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We study the dynamics and thermalization of the Fredkin spin chain, a system with local three-
body interactions, particle conservation and explicit kinetic constraints. We consider deformations
away from its stochastic point in order to tune between regimes where kinetic energy dominates
and those where potential energy does. By means of exact diagonalisation, perturbation theory and
variational matrix product states, we show that the stochastic point is where a transition occurs
between a phase of fast thermalization to one of slow metastable (prethermal) dynamics. This
change in relaxation is connected to the emergence of additional kinetic constraints which lead to
the fragmentation of Hilbert space in the limit of a large potential energy. We also show that this
transition can lead to thermalization being evaded for special initial conditions due to non-thermal
eigenstates (akin to quantum many-body scars). We provide clear evidence for the existence of these
non-thermal states for large system sizes even when far from the large-potential-energy limit, and
explain their connection to the emergent kinetic constraints.

I. INTRODUCTION

Recent years have seen many developments in the un-
derstanding of the dynamics and thermalization of quan-
tum many-body systems. The eigenstate thermalization
hypothesis (ETH) [1, 2] implies that, for generic models,
the long-time local properties of large isolated quantum
many-body systems are determined entirely by the en-
ergy density of the system: the conditions of the initial
state are lost, and the expectation values of local observ-
ables are described by the thermal ensemble at a temper-
ature given by the conserved energy (for reviews, see e.g.
Refs. [3–5]). While the ETH has been extensively verified
both numerically (e.g. Refs. [6–10]) and experimentally
(e.g. Refs. [11–15]) for a vast number of scenarios, there
has been a great deal of interest in understanding systems
which do not obey it.

A prime example of systems which violate the ETH are
integrable systems (for reviews, see e.g. Refs. [16, 17]).
Such systems have an extensive number of conserved
quantities, allowing them to retain key information from
initial conditions and avoid thermalization [5] (converg-
ing instead to the so-called generalised Gibbs ensem-
ble [18, 19]). A second example of non-ergodicity is
thought to be that of many-body localisation (MBL) [20–
23], where the combination of interactions and strong
quenched disorder leads to the proliferation of emergent
conserved quantities (although it is still debated whether
MBL is truly stable or only metastable [24–27]).

Given the above, there has been a great interest in un-
derstanding what conditions can yield non-thermalising
dynamics beyond the paradigm of integrability, in par-
ticular in the absence of quenched disorder. There are
a number of frameworks now understood to lead to non-
thermal behaviour even at long times. Examples include
translationally invariant systems with boundary-localised
almost-conserved operators, or “strong zero modes” [28–

33], systems with kinetic constraints [34–38], systems in
tilted potentials [39–41], lattice gauge systems [42–45],
and (dissipative) non-Hermitian quantum Hamiltonians
displaying “skin effects” [46, 47]. A promising avenue of
research is the recently discovered area of quantum many-
body scars (QMBS) [48, 49] (for reviews see Refs. [50–53]).
This is the name given to non-thermal eigenstates in an
otherwise thermalising Hamiltonian. Originally discov-
ered [48] in the PXP constrained model [54, 55] to ex-
plain the non-thermal behaviour observed in cold atom
experiments [56], there are now many systems known to
host QMBS, see for example Refs. [57–65].

In this paper, we study quantum Fredkin spin chains
[66] with an additional parameter to deform the Hamil-
tonian away from its stochastic point in order to explore
slow thermalisation and the existence of QMBS. This is
similar in spirit to the study in Ref. [37] of the kinetically
constrained quantum East model [34], which showed the
existence of a large number of non-thermal eigenstates
responsible for its slow relaxation dynamics. Like in the
quantum East model, here we find in the Fredkin model
a transition from a dynamical phase of fast relaxation to
one of slow thermalisation. Furthermore, we show that
in this model there exist non-thermal eigenstates remi-
niscent of QMBS. We explain this behaviour through the
emergence of a folded model [67, 68], that is, a quantum
dynamics that is more constrained than what is explicitly
stated by the dynamical rules of the Hamiltonian, and
which is responsible for the intermediate time dynam-
ics. We note that, while having some similarities, the
QMBS we find here for the Fredkin model are distinct
from those of Refs. [62, 63] which consider generalised
Fredkin chains.

The paper is organised as follows. In Sec. II we in-
troduce the model and its Hamiltonian, and describe its
symmetries and its known ground-state phase diagram
[69, 70]. Section III explains the emergence of the folded
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model in the large potential energy limit: this is a more
constrained version of the original Hamiltonian that helps
explain the behaviour of the original model by means of
perturbation theory. We numerically demonstrate non-
ergodic properties of the system in Sec. IV: while the
level spacing statistics suggest that the system is ergodic
overall, we are able to find interesting slow and heteroge-
neous dynamics evidenced through autocorrelation func-
tions and growth of entanglement entropy. In Sec. V, we
show that this is a consequence of non-thermal or scarred
eigenstates: we are able to find these eigenstates exactly
for small system sizes using exact diagonalisation (ED),
and provide convincing evidence for their existence in
larger systems by approximating them using variational
matrix product states (MPS) and perturbation theory.
We conclude in Sec. VI, where we offer an outlook on
our results.

II. MODEL

We consider a one-dimensional lattice of N spin-1/2
particles, each with local basis states | i⟩ and |#i⟩, where
i denotes the lattice site. We will refer to the basis states
as spin up and spin down respectively, or alternatively,
particles and holes. The system evolves under a Hamil-
tonian with local three-body interactions,

Ĥc,s = −
N−1∑
i=1

f̂i

[
e−s

√
c(1− c)

(
Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1

)
− cv̂in̂i+1 − (1− c)n̂iv̂i+1

]
, (1)

with the Pauli ladder operators acting on site i, Ŝ+
i =

| i⟩ ⟨#i| and Ŝ−
i = |#i⟩ ⟨ i|, and occupation operators

n̂i = | i⟩ ⟨ i| and v̂i = |#i⟩ ⟨#i|. The operator f̂i =
n̂i−1+v̂i+2 is the Fredkin kinetic constraint. We allow for
c ∈ (0, 1) and s ∈ (−∞,∞). and consider open boundary
conditions (OBC) with v̂0 = 1 and n̂N+1 = 1 fixed.

The Hamiltonian Ĥc,s for c = 1/2 and s = 0 was intro-
duced in Ref. [66], and was later generalised to c ̸= 1/2 in
Refs. [69, 71, 72]. In Ref. [70], the operator Eq. (1) was
considered in the context of classical stochastic dynam-
ics: with opposite sign, the Hamiltonian Eq. (1) is explic-
itly a stochastic generator (of continuous-time Markov
chains) for c = 1/2 and s = 0, while for c ̸= 1/2 and
s = 0, Eq. (1) is also stochastic but only after a simi-
larity transformation (see Ref. [70] for details). In the
stochastic context, the introduction of the e−s prefac-
tor to the kinetic terms makes Eq. (1) equivalent to a
tilted generator — a classical stochastic dynamics which
does not conserve probability and encodes the statistics
of hopping events — which allows one to study the fluc-
tuations of the dynamics at s = 0. For the quantum
case, the introduction of this parameter allows us to con-
trol the relative strength of the kinetic terms compared
to the potential energy in the Hamiltonian. The general-
isation of tilted generators to unitary quantum dynamics

FIG. 1. Fredkin spin chain. (a) An example configuration
from the largest subspace D for N = 12 sites. The (black)
arrows show particle hops allowed by the constraints in the
kinetic part of Eq. (1). The (red) crossed arrow is a transition
not allowed by the constraints. Above the configuration, we
indicate the contributions to the energy from the diagonal
operators in Eq. (1). (b) The same configuration in its height
field representation: a particle (hole) corresponds to a step

up (down) in height. The (shaded) area Â of the height field
is an order parameter for the system.

was recently considered in Refs. [34, 37, 73] for other ki-
netically constrained models.

A. Symmetries

The Fredkin model has a U(1) symmetry which con-

serves the total magnetisation, Ẑtot =
∑N
i=1 Ẑi, where

Ẑi = 2n̂i − 1 is the Pauli-z operator acting on site i
[66]. Furthermore, the kinetic constraint reduces the
fixed magnetisation sectors into sub-sectors which can
be understood in terms of random walk excursions and
Catalan combinatorics [66]. The largest of these sub-

sectors, D, occurs for half-filling (Ẑtot = 0) and corre-
sponds to all the configurations which have at least as
many spin ups as spin downs when counted from left-to-
right in the lattice [66, 70]. An example configuration in
this sector is shown in Fig. 1(a). The figure shows the
transitions that are allowed by the kinetic part of Eq. (1).
Above the configuration in Fig. 1(a) are the local contri-
butions to the potential energy of Eq. (1).

It is possible to represent each configuration of D by
a random walker excursion [74] if one considers each lat-
tice site as a step in time, where a particle moves the
walker a step in the positive direction, and a hole moves
it in the negative direction. This results in an alternative
representation of configurations in terms of a height field

ĥi =
∑i
j=1 Ẑj , see Fig. 1(b). In what follows we con-

sider the case of half-filling (Ztot = 0) and the allowed
configurations in that sector have non-negative height,
hi ≥ 0, with the terminating condition hN = Ẑtot = 0.
This set of classical basis states is therefore equivalent
to Dyck paths, and this subspace has a dimension equal
to the Catalan number CN/2 [66]. A natural observable
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to quantify a configuration is the area under the height
field,

Â =

N∑
i=1

ĥi =

N∑
i=1

(N + 1− i)Ẑi. (2)

Notice that the bunching of particles produces a large
area, while if they spread out the area becomes smaller.

The final symmetry is charge parity (CP): spatially re-
flecting the lattice, j 7→ N +1− j, and a global spin-flip,
|#j⟩ ↔ | j⟩ for all i, leaves Eq. (1) invariant. Each of
the sectors previously described (except for the frozen
irreducible configurations # · · ·# and  · · · ) will con-
tain two CP sectors, with CP = ±1. Note that there
exist computational basis states x that are invariant un-
der the action of CP, and thus can only belong to the
CP = +1 sector. Among these are the states |Pj⟩ ∈ D,

|Pj⟩ = | · · · ⟩︸ ︷︷ ︸
N/2+1−j

⊗ |# · · ·# ⟩︸ ︷︷ ︸
2j−2

⊗ |# · · ·#⟩︸ ︷︷ ︸
N/2+1−j

, (3)

for j = 1, . . . , N/2, where the numbers underneath in-
dicate the number of lattice sites. These product states
will play a significant role in understanding the scarred
states in Sec. V.

B. Ground state phase transition

The ground state of the Fredkin model in the sub-
space D has previously been shown to exhibit a rich
phase diagram in the (s, c) parameter space [69, 70]. The
first phase corresponds to an antiferromagnet (AFM)
where neighbouring spins tend to anti-align. In anal-
ogy with dimer lattice coverings, we name this phase the
flat phase [75, 76], as the corresponding height field en-
closes a small area. This exists for both (s < 0, c), and
(s = 0, c < 1/2), shown by the blue shaded region in
Fig. 2. In this phase, the ground state obeys an area
law, with the von Neumann entanglement entropy for a
symmetric bipartition scaling as a constant for large N
[69]. The second phase is a localised phase where par-
ticles are localised towards the left edge of the system
and holes towards the right edge [70]. We call this the
tilted phase (as the height field gives a large area), and
exists for both (s > 0, c), and (s = 0, c > 1/2), shown
by the red shaded region in Fig. 2. As for the AFM
phase, the ground state also obeys an area law for its
bipartite entanglement. The Hamiltonian Eq. (1) has a
critical point at (s = 0, c = 1/2) [77, 78], shown by the
green dot in Fig. 2. At this point, the ground state is
an equal superposition of all possible configurations in D
[66], and its bipartite entanglement entropy is known to
scale logarithmically in system size [71, 79]. Away from
this critical point, the transition between the flat and
tilted states is of first-order [70].

FIG. 2. Ground state phase transition. Known phase
diagram for the ground state of the Fredkin chain Eq. (1),
see e.g. Ref. [70]. The blue shaded region for s < 0 and
s = 0, c < 1/2 is the flat phase and exhibits AFM behaviour.
The red shaded region for s > 0 and s = 0, c > 1/2 is the
tilted phase and is exponentially localised with all up spins
(particles) to the left. The green dot shows the critical point
at c = 1/2 and s = 0. This state is maximally entropic within
D, where all possible configurations appear with equal weight
in the ground state.

III. FOLDED MODEL

We now consider the Hamiltonian Ĥc,s in the limit s→
∞. It is first instructive to study the energy spectrum of
Ĥc,s restricted to D, that is, {En : En ≤ En+1}, where
Ĥc,s |En⟩ = En |En⟩ for all n = 1, 2, · · · ,dim(D). For
convenience we normalise this spectrum between zero and
one,

ϵn =
En − Emin

Emax − Emin
, (4)

where Emin (Emax) are the minimum (maximum) ener-
gies in the ensemble. Figure 3(a) shows the normalised
spectrum for increasing values of s ≥ 0 at c = 0.7 and
N = 18. The colour of the lines indicates the density of
states in the local neighbourhood with brighter indicat-
ing a higher density. Since the Hamiltonian has the form
Ĥ = e−sT̂ + V̂ , increasing the value of s increases the
relative strength of the potential energy V̂ terms to the
kinetic energy T̂ . This causes the spectrum to look more
sparse with increasing s, forming distinct bands around
the discrete eigenvalues of V̂ (noting that there is still

repulsion of levels within the bands due to T̂ ).
This behaviour can be explained through a perturba-

tive picture. The standard approach would be to treat
Ĥc,s using degenerate perturbation theory with respect

to T̂ . However, we can improve on this by considering
the operator

T̂0 =
∑
x,y ̸=x

Tyxδ(Vx − Vy) |y⟩ ⟨x| , (5)
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FIG. 3. Folded Fredkin model. (a) The energy spectra

of Ĥc,s (normalised between 0 and 1) for increasing s. The
colours indicate the density of states in the local neighbour-
hood. As the value of s is increased, the spectrum becomes
sparser. The data is for c = 0.7 and N = 18 from ED. (b)
In the original Fredkin model, hops can occur between the
middle sites (shown as half-filled circles) only for the cases
shown, while the sites in grey do not participate in the con-
straint. (c) Transitions in the folded Fredkin model for any
value of c are allowed if both the nearest neighbours and next
nearest neighbours to the central sites obey an XNOR con-
straint (i.e., they are equal). (d) In the folded Fredkin model
at c = 1/2 the constraint reduces to an XNOR on the nearest
neighbour pair, with the next nearest neighbours playing no
role. (e) For the special case of c = 1/3 there is an extra
allowed transition on top of those for c = 1/2 as shown. (f)
Something similar occurs for the special case of c = 1/4, with
two extra transitions allowed beyond those of c = 1/2.

where Tyx = ⟨y|T̂ |x⟩, Vx = ⟨x|V̂ |x⟩ and δ(Vx − Vy) is

the Dirac-delta function. We then write Ĥc,s = Ĥ0 +

e−sδT̂0, where Ĥ0 = V̂ +e−sT̂0 and δT̂0 = T̂ − T̂0. While
it is unusual to have the perturbing parameter within
our choice of Ĥ0, it is important to note that [T̂0, V̂ ] =

0 and thus the eigenstates of Ĥ0 are independent of s
(but not their respective eigenvalues). The operator T̂0
is sometimes referred to as the folded model [67, 68]; in
the limit of s → ∞, the dynamics of the system within
a sector with fixed V̂ is entirely determined by T̂0. The
name comes from the fact that the bands in the spectrum
[as illustrated in Fig. 3(a)] “fold” onto one another.

Applying this analysis to the Fredkin model is simple.
One must first find all matrix elements Txy with Vx = Vy.
This can be done at the level of local transitions. Under
the constraint in Eq. (1), the transitions are defined by
local four-body configurations, see Fig. 3(b). Considering

Transition ∆V #→# Folded
   #  ↔   #   0 All c
   # #↔   #  # 1− 2c c = 1/2
   ## ↔   # # 4c− 1 c = 1/4
   ###↔   # ## −2c None
 # ## ↔  ## # 0 All c
 # ###↔  ## ## 2c− 1 c = 1/2
#  #  ↔ # #   2c− 1 c = 1/2
#  # #↔ # #  # 0 All c
#  ## ↔ # # # 6c− 2 c = 1/3
#  ###↔ # # ## 4c− 1 c = 1/4
## ## ↔ ### # 2c− 1 c = 1/2
## ###↔ ### ## 0 All c

TABLE I. Allowed transitions in the folded Fredkin
model. The constraint of the folded model depends on both
the nearest and next-nearest neighbours of the sites making
the transition: the left column shows all such neighbourhoods,
including only those where the constraint of the original model
is also satisfied, see Fig. 3(b). The central column shows the
change in the potential energy due to each transition. The
right column shows the values of c for which the transitions are
resonant, and therefore possible in the corresponding folded
model.

each of these transitions, one can then calculate the local
contribution to the potential energy before and after the
transition. Indeed, since the transition can alter the ki-
netic constraint of a neighbouring pair of particles, it is
now necessary to consider local six-body configurations
(involving the two sites at either side of the pair which
undergoes the transition). Notice that while there are
originally three constraints which depend on the neigh-
bouring sites, there are now twelve possibilities which
depend on both the neighbouring and next-neighbouring
sites. One must determine which possibilities allow for
transitions with Vx = Vy. Table I shows each of these
possibilities along with their change in potential energy
∆V #→# for the hoppings  # → # (the reverse
is given by −∆V #→# ) and the value of c for which
∆V #→# = 0.

A. Effective models

There are four possibilities which are allowed for all
values of c, see Tab. I. Together, these four possibilities
can be collectively described by an XNOR constraint on
the neighbouring sites, and an XNOR constraint on the
next-nearest neighbouring sites. That is, the constraint
is activated if the left neighbouring site is in the same
state as the right neighbour to the pair, and the left
next-nearest neighbour is in the same state as the right
next-nearest neighbouring site (but note however that
the neighbouring sites can differ from the next-nearest
neighbouring sites). This is illustrated in Fig. 3(c).
For the special cases c = 1/2, 1/3, 1/4, there are ad-

ditional allowed moves. The least constrained case is
c = 1/2, which allows for a total of eight possibilities
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FIG. 4. Hilbert space fragmentation in the folded model. (a) An illustration of the fragmentation for N = 8 and c > 1/2.
Each block describes a sector within D; the red blocks are the isolated configurations |Pj⟩. The vertical position of each block

represents the value of the conserved quantity V̂ for each sector. (b) The number of fragments within D grows exponentially
with N . (c) The average dimension of each ergodic component, ⟨dim(Dfragment)⟩, within D also grows exponentially. (d) On the
contrary, the ratio of the dimension of the largest ergodic component dim(Dmax)/dim(D) decreases exponentially with system
size.

which can be summarised by the XNOR constraint only
on the neighbouring sites, shown in Fig. 3(d). This dy-
namics (sometimes called the “folded XXZ” model) has
been considered in various studies, see Refs. [67, 68, 80–
84]. Furthermore, this constraint is intimately related to
the generalised Fredkin spin chains studied in Ref. [62],
which considered Eq. (1) with s = 0, but with a kinetic
constraint n̂i−1 − v̂i+2. The introduction of the minus
sign causes the operators to act destructively; while not
identical to the folded Fredkin model for c = 1/2, it is
important to note the similarity between the effective
constraints. The form of the constraint for the special
cases c = 1/3 and c = 1/4 have additional terms which
allows for more possibilities for moves, see Figs. 3(e, f).

The short-time dynamics for the model is then approx-
imately described by the effective Hamiltonian

Ĥeff
c,s = −e−s

√
c(1− c)

N−2∑
i=2

ĝ
(c)
i

[
σ̂+
i σ̂

−
i+1 + σ̂−

i σ̂
+
i+1

]
+

N∑
i=2

f̂i
[
cv̂in̂i+1 + (1− c)n̂iv̂i+1

]
, (6)

where ĝ
(c)
i are the emergent kinetic constraints shown in

Figs. 3(c-f), where for c ̸= 1/2, 1/3, 1/4,

ĝ
(c)
i = ĝi =

1

4
(1 + σzi−1σ

z
i+2)(1 + σzi−2σ

z
i+3), (7)

while for the special cases c = 1/2, c = 1/3 and c = 1/4,

ĝ
(1/2)
i =

1

2
(1 + σzi−1σ

z
i+2), (8)

ĝ
(1/3)
i = ĝi + 2v̂i−2n̂i−1v̂i+2n̂i+3, (9)

ĝ
(1/4)
i = ĝi + 2(n̂i−2n̂i−1v̂i+2n̂i+3 (10)

+ v̂i−2n̂i−1v̂i+2v̂i+3).

The main focus of what follows will be the case c > 1/2,
which results in the most constrained dynamics with the
constraint Eq. (7), see Figs. 3(c). As we show below, the
existence of the folded model in the s → ∞ limit has
dramatic consequences for the dynamics at finite s > 0.

B. Fragmentation

The effective Hamiltonian Ĥeff
c,s is a more constrained

model than Eq. (1) which describes its leading order dy-
namics. The more stringent kinetic constraint of the
folded model has severe consequences on its dynamics
(and thus on the short time dynamics of the full model).
One important feature of Eq. (6) is that the Hilbert space
is fragmented: the subspaces of the original Hamiltonian
divide into smaller subspaces [51, 85].

For concreteness, let us focus on the largest subspace
of the Fredkin chain, D. Figure 4(a) illustrates how it
fragments for a system size N = 8 and c > 1/2, for
which dimD = 14. Each block in the figure is an ergodic
component. Notice that the subspace strongly fractures
into many components, with the majority being an iso-
lated computational basis state, and with at most two
states for the system size shown here. In particular, for
c ̸= 1/4, 1/3, 1/2, the product states |Pj⟩ are completely
isolated, and are shown by the red blocks in Fig. 4(a).
Indeed, we can quantify the strength of the fragmenta-
tion by counting the number of ergodic components of
the folded model within D. This is shown in Fig. 4(b)
as a function of N for various values of c in Fig. 3. In
all cases, the number of ergodic components of the cor-
responding folded model grows exponentially in N .

It is also useful to consider how the size of each er-
godic component grows. It would be reasonable to con-
clude from Figs. 4(a, b) that D fragments into sectors
which are not extensive in system size. However, as
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shown in Fig. 4(c), the mean dimension of the fragments,
⟨dim(Dfragment)⟩, also grows exponentially but at a rate
smaller than that of D. Figure 4(d) shows the ratio
dim(Dmax)/dim(D) where Dmax is the dimension of the
largest fragment. Note that this is exponentially decay-
ing to zero with N , and thus the space is strongly frag-
mented [51].

While the effective Hamiltonian Ĥeff
c,s only gives the

leading order of Ĥc,s, the full dynamics can be retrieved
perturbatively. It is important to note that while the
eigenstates of Ĥeff

c,s are by no means trivial, the frag-
mented Hilbert space allows one to diagonalise individ-
ual fragmented sectors for much larger system sizes. We
can then approximately recover the eigenstates of Ĥc,s

by means of perturbation theory, which we will apply in
Sec. V; see App. A for details.

IV. ERGODICITY BREAKING

In this section, by means of ED, we provide numerical
evidence for the dynamics of Eq. (1) being non-ergodic
for special initial states, and explain the connection of
this phenomenon to the folded model.

A. Level statistics

We first investigate the level spacing statistics of the
Hamiltonian Ĥc,s in search of indications of quantum
chaos (i.e., Wigner-Dyson level statistics) or integrabil-
ity (i.e., Poisson level statistics); for a review, see e.g.

Ref. [3]. For the eigenenergies En of Ĥc,s we calculate
the level spacings, δn = En+1−En, normalised such that
⟨δ⟩ = 1. We obtain {En} using ED for system sizes up to
N = 22 within the subspace D and the CP = +1 sector
(with a subspace dimension of 29264), restricting to the
middle 2/3 of the energy spectrum.

Figures 5(a, b) show the level spacing distributions for
c = 1/2 and c = 0.7, respectively. Each panel shows the
statistics for s = 0, 0.5, 1.0, comparing to the Wigner-
Dyson (WD) distribution (dotted line), and to the Pois-
son distribution (dashed line). We find that for s ≲ 0,
the statistics are consistent with Wigner-Dyson, indicat-
ing the usual level repulsion. In contrast, for increasing
s ≳ 0 there appears to be a shift towards Poisson statis-
tics, which is more pronounced for c > 1/2.
The above observations can be condensed by cal-

culating the ratio between consecutive gaps r [21]:
for each eigenstate, we calculate the quantity rn =
min{δn+1, δn}/max{δn+1, δn}, and then average over all
rn to obtain ⟨r⟩. This takes the value ⟨r⟩ ≈ 0.53 for
the Gaussian orthogonal ensemble (Wigner-Dyson dis-
tribution), and ⟨r⟩ ≈ 0.38 for the uncorrelated spectrum
(Poisson distribution). In Figs. 5(c, d) we show ⟨r⟩ for
the same systems above for sizes N = 16, 18, 20, 22.

In the limit s→ ∞, the Hamiltonian is well described

FIG. 5. Level spacing statistics. (a) Histograms of the
normalised level spacings, δ, at c = 1/2 in the CP sector
CP = +1 and for system size N = 22 (i.e., over an irreducible
space with dimension 29624). We show results for s = 0
(red), s = 0.5 (blue) and s = 1 (green). The dashed line
is the Wigner-Dyson (WD) distribution for level repulsion,
while the dotted line is for Poisson statistics. (b) The same for
c = 0.7. (c) The average r-value, ⟨r⟩, for c = 1/2 as a function
of s in the sector CP = +1 for sizes N = 16, 18, 20, 22. The
dashed line corresponds to level repulsion, ⟨r⟩ ≈ 0.53, and the
dotted line to Poisson statistics, ⟨r⟩ ≈ 0.38. (d) The same for
c = 0.7.

by Eq. (6) and there are additional (emergent) kinetic
constraints, which explains the apparent Poisson statis-
tics of the level spacing (dotted line) for s > 0. In turn,
for s ≲ 0, the observed value is more compatible with
the Wigner-Dyson statistics (dashed line) one would ex-
pect to see in ergodic systems. We note that for the
case of c = 1/2, the change from Wigner-Dyson to Pois-
son statistics seems to be lessened with increasing system
size, but it is hard to be conclusive for these small sizes.
Nevertheless, the key observation is that there is a sig-
nificant change in statistics when going from s negative
to s positive.

B. Prethermalisation

Next we show that the change described above in the
spectrum is related to slow relaxation. In order to probe
metastability, we consider the time-averaged autocorre-
lations of the site occupations n̂i, with respect to the
infinite temperature state within the sector D. We de-
fine the autocorrelation of the lattice site i at some time
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t as ci(t) = ⟨n̂i(t)n̂i(0)⟩D, where the subscript denotes
the expectation is taken with respect to the infinite tem-
perature state within D. By summing over lattice sites
and taking the time-average, we then find

c(t) = t−1
N∑
j=1

∫ t

0

dt′cj(t
′). (11)

Finally, we normalise,

C(t) =
c(t)− c(∞)

c(0)− c(∞)
, (12)

such that C(0) = 1 and C(∞) = 0.
Figures 6(a, b) show the autocorrelation functions for

c = 1/2 and c = 0.7 at system sizeN = 18 and for various
s. In both instances, there is an initial decay, followed by
a plateau with a much longer life-time, which becomes
more pronounced with increasing s. This behaviour is
easily explained using the folded picture. At early times,
the dominant contributions to the dynamics comes from
the effective Hamiltonian, Eq. (6). This is shown for s =
2 by the dashed black line. Note that we normalise it with
respect to the full Hamiltonian, Eq. (1), and thus it does
not decrease to zero in the infinite time limit. The two-
point correlator measured from the effective Hamiltonian
well matches the true dynamics at short times.

For c = 1/2, the folded dynamics stops being a reli-
able description at the point when the autocorrelation
plateaus. It is at this point that the system has ther-
malised within a sector of the folded model, and the long-
time dynamics is dominated by the off-resonance transi-
tions not described by it. The relaxation for c = 0.7
is much slower and becomes more pronounced with in-
creasing s due to the strong fragmentation in the folded
model, cf. Figs. 3(c,d).

The long-relaxation times can also be seen by consid-
ering the evolution of local occupations,

⟨n̂j(t)⟩ = t−1

∫ t

0

dt′ ⟨ψ(t′)|n̂j |ψ(t′)⟩ (13)

with respect to some initial state |ψ(0)⟩, where we have
once again taken the time-average to remove the effects of
short scale fluctuations. We show the occupation profiles
for the initial state |PN/4⟩ in Figs. 6(c, d) for s = 1.0 and
N = 20. For c = 1/2, the system remembers its initial
conditions for intermediate times, eventually relaxing to
a state in which the initial density modulations are re-
moved, see Figs. 6(c). In contrast, for c = 0.7 the initial
density pattern persists for the longest simulated times,
see Figs. 6(d). This difference is easy to understand from
the fact that for c = 0.7 the initial state is a frozen ir-
reducible configuration in the folded picture. This is not
the case for c = 1/2, as for this value of c there are al-
lowed on-resonance processes in the folded dynamics that
lead to relaxation to an almost featureless state within
the simulated timescales.

FIG. 6. Relaxation dynamics. (a) The normalised (and

time-integrated) autocorrelation function C(t) of the site oc-
cupations at c = 1/2 for various s and N = 18. The dashed
black lines show the correlation function under the folded dy-
namics Eq. (6) at s = 2.0. (b) The same for c = 0.7, where the
plateaus are more pronounced. (c) Time-averaged occupation
profiles for s = 1.0 and N = 20 starting from the initial state
|PN/4⟩. (b) The same for c = 0.7. Note that the scale time

with e−s as this is the bare timescale for the kinetic energy,
cf. (1).

C. Entanglement entropy dynamics

The effect of the constrained dynamics can be further
understood by considering the growth of entanglement
entropy for simple initial states. Specifically, given a state
|ψ(t)⟩ at time t, we partition the system into parts A and
B with the cut taken between sites i and i+ 1. We then
calculate the bipartite entanglement entropy between A
and B,

Si(t) = −TrA [ρA(t) ln ρA(t)] , (14)

where ρA(t) = TrB |ψ(t)⟩ ⟨ψ(t)|. To consider the time
evolution of the entanglement entropy, as before we per-
form the time average to smooth out uninteresting fluc-
tuations,

Si(t) = t−1

∫ t

0

dt′ Si(t
′). (15)

Figure 7 shows such time-integrated entanglement en-
tropy for the product state |PN/4⟩, see Eq. (3), at c = 1/2
in the top row, and at c = 0.7 in the bottom row.
We first consider the evolution of the entanglement

entropy profiles for all bipartitions i at different times,
see Figs. 7(a,b). The entanglement profiles are heteroge-
neous for small times in both cases, where the dynamics
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FIG. 7. Entanglement dynamics. Dynamics following a quench from the state |PN/4⟩. (a) The time-averaged entropy

profiles Si(t) at c = 1/2 for s = 1.0 and N = 20, at various times t. The solid black line is the estimated value for t = ∞
(obtained by time-averaging in the range t ∈ [1×1012, 2×1012]). (b) The same for c = 0.7. (c) The time-averaged entanglement

entropy for the half system bipartition, SN/2(t), as a function of time (scaled by e−s) for various s ∈ [0.0, 2.0]. The dashed
black line shows logarithmic growth, and the dotted lines give the saturation values at t → ∞. (d) The same for c = 0.7. (e)

Long-time averaged SN/2(∞) as a function of system size for the same values of s. (f) The same for c = 0.7 (the apparent
super-linear in N growth of s ≲ 0.5 is likely to be an artefact of the small systems sizes studied). (g) Long-time averaged

entanglement profiles Si(∞) for the same values of s. (h) The same for c = 0.7.

is approximately described by evolution with the folded
Eq. (6). For c = 1/2, the constraint of the folded model
is that of Fig. 3(d). For states of the form |Pj⟩ this im-
plies that all sites are frozen except at the two bonds at
the interfaces of the three domains that define |Pj⟩, cf.
Eq. (3). The initial dynamics generated here is then able
to spread allowing the state to relax within the sector of
the model. For c > 1/2 the situation is slightly differ-
ent. For the folded model, Fig. 3(c), the state |Pj⟩ is a
dynamically frozen configuration. A transition from the
full model is required near the boundaries of the domain
to get the dynamics going. Once this occurs, the folded
constraint Fig. 3(c) can be satisfied at the boundary to
allow on resonance transitions there, see Tab. I. From
Fig. 7(b), it is clear that at early times the entanglement
grows quickest at these boundaries.

Figures 7(c, d) show the growth of entanglement with

time at for the midpoint bipartition, SN/2(t). The dot-
ted lines are the estimated long-time averaged entropy.
In both cases, there is a slow logarithmic growth of entan-
glement, before eventually saturating to some long-time
limit. For c = 1/2, the effect of increasing s is small, as
the folded dynamics allows |Pj⟩ to thermalise within a
fragmented sector that is extensive in N . The same is
not true for c = 0.7, where the initial state is frozen, and

the saturation value decreases sharply with s. Figure 7(e)
shows that for c = 1/2 the saturation value of the entropy
grows as a function of N for all s. This fact suggests the
lack of a sharp change in behaviour for c = 1/2 when
going from s positive to s negative (despite the fact that
there is a small decrease in the saturation value of the en-
tropy at fixed N for increasing s). In contrast, Fig. 7(f)
shows that at c = 0.7 the entropy saturates with N for
large enough s > 0. Again, this is explained through the
folded model. [Note that for small s > 0 and c = 0.7,
the entanglement appears to grow with system size, but
we expect it will eventually saturate for larger N .] Fig-
ures 7(g, h) show the long-time averaged entanglement
entropy profiles for all bipartitions. For c = 1/2, they
take a typical structure, with the entropy increasing ap-
proximately linearly up to the midpoint of the system.
For c = 0.7, the entropy profiles shows a larger spatial
variations, which become more pronounced for increasing
s.

V. NONTHERMAL EIGENSTATES

The folded model and the observed slow heteroge-
neous dynamics suggests the existence of non-thermal
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behaviour at the level of the spectrum. In this Section
we investigate the spectral properties of the model by
means of ED, perturbation theory and variational MPS.
We verify the existence of scarred states far from the
large interaction limit, and for large system sizes.

A. Spectral properties from exact diagonalisation

We use ED to determine all the energy eigenstates in
the subspace D. By exploiting the symmetries of the
model, we are able to run the calculations for system
sizes up to N = 22. Figure 8 shows the results of ED
for c = 0.7, s = 0.8, N = 22 in the sector CP = +1. As
a relevant observable we consider the expectation of the
area, defined in Eq. (2), within each eigenstate ⟨Â⟩, see
Fig. 8(a). The thermal (canonical) average within the
subspace D,

⟨Â⟩β =

∑
Ej
e−βEj ⟨Ej |Â|Ej⟩∑

Ej
e−βEj

, (16)

at the inverse temperature β that corresponds to the
same energy density, is also shown by the solid blue line
for comparison. It is apparent that there are a number
of eigenstates with an expectation of the area far from
the thermal value, an indication that ETH might be vio-
lated by these states. The largest discrepancy is observed
by the states (N/2 in total) marked by the red crosses,
which appear to be equispaced in energy. In analogy to
recent results [48], we interpret these as scarred eigen-
states, |Sj⟩, with j = 1, · · · , N/2 [86].
The (midpoint) bipartite entanglement entropy, SN/2,

of all eigenstates is shown in Fig. 8(b). In analogy with
the area, a significant number of eigenstates, including
the scarred states |Sj⟩, have a value of this entropy which
is smaller than the one obtained by averaging over a small
energy window. For the purpose of comparison, we can
define as a proxy its “thermal” average as

Sβ =

∑
Ej
e−βEjSN/2(Ej)∑
Ej
e−βEj

, (17)

where SN/2(Ej) is the bipartite entanglement entropy of
the individual eigenstate, |Ej⟩. Figure 8(b) shows that
this proxy (blue curve) differs from the actual entropies
of the scars (red crosses).

To further understand the properties of the scarred
eigenstates, we calculate their local observables. In par-
ticular, we measure the local occupation profiles ⟨ni⟩ =
⟨Sj |ni|Sj⟩ for lattice sites i = 1, . . . , N , shown by the red
crosses in Fig. 8(c) for j = 2, . . . , N/2 − 1. It is imme-
diately obvious that the structure of the scarred states
highly resembles the product states |Pj⟩ of Eq. (3): see
the comparison in Fig. 8(c) between the exact states from
ED (shown as red crosses) with second order perturba-
tion theory applied to the states |Pj⟩ (shown as blue cir-
cles). This indicates that even for s > 0 away from the

s = ∞ limit, perturbation theory can help explain the
dynamics of the model.

B. Extracting scarred states with MPS

We now seek to investigate the scarred states for sys-
tem sizes larger than those accessible via ED. In particu-
lar, the low-entanglement properties of the scarred states
suggest that an MPS approximation might be a suitable
ansatz for the wavefunctions. While it could be that MPS
are able to describe such states, variationally targeting
these excited states using methods such as the density
matrix renormalisation group (DMRG) [87] — which are
best suited for extremal eigenstates — is difficult due to
the fact they exist throughout the entire spectrum. To
address this issue we use the approach similar to that de-
scribed in Ref. [88], which aims to variationally minimise
the energy variance of a wavefunction ψ,

δEψ
2 =

⟨ψ|Ĥ2|ψ⟩
⟨ψ|ψ⟩

− ⟨ψ|Ĥ|ψ⟩
2

⟨ψ|ψ⟩2
, (18)

using gradient decent to optimise the tensors in a DMRG-
like fashion [89]. Reference [88] minimised Eq. (18) with
the addition of a Lagrange multiplier to target eigen-
states at some desired energy. Here, we adapt this vari-
ational minimisation to target states which have a large
overlap with |Pj⟩, see App. B for more details. Using
this algorithm, we are able to estimate to good precision
the scarred states for system sizes up to N = 100 for
c ≥ 0.7 and s ≳ 0.75, where the eigenstates are distin-
guished enough from the bulk spectrum to allow us to
target them with this approach.

C. Properties of scarred states

Figure 9 shows the results from our MPS numerics for
c = 0.7. As a proof-of-principle, we show the occupa-
tion profiles of the scarred states we obtain, |SMPS

j ⟩, in
Figs. 9(a-c) for N = 40, s = 0.8, 1.0, 1.2 and j = 5 (top
panel), j = 10 (middle panel) and j = 15 (bottom panel).
Their spatial structure resembles that of the exact Sj for
small systems from ED of Fig. 8. Furthermore, it is ev-
ident that larger s results in profiles increasingly resem-
ble those of the product states |Pj⟩. Figures 9(d-f) show
the corresponding entanglement entropy profiles, Si. The
states |SMPS

j ⟩ can be approximately separated into three
regions, similar to those of |Pj⟩, see Eq. (3). The first
i = 1, · · · , N/2 − j + 1 spins have an occupation profile
⟨n̂i⟩ ≈ 1, while the last i = N/2 + j − 1, · · · , N have
⟨v̂i⟩ ≈ 1. Both of these regions have approximately zero
entanglement with the rest of the system. In contrast, in
the central region, N/2−j+2 ≤ i ≤ N/2+j, the spin pro-
file is approximately an antiferromagnetic pattern, with
an entanglement profile that alternates between close to
zero and a small but non-zero value. This suggests that
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FIG. 8. Spectrum and quantum scars. (a) Expectation of the area, ⟨A⟩, as a function of the renormalised energy density,
ϵ, for c = 0.7 and s = 0.8 at size N = 22 and CP = +1 from ED. The colour indicates the density of states in the local
neighbourhood (with lighter colour corresponding to higher density). Red crosses are the scarred states |Sj⟩ for j = 1, . . . , N/2
(left-to-right). The blue line is the canonical average. (b) Same for the entanglement entropy for the mid-point bipartition.
(c) Density profiles in the scar states (red crosses), ⟨Sj |ni|Sj⟩, for j = 2, . . . , N/2 − 1. We also show the same profiles in the
approximate eigenstate from second-order perturbation theory (blue circles).

there is a dimerised structure within this partition, where
neighbouring pairs of spins are coupled but do not inter-
act with the other pairs of spins. As Figs. 9(d-f) show,
the entanglement entropy is maximal at the interface of
two regions of |SMPS

j ⟩. The explanation for this is the
same as for the growth of entanglement entropy for the
product states |Pj⟩: the off-resonant transitions at the
boundaries of the regions give the smallest change in po-
tential energy, and are thus more prominent.

Next we consider the properties of the scarred states
|SMPS
j ⟩ as one increases system size. It is easy to

show that the product states |Pj⟩ have energy Ej =

⟨Pj |Ĥ|Pj⟩ = 2(1− cj) and area

⟨Pj |Â|Pj⟩ = N2/4− j(j − 1)

=
N2

4
− 4(Ej − 2 + c)2

c2
+ 4. (19)

Since the scarred states are very close to these products,
we can expect that a similar relation holds between their
area and energy. To probe it, Figure 9(g) shows the
square root of the rescaled area for the scarred eigen-
states, Ãj = c2(N2 − 4Aj), as a function of energy for

s = 0.75 and system sizes N = 20, . . . , 100 for all scarred
states j = 1, · · · , N/2. It is clear that the quadratic re-
lation Aj ∼ E2

j holds for the scarred states. The figure
shows that there is excellent agreement with the result
of first-order perturbation theory around |Pj⟩.

We also consider the entanglement entropy as a func-
tion of system size. Figure 9(h) shows the maximum
bipartite entanglement entropy over all lattice sites,
Smax = maxi Si, for the same scarred states consider in
Fig. 9(g). When close to the edges of the spectrum, the
maximal entanglement entropy is small, as is expected
for local quantum many-body systems. Under the ETH,
the entanglement entropy of eigenstates should grow as
the energy moves closer to the middle of the spectrum.
However, for the scarred states the maximal entangle-
ment saturates to a value which appears to be indepen-
dent of system size (in the large N limit). This suggests
that the scarred states obey an area law, thus violat-
ing the ETH. We confirm this more directly in Fig. 9(i),
where we show the maximal entanglement entropy as a
function of system size, N , for several s for the scarred
state j = N/4 (the one closest to the middle of the energy
spectrum): it is clear that the maximal entanglement en-
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FIG. 9. Properties of the scarred states found with vMPS. (a-c) Density profiles ⟨SMPS
j |n̂i|SMPS

j ⟩, for j = 5, 10, 15
(as indicated) for three values of s at c = 0.7 and system size N = 40. (d-f) Corresponding bipartite entanglement entropy

profiles, Si. (g) Square root of the rescaled area, Ãj = c2
(
N2 − 4Aj

)
, as a function of the scarred eigenstate energy, Ej , at

c = 0.7 and s = 0.8 for system sizes N = 20, . . . , 100. The dashed black line shows a linear fit, and the solid blue line shows
the results from first-order perturbation theory (PT-1) with N = 100. (h) Maximum bipartite entanglement entropy for the
scarred states, Smax = maxi Si, shown for each |Sj⟩ with j = 1, . . . , N/2 for sizes N = 20, . . . , 100. The data in both (g) and
(h) are for c = 0.7 and s = 0.8. (i) Maximum entanglement entropy, Smax, for the scarred state |SN/4⟩ as a function of system
size at c = 0.7 for various s ∈ [0.75, 1.0]. (j) Saturation value of the entanglement entropy at c = 0.7 as a function of s, obtained
from the scarred state |SN/4⟩ at size N = 200. The dashed line show the apparent exponential decay. The blue line is the
results from first-order perturbation theory (PT-1) at size N = 100.

tropy saturates with increasing system size for this state.
Figure 9(j) shows the maximal entanglement entropy of
the state j = N/4 as a function of s for N = 200. The
maximal entanglement entropy appears to decrease ex-
ponentially with s. We also compare this result to first-
order perturbation theory for N = 100, which coincides
with the MPS numerics for large s.

VI. CONCLUSIONS

Here we studied the quantum dynamics of Fredkin spin
chains deformed away from their stochastic point. The
introduction of a “tilting” parameter allows us to tune
the dynamics between regimes of fast and slow ther-
malisation, with the change occurring at the stochastic
point (a quantum analogue of what occurs in the clas-
sical stochastic case [70]). The same model in the fast
regime (s < 0) was considered in Ref. [90] as an effective
model for Moore-Read states on thin cylinders. In this
paper, we have focused on the slow dynamical regime
(s > 0) , where we find an emergence of extra effective
constraints that define the so-called folded model. By
means of exact diagonalisation, we have shown that the
system exhibits slow heterogeneous dynamics, including
metastable regimes and slow (sub-)logarithmic growth of
entanglement for initial states which are frozen in the
folded picture. Furthermore, these states appear to avoid

thermalisation at all times accessible to numerics.
This apparent violation of the ETH can be attributed

to the existence of scarred states, throughout the spec-
trum of the Hamiltonian, that have a large overlap with
the initial states of interest. We verified the existence of
these scarred states for large system sizes by means of
variational MPS, even when far from the large interac-
tion limit. These scarred states are non-thermal in the
sense they obey area laws and expectation values of local
observables are far from those of thermal equilibrium.
Our work adds to the collective understanding of phe-

nomena which can lead to the violation of the ETH. The
key insight for understanding the observations here is the
existence of the more-constrained folded dynamics, as has
recently been done to understand slow heterogeneous dy-
namics of other kinetically constrained models [84].
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Appendix A: Perturbation theory

For concreteness, and because of their relevance later,
we will focus on the product states |Pj⟩ and c > 1/2.
Notice that |Pj⟩ are frozen configurations in the folded

model and thus are eigenstates of Ĥeff
c,s. In what follows

we will assume there are no degeneracies with the eigen-
state |Pj⟩ in the folded model. However, in practice this
should be considered carefully to ensure this is the case
for the given order of perturbation theory.

The action of δT̂ will sparsely connect the fragmented
sectors of Ĥeff

c,s. For first order perturbation theory, one
only needs to find the fragmented sectors connected to
|Pj⟩ through the off-resonant transitions which are al-
lowed in the original model, but not allowed in the folded
model. We numerically observe that this is at most five
sectors for the states |Pj⟩; notice that δT̂ only acts at the
boundaries of the partitions in Eq. (3), and so we expect
the number of connecting sectors to be constant with N .
Furthermore, we observe that the dimensionality of each
of the connecting sectors grows at most linearly in N ,
which is in contrast to the average exponential behaviour
observed in Fig. 4. Let us label the eigenstates of Ĥeff

c,s

within the subspace spanned by these five sectors, M, by
|Ẽm⟩, with energies Ẽm. Then the first order corrections
(up to normalization) to |Pj⟩ goes as

|P̃ (1)
j ⟩ = |Pj⟩+ e−s

∑
Em∈M

|Ẽm⟩ ⟨Ẽm|δT̂ |Pj⟩
Ej − Ẽm

, (A1)

where Ej = ⟨Pj |V̂ |Pj⟩. As the dimension of M is only
linear in N , we are able to calculate Eq. (A1) for system
sizes up to N ∼ O(100).

To find the second corrections, we must now also con-
sider the additional fragmented sectors which are con-
nected to M through δT̂ . We denote the subspace
spanned by M and these additional fragmented sectors
by K. The eigenstates of Ĥeff

c,s within K are again denoted
by Em, Ek. The second order corrections then go as

|P̃ (2)
j ⟩ = |Pj⟩+ e−s

∑
Em∈M

|Ẽm⟩ ⟨Ẽm|δT̂ |Pj⟩
Ej − Ẽm

,

+ e−2s
∑
Em∈K

∑
Ek ̸=Em∈K

|Ẽm⟩ ⟨Ẽm|δT̂ |Ẽk⟩ ⟨Ẽk|δT̂ |Pj⟩
(Ej − Ẽm)(Ej − Ẽk)

− 1

2
e−2s

∑
Em∈M

|Pj⟩
| ⟨Ẽm|δT̂ |Pj⟩ |2

(Ej − Ẽm)2
(A2)

The dimension of the subspace K is substantially larger
than M and does not allow us to use it for such large
system sizes. Nevertheless, we can use it for system sizes
which can be achieved by ED to verify the eigenstates
can be retrieved perturbatively.

FIG. 10. The energy variance of the scarred states estimated
using vMPS for c = 0.7 and N = 20, . . . , 100. Each data point
shows the mean energy variance over all scarred states j =
1, . . . , N/2, and the error bars show the standard deviation.
The maximal bond dimension used was D = 64.

Appendix B: Variational matrix product states for
scarred eigenstates

To approximate the scarred states for large system
sizes and some given value of s, we employ variational
MPS. As we are targeting eigenstates throughout the en-
ergy spectrum of the Hamiltonian, we cannot use algo-
rithms such as DMRG which are typically used to find
low-lying eigenstates. We instead choose to minimise the
energy variance Eq. (18). Since this choice of cost func-
tion is quartic in the tensors of the MPS, we use gradient
decent to minimise Eq. (18) as described in Ref. [88].

The cost function Eq. (18) is not enough to target dif-
ferent scarred states. In Ref. [88], the search was steered
towards states with a fixed value of the mean energy by
adding a Lagrange multiplier term to the cost function,
of the form (⟨ψ|Ĥ|ψ⟩−Etarget)

2. Here, instead, we want
to approximate the scarred state that is closest to a given
Pj , in a similar spirit to the X-DMRG algorithm for ex-
cited states in the MBL regime in Ref. [91]. To ensure
we target the desired scarred state, we use a strategy
which anneals s from large-to-small. Suppose for some
given system size N , we wish to target the scarred state
|Sj⟩. In the limit s → ∞, the scarred state will be the
product state, lims→∞ |Sj⟩ = |Pj⟩. We choose this as our
initial guess for the method. We then optimise over the
sequence of MPSs

|Ss0=∞
j ⟩ = |Pj⟩ → |S̃s1j ⟩ → · · · → |S̃sTj ⟩ , (B1)

where s0 > s1 > · · · > sT and sT is the target value of s,
and |S̃sj ⟩ is our MPS approximation of the true scarred
state, |Ssj ⟩.
To optimise for some si, we propose a cost function

which will aim to minimise the energy variance while
maximising the overlap with the solution from the previ-
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ous s,

C(|S̃sij ⟩) =
⟨S̃sij |Ĥ2|S̃sij ⟩
⟨S̃sij |S̃sij ⟩

−
⟨S̃sij |Ĥ|S̃sij ⟩

2

⟨S̃sij |S̃sij ⟩2

− λ
| ⟨S̃sij |S̃si−1

j ⟩ |2

⟨S̃sij |S̃sij ⟩
, (B2)

where λ > 0 is a Lagrange multiplier. In practice, we use
a routine which slowly reduces the value of λ to ensure
convergence to an eigenstate which closely resembles the
solution for the previous si−1. Furthermore, we also aim
to keep the bond dimension D low to encourage the op-

timisation to find an eigenstate with small entanglement
entropy. However, we gradually increase it when required
to also ensure the optimisation can find a solution with
small energy variance.

The results of the method for c = 0.7 and N =
20, . . . , 100 are shown in Fig. 10. The plot shows the aver-
age energy variance over all scarred states j = 1, . . . , N/2,
and the error bars show the standard deviation over all
states. We use a maximal bond dimension of D = 64,
and terminate the optimisations when δE2 < 10−10 or
the maximal bond dimension is exceeded. We are able
to find good solutions for s ≳ 0.75.
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[24] J. Šuntajs, J. Bonča, T. c. v. Prosen, and L. Vidmar,

Phys. Rev. E 102, 062144 (2020).
[25] M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer,

and J. Sirker, Phys. Rev. B 103, 024203 (2021).
[26] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz,

and D. A. Huse, Phys. Rev. B 105, 174205 (2022).
[27] D. Sels, Phys. Rev. B 106, L020202 (2022).
[28] P. Fendley, J. Stat. Mech.: Theory Exp 2012, P11020

(2012).
[29] S. D. Sarma, M. Freedman, and C. Nayak, npj Quantum

Inf. 1, 15001 (2015).
[30] P. Fendley, J. Phys. A: Math. Theor. 49, 30LT01 (2016).
[31] J. Kemp, N. Y. Yao, C. R. Laumann, and P. Fendley, J.

Stat. Mech.: Theory Exp 2017, 063105 (2017).
[32] D. V. Else, P. Fendley, J. Kemp, and C. Nayak, Phys.

Rev. X 7, 041062 (2017).
[33] L. M. Vasiloiu, F. Carollo, M. Marcuzzi, and J. P. Gar-

rahan, Phys. Rev. B 100, 024309 (2019).
[34] M. van Horssen, E. Levi, and J. P. Garrahan, Phys. Rev.

B 92, 100305 (2015).
[35] J. M. Hickey, S. Genway, and J. P. Garrahan, J. Stat.

Mech.: Theory Exp 2016, 054047 (2016).
[36] J. Feldmeier, F. Pollmann, and M. Knap, Phys. Rev.

Lett. 123, 040601 (2019).
[37] N. Pancotti, G. Giudice, J. I. Cirac, J. P. Garrahan, and
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