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We study the non-equilibrium dynamics of the dissipative quantum East model via numerical
tensor networks. We use matrix product states to represent evolution under quantum-jump unrav-
ellings for sizes beyond those accessible to exact diagonalisation. This allows us to demonstrate
that dynamical heterogeneity accompanies slow relaxation, in analogy with what is seen in classical
glassy systems. Furthermore, using variational matrix product operators we: (i) compute the spec-
tral gap of the Lindbladian, and show that glassiness is enhanced in the presence of weak quantum
fluctuations compared to the pure classical case, and (ii) obtain the dynamical large deviations by
calculating the leading eigenvector of the tilted Lindbladian, and find clear evidence for a first-order
active-inactive dynamical phase transition. We also show how to directly sample the rare quantum
trajectories associated to the large deviations.

Introduction.- Kinetically constrained models
(KCMs) serve as an important paradigm for understand-
ing non-equilibrium dynamics. Originally introduced to
model the steric interactions responsible for the slow
relaxation of structural glasses [1–4], classical KCMs
provide the combination of simple static properties with
complex cooperative dynamics due to constraints [5–9].
Quantum KCMs in turn appear in several contexts,
one being Rydberg atoms where strong interactions
are responsible for either “Rydberg blockade” (encoded
in the PXP model [10–12]) or “facilitated” dynamics
[13–19]; another, a scenario for non-ergodicity due to
constraints rather than disorder [20–29].

In this paper, we focus on the dynamics of quantum
KCMs in the presence of an environment, specifically on
the open quantum East model (OQEM) [30], which gen-
eralises the well-studied East model to a quantum dissi-
pative setting. We consider both the typical dynamics
and the large deviations of the OQEM using numerical
tensor networks (TNs) [31, 32]. We simulate quantum
trajectories of pure states under quantum-jump unravel-
lings for large system sizes using matrix product states
(MPS) [33, 34] as an ansatz for the wavefunction [35],
an approach well suited to this problem, as constrained
dynamics limits the growth of entanglement. We also
use variational matrix product operators (vMPOs) [36]
to directly approximate the eigenvectors of the Lindbla-
dian and: (i) estimate the spectral gap of the genera-
tor of the dynamics in order to quantify the relaxation
time, showing convincingly “re-entrant” behaviour [37],
whereby a small amount of quantum fluctuations slows
dynamics compared to the classical limit; (ii) calculate
the dynamical large deviations (LDs) [38–40], showing
the existence of an active-inactive dynamical phase tran-
sition, in analogy with the classical East model [41]. Our
results extend the applicability of TN methods for the
study of rare events in classical stochastic systems [42–
52] to quantum stochastic systems.

Open Quantum East Model.- We consider an
open quantum system whose evolution is given by a
Lindblad–Gorini–Kossakowski–Sudarshan [53, 54] mas-
ter equation, ρ̇t = L[ρt], where ρt is the density matrix
of the system at time t, with super-operator L that gen-
erates this dynamics (the so-called Lindbladian) [55],

L[·] = −i[Ĥ, ·] +D[·]. (1)

The OQEM [30, 56] is defined in terms of a one-
dimensional lattice of N qubits with Hamiltonian

Ĥ = Ω

N∑
j=1

f̂j σ̂
x
j , (2)

and dissipator

D[·] =
∑

α=+,−

N∑
j=1

Ĵα,j · Ĵ†
α,j −

1

2
{Ĵ†

α,j Ĵα,j , ·} (3)

with jump operators

Ĵ+,j =
√
γf̂j σ̂

+
j , Ĵ−,j =

√
κf̂j σ̂

−
j , (4)

where σ̂+
j = |1⟩ ⟨0| and σ̂−

j = |0⟩ ⟨1| are the spin-1/2

ladder operators acting on site j, with σ̂x
j = σ̂+

j + σ̂−
j .

Both the term of the Hamiltonian (2) and the jump
operators (4) that act on site j depend on the kinetic

constraint operator f̂j [30]. This is a projector that de-
pends on the state of the neighbouring site j−1 and acts
as an operator-valued rate that determines whether a lo-
cal transition can take place depending on its neighbours,
in analogy with how classical KCMs are defined [5]. The

form of f̂j is chosen [30] such that the stationary state of
Eq. (1) is the same as in the unconstrained case (when

all f̂j = 1),

ρss =

N⊗
j=1

(
pe |e⟩ ⟨e|j + pu |u⟩ ⟨u|j

)
, (5)
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FIG. 1. Open quantum East model and TNs. (a) Local
classical (or computational) basis states |1⟩ and |0⟩ (“up” or
“down”) are represented by empty (white) or filled (black) cir-
cles, respectively. The local “excited” and “unexcited” states,
|e⟩ and |u⟩, are superpositions (see Refs. [30, 56] for their spe-
cific forms), shown as bright (yellow) and dark (purple) cir-
cles, respectively. (b) Coherent transitions are allowed only
if the neighbour to the left has a projection onto the excited
state, see Eq. (2). (c) Same for dissipative transitions, see
Eq. (4). (d) MPS are used to approximate wavefunctions,
|ψt⟩, and MPOs density matrices, ρt. The internal bonds
have dimensions D and χ, respectively. Open (physical) legs
have dimensions 2 and 2× 2, respectively.

where |u⟩j , |e⟩j are the eigenstates of the local stationary
density matrix at j, and pu, pe its eigenvalues [30], with
pu + pe = 1. We label the states according to their prob-
abilities, such that pe ≤ pu, and we call |e⟩j excited and

|u⟩j local unexcited states. The constraint then reads [30]

f̂j = |e⟩ ⟨e|j−1 ≡ P̂ e
j−1, (6)

where P̂ e
j is the projector onto the local excited state.

The local states and transitions of the OQEM are illus-
trated in Fig. 1(a-c). As shown originally in Ref. [30], the
choice Eq. (6) guarantees that the stationary state of the
OQEM is the product state Eq. (5). In the limit Ω = 0
the dynamics generated by Eqs. (1-4) is equivalent to that
of the classical East model at temperature 1/ ln (γ/κ) [cf.
Fig. 1(c)], so that by tuning Ω we can investigate the in-
terplay of classical and quantum relaxation mechanisms.
For convenience, in what follows we study the OQEM
with the open boundary condition P̂ e

0 = 1.
Tensor networks.- TNs are efficient parametrisa-

tions of high dimensional objects, such as states and oper-
ators, in terms of smaller tensorial objects [32–34, 57–61].
An especially useful decomposition for the wavefunction
of a one dimensional system is the matrix product state
(MPS) [34], shown pictorially in Fig. 1(d): each lattice
site is given its own rank-3 tensor (blue circles), with
physical dimension d (= 2 in our case) for the vertical
legs, and virtual or bond dimension D for each of the
horizontal legs. Each tensor is connected to its neigh-
bouring tensors along the lattice sites via its virtual

legs, with the many-body state obtained by contract-
ing (i.e. multiplying and summing over the connected
indices) all virtual legs. The number of parameters in
such an MPS is O(NdD2), which is much smaller than
what is required to represent a generic vector for large
N , at the price of only accurately describing a subset of
the Hilbert space with entanglement upper-bounded by
SE ≤ 2 logD, which happens to approximate well ground
states of local Hamiltonians [62].
A similar ansatz can be applied to operators acting on

a 1D system. Such a matrix product operator (MPO) [63–
65] is depicted in Fig. 1(d) for the density matrix: each
local tensor is of rank-4, with two physical dimensions
(each d = 2) and two virtual dimensions (each χ). For
physical states, this MPO needs to be positive, and while,
strictly speaking, positivity cannot even be decided at the
level of the local tensors [66, 67], in practice many MPO
algorithms can approximately preserve it [68].
We use both MPS and MPOs to investigate the OQEM

for sizes beyond those accessible to exact diagonalisation:
(i) MPS to simulate the quantum trajectories of pure
states evolving under a quantum jump unravelling [69];
(ii) variational MPOs (vMPOs) to estimate the spectral
gap of the Lindbladian, and to estimate the leading eigen-
vectors of tilted Lindbladians that encode the large de-
viations [70]; and (iii) both in conjunction to efficiently
generate quantum trajectories that realise the dynami-
cal large deviations. For details of the methods used see
Ref. [71].
Quantum trajectories and dynamical

heterogeneity.- We study first the quantum trajectories
of the OQEM under a quantum jump unravelling [72].
This corresponds to a continuous-time quantum Markov
chain where the pure state |ψt⟩ is evolved determinis-

tically, |ψt+∆t⟩ = e−i∆tĤeff |ψt⟩ /||e−i∆tĤeff |ψt⟩ || (with
Ĥeff = Ĥ − i

2

∑
α,j Ĵ

†
α,j Ĵα,j), punctuated stochastically

by quantum jumps, |ψt⟩ → |ψ′
t⟩ = Ĵµ |ψt⟩ /||Ĵµ |ψt⟩ ||,

with transition rates wµ(|ψt⟩) = ⟨ψt|Ĵ†
µĴµ|ψt⟩⟨ψt|ψt⟩.

By modelling the state using a MPS ansatz with a
bond dimension that can be dynamically adjusted [69]
to account for the fluctuating levels of entanglement,
we can simulate these trajectories for sizes much larger
than those accessible by exact methods in previous
works [30, 56]. For implementation details see Ref. [71].
Figure 2 shows trajectories starting with all sites in

the unexcited state, |ψ0⟩ =
⊗N

j=1 |u⟩j , and we plot

the local projections onto the excited state, ⟨P̂ e
j ⟩t =

⟨ψt|P̂ e
j |ψt⟩. Panel (a) shows a trajectory for γ/κ = 1/2

and Ω/κ = 1/4 with system size N = 100 and total
time κT = 2000: despite the coherent driving, it be-
ing relatively weak means that quantum superpositions
are mostly suppressed; the trajectory looks like those in
the classical model, with the characteristic “space-time
bubbles” of inactivity that give rise to dynamical hetero-
geneity [73]. Panel (b) shows a trajectory for γ/κ = 0
(i.e. “zero temperature”) and Ω/κ = 1: the absence of
the dissipative excitation process means that the coher-
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FIG. 2. Quantum jump trajectories of the OQEM.
(a) Local projection onto the excited, ⟨P̂ e

j ⟩t, as a function of
rescaled time, κt, from a quantum trajectory starting from
|ψ0⟩ = ⊗

⊗N
j=1 |u⟩j , for γ/κ = 1/2, Ω/κ = 1/4. (Note that

the open boundary conditions are such that site j = 1 is
always allowed to flip.) (b) Same for γ = 0, Ω/κ = 1. (c)
Same for γ = 0, Ω/κ = 2 (note that both system size and
overall time are smaller than in other panels).

ent driving is the only mechanism to give rise to relax-
ation; the dynamical fluctuations here are greater than
in the weakly perturbed classical case, and the system
exhibits a large degree of dynamical heterogeneity that
is quantum in origin. Panel (c) shows the same but for
lager driving, Ω/κ = 2 (for N = 40 and T = 100 as re-
laxation is faster in this case): the quantum effects are
more pronounced and the increased coherent driving re-
duces dynamical fluctuations.

Relaxation timescale and re-entrant glassy
behaviour.- The quantum trajectories of Fig. 2 illustrate
the basic physics of the OQEM. Due to the constraint,
relaxation propagates from regions with excitations to
regions without. For an empty initial condition such as
that of Fig. 2 (with an active boundary), in the clas-
sical limit it is known that the excited region expands
ballistically into the unexcited region, eventually relax-
ing the whole system (proven rigorously in the asymp-
totic limit in Ref. [74] for such KCMs). The finite space
and time trajectories of Fig. 2 suggest that this is also
the case for the OQEM. Relaxation speed is determined
both by the dissipative excitation process, controlled by
the “classical” rate γ/κ, and by the coherent process, of
scaled strength Ω/κ. As in the classical case [41, 75–77],

the trajectories show coexistence of space-time regions of
high and low activity. For small γ/κ and Ω/κ, relaxation
is slow and glassy.
The typical relaxation timescale from an arbitrary con-

figuration [78] is given by the inverse of the spectral gap
of the Lindbladian [79–82]. We can estimate the gap us-
ing a variational optimisation of the eigenvectors of the
Lindbladian represented as a MPO [36] (see Ref. [71]
for details). The results of this approach are shown in
Fig. 3 where we plot the gap of the OQEM relative to
the classical case,

g(γ/κ,Ω/κ) =
δ(γ/κ,Ω/κ)

δ(γ/κ, 0)
− 1, (7)

as a function of the coherent driving Ω/κ for two val-
ues of the dissipative excitation rate, panel (a) show-
ing γ/κ = 1/5, and panel (b) γ/κ = 1/2. The defini-
tion Eq. (7) makes g > 0 if relaxation is faster than in
the classical limit, and g < 0 if it is slower. Figure 3
shows that the addition of a small amount of quantum
coherence (Ω/κ ≳ 0) enhances glassiness within the dy-
namics, a phenomenon sometimes referred to as quantum
re-entrance [37]. When the strength of the quantum co-
herence is increased enough, the gap eventually increases
resulting in a faster than classical relaxation. Our results
seem to confirm the trend observed in Ref. [30] for a dif-
ferent KCM - the open quantum Fredrickson-Andersen
model - for sizes up to N = 5 (such that the Lindbladian
can be diagonalised numerically exactly). In contrast,
with our TN methods here we are able to reach up to sizes
N = 36 for the OQEM. Note that in Fig. 3 the relative
gap Eq. (7) appears to converge with N , which suggests
that the observed behaviour holds for larger N . Further-
more, the error bars for each data point are small (see
Ref. [71] for details), indicating a reasonable approxima-
tion of eigenvalues of L: while there is no guarantee that
the TN method is approximating the eigenvalue with the
smallest real part, at worst our results are an estimate of
an upper bound to the spectral gap.
Large deviations and dynamical phase

transitions.- The pronounced fluctuations in the
quantum trajectories of the OQEM shown in Fig. 2
are suggestive of coexistence between dynamics that is
active and fast relaxing and dynamics that is inactive
and unable to relax. Classically [41, 75] this behaviour
is most naturally quantified through the statistics of the
dynamical activity [39, 83, 84]. The equivalent for open
quantum systems [70] is through the statistics of the
total number of quantum jumps.
The probability to observe a number K of quantum

jumps in a quantum trajectory of time extent t is Pt(K).
For large t this probability will obey a large deviation
(LD) principle [38], Pt(K) ≍ e−tφ(K/t), with φ(k) the LD
rate function [85]. The same statistics is encoded in the
moment generating function Zt(s) =

∑
K Pt(K)e−sK ,

where s is the counting field conjugate to K [70]. The
corresponding LD principle reads Zt(s) ≍ etθ(s), where
θ(s) is the scaled cumulant generating function (SCGF)



4

FIG. 3. Re-entrant glassiness due to quantum fluc-
tuations. (a) Relative gap g(γ,Ω) as a function of coher-
ent driving relative to dissipative excitation rate, Ω/γ, for
γ/κ = 1/5. The dotted line at zero separates the regime of
faster-than-classical relaxation (g > 0) from that of slower-
than-classical (g < 0). The symbols show the vMPO results
for sizes N = 6 − 36, and the dashed line shows the exact
diagonalization result for N = 6 for reference. (b) Same for
γ/κ = 1/2.

[70]. For open quantum dynamics, the SCGF can be ob-

tained from the tilted Lindbladian Ls[·] = −i[Ĥ, ·]+Ds[·]
[70], which for the OQEM has dissipator, cf. (3),

Ds[·] =
∑

α=+,−

N∑
j=1

e−sĴα,j · Ĵ†
α,j −

1

2
{Ĵ†

α,j Ĵα,j , ·}. (8)

Specifically, the SCGF θ(s) is the largest eigenvalue of Ls,
with right and left eigenmatrices, Ls[Rs] = θ(s)Rs and
L†
s[Ls] = θ(s)Ls [70]. Knowing θ(s) we can recover the

rate function, and thus the distribution ofK, by inverting
the Legendre transform, θ(s) = −mink[ks+ φ(k)] [38].

We can compute the SCGF numerically for the OQEM
by estimating either of the eigenmatrices Rs or Ls us-
ing non-Hermitian vMPOs [36]. In practice, we find the
method is more stable and has a better accuracy when
targeting Ls. The results for the SCGF obtained in this
way are shown in Fig. 4 for the case of γ/κ = 0 and
Ω/κ = 1. For these parameters, we are able to find
results with our desired accuracy of ε ≤ 10−3 for sys-
tem sizes up to N = 36 (see Ref. [71] for details). The
SCGF θ(s)/N is shown in Fig. 4(a) as a function of s:
for small s ≳ 0, the SCGF follows the (linear response)
branch θ(s) ≈ −sk(0) where k(0) is the average K (per
unit time) in the stationary state (5) (black dashed line),
while at sc(N) ≳ 0 (which decreases with system size)
there is a sharp crossover away from linear response. The
tilted dynamical activity is given by the derivative of the
SCGF, k(s) = −θ′(s), and is shown in Fig. 4(b): this
shows that the change at sc(N) ≳ 0 in the SCGF corre-
sponds to a sharp drop in activity, indicating a first-order
dynamical phase transition in the large size limit. Fig-
ure 4(c) shows the corresponding rate function: the first-
order transition manifests as large fluctuations in K due
to the coexistence between an active (largeK) dynamical
phase and and inactive (small K) one.

Optimal dynamics for sampling the large
deviations.- Our MPO approximation to the left eigen-
matrix of Ls allows us to realise the optimal dynamics
that samples the rare quantum trajectories that realise
the large deviations as controlled by s. This is done via
the quantum generalisation [70, 86–88] of the classical
generalised Doob transform [89–92].
For quantum open systems it is important to note that

the Lindbladian is not the quantum equivalent of a classi-
cal Markov generator, as it only generates the dynamics
of the average state. The equivalent operator is what
in Refs. [87, 88] is called “unravelled generator”, which
generates the stochastic quantum trajectories. While one
can do a “quantum Doob transform” [70, 86] at the level
of the Lindbladian and obtain average behaviour compat-
ible with s ̸= 0, in order to generate actual rare tajecto-
ries at s ̸= 0 optimally we need to perform a Doob trans-
form at the level of the unravelled generator [87, 88]. This
gives a stochastic jump dynamics with the same Hamil-
tonian, Eq. (2), but jumps executed by operators similar
in form to those in Eq. (4) but with modified rates [88]

ws
µ(|ψt⟩) = e−s

⟨ψt|Ĵ†
µLsĴµ|ψt⟩

⟨ψt|Ls|ψt⟩
, (9)

where µ stands for α = ±1, j for the OQEM, cf. Eq. (4).
The MPO approximation of Ls allows us to efficiently ob-
tain Eq. (9) as a TN calculation (see Ref. [71] for details)
in a way that generalises to quantum stochastic dynamics
the TN approach of Refs. [48, 52].
We show quantum trajectories sampled optimally (i.e.

on demand at the required value of s, without the need
for post-processing) using our implementation of the op-
timal Doob dynamics in Fig. 4(d) for N = 30. The top
panel is for the active phase (s = −0.1) and shows a
characteristic trajectory of high activity (without inac-
tive space-time bubbles, cf. Fig. 2). The bottom panel
is for the inactive phase (s = 0.1) and shows a charac-
teristic trajectory with activity only localised near the
boundary.
Discussion.- By means of numerical tensor networks,

we have investigated the non-equilibrium dynamics of the
dissipative quantum East model. We have shown the ex-
istence of dynamical heterogeneities in the quantum tra-
jectories, using an MPS approximation to the stochastic
pure states. By estimating the spectral gap of the Lind-
bladian, we were able to show explicitly that the presence
of weak quantum fluctuations increases the relaxation
time for the model, thus enhancing glassiness and giv-
ing rise to re-entrance, i.e., non-monotonic behaviour of
the relaxation time as a function of coherent driving. Fi-
nally, we investigated the large deviation statistics of the
number of quantum jumps, showing that the model ex-
hibits an active-inactive first-order phase transition, very
similar to what occurs in classical KCMs. We demon-
strated that the features above occur also when the only
source of relaxation is through coherent processes (i.e.,
when the classical processes are at zero temperature).
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FIG. 4. Dynamical large deviations and optimal sampling. (a) SCGF θ(s)/N as a function of s from the vMPOs
approximation to the leading eigenmatrix Ls. We show sizes N = 6 − 36 (symbols) together with N = 6 (dashed line) from
exact diagonalisation for comparison. At small s, the SCGF goes as θ(s) ≈ −sk(0) (dashed line), where k(0) is the average
dynamical activity at stationarity per unit time. For larger s it departs from the linear response behaviour, with the crossover
taking place at smaller s with increasing size, indicative of a phase transition. (b) Dynamical activity, k(s)/N = −θ′(s)/N .
The sharp drop (which gets more pronounced with size) indicates a first-order transition. (c) Rate function φ(k)/N . The
broadening corresponds to (active/inactive) phase coexistence, which gets sharper with increasing size. (d) Characteristic
quantum trajectories of the active (s = −0.1, top panel) and inactive (s = 0.1, bottom panel) phases sampled using the optimal
(Doob) dynamics.

Furthermore, we showed how to efficiently sample tra-
jectories corresponding to the dynamical large deviations
by constructing an accurate approximation to the opti-
mal Doob dynamics. Our results here are another step in
expanding the range of tensor network methods to study
stochastic dynamics and rare events [45–52].
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