∣σα,lEω,δ(t,0)∣0A⟫ is interpreted as a superoperator on the system qudits. Using Eq. D7 and the fact that
σα,l∣0A⟫ = 0, we obtain that,

∥⟪TrA∣σα,lEω,δ(t,0)∣0A⟫∥◇

≤ ∫

t

0
e−2(t−s)(ω∣∣⟪TrA∣Eω,δ(t, s)[σα,l, σ

†
α,l]Lα,lEω,δ(s,0)∣0A⟫∣∣◇ + δ∥⟪TrA∣Eω,δ(t, s)[σα,l,N]Eω,δ(s,0)]∣0A⟫∥◇)ds,

≤ ∫

t

0
e−2(t−s)(ω∣∣[σα,l, σ

†
α,l]∣∣◇∣∣Lα,l∣∣◇ + δ∣∣[σα,l,N]∣∣◇)ds,

(1)
≤ ∫

t

0
e−2(t−s)(ω + 2Z ′δ)ds =

ω

2
+Z

′δ,

where in (1) we have used the fact that at most only Z ′ terms Nβ do not commute with σα,l i.e. ∣{β ∶ [Nβ , σα,l] ≠ 0}∣ ≤
Z ′.

We follow a similar method to derive a bound on TrA(σ†
ασα′ρω,δ(t)) and TrA(σ†

ασα′ρω,δ(t)). For u ∈ {−,+}, we
write in vectorized notation,

TrA(σ(u)α σα′ρω,δ(t)) = ⟪TrA∣σ(u)α,uσα′,l∣ρω,δ(t)⟫ = ⟪TrA∣Eω,δ(t,0)σ
(u)
α,u(t)σα′,l(t)∣ρ(0)⟫, (D8)

where we interpret the subcripts as − = l,+ = r. We have that

d

dt
(σ(u)α,u(t)σα,l(t)) = [σ

(u)
α,u(t)σα,l(t),Lω,δ(t)],

= −4σ(u)α,u(t)σα,l(t) − iωLα′,l(t)σ
z
α′,lσ

(u)
α,u(t) + uiωL

(u)
α,u(t)σ

z
α,u(t)σα′,l(t) + δ[σ

(u)
α,u(t)σα′,l(t),N(t)], (D9)

which can be integrated to obtain

σ(u)α,u(t)σα,l(t) = e
−4tσ(u)α,uσα′,l

+ ∫

t

0
e−4(t−s) (−iωLα′,l(s)σ

z
α′,l(s)σ

(u)
α,u(s) + uiωL

(u)
α,u(s)σ

z
α,u(s)σα′,l(s) + δ[σ

(u)
α,u(s)σα′,l(s),N(s)])ds. (D10)

Inserting Eq. D10 into Eq. D8 and applying the fact that σα,l∣ρ(0)⟫ = 0, we obtain

∣∣TrA(σ(u)α σα′ρω,δ(t))∣∣1 ≤ ∫
t

0
e−4(t−s)ω∣∣⟪TrA∣Eω,δ(t,0)Lα′,l(s)σ

z
α′,l(s)σ

(u)
α,u(s)∣ρ(0)⟫∣∣1ds

+ ∫

t

0
e−4(t−s)ω∣∣⟪TrA∣Eω,δ(t,0)L

(u)
α,u(s)σ

z
α,u(s)σα′,l(s)∣ρ(0)⟫∣∣1ds

+ ∫

t

0
e−4(t−s)δ∣∣⟪TrA∣Eω,δ(t,0)[σ

(u)
α,u(s)σα′,l(s),N(s)]∣ρ(0)⟫∣∣1ds.

≤ ∫

t

0
e−4(t−s) (ω∣∣σ(u)α,u∣ρω,δ(s)⟫∣∣1 + ω∣∣σα,l∣ρω,δ(s)⟫∣∣1 + δ∣∣[σ

(u)
α,uσα′,l,N]∣∣◇∣∣∣ρ(0)⟫∣∣1)ds

(1)
≤
ω2

4
+
ωZ ′δ
2
+Z

′δ. (D11)

In (1) we have used the bound ∣∣σαρ(t)∣∣1 < ω/2 + Z
′δ derived in the first part of this lemma to insert the bounds

∣∣σ†
α,r(s)∣ρ(0)⟫∣∣1, ∣∣σα,l(s)∣ρ(0)⟫∣∣1 ≤ ω/2+Z

′δ. We have also used the fact that at most 2Z ′ terms Nβ do not commute

with σ
(u)
α σα′ . The lemma statement is confirmed choosing u ∈ {−,+}.
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Dynamics. We now establish the counterpart of Lemma 5 in the presence of errors. This requires additionally

providing bounds on ∑β K
(0)
β (t), ∑α,β K

(1)
α,β(t) and ∑α,β K

(2)
α,β(t). We begin by providing a counterpart to Lemma 13.

Lemma 20. Suppose O is a local observable with ∣∣O∣∣ ≤ 1 supported on SO, and for τ > 0, let O(τ) = exp(L †τ)(O)

where L is a geometrically local Lindbladian of the form in Eq. 14. Then for qα,Q
(j)
α,α′(s), with Q

(1)
α,α′ = Q

(1)
α,hα′

and

Q
(2)
α,α′ = Q

(2)
α,hα′

, as defined in Lemma 8,

∣Tr(O(τ)qα,δ)∣ ≤ 2min(ηSO
exp(4eZτ −

d(Sα, SO)

a
),1) for any α,

and,

∣Tr(O(τ)Q
(j)
α,α′(s))∣ ≤ (4 +

8Z ′δ
ω
+
16Z ′δ
ω2
)min(eηSO

exp(4eZτ −
1

2a
(d(Sα, SO) + d(Sα′ , SO))),1) for any α,α′, j.

Furthermore,

∣Tr(O(τ)K
(0)
β (s))∣ ≤min(ηSO

exp(4eZτ −
d(S̃′β , SO)

a
),1) for any β,

and

∣Tr(O(τ)K
(j)
α,β(s))∣ ≤ 2min(eηSO

exp(4eZτ −
1

2a
(d(S̃′β , SO) + d(Sα, SO))),1). for any α,β, j

where S̃′β is the set of system qubits contained in S′β.

Proof. The bound on ∣Tr(O(τ)qα)∣ is a restatement of the bound given and proven in Lemma 13. The bounds on

∣Tr(O(τ)Q
(j)
α,α′(s))∣ are proven in the same manner as the bounds on ∣Tr(O(τ)Q

(j)
α,α′(s))∣ in Lemma 13.

First we consider Tr(O(τ)Q
(1)
α,α′(s)). For any α,α

′ we obtain that

∣Tr(O(τ)Q
(1)
α,α′(s))∣ ≤

2

ω
∣Tr(O(τ)[L†

α, [hα′ ,TrA((σαρω,δ(s))]])∣,

≤
2

ω
∥[hα′ , [L

†
α,O(τ)]]∥∥TrA((σαρω,δ(s))∥1,

≤ (1 +
2Z ′δ
ω
)∥[hα′ , [L

†
α,O(τ)]]∥,

where, in the last step, we have used Lemma 9. Next, we can use Lemma 4 together with the fact that

∣∣[hα′ , ⋅]∣∣cb,∞→∞, ∣∣[L
(±)
α , ⋅]∣∣cb,∞→∞ ≤ 2 to obtain

∣Tr(O(τ)Q
(1)
α,hα′

(s))∣ ≤ (4 +
8Z ′δ
ω
) ∣∣O∣∣min(eηSO

exp(4eZτ −
1

2a
(d(Sα, SO) + d(Sα′ , SO))),1).

Next, for any α,α′, we obtain that,

∣Tr(O(τ)Q
(2)
α,α′(s))∣ ≤ ∣Tr(O(τ)[L

†
α, Lα[hα′ , ρω,δ(s)]])∣,

≤ ∣∣[hα′ , [L
†
α,O(τ)]Lα]∣∣∣∣TrA(ρω,δ(s))∣∣1,

≤ 4∣∣O∣∣min(eηSO
exp(4eZτ −

1

2a
(d(Sα, SO) + d(Sα′ , SO))) ,1) .

Next, we bound ∣TrA(Q
(3)
α,α′)∣. For any α,α

′, we obtain that

∣Tr(O(τ)Q
(3)
α,α′(s))∣ ≤

1

ω
∑

u∈{+,−}
∣Tr(O(τ)DLα ([L

(u)
α′ ,TrA(σ

(ū)
α′ ρδ,ω(s))]))∣,

≤
1

ω
∑

u∈{+,−}
∥[L

(u)
α′ ,D

†
Lα
(O(τ))]∥∥TrA(σ

(ū)
α′ ρδ,ω(s))∥1

,

≤ (
1

2
+
Z ′δ
ω
) ∑

u∈{+,−}
∥[L

(u)
α′ ,D

†
Lα
(O(τ))]∥,
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where, in the last step, we have used Lemma 9. Next, we use Lemma 4 together with ∣∣[L
(u)
α , ⋅]∣∣cb,∞→∞ ≤ 2 and

∣∣D
†
Lα
∣∣
cb,∞→∞ ≤ 2 to obtain

∣Tr(O(τ)Q
(3)
α,α′(s))∣ ≤ (4 +

8Z ′δ
ω
) ∣∣O∣∣min(eηSO

exp(4eZτ −
1

2a
(d(Sα, SO) + d(Sα′ , SO))),1).

Next we bound ∣Tr(O(τ)Q
(4)
α,α′(s))∣1. For α ≠ α

′

∣Tr(O(τ)Q
(4)
α,α′(s))∣ ≤

1

ω2 ∑
u,u′∈{−,+}

∣Tr(O(τ)[L(u)α , [L
(u′)
α′ ,TrA(σ

(ū)
α σ

(ū′)
α′ ρω,δ(s))]])∣,

≤
1

ω2 ∑
u,u′∈{−,+}

∥[L
(u′)
α′ , [L

(u)
α ,O(τ)]]∥∥TrA(σ(ū)α σ

(ū′)
α′ ρω,δ(s))∥

1
,

≤ (
1

4
+
Z ′δ
2ω
+
Z ′δ
ω2
) ∑

u,u′∈{−,+}
∥[L

(u′)
α′ , [L

(u)
α ,O(τ)]]∥,

where in the last step we have used Lemma 9. Furthermore, from Lemma 4 and the fact that ∣∣[L
(u)
α , ⋅]∣∣cb,∞→∞ ≤ 2 it

follows that

∣Tr(O(τ)Q
(4)
α,α′(s))∣ ≤ (4 +

8Z ′δ
ω
+
16Z ′δ
ω2
) ∣∣O∣∣min(eηSO

exp(4eZτ −
1

2a
(d(Sα, SO) + d(Sα′ , SO))),1). (D12)

Similarly, for α = α′,

∣Tr(O(τ)Q(4)α,α(s))∣ ≤
2

ω2
∣Tr(O(τ)(DLα −DL†

α
)(TrA(nαρω,δ(s))))∣,

≤
2

ω2
∣∣(DLα −DL†

α
)
†(O(τ))∣∣∣∣TrA(nαρω,δ(s))∣∣1,

≤ (
1

2
+
Z ′δ
ω
+
2Z ′δ
ω2
) ∣∣(DLα −DL†

α
)
†(O(τ))∣∣,

where, again, in the last step, we have used Lemma 9. Next, we can use Lemma 3 together with the fact that
∣∣(DLα −DL†

α
)†∣∣

cb,∞→∞ ≤ 4, we obtain that

∣Tr(O(τ)Q(4)α,α(s))∣ ≤ (2 +
4Z ′δ
ω
+
8Z ′δ
ω2
) ∣∣O∣∣min(ηSO

exp(4eZτ −
1

a
d(Sα, SO)),1). (D13)

Eqs. D13 and D12 together establish establish a bound on ∣Tr(O(τ)Q
(4)
α,α′(s))∣ for any α,α

′ and is consistent with the
lemma statement.

The bound on ∣Tr(O(τ)K
(0)
β (s))∣ is proven in the main text. Next we bound ∣Tr(O(τ)K

(1)
α,β)∣. For any α,β,

∣Tr(O(τ)K
(1)
α,β(s))∣ ≤ 2∣Tr(O(τ)[L

†
α, σαNβ(ρω,δ(s))])∣

≤ 2∣∣Ñ †
β([L

†
α,O(τ)]σα)∣∣∣∣ρω,δ(s)∣∣1

≤ 2∣∣O∣∣min(eηSO
exp(4eZτ −

1

2a
(d(S̃′β , SO) + d(Sα, SO))),1), (D14)

where Ñβ(X) = Nβ(X⊗IA) and Ñβ is supported only on the system qubits in S̃′β . Finally, we bound ∣Tr(O(τ)K
(2)
α,β)∣.

For any α,β,

∣Tr(O(τ)K
(2)
α,β)∣ ≤ ∣Tr(O(τ)[L

†
α, LαNβ(ρω,δ(s)])∣

≤ ∣∣Ñ
†
β ([L

†
α,O(τ)]Lα) ∣∣∣∣ρω,δ(s)∣∣1

≤ 2∣∣O∣∣min(eηSO
exp(4eZτ −

1

2a
(d(S̃′β , SO) + d(Sα, SO))),1), (D15)

producing a bound identical to that for ∣Tr(O(τ)K
(1)
α,β)∣.
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Lemma 10, repeated. Suppose O is a local observable on the system qubits with ∣∣O∣∣ ≤ 1 supported on SO, and for
τ > 0, let O(τ) = exp(L †τ)(O) where L is a geometrically local target Lindbladian of the form in Eq. 14. Then for qα
as defined in Lemma 1, then there are non-decreasing piecewise continuous function ν, ν′ such that ν(t), ν′(t) ≤ O(td)
as t→∞ and for ω ≤ 2

∑
α

∣Tr(O(τ)qα)∣ ≤ ν(τ) and ∑
α,α′
∣Tr(O(τ)Q

(j)
α,α′(s))∣ ≤ (1 +

2Z ′δ
ω
+
4δZ ′

ω2
)ν2(τ).

where, for j ∈ {3,4}, Q
(j)
α,α′ is defined in Lemma 1 and for j ∈ {1,2}, we define Q

(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h is defined

in Lemma 1. Furthermore,

∑
β

∣Tr(O(τ)K
(0)
β (s)∣ ≤ ν

′
(τ) and for j ∈ {1,2}, ∑

α,β

∣Tr(O(τ)K
(j)
β (s)∣ ≤ (ν

′
(τ))2,

where K
(0)
β and K

(j)
α,β for j ∈ {1,2} are defined in Lemma 8.

Proof. We prove this lemma in the same manner as Lemma 5, using Lemmas 12 and 20. Consider first,

∑
α

∣Tr(O(τ)qα)∣ ≤ 2∑
α

min(ηSO
exp(4eZτ −

d(Sα, SO)

a
),1),

= 2ξ(0,1)a,ηSO
(4eZτ) ≤ 2max(ηSO

,1)ν(0)(a,4eZτ) ≤ 2emax(ηSO
,1)ν(0)(2a,4eZτ), (D16)

where in the last step, we have used the fact that, as per Lemma 12, ν(0)(λ,T ) is a non-decreasing function of λ for
a fixed T .
Similarly, for j ∈ {1,2,3,4},

∑
α1,α2

∣Tr(O(τ)Q
(j)
α,α′(s)∣,

≤ (4 + 8ωZ ′δ + 16Z ′δ) ∑
α,α′

min(eηSO
exp(4eZτ −

d(Sα, SO) + d(Sα′ , SO)

2a
),1),

= (4 + 8ωZ ′δ + 16Z ′δ) ξ(0,2)2a,eηSO
(2a,4eZτ) ≤ (4 + 8ωZ ′δ + 16Z ′δ) (max(eηSO

,1))
2
(ν(0)(2a,4eZτ))

2

≤ (4 + 8ωZ ′δ + 16Z ′δ) e2(max(ηSO
,1))

2
(ν(0)(2a,4eZτ))

2
. (D17)

From Eqs. D16 and D17, it follows that choosing ν(τ) = 2emax(ηSO
,1)ν(0)(2a,4eZτ) satisfies the lemma statement.

Next we apply Lemmas 20 and 12 to obtain

∑
β

∣Tr(O(τ)K
(0)
β (s))∣ ≤min

⎛

⎝
ηSO

exp
⎛

⎝
4eZτ −

d(SO, S̃
′
β)

a

⎞

⎠
,1
⎞

⎠

= ξ(0,1)a,ηSO
(4eZτ) ≤max(ηSO

,1)ν(0)(a,4eZτ)

≤max(ηSO
,1)ν(0)(2a,4eZτ), (D18)

where in the last step we have used the fact that, as per Lemma 12, ν(0)(λ,T ) is a non-decreasing function of λ for
fixed T .
For j ∈ {1,2},

∑
α,β

∣Tr(O(τ)K
(j)
β (s))∣ ≤ 2∑

α,β

min
⎛

⎝
ηSO

exp
⎛

⎝
4eZτ −

d(S̃′β , SO) + d(Sα, SO)

2a

⎞

⎠
,1
⎞

⎠

= ξ2a,eηSO
(4eZ) ≤ 2(max(eηSO

,1))2 (ν(0)(2a,4eZτ))
2

≤ 2e2(max(ηSO
,1))2 (ν(0)(2a,4eZτ))

2
. (D19)

Considering Eqs. D18 and D19, we may choose ν′(τ) =
√
2emax(ηSO

,1)ν(0)(2a,4eZτ) to satisfy the lemma statement.

It can also be noted from the asymptotics of ν(0)(λ,T ) in Lemma 12 that both ν(τ), ν′(τ) ≤ O(τd). Additionally,

since ν(0)(λ,T ), for a fixed λ, is a non-decreasing and piecewise continuous function of T , ν(τ) and ν′(τ) are also
piecewise continuous non-decreasing functions of τ .



61

Long-time dynamics or fixed points. Next, we consider the problem of long-time dynamics or fixed points.

Lemma 11, repeated. Suppose O is a local observable with ∣∣O∣∣ ≤ 1 supported on SO, and for τ > 0, let O(τ) =
exp(L †τ)(O) where L is a geometrically local Lindbladian of the form in Eq. 14. Furthermore, suppose O is rapidly
mixing with respect to L and satisfies Eq. 20 with k(∣SO ∣, γ) ≤ O(exp(γ

−κ)). Then for qα as defined in Lemma 1,

∑
α

∣∫

t

0
Tr(O(t − s)qα)e

−2s/ω2

ds∣ ≤ ω2λ(1)(γ),

where λ(1)(γ) ≤ O(γ−d(κ+1)) as γ → 0 and for j ∈ {1,2,3,4}

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(j)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ (1 +
2Z ′δ
ω
+
4Z ′δ
ω2
)λ(2)(γ),

where λ(2)(γ) ≤ O(γ−(2d+1)(κ+1)) as γ → 0 and for j ∈ {3,4}, Q
(j)
α,α′ is defined in Lemma 1 but with ρω → ρω,δ and for

j ∈ {1,2}, we define Q
(j)
α,α′ = Q

(j)
α,hα′

where Q
(j)
α,h is defined in Lemma 1 but with ρω → ρω,δ. Furthermore,

∑
β

∣∫

t

0
Tr(O(t − s)K

(0)
β (

s

ω2
))ds∣ ≤ λ′(1)(γ)

where λ′(1)(γ) ≤ O(γ−(d+1)(κ+1)) as γ → 0 and for j ∈ {1,2},

∑
α,β

∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)K

(j)
α,β(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ λ′(2)(γ),

where λ′(2)(γ) ≤ O(γ−(2d+1)(κ+1)) as γ → 0.

Proof. We follow the same method as the proof of Lemma 6. Since qα is defined identically in the noisy and noiseless
models, the first statement of the lemma is simply a restatement of the bound from Lemma 6. Next we note that, for
a function Fα,α′(t),

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Fα,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ =
1

ω2 ∑
α,α′
∣∫

t

0
∫

s

0
Tr(O(t − s)Fα,α′(

s′

ω2
))e−2(s−s

′)/ω2

ds′ds∣.

(D20)

We now consider the terms involving Q(j) for j ∈ {1,2,3,4} separately — for j = 1, we have from Lemma 8 that

Q
(1)
α,α′(s

′/ω2) = KαJα′(σω(s
′))+h.c. with Kα(X) = [L

†
α,X], Jα′(X) = [hα′ ,X] and σω(s

′) = −ω−1TrA(σαρω,δ(s
′/ω2)).

We note that ∣∣Kα∣∣◇, ∣∣Jα′ ∣∣◇ ≤ 2 and, using Lemma 9, ∣∣σω(s
′)∣∣1 ≤ 1/2+Z

′δ/ω. Thus, applying Eq. D20 and Lemma 14,
we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(1)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ (1 +
2Z ′δ
ω
) ζ(3)(γ). (D21)

Similarly, for j = 2, we have from Lemma 8 that Q
(2)
α,α′(s

′/ω2) = KαJα′(σω(s
′)) + h.c where Kα(X) = [L

†
α, LαX],

Jα′(X) = [hα′ ,X] and σω(s
′) = −iTrA(ρω,δ(s

′/ω2))/2. We note that ∣∣Kα∣∣◇, ∣∣Jα′ ∣∣◇ ≤ 2 and that ∣∣σω(s
′)∣∣1 ≤ 1/2. Thus,

from Eq. D20 and Lemma 14, we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(2)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ ζ(3)(γ). (D22)

For j = 3, we have from Lemma 8 that Q
(3)
α,α′(s

′/ω2) = ∑u∈{−,+}K
(u)
α J

(u)
α′ (σ

(u)
ω (s

′)) where K(u)α = DLα , J
(u)
α′ (X) =

[L
(u)
α′ ,X] and σ

(u)
ω (s

′) = −iω−1TrA(σ
(ū)
α′ ρω,δ(s

′/ω2)). We note that ∣∣K
(u)
α ∣∣◇, ∣∣J

(u)
α′ ∣∣◇ ≤ 2 and, using Lemma 9,

∣∣σ
(ū)
ω (s

′)∣∣1 ≤ 1/2 +Z
′δ/ω. Thus, from Lemma 14 and Eq. D20, we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(3)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ (1 + 2
Z ′δ
ω
) ζ(3)(γ). (D23)
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For j = 4, we have from Lemma 8 that Q
(4)
α,α′(s

′/ω2) = ∑u,u′∈{−,+}KαJ
(u,u′)
α′ (σ

(u,u′)
ω (s′))+h.c. according to the following

definitions: We define Kα(X) = [L
†
α,X]. J

(u,u′)
α′ (X) = L(u)X if u′ = − and J

(u,u′)
α′ (X) = XL(u) if u′ = +. Finally,

σ
(u,u′)
ω (s′) = ω−2TrA(σ

(ū)
α σαρω,δ(s

′/ω2)) if α = α′ and σ(u,u
′)

ω (s′) = u′ω−2TrA(σ
(ū)
α′ σαρω,δ(s

′/ω2)) if α ≠ α′. We note

that for any u,u′, ∣∣Kα∣∣◇, ∣∣J
(,′)
α′ ∣∣◇ ≤ 2 and, using Lemma 9, ∣∣σ

(u,u′)
ω (s′)∣∣1 ≤ 1/4 + ω

−1Z ′δ/2 + ω−2Z ′δ. Thus, applying
Eq. D20 and Lemma 14(c), we obtain that

∑
α,α′
∣∫

t

0
∫

s/ω2

0
Tr(O(t − s)Q

(4)
α,α′(s

′
))e−2(s/ω

2−s′)ds′ds∣ ≤ (2 + 4
Z ′δ
ω
+ 8
Z ′δ
ω2
) ζ(3)(γ). (D24)

Considering Eqs. D21-D24, we may choose λ(2)(γ) = 2ζ(3)(γ) to satisfy the lemma statement. Note that ζ(3)(γ) de-
pends on a and Z and that by Lemma 14, so long as k(∣SO ∣, γ) ≤ O (exp(γ

−κ)) as γ → 0, then ζ(3)(γ) ≤ O (γ−(2d+1)(κ+1))
as γ → 0.

Next, using the definition of K
(0)
β (t) from Lemma 8 and the fact that O(t − s) is not supported on the ancillae, we

have that Tr(O(t − s)K
(0)
β (s/ω

2)) = Tr(O(t − s)Nβ(σω(s))) where σω(s) = ρω,δ(s/ω
2). Noting that ∣∣Nβ ∣∣◇ ≤ 2 and

that ∣∣σω(s)∣∣1 ≤ 1, we apply Lemma 14(b) to obtain

∑
β

∣∫

t

0
Tr(O(t − s)K

(0)
β (s/ω

2))ds∣ ≤ ζ(2)(γ), (D25)

where in the application of Lemma 14 we consider d(SO, S
′
β) = d(SO, S̃

′
β). Picking λ′(1)(γ) = ζ(2)(γ) satisfies the

lemma statement. Note that ζ(2)(γ) depends on Z, Z ′, and a.
In order to prove the last statement in this lemma, we must define a way to sum over all regions Sα and S′β in a

single summation. For c ∈ {1,2, ...,M +M ′}, we define S′′c = Sc if c ≤M and S′′c = S
′
c−M if c >M . Remember that M is

the number of target Lindbladian terms Lα and that M ′ is the number of error Lindbladian terms Nβ . Given any c,
we define the number other regions S′′c′ that intersect S

′′
c to be bounded by some Z ′′ ≥ 0, i.e. ∣{c′∣S′′c′ ∩ S

′′
c ≠ ∅}∣ ≤ Z

′′.
If c > M , then S′′c = S

′
c−M can intersect a maximum of Z ′ other regions S′′c′ . If c ≤ M , then S′′c = Sc can intersect a

maximum of Z other regions Sα and each of the ∣Sc∣ points in Sc can be in the support of a maximum of Z ′ regions
S′′β . We can bound maxα ∣Sα∣ by some VS and note that VS is a function of only a and d. Hence we can choose

Z ′′ =max(Z ′,Z + VSZ ′).
Using these definitions, from Lemma 8, we have that ∑α,β Tr(O(t − s)K

(1)
α,β(s

′/ω2)) = ∑c,c′ Tr(O(t −

s)KcJc′(σω(s
′))) + h.c. where Kα(X) = −i[L

†
c, σcX] if c ≤ M and 0 otherwise, Jc′ = Nc′ if c

′ > M and 0 other-
wise, and σω(s

′) = ρω,δ(s
′/ω2). We note that ∣∣Kc∣∣◇, ∣∣Jc′ ∣∣◇ ≤ 2 and ∣∣σω(s

′)∣∣1 ≤ 1. Thus, applying Eq. D20 and
Lemma 14(c), we obtain that

∑
α,β

∣∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)Tr(O(t − s)K(1)α,β(s
′
))ds′ds∣ ≤ 2ζ ′(3)(γ). (D26)

Using the definition of K
(2)
α,β in Lemma 8, we have that ∑α,β Tr(O(t − s)K

(2)
α,β(s

′/ω2)) = ∑c,c′ Tr(O(t −

s)KcJc′(σω(s
′))) + h.c. where Kc(X) = [L

†
c, LcX] if c ≤ M and 0 otherwise, Jc′ = Nc′ if c

′ > M and 0 otherwise,
and σω(s

′) = ρω,δ(s
′/ω2)/2. We note that ∣∣Kc∣∣◇, ∣∣Jc′ ∣∣◇ ≤ 2 and ∣∣σω(s

′)∣∣1 ≤ 1/2. Thus, applying Eq. D20 and
Lemma 14(c), we obtain that

∑
α,β

∣∫

t

0
∫

s/ω2

0
e−2(s/ω

2−s′)Tr(O(t − s)K(2)α,β(s
′
))ds′ds∣ ≤ ζ ′(3)(γ). (D27)

By Lemma 14, ζ(3)(γ) ≤ O (γ−(2d+1)(κ+1)) as γ → 0 and ζ(3)(γ) depends on Z, a, and Z ′′. Picking λ′(2)(γ) = 2ζ(3)(γ)
satisfies the lemma statement.
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