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Tensor network methods have demonstrated their suitability for the study of equilibrium proper-
ties of lattice gauge theories, even close to the continuum limit. We use them in an out-of-equilibrium
scenario, much less explored so far, by simulating the real-time collisions of composite mesons in
the lattice Schwinger model. Constructing wave-packets of vector mesons at different incoming mo-
menta, we observe the opening of the inelastic channel in which two heavier mesons are produced
and identify the momentum threshold. To detect the products of the collision in the strong cou-
pling regime we propose local quantitites that could be measured in current quantum simulation
platforms.

I. INTRODUCTION

Scattering experiments are a well-established tool for
probing fundamental physics. In particular, collision ex-
periments allow the production of high energy and rare
particles and thereby a study of their interactions. Pre-
cise theoretical predictions of such processes, necessary
for their interpretation, often involve contributions that
can not be extracted from diagrammatic perturbation the-
ory. This is the case, for instance, for hadron collisions,
where non-perturbative effects of Quantum Chromody-
namics (QCD) may play a significant role [1]. The most
powerful tool to address such non-perturbative regimes is
lattice gauge theory (LGT), the discrete formulation of
gauge field theories [2]. Using advanced numerical meth-
ods, like Quantum Monte Carlo [3, 4], LGT has allowed
the successful exploration of strong coupling phenomena,
such as the hadron spectra in QCD, but real time dynam-
ics represents a challenge. Despite recent progress [5], a
precise first-principles calculation of the scattering pro-
cesses has not yet been possible, one of the reasons that
motivates the search for alternative techniques [6].

In recent years quantum methods have unveiled po-
tential alternative ways to explore fundamental physics
(see [7–13] for reviews). Their central focus are LGTs,
which also appear as effective low-energy descriptions of
strongly correlated condensed matter systems [14]. The
Hamiltonian version of LGTs then constitutes a natural
object for quantum simulations. While a full simulation
of QCD is still beyond reach, current efforts are focused
on simplified and low-dimensional LGTs. An important
development are the quantum-information based tensor
network (TN) methods [15–20] which have been success-
fully applied to study spectral and thermal equilibrium
properties of low dimensional LGTs [6, 21–25], in 1+1D
cases achieving some of the most precise existing extrap-
olations to the continuum.

Real time evolution phenomena, such as scattering dy-
namics, are among the most promising problems for a po-
tential quantum advantage [26], since Monte Carlo meth-
ods suffer in this case from a sign problem. Tensor net-
work algorithms, on the other hand, can be used to simu-

late LGT dynamics, but only for a limited time, before the
entanglement in the system becomes too large for an effi-
cient TN description. Yet, out-of-equilibrium simulations
of LGT with TN have been used to explore the dynam-
ics of pair production [27] and string breaking dynamics
in several LGT models [28–32]. Whereas far from the
precision achieved by their equilibrium counterparts and
not extrapolated to the continuum limit, such simulations
overcome the limits of classical Monte Carlo methods and
constitute a valuable tool to prepare and analyze the po-
tential quantum simulations.

More recently, scattering experiments in LGT have at-
tracted the attention of TN calculations and quantum
simulation proposals [30, 33, 34]. The basic phenomenol-
ogy of confinement [35, 36] and meson scattering has also
been explored recently in quantum spin models which
share properties of LGT especially in 1+1D [37–43].

In this paper we use TN techniques to study elastic
and inelastic scattering of composite particles in the lat-
tice Schwinger model, which is the discrete lattice version
of Quantum Electrodynamics in one spatial dimension.
Due to its similarities with more complex LGTs, including
confinement and chiral symmetry breaking, the Schwinger
model is a standard testbench for LGT methods, and has
been focus of TN simulations, quantum simulation pro-
posals and even experimental realizations (see [7, 44] for
reviews). Studies of scattering processes in the Schwinger
model have been more scarce.

In absence of a background field, the spectrum of the
model contains two stable particles, referred to as vector
and scalar. Elastic processes between two vector mesons,
below the threshold of production of the scalar, have been
simulated in the strong coupling [30] and in the weak and
intermediate coupling [33] regimes. In this regime, the
particles collide and can bounce back, without the cre-
ation of new particles post-collision, but generating en-
tanglement between the mesons. A first approach to the
inelastic regime was explored recently in [34], with a fo-
cus on the thermodynamic limit and the non-perturbative
regime near the confinement-deconfinement critical point,
and using a bosonized formulation of the model, aimed
at proposing a quantum simulation scheme that could be
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implemented in circuit-QED.
In this work, we focus instead on the strong coupling

regime at vanishing background field, and explore the en-
ergy threshold required to open the inelastic channel and
obtain particle production after the collision. Working
in this regime allows us to propose simple initial state
preparations and observables that could be amenable to
realization on quantum simulators.

The paper is structured as follows: In Sec. II we briefly
present the Schwinger model in the continuum limit and
we show the lattice discretization we use in this work. In
Sec. III we discuss the preparation of the initial state of
two meson wavepackets, indicate the momentum thresh-
old for particle production and present the method used
for the time evolution of the system. In Sec. IV we
show the results of meson-meson collisions. We specifi-
cally identify the energy threshold for particle production
and we compare our results with the predicted threshold
obtained with DMRG calculations.

II. MODEL

The Schwinger model [45] is Quantum Electrodynam-
ics (QED) in one spatial dimension. It is the simplest
gauge theory including dynamical matter, and exactly
solvable for massless fermions, yet it exhibits common
features with those of Quantum Chromodynamics, like
confinement and chiral symmetry breaking [46]. Its lat-
tice discretization is commonly used as a benchmark for
numerical LGT methods [47, 48], and has in particular
been widely adopted in studies of Tensor Network tech-
niques for lattice gauge theories, which started [49] with
the application to the model of the Density Matrix Renor-
malization Group (DMRG) algorithm.

A. The continuum limit

The continuum Hamiltonian of the Schwinger model in
the temporal gauge can be written:

H =−
∫

dx
(
iΨ̄(x)γ1

[
∂1 + igA1(x)

]
Ψ(x)

)
+

∫
dx

(
mΨ̄(x)Ψ(x) +

1

2
E(x)2

)
,

(1)

with γ0 and γ1 the Dirac matrices in the temporal and
spatial dimension, whereas ∂1 is the partial derivative with
respect to x. The fermionic field Ψ(x) has two components
and its conjugate is Ψ̄ = Ψ†γ0. m is the fermionic mass
and g is the coupling constant. In an infinite volume, the
only independent parameter of the model is the adimen-
sional ratiom/g. Note that in the temporal gauge A0 = 0.
The electric field E(x) is then related to the vector gauge
field A1(x) as E(x) = −∂0A

1(x).
The continuum Schwinger model is exactly solvable for

the case m/g = 0 and m/g → ∞ [45, 50]. For m/g =
0, the Schwinger model can be solved using bosonization
and corresponds to a free massive boson, the so-called

Schwinger boson. For non-zero m/g, this boson becomes
interacting.

We denote the ground state energy as EGS. The first
stable particle of the theory is the vector meson, a bound
state (Schwinger boson) with massMV. The second stable
particle is the scalar meson, with mass MS, which can be
considered a bound state of two Schwinger bosons [46, 51].

These two bound states are stable particles with par-
ity and charge conjugation being well-defined quantum
numbers (CP symmetry) [46]. The bound state of two
Schwinger bosons belongs in the same sector as the ground
state (scalar sector), whereas the Schwinger boson belongs
to the vector sector.

In open boundary conditions, integrating Gauss law
fixes the electric field up to a constant, which can be inter-
preted as an external background field gθ/2π, with θ the
so-called vacuum angle [46, 52]. In the strong coupling
(small mass) regime we target in this study, it is possible
to estimate the particle masses perturbatively. Specifi-
cally, the mass of the mesons MV, in the strong coupling
regime can be obtained from second-order perturbation
theory as [53, 54]:

M2
V ≡ µ2

2 (2)

= µ2
0

(
1 + 3.5621

m

µ0
cos(θ)

+ 5.4807
m2

µ2
0

− 2.0933
m2

µ2
0

cos(2θ)

)

with µ2
0 = g2

π the result from zero-order perturbation the-
ory. The mass of the second excitation of the theory, the
bound stateMS, is given in second-order perturbation the-
ory by [51]:

M2
S = 4M2

V −∆ (3)

with ∆ = 4π4m2Σ2 cos2(θ)
M2

V
. Σ = gγ

2πµ0 is the fermion con-

densate with γ the Euler constant [53].

The form of the wavefuction of the bound states in
the strong coupling regime of the continuum limit was
previously studied first by Ref. [55] up to and including
four-body states and then by Ref. [56] up to and includ-
ing six-body states with the use of the six-body light-
front Tamm-Dancoff approximation. In these works it was
found that the composition of the bound states depends
on the fermionic mass m/g. They specifically consist of a
two-body component, a four-body component and a neg-
ligible six-body component. The contribution of the four-
body component increases as the fermionic mass m/g is
getting smaller.

B. The lattice

This section presents the lattice Schwinger model, the
scattering processes of which will be studied in this paper.
Here we are using the Kogut-Susskind staggered fermion
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formulation for the model [57]:

W =
g2a

2

∑
n

L2
n +m

∑
n

(−1)nΦ†
nΦn,

− i

2a

∑
n

(
Φ†

ne
iθnΦn+1 − h.c.

)
, (4)

with the lattice spacing being ga in coupling units. Specif-
ically, we focus on the strong coupling regime, which
means m/g ≪ 1.

The fermionic annihilation(creation) operators Φn(Φ
†
n)

reside on the lattice sites n. As single-component
fermionic operators, they satisfy canonical anticommuta-
tion relations {Φ†

n,Φm} = δnm and {Φn,Φm} = 0. The
gauge fields θn and Ln are the lattice equivalent to the
vector potential and the electric field in the continuum.
They occupy the links between two nearest neighbouring
sites (n and n+1). They are canonically conjugate opera-
tors, satisfying the commutation relation [θn, Lm] = iδnm.
In addition, the lattice version of the Gauss law reads [48]:

Ln − Ln−1 = Φ†
nΦn − 1

2
[1− (−1)n] (5)

and needs to be satisfied by the physical states of the
system.

By a Jordan-Wigner transformation, the Hamilto-
nian (4) can be mapped onto a spin model. The Gauss
law, which now reads:

Ln − Ln−1 =
1

2

(
(−1)n + (σz

n)
)
, (6)

can be integrated out if we consider open boundary condi-
tions, resulting in a spin Hamiltonian with long range in-
teractions [48, 58]. After rescaling it with a global 2/(ag2)
factor, one is left with the adimensional Hamiltonian:

H =
2

g2a
W = Hx +Hµ +Hl

= x

N−2∑
n=0

[
σ+
n σ

−
n+1 + σ−

n σ
+
n+1

]
+

µ

2

N−1∑
n=0

[1 + (−1)nσz
n]

+

N−2∑
n=0

[
l +

1

2

n∑
k=0

((−1)k + σz
k)

]2

, (7)

with x = 1
g2a2 and µ = 2m

g2a being adimensional parameters

and σ± = 1
2 (σ

x ± iσy). l is the background electric field
and is related to the vacuum angle as following: l = θ/2π.
It is set to zero in this work, l = 0.
The lattice model with open boundary conditions

breaks most of the continuum symmetries. In particular,
charge conjugation is no longer a good quantum number.
However, the symmetry is restored in the thermodynamic
limit and, if the system is large enough, it is possible to
define an approximate charge conjugation operator whose
expectation value can be used to distinguish the scalar
and vector sectors [59].

1. The strong coupling regime

In this paper we study the spin formulation of the lat-
tice Schwinger model solely focusing on the strong cou-
pling regime. Since here we use the rescaled Hamiltonian
of Eq. (7) with the adimensional parameters µ and x, be-
ing in the strong coupling regime for a finite lattice means
x ≪ 1. In this regime Hx can be considered the pertur-
bation, with Hµ +Hl being the unperturbed part of the
Hamiltonian. The strong coupling regime offers the ad-
vantage of having a simple Ansatz for the initial mesons
of the collision, as well as a clear energy threshold for
producing the scalar mesons of interest. We note that,
a truncated Hilbert space approach, which has been em-
ployed for spin chains [41], would not work here.

In the infinite coupling limit, x = 0, the ground state
of the unperturbed Hamiltonian Hµ+Hl is the state with
all the sites empty:

|0⟩ = | ↓↑↓↑ · · · ↓↑⟩ (8)

The sites are numbered from left to right n = 0, 1, . . . , N−
1. Due to the fact that we are using the staggered fermions
formulation, the odd sites correspond to the fermions and
the even sites to the antifermions. Specifically, the occu-
pied sites are | ↓⟩O for the odd sites and | ↑⟩E for the
even sites (| ↑⟩O and | ↓⟩E are the empty odd and even
sites correspondingly). Therefore, | ↓⟩O are the particles
(electrons) and | ↑⟩E are the anti-particles (positrons).

In the limit of infinite coupling, x = 0, the first exci-
tation of the theory |1V⟩ (the vector meson), with energy
EV, can be obtained simply as:

|1V ⟩ =
1√
N

∑
n

(
σ+
n σ

−
n+1 − σ+

n+1σ
−
n

)
|0⟩. (9)

For small but non-vanishing values of x, the strong cou-
pling expansion (SCE) [48], a perturbative expansion in
x, can be used to obtain very precise estimates of the
ground state energy and the mass spectrum, for small
bare fermion mass [60].

Our goal is to create states of the mesons with well
defined momenta. Although we do not have the explicit
solution for the operator that creates these particles, in
the strong coupling regime we can use an Ansatz that re-
sembles the first order of SCE (10), but where the strong
coupling vacuum has been substituted by the true ground
state at finite x, which we denote |Ω⟩ and compute numer-
ically following the method in [59]. Therefore, our Ansatz
for the state of the mesons can be written as:

|1V ⟩ =
1√
N

∑
n

(
σ+
n σ

−
n+1 − σ+

n+1σ
−
n

)
|Ω⟩. (10)

III. METHODS

A. Preparing the initial state

The first step for studying the elastic and inelastic
meson-meson collisions is creating two meson wavepackets
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in the initial state and giving them opposite momentum so
that they eventually collide. We prepare two wavepackets
for the mesons as Gaussian superpositions of the operator
in Eq. (10) acting on different positions, namely:

|ϕi⟩ = Ni

αend
i∑

n=αbeg
i

e−(n−ci)
2/(2σ2)e−inki

(
σ+
n σ

−
n+1 − σ+

n+1σ
−
n

)
|Ω⟩

= Oi|Ω⟩
(11)

with indices i = 1, 2 corresponding to the two mesons. We
choose the wavepackets to have centers ci, and common
width σ. Initially, the wavepacket of the first (second)
meson is spread in the left (right) half of the system. We

therefore have αbeg
1 = 0, αend

1 = N/2 − 1 for the first

meson and αbeg
2 = N/2 and αend

2 = N − 1 for the second
one. We consider the mesons to have opposite momenta
with the same magnitude, k1 = −k2 = k. Ni are the
necessary normalization factors. The total initial state is
constructed as the product:

|ϕ⟩ = (O1O2)|Ω⟩. (12)

Notice that this approach is made possible by working
in the strong coupling regime, as this provides us with
the explicit approximate description of the vector meson
state shown in Eq. (10), which can be directly used for
the creation of the wavepackets.

B. Momentum threshold kthr

In order to open an inelastic channel (i.e. to produce
a final state allowed by the symmetries of the problem),
the momentum of the incoming wavepackets needs to be
high enough to produce the new particles satisfying the
kinematic constraints imposed by energy and momentum
conservation.
We consider collisions in the center of mass of the in-

coming mesons, where the initial wavepackets have oppo-
site spatial momenta p1 = −p2 ≡ p. Momentum conser-
vation imposes that the outgoing particles, two identical
scalar mesons, have the same momenta with opposite di-
rections, q and −q. Conservation of energy then requires:

2
√
M2

V + p2 = 2
√

M2
S + q2 (13)

The final state with the smallest possible energy would
correspond to creating the pair of scalars at rest, q = 0.
This sets the momentum threshold for the incoming vector
mesons at:

p2 = p2thr = M2
S −M2

V. (14)

Notice that the relations above are written in terms of
physical (continuum) momenta. Our initial state (11) is
however written in terms of adimensional lattice quanti-
ties. In particular, the lattice momentum k is related to
the physical one as k = p/(g

√
x).

Because we work on a finite lattice with open bound-
ary conditions, the scalar mesons cannot be produced at
rest, but will carry at least the smallest lattice momentum
kmin = O(1/N), which will correct the threshold.

In the continuum limit, one could calculate the mo-
mentum threshold with the use of perturbation theory
and Eq. (2) and Eq. (3). Since in our parameter regime,
N = 100, x = 1 and µ = 2 × 10−5, we are far away
from that limit, we instead calculate the masses using a
variational optimization of MPS, with the algorithm in
ref. [59] for which we obtain the masses MV /g = 0.785,
MS/g = 1.370. With these values we estimate the lattice
momentum threshold at:

kMPS
thr ≈ 1.123. (15)

C. Time Evolution

In our work, we use TN methods to prepare the initial
state and simulate the time evolution. Firstly, we find a
matrix product state [16] approximation to the interacting
vacuum |Ω⟩ by optimizing variationally the MPS ansatz
that minimizes the energy, using the method in [59]. We
truncate the bond dimension of the ground state toDGS =
40. The operators O1 and O2 of Eq.(11) can be written
as exact matrix product operators (MPOs) [61] with bond
dimensionD = 4. They can be then applied to the ground
state, |Ω⟩ to create the meson wavepackets of Eq. (11).
We truncate the bond dimension of the wavepackets to
DV = 50, which, when compared to the exact initial state
of meson wavepackets (with bond dimension 4DGS), has
fidelity very close to 1 (with negligible corrections).

After creating the initial state with the two meson
wavepackets, we perform time evolution with standard
tensor network techniques [15, 16]. Specifically, we use
a second order Suzuki-Trotter expansion of the evolution
operator [62, 63] with time step δ, using the splitting of
the Hamiltonian described in [64], namely:

e−iτH ≈
(
e−i δ

2H
e
xe−i δ

2Hze−iδHo
xe−i δ

2Hze−i δ
2H

e
x

)τ/δ

.

(16)

He
x and Ho

x are the hopping terms (part of Hx) acting
on the two-body terms of even-odd and odd-even pairs of
sites correspondingly. Hz is the mass term of the Hamilto-
nian together with the electric field term, Hz = Hµ +Hl.

The exponentials e−i
δHe

x
2 and ei

−δHo
x

2 can be written as
exact MPOs with bond dimension 4. The exponential
of the term Hz can also be written as an exact MPO,
diagonal in the z basis, with bond dimension that scales
linearly with the system size as χ = N + 1 [64].
Specifically, the elements of the MPO are:

(M ij
n )Ln−1Ln = e−iδhn(i)δijδLn−Ln−1,Gn(i), (17)

where the virtual indices label the electric flux on the
links, Ln ∈ [−N/2, N/2] and the second delta ensures the
fulfilment of Gauss law (6),

Gn(i) =
1

2
[(−1)n + (−1)i], i = 0, 1, (18)
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and hn(i) = µ(−1)nGn(i) + L2
n for n < N − 1, with

hN−1(i) = µ(−1)N−1GN−1(i).

To be able to deal with large system sizes (of the order
of 100 or more sites) it is convenient to truncate the bond
dimension of this MPO to a constant value χtr, which
can be related to a cutoff in the absolute value of the
electric flux Lmax, as χtr = 2Lmax + 1. This truncation,
which was successfully used for thermal equilibrium states
in [64, 65], will be also valid in our case as far as the dy-
namics does not generate states with large occupations of
the electric flux. The cutoff in the electric flux is restricted
to Lmax = 8 in our study. Applying the evolution opera-
tor increases the bond dimension of the time-evolved state
|Ψ(t)⟩ at each time step. In order to control the computa-
tional cost, we truncate the bond dimension of the evolved
state to a maximum value of D = 50. Even though we
use relatively small bond dimensions for the ground state,
the initial mesons and the evolved state, as well as a rel-
atively small cutoff of the electric flux, we check that our
qualitative observations are stable under changes of the
truncation parameters, and this level of precision suffices
to observe the effects of inelastic scattering in the cases
under study. Specifically, knowing that the total energy
has to be conserved in our system, we control the errors
by measuring the (relative) change of the total energy in
comparison to the initial total energy of the system. We
find that for the times of interest (up to gtphys = 140) the
relative difference is less than 6%.

IV. RESULTS

In this section we present the results of elastic and
inelastic meson-meson scattering processes. Specifically,
in subsection IVA we observe the first signs of parti-
cle production, when having energies above the momen-
tum threshold of Eq. (15) (inelastic channel). In sub-
section IVB we calculate quantities that can be directly
measured in experiments, indicating the signal of particle
production for the inelastic channel. In subsection IVC
we study the four-body projector.

The results shown in this section correspond to a fixed
fermion mass m/g = 10−5 and physical volume N/

√
x =

100 (notice that we express all magnitudes in units of the
coupling g).

These magnitudes are related to their corresponding
lattice analogues through the lattice spacing ga = 1/

√
x.

In particular, the time parameter τ appearing in the evolu-
tion operator e−iHτ (16) is the adimensional lattice time.
It is related to the physical time gtphys as:

τ =
gtphys
2
√
x

(19)

The lattice size was fixed to N = 100 sites, and the
inverse lattice spacing to the value x = 1 in all the cases
below.

|Ω

𝒪2𝒪1

FIG. 1. The upper panel shows the initial state preparation fol-
lowing Eq. (12). The lower panel shows the dispersion relation
of the adimensional Hamiltonian of Eq. (7) as E = f(⟨O2

P ⟩),
with OP = −ix

∑
n(σ

−
n σz

n+1σ
+
n+2−h.c.) the dimensionless mo-

mentum operator for the fermion field (see [59]). The lower
branch corresponds to the vector meson and the upper one to
the scalar, for which only the lowest momentum excitations are
shown. The ground state energy, EGS/g, is subtracted from all
the energies plotted. We consider a finite system with lattice
size N = 100 and physical volume N/

√
x = 100. The mass

is m/g = 10−5. The energies were calculated with variational
MPS as in [59] with small bond dimension, D = 50.

A. Entropy

We first calculate the entanglement entropy S(n, t) cor-
responding to a bipartition where one subsystem includes
two neighboring sites n and n+ 1, with n = 0, . . . N − 2,
and the other subsystem consists of the remaining sites:

S(n, t) = −Tr[ρn,n+1(t) log2 ρn,n+1(t)], (20)

with ρn,n+1 being the reduced density matrix of one of the
subsystems. S(n, t) is interpreted as the entanglement be-
tween the sites {n, n+1} and the rest of the system. Since
the two-site reduced density matrix can in principle be re-
covered from local measurements, as recently realized in
optical lattices in [66], this quantity could be more easily
accessible in an experiment than the half-chain entangle-
ment that has been analyzed in other scattering simula-
tions [30, 33, 34].

The results of the calculation of the entanglement en-
tropy can be seen in Fig. 2 and in Fig. 3. We study three
different cases depending on the magnitude of the mo-
menta of the incoming mesons. The three cases consider
momenta below, slightly above and above the momentum
threshold kMPS

thr . The first case is the case where the mo-
menta are below the momentum threshold, as seen in the
left plot of Fig. 2. We specifically have lattice momenta
k1 = −k2 = k = 1. Here, the incoming mesons do not
have enough energy to create new particles. Therefore,



6

FIG. 2. The plots show the two-site entanglement entropy S(n, t), defined in the main text (20), with the entanglement entropy
of the vacuum subtracted from all the plots. The fermion mass is fixed to m/g = 10−5. We consider a finite system with lattice
size N = 100 and physical volume N/

√
x = 100. The standard deviation of the wavepackets is σ = 4. In the left plot, the

momentum magnitude of the incoming mesons is k = 1 and only the elastic channel is present. The elastic channel corresponds
to two mesons exiting the collision (yellow colour) with the same momentum as the momentum of the incoming mesons. In the
middle plot, the momentum of the incoming mesons is k = 1.13, slightly above the threshold predicted by the variational MPS
calculation kMPS

thr (15). At this point, the inelastic channel opens, with two bound states produced with velocities close to 0.
The signal of the two bound states that were created after the collision is visible a bit below gtphys ∼ 80, with the two outgoing
mesons coming from the elastic channel also being visible. The momentum of the incoming mesons for the plot on the right is
k = 1.5, also above the momentum threshold. Both the elastic and inelastic channels are open. The two bound states created
from the collision (inelastic channel) have non-zero velocities with opposite signs and less magnitude than the momenta of the
outgoing mesons of the elastic channel. The elastic channel is represented by the light blue cone-like shape, after the collision,
whereas the velocities of the bound states are shown with the two arrows. The parameters used in the numerical simulation were
bond dimension D = 50, Trotter step δ = 0.1 and maximum electric flux Ltrunc = 8.

only the elastic channel is present and the outgoing par-
ticles are two vector mesons with the same momenta as
the incoming ones. Fig. 3 shows the excess entanglement
entropy with respect to the vacuum after the collision,
for physical time gtphys = 90 (blue line). The two peaks
represent the wavepackets of the two outgoing mesons.
Notice the small increase in the entanglement between
the two wavepackets in comparison to the entanglement
entropy of the vacuum. Because the local entropy we com-
pute is not directly measuring entanglement between the
outgoing mesons, we attribute this increment to the fluc-
tuations imprinted onto the vacuum by the collision.
The second case is the middle plot of Fig. 2, where the

incoming particles have enough energy to produce two
scalar mesons of mass MS with zero velocity. Specifi-
cally, as mentioned in Sec. IIIA in Eq. 15, the threshold
for particle production is at kMPS

thr ≈ 1.12. As the ini-
tial momenta of the vector mesons is k = 1.13, we expect
producing scalar mesons that are almost at rest after the
collision. Notice here that it is not possible to create par-
ticles with momentum exactly 0, because as mentioned
in Sec. III B, the scalar mesons have to have at least mo-
mentum kmin = O(1/N). One could observe that after the
collision (tphys ∼ 80) there is a sign of particle production
in the middle of the system, where the entanglement en-
tropy is greater than the entanglement entropy between
the outgoing particles of the elastic channel. This signal
can be more clearly observed in Fig. 3 (orange line). The
peak in the middle of the system corresponds to the two
bound states produced with almost zero velocities. The
higher peaks on the left and right of this signal correspond
to the outgoing mesons of the elastic channel.

Finally, the right plot of Fig. 2 represents the case where
the momentum of the incoming particles is considerably

FIG. 3. The plot shows the two-site entanglement entropy
S(n, t) (20) minus the entanglement entropy of the vacuum,
Svac, on a lattice with size N = 100 and physical volume
N/

√
x = 100, for the cases where the initial particles have mo-

menta below, slightly above and above the momentum thresh-
old, at k = 1, k = 1.13 and k = 1.5. The mass is m/g = 10−5,
and the standard deviation of the wavepackets σ = 4. As in
Fig. 2, the parameters used in the numerical simulation were
bond dimension D = 50, Trotter step δ = 0.1 and maximum
electric flux Ltrunc = 8. To demonstrate the numerical con-
vergence, for the cases k = 1 and k = 1.13 we show also the
results for D = 80 (black dash lines) while keeping all the other
parameters the same.

larger than the threshold, such that they have enough en-
ergy to produce two scalar particles of mass MS , and the
excess is transformed in kinetic energy of the outgoing
mesons. In this case, we can notice both the elastic and
the inelastic channels. Since the scalar mesons are pro-
duced with small velocities, their signal is found near the
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middle of the system, as also seen by Fig 3. One could also
observe the signal of the elastic channel, near the edges of
the same plot.

We notice here that the momentum threshold for parti-
cle production calculated from the variational MPS spec-
trum calculations was kMPS

thr ≈ 1.12. The simulated colli-
sions behave as expected, with the first particle produc-
tion observed at k = 1.13, and no signs of particle produc-
tion at k = 1. We could also compare with the momentum
threshold predicted by perturbation theory in the contin-
uum limit, pcontinuumthr /g ≈ 0.98, which was done with the
use of Eq. (14), Eq. (2) and Eq. (3).

B. Correlators

FIG. 4. This plot shows the electric flux correlator, Cmn
l ,

of a system size N = 100, corresponding to physical volume
N/

√
x = 100 at lattice spacing x = 1, for times after the

meson-meson collision, gtphys = 100. The initial momentum
of the mesons, k = 1, is below the momentum threshold. The
fermion mass is m/g = 10−5, and the standard deviation of the
initial wavepackets σ = 4. We set Cmn = 0 for |m−n| ≤ 1, so
that Lm,n do not overlap. The insets show the enclosed area
rescaled by a factor, to highlight the signal of the correlations
between the two outgoing meson wavepackets of the elastic
channel. The bond dimension used for the calculations is D =
50 and the maximum electric flux Ltrunc = 8.

In this subsection we plot the electric flux correlator,

Cmn(t) = ⟨LmLn⟩ − ⟨Lm⟩⟨Ln⟩ (21)

with Ln = 1
2

∑n
k=0((−1)k + σz

k). In principle, we can
expect that this quantity can be measured in experiments,
showing the signals of particle production.

The plots in this section show the electric flux corre-
lators, Cmn(t), specifically for times after the collision.
Fig. 4 shows Cmn(t) for gtphys = 100 for the case in
which only the elastic channel appears, with the incoming
mesons having momentum k = 1. As seen in the left plot
of Fig. 2, the outgoing mesons appear to be occupying the
lattice sites 20−40 and 60−80. This is verified by Fig. 4,
where the two oval shapes around the diagonal correspond
to the two outgoing mesons of the elastic channel and are
concentrated around the same positions.

In Fig. 6 we plot the correlator for gtphys = 180 and ini-
tial meson momenta above the momentum threshold, at
k = 1.5. In this case both the elastic and inelastic chan-
nel are present. The inelastic channel appears as the yel-
low signal around the main diagonal, with the two bound
states visible around sites 40− 50 and 60− 70.

C. Four-body projector

As seen in the subsections above, two different particles
are produced when the momenta of the initial mesons are
above the momentum threshold kMPS

thr ≈ 1.12. These are
scalar mesons, which can be interpreted, as discussed in
section IIA as bound states of two Schwinger bosons.
Ideally, to unambiguously identify the particles pro-

duced as scalar mesons, we would like to measure the
corresponding scalar operator, which is not known, in gen-
eral. However, in the strong coupling regime, m/g → 0,
the continuum theory results ensure that the composi-
tion of the scalar meson in that case is dominated by four
fermion terms, whereas the vector meson is dominated by
two-fermion terms [55, 56]. Even though we are far from
that limit and both the ground states and excitations are
strongly renormalised, we propose probing the appearance
of the scalar mesons by calculating the time-dependent
expectation value of the four-body projector:

Pn(t) = ⟨Πn
↑Π

n+1
↓ Πn+2

↑ Πn+3
↓ ⟩|n=even (22)

with Πn
↑ , Π

n
↓ the projectors:

Πn
↑ | ↑⟩ = | ↑⟩ (23)

Πn
↓ | ↓⟩ = | ↓⟩

and Πn
↑ | ↓⟩ = 0, Πn

↓ | ↑⟩ = 0. This will give a signal that
the time-evolved state has a four-body component iff all
the consecutive sites n, n + 1, n + 2 and n + 3 are occu-
pied. The underlying assumption is that the wave func-
tions are continuously connected to the strong-coupling
regime, such that we can identify its signal as the pres-
ence of the scalar.
The results shown in Fig. 5 give yet another indica-

tion of the presence of the bound states. Specifically, in
the left plot of Fig. 5 (k = 1.13) one observes the first
signal of bound state production (yellow colour). This
corresponds to two scalar mesons produced almost at rest
(approximately zero velocities). The right plot of Fig. 5
shows the case where the incoming mesons have momen-
tum k = 1.5. After the collision, one observes signals of
two bound states with opposite velocities (yellow colour).

V. DISCUSSION

In this work we have used TNS methods to simulate
scattering processes in the lattice version of the Schwinger
model. More concretely, we have studied the scattering in
the center of mass of two vector mesons (composite parti-
cles) at different incident momenta, and have been able to
observe the threshold at which the inelastic channel opens
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FIG. 5. This plot shows the expectation value of the four-body projector, Pn(t), of a system with lattice size N = 100 and
physical volume N/

√
x = 100. For the first plot the initial momenta of the mesons are k = 1.13 and for the second plot are

k = 1.5. The mass is m/g = 10−5, and the standard deviation of the wavepackets σ = 4. The bond dimension is D = 50 and the
maximum electric flux Ltrunc = 8.

FIG. 6. This plot shows the electric flux correlator, Cmn
l , of

a system size N = 100 and physical volume N/
√
x = 100, for

times after the meson-meson collision, gtphys = 180. The initial
momenta of the mesons are above the momentum threshold,
k = 1.5. The mass is m/g = 10−5, and the standard deviation
of the wavepackets σ = 4. The bond dimension is D = 50 and
the maximum electric flux Ltrunc = 8. We set Cmn = 0 for
m = n, m = n− 1 and m = n+ 1.

and other particles of higher mass are produced. We have
proposed entanglement and local observables to identify
the character of the collision and the nature of the prod-
ucts. More concretely, we show that the entanglement
of two neighboring sites (which would be accessible from
measurements on two sites) with the rest of the chain and
the correlators of the electric flux provide clear signatures
of the collision character. Moreover, a 4-site projector can
be used as another measure for observing the presence of
the collision products.

Our initial state preparation and detection observables
are based on perturbative expansions valid in the strong
coupling (small fermion mass and small x parameter)
regime, and we performed our numerical simulations at
a fixed value of the lattice spacing, far from the contin-
uum limit. Yet, this parameter regime would be closer

to the ones possible for current quantum simulation plat-
forms, for example ultracold atoms as recently proposed
for a related U(1) quantum link model [67].

Quantum inspired classical simulations with TNS, as
well as proposed quantum simulation protocols are tack-
ling progressively challenging regimes of LGT, and could
in the future study problems that are out of the reach of
traditional lattice methods. Out of equilibrium processes,
such as collision experiments, are among the most inter-
esting ones, but also come with their own challenges. In
particular, performing a systematic extrapolation of lat-
tice results to the continuum limit for a real-time problem,
with a precision close to the one attained for spectral or
thermal properties, requires performing real-time simula-
tions on larger lattices far from the strong coupling limit
as x → ∞. It is thus a natural extension of this work to
investigate how to prepare suitable initial states and to
identify other observables that can detect the products of
the collision away from the strong coupling perturbative
regime.

Further extensions of our work could involve studying
the effect of a background electric field, which is known
to induce a phase transition, or considering collisions at
much higher energies, with the possibility to open other
inelastic channels. Overall, we hope that our results pro-
vide a stepping stone for exploring real-time scattering
phenomena in regimes inaccessible by perturbative meth-
ods.
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[22] P. Emonts, M. C. Bañuls, I. Cirac, and E. Zohar, Vari-
ational Monte Carlo simulation with tensor networks of
a pure Z3 gauge theory in (2 + 1)D, Phys. Rev. D 102,
074501 (2020).
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