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Abstract
Current biogeochemical models produce carbon–climate feedback projections with 
large uncertainties, often attributed to their structural differences when simulating 
soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter 
values that quantify the strength and represent properties of different soil carbon 
cycle processes could also contribute to model simulation uncertainties. Here, we 
demonstrate the critical role of using common observational data in reducing model 
uncertainty in estimates of global SOC storage. Two structurally different mod-
els featuring distinctive carbon pools, decomposition kinetics, and carbon transfer 
pathways simulate opposite global SOC distributions with their customary parameter 
values yet converge to similar results after being informed by the same global SOC 
database using a data assimilation approach. The converged spatial SOC simulations 
result from similar simulations in key model components such as carbon transfer ef-
ficiency, baseline decomposition rate, and environmental effects on carbon fluxes 
by these two models after data assimilation. Moreover, data assimilation results sug-
gest equally effective simulations of SOC using models following either first-order or 
Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data 
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1  |  INTRODUC TION

Soils store more carbon than the atmosphere and vegetation com-
bined (Ciais et al., 2014; Jackson et al., 2017). A small change in 
soil carbon storage can significantly impact the atmospheric car-
bon dioxide concentration and the future trajectory of climate. 
Substantial research has been conducted to understand the fac-
tors underlying the formation of soil organic carbon (SOC) and 
its persistence. While there is a general agreement that the SOC 
balance depends on plant carbon input as the source of SOC and 
organic matter decomposition as the main SOC loss pathway, 
there are two contrasting paradigms on the regulation of decom-
position. The conventional paradigm focuses on chemical recal-
citrance and physical protection as the key factors controlling 
decomposition and, thus, CO2 emissions back to the atmosphere 
(Schmidt et al., 2011). A more recent paradigm focuses instead on 
soil microorganisms and soil carbon stabilization as the key de-
terminants in partitioning carbon inputs between accumulation 
and loss (Bradford et  al.,  2016; Cotrufo et  al.,  2013, 2015; Tao 
et al., 2023). These two paradigms are the conceptual foundation 
of two classes of process-based models used to simulate global 
SOC dynamics (Table  1). Because these model classes have dis-
tinctive structures that reflect different underlying theories and 
assumptions on soil carbon dynamics (Chandel et al., 2023), large 
differences in the simulated SOC emerge among models, leading 
to highly uncertain predictions (Wieder et  al.,  2018). Diverging 
simulations of SOC storage and its spatial distributions across the 
globe hinder a better understanding of the soil carbon cycle and 
its feedback to climate change (Ciais et al., 2014; Luo et al., 2016; 
Todd-Brown et al., 2013).

In simulating SOC dynamics, state-of-the-art process-based 
models following the two paradigms differ structurally regarding soil 
carbon pool classification, SOC decomposition kinetics, and repre-
sentation of carbon transfer processes (Table 1). Soil organic carbon 
can be separated into conceptual pools with different turnover rates 
that reflect heterogeneity in their decomposition rates. For exam-
ple, models derived from the Century model (Parton et  al.,  1987) 
that center their simulations around the “pool turnover” paradigm 
(Luo,  2022; Schimel,  2023) differentiate substrates according to 
turnover times, with labile substrates that cycle rapidly (i.e., ac-
tive SOC) and chemically or physically protected pools that cycle 

slowly (i.e., slow and passive SOC). In contrast, recently formulated 
process-based models that highlight the role of microbial processes 
define carbon pools as measurable entities that can be validated 
with field observations (Abramoff et al., 2022)—for example, micro-
bial biomass, dissolved organic carbon, particulate organic carbon, 
and mineral-associated organic carbon (Table 1).

In representing SOC decomposition, a theory developed back 
in the 1940s (Jenny,  1941) and consolidated in the 1980s (Parton 
et al., 1988) portends that organic matter decay in soils follows first-
order kinetics: dSOC

dt
∝ − k × SOC, where the loss rate of SOC (i.e., k) 

is independent of its pool size (i.e., SOC). Therefore, with this formu-
lation, the SOC storage changes over time is proportional to its pool 
size (Forney & Rothman, 2012). With increasing evidence pointing to 
soil microorganisms as a key factor in soil carbon dynamics, a newer 
generation of models has explored the possibility of nonlinearity 
in SOC decomposition (Allison et  al., 2010; Georgiou et  al.,  2017; 
Schimel & Weintraub,  2003; Wang et  al.,  2021) (Table  1). Among 
various nonlinear functions that can be used to describe decom-
position, the Michaelis–Menten kinetics (i.e., dSOC

dt
∝ − v

ENZ× SOC

K + SOC
 ) 

considers the interplay between the substrate (i.e., SOC) and the 
extracellular enzymes (i.e., ENZ) that catalyze the decomposition of 
organic matter. While not new (Briggs & Haldane,  1925), this for-
mulation is now being frequently used in soil carbon cycle models 
(Schimel & Weintraub, 2003; Wilson & Gerber, 2021). Specifically, 
parameter v specifies the maximum SOC decomposition rate at its 
saturated content for a given enzyme content. The inverse of the 
Michaelis–Menten constant (K) specifies the enzyme's affinity for its 
substrate in a catalyzed reaction.

Process-based models also differ in allocating the decomposed 
carbon to other carbon pools or heterotrophic respiration as CO2 
(Table  1). While soil microbes mineralize SOC into CO2 through 
their metabolism, transfers of decomposed carbon from one pool 
to another could result from either an exclusive effect of micro-
bial processes or an integrative effect of biological, chemical, and 
physical reactions (i.e., including both microbial and non-microbial 
transfer). Specifically, when a model explicitly defines a microbial 
biomass carbon pool, carbon received by this pool is partitioned 
according to the microbial carbon use efficiency (CUE)—that is, 
the ratio of carbon assimilated in new biomass over the total sub-
strate carbon uptake (Geyer et al., 2016; Manzoni et al., 2018; Tao 
et al., 2023). Correspondingly, carbon transfers among different soil 
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with high-quality control and assurance are needed to further constrain SOC dynam-
ics simulations and reduce unconstrained parameters. New sets of data, such as mi-
crobial genomics-function relationships, may also suggest novel structures to account 
for in future model development. Overall, our results highlight the importance of ob-
servational data in informing model development and constraining model predictions.

K E Y W O R D S
big data assimilation, deep learning, inter-model uncertainty, model parameterization, model 
structure, soil organic carbon
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compartments that happen without microbial carbon assimilation 
can be interpreted as results from other biochemical processes (e.g., 
microbial exudation and mortality) or organo-mineral interactions 
(Tao et  al.,  2023). In contrast, for models without explicit repre-
sentation of microbial biomass and assimilation processes, carbon 
transfer implicitly integrates the effects of both microbial physiology 
and other chemical or physical reactions. Depending on the model 
structure, a range of relations between long-term SOC and micro-
bial traits, such as CUE or carbon inputs to soils, emerge (Georgiou 
et al., 2017; He et al., 2023; Wutzler & Reichstein, 2008).

In addition to structural differences among varieties of process-
based models, parameter values that quantify the strength and 
represent properties of different processes in the soil carbon cycle 
also contribute to the uncertainty of model simulations (Luo & 
Schuur, 2020), especially when they are not well constrained by ob-
servations. Most current Earth system models adopt the Century-
type model structure using first-order SOC decomposition kinetics. 

Notwithstanding their structural similarity, varying parameter val-
ues among different models contribute to the divergent estimates 
of SOC storage both at the site level and across the globe (Luo 
et  al.,  2015; Todd-Brown et  al., 2013). Moreover, the same model 
with different choices of parameter values (i.e., parameterization) 
could also generate varying patterns between SOC and key model 
components, such as microbial CUE (Tao et al., 2023) and plant car-
bon input (Tao et al., 2024). However, choices of parameter values 
and model structure are not fully independent in affecting model 
simulation: Different model structures can, in some cases, converge 
to similar results in the long term via parameter adjustments. For 
example, the Michaelis–Menten kinetics, when the affinity of the 
enzyme for its substrate is extremely low, such that the Michaelis–
Menten constant is much higher than the substrate concentration 
([K]SOC), the nonlinear decomposition kinetics will converge to lin-
ear kinetics with respect to the substrate (Lasaga, 1998; Wilson & 
Gerber, 2021).

TA B L E  1 Major differences in simulating soil carbon cycle among process-based models following two paradigms for SOC loss pathways 
(see also Figure 1).

Pool turnover-centered paradigm Microbe-centered paradigm

Carbon pool 
classification

Carbon pools are conceptually defined turnover 
time (i.e., average time a carbon compound 
stays in the soil). These models usually do 
not explicitly define microbe-related carbon 
pools such as microbial biomass, dissolved 
organic carbon, and enzyme

Carbon pools are defined by their functions in the soil carbon 
cycle. These models usually explicitly define microbe-related 
carbon pools such as microbial biomass, dissolved organic 
carbon, and enzyme by representing specific microbial 
processes such as assimilation, catabolism, mortality, and 
enzymatic reactions

Decomposition 
kinetics

First-order kinetics. Decomposition rate is only 
dependent on the donor pool size (i.e., the 
amount of substrate being decomposed)

Microbial explicit kinetics, such as Monod, Michaelis–Menten, 
reverse Michaelis–Menten, and logistic type kinetics. 
Decomposition rate is a function of both donor pool size and 
catalysts

Carbon transfer 
scheme

Organic carbon is transferred among conceptual 
pools, and CO2 is emitted whenever a 
transfer happens.

Organic carbon is transferred among functionally explicit pools, 
and CO2 is emitted only when microorganisms assimilate 
carbon from substrates in metabolism.

Model example used in 
this contribution

Community Land Model version 5 (CLM5) 
(Lawrence et al., 2019)

CarbOn cycle and Microbial PArtitioning Soil model (COMPAS) 
(Tao et al., 2023)

F I G U R E  1 Distinctive model structures of CLM5 (a) and COMPAS (b). CWD, coarse wood debris; SOC, soil organic carbon.

Vertical mixing in 
20 layers

Litter input

CWD Metabolic litter Lignin litterCellulose litter

Allocation to 20 layers in each litter pool

Enzyme Microbial 
biomass

Mineral- 
associated SOC

Dissolved 
organic carbon  

MortalityEnzyme production

CO2

Assimilation
CatalysisEnzyme decay

CO2 CO2
CO2

Vertical mixing in 20 layers

Litter input

CWD Metabolic litter Lignin litterCellulose litter

CO2 CO2 CO2

Allocation to 20 layers in each litter pool
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CO2 CO2 CO2
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While simulations by structurally distinctive models with differ-
ent parameter values present a range of possibilities under specific 
theories and assumptions, calibrating model simulations against ob-
servational data helps identify the most probable mechanistic expla-
nation that fits reality. Data assimilation is a suite of techniques that 
compare the model simulation results with different parameter val-
ues against observed counterparts and adjust the model parameter 
values to the set with which the process-based model simulations 
best-fit observations (Luo et al., 2011). Conventional data assimila-
tion techniques such as the Bayesian inference-based Markov Chain 
Monte Carlo (MCMC) method have been used at the site level to 
tune process-based models for better performance in simulat-
ing soil carbon cycle (Li et al., 2016; Xu et al., 2006). Recently, the 
newly developed PROcess-guided deep learning and Data-driven 
modeling (PRODA) approach (Tao & Luo, 2022) integrates the site-
level MCMC-based data assimilation results with deep learning to 
optimize the model parameter values for global SOC simulations 
and reveals key mechanisms underlying global SOC storage (Tao 
et al., 2020, 2023).

To investigate the roles of model structure versus parameters in 
causing the large inter-model uncertainty, we leverage two models 
(i.e., CLM5 and COMPAS; Figure 1; see Section 2 for detailed de-
scriptions) that are structurally different in describing carbon pools, 
decomposition kinetics, and carbon transfer pathways in a data 
assimilation framework. We hypothesize that being informed by a 
common observational SOC dataset using the PRODA approach, 
simulations of global SOC by CLM5 and COMPAS can converge. 
Despite structural differences among models, we expect that well-
calibrated parameters representing key processes in the soil carbon 
cycle will contribute to converging SOC simulations. Meanwhile, re-
sults of PRODA-optimized model simulations can also identify the 
most probable model structure that best fits observed SOC data 
across the globe.

2  |  MATERIAL S AND METHODS

2.1  |  Global vertical soil organic carbon profiles

We obtained SOC data in globally distributed soil profiles from the 
World Soil Information Service (WoSIS) and other data sources. WoSIS 
compiled soil data, after quality assessment, from soil profiles distrib-
uted across 173 countries (Batjes et al., 2020). The 2019 snapshot of 
the WoSIS dataset consists of 111,380 soil profiles with SOC content 
information (unit: g C kg−1 soil). We estimated the SOC stock (g C m−3) 
by SOC Stock = SOC Content × BD (Yigini et  al.,  2018), where BD is 
the bulk density of soil (g m−3). Note that SOC stock was multiplied by 
1 −

G

100
 to account for the volumetric coarse fragment fraction (G, unit: 

%) at each grid of the global map (data source: SoilGrids, https://​soilg​
rids.​org). When the measured bulk density was absent in the dataset, 
we used a pedo-transfer function to estimate it (Grigal et al., 1989; Yigini 
et  al.,  2018): BD = � + � × exp(−� ×OM), where OM is organic mat-
ter, calculated as SOC × 1.724, with SOC content in percent (%); α, 𝛽, 

and γ are fitting parameters. After fitting data of WoSIS (i.e., 78,913 lay-
ers from 16,248 profiles that simultaneously recorded bulk density and 
SOC content) to this equation, we obtained that α = 0.32, 𝛽 = 1.30, and 
γ = 0.0089. The pedo-transfer function explained 55% of the variation in 
the bulk density. Using the pedo-transfer function does not introduce 
substantial extra uncertainties in the SOC stock database. At those 
16,248 soil sampling sites that recorded bulk density and, thus, SOC 
stocks, we compared the field measurements with their corresponding 
values estimated from the pedo-transfer function. The pedo-transferred 
estimates explained 68% of variation in field-measured SOC stocks. We 
conducted a t-test to quantify whether the difference between field-
measured and pedo-transferred SOC stocks (i.e., pedo-transferred es-
timates minus field measurements) differ from 0. The results suggested 
that the mean difference is −0.05 kg C m−3, but such a small bias was not 
significantly different from 0 (p-value = .30, df = 78,192, t = −1.03).

In addition, we obtained an additional dataset of SOC stock in 
permafrost regions, which combined the data from a previous study 
(Mishra et  al.,  2020) and the Northern Circumpolar Soil Carbon 
Database (NCSCD) (Hugelius et  al.,  2013). This dataset contained 
2546 soil profiles with SOC stock (g C m−3) information for perma-
frost regions in North America, northern Eurasia, and Qinghai–Tibet 
Plateau. Combining this dataset with the WoSIS dataset, in total, we 
obtained data from 113,926 soil profiles as the raw data. The geo-
graphical distributions of all soil profiles are shown in Figure S1.

Not all the soil profiles are used in this study. We pre-processed 
the 113,926 SOC profiles to ensure the quality of the data before 
we conducted our analysis. We first excluded SOC profiles with 
no more than two observation layers or the maximum observation 
depths of no deeper than 50 cm from this study as such data do not 
provide enough information on key processes underlying SOC stor-
age. After this screening, we retained 72,377 profiles.

To further examine the suitability of the data for model optimiza-
tion, we conducted data assimilation for each of the 72,377 SOC ver-
tical profiles with both the Community Land Model version 5 (CLM5) 
and the CarbOn cycle and Microbial PArtitioning Soil model (COMPAS) 
using the Markov Chain Monte Carlo (MCMC) method. Model struc-
tures of CLM5 and COMPAS are described in Sections 2.2 and 2.3, 
respectively. The method of data assimilation is briefly described in 
Section 2.4 below and in detail by Tao et al. (2020).

We used two statistics, that is, Gelman–Rubin (G-R) statistic 
and Nash–Sutcliffe modeling efficiency (NSE) coefficient, to ensure 
the quality of model calibration against SOC data along the verti-
cal profiles. We calculated the G-R value (Gelman et al., 2014) for 
each of the SOC profiles to test the convergence of the site-level 
data assimilation results after running three independent series of 
MCMC simulations (see Section  2.6 for details of MCMC). A G-R 
value approaching 1.0 suggests well-converged data assimilation 
results. A large G-R value, in contrast, indicates inconsistent data 
assimilation results from these independent MCMC simulations, and 
such results may not be trusted. Therefore, we set a threshold of 
G-R = 1.05 and excluded SOC profiles with G-R > 1.05, with 66,935 
profiles remained for CLM5 and 59,476 remained for COMPAS to 
be included in further analyses. We found that it was more difficult 
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for the independent MCMC simulations to converge when using 
COMPAS model than using CLM5 in data assimilation, probably 
because of the nonlinearity and a lack of vertical transport for the 
mineral-soil carbon part in COMPAS (see Section 2.3). Thus, the final 
adopted profiles for COMPAS are fewer than those for CLM5.

We used the NSE coefficient (Janssen & Heuberger, 1995) (NSE) 
to evaluate the effectiveness of retrieving information from obser-
vations by process-based models. NSE is expressed as:

At the site-level data assimilation, the summation in Equation  1 
extends to all sampling depths at a given site. A value of NSE close to 
1 indicates that SOC distributions with depth can be well captured by 
process-based models so that information contained in the observations 
can be retrieved to evaluate processes underlying SOC storage. In con-
trast, a small value of NSE indicates that the model cannot capture the 
variability in the data, suggesting that such SOC vertical profiles may 
not offer enough information on the investigated processes underlying 
SOC storage. While it is possible that the negative NSE values could 
also result from the fact that process-based models are still not sophis-
ticated enough to capture extreme irregularities in observations, we set 
the threshold as NSE = 0.0 to include as many profiles as possible in the 
analysis. Moreover, the soil profiles included in this study are inclusive 
to diverse vertical shapes in SOC. For example, for the COMPAS model, 
66.2% of the 57,267 profiles show monotonically decreasing SOC 
stocks with soil depths, 4.4% of them record the highest SOC stock at 
the middle of the soil depths and 29.4% of them show zigzagged SOC 
stock with increasing soil depths (Tao et al., 2023). Eventually, only 4% 
(2209 out of 59,476) and 6% (4004 out of 66,935) of the profiles for 
CLM5 and COMPAS, respectively, were excluded due to negative NSE 
values. Moreover, we randomly selected a subset of these excluded SOC 
profiles to visually cross-check their shapes. We found that the thresh-
olds are effective for controlling the suitability of data.

After all the data pre-processing procedures, we obtained data 
assimilation results from 62,931 soil profiles for CLM5 and 57,267 soil 
profiles for COMPAS with which we estimated global SOC storage 
and its components. Our data pre-processing criteria did not cause 
significant discrimination against profiles belonging to specific soil 
orders or ecosystems or different vertical shapes (Tao et al., 2023). 
Meanwhile, the coverages of selected soil profiles across multi-
dimensional covariate spaces do not differ much between CLM5 and 
COMPAS (Figure  S2). Thus, the main conclusions drawn from this 
study are unlikely influenced by our data pre-processing criteria.

2.2  |  Model structure of CLM5

CLM5 is the latest version of the land model of the Community Earth 
System Model version 2 (CESM2) (Lawrence et al., 2018, 2019). The 
soil carbon part of CLM5 centers its simulations around the pool turn-
over paradigm (Table 1). Similar structures have been widely used in 

most of the state-of-the-art Earth system models. CLM5 uses concep-
tual soil carbon pools (i.e., active, slow, and passive SOC), and thus, 
microbial processes are only implicitly represented in the model struc-
ture. Meanwhile, CLM5 adopts first-order kinetics in simulating SOC 
decomposition. SOC dynamics in CLM5 can be expressed in a uniform 
matrix equation (Huang et al., 2018; Lu et al., 2020; Luo et al., 2022):

This matrix equation has six components (Table  S1), including 
plant carbon inputs (I(t)), carbon input allocation to different pools 
and depths (B), substrate decomposability (or baseline decomposi-
tion rates) (K), carbon transfer efficiency (A), environmental modifier 
(�(t)), and vertical transport (V(t)).

CLM5 describes seven carbon pools in the soil, including four 
litter pools (i.e., coarse woody debris (indicated by subscript CWD), 
metabolic litter (ML), cellulose litter (CL), and lignin litter (LL)) and 
three soil organic carbon pools (i.e., active (aSOC), slow (sSOC), and 
passive (pSOC) soil organic carbon pools). Each of the carbon pools 
is simulated in 20 layers to a maximum depth of 8.4 m. The state of 
different carbon pools (i.e., carbon stocks) can be expressed as:

where each of the seven block elements (i.e., xi(t)) of X(t) has 20 
elements to represent the 20 soil layers. In total, CLM5 simulates 
carbon transfer among 140 pools. Consequently, there are 140 di-
mensions for vector B of carbon input allocation, matrix K of sub-
strate decomposability, matrix A of carbon transfer from one carbon 
pool to another, matrix �(t) of environmental modifiers, and matrix 
V(t) of vertical transport. Plant carbon input (I(t)) is a scalar. In this 
study, parameters (Table S1) that generate the above elements in the 
matrix equation will be optimized by the PRODA approach.

Specifically, I(t) is allocated to different litter pools in different 
layers along the soil profile via the allocation vector B. Organic car-
bon in pool vector X(t) is decomposed following first-order kinetics 
as described by matrix K:

(1)NSE = 1 −

∑�
obsi−modi

�2
∑�

obsi−obsi
�2 .

(2)
dX(t)

dt
= BI(t) + A�(t)KX(t) + V(t)X(t).

(3)X(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xCWD(t)

xML(t)

xCL(t)

xLL(t)

xaSOC(t)

xsSOC(t)

xpSOC(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kCWD

kML

kCL

kLL

kaSOC

ksSOC

kpSOC

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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6 of 19  |     TAO et al.

where ki is independent from the state of its corresponding substrate 
xi(t). Moreover, we used the environmental modifier (i.e., �(t)) to ac-
count for the effects of environmental conditions on the decompo-
sition processes. �(t) is calculated from functions of soil temperature 
(�T ), soil water potential (�W), nitrogen and oxygen availability (�N−O), 
and soil depth (�D).

Organic carbon from any carbon pool is further partitioned by 
either microbial or non-microbial processes between a receiver car-
bon pool and CO2 released to the atmosphere. All these processes 
can be summarized in the A matrix:

where all the block elements in the A matrix (ai,j) are diagonal matrices 
with the dimension of 20. aij represents the carbon transfer fraction 
from the donor (j) pool to the recipient (i) pool (see carbon transfer 
flows in Figure  1). Note that CLM5 does not differentiate carbon 
transfers mediated by microbial processes from those mediated by 
non-microbial processes (e.g., organo-mineral interactions). Thus, ai,j in 
Equation 5 are integrative values reflecting carbon transfers contrib-
uted by both microbial and non-microbial processes.

The transport matrix V of CLM5 is a tridiagonal matrix that de-
scribes vertical carbon movement between adjacent soil layers 
within the same carbon pool via bioturbation and cryoturbation. 
At steady state, the analytical solution of SOC stock by CLM5 was 
calculated as Xsteady state =

[
A�(t)K+V(t)

]−1[
− BI(t)

]
, where the over-

bars indicate the mean values of related matrices (�(t) and V(t)) and 
scalar (I(t)) over the period of forcing data. The matrix representation 
for process-based soil carbon cycle models has been described in 
detail by Huang et al. (2018), Lu et al. (2020), and Luo et al. (2022).

2.3  |  Structure of COMPAS model

COMPAS explicitly represents the microbial-driven carbon par-
titions in soil carbon cycle simulations. In addition to applying 
Michaelis–Menten kinetics in representing organic matter assimila-
tion and decomposition, COMPAS differentiates soil organic carbon 
into field-measurable components, such as microbial biomass, extra-
cellular enzyme, dissolved organic carbon, and mineral-associated 
organic carbon. Thus, we choose COMPAS as the representative 
model based on the microbe-centered paradigm.

Specifically, COMPAS follows the same structure proposed by 
Allison et al.  (2010) for SOC dynamics, which is further embedded 
within the structure for 20-layered vertical soil profiles. The de-
scription of vertical layers was adopted from CLM5. Organic carbon 
dynamics represented by COMPAS can be expressed by the same 

matrix framework as shown in Equation 2 (Table S2). Yet, COMPAS 
structurally differs from CLM5 in classifying soil carbon pools, ex-
pressing substrate decomposition, and explicitly describing micro-
bial partitioning processes in carbon transfer (Table 1 and Figure 1).

Equation  2 describes COMPAS with 160 dimensions to repre-
sent eight pools in each of the 20 soil layers. Vector X(t) has eight 
block elements to represent four litter carbon pools (indicated by 
subscripts CWD, ML, CL, and LL) and four soil organic carbon pools 
(i.e., dissolved organic carbon (DOC), mineral-associated soil organic 
carbon (mSOC), microbial biomass (MIC), and extracellular enzymes 
(ENZ)):

Each of the eight block elements (i.e., xi(t)) of X(t) has 20 ele-
ments to represent the 20 soil layers. Similarly, there are 160 di-
mensions for vector B, matrix K, matrix A, matrix �(t), and matrix 
V(t). Plant carbon input (I(t)) is still a scalar as in CLM5. Parameters 
(Table S2) that generate the above elements in the matrix equation 
will be optimized by the PRODA approach.

Different from CLM5, organic carbon pools in vector X(t) of 
COMPAS can be transferred to recipient pools either through mi-
crobial- or enzyme-mediated kinetics, or without going through mi-
crobial metabolism. These transfers are described by the baseline 
decomposition matrix K:

While all the litter organic carbon pools and two mineral-soil 
organic carbon pools (i.e., MIC and ENZ) are decomposed follow-
ing first-order kinetics with constant baseline decomposition rates, 
the baseline decomposition rates of DOC and mSOC are functions 
of carbon pool states. Specifically, the baseline decomposition rate 
of DOC (i.e., the baseline rate of microbial assimilation of DOC) is: 

kDOC

(
xDOC, xMIC

)
=

vmax,assimxMIC

Km,assim� + xDOC

; the baseline decomposition rate of 
mSOC is: kmSOC

(
xmSOC, xENZ

)
=

vmax,decomxENZ

Km,decom� + xmSOC

. Parameters vmax,assim and 
vmax,decom represent the maximum DOC assimilation and mSOC 

(5)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

aCL,CWD 0 −1 0 0 0 0

aLL,CWD 0 0 −1 0 0 0

0 aaSOC,ML aaSOC,CL 0 −1 aaSOC,sSOC aaSOC,pSOC

0 0 0 asSOC,LL asSOC,aSOC −1 0

0 0 0 0 apSOC,aSOC apSOC,sSOC −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)X(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xCWD(t)

xML(t)

xCL(t)

xLL(t)

xDOC(t)

xMIC(t)

xENZ(t)

xmSOC(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)K = diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kCWD

kML

kCL

kLL

kDOC

�
xDOC, xMIC

�

kMIC

kENZ

kmSOC

�
xmSOC, xENZ

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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    |  7 of 19TAO et al.

decomposition rates, respectively. Km,assim and Km,decom are the 
Michaelis constants for DOC assimilation and mSOC decomposition, 
respectively.

The COMPAS model also explicitly differentiates carbon transfers 
by microbial processes from those in non-microbial processes. The de-
composed organic carbon is either partitioned by microorganisms to 
microbial biomass growth versus respiration (i.e., according to the mi-
crobial CUE), or alternatively, transferred to other carbon pools with a 
fraction that is not mediated by microbial processes (i.e., non-microbial 
carbon transfer). All these processes are summarized in the A matrix:

Because DOC is always assimilated by the microbes with re-
lease of CO2 (Figure 1), the microbial CUE for DOC (�DOC) equals 
aMIC,DOC . In contrast, organic carbon in the metabolic, cellulose, 
and lignin litter pools is decomposed by microbes following first-
order kinetics to generate CO2 and grow biomass while a fraction 
of litter organic carbon is broken down without going through 
microbial metabolism and, thus, directly transferred to DOC or 
mSOC. In this case, the microbial CUE for the three litter carbon 
pools can still be expressed as: �ML =

aMIC,ML

1− aDOC,ML

, �CL =
aMIC,CL

1− aDOC,CL

, and 
�LL =

aMIC,LL

1− amSOC,LL

, respectively.
COMPAS applies the same approach to simulate carbon input 

allocation (B), environmental modifier (i.e., �(t)) and transport matrix 
V as that used in CLM5. It should be noted that while COMPAS and 
CLM5 use the same scheme to simulate B, �(t), and V, parameter val-
ues (Tables S1 and S2) that were used to calculate the above ele-
ments in the matrix equation were estimated independently by the 
PRODA approach.

In calculating the steady state of different carbon pools by 
COMPAS, Equation  2 can be separated into two equations: one 
for litter carbon cycle and transport, and the other for mineral-
soil SOC cycle, because there is no carbon transfer from mineral-
soil carbon pools to litter carbon pools (i.e., alitter pool,soil pool = 0 
in the A matrix). Since A, K, �(t), and V are all independent from 
litter carbon pool states (i.e., X), the analytical solution of lit-
ter carbon stock at the steady state (SS) can be calculated as 
X litter,SS =

[
Alitter�(t)litterK litter+V(t)litter

]−1[
− BlitterI(t)litter

]
. For the 

soil organic carbon pools, the related K matrix is carbon pool 
state-dependent (see Equation  7). We assumed that there is no 
vertical transport for mineral-soil organic carbon pools such that 
litter is added to different soil layers and transported vertically, 
and then, it is transferred to soil pools that are immobile in that 
layer. According to a method reported by Georgiou et al.  (2017), 
the steady-state solutions for soil organic carbon pools are:

where uSi is the carbon input from litter pools (Lj) to a mineral-soil carbon 
pool (Si, see Extended Data Figure 3 for corresponding carbon flows 
for each mineral-soil carbon pool) and is expressed as 

∑
Lj

�
aSi ,Lj

kLj
�xLj

�
. 

Note that all the elements with bold font indicate vectors of the corre-
sponding variables or parameters for the 20 soil layers. All the multipli-
cations shown in Equation 9 are element-wise operations.

2.4  |  Inputs and environmental conditions

For both CLM5 and COMPAS, the carbon input for the litter carbon pools 
(i.e., net primary productivity, NPP) and environmental forcings (e.g., soil 
temperature and moisture) are from 20 years of monthly model outputs 
(Table S3) by CLM5 at the steady state using a preindustrial forcing (i.e., 
I1850Clm50Bgc, from year 1901 to 1920) at 0.5-degree resolution. 
We used the 20-year annual mean values of different components in 
Equation 2 to calculate total soil organic carbon stock at steady state.

2.5  |  Customary parameter values for model 
simulations

We compared the model simulation results of CLM5 and COMPAS 
by (1) applying customary parameter values and (2) the parameter 
values optimized by the PRODA approach. For CLM5, we applied the 
parameter values used in its current version (Lawrence et al., 2019). 
In the default scheme, most of the selected 21 parameters of CLM5 
are constants across the globe, except two carbon transfers that de-
pend on sand content and the parameter controlling plant carbon 
input allocation that depends on plant functional types (Table S1). 
For COMPAS, it is a newly constructed model and thus does not 
have well-tuned parametrization for global simulation. We applied 
the global mean values of the selected 23 parameters after site-level 
data assimilation as the customary parameter values for COMPAS to 
drive the global simulation.

2.6  |  PROcess-guided deep learning and 
DAta-driven modeling (PRODA)

The PRODA approach integrates big data with Bayesian data assimila-
tion and deep learning to optimize soil carbon cycle simulation with 
process-based models (Tao & Luo, 2022). We used the PRODA ap-
proach to optimize both CLM5 and COMPAS at the global scale. Data 

(8)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

aCL,CWD 0 −1 0 0 0 0 0

aLL,CWD 0 0 −1 0 0 0 0

0 aDOC,ML aDOC,CL 0 −1 aDOC,MIC 1 aDOC,mSOC

0 aMIC,ML aMIC,CL aMIC,LL aMIC,DOC −1 0 0

0 0 0 0 0 aENZ,MIC −1 0

0 0 0 amSOC,LL 0 amSOC,MIC 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

Xsoil,SS =

⎡⎢⎢⎢⎢⎢⎢⎣

xDOC,SS

xMIC,SS

xENZ,SS

xmSOC,SS

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kMIC�Km,assim�xMIC,SS−uMICKm,assim��
ηDOCvmax,assim−kMIC

�
�xMIC,SS+uMIC

uMIC+ηDOC

�
umSOC+uDOC

�
�
1−ηDOC

�
kMIC�

aENZ,MICkMICxMIC,SS

kENZ�
umSOC+amSOC,MICkMIC�xMIC,SS

�
Km,decom��

vmax,decom�xENZ,SS−amSOC,MICkMIC�xMIC,SS−umSOC

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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assimilation was first applied at each SOC profile to estimate param-
eter values. Twenty-one parameters for CLM5 and 23 parameters for 
COMPAS were optimized for each SOC profile so that the process-
based model simulations can best fit local observations. Because we 
conducted data assimilation independently at each observation site, 
optimized values of the same parameter vary across space. We further 
used a neural network to generalize those estimated parameter values 
after the site-level data assimilation to the global scale. The global pa-
rameter maps predicted by the neural network were then used in the 
process-based models to simulate global SOC storage and retrieve the 
spatial patterns of related model components across the globe.

We conducted Bayesian data assimilation by using the MCMC 
method for each of the SOC profiles to estimate the parameter val-
ues of the process-based models that best-fit model simulations with 
SOC observations. Because the soil profile data collected from field 
measurements of soil organic carbon include all components of or-
ganic matter (e.g., microbial biomass carbon), we used the sum of 
modeled mineral-soil carbon pools classified in CLM5 and COMPAS 
for each layer to be compared with soil profile data at the corre-
sponding sampling layer.

Specifically, at site-level data assimilation, for each SOC profile, 
we applied an adaptive Metropolis algorithm (Haario et al., 2001) to 
generate the posterior distributions of a total of 21 parameters of 
CLM5 (Table  S1) and 23 parameters of COMPAS (Table  S2) related 
to six model components with two phases of simulations (i.e., a test 
run and a formal run). We first conducted a test run assuming uniform 
distributions for each of the preselected parameters as the proposal 
distributions (i.e., prior knowledge). The prior ranges of the uniform 
distributions for each parameter are shown in Tables S1 and S2. The 
proposal distributions continuously generated a set of parameter val-
ues for the process-based models to simulate SOC storage. We then 
evaluated whether the proposed parameter values should be accepted 
or not by comparing their model simulation results with SOC observa-
tions. In the formal run, we used the accepted sets of parameter values 
obtained in the test run as the proposal distributions and assumed 
that all the target parameters are multivariate Gaussian distributed. 
We proposed new sets of parameter values and evaluated them to be 
accepted or not following the same rule in the test run. Unlike the test 
run, the proposal distributions in the formal run were continuously ad-
justed according to the newly accepted sets of parameters.

We set 20,000 iterations for the test run and 50,000 iterations 
for the formal run. Eventually, we controlled the acceptance ratio 
(i.e., the ratio of accepted sets of parameters out of the total num-
ber of iterations) of the formal run between 10% and 50%. We set 
the burn-in coefficient as 50%, where the first half of the accepted 
parameter values in the formal run was discarded, and the second 
half was used to generate the posterior distributions of parameters. 
We calculated the mean values of the posterior distributions of pa-
rameters as the final estimates of parameter values. We ran three 
independent series of MCMC for each SOC profile and calculated 
the G-R statistic to test the convergence of data assimilation results. 
The mean G-R values of the target parameters were further calcu-
lated as the holistic performance of MCMC for each SOC profile. 

The mathematical foundations of Bayesian data assimilation and 
technical details of the MCMC method were documented by Tao 
et al. (2020).

It should be noted that the data assimilation was conducted under 
the assumption that SOC profiles are at steady state (i.e., dX(t)

dt
= 0). 

This assumption makes data assimilation computationally more fea-
sible than that under non-steady state (see the non-steady-state data 
assimilation in Zhou et al.  (2013) and Zhou et al.  (2015)). While soil 
carbon stocks in some ecosystems (e.g., agricultural soils) may not 
be at the steady state because of the concurrent climate change and 
human activities, previous research demonstrated that such disequi-
librium component of the transient carbon cycle dynamics, especially 
in SOC pools, is minor in comparison with the amount of SOC storage 
that was developed over thousands of years (Lu et al., 2018).

We included parameters related to both non-microbial and mi-
crobial processes (Tables S1 and S2) in the site-level data assimilation 
and the following global optimization with the PRODA approach. 
While we acknowledge that biological processes (and thus their re-
lated parameter values) may change in response to external distur-
bance, in this study, we focus on the long-term spatial patterns of 
vertically distributed SOC under the steady-state assumption. We 
used multi-year mean values of a preindustrial forcing (no climate 
change happened yet) to simulate SOC storage. Therefore, the opti-
mized parameter values should be regarded as long-term averages.

Moreover, we designed a parameter recovery experiment to 
confirm whether parameters related to microbial processes (e.g., the 
Michaelis–Menten constants) can be recovered from data assimilation 
under the steady-state assumption. We randomly chose 200 sites 
across the world for COMPAS and used prescribed parameter values 
with different across-site variability to generate a set of synthetic SOC 
data. The synthetic vertical SOC profile (20 datapoints at the 20 pre-
scribed soil layers in COMPAS) was further used in the MCMC data 
assimilation to retrieve optimized parameter values. We found a satis-
factory agreement between the retrieved parameter values and their 
prescribed values (e.g., “mm_const_assim” and “mm_const_decom” 
in Figure S3). For parameters whose prescribed values did not show 
much across-site variability (e.g., “tau4s1” and “pl1s1” in Figure S3), 
MCMC method also refrained from assigning them extra variation 
across sites. The results of the recovery experiment supported the ef-
ficacy of using the MCMC method to retrieve optimized parameter 
values from observations under the steady-state assumption.

We trained a fully connected multilayer neural network to predict 
the site-level parameter values estimated from data assimilation with 
a suite of 60 environmental variables (Table S4). We chose variables 
that represent the climatic, vegetation, edaphic, and geographic con-
ditions at different sites because they are conventionally regarded as 
the driving factors that regulate the formation and stabilization of SOC 
(Jackson et al., 2017). Parameters in process-based models quantify 
the strength of different soil carbon cycle processes and therefore 
should also have relationships with these environmental variables 
(Luo & Schuur, 2020). To achieve a better training effectiveness, we 
first normalized all the environmental variables and parameters to the 
interval of [0, 1] according to their maximum and minimum values. 
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    |  9 of 19TAO et al.

We then conducted a set of pre-experiments to determine the best 
configuration of the neural network. The neural network used in the 
final training consisted of four hidden layers. The node numbers for 
each hidden layer were 256, 512, 512, and 256, respectively. We 
used a rectified linear unit (ReLU) as the activation function and a 
gradient descent optimization algorithm (adadelta) as the optimizer. 
The loss function was designed as the multiplication of L1 (i.e., ratio 
loss (RL): RL =

∑N

i=1

����
parai,true − parai,pred

parai,true

����
N

) and L2 (i.e., mean squared error (MSE): 

MSE =

∑N

i=1(parai,true−parai,pred)
2

N
) errors, where parai,true is the ith parameter value 

optimized in the site-level data assimilation, parai,pred is the ith param-
eter predicted by the neural network, and N is the total number of 
parameters of the process-based models to be predicted by the neural 
network (N = training size × 23 for COMPAS and training size × 21 for 
CLM5). While both L1 and L2 are additive loss functions, we decided 
to use their multiplicative composite (i.e., L1 × L2) as the loss function 
because training with either L1 or L2 loss alone did not yield sufficient 
prediction accuracy. The batch size for each iteration of optimization 
was 32. We set a maximum of 6000 epochs to train the neural net-
work and selected the model with the lowest validation loss as the 
final training result. To avoid overfitting in training the neural network, 
we set a drop-out ratio of 20% for each of the hidden layers.

2.7  |  Global maps of SOC, residence time, and 
related model components

Global maps of parameters predicted by the best-guess neural net-
work using the gridded environmental variables were applied to the 
two process-based models to generate global maps of SOC storage 
and its related components (i.e., 57,267 sets of site-level data as-
similation results for COMPAS and 62,931 for CLM5). In addition, 
we conducted bootstrapping experiments to quantify the simulation 
uncertainties of CLM5 and COMPAS after being optimized by the 
PRODA approach. The original SOC database used by CLM5 and 
COMPAS was sampled with replacement 200 times and was used to 
train and validate the neural network. Following a common practice 
in neural network training, for each bootstrapping, 90% of the data 
were used as training data, and the remaining 10% were used for val-
idation. The predicted parameter values after neural network train-
ing were then applied to CLM5 and COMPAS to simulate SOC stock 
and its related model components. The uncertainty maps of SOC 
storage and its related components are shown in Figures S4 and S5.

It should be noted that uncertainties shown in the global gen-
eralization by the PRODA approach only quantify the variation of 
trained neural networks in predicting site-level data assimilation 
results (i.e., the mean value of parameters' posterior distribution). 
Limited by its optimization algorithm (Tao & Luo, 2022), PRODA is 
not able to consider propagating the uncertainties in parameters' 
posterior distribution in the site-level data assimilation to the global 
scale. Developing the next-generation data assimilation approach 
that can directly integrate process-based models into deep learning 
algorithms will be the solution to retrieve process understanding and 
simultaneously address parameter uncertainties in optimization.

We retrieved the system-level carbon transfer efficiency (CTE), 
plant carbon inputs, allocation of input carbon to different soil lay-
ers, substrate decomposability, environmental modifications, and 
vertical transport from the optimized parameters of COMPAS and 
CLM5 (Tables S1 and S2) via the PRODA approach. All the six model 
components investigated in this study are ensembles of processes 
that were represented by different parameters in the process-based 
model. Note that all the system-level components discussed in this 
study are for the soil system that integrates both litter organic car-
bon and mineral-soil organic carbon.

Specifically, we calculated the system-level carbon transfer effi-
ciency as the sum of carbon transfer coefficients along each carbon 
transformation pathway (i.e., aij in Equations 5 and 8) weighted by 
the carbon fluxes over all the pathways in the soil system:

where aij represents the carbon transfer fraction from the donor 
pool ( j) to the recipient pool (i); xj,z is the carbon pool size at depth 
z (g C m−3); kj is the depth-independent baseline decomposition 
rate (yr−1) of the corresponding carbon pool; �z represents the 
environmental modifier at depth z; and Δz is the thickness of 
zth soil layer. Note that CTE along the carbon transfer pathway 
from donor pool j to recipient pool i  (i.e., aij) is weighted by the 
flux size from donor pool j (i.e., 

∑
z

xj,zkj�zΔz ), which measures the 
amount of decomposed carbon along the j to i transfer pathway, 
normalized by the total flux in the soil system (i.e., 

∑
j

∑
z

xj,zkj�zΔz). 
A higher CTE value indicates a larger amount of carbon remained 
in the recipient soil pool after organic carbon is decomposed or 
transformed by biological and/or chemical and physical reactions, 
which, by definition, also associates with less CO2 released back 
to the atmosphere. It should be noted that this weighted average 
transfer efficiency is defined differently from the system CUE in 
Tao et al.  (2023), which was instead calculated as ratio between 
the sum of carbon fluxes entering the microbial pool and the sum 
of carbon fluxes leaving the donor pools.

The baseline decomposition rate (unit: year−1) expresses the rate 
of organic carbon decomposition at optimal soil temperature and 
water conditions. We calculated the system-level baseline decom-
position rate (Ksystem, unit: year−1) by weighting the baseline decom-
position rate of SOC pools by their carbon pool sizes:

Similarly, we weighted the vertical transport rate (year−1) and 
environmental modifiers (unitless) at different soil depths (z) by 
their corresponding sizes of SOC stock (i.e., xz, with unit of g C 
m−2):

(10)CTEsystem =

�
ij

aij

∑
z

xj,zkj�zΔz

∑
j

∑
z

xj,zkj�zΔz

(11)Ksystem =

�
i

ki
xi∑
i

xi

(12)
Vsystem =

�
z

⎛
⎜⎜⎝
vz

xz∑
z

xz

⎞
⎟⎟⎠
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Carbon input is distributed vertically according to the distribu-
tion of root biomass at different soil depths (Jackson et al., 1996). 
Therefore, to quantify how effectively the input allocation process 
distributes litterfall and root exudation to different soil depths, we 
calculated the fraction of carbon input allocated to soil layers below 
5 cm as the system-level index for plant carbon input allocation:

where Yz is the cumulative fraction of input carbon at soil depth of Dz; n 
is the number of soil layers. A larger system-level input allocation index 
indicates that more carbon from litterfall and root exudation will be 
allocated to deeper soils. This index differs between models because 
the parameters describing the vertical distribution of carbon inputs are 
optimized independently in the two models, even if we used the sim-
ulated total litterfall (equivalent to NPP) in CLM5 as the plant carbon 
input for both models.

3  |  RESULTS

Process-based models with different structures and customary pa-
rameter values show diverging results in representing global SOC 
storage and spatial patterns. With its customary parameter values, 
CLM5 simulates much more SOC in the boreal regions than in the 
tropics. In East Siberia and Alaska, SOC storage is more than 50 kg 
C m−2 for the first meter, whereas in the Amazon and Congo ba-
sins and Indonesia, the average SOC storage is less than 10 kg C 

m−2 (Figure 2a,c). As COMPAS does not have well-tuned parameter 
values at the global scale, we used the global mean values of the 
selected parameters after site-level data assimilation as the cus-
tomary parameter values. With such customary parameterization, 
COMPAS simulates distinctively different SOC patterns from CLM5 
across latitudes. Tropical regions with the highest carbon input are 
simulated to store the largest amount of SOC. The average SOC 
storage declines from more than 20 kg C m−2 in Amazon, Congo, and 
Indonesia to less than 5 kg C m−2 in boreal regions (Figure 2b,c). The 
correlation between the simulated spatial patterns of SOC by CLM5 
and COMPAS is −0.026 (logarithmically transformed SOC values, 
df = 45,213, p < .0001). Despite the contrasting spatial patterns, 
both models reasonably estimate the total global SOC storage with 
their customary parameter values. CLM5 and COMPAS simulate 
1281 Pg C and 1308 Pg C preserved as SOC for the first-meter soils 
across the globe, respectively. For comparison, as two commonly 
used observation-based statistical products, HWSD (FAO/IIASA/
ISRIC/ISSCAS/JRC, 2012) and WISE (Batjes, 2016) estimate 1260 Pg 
C and 1408 Pg C for the global first-meter SOC storage, respectively.

The two structurally different models simulate similar SOC stor-
age and spatial patterns after being constrained by the same SOC 
data using the PRODA approach. At the site level, we found that 
posterior distributions of selected parameters after data assimilation 
could differ greatly from their customary values (Figure S6) and from 
site to site. We further used PRODA to generalize the emerging spa-
tial heterogeneity of optimized parameter values in site-level data 
assimilation to the global scale and found similar SOC simulations 
by CLM5 and COMPAS. Based on the best-guess neural network 
predictions that were trained by all available site-level data assimi-
lation results (see Section 2.7 for details), PRODA-optimized CLM5 
explains 57% (median 56%, one-sigma confidence interval 53%–57% 
in 200-time bootstrapping) of the spatial variations in SOC at mea-
sured soil depths across the globe (Figure S7a). The predictive per-
formance of COMPAS after PRODA optimization is similar to that of 

(13)�system =
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F I G U R E  2 Diverging SOC simulation 
by structurally different models with 
customary parameter values. (a) SOC 
estimated by CLM model, (b) SOC 
estimated by COMPAS, (c) latitudinal 
variation in estimated SOC by the two 
models.
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CLM5, explaining 55% (median 53%, one-sigma confidence interval 
52.5%–54% in 200-time bootstrapping) of the spatial variations in 
global SOC observations (Figure S7b).

In simulating global SOC patterns, CLM5 continues to simulate 
higher SOC storage in the boreal regions than in the tropics. In ad-
dition to higher SOC in East Siberian and Alaska, PRODA-optimized 
CLM5 also identifies western Siberian lowlands as areas holding 
high SOC storage (Figure 3a,c). Meanwhile, after being constrained 
by observations, the simulated SOC storage in tropical regions in-
creased to an average value of more than 10 kg C m−2 (Figure 3b,c). 
Simulation results by COMPAS after PRODA optimization now fol-
low a pattern similar to that by CLM5. The correlation between sim-
ulations by COMPAS and CLM5 is 0.51 (logarithmically transformed 
SOC values, df = 45,213, p < .0001). Notably, differences still exist 
in simulating sub-continental patterns by these two models. While 
both models simulate the highest SOC storage in western Siberian 
lowlands, Alaska, and Canadian Shield, COMPAS simulates more 
SOC in the tropics but less SOC in East Siberian than CLM5. The 
total SOC storage simulated by COMPAS is slightly higher than that 
by CLM5. Globally, the total SOC storages in the top 1 m of soil esti-
mated by PRODA-optimized CLM5 and COMPAS are 1469 Pg C and 
1507 Pg C, respectively.

Simulations of key components related to SOC storage also 
converge after the two structurally different models are con-
strained by the same set of SOC data (Figure 4). We assessed the 
spatial patterns of six components simulated by the two models: 
carbon transfer efficiency, baseline decomposition, environmental 
modifier, carbon input allocation, vertical transport rate, and plant 
carbon input.

The carbon transfer efficiency quantifies the ratio of decom-
posed carbon being transferred from one carbon pool to another. 
CLM5 and COMPAS represent the carbon transfer efficiency dif-
ferently (Figure  1). COMPAS explicitly describes microbial CUE 
that partitions the metabolized organic carbon into microbial 
biomass accumulation versus respiration and the non-microbial 

carbon transfer related to the transformation of carbon from one 
carbon pool to another via organo-mineral interactions (Figure 1b). 
In contrast, CLM5 fuses microbial CUE and non-microbial carbon 
transfer in its structure, such that the related parameters do not 
differentiate these two processes but integrate their effects in 
simulations (Figure 1a). Thus, it is not surprising that the values of 
the carbon transfer efficiencies are in general different between 
the two models, with higher values predicted by CLM5 compared 
with COMPAS (Figure 4c). Yet, despite the difference in structure, 
CLM5 and COMPAS simulate similar spatial patterns of system-
level carbon transfer efficiency (Figure  4c, Pearson correlation 
coefficient = 0.52, df = 45,228, p < .001) after being constrained 
by the same observed SOC dataset. Both models show higher 
carbon transfer efficiency in boreal regions than in the tropics 
(Figure 4a,b), which indicates that in boreal regions, more carbon 
is maintained in the soil system after SOC is decomposed or trans-
formed by biological and/or chemical and physical reactions in-
stead of being released back to the atmosphere as CO2.

The rate of SOC decomposition is determined by the substrate 
decomposability (as indicated by the baseline decomposition) and 
modified by surrounding environmental factors (i.e., soil tempera-
ture and moisture). A high baseline decomposition rate indicates 
the organic substrate is chemically and physically more accessi-
ble to soil microorganisms (e.g., simpler chemical compounds or 
weaker interactions with the soil mineral matrix). In contrast, a 
lower environmental modifier value indicates that SOC decompo-
sition is more restricted by either low temperature or too much 
or little soil water. CLM5 and COMPAS assume first-order and 
Michaelis–Menten kinetics in representing SOC decomposition, 
respectively. Notwithstanding their different assumptions on the 
decomposition kinetics, PRODA-optimized CLM5 and COMPAS 
agree on the highest baseline decomposition rates and the low-
est environmental modifier values in boreal regions across the 
globe (Figure  4d–i). The correlation coefficients between the 
simulations by the two models are 0.55 (df = 45,228, p < .001) for 

F I G U R E  3 Converging SOC simulation 
by structurally different models after 
data-model fusion by the PRODA 
approach. (a) SOC estimated by CLM 
model, (b) SOC estimated by COMPAS, 
(c) latitudinal variation in estimated SOC 
by the two models. Uncertainty maps of 
SOC storage simulations with CLM5 and 
COMPAS in a 200-time bootstrapping 
experiment are shown in Figures S4 and 
S5.
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F I G U R E  4 Spatial patterns of different model components retrieved by CLM (left column) and COMPAS (central column) models using 
the PRODA approach. The right column shows comparisons between the model components retrieved from the two models. The model 
components were: (a–c) carbon transfer efficiency (CTEsystem, see Equation 10), (d–f) baseline decomposition (Ksystem, see Equation 11), (g–i) 
environmental modifier (�system, see Equation 13), (j–l) carbon input allocation (Bsystem, see Equation 14), (m–o) vertical transport rate (Vsystem, 
see Equation 12), and (p–r) plant carbon input (same for both models). Uncertainty maps of these components with CLM5 and COMPAS in a 
200-time bootstrapping experiment are shown in Figures S4 and S5.
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    |  13 of 19TAO et al.

baseline decomposition and 0.80 (df = 45,228, p < .001) for the en-
vironmental modifier.

However, not all components we investigated show conver-
gence after data assimilation. Vertical transport quantifies the rate 
of organic carbon moving from the surface to deeper soil layers. The 
plant carbon allocation represents the vertical distribution of car-
bon inputs. While CLM5 and COMPAS adopt identical mathematical 
functions to describe these two processes (except vertical transport 
of mineral-soil carbon), no agreement was reached on simulated 
spatial patterns after the related parameters of the two models 
were optimized by the PRODA approach (Figure 4j–o). Moreover, it 
should be noted that the retrieved model components using CLM5 
and COMPAS are usually far from 1:1 lines even when they are well 
correlated. While the two models agree well on the magnitude of 
the simulated environmental modifier (Figure  4i), the linear CLM5 
simulates higher carbon transfer efficiency values (Figure  4c) but 
lower baseline decomposition rates (Figure  4f) than the nonlinear 
COMPAS. This pattern may occur because parameters related to 
carbon transfer efficiency and baseline decomposition compensate 
each other in CLM5 and COMPAS for a similar SOC storage simula-
tion. Even though we used the same plant carbon input (i.e., the total 
amount of carbon from plant to litter) from CESM2 outputs in sim-
ulating SOC storage by the two models (Figure 4p–r), COMPAS and 
CLM5 simulated differently how carbon transfers from litter to min-
eral soils (Figure 1), as quantified by the ratio between the amount 
of carbon transferred from litter to mineral soils and the total car-
bon input. COMPAS simulates larger amounts of litter carbon to be 
transferred to mineral soils than CLM5 (Figure S8), which requires 
higher baseline decomposition rates in COMAS than CLM5 to reach 
similar simulated SOC storage, as shown in Figure 4d–f.

The nonlinear decomposition kinetics in COMPAS can be ap-
proximated as first-order kinetics with respect to both donor and 
receiver carbon pools after being constrained by observed SOC 
data. Compared with the linear first-order kinetics used in CLM5, 
COMPAS specifies SOC decomposition and DOC assimilation as 
nonlinear Michaelis–Menten kinetics. Thus, both the catalyst (i.e., 
microbes for DOC assimilation and enzyme for mSOC decomposi-
tion) and the substrate concentration (i.e., DOC for DOC assimilation 
and mSOC for mSOC decomposition) regulate substrate decompo-
sition. Mathematically, when the Michaelis constants (i.e., Km,decom 
and Km,assim) are much larger (e.g., 100 times larger) than their corre-
sponding substrate concentrations and the catalyst (i.e., DOC in as-
similation and MIC in decomposition) concentrations remain stable, 
the Michaelis–Menten kinetics can be approximated by first-order 
kinetics with respect to DOC in assimilation and mSOC in decom-
position. After data assimilation at each SOC profile using COMPAS, 
we found that both Km,decom and Km,assim in the Michaelis–Menten 
equation are more than 100 times that of their substrate concentra-
tions (i.e., SOC and DOC concentrations) for most of the soil profiles 
(Figure 5). Thus, the nonlinear kinetics for enzyme-based mSOC de-
composition and microbe-based DOC assimilation can be approxi-
mated by first-order kinetics with respect to mSOC and DOC after 
COMPAS is constrained by globally distributed SOC vertical profiles. 

While losing the nonlinear character of the donor pool effect, these 
kinetics laws still retain the effect of microbial biomass or enzyme 
carbon, resulting in multiplicative kinetics.

4 | DISCUSSION

4.1  |  Data assimilation enables converged SOC 
simulations by structurally different models

The divergent simulations by process-based models with differ-
ent structures and customary parameter values reflect large un-
certainties in the current understanding of soil carbon dynamics 
with different theories and assumptions. In this study, CLM5 
and COMPAS structurally differ in classifying soil carbon pools, 
quantifying SOC decomposition kinetics, and representing car-
bon transfer processes. The structural differences between these 
two models contributed to the contrasting SOC spatial patterns 
across the globe (Figure  2). Uncertainties arise also from poorly 
constrained parameters. Model parameters quantify the strength 
or represent the properties of different processes in regulating 
the soil carbon cycle (Luo & Schuur,  2020). When they are not 
well constrained, differences in parameter values across models 
can cause additional large simulation uncertainty. Previous stud-
ies have demonstrated that models sharing the same first-order 
kinetics for SOC decomposition estimated contrasting soil carbon 
residence time (Wei et  al., 2022; Zhou et  al., 2018) and age (He 
et al., 2016; Shi et al., 2020) due to their different choices of pa-
rameter values. These differences resulted in large uncertainties 
in simulating global SOC storage (Todd-Brown et al., 2013). While 
all these simulations are, to some degree, plausible under given 
assumptions and theories, we need to identify the most probable 

F I G U R E  5 Relationship between Michaelis–Menten constants 
and their corresponding substrate content in COMPAS after being 
constrained by observational SOC profiles. For decomposition, 
“Substrate” is mineral-associated organic carbon (mSOC) and 
Km = Km,decom. For assimilation, “Substrate” is dissolved organic 
carbon (DOC) and Km = Km,assim.
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ones to better understand how the soil carbon cycle responds to 
a changing climate.

Our results show that the vast inter-model uncertainty in simu-
lating global SOC storage is mainly due to the lack of common ob-
servational data constraints in major processes. Regardless of their 
difference in structure, our results show well-converged global SOC 
simulations by CLM5 and COMPAS after being optimized by the 
PRODA approach with the same soil carbon observations. The con-
vergence in SOC simulations arises from the fact that the PRODA 
approach effectively constrains the spatial patterns of parameters of 
process-based models by the common observational data. Parameters 
in CLM5 and COMPAS are both conceptually and functionally dif-
ferent from each other due to their structural dissimilarity (e.g., the 
turnover time values for conceptually different carbon pools and the 
carbon transfer coefficients in CLM5 and COMPAS; see Figure 1 and 
Methods for details). However, the spatial distributions of parame-
ters aggregate into six model components defined in the same way, 
which exhibit some agreement between the models. Carbon transfer 
efficiency, baseline decomposition rate, and environmental modifiers 
have been identified as determinants in explaining the spatial patterns 
of global SOC storage by process-based models (Tao et al., 2023) (see 
also Figure S9). In this study, these components show converged spa-
tial patterns despite structurally different models after being informed 
by observations. In contrast, other model components that are less 
important for determining global SOC storage (e.g., carbon input al-
location and vertical transport) did not converge in the simulations by 
CLM5 and COMPAS. This difference is probably caused by insufficient 
information in the data to constrain parameters underlying these spe-
cific components (more discussion on this issue in Section 4.3).

The converged simulations of SOC and its related components 
demonstrate the fact that although it is impossible to include all the 
processes in the soil carbon cycle into one process-based model, un-
resolved processes can be well accounted for in model parameter val-
ues at resolved scales after data assimilation (Luo & Schuur, 2020). In 
this study, COMPAS explicitly describes the microbial CUE that rep-
resents the carbon partitioning process in microbial physiology and non-
microbial carbon transfer that relates to other biological, chemical, and 
physical reactions driving organic matter transformations in soils. CLM5, 
however, does not differentiate these two processes in its structure but 
represents them through aggregated carbon transfer coefficients (see 
Methods). After being optimized by the PRODA approach, CLM5 simu-
lates similar spatial patterns of the carbon transfer index with COMPAS 
(Figure  4). Similarly, a previous study reported that a process-based 
model that does not explicitly couple nitrogen-related processes with 
the soil carbon cycle can still well represent nitrogen limitation after its 
parameters were constrained by data (Wang et al., 2022).

4.2  |  Data assimilation identifies most probable 
decomposition kinetics at global scale

Representations of organic carbon decomposition in soils has been 
debated for decades. In this study, we compared two possible SOC 

decomposition kinetics at the global scale, namely a linear first-order 
kinetic model in CLM5 and a nonlinear Michaelis–Menten kinetic 
model in COMPAS. Our data assimilation results suggest that first-
order kinetics may be the simplest and effective mechanism in ex-
plaining global SOC storage and its spatial patterns. After PRODA 
optimization, CLM5 and COMPAS show similar performance in 
explaining the spatial variability of SOC across the globe. A linear 
model such as CLM5 that adequately considers the spatial hetero-
geneity of its parameters can sufficiently capture the variability in 
space simulating the soil carbon cycle. Indeed, notwithstanding its 
simplicity, the linear relationship between the decomposition rate 
and the substrate concentration has been observed from macro-
scopic litter and soil organic carbon decomposition experiments (Cai 
et al., 2018; Luo, 2022; Schädel et al., 2014; Xu et al., 2016; Zhang 
et al., 2008).

Microorganism-centric kinetics (e.g., Michaelis–Menten kinet-
ics) that considers enzymatic depolymerization has been advocated 
in recent years to account for the nonlinearity in organic carbon de-
composition such that the decomposition rate is a function of both 
the substrate and the enzyme concentrations. Nonlinear kinetics can 
help capture the spatial variability of soil carbon dynamics (Wieder 
et al., 2013) and is necessary for understanding lignin decomposition 
(Liao et al., 2022) and priming effects (Wutzler & Reichstein, 2008). In 
this study, our data assimilation results show that, at the global scale, 
nonlinearity in COMPAS does not necessarily lead to more accurate 
quantification of SOC storage than CLM5. In fact, after being informed 
by data constraints, the Michaelis constants in COMPAS were much 
larger than their corresponding substrate concentrations (Figure  5). 
In such a case, the Michaelis–Menten kinetics can be mathematically 
approximated by a linear structure with respect to its corresponding 
substrate, but also including a first-order effect of the receiver pool, 
resulting in a multiplicative kinetics.

It should be noted that diversity in model structures is still nec-
essary for a better understanding of the soil carbon cycle at differ-
ent spatial and temporal scales. Microbial models with nonlinear 
structures can be useful for studying complex carbon dynamics at 
small scales that linear models cannot explain (Liao et  al.,  2022; 
Manzoni & Porporato, 2007). Meanwhile, microbial responses to 
environmental fluctuations are highly nonlinear and can be cap-
tured only by modeling specific microbial processes (Brangarí 
et  al.,  2020). Moreover, models simulating SOC storage with 
different structures can perform differently across subregions, 
suggesting that some structures are more suitable for certain ped-
oclimatic conditions. For example, we have detected different pat-
terns of SOC storage simulated by CLM5 and COMPAS in boreal 
(e.g., East Siberia) and tropical regions (e.g., Amazon and Congo 
Basins), even though the common observational SOC data con-
strained both models. The Michaelis–Menten kinetics investigated 
in this study is only one possibility from an array of theories. How 
other nonlinear kinetics, such as reverse Michaelis–Menten kinet-
ics (Tang & Riley,  2019), perform in simulating SOC at different 
scales in comparison with linear models requires more studies in 
the future.
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4.3  |  More and high-quality data required to 
diminish prediction uncertainty

Uncertainty still exists in predicting SOC storage by structur-
ally different models after PRODA optimization (Figure  S6). The 
PRODA approach used in this study reveals the spatial heteroge-
neity of model parameters after site-level data assimilation. Thus, 
at the global scale, PRODA optimizes about 1.41 million parameter 
values (21 selected parameters for each of the 66,935 vertical 
SOC profiles) for CLM5 and 1.37 million parameter values (23 se-
lected parameters for each of the 59,476 vertical SOC profiles) for 
COMPAS across observational sites. The posterior distributions of 
different parameters showed substantial uncertainties after data 
assimilation at the site level. In an example of data assimilation at 
one site (Figure S6), while a few parameters can be well constrained 
by vertical SOC profile data, resulting in narrower posterior distri-
butions than the priors, more than half of the selected parameters 
had weak identifiability to the observations such that their poste-
rior distribution showed flat shapes within the prior ranges.

The identifiability of different parameters is associated with 
the convergence of their corresponding model components by 
structurally different models and further affects the final global 
SOC simulations (Luo et al., 2009). For parameters well constrained 
by vertical SOC profiles in data assimilation, their corresponding 
model components (e.g., carbon transfer efficiency, baseline de-
composition, and environmental modifiers) also showed similar 
spatial patterns between CLM5 and COMPAS despite differences 
in model structures. The revealed spatial patterns of these model 
components further presented high explanatory power to pre-
dict model-simulated SOC spatial patterns across the globe (Tao 
et al., 2023) (Figure S9). In contrast, for parameters that are less 
identifiable after data assimilation, different choices of optimized 
parameter value could lead to similar simulation of SOC storage, 
causing the so-called equifinality problem. Even simple mod-
els constrained by detailed data face this problem (Marschmann 
et al., 2019). Thus, the spatial pattern of their corresponding com-
ponents, such as vertical transport and carbon input allocation, 
did not agree well between CLM5 and COMPAS after data assim-
ilation in different models. Their spatial variability was also less 
responsible for the predictive accuracy of global SOC simulations 
(Figure S9). In the future, improved performance of process-based 
models in simulating the global patterns of SOC storage relies on a 
better understanding of those key components (e.g., carbon trans-
fer, baseline decomposition, and environmental modifier) and their 
underlying mechanisms (e.g., microbial carbon use efficiency and 
organo-mineral interactions).

The equifinality problem (or weak identifiability of parameters) 
imposes challenges to using the optimized models to predict fu-
ture SOC changes under climate change. In this study, we found 
that the spatial patterns of vertical transport and carbon input al-
location may be less consequential to simulating steady-state SOC 
storage at the global scale. However, both these processes can 
influence the physical disconnection of SOC from decomposers, 

so they could regulate the transient dynamics of SOC in response 
to climate change, warranting further investigations. Moreover, 
despite reasonable correlations between results retrieved from 
the two structurally different models, carbon transfer efficiency 
and baseline decomposition simulated by CLM5 and COMPAS are 
numerically different (i.e., not on the 1:1 line in Figure 4). Whether 
structurally different models after PRODA optimization can also 
predict converged SOC changes at different temporal scales is still 
an open question.

Higher oversight of data quality control and broader inclusion 
of other types of observational data related to soil carbon cycle 
at different spatial–temporal scales are the keys to resolving the 
equifinality problem and better predictions of SOC dynamics. Our 
results demonstrated that applying the PRODA approach with ob-
servational constraints can effectively realize converged simula-
tions of SOC storage by structurally different models, even if they 
could generate contrasting simulation results before PRODA opti-
mization. While providing comprehensive and quality-controlled soil 
data worldwide, the dataset used in this study still has substantial 
measurement uncertainty in SOC content data (Batjes et al., 2020). 
The absence of SOC content information at deeper soils and irreg-
ularities of vertical SOC profiles resulting from measurement errors 
could cause difficulties in data assimilation convergence and param-
eter optimization to simulate SOC storage accurately (see descrip-
tions in Section 2.1). Thus, higher oversight of quality control and 
quality assurance is critical to improving prediction and understand-
ing of SOC storage across scales.

Moreover, beyond SOC content data, an array of measure-
ments could be used in the PRODA approach to further im-
prove model predictive ability and inform model development. 
Measured carbon pools with clear physical meanings, such as par-
ticulate and mineral-associated organic carbon, can help constrain 
their conceptual counterparts in models (Abramoff et  al., 2022; 
Guo et al., 2022). Meanwhile, time series flux data for the decom-
position of different soil carbon pools and isotopes could help 
better understand decomposition kinetics and varying nutrient 
limitation mechanisms (Manzoni et  al.,  2021). In addition to car-
bon pool and flux data, microbial trait data can inform some model 
parameters or offer avenues for testing emerging properties such 
as CUE. For example, data related to microbial carbon use effi-
ciency could constrain carbon transfer-related parameters, but 
only if measurements represent in situ conditions (e.g., using the 
18O incorporation method instead of adding labile 13C sources) 
(Geyer et  al.,  2019). Moreover, including observations related to 
vegetation and hydrology dynamics in data assimilation may be 
more effective in understanding the spatial patterns of carbon 
input allocation and vertical transport.

5  |  CONCLUSION

This study highlights the importance of high-quality field-measured 
data in informing model development and constraining simulations. 
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While diverse model structures stemming from different assump-
tions and theories, as well as the choices of parameter values, gener-
ate diverse possibilities in simulating SOC storage, data assimilation 
identifies the most probable ones that best explain the observations. 
The PRODA approach used in this study optimizes the parameters 
of a model based on first-order kinetics (i.e., CLM5) and one based 
on Michaelis–Menten kinetics (i.e., COMPAS). The two optimized 
models lead to convergence in simulating spatial patterns of both 
SOC storage and its related key components (i.e., the main contrib-
uting mechanisms), such as carbon transfer and baseline decompo-
sition. Moreover, our PRODA approach reveals that the first-order 
kinetics has an equally effective explanation of SOC storage as the 
Michaelis–Menten kinetics at the global scale. In the future, it is still 
critical to explore various processes of the soil carbon cycle at differ-
ent scales by developing structurally different models to be tested 
with new field-measured datasets. The development of tools such 
as PRODA will be critical in reconciling field observations and theo-
retical reasoning in modeling. New findings and patterns revealed by 
the PRODA approach will further stimulate new data acquisition and 
improvement of models.
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