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Abstract
Current biogeochemical models produce carbon–climate feedback projections with 
large uncertainties, often attributed to their structural differences when simulating 
soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter 
values that quantify the strength and represent properties of different soil carbon 
cycle processes could also contribute to model simulation uncertainties. Here, we 
demonstrate the critical role of using common observational data in reducing model 
uncertainty in estimates of global SOC storage. Two structurally different mod-
els featuring distinctive carbon pools, decomposition kinetics, and carbon transfer 
pathways simulate opposite global SOC distributions with their customary parameter 
values yet converge to similar results after being informed by the same global SOC 
database using a data assimilation approach. The converged spatial SOC simulations 
result from similar simulations in key model components such as carbon transfer ef-
ficiency, baseline decomposition rate, and environmental effects on carbon fluxes 
by these two models after data assimilation. Moreover, data assimilation results sug-
gest	equally	effective	simulations	of	SOC	using	models	following	either	first-	order	or	
Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data 
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1  |  INTRODUC TION

Soils store more carbon than the atmosphere and vegetation com-
bined (Ciais et al., 2014; Jackson et al., 2017).	A	small	 change	 in	
soil carbon storage can significantly impact the atmospheric car-
bon dioxide concentration and the future trajectory of climate. 
Substantial research has been conducted to understand the fac-
tors underlying the formation of soil organic carbon (SOC) and 
its persistence. While there is a general agreement that the SOC 
balance depends on plant carbon input as the source of SOC and 
organic matter decomposition as the main SOC loss pathway, 
there are two contrasting paradigms on the regulation of decom-
position. The conventional paradigm focuses on chemical recal-
citrance and physical protection as the key factors controlling 
decomposition and, thus, CO2 emissions back to the atmosphere 
(Schmidt et al., 2011).	A	more	recent	paradigm	focuses	instead	on	
soil microorganisms and soil carbon stabilization as the key de-
terminants in partitioning carbon inputs between accumulation 
and loss (Bradford et al., 2016; Cotrufo et al., 2013, 2015; Tao 
et al., 2023). These two paradigms are the conceptual foundation 
of	 two	 classes	 of	 process-	based	models	 used	 to	 simulate	 global	
SOC dynamics (Table 1). Because these model classes have dis-
tinctive structures that reflect different underlying theories and 
assumptions on soil carbon dynamics (Chandel et al., 2023), large 
differences in the simulated SOC emerge among models, leading 
to highly uncertain predictions (Wieder et al., 2018). Diverging 
simulations of SOC storage and its spatial distributions across the 
globe hinder a better understanding of the soil carbon cycle and 
its feedback to climate change (Ciais et al., 2014; Luo et al., 2016; 
Todd-	Brown	et	al.,	2013).

In	 simulating	 SOC	 dynamics,	 state-	of-	the-	art	 process-	based	
models following the two paradigms differ structurally regarding soil 
carbon pool classification, SOC decomposition kinetics, and repre-
sentation of carbon transfer processes (Table 1). Soil organic carbon 
can be separated into conceptual pools with different turnover rates 
that reflect heterogeneity in their decomposition rates. For exam-
ple, models derived from the Century model (Parton et al., 1987) 
that center their simulations around the “pool turnover” paradigm 
(Luo, 2022; Schimel, 2023) differentiate substrates according to 
turnover times, with labile substrates that cycle rapidly (i.e., ac-
tive SOC) and chemically or physically protected pools that cycle 

slowly (i.e., slow and passive SOC). In contrast, recently formulated 
process-	based	models	that	highlight	the	role	of	microbial	processes	
define carbon pools as measurable entities that can be validated 
with	field	observations	(Abramoff	et	al.,	2022)—for example, micro-
bial biomass, dissolved organic carbon, particulate organic carbon, 
and	mineral-	associated	organic	carbon	(Table 1).

In representing SOC decomposition, a theory developed back 
in the 1940s (Jenny, 1941) and consolidated in the 1980s (Parton 
et al., 1988)	portends	that	organic	matter	decay	in	soils	follows	first-	
order kinetics: dSOC

dt
∝ − k × SOC, where the loss rate of SOC (i.e., k) 

is independent of its pool size (i.e., SOC). Therefore, with this formu-
lation, the SOC storage changes over time is proportional to its pool 
size (Forney & Rothman, 2012). With increasing evidence pointing to 
soil microorganisms as a key factor in soil carbon dynamics, a newer 
generation of models has explored the possibility of nonlinearity 
in	 SOC	decomposition	 (Allison	 et	 al.,	2010; Georgiou et al., 2017; 
Schimel & Weintraub, 2003; Wang et al., 2021) (Table 1).	 Among	
various nonlinear functions that can be used to describe decom-
position, the Michaelis–Menten kinetics (i.e., dSOC

dt
∝ − v

ENZ× SOC

K + SOC
 )	

considers the interplay between the substrate (i.e., SOC) and the 
extracellular enzymes (i.e., ENZ) that catalyze the decomposition of 
organic matter. While not new (Briggs & Haldane, 1925), this for-
mulation is now being frequently used in soil carbon cycle models 
(Schimel & Weintraub, 2003; Wilson & Gerber, 2021). Specifically, 
parameter v specifies the maximum SOC decomposition rate at its 
saturated content for a given enzyme content. The inverse of the 
Michaelis–Menten constant (K) specifies the enzyme's affinity for its 
substrate in a catalyzed reaction.

Process-	based	models	also	differ	 in	allocating	the	decomposed	
carbon to other carbon pools or heterotrophic respiration as CO2 
(Table 1). While soil microbes mineralize SOC into CO2 through 
their metabolism, transfers of decomposed carbon from one pool 
to another could result from either an exclusive effect of micro-
bial processes or an integrative effect of biological, chemical, and 
physical	 reactions	 (i.e.,	 including	both	microbial	 and	non-	microbial	
transfer). Specifically, when a model explicitly defines a microbial 
biomass carbon pool, carbon received by this pool is partitioned 
according to the microbial carbon use efficiency (CUE)—that is, 
the ratio of carbon assimilated in new biomass over the total sub-
strate carbon uptake (Geyer et al., 2016; Manzoni et al., 2018; Tao 
et al., 2023). Correspondingly, carbon transfers among different soil 
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with	high-	quality	control	and	assurance	are	needed	to	further	constrain	SOC	dynam-
ics simulations and reduce unconstrained parameters. New sets of data, such as mi-
crobial	genomics-	function	relationships,	may	also	suggest	novel	structures	to	account	
for in future model development. Overall, our results highlight the importance of ob-
servational data in informing model development and constraining model predictions.

K E Y W O R D S
big	data	assimilation,	deep	learning,	inter-	model	uncertainty,	model	parameterization,	model	
structure, soil organic carbon
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compartments that happen without microbial carbon assimilation 
can be interpreted as results from other biochemical processes (e.g., 
microbial	 exudation	 and	mortality)	 or	 organo-	mineral	 interactions	
(Tao et al., 2023). In contrast, for models without explicit repre-
sentation of microbial biomass and assimilation processes, carbon 
transfer implicitly integrates the effects of both microbial physiology 
and other chemical or physical reactions. Depending on the model 
structure,	a	range	of	relations	between	 long-	term	SOC	and	micro-
bial traits, such as CUE or carbon inputs to soils, emerge (Georgiou 
et al., 2017; He et al., 2023; Wutzler & Reichstein, 2008).

In	addition	to	structural	differences	among	varieties	of	process-	
based models, parameter values that quantify the strength and 
represent properties of different processes in the soil carbon cycle 
also contribute to the uncertainty of model simulations (Luo & 
Schuur, 2020), especially when they are not well constrained by ob-
servations.	Most	current	Earth	system	models	adopt	the	Century-	
type	model	structure	using	first-	order	SOC	decomposition	kinetics.	

Notwithstanding their structural similarity, varying parameter val-
ues among different models contribute to the divergent estimates 
of SOC storage both at the site level and across the globe (Luo 
et al., 2015;	Todd-	Brown	et	 al.,	2013). Moreover, the same model 
with different choices of parameter values (i.e., parameterization) 
could also generate varying patterns between SOC and key model 
components, such as microbial CUE (Tao et al., 2023) and plant car-
bon input (Tao et al., 2024). However, choices of parameter values 
and model structure are not fully independent in affecting model 
simulation: Different model structures can, in some cases, converge 
to similar results in the long term via parameter adjustments. For 
example, the Michaelis–Menten kinetics, when the affinity of the 
enzyme for its substrate is extremely low, such that the Michaelis–
Menten constant is much higher than the substrate concentration 
([K]SOC), the nonlinear decomposition kinetics will converge to lin-
ear kinetics with respect to the substrate (Lasaga, 1998; Wilson & 
Gerber, 2021).

TA B L E  1 Major	differences	in	simulating	soil	carbon	cycle	among	process-	based	models	following	two	paradigms	for	SOC	loss	pathways	
(see also Figure 1).

Pool turnover- centered paradigm Microbe- centered paradigm

Carbon pool 
classification

Carbon pools are conceptually defined turnover 
time (i.e., average time a carbon compound 
stays in the soil). These models usually do 
not	explicitly	define	microbe-	related	carbon	
pools such as microbial biomass, dissolved 
organic carbon, and enzyme

Carbon pools are defined by their functions in the soil carbon 
cycle.	These	models	usually	explicitly	define	microbe-	related	
carbon pools such as microbial biomass, dissolved organic 
carbon, and enzyme by representing specific microbial 
processes such as assimilation, catabolism, mortality, and 
enzymatic reactions

Decomposition 
kinetics

First-	order	kinetics.	Decomposition	rate	is	only	
dependent on the donor pool size (i.e., the 
amount of substrate being decomposed)

Microbial explicit kinetics, such as Monod, Michaelis–Menten, 
reverse Michaelis–Menten, and logistic type kinetics. 
Decomposition rate is a function of both donor pool size and 
catalysts

Carbon transfer 
scheme

Organic carbon is transferred among conceptual 
pools, and CO2 is emitted whenever a 
transfer happens.

Organic carbon is transferred among functionally explicit pools, 
and CO2 is emitted only when microorganisms assimilate 
carbon from substrates in metabolism.

Model example used in 
this contribution

Community Land Model version 5 (CLM5) 
(Lawrence et al., 2019)

CarbOn	cycle	and	Microbial	PArtitioning	Soil	model	(COMPAS)	
(Tao et al., 2023)

F I G U R E  1 Distinctive	model	structures	of	CLM5	(a)	and	COMPAS	(b).	CWD,	coarse	wood	debris;	SOC,	soil	organic	carbon.

Vertical mixing in 
20 layers

Litter input

CWD Metabolic litter Lignin litterCellulose litter

Allocation to 20 layers in each litter pool

Enzyme Microbial 
biomass

Mineral- 
associated SOC

Dissolved 
organic carbon  

MortalityEnzyme production

CO2

Assimilation
CatalysisEnzyme decay

CO2 CO2
CO2

Vertical mixing in 20 layers

Litter input

CWD Metabolic litter Lignin litterCellulose litter

CO2 CO2 CO2

Allocation to 20 layers in each litter pool

Active SOC Passive SOCSlow SOC

CO2 CO2 CO2

(a) (b)
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While simulations by structurally distinctive models with differ-
ent parameter values present a range of possibilities under specific 
theories and assumptions, calibrating model simulations against ob-
servational data helps identify the most probable mechanistic expla-
nation that fits reality. Data assimilation is a suite of techniques that 
compare the model simulation results with different parameter val-
ues against observed counterparts and adjust the model parameter 
values	 to	 the	set	with	which	 the	process-	based	model	simulations	
best-	fit	observations	(Luo	et	al.,	2011). Conventional data assimila-
tion	techniques	such	as	the	Bayesian	inference-	based	Markov	Chain	
Monte Carlo (MCMC) method have been used at the site level to 
tune	 process-	based	 models	 for	 better	 performance	 in	 simulat-
ing soil carbon cycle (Li et al., 2016; Xu et al., 2006). Recently, the 
newly	 developed	 PROcess-	guided	 deep	 learning	 and	 Data-	driven	
modeling	(PRODA)	approach	(Tao	&	Luo,	2022)	integrates	the	site-	
level	MCMC-	based	data	assimilation	 results	with	deep	 learning	 to	
optimize the model parameter values for global SOC simulations 
and reveals key mechanisms underlying global SOC storage (Tao 
et al., 2020, 2023).

To investigate the roles of model structure versus parameters in 
causing	the	large	inter-	model	uncertainty,	we	leverage	two	models	
(i.e.,	CLM5	and	COMPAS;	Figure 1; see Section 2 for detailed de-
scriptions) that are structurally different in describing carbon pools, 
decomposition kinetics, and carbon transfer pathways in a data 
assimilation framework. We hypothesize that being informed by a 
common	 observational	 SOC	 dataset	 using	 the	 PRODA	 approach,	
simulations	 of	 global	 SOC	 by	 CLM5	 and	 COMPAS	 can	 converge.	
Despite	structural	differences	among	models,	we	expect	that	well-	
calibrated parameters representing key processes in the soil carbon 
cycle will contribute to converging SOC simulations. Meanwhile, re-
sults	of	PRODA-	optimized	model	simulations	can	also	 identify	 the	
most probable model structure that best fits observed SOC data 
across the globe.

2  |  MATERIAL S AND METHODS

2.1  |  Global vertical soil organic carbon profiles

We obtained SOC data in globally distributed soil profiles from the 
World Soil Information Service (WoSIS) and other data sources. WoSIS 
compiled soil data, after quality assessment, from soil profiles distrib-
uted across 173 countries (Batjes et al., 2020). The 2019 snapshot of 
the WoSIS dataset consists of 111,380 soil profiles with SOC content 
information	 (unit:	g C kg−1	soil).	We	estimated	the	SOC	stock	 (g C m−3) 
by SOC Stock = SOC Content × BD (Yigini et al., 2018), where BD is 
the	bulk	density	of	soil	(g m−3). Note that SOC stock was multiplied by 
1 −

G

100
 to account for the volumetric coarse fragment fraction (G, unit: 

%) at each grid of the global map (data source: SoilGrids, https:// soilg 
rids. org). When the measured bulk density was absent in the dataset, 
we	used	a	pedo-	transfer	function	to	estimate	it	(Grigal	et	al.,	1989; Yigini 
et al., 2018): BD = � + � × exp(−� ×OM), where OM is organic mat-
ter,	calculated	as	SOC × 1.724,	with	SOC	content	 in	percent	 (%);	α, 𝛽, 

and γ	are	fitting	parameters.	After	fitting	data	of	WoSIS	(i.e.,	78,913	lay-
ers from 16,248 profiles that simultaneously recorded bulk density and 
SOC content) to this equation, we obtained that α = 0.32,	𝛽 = 1.30,	and	
γ = 0.0089.	The	pedo-	transfer	function	explained	55%	of	the	variation	in	
the	bulk	density.	Using	the	pedo-	transfer	function	does	not	introduce	
substantial	 extra	 uncertainties	 in	 the	 SOC	 stock	 database.	 At	 those	
16,248 soil sampling sites that recorded bulk density and, thus, SOC 
stocks, we compared the field measurements with their corresponding 
values	estimated	from	the	pedo-	transfer	function.	The	pedo-	transferred	
estimates	explained	68%	of	variation	in	field-	measured	SOC	stocks.	We	
conducted a t-	test	 to	quantify	whether	 the	difference	between	 field-	
measured	and	pedo-	transferred	SOC	stocks	(i.e.,	pedo-	transferred	es-
timates minus field measurements) differ from 0. The results suggested 
that	the	mean	difference	is	−0.05 kg C m−3, but such a small bias was not 
significantly different from 0 (p-	value = .30,	df = 78,192,	t = −1.03).

In addition, we obtained an additional dataset of SOC stock in 
permafrost regions, which combined the data from a previous study 
(Mishra et al., 2020) and the Northern Circumpolar Soil Carbon 
Database (NCSCD) (Hugelius et al., 2013). This dataset contained 
2546	soil	profiles	with	SOC	stock	 (g C m−3) information for perma-
frost	regions	in	North	America,	northern	Eurasia,	and	Qinghai–Tibet	
Plateau. Combining this dataset with the WoSIS dataset, in total, we 
obtained data from 113,926 soil profiles as the raw data. The geo-
graphical distributions of all soil profiles are shown in Figure S1.

Not	all	the	soil	profiles	are	used	in	this	study.	We	pre-	processed	
the 113,926 SOC profiles to ensure the quality of the data before 
we conducted our analysis. We first excluded SOC profiles with 
no more than two observation layers or the maximum observation 
depths	of	no	deeper	than	50 cm	from	this	study	as	such	data	do	not	
provide enough information on key processes underlying SOC stor-
age.	After	this	screening,	we	retained	72,377	profiles.

To further examine the suitability of the data for model optimiza-
tion, we conducted data assimilation for each of the 72,377 SOC ver-
tical profiles with both the Community Land Model version 5 (CLM5) 
and	the	CarbOn	cycle	and	Microbial	PArtitioning	Soil	model	(COMPAS)	
using the Markov Chain Monte Carlo (MCMC) method. Model struc-
tures	of	CLM5	and	COMPAS	are	described	 in	Sections	2.2 and 2.3, 
respectively. The method of data assimilation is briefly described in 
Section 2.4 below and in detail by Tao et al. (2020).

We	 used	 two	 statistics,	 that	 is,	 Gelman–Rubin	 (G-	R)	 statistic	
and Nash–Sutcliffe modeling efficiency (NSE) coefficient, to ensure 
the quality of model calibration against SOC data along the verti-
cal	profiles.	We	calculated	the	G-	R	value	 (Gelman	et	al.,	2014) for 
each	of	 the	SOC	profiles	 to	 test	 the	convergence	of	 the	site-	level	
data assimilation results after running three independent series of 
MCMC simulations (see Section 2.6	 for	 details	 of	MCMC).	 A	G-	R	
value	 approaching	 1.0	 suggests	 well-	converged	 data	 assimilation	
results.	 A	 large	G-	R	 value,	 in	 contrast,	 indicates	 inconsistent	 data	
assimilation results from these independent MCMC simulations, and 
such results may not be trusted. Therefore, we set a threshold of 
G-	R = 1.05	and	excluded	SOC	profiles	with	G-	R > 1.05,	with	66,935	
profiles	 remained	 for	CLM5	and	59,476	 remained	 for	COMPAS	 to	
be included in further analyses. We found that it was more difficult 
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for the independent MCMC simulations to converge when using 
COMPAS	 model	 than	 using	 CLM5	 in	 data	 assimilation,	 probably	
because of the nonlinearity and a lack of vertical transport for the 
mineral-	soil	carbon	part	in	COMPAS	(see	Section	2.3). Thus, the final 
adopted	profiles	for	COMPAS	are	fewer	than	those	for	CLM5.

We used the NSE coefficient (Janssen & Heuberger, 1995) (NSE) 
to evaluate the effectiveness of retrieving information from obser-
vations	by	process-	based	models.	NSE	is	expressed	as:

At	 the	 site-	level	 data	 assimilation,	 the	 summation	 in	 Equation 1 
extends	to	all	sampling	depths	at	a	given	site.	A	value	of	NSE	close	to	
1 indicates that SOC distributions with depth can be well captured by 
process-	based	models	so	that	information	contained	in	the	observations	
can be retrieved to evaluate processes underlying SOC storage. In con-
trast, a small value of NSE indicates that the model cannot capture the 
variability in the data, suggesting that such SOC vertical profiles may 
not offer enough information on the investigated processes underlying 
SOC storage. While it is possible that the negative NSE values could 
also	result	from	the	fact	that	process-	based	models	are	still	not	sophis-
ticated enough to capture extreme irregularities in observations, we set 
the	threshold	as	NSE = 0.0	to	include	as	many	profiles	as	possible	in	the	
analysis. Moreover, the soil profiles included in this study are inclusive 
to	diverse	vertical	shapes	in	SOC.	For	example,	for	the	COMPAS	model,	
66.2% of the 57,267 profiles show monotonically decreasing SOC 
stocks with soil depths, 4.4% of them record the highest SOC stock at 
the middle of the soil depths and 29.4% of them show zigzagged SOC 
stock with increasing soil depths (Tao et al., 2023). Eventually, only 4% 
(2209 out of 59,476) and 6% (4004 out of 66,935) of the profiles for 
CLM5	and	COMPAS,	respectively,	were	excluded	due	to	negative	NSE	
values. Moreover, we randomly selected a subset of these excluded SOC 
profiles	to	visually	cross-	check	their	shapes.	We	found	that	the	thresh-
olds are effective for controlling the suitability of data.

After	all	the	data	pre-	processing	procedures,	we	obtained	data	
assimilation results from 62,931 soil profiles for CLM5 and 57,267 soil 
profiles	for	COMPAS	with	which	we	estimated	global	SOC	storage	
and	its	components.	Our	data	pre-	processing	criteria	did	not	cause	
significant discrimination against profiles belonging to specific soil 
orders or ecosystems or different vertical shapes (Tao et al., 2023). 
Meanwhile,	 the	 coverages	 of	 selected	 soil	 profiles	 across	 multi-	
dimensional covariate spaces do not differ much between CLM5 and 
COMPAS	 (Figure S2). Thus, the main conclusions drawn from this 
study	are	unlikely	influenced	by	our	data	pre-	processing	criteria.

2.2  |  Model structure of CLM5

CLM5 is the latest version of the land model of the Community Earth 
System Model version 2 (CESM2) (Lawrence et al., 2018, 2019). The 
soil carbon part of CLM5 centers its simulations around the pool turn-
over paradigm (Table 1). Similar structures have been widely used in 

most	of	the	state-	of-	the-	art	Earth	system	models.	CLM5	uses	concep-
tual soil carbon pools (i.e., active, slow, and passive SOC), and thus, 
microbial processes are only implicitly represented in the model struc-
ture.	Meanwhile,	CLM5	adopts	first-	order	kinetics	in	simulating	SOC	
decomposition. SOC dynamics in CLM5 can be expressed in a uniform 
matrix equation (Huang et al., 2018; Lu et al., 2020; Luo et al., 2022):

This matrix equation has six components (Table S1), including 
plant carbon inputs (I(t)), carbon input allocation to different pools 
and depths (B), substrate decomposability (or baseline decomposi-
tion rates) (K), carbon transfer efficiency (A), environmental modifier 
(�(t)), and vertical transport (V(t)).

CLM5 describes seven carbon pools in the soil, including four 
litter pools (i.e., coarse woody debris (indicated by subscript CWD), 
metabolic litter (ML), cellulose litter (CL), and lignin litter (LL)) and 
three soil organic carbon pools (i.e., active (aSOC), slow (sSOC), and 
passive (pSOC) soil organic carbon pools). Each of the carbon pools 
is	simulated	in	20	layers	to	a	maximum	depth	of	8.4 m.	The	state	of	
different carbon pools (i.e., carbon stocks) can be expressed as:

where each of the seven block elements (i.e., xi(t)) of X(t) has 20 
elements to represent the 20 soil layers. In total, CLM5 simulates 
carbon transfer among 140 pools. Consequently, there are 140 di-
mensions for vector B of carbon input allocation, matrix K of sub-
strate decomposability, matrix A of carbon transfer from one carbon 
pool to another, matrix �(t) of environmental modifiers, and matrix 
V(t) of vertical transport. Plant carbon input (I(t)) is a scalar. In this 
study, parameters (Table S1) that generate the above elements in the 
matrix	equation	will	be	optimized	by	the	PRODA	approach.

Specifically, I(t) is allocated to different litter pools in different 
layers along the soil profile via the allocation vector B. Organic car-
bon in pool vector X(t)	is	decomposed	following	first-	order	kinetics	
as described by matrix K:

(1)NSE = 1 −

∑�
obsi−modi

�2
∑�

obsi−obsi
�2 .

(2)
dX(t)

dt
= BI(t) + A�(t)KX(t) + V(t)X(t).

(3)X(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xCWD(t)

xML(t)

xCL(t)

xLL(t)

xaSOC(t)

xsSOC(t)

xpSOC(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kCWD

kML

kCL

kLL

kaSOC

ksSOC

kpSOC

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where ki is independent from the state of its corresponding substrate 
xi(t). Moreover, we used the environmental modifier (i.e., �(t)) to ac-
count for the effects of environmental conditions on the decompo-
sition processes. �(t) is calculated from functions of soil temperature 
(�T ),	 soil	water	potential	 (�W), nitrogen and oxygen availability (�N−O), 
and soil depth (�D).

Organic carbon from any carbon pool is further partitioned by 
either	microbial	or	non-	microbial	processes	between	a	receiver	car-
bon pool and CO2	released	to	the	atmosphere.	All	these	processes	
can be summarized in the A matrix:

where all the block elements in the A matrix (ai,j) are diagonal matrices 
with the dimension of 20. aij represents the carbon transfer fraction 
from the donor (j) pool to the recipient (i) pool (see carbon transfer 
flows in Figure 1). Note that CLM5 does not differentiate carbon 
transfers mediated by microbial processes from those mediated by 
non-	microbial	processes	(e.g.,	organo-	mineral	interactions).	Thus,	ai,j in 
Equation 5 are integrative values reflecting carbon transfers contrib-
uted	by	both	microbial	and	non-	microbial	processes.

The transport matrix V of CLM5 is a tridiagonal matrix that de-
scribes vertical carbon movement between adjacent soil layers 
within the same carbon pool via bioturbation and cryoturbation. 
At	steady	state,	the	analytical	solution	of	SOC	stock	by	CLM5	was	
calculated as Xsteady state =

[
A�(t)K+V(t)

]−1[
− BI(t)

]
, where the over-

bars indicate the mean values of related matrices (�(t) and V(t)) and 
scalar (I(t)) over the period of forcing data. The matrix representation 
for	 process-	based	 soil	 carbon	 cycle	models	 has	been	described	 in	
detail by Huang et al. (2018), Lu et al. (2020), and Luo et al. (2022).

2.3  |  Structure of COMPAS model

COMPAS	 explicitly	 represents	 the	 microbial-	driven	 carbon	 par-
titions in soil carbon cycle simulations. In addition to applying 
Michaelis–Menten kinetics in representing organic matter assimila-
tion	and	decomposition,	COMPAS	differentiates	soil	organic	carbon	
into	field-	measurable	components,	such	as	microbial	biomass,	extra-
cellular	 enzyme,	 dissolved	 organic	 carbon,	 and	mineral-	associated	
organic	 carbon.	 Thus,	 we	 choose	 COMPAS	 as	 the	 representative	
model	based	on	the	microbe-	centered	paradigm.

Specifically,	COMPAS	 follows	 the	 same	structure	proposed	by	
Allison	et	al.	 (2010) for SOC dynamics, which is further embedded 
within	 the	 structure	 for	 20-	layered	 vertical	 soil	 profiles.	 The	 de-
scription of vertical layers was adopted from CLM5. Organic carbon 
dynamics	represented	by	COMPAS	can	be	expressed	by	the	same	

matrix framework as shown in Equation 2 (Table S2).	Yet,	COMPAS	
structurally differs from CLM5 in classifying soil carbon pools, ex-
pressing substrate decomposition, and explicitly describing micro-
bial partitioning processes in carbon transfer (Table 1 and Figure 1).

Equation 2	 describes	COMPAS	with	160	dimensions	 to	 repre-
sent eight pools in each of the 20 soil layers. Vector X(t) has eight 
block elements to represent four litter carbon pools (indicated by 
subscripts CWD, ML, CL, and LL) and four soil organic carbon pools 
(i.e.,	dissolved	organic	carbon	(DOC),	mineral-	associated	soil	organic	
carbon (mSOC), microbial biomass (MIC), and extracellular enzymes 
(ENZ)):

Each of the eight block elements (i.e., xi(t)) of X(t) has 20 ele-
ments to represent the 20 soil layers. Similarly, there are 160 di-
mensions for vector B, matrix K, matrix A, matrix �(t), and matrix 
V(t). Plant carbon input (I(t)) is still a scalar as in CLM5. Parameters 
(Table S2) that generate the above elements in the matrix equation 
will	be	optimized	by	the	PRODA	approach.

Different from CLM5, organic carbon pools in vector X(t) of 
COMPAS	can	be	 transferred	 to	 recipient	pools	either	 through	mi-
crobial-		or	enzyme-	mediated	kinetics,	or	without	going	through	mi-
crobial metabolism. These transfers are described by the baseline 
decomposition matrix K:

While	 all	 the	 litter	 organic	 carbon	 pools	 and	 two	mineral-	soil	
organic carbon pools (i.e., MIC and ENZ) are decomposed follow-
ing	first-	order	kinetics	with	constant	baseline	decomposition	rates,	
the baseline decomposition rates of DOC and mSOC are functions 
of carbon pool states. Specifically, the baseline decomposition rate 
of DOC (i.e., the baseline rate of microbial assimilation of DOC) is: 

kDOC

(
xDOC, xMIC

)
=

vmax,assimxMIC

Km,assim� + xDOC

; the baseline decomposition rate of 
mSOC is: kmSOC

(
xmSOC, xENZ

)
=

vmax,decomxENZ

Km,decom� + xmSOC

. Parameters vmax,assim and 
vmax,decom represent the maximum DOC assimilation and mSOC 

(5)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

aCL,CWD 0 −1 0 0 0 0

aLL,CWD 0 0 −1 0 0 0

0 aaSOC,ML aaSOC,CL 0 −1 aaSOC,sSOC aaSOC,pSOC

0 0 0 asSOC,LL asSOC,aSOC −1 0

0 0 0 0 apSOC,aSOC apSOC,sSOC −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6)X(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xCWD(t)

xML(t)

xCL(t)

xLL(t)

xDOC(t)

xMIC(t)

xENZ(t)

xmSOC(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)K = diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kCWD

kML

kCL

kLL

kDOC

�
xDOC, xMIC

�

kMIC

kENZ

kmSOC

�
xmSOC, xENZ

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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    |  7 of 19TAO et al.

decomposition rates, respectively. Km,assim and Km,decom are the 
Michaelis constants for DOC assimilation and mSOC decomposition, 
respectively.

The	COMPAS	model	also	explicitly	differentiates	carbon	transfers	
by	microbial	processes	from	those	in	non-	microbial	processes.	The	de-
composed organic carbon is either partitioned by microorganisms to 
microbial biomass growth versus respiration (i.e., according to the mi-
crobial CUE), or alternatively, transferred to other carbon pools with a 
fraction	that	is	not	mediated	by	microbial	processes	(i.e.,	non-	microbial	
carbon	transfer).	All	these	processes	are	summarized	in	the	A matrix:

Because DOC is always assimilated by the microbes with re-
lease of CO2 (Figure 1), the microbial CUE for DOC (�DOC) equals 
aMIC,DOC .	 In	 contrast,	 organic	 carbon	 in	 the	metabolic,	 cellulose,	
and	lignin	litter	pools	is	decomposed	by	microbes	following	first-	
order kinetics to generate CO2 and grow biomass while a fraction 
of litter organic carbon is broken down without going through 
microbial metabolism and, thus, directly transferred to DOC or 
mSOC. In this case, the microbial CUE for the three litter carbon 
pools can still be expressed as: �ML =

aMIC,ML

1− aDOC,ML

, �CL =
aMIC,CL

1− aDOC,CL

, and 
�LL =

aMIC,LL

1− amSOC,LL

, respectively.
COMPAS	 applies	 the	 same	 approach	 to	 simulate	 carbon	 input	

allocation (B), environmental modifier (i.e., �(t)) and transport matrix 
V	as	that	used	in	CLM5.	It	should	be	noted	that	while	COMPAS	and	
CLM5 use the same scheme to simulate B, �(t), and V, parameter val-
ues (Tables S1 and S2) that were used to calculate the above ele-
ments in the matrix equation were estimated independently by the 
PRODA	approach.

In calculating the steady state of different carbon pools by 
COMPAS,	Equation 2 can be separated into two equations: one 
for	 litter	 carbon	 cycle	 and	 transport,	 and	 the	 other	 for	mineral-	
soil	SOC	cycle,	because	there	is	no	carbon	transfer	from	mineral-	
soil carbon pools to litter carbon pools (i.e., alitter pool,soil pool = 0 
in the A matrix). Since A, K, �(t), and V are all independent from 
litter carbon pool states (i.e., X), the analytical solution of lit-
ter carbon stock at the steady state (SS) can be calculated as 
X litter,SS =

[
Alitter�(t)litterK litter+V(t)litter

]−1[
− BlitterI(t)litter

]
. For the 

soil organic carbon pools, the related K matrix is carbon pool 
state-	dependent	 (see	Equation 7). We assumed that there is no 
vertical	transport	for	mineral-	soil	organic	carbon	pools	such	that	
litter is added to different soil layers and transported vertically, 
and then, it is transferred to soil pools that are immobile in that 
layer.	According	 to	a	method	reported	by	Georgiou	et	al.	 (2017), 
the	steady-	state	solutions	for	soil	organic	carbon	pools	are:

where uSi is the carbon input from litter pools (Lj)	to	a	mineral-	soil	carbon	
pool (Si, see Extended Data Figure 3 for corresponding carbon flows 
for	each	mineral-	soil	carbon	pool)	and	is	expressed	as	

∑
Lj

�
aSi ,Lj

kLj
�xLj

�
. 

Note that all the elements with bold font indicate vectors of the corre-
sponding	variables	or	parameters	for	the	20	soil	layers.	All	the	multipli-
cations shown in Equation 9	are	element-	wise	operations.

2.4  |  Inputs and environmental conditions

For	both	CLM5	and	COMPAS,	the	carbon	input	for	the	litter	carbon	pools	
(i.e., net primary productivity, NPP) and environmental forcings (e.g., soil 
temperature	and	moisture)	are	from	20 years	of	monthly	model	outputs	
(Table S3) by CLM5 at the steady state using a preindustrial forcing (i.e., 
I1850Clm50Bgc,	 from	 year	 1901	 to	 1920)	 at	 0.5-	degree	 resolution.	
We	 used	 the	 20-	year	 annual	mean	values	 of	 different	 components	 in	
Equation 2 to calculate total soil organic carbon stock at steady state.

2.5  |  Customary parameter values for model 
simulations

We	compared	the	model	simulation	results	of	CLM5	and	COMPAS	
by (1) applying customary parameter values and (2) the parameter 
values	optimized	by	the	PRODA	approach.	For	CLM5,	we	applied	the	
parameter values used in its current version (Lawrence et al., 2019). 
In the default scheme, most of the selected 21 parameters of CLM5 
are constants across the globe, except two carbon transfers that de-
pend on sand content and the parameter controlling plant carbon 
input allocation that depends on plant functional types (Table S1). 
For	COMPAS,	 it	 is	 a	 newly	 constructed	model	 and	 thus	 does	 not	
have	well-	tuned	parametrization	 for	global	 simulation.	We	applied	
the	global	mean	values	of	the	selected	23	parameters	after	site-	level	
data	assimilation	as	the	customary	parameter	values	for	COMPAS	to	
drive the global simulation.

2.6  |  PROcess- guided deep learning and 
DAta- driven modeling (PRODA)

The	PRODA	approach	integrates	big	data	with	Bayesian	data	assimila-
tion and deep learning to optimize soil carbon cycle simulation with 
process-	based	models	 (Tao	&	Luo,	2022).	We	used	 the	PRODA	ap-
proach	to	optimize	both	CLM5	and	COMPAS	at	the	global	scale.	Data	

(8)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

aCL,CWD 0 −1 0 0 0 0 0

aLL,CWD 0 0 −1 0 0 0 0

0 aDOC,ML aDOC,CL 0 −1 aDOC,MIC 1 aDOC,mSOC

0 aMIC,ML aMIC,CL aMIC,LL aMIC,DOC −1 0 0

0 0 0 0 0 aENZ,MIC −1 0

0 0 0 amSOC,LL 0 amSOC,MIC 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

Xsoil,SS =

⎡⎢⎢⎢⎢⎢⎢⎣

xDOC,SS

xMIC,SS

xENZ,SS

xmSOC,SS

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kMIC�Km,assim�xMIC,SS−uMICKm,assim��
ηDOCvmax,assim−kMIC

�
�xMIC,SS+uMIC

uMIC+ηDOC

�
umSOC+uDOC

�
�
1−ηDOC

�
kMIC�

aENZ,MICkMICxMIC,SS

kENZ�
umSOC+amSOC,MICkMIC�xMIC,SS

�
Km,decom��

vmax,decom�xENZ,SS−amSOC,MICkMIC�xMIC,SS−umSOC

�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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assimilation was first applied at each SOC profile to estimate param-
eter	values.	Twenty-	one	parameters	for	CLM5	and	23	parameters	for	
COMPAS	were	optimized	 for	each	SOC	profile	so	 that	 the	process-	
based model simulations can best fit local observations. Because we 
conducted data assimilation independently at each observation site, 
optimized values of the same parameter vary across space. We further 
used a neural network to generalize those estimated parameter values 
after	the	site-	level	data	assimilation	to	the	global	scale.	The	global	pa-
rameter maps predicted by the neural network were then used in the 
process-	based	models	to	simulate	global	SOC	storage	and	retrieve	the	
spatial patterns of related model components across the globe.

We conducted Bayesian data assimilation by using the MCMC 
method for each of the SOC profiles to estimate the parameter val-
ues	of	the	process-	based	models	that	best-	fit	model	simulations	with	
SOC observations. Because the soil profile data collected from field 
measurements of soil organic carbon include all components of or-
ganic matter (e.g., microbial biomass carbon), we used the sum of 
modeled	mineral-	soil	carbon	pools	classified	in	CLM5	and	COMPAS	
for each layer to be compared with soil profile data at the corre-
sponding sampling layer.

Specifically,	 at	 site-	level	 data	 assimilation,	 for	 each	 SOC	profile,	
we applied an adaptive Metropolis algorithm (Haario et al., 2001) to 
generate the posterior distributions of a total of 21 parameters of 
CLM5 (Table S1)	 and	23	parameters	 of	COMPAS	 (Table S2) related 
to six model components with two phases of simulations (i.e., a test 
run and a formal run). We first conducted a test run assuming uniform 
distributions for each of the preselected parameters as the proposal 
distributions (i.e., prior knowledge). The prior ranges of the uniform 
distributions for each parameter are shown in Tables S1 and S2. The 
proposal distributions continuously generated a set of parameter val-
ues	for	the	process-	based	models	to	simulate	SOC	storage.	We	then	
evaluated whether the proposed parameter values should be accepted 
or not by comparing their model simulation results with SOC observa-
tions. In the formal run, we used the accepted sets of parameter values 
obtained in the test run as the proposal distributions and assumed 
that all the target parameters are multivariate Gaussian distributed. 
We proposed new sets of parameter values and evaluated them to be 
accepted or not following the same rule in the test run. Unlike the test 
run, the proposal distributions in the formal run were continuously ad-
justed according to the newly accepted sets of parameters.

We set 20,000 iterations for the test run and 50,000 iterations 
for the formal run. Eventually, we controlled the acceptance ratio 
(i.e., the ratio of accepted sets of parameters out of the total num-
ber of iterations) of the formal run between 10% and 50%. We set 
the	burn-	in	coefficient	as	50%,	where	the	first	half	of	the	accepted	
parameter values in the formal run was discarded, and the second 
half was used to generate the posterior distributions of parameters. 
We calculated the mean values of the posterior distributions of pa-
rameters as the final estimates of parameter values. We ran three 
independent series of MCMC for each SOC profile and calculated 
the	G-	R	statistic	to	test	the	convergence	of	data	assimilation	results.	
The	mean	G-	R	values	of	the	target	parameters	were	further	calcu-
lated as the holistic performance of MCMC for each SOC profile. 

The mathematical foundations of Bayesian data assimilation and 
technical details of the MCMC method were documented by Tao 
et al. (2020).

It should be noted that the data assimilation was conducted under 
the assumption that SOC profiles are at steady state (i.e., dX(t)

dt
= 0). 

This assumption makes data assimilation computationally more fea-
sible	than	that	under	non-	steady	state	(see	the	non-	steady-	state	data	
assimilation in Zhou et al. (2013) and Zhou et al. (2015)). While soil 
carbon stocks in some ecosystems (e.g., agricultural soils) may not 
be at the steady state because of the concurrent climate change and 
human activities, previous research demonstrated that such disequi-
librium component of the transient carbon cycle dynamics, especially 
in SOC pools, is minor in comparison with the amount of SOC storage 
that was developed over thousands of years (Lu et al., 2018).

We	included	parameters	related	to	both	non-	microbial	and	mi-
crobial processes (Tables S1 and S2)	in	the	site-	level	data	assimilation	
and	 the	 following	 global	 optimization	with	 the	 PRODA	 approach.	
While we acknowledge that biological processes (and thus their re-
lated parameter values) may change in response to external distur-
bance,	 in	 this	study,	we	focus	on	the	 long-	term	spatial	patterns	of	
vertically	distributed	SOC	under	 the	steady-	state	assumption.	We	
used	multi-	year	mean	values	of	 a	preindustrial	 forcing	 (no	 climate	
change happened yet) to simulate SOC storage. Therefore, the opti-
mized	parameter	values	should	be	regarded	as	long-	term	averages.

Moreover, we designed a parameter recovery experiment to 
confirm whether parameters related to microbial processes (e.g., the 
Michaelis–Menten constants) can be recovered from data assimilation 
under	 the	 steady-	state	 assumption.	 We	 randomly	 chose	 200	 sites	
across	the	world	for	COMPAS	and	used	prescribed	parameter	values	
with	different	across-	site	variability	to	generate	a	set	of	synthetic	SOC	
data. The synthetic vertical SOC profile (20 datapoints at the 20 pre-
scribed	soil	 layers	 in	COMPAS)	was	further	used	in	the	MCMC	data	
assimilation to retrieve optimized parameter values. We found a satis-
factory agreement between the retrieved parameter values and their 
prescribed values (e.g., “mm_const_assim” and “mm_const_decom” 
in Figure S3). For parameters whose prescribed values did not show 
much	across-	site	variability	 (e.g.,	 “tau4s1”	and	 “pl1s1”	 in	Figure S3), 
MCMC method also refrained from assigning them extra variation 
across sites. The results of the recovery experiment supported the ef-
ficacy of using the MCMC method to retrieve optimized parameter 
values	from	observations	under	the	steady-	state	assumption.

We trained a fully connected multilayer neural network to predict 
the	site-	level	parameter	values	estimated	from	data	assimilation	with	
a suite of 60 environmental variables (Table S4). We chose variables 
that represent the climatic, vegetation, edaphic, and geographic con-
ditions at different sites because they are conventionally regarded as 
the driving factors that regulate the formation and stabilization of SOC 
(Jackson et al., 2017).	Parameters	 in	process-	based	models	quantify	
the strength of different soil carbon cycle processes and therefore 
should also have relationships with these environmental variables 
(Luo & Schuur, 2020). To achieve a better training effectiveness, we 
first normalized all the environmental variables and parameters to the 
interval of [0, 1] according to their maximum and minimum values. 
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    |  9 of 19TAO et al.

We	then	conducted	a	set	of	pre-	experiments	to	determine	the	best	
configuration of the neural network. The neural network used in the 
final training consisted of four hidden layers. The node numbers for 
each hidden layer were 256, 512, 512, and 256, respectively. We 
used a rectified linear unit (ReLU) as the activation function and a 
gradient descent optimization algorithm (adadelta) as the optimizer. 
The loss function was designed as the multiplication of L1 (i.e., ratio 
loss (RL): RL =

∑N

i=1

����
parai,true − parai,pred

parai,true

����
N

) and L2 (i.e., mean squared error (MSE): 

MSE =

∑N

i=1(parai,true−parai,pred)
2

N
) errors, where parai,true is the ith parameter value 

optimized	in	the	site-	level	data	assimilation,	parai,pred is the ith param-
eter predicted by the neural network, and N is the total number of 
parameters	of	the	process-	based	models	to	be	predicted	by	the	neural	
network (N = training	size	× 23	for	COMPAS	and	training	size	× 21	for	
CLM5). While both L1 and L2 are additive loss functions, we decided 
to use their multiplicative composite (i.e., L1 × L2) as the loss function 
because training with either L1 or L2 loss alone did not yield sufficient 
prediction accuracy. The batch size for each iteration of optimization 
was 32. We set a maximum of 6000 epochs to train the neural net-
work and selected the model with the lowest validation loss as the 
final training result. To avoid overfitting in training the neural network, 
we	set	a	drop-	out	ratio	of	20%	for	each	of	the	hidden	layers.

2.7  |  Global maps of SOC, residence time, and 
related model components

Global	maps	of	parameters	predicted	by	the	best-	guess	neural	net-
work using the gridded environmental variables were applied to the 
two	process-	based	models	to	generate	global	maps	of	SOC	storage	
and	 its	 related	 components	 (i.e.,	 57,267	 sets	 of	 site-	level	 data	 as-
similation	 results	 for	COMPAS	and	62,931	 for	CLM5).	 In	addition,	
we conducted bootstrapping experiments to quantify the simulation 
uncertainties	of	CLM5	and	COMPAS	after	being	optimized	by	 the	
PRODA	 approach.	 The	 original	 SOC	 database	 used	 by	 CLM5	 and	
COMPAS	was	sampled	with	replacement	200	times	and	was	used	to	
train and validate the neural network. Following a common practice 
in neural network training, for each bootstrapping, 90% of the data 
were used as training data, and the remaining 10% were used for val-
idation. The predicted parameter values after neural network train-
ing	were	then	applied	to	CLM5	and	COMPAS	to	simulate	SOC	stock	
and its related model components. The uncertainty maps of SOC 
storage and its related components are shown in Figures S4 and S5.

It should be noted that uncertainties shown in the global gen-
eralization	by	 the	PRODA	approach	only	quantify	 the	variation	of	
trained	 neural	 networks	 in	 predicting	 site-	level	 data	 assimilation	
results (i.e., the mean value of parameters' posterior distribution). 
Limited by its optimization algorithm (Tao & Luo, 2022),	PRODA	is	
not able to consider propagating the uncertainties in parameters' 
posterior	distribution	in	the	site-	level	data	assimilation	to	the	global	
scale.	 Developing	 the	 next-	generation	 data	 assimilation	 approach	
that	can	directly	integrate	process-	based	models	into	deep	learning	
algorithms will be the solution to retrieve process understanding and 
simultaneously address parameter uncertainties in optimization.

We	retrieved	the	system-	level	carbon	transfer	efficiency	(CTE),	
plant carbon inputs, allocation of input carbon to different soil lay-
ers, substrate decomposability, environmental modifications, and 
vertical	transport	from	the	optimized	parameters	of	COMPAS	and	
CLM5 (Tables S1 and S2)	via	the	PRODA	approach.	All	the	six	model	
components investigated in this study are ensembles of processes 
that	were	represented	by	different	parameters	in	the	process-	based	
model.	Note	that	all	the	system-	level	components	discussed	in	this	
study are for the soil system that integrates both litter organic car-
bon	and	mineral-	soil	organic	carbon.

Specifically,	we	calculated	the	system-	level	carbon	transfer	effi-
ciency as the sum of carbon transfer coefficients along each carbon 
transformation pathway (i.e., aij in Equations 5 and 8) weighted by 
the carbon fluxes over all the pathways in the soil system:

where aij represents the carbon transfer fraction from the donor 
pool ( j) to the recipient pool (i); xj,z is the carbon pool size at depth 
z (g C m−3); kj	 is	 the	 depth-	independent	 baseline	 decomposition	
rate (yr−1) of the corresponding carbon pool; �z represents the 
environmental modifier at depth z; and Δz is the thickness of 
zth soil layer. Note that CTE along the carbon transfer pathway 
from donor pool j to recipient pool i  (i.e., aij) is weighted by the 
flux size from donor pool j (i.e., 

∑
z

xj,zkj�zΔz ),	which	measures	 the	
amount of decomposed carbon along the j to i transfer pathway, 
normalized by the total flux in the soil system (i.e., 

∑
j

∑
z

xj,zkj�zΔz). 
A	higher	CTE	value	indicates	a	larger	amount	of	carbon	remained	
in the recipient soil pool after organic carbon is decomposed or 
transformed by biological and/or chemical and physical reactions, 
which, by definition, also associates with less CO2 released back 
to the atmosphere. It should be noted that this weighted average 
transfer efficiency is defined differently from the system CUE in 
Tao et al. (2023), which was instead calculated as ratio between 
the sum of carbon fluxes entering the microbial pool and the sum 
of carbon fluxes leaving the donor pools.

The baseline decomposition rate (unit: year−1) expresses the rate 
of organic carbon decomposition at optimal soil temperature and 
water	conditions.	We	calculated	 the	system-	level	baseline	decom-
position rate (Ksystem, unit: year−1) by weighting the baseline decom-
position rate of SOC pools by their carbon pool sizes:

Similarly, we weighted the vertical transport rate (year−1) and 
environmental modifiers (unitless) at different soil depths (z) by 
their corresponding sizes of SOC stock (i.e., xz, with unit of g C 
m−2):

(10)CTEsystem =

�
ij

aij

∑
z

xj,zkj�zΔz

∑
j

∑
z

xj,zkj�zΔz

(11)Ksystem =

�
i

ki
xi∑
i

xi

(12)
Vsystem =

�
z

⎛
⎜⎜⎝
vz

xz∑
z

xz

⎞
⎟⎟⎠
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10 of 19  |     TAO et al.

Carbon input is distributed vertically according to the distribu-
tion of root biomass at different soil depths (Jackson et al., 1996). 
Therefore, to quantify how effectively the input allocation process 
distributes litterfall and root exudation to different soil depths, we 
calculated the fraction of carbon input allocated to soil layers below 
5 cm	as	the	system-	level	index	for	plant	carbon	input	allocation:

where Yz is the cumulative fraction of input carbon at soil depth of Dz; n 
is	the	number	of	soil	layers.	A	larger	system-	level	input	allocation	index	
indicates that more carbon from litterfall and root exudation will be 
allocated to deeper soils. This index differs between models because 
the parameters describing the vertical distribution of carbon inputs are 
optimized independently in the two models, even if we used the sim-
ulated total litterfall (equivalent to NPP) in CLM5 as the plant carbon 
input for both models.

3  |  RESULTS

Process-	based	models	with	different	structures	and	customary	pa-
rameter values show diverging results in representing global SOC 
storage and spatial patterns. With its customary parameter values, 
CLM5 simulates much more SOC in the boreal regions than in the 
tropics.	In	East	Siberia	and	Alaska,	SOC	storage	is	more	than	50 kg	
C m−2	 for	 the	 first	meter,	whereas	 in	 the	Amazon	 and	Congo	 ba-
sins	 and	 Indonesia,	 the	 average	 SOC	 storage	 is	 less	 than	 10 kg	 C	

m−2 (Figure 2a,c).	As	COMPAS	does	not	have	well-	tuned	parameter	
values at the global scale, we used the global mean values of the 
selected	 parameters	 after	 site-	level	 data	 assimilation	 as	 the	 cus-
tomary parameter values. With such customary parameterization, 
COMPAS	simulates	distinctively	different	SOC	patterns	from	CLM5	
across latitudes. Tropical regions with the highest carbon input are 
simulated to store the largest amount of SOC. The average SOC 
storage	declines	from	more	than	20 kg	C	m−2	in	Amazon,	Congo,	and	
Indonesia	to	less	than	5 kg	C	m−2 in boreal regions (Figure 2b,c). The 
correlation between the simulated spatial patterns of SOC by CLM5 
and	 COMPAS	 is	 −0.026	 (logarithmically	 transformed	 SOC	 values,	
df = 45,213,	 p < .0001).	 Despite	 the	 contrasting	 spatial	 patterns,	
both models reasonably estimate the total global SOC storage with 
their	 customary	 parameter	 values.	 CLM5	 and	 COMPAS	 simulate	
1281	Pg	C	and	1308	Pg	C	preserved	as	SOC	for	the	first-	meter	soils	
across the globe, respectively. For comparison, as two commonly 
used	 observation-	based	 statistical	 products,	 HWSD	 (FAO/IIASA/
ISRIC/ISSCAS/JRC,	2012) and WISE (Batjes, 2016) estimate 1260 Pg 
C	and	1408	Pg	C	for	the	global	first-	meter	SOC	storage,	respectively.

The two structurally different models simulate similar SOC stor-
age and spatial patterns after being constrained by the same SOC 
data	 using	 the	 PRODA	 approach.	At	 the	 site	 level,	we	 found	 that	
posterior distributions of selected parameters after data assimilation 
could differ greatly from their customary values (Figure S6) and from 
site	to	site.	We	further	used	PRODA	to	generalize	the	emerging	spa-
tial	heterogeneity	of	optimized	parameter	values	 in	 site-	level	data	
assimilation to the global scale and found similar SOC simulations 
by	CLM5	 and	COMPAS.	 Based	 on	 the	 best-	guess	 neural	 network	
predictions	that	were	trained	by	all	available	site-	level	data	assimi-
lation results (see Section 2.7	for	details),	PRODA-	optimized	CLM5	
explains	57%	(median	56%,	one-	sigma	confidence	interval	53%–57%	
in	200-	time	bootstrapping)	of	the	spatial	variations	in	SOC	at	mea-
sured soil depths across the globe (Figure S7a). The predictive per-
formance	of	COMPAS	after	PRODA	optimization	is	similar	to	that	of	

(13)�system =

�
z

⎛
⎜⎜⎝
�T ,z�W ,z�D,z

xz∑
z

xz

⎞
⎟⎟⎠

(14)Bsystem =

⎡⎢⎢⎢⎣

∑
z

exp
�
ln(1−Yz)

Dz

�

n

⎤⎥⎥⎥⎦

5

F I G U R E  2 Diverging	SOC	simulation	
by structurally different models with 
customary parameter values. (a) SOC 
estimated by CLM model, (b) SOC 
estimated	by	COMPAS,	(c)	latitudinal	
variation in estimated SOC by the two 
models.
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    |  11 of 19TAO et al.

CLM5,	explaining	55%	(median	53%,	one-	sigma	confidence	interval	
52.5%–54%	 in	200-	time	bootstrapping)	of	 the	spatial	variations	 in	
global SOC observations (Figure S7b).

In simulating global SOC patterns, CLM5 continues to simulate 
higher SOC storage in the boreal regions than in the tropics. In ad-
dition	to	higher	SOC	in	East	Siberian	and	Alaska,	PRODA-	optimized	
CLM5 also identifies western Siberian lowlands as areas holding 
high SOC storage (Figure 3a,c). Meanwhile, after being constrained 
by observations, the simulated SOC storage in tropical regions in-
creased	to	an	average	value	of	more	than	10 kg	C	m−2 (Figure 3b,c). 
Simulation	results	by	COMPAS	after	PRODA	optimization	now	fol-
low a pattern similar to that by CLM5. The correlation between sim-
ulations	by	COMPAS	and	CLM5	is	0.51	(logarithmically	transformed	
SOC	values,	 df = 45,213,	p < .0001).	Notably,	 differences	 still	 exist	
in	simulating	sub-	continental	patterns	by	these	two	models.	While	
both models simulate the highest SOC storage in western Siberian 
lowlands,	 Alaska,	 and	 Canadian	 Shield,	 COMPAS	 simulates	 more	
SOC in the tropics but less SOC in East Siberian than CLM5. The 
total	SOC	storage	simulated	by	COMPAS	is	slightly	higher	than	that	
by	CLM5.	Globally,	the	total	SOC	storages	in	the	top	1 m	of	soil	esti-
mated	by	PRODA-	optimized	CLM5	and	COMPAS	are	1469	Pg	C	and	
1507 Pg C, respectively.

Simulations of key components related to SOC storage also 
converge after the two structurally different models are con-
strained by the same set of SOC data (Figure 4). We assessed the 
spatial patterns of six components simulated by the two models: 
carbon transfer efficiency, baseline decomposition, environmental 
modifier, carbon input allocation, vertical transport rate, and plant 
carbon input.

The carbon transfer efficiency quantifies the ratio of decom-
posed carbon being transferred from one carbon pool to another. 
CLM5	and	COMPAS	represent	the	carbon	transfer	efficiency	dif-
ferently (Figure 1).	 COMPAS	 explicitly	 describes	 microbial	 CUE	
that partitions the metabolized organic carbon into microbial 
biomass	 accumulation	 versus	 respiration	 and	 the	 non-	microbial	

carbon transfer related to the transformation of carbon from one 
carbon	pool	to	another	via	organo-	mineral	interactions	(Figure 1b). 
In	contrast,	CLM5	fuses	microbial	CUE	and	non-	microbial	carbon	
transfer in its structure, such that the related parameters do not 
differentiate these two processes but integrate their effects in 
simulations (Figure 1a). Thus, it is not surprising that the values of 
the carbon transfer efficiencies are in general different between 
the two models, with higher values predicted by CLM5 compared 
with	COMPAS	(Figure 4c). Yet, despite the difference in structure, 
CLM5	 and	COMPAS	 simulate	 similar	 spatial	 patterns	 of	 system-	
level carbon transfer efficiency (Figure 4c, Pearson correlation 
coefficient = 0.52,	 df = 45,228,	 p < .001)	 after	 being	 constrained	
by the same observed SOC dataset. Both models show higher 
carbon transfer efficiency in boreal regions than in the tropics 
(Figure 4a,b), which indicates that in boreal regions, more carbon 
is maintained in the soil system after SOC is decomposed or trans-
formed by biological and/or chemical and physical reactions in-
stead of being released back to the atmosphere as CO2.

The rate of SOC decomposition is determined by the substrate 
decomposability (as indicated by the baseline decomposition) and 
modified by surrounding environmental factors (i.e., soil tempera-
ture	and	moisture).	A	high	baseline	decomposition	rate	 indicates	
the organic substrate is chemically and physically more accessi-
ble to soil microorganisms (e.g., simpler chemical compounds or 
weaker interactions with the soil mineral matrix). In contrast, a 
lower environmental modifier value indicates that SOC decompo-
sition is more restricted by either low temperature or too much 
or	 little	 soil	 water.	 CLM5	 and	 COMPAS	 assume	 first-	order	 and	
Michaelis–Menten kinetics in representing SOC decomposition, 
respectively. Notwithstanding their different assumptions on the 
decomposition	 kinetics,	 PRODA-	optimized	 CLM5	 and	 COMPAS	
agree on the highest baseline decomposition rates and the low-
est environmental modifier values in boreal regions across the 
globe (Figure 4d–i). The correlation coefficients between the 
simulations	by	the	two	models	are	0.55	(df = 45,228,	p < .001)	for	

F I G U R E  3 Converging	SOC	simulation	
by structurally different models after 
data-	model	fusion	by	the	PRODA	
approach. (a) SOC estimated by CLM 
model,	(b)	SOC	estimated	by	COMPAS,	
(c) latitudinal variation in estimated SOC 
by the two models. Uncertainty maps of 
SOC storage simulations with CLM5 and 
COMPAS	in	a	200-	time	bootstrapping	
experiment are shown in Figures S4 and 
S5.
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12 of 19  |     TAO et al.

F I G U R E  4 Spatial	patterns	of	different	model	components	retrieved	by	CLM	(left	column)	and	COMPAS	(central	column)	models	using	
the	PRODA	approach.	The	right	column	shows	comparisons	between	the	model	components	retrieved	from	the	two	models.	The	model	
components were: (a–c) carbon transfer efficiency (CTEsystem, see Equation 10), (d–f) baseline decomposition (Ksystem, see Equation 11), (g–i) 
environmental modifier (�system, see Equation 13), (j–l) carbon input allocation (Bsystem, see Equation 14), (m–o) vertical transport rate (Vsystem, 
see Equation 12),	and	(p–r)	plant	carbon	input	(same	for	both	models).	Uncertainty	maps	of	these	components	with	CLM5	and	COMPAS	in	a	
200-	time	bootstrapping	experiment	are	shown	in	Figures S4 and S5.
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    |  13 of 19TAO et al.

baseline	decomposition	and	0.80	(df = 45,228,	p < .001)	for	the	en-
vironmental modifier.

However, not all components we investigated show conver-
gence after data assimilation. Vertical transport quantifies the rate 
of organic carbon moving from the surface to deeper soil layers. The 
plant carbon allocation represents the vertical distribution of car-
bon	inputs.	While	CLM5	and	COMPAS	adopt	identical	mathematical	
functions to describe these two processes (except vertical transport 
of	 mineral-	soil	 carbon),	 no	 agreement	 was	 reached	 on	 simulated	
spatial patterns after the related parameters of the two models 
were	optimized	by	the	PRODA	approach	(Figure 4j–o). Moreover, it 
should be noted that the retrieved model components using CLM5 
and	COMPAS	are	usually	far	from	1:1	lines	even	when	they	are	well	
correlated. While the two models agree well on the magnitude of 
the simulated environmental modifier (Figure 4i), the linear CLM5 
simulates higher carbon transfer efficiency values (Figure 4c) but 
lower baseline decomposition rates (Figure 4f) than the nonlinear 
COMPAS.	 This	 pattern	may	 occur	 because	 parameters	 related	 to	
carbon transfer efficiency and baseline decomposition compensate 
each	other	in	CLM5	and	COMPAS	for	a	similar	SOC	storage	simula-
tion. Even though we used the same plant carbon input (i.e., the total 
amount of carbon from plant to litter) from CESM2 outputs in sim-
ulating SOC storage by the two models (Figure 4p–r),	COMPAS	and	
CLM5 simulated differently how carbon transfers from litter to min-
eral soils (Figure 1), as quantified by the ratio between the amount 
of carbon transferred from litter to mineral soils and the total car-
bon	input.	COMPAS	simulates	larger	amounts	of	litter	carbon	to	be	
transferred to mineral soils than CLM5 (Figure S8), which requires 
higher	baseline	decomposition	rates	in	COMAS	than	CLM5	to	reach	
similar simulated SOC storage, as shown in Figure 4d–f.

The	 nonlinear	 decomposition	 kinetics	 in	 COMPAS	 can	 be	 ap-
proximated	 as	 first-	order	 kinetics	with	 respect	 to	 both	donor	 and	
receiver carbon pools after being constrained by observed SOC 
data.	Compared	with	 the	 linear	 first-	order	 kinetics	 used	 in	CLM5,	
COMPAS	 specifies	 SOC	 decomposition	 and	 DOC	 assimilation	 as	
nonlinear Michaelis–Menten kinetics. Thus, both the catalyst (i.e., 
microbes for DOC assimilation and enzyme for mSOC decomposi-
tion) and the substrate concentration (i.e., DOC for DOC assimilation 
and mSOC for mSOC decomposition) regulate substrate decompo-
sition. Mathematically, when the Michaelis constants (i.e., Km,decom 
and Km,assim) are much larger (e.g., 100 times larger) than their corre-
sponding substrate concentrations and the catalyst (i.e., DOC in as-
similation and MIC in decomposition) concentrations remain stable, 
the	Michaelis–Menten	kinetics	can	be	approximated	by	first-	order	
kinetics with respect to DOC in assimilation and mSOC in decom-
position.	After	data	assimilation	at	each	SOC	profile	using	COMPAS,	
we found that both Km,decom and Km,assim in the Michaelis–Menten 
equation are more than 100 times that of their substrate concentra-
tions (i.e., SOC and DOC concentrations) for most of the soil profiles 
(Figure 5).	Thus,	the	nonlinear	kinetics	for	enzyme-	based	mSOC	de-
composition	and	microbe-	based	DOC	assimilation	can	be	approxi-
mated	by	first-	order	kinetics	with	respect	to	mSOC	and	DOC	after	
COMPAS	is	constrained	by	globally	distributed	SOC	vertical	profiles.	

While losing the nonlinear character of the donor pool effect, these 
kinetics laws still retain the effect of microbial biomass or enzyme 
carbon, resulting in multiplicative kinetics.

4 | DISCUSSION

4.1  |  Data assimilation enables converged SOC 
simulations by structurally different models

The	 divergent	 simulations	 by	 process-	based	models	 with	 differ-
ent structures and customary parameter values reflect large un-
certainties in the current understanding of soil carbon dynamics 
with different theories and assumptions. In this study, CLM5 
and	COMPAS	 structurally	 differ	 in	 classifying	 soil	 carbon	 pools,	
quantifying SOC decomposition kinetics, and representing car-
bon transfer processes. The structural differences between these 
two models contributed to the contrasting SOC spatial patterns 
across the globe (Figure 2). Uncertainties arise also from poorly 
constrained parameters. Model parameters quantify the strength 
or represent the properties of different processes in regulating 
the soil carbon cycle (Luo & Schuur, 2020). When they are not 
well constrained, differences in parameter values across models 
can cause additional large simulation uncertainty. Previous stud-
ies	 have	 demonstrated	 that	models	 sharing	 the	 same	 first-	order	
kinetics for SOC decomposition estimated contrasting soil carbon 
residence time (Wei et al., 2022; Zhou et al., 2018) and age (He 
et al., 2016; Shi et al., 2020) due to their different choices of pa-
rameter values. These differences resulted in large uncertainties 
in	simulating	global	SOC	storage	(Todd-	Brown	et	al.,	2013). While 
all these simulations are, to some degree, plausible under given 
assumptions and theories, we need to identify the most probable 

F I G U R E  5 Relationship	between	Michaelis–Menten	constants	
and	their	corresponding	substrate	content	in	COMPAS	after	being	
constrained by observational SOC profiles. For decomposition, 
“Substrate”	is	mineral-	associated	organic	carbon	(mSOC)	and	
Km = Km,decom. For assimilation, “Substrate” is dissolved organic 
carbon (DOC) and Km = Km,assim.
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ones to better understand how the soil carbon cycle responds to 
a changing climate.

Our	 results	 show	 that	 the	vast	 inter-	model	 uncertainty	 in	 simu-
lating global SOC storage is mainly due to the lack of common ob-
servational data constraints in major processes. Regardless of their 
difference	 in	structure,	our	 results	show	well-	converged	global	SOC	
simulations	 by	 CLM5	 and	 COMPAS	 after	 being	 optimized	 by	 the	
PRODA	approach	with	 the	same	soil	carbon	observations.	The	con-
vergence	 in	 SOC	 simulations	 arises	 from	 the	 fact	 that	 the	 PRODA	
approach effectively constrains the spatial patterns of parameters of 
process-	based	models	by	the	common	observational	data.	Parameters	
in	 CLM5	 and	 COMPAS	 are	 both	 conceptually	 and	 functionally	 dif-
ferent from each other due to their structural dissimilarity (e.g., the 
turnover time values for conceptually different carbon pools and the 
carbon	transfer	coefficients	in	CLM5	and	COMPAS;	see	Figure 1 and 
Methods for details). However, the spatial distributions of parame-
ters aggregate into six model components defined in the same way, 
which exhibit some agreement between the models. Carbon transfer 
efficiency, baseline decomposition rate, and environmental modifiers 
have been identified as determinants in explaining the spatial patterns 
of	global	SOC	storage	by	process-	based	models	(Tao	et	al.,	2023) (see 
also Figure S9). In this study, these components show converged spa-
tial patterns despite structurally different models after being informed 
by observations. In contrast, other model components that are less 
important for determining global SOC storage (e.g., carbon input al-
location and vertical transport) did not converge in the simulations by 
CLM5	and	COMPAS.	This	difference	is	probably	caused	by	insufficient	
information in the data to constrain parameters underlying these spe-
cific components (more discussion on this issue in Section 4.3).

The converged simulations of SOC and its related components 
demonstrate the fact that although it is impossible to include all the 
processes	 in	 the	soil	 carbon	cycle	 into	one	process-	based	model,	un-
resolved processes can be well accounted for in model parameter val-
ues at resolved scales after data assimilation (Luo & Schuur, 2020). In 
this	 study,	 COMPAS	 explicitly	 describes	 the	microbial	 CUE	 that	 rep-
resents	the	carbon	partitioning	process	in	microbial	physiology	and	non-	
microbial carbon transfer that relates to other biological, chemical, and 
physical reactions driving organic matter transformations in soils. CLM5, 
however, does not differentiate these two processes in its structure but 
represents them through aggregated carbon transfer coefficients (see 
Methods).	After	being	optimized	by	the	PRODA	approach,	CLM5	simu-
lates	similar	spatial	patterns	of	the	carbon	transfer	index	with	COMPAS	
(Figure 4).	 Similarly,	 a	 previous	 study	 reported	 that	 a	 process-	based	
model	 that	does	not	explicitly	couple	nitrogen-	related	processes	with	
the soil carbon cycle can still well represent nitrogen limitation after its 
parameters were constrained by data (Wang et al., 2022).

4.2  |  Data assimilation identifies most probable 
decomposition kinetics at global scale

Representations of organic carbon decomposition in soils has been 
debated for decades. In this study, we compared two possible SOC 

decomposition	kinetics	at	the	global	scale,	namely	a	linear	first-	order	
kinetic model in CLM5 and a nonlinear Michaelis–Menten kinetic 
model	in	COMPAS.	Our	data	assimilation	results	suggest	that	first-	
order kinetics may be the simplest and effective mechanism in ex-
plaining	global	SOC	storage	and	 its	spatial	patterns.	After	PRODA	
optimization,	 CLM5	 and	 COMPAS	 show	 similar	 performance	 in	
explaining	 the	 spatial	 variability	of	SOC	across	 the	globe.	A	 linear	
model such as CLM5 that adequately considers the spatial hetero-
geneity of its parameters can sufficiently capture the variability in 
space simulating the soil carbon cycle. Indeed, notwithstanding its 
simplicity, the linear relationship between the decomposition rate 
and the substrate concentration has been observed from macro-
scopic litter and soil organic carbon decomposition experiments (Cai 
et al., 2018; Luo, 2022; Schädel et al., 2014; Xu et al., 2016; Zhang 
et al., 2008).

Microorganism-	centric	 kinetics	 (e.g.,	 Michaelis–Menten	 kinet-
ics) that considers enzymatic depolymerization has been advocated 
in recent years to account for the nonlinearity in organic carbon de-
composition such that the decomposition rate is a function of both 
the substrate and the enzyme concentrations. Nonlinear kinetics can 
help capture the spatial variability of soil carbon dynamics (Wieder 
et al., 2013) and is necessary for understanding lignin decomposition 
(Liao et al., 2022) and priming effects (Wutzler & Reichstein, 2008). In 
this study, our data assimilation results show that, at the global scale, 
nonlinearity	 in	COMPAS	does	not	necessarily	 lead	to	more	accurate	
quantification of SOC storage than CLM5. In fact, after being informed 
by	data	constraints,	the	Michaelis	constants	in	COMPAS	were	much	
larger than their corresponding substrate concentrations (Figure 5). 
In such a case, the Michaelis–Menten kinetics can be mathematically 
approximated by a linear structure with respect to its corresponding 
substrate,	but	also	including	a	first-	order	effect	of	the	receiver	pool,	
resulting in a multiplicative kinetics.

It should be noted that diversity in model structures is still nec-
essary for a better understanding of the soil carbon cycle at differ-
ent spatial and temporal scales. Microbial models with nonlinear 
structures can be useful for studying complex carbon dynamics at 
small scales that linear models cannot explain (Liao et al., 2022; 
Manzoni & Porporato, 2007). Meanwhile, microbial responses to 
environmental fluctuations are highly nonlinear and can be cap-
tured only by modeling specific microbial processes (Brangarí 
et al., 2020). Moreover, models simulating SOC storage with 
different structures can perform differently across subregions, 
suggesting that some structures are more suitable for certain ped-
oclimatic conditions. For example, we have detected different pat-
terns	of	SOC	storage	simulated	by	CLM5	and	COMPAS	in	boreal	
(e.g.,	 East	 Siberia)	 and	 tropical	 regions	 (e.g.,	 Amazon	 and	Congo	
Basins), even though the common observational SOC data con-
strained both models. The Michaelis–Menten kinetics investigated 
in this study is only one possibility from an array of theories. How 
other nonlinear kinetics, such as reverse Michaelis–Menten kinet-
ics (Tang & Riley, 2019), perform in simulating SOC at different 
scales in comparison with linear models requires more studies in 
the future.
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4.3  |  More and high- quality data required to 
diminish prediction uncertainty

Uncertainty still exists in predicting SOC storage by structur-
ally	 different	 models	 after	 PRODA	 optimization	 (Figure S6). The 
PRODA	approach	used	 in	this	study	reveals	the	spatial	heteroge-
neity	of	model	parameters	after	site-	level	data	assimilation.	Thus,	
at	the	global	scale,	PRODA	optimizes	about	1.41 million	parameter	
values (21 selected parameters for each of the 66,935 vertical 
SOC	profiles)	for	CLM5	and	1.37 million	parameter	values	 (23	se-
lected parameters for each of the 59,476 vertical SOC profiles) for 
COMPAS	across	observational	sites.	The	posterior	distributions	of	
different parameters showed substantial uncertainties after data 
assimilation at the site level. In an example of data assimilation at 
one site (Figure S6), while a few parameters can be well constrained 
by vertical SOC profile data, resulting in narrower posterior distri-
butions than the priors, more than half of the selected parameters 
had weak identifiability to the observations such that their poste-
rior distribution showed flat shapes within the prior ranges.

The identifiability of different parameters is associated with 
the convergence of their corresponding model components by 
structurally different models and further affects the final global 
SOC simulations (Luo et al., 2009). For parameters well constrained 
by vertical SOC profiles in data assimilation, their corresponding 
model components (e.g., carbon transfer efficiency, baseline de-
composition, and environmental modifiers) also showed similar 
spatial	patterns	between	CLM5	and	COMPAS	despite	differences	
in model structures. The revealed spatial patterns of these model 
components further presented high explanatory power to pre-
dict	model-	simulated	SOC	spatial	patterns	across	 the	globe	 (Tao	
et al., 2023) (Figure S9). In contrast, for parameters that are less 
identifiable after data assimilation, different choices of optimized 
parameter value could lead to similar simulation of SOC storage, 
causing	 the	 so-	called	 equifinality	 problem.	 Even	 simple	 mod-
els constrained by detailed data face this problem (Marschmann 
et al., 2019). Thus, the spatial pattern of their corresponding com-
ponents, such as vertical transport and carbon input allocation, 
did	not	agree	well	between	CLM5	and	COMPAS	after	data	assim-
ilation in different models. Their spatial variability was also less 
responsible for the predictive accuracy of global SOC simulations 
(Figure S9).	In	the	future,	improved	performance	of	process-	based	
models in simulating the global patterns of SOC storage relies on a 
better understanding of those key components (e.g., carbon trans-
fer, baseline decomposition, and environmental modifier) and their 
underlying mechanisms (e.g., microbial carbon use efficiency and 
organo-	mineral	interactions).

The equifinality problem (or weak identifiability of parameters) 
imposes challenges to using the optimized models to predict fu-
ture SOC changes under climate change. In this study, we found 
that the spatial patterns of vertical transport and carbon input al-
location	may	be	less	consequential	to	simulating	steady-	state	SOC	
storage at the global scale. However, both these processes can 
influence the physical disconnection of SOC from decomposers, 

so they could regulate the transient dynamics of SOC in response 
to climate change, warranting further investigations. Moreover, 
despite reasonable correlations between results retrieved from 
the two structurally different models, carbon transfer efficiency 
and	baseline	decomposition	simulated	by	CLM5	and	COMPAS	are	
numerically different (i.e., not on the 1:1 line in Figure 4). Whether 
structurally	different	models	after	PRODA	optimization	can	also	
predict converged SOC changes at different temporal scales is still 
an open question.

Higher oversight of data quality control and broader inclusion 
of other types of observational data related to soil carbon cycle 
at different spatial–temporal scales are the keys to resolving the 
equifinality problem and better predictions of SOC dynamics. Our 
results	demonstrated	that	applying	the	PRODA	approach	with	ob-
servational constraints can effectively realize converged simula-
tions of SOC storage by structurally different models, even if they 
could	generate	contrasting	 simulation	 results	before	PRODA	opti-
mization.	While	providing	comprehensive	and	quality-	controlled	soil	
data worldwide, the dataset used in this study still has substantial 
measurement uncertainty in SOC content data (Batjes et al., 2020). 
The absence of SOC content information at deeper soils and irreg-
ularities of vertical SOC profiles resulting from measurement errors 
could cause difficulties in data assimilation convergence and param-
eter optimization to simulate SOC storage accurately (see descrip-
tions in Section 2.1). Thus, higher oversight of quality control and 
quality assurance is critical to improving prediction and understand-
ing of SOC storage across scales.

Moreover, beyond SOC content data, an array of measure-
ments	 could	 be	 used	 in	 the	 PRODA	 approach	 to	 further	 im-
prove model predictive ability and inform model development. 
Measured carbon pools with clear physical meanings, such as par-
ticulate	and	mineral-	associated	organic	carbon,	can	help	constrain	
their	 conceptual	 counterparts	 in	models	 (Abramoff	 et	 al.,	2022; 
Guo et al., 2022). Meanwhile, time series flux data for the decom-
position of different soil carbon pools and isotopes could help 
better understand decomposition kinetics and varying nutrient 
limitation mechanisms (Manzoni et al., 2021). In addition to car-
bon pool and flux data, microbial trait data can inform some model 
parameters or offer avenues for testing emerging properties such 
as CUE. For example, data related to microbial carbon use effi-
ciency	 could	 constrain	 carbon	 transfer-	related	 parameters,	 but	
only if measurements represent in situ conditions (e.g., using the 
18O incorporation method instead of adding labile 13C sources) 
(Geyer et al., 2019). Moreover, including observations related to 
vegetation and hydrology dynamics in data assimilation may be 
more effective in understanding the spatial patterns of carbon 
input allocation and vertical transport.

5  |  CONCLUSION

This	study	highlights	the	importance	of	high-	quality	field-	measured	
data in informing model development and constraining simulations. 
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While diverse model structures stemming from different assump-
tions and theories, as well as the choices of parameter values, gener-
ate diverse possibilities in simulating SOC storage, data assimilation 
identifies the most probable ones that best explain the observations. 
The	PRODA	approach	used	in	this	study	optimizes	the	parameters	
of	a	model	based	on	first-	order	kinetics	(i.e.,	CLM5)	and	one	based	
on	Michaelis–Menten	 kinetics	 (i.e.,	 COMPAS).	 The	 two	 optimized	
models lead to convergence in simulating spatial patterns of both 
SOC storage and its related key components (i.e., the main contrib-
uting mechanisms), such as carbon transfer and baseline decompo-
sition.	Moreover,	our	PRODA	approach	reveals	that	the	first-	order	
kinetics has an equally effective explanation of SOC storage as the 
Michaelis–Menten kinetics at the global scale. In the future, it is still 
critical to explore various processes of the soil carbon cycle at differ-
ent scales by developing structurally different models to be tested 
with	new	field-	measured	datasets.	The	development	of	 tools	such	
as	PRODA	will	be	critical	in	reconciling	field	observations	and	theo-
retical reasoning in modeling. New findings and patterns revealed by 
the	PRODA	approach	will	further	stimulate	new	data	acquisition	and	
improvement of models.
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