日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Importance of Metal-Support Interactions for CO2 Hydrogenation: An Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study on Gold-Loaded In2O3 and CeO2 Catalysts

MPS-Authors
/persons/resource/persons207058

Zeller,  Patrick
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21590

Hävecker,  Michael       
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Ziemba, M., Weyel, J., Zeller, P., Welzenbach, J., Efimenko, A., Hävecker, M., & Hess, C. (2024). Importance of Metal-Support Interactions for CO2 Hydrogenation: An Operando Near-Ambient Pressure X-ray Photoelectron Spectroscopy Study on Gold-Loaded In2O3 and CeO2 Catalysts. The Journal of Physical Chemistry Letters, 15(18), 4928-4932. doi:10.1021/acs.jpclett.4c00653.


引用: https://hdl.handle.net/21.11116/0000-000F-4BDA-8
要旨
Metal-support interactions, which are essential for the design of supported metal catalysts, used, e.g., for CO2 activation, are still only partially understood. In this study of gold-loaded In2O3 and CeO2 catalysts during CO2 hydrogenation using near-ambient pressure X-ray photoelectron spectroscopy, supported by near edge X-ray absorption fine structure, we demonstrate that the role of the noble metal strongly depends upon the choice of the support material. Temperature-dependent analyses of X-ray photoelectron spectra under reaction conditions reveal that gold is reduced on CeO2, enabling direct H2 activation, but oxidized on In2O3, leading to decreased activity of Au/In2O3 compared to bare In2O3. At elevated temperatures, the catalytic activity of the In2O3 catalysts strongly increases as a result of facilitated CO2 and (In2O3-based) H2 activation, while the catalytic activity of Au/CeO2 is limited by reoxidation by CO2. Our results underline the importance of operando studies for understanding metal-support interactions to enable a rational support selection in the future.