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ABSTRACT 
Measurement invariance (MI) describes the equivalence of measurement models of a construct across 
groups or time. When comparing latent means, MI is often stated as a prerequisite of meaningful group 
comparisons. The most common way to investigate MI is multi-group confirmatory factor analysis (MG- 
CFA). Although numerous guides exist, a recent review showed that MI is rarely investigated in practice. 
We argue that one reason might be that the results of MG-CFA are uninformative as to why MI does 
not hold between groups. Consequently, under this framework, it is difficult to regard the study of MI 
as an interesting and constructive step in the modeling process. We show how directed acyclic graphs 
(DAGs) from the causal inference literature can guide researchers in reasoning about the causes of non- 
invariance. For this, we first show how DAGs for measurement models can be translated into path dia
grams used in the linear structural equation model (SEM) literature. We then demonstrate how insights 
gained from this causal perspective can be used to explicitly model encoded causal assumptions with 
moderated SEMs, allowing for a more enlightening investigation of MI. Ultimately, our goal is to pro
vide a framework in which the investigation of MI is not deemed a “gateway test” that simply licenses 
further analyses. By enabling researchers to consider MI as an interesting part of the modeling process, 
we hope to increase the prevalence of investigations of MI altogether.

KEYWORDS 
Causal inference; directed 
acyclic graphs; 
measurement invariance; 
moderated non-linear factor 
analysis   

With increasingly larger and culturally diverse data sets 
available, social and behavioral scientists are able to research 
human experiences and behavior in much broader contexts. 
For example, extensive studies have been conducted on cul
tural differences in moral judgement (Bago et al., 2022), 
prosocial behavior (House et al., 2020), and the values of 
emotions in societies (Bastian et al., 2014). These new 
opportunities come with new challenges: we need transpar
ent and objective rules about how to adequately compare 
groups and under which assumptions we are allowed to 
generalize results from one group to another. Recently, 
Deffner et al. (2022) have presented a detailed framework 
based on causal inference that does just that: Following sim
ple graphical rules of so-called directed acyclic graphs 
(DAGs), their framework enables researchers to draw infer
ences and derive licensing assumptions about which com
parisons and generalizations are warranted. Researchers 
working with variables that are observable, like dictator 
game choices in the examples of Deffner and colleagues, can 
readily draw on these authors’ framework. However, as 
Deffner et al. (2022) themselves state, psychologists are often 
interested in the constructs underlying the observed varia
bles (Westfall & Yarkoni, 2016). As psychologists, we do not 
care whether you reported you enjoy going out with 
friends—we care about how extraverted you are. If we use 
observed variables as direct representations of the underly
ing construct (e.g., by building a sum score of questionnaire 

items), we disregard the measurement error inherent in all 
psychological measures (Lord & Novick, 1968; Van Bork 
et al., 2022). Ignoring this measurement error in the model
ing process can lead to distorted inference. Our model 
would not be able to distinguish between variation in item 
responses caused by the construct and variation caused by 
error (also referred to as unique item variance). Westfall 
and Yarkoni (2016) for example showed that disregarding 
measurement error leads to inflated type-I-error rates when 
trying to statistically control for confounding covariates. As 
a remedy, they suggest using structural equation models 
(SEM), which are models that explicitly include the meas
urement error (Bollen, 1989). In a SEM, constructs are 
modeled in a measurement model, where a latent variable 
and the unique error jointly cause the observed variables 
(Van Bork et al., 2022). Relationships between constructs are 
modeled in the structural model (Mulaik, 2009). While the 
use of measurement models allows us to take the measure
ment error into account, it poses a new challenge for com
parisons between groups. In order to be able to meaningfully 
compare groups, we have to make sure that any difference 
between groups occurs only due to true differences (i.e., dif
ferences in the latent variable), not due to measurement dif
ferences (Meuleman et al., 2022). This characteristic is called 
measurement invariance (MI) and means that the measure
ment models are equivalent across groups (Meredith, 1993; 
Putnick & Bornstein, 2016; Vandenberg & Lance, 2000). 
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Although numerous guides (e.g., Putnick & Bornstein, 2016; 
Van De Schoot et al., 2012) and methods (e.g., Kim et al., 
2017) for investigating MI exist, a recent review showed that 
it is very rarely done in practice (Maassen et al., 2023). The 
reasons for this are surely diverse. We argue that one reason 
might be that researchers currently have only little guidance 
on how to regard the study of MI as an interesting and con
structive step in the modeling process. By viewing MI as an 
informative aspect by itself, we might be able to learn more 
about psychological constructs. For this, a framework is 
needed that lets us reason about how and why constructs 
and measures thereof function differently across groups.

As Deffner et al. (2022) briefly explained, DAGs can be used 
to depict cases of measurement (non-)invariance. Consequently, 
DAGs might be a useful tool for reasoning about when latent 
variables are comparable and generalizable. Our aim is to pick 
up where Deffner et al. (2022) left off: we want to extend their 
framework to the case where claims on the construct-level are 
of interest so that MI is an additional part of the modeling pro
cess. The article is structured as follows: First, we briefly intro
duce the language of DAGs, which are often used in causal 
inference, and provide a translation to path diagrams for meas
urement models used in the psychometric SEM literature. 
Second, we outline the current practice of investigating MI and 
give a summary of options on how to proceed when MI does 
not hold. Third, after framing MI as a causal concept, we dem
onstrate how DAGs can be used to depict non-invariance by 
encoding assumptions about possible causes of group differen
ces. Fourth, we illustrate in a simulated and an empirical 
example how following the current practice of investigating MI 
might miss important aspects of non-invariance. We show how 
considering the whole causal model instead can help researchers 
to make more informed modeling choices.

1. From DAGs to Measurement Models

We start by clarifying and defining the terms used through
out this paper. As already mentioned, DAGs are graphical 
objects used in causal inference to depict causal relation
ships between variables (Elwert, 2013; Pearl, 1998, 2012). 
They consist of nodes (the variables) which are connected 
by edges (directed arrows between these nodes). If a variable 
is unobserved (latent), we enclose it by a dashed circle. An 
edge between two variables A and B, denoted by A! B, 
means that A has a causal effect on B. DAGs are called 
directed because only single-headed arrows are allowed,1

and acyclic because no variable is allowed to be a cause of 
itself. In general, there are three different causal structures, 
with which any set of nodes can be described (Deffner 
et al., 2022; Elwert, 2013; Rohrer, 2018):

� The confounder: A B! C, that is, the confounder B 
causes both A and C.

� The chain (psychologists know this as a mediator): A!
B! C, that is, A causes C through the mediator B.

� The collider: A! B C, that is, A and C both cause 
the collider B.

By following the arrows from one variable to another, we 
can identify the individual paths by which these variables 
are connected. For all of these constellations exist clear rules 
of independences between variables (Mulaik, 2009; Pearl, 
2012). We say that two variables are conditionally independ
ent if they are unrelated given a (possibly empty) set of 
other variables. For the confounder and the chain, condi
tioning on (also: adjusting for) the variable “in the middle” 
renders the other two variables independent. In this case, 
we write A??CjB, meaning that A and C are independent, 
conditional on B. For the collider, A and C are uncondition
ally independent; conditioning on B would in turn render 
them dependent and produce a non-causal association. 
Thus, conditioning on a variable closes the path (i.e., “stops 
the flow of information”) in the case of confounding and 
mediating variables but opens a non-causal path (i.e., “allows 
the flow of information”) in the case of colliders (Elwert, 
2013). Conditioning can be achieved by including the variable 
as a predictor in the model but also by specific sampling or 
experimental designs (Rohrer, 2018). If a path between two 
variables is closed, the path is said to be d-separated (Pearl, 
1988). The risk of conditioning on the “wrong” variable or of 
missing a variable that should be conditioned on highlights 
that it is crucial to clearly define the causal relationships 
between variables prior to analyzing or modeling the data. 
Failure to do so can lead to spurious associations and dis
torted inference, for example by accidentally opening paths 
between variables that should remain closed. We refer readers 
to Rohrer (2018) and Wysocki et al. (2022) for comprehen
sive guides on how to approach data analysis from a causal 
inference perspective.

It is important to note that DAGs depict the causal rela
tionships between a set of random variables without impos
ing particular distributions or functional forms of the 
relationships (Greenland & Brumback, 2002; Rohrer, 2018; 
Suzuki et al., 2020). Their strength lies in making assump
tions about the relationships between variables explicit and 
thereby revealing testable implications between them. That 
is, if the DAG depicts the true data-generating process, 
applying the graphical rules of (in)dependences tells us 
which associations should and should not be observable in 
the data (Elwert, 2013). Even if a DAG does not fully repre
sent the true data-generating process, it would still be useful 
because all inferences rely on assumptions and a DAG 
might help to identify the ones that are otherwise made 
implicitly. If we are not willing to make any assumptions, 
no analysis can be reasonably justified (Deffner et al., 2022). 
In this spirit, when setting up a DAG, it is helpful to view 
the absence of arrows as strong assumptions and their pres
ence as weak ones (Bollen & Pearl, 2013; Elwert, 2013). An 
omitted arrow between two variables assumes that the direct 
causal effect is exactly zero, whereas an arrow assumes some 
form of relationship without specifying its strength or 

1Double-headed arrows are sometimes used in DAGs to depict an unobserved 
common cause between two variables (Elwert, 2013). However, a double- 
headed arrow between A and B is identical to A U! B, where U is the 
unobserved common cause of both A and B. We restrict ourselves to the use 
of single-headed arrows in this paper.
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functional form. Thus, the less we are certain about rela
tionships between variables, the more arrows we should 
draw.

To bridge the gap between DAGs and path diagrams for 
SEM—and more specifically, measurement models—it is 
helpful to view DAGs as non-parametric SEMs (Bollen & 
Pearl, 2013; Pearl, 2012). A non-parametric SEM is a model 
in which we do not make assumptions about the functional 
form of the associations between variables. Consider the 
DAG of a simple measurement model in Figure 1.

The observed variables Y1, Y2, and Y3 are caused by the 
unobserved (latent) variables C and E1, E2, and E3: C is 
called the common factor and interpreted as a common 
cause of Y1−3 (Van Bork et al., 2022). Each Y also has its 
unique cause E that is independent of C. Interpreting this 
DAG as a non-parametric SEM, we can formally describe 
the vector of observed variables Y as Y ¼ f ðC, EÞ: Typically, 
when dealing with SEMs, we assume that the relationships 
are linear and that the variables follow certain distributions. 
This gives rise to the equation for measurement models in 
SEM (Mulaik, 2010)2:

Y ¼ sþ KC þ E (1) 

Here, K is the matrix of path coefficients (called load
ings), quantifying the strength of the relationship between 
the observed variables Y and the latent variable C, s is the 
vector of intercepts of Y , and E is the vector of unique 
error terms of Y which cannot be explained by C. In add
ition to this structural assumption, the following distribu
tional assumptions are often made for estimation purposes: 
C � Nða, UÞ and E � MVNð0, WÞ: a and U are the expect
ation and the variance of C, respectively. The variances of 
the errors E are captured on the diagonal of W (usually, 
errors are assumed to be uncorrelated, so the off-diagonal 
entries of W are 0). The covariance of the data is defined as 
R ¼ KUK> þW (J€oreskog, 1967); that is, variation in the 
data can be decomposed into a part that is explained by the 
common factor and an error part.

The assumption of linearity lets us now translate our meas
urement model from a DAG (Figure 1) to a path diagram 
(Figure 2), which is a common form of diagram in the psy
chological literature (see Epskamp, 2015 for definitions and 
visualizations of different styles of path diagrams). Latent varia
bles (in our case: C) are enclosed by a circle. Error terms (in 
our case: E) are not included explicitly. Instead, their variances 
are depicted by an arrow pointing into its corresponding 
observed variable (LISREL style, Figure 2a) or by a double- 
headed arrow-loop on the observed variable (RAM style, 
Figure 2b). Only in RAM style, the variance of the exogeneous 
variables (in our case: C) are also depicted by a double-headed 
arrow-loop. The observed variables (in our case: Y) are 
enclosed by a rectangle, their intercepts are depicted by a tri
angle. Because we assume that all relationships between varia
bles are linear, we can use path coefficients, that is, a single 
number on each arrow, to quantify the relationship k 

between C and Y.3 In a DAG, this is not possible because in 
potentially non-linear relationships the value of the path coef
ficient between C! Y depends on the value of C. When 
comparing Figures 1 and 2, we can now see that by making 
structural and distributional assumptions about our causal 
model, we can translate the DAG of our simple measurement 
model into a path diagram.

The relation between DAGs and path diagrams for SEMs 
has been shown in the literature (see, e.g., Kunicki et al., 
2023 for a comparison) but—to the best of our knowledge— 
has so far not been extended explicitly to measurement mod
els.4 We argue that embedding measurement models within 
wider causal relationships represented by DAGs can help 
researchers to investigate MI in a more informative manner. 
In the following, we briefly outline how MI is primarily 
investigated. Subsequently, we showcase how DAGs can be 
used to depict (non-)invariance and to decide which variables 
have to be included in our model. We illustrate how DAGs 
can be used to investigate assumed causes of non-invariance 
that might be missed by the current approach.

2. Current Practice of Investigating Measurement 
Invariance

MI is rarely considered in empirical studies on latent varia
bles (Maassen et al., 2023). Specifically, Maassen and col
leagues investigated the practice of MI testing for 918 latent 
mean comparisons in 97 articles in the two journals PLOS 
ONE and Psychological Science. They found that references 
regarding MI in these two influential journals were made 
for only 40 (4%) of the 918 latent mean comparisons. 
Additionally, none of these tests could be reproduced due to 
unavailable data or lack of details in reporting of MI testing 
procedures. It is thus not clear how many claims about 
latent variable differences between groups in the literature 

Figure 1. Simple DAG of a measurement model where the observed variables 
Y1, Y2, and Y3 are caused by a latent common factor C and latent unique error 
terms E1, E2, and E3:

2Without loss of generality, we are assuming a one-dimensional construct 
(only one common factor C) and drop the person-indeces i for better 
readability.

3In path diagrams, double-headed arrows between observed variables (i.e., 
items) are sometimes used to depict correlated error terms (i.e., item 
responses that are correlated even after conditioning on the latent variable). 
This is closely related to the double-headed arrows in DAGs mentioned in an 
earlier footnote. Correlated errors are equivalent to unobserved confounding, 
that is, failure to model all influence on the item response besides the latent 
variable. In the literature on item response models, this is often called local 
dependence (Kreiner & Christensen, 2011).
4But see Bollen and Pearl (2013) who briefly touch on measurement models 
in combination with causality.
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are actually attributable to true differences and how many 
occurred due to measurement non-invariance. By no means 
do we want to imply that researchers who do not consider 
MI are not rigorous. Rather, our argument is directed 
against the current practice of investigating MI. As we will 
outline below, the current approach does not provide much 
information about the role of (non-)invariance in the data- 
generating process. Additionally, it does not inform 
researchers about principled measures to choose an appro
priate model to investigate or consider MI in their analyses.

Prevailingly, MI is (in its simplest form) tested by multi- 
group confirmatory factor analysis (MG-CFA) with G groups 
(J€oreskog, 1971): A covariate that defines the groups to be 
compared is chosen, for example the covariate Region with 
two groups western and eastern. First, a factor analysis 
model (see Equation (1)) is estimated per group, that is, 
with group-specific loadings, intercepts, and unique varian
ces. This is called a configural model. A combined good
ness-of-fit measure for both groups is calculated, for 
example the root mean squared error of approximation 
(RMSEA) or the comparative fit index (CFI). A bad fit of 
the configural model is an indication that the model itself is 
misspecified (i.e., missing paths between observed and latent 
variables or wrong number of latent variables in one or 
more groups). Next, a second model is estimated but now 
the loadings are constrained to be equal across groups (i.e., 
Kg ¼ Kk for all g, k 2 1, . . . , G). If the overall fit of this 
model does not drop compared to the configural model, 
metric (or weak) MI is supported, that is, loadings are equal 
across groups. In a third model, in addition to the loadings, 
the intercepts of the observed variables are constrained to 
be equal across groups (i.e., sg ¼ sk for all g, k 2 1, . . . , G). 
If the overall fit is not worse than the fit of the metric 
model, scalar (or strong) MI holds. If scalar MI is sup
ported, comparisons of latent means are warranted (Putnick 
& Bornstein, 2016; Vandenberg & Lance, 2000). As a rule- 
of-thumb, an increase of 0.01 of the RMSEA or a decrease 
of 0.01 of the CFI when comparing two nested models 
could be considered a violation of MI (Chen, 2007; Cheung 
& Rensvold, 2002). Rutkowski and Svetina (2014) propose 
more liberal values of 0.03 in RMSEA-increase or 0.02 in 
CFI-decrease when testing for metric MI and when the 
number of groups is high. Nonetheless, because cut-off values 
depend on both model complexity and sample size, research
ers should not blindly follow these recommendations 

(Goretzko et al., 2023). Since the models are nested, a 
stricter comparison by means of a v2-difference hypothesis 
test is possible as well. However, this test is sensitive to 
sample size, so using fit indices is considered more suitable 
(De Roover et al., 2022). Beyond scalar MI, residual MI 
could be tested by comparing the scalar model with a model 
in which the unique variances are constrained to be equal. 
Because this level of MI is difficult to achieve and not a pre
requisite of latent mean comparisons, it is often not 
considered.

The results of this investigation do not provide any infor
mation on why MI is not supported. Thus, it is not obvious 
what to do if we find that MI does not hold or if we want 
to consider it as a part of the whole modeling process. We 
briefly outline a few options on how to proceed in this case. 
We refer readers to Leitg€ob et al. (2023) for a detailed 
account of the approaches mentioned below. First, one 
could aim for partial MI. This is done by identifying so 
called anchor items, that is, items whose parameters are 
invariant across groups. By constraining parameters of these 
anchor items to be equal across groups and and allowing 
the remaining parameters to differ, partial MI can be estab
lished (Vandenberg & Lance, 2000). Unfortunately, there is 
no clear answer to the question of how many parameters 
have to be equal across groups to allow for meaningful latent 
mean comparisons (Putnick & Bornstein, 2016). Additionally, 
the identification of anchor items is far from trivial (Sass, 
2011; Steenkamp & Baumgartner, 1998) and the wrong 
choice can again bias latent mean comparisons (Belzak & 
Bauer, 2020; Pohl et al., 2021). Second, more advanced meth
ods to investigate MI could be applied, for example from the 
literature on differential item functioning (Bauer et al., 2020; 
Kopf et al., 2015; Strobl et al., 2015; Tutz & Schauberger, 
2015) or on SEM (Asparouhov & Muth�en, 2014; Brandmaier 
et al., 2013; De Roover et al., 2022; Schulze & Pohl, 2021; 
Sterner & Goretzko, 2023). However, all of these methods 
entail specific assumptions about the variables in the data 
and the relationships between them. To exploit their full 
potential, it is crucial to explicitly consider these assumptions 
in order to make informed modeling decisions. Luong and 
Flake (2023) provided a detailed example of how taking into 
account the underlying assumptions of advanced methods to 
investigate MI could look like. Third, at some point, we 
might have to accept that MI does not hold (Leitg€ob et al., 
2023; Rudnev, 2019). This, however, is an important finding 

Figure 2. Simple path diagram of a measurement model. (a) LISREL style: only error variances are depicted by an arrow without a node pointing into all endogene
ous variables (here: the observed variables); (b) RAM style: variances of both endogeneous and exogeneous variables are depicted by a double-headed arrow-loop 
(here: error variances and variances of the latent variables).
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by itself and should be the starting point of further explor
ation (for an example, see Seifert et al., 2024). Especially 
when constructing or revising psychological tests or question
naires, thoroughly exploring why a measure functions differ
ently across groups can help us to learn more about the 
construct itself. As Putnick and Bornstein (2016) put it, 
investigating MI should not be considered a “gateway test” 
that licenses us to further analyze our data. Rather, it should 
be viewed as an integral part of the whole modeling process.

What is, in our opinion, currently missing is a theoretical 
framework in which a potential lack of MI can be explored. 
Specifically, a framework is needed which lets us reason about 
the causes of non-invariance. As mentioned, because MI is 
usually only investigated with regard to the covariate that 
defines the groups we want to compare, the only information 
we get is that MI is violated. Under this approach, it is difficult 
to communicate assumptions about why MI does not hold. 
Researchers can therefore not properly decide how their statis
tical models to investigate MI should look like. Consequently, 
they are unable to make full use of the broad arsenal of 
advanced methods. By outlining the causal foundations of MI, 
we now demonstrate how DAGs can be used to depict (a lack 
of) MI and to make informed modeling choices.

3. The Causal Foundations of Measurement 
Invariance

When looking at seminal papers on MI, one could argue 
that MI was a causal concept from the very beginning. 
Mellenbergh (1989) depicted non-invariance (he called it 
item bias) by some form of DAG and speaks of causal influ
ences as well as conditional independencies between 
observed variables (items), latent variables (traits), and 
groups. Similarly but more formally, Meredith (1993) would 
define our observed variable Y as measurement invariant 
with respect to selection on some other variable V if Y and 
V are independent, conditional on the latent variable C. 
Thus, MI is formally defined as

f ðYjV , CÞ ¼ f ðYjCÞ (2) 

where f ð�Þ is the density function. That is, conditional on the 
common factor C, the distribution of the observed variables Y 
is independent of any variable V (Y??VjC). V is usually 
assumed to be an observed covariate (e.g., age, region, gender, 
etc.) but could also be a latent variable. MI thus means that 
the measurement model is equivalent in any group within the 
population. Borsboom (2023) framed MI in an even more 
causal language by stating that C should block all paths from 
any V to Y. That is, given the latent variable, all observed vari
ables Y and covariates V are d-separated if MI holds.

In general, conditional independencies are testable impli
cations in the data. The aforementioned sequential steps of 
MI testing have to be used because we cannot simply condi
tion on the unobservable variable C. Its values can only be 
predicted (in the form of factor scores) by scores on the 
observed variables Y.

So far, we have kept our two parallel accounts of DAGs 
and the investigation of MI rather abstract. To now show 

how (non-)invariance can be depicted by a DAG and to 
demonstrate how this can help to investigate MI in a more 
informative manner, we want to introduce an empirical 
example from moral psychology. In a multilab replication 
study, Bago et al. (2022) investigated which psychological 
and situational factors influence the judgement of moral 
dilemmas. They gathered data from 45 countries in all 
inhabited continents, leading to a final sample of N ¼
22, 112 (after applying exclusion criteria like careless 
responding). For the following simulated and empirical 
demonstrations, we will use the Oxford Utilitarianism Scale 
(OUS; Kahane et al., 2018) from their paper. The OUS 
measures utilitarian thinking, that is, the notion that peo
ple’s actions should always aim at maximizing the overall 
good. It comprises two independent subscales, impartial 
beneficence (IB; measured by 5 items) and instrumental 
harm (IH; measured by 4 items). IB describes the attitude 
that no individual is more important than another (e.g., “It 
is morally wrong to keep money that one doesn’t really 
need if one can donate it to causes that provide effective 
help to those who will benefit a great deal.”), while IH 
entails that moral rules can be neglected if it is for a greater 
good (e.g., “It is morally right to harm an innocent person 
if harming them is a necessary means to helping several 
other innocent people”). To keep our examples illustrative, 
we only consider the measurement model of IB, which is a 
one-dimensional model with 5 items. The items are phrased 
as statements which are rated on a seven-point Likert scale 
(1 ¼ “strongly disagree,” 4 ¼ “neither agree nor disagree,” 7 
¼ “strongly agree”). We refer interested readers to Kahane 
et al. (2018) for more details on the OUS.

To depict non-invariance by a DAG, we introduce 
another type of node, namely a selection node S . A selection 
node is not a variable but rather an indication for a group- 
specific distribution or causal relationship of the variable it 
is pointing into (Deffner et al., 2022; Pearl & Bareinboim, 
2014). Thus, they are the key element when trying to 
incorporate non-invariance in a DAG. Assume that we want 
to test MI of the IB measurement model with respect to a 
binary covariate Region, defining group western and group 
eastern. We depict a group-specific distribution, that is, 
non-invariance of our observed variables Y by a selection 
node pointing into them, S ! Y (see Figure 3).

Figure 3. DAG with a selection node pointing into the observed variables. (a) 
Adaptation of Figure 6c in Deffner et al. (2022) where only one observed vari
able Y is shown; (b) DAG of the complete measurement model of IB ¼ impartial 
beneficence where the selection node points into potentially all observed varia
bles Y1−5 (depicted by the dotted box around the observed variables).
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Figure 3a is similar to Figure 6c in Deffner et al. (2022). 
However, they showed a latent variable with only one 
observed variable, which is not very common in psycho
logical (questionnaire) assessment. In Figure 3b, the com
plete measurement model of IB is shown with a selection 
node pointing into potentially all observed variables Y1−5: If 
one can make more detailed assumptions about group-spe
cific selection mechanisms on the observed variables, the 
selection node could also only point into some, but not all, 
of the items. In the psychometric literature, this is often 
referred to as differential item functioning (Holland & 
Wainer, 2012; Zumbo, 2007). As Deffner and colleagues 
state, Figure 3 shows a selection node pointing into an out
come. This prevents unbiased comparisons of the observed 
(and consequently, the latent) variables between groups. 
Similar to what we mentioned in the introduction, an absent 

selection node is a stronger assumption than an existent one. 
Not drawing a selection node pointing into an observed vari
able encodes the assumption that this variable (here: question
naire item) is invariant across all groups. In Figure 3, the 
selection node pointing into Y could subsume all four levels of 
non-invariance. By translating the DAG with a selection node 
(also called selection diagram) into a path diagram, we can see 
that one DAG implies many different models. In Figure 4, 
four different pairs (each consisting of group western and 
group eastern) of models are shown, where each pair depicts 
one level of MI being violated. The group-specific distribution 
of Y could stem from:

a. some paths between IB and Y being 0 in one group or 
a different number of latent variables between groups 
(configural non-invariance; Figure 4a),

Figure 4. Pairs of measurement models of IB (impartial beneficence) for which measurement invariance does not hold between the two groups. (a) violation of 
configural invariance (violation of configural invariance due to different number of latent variables between groups is not displayed); (b) violation of metric invari
ance (assuming standardized data); (c) violation of scalar invariance; (d) violation of residual invariance (assuming unstandardized data). Parameters that differ 
between groups are highlighted in blue.
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b. the size of the loadings k between IB and Y being dif
ferent between groups (metric; Figure 4b),

c. the intercepts s of Y being different between groups 
(scalar; Figure 4c),

d. or the variances of the unique errors E of Y being dif
ferent between groups (residual; Figure 4d).

Now that we have introduced how to depict non-invari
ance with a selection diagram,5 we can turn to a more elabor
ate example. Specifically, we now demonstrate how DAGs 
can be used to make informed modeling decisions when 
investigating MI. We show how disregarding the complete 
causal model and instead only considering the groups that 
we want to compare, can miss important aspects of non- 
invariance. All code needed to reproduce the results of the 
following simulated and empirical example as well as a repro
ducible manuscript are available at https://osf.io/2mpq9/.

All analyses were conducted in the statistical software R 
(R Core Team, 2021), using the packages lavaan (Rosseel, 
2012), semTools (Jorgensen et al., 2016), and OpenMx 
(Boker et al., 2011). The paper was written using the pack
age papaja (Aust & Barth, 2020).

4. A More Holistic View on Measurement Invariance

We again consider our example in Figure 3b), that is, we want 
to compare the latent means of IB between groups western and 
eastern (defined by the covariate Region). To investigate 
whether scores of IB are comparable between these two groups, 
that is, if the measurement models are equivalent, we would 
first conduct a MG-CFA with Region as the grouping covariate. 
However, assume that the true data-generating process is not 
the one in Figure 3b) but the one in Figure 5, where an 
observed covariate Age is part of the measurement model.

In this setting, the selection node actually points into 
Age, not into the items Y1−5: This means that not the distri
bution of Y1−5 varies between groups but the distribution of 
Age. Specifically, in group 1, Age � Nð0, 1Þ and in group 2, 
Age � Nð0:5, 1Þ (standardized ages where the mean age is 
higher in group 2 than in group 1). In this case, assume 
IB! Y  Age to be an interaction between IB and Age, 
such that the measurement model for every item is Y ¼ffiffiffiffiffiffi

0:6
p

þ 0:3Age
� �

� IBþ E (cf. Equation (1)).6 That is, with 
increasing Age, the causal relationship between the latent 
variable IB and the observed variables Y1−5 grows stronger.

A small simulation of the model depicted in Figure 57

reveals the following: If we do not consider the DAG in Figure 
5 and test MI following the current practice, that is, only test 
the invariance of measurement models between groups western 

and eastern, we find a significant violation of metric MI 
(v2ð14; N ¼ 1, 000Þ ¼ 19:46, p ¼ :003 and an increase in 
RMSEA of .028 for the comparison of the configural and the 
metric model). However, this result is only half of the picture: 
It is the different distribution of Age between groups that is 
decisive for the result of the MI test. That is, the group-specific 
mechanism, indicated by the selection node, is working on Age, 
not on the observed variables directly. Conclusions regarding 
different interpretations of the construct between groups west
ern and eastern based on the MI test results are rather 
uninformative.

How could DAGs have helped us to achieve more inform
ative results regarding MI? Had we set up the selection diagram 
(by theoretical or empirical considerations) as in Figure 5, we 
would have seen that MG-CFA with Region as a grouping 
covariate is not the right model. Instead, we have to resort to a 
more flexible model to investigate MI in this case. We can read 
from the DAG that Age is an assumed direct cause of Y1−5 
and that we assume Age to have a group-specific distribution. 
Thus, we want to include Age in our model in order to close 
the path between the selection node and the observed variables 
Y1−5 (remember that including Age in the model closes the 
path S ! Age! Y). Generally speaking, our goal is to make 
as many assumptions as possible about covariates between the 
outcome (in our case Y) and the selection node, and then 
include these covariates in the model. This lets us gain more 
detailed information about group-specific mechanisms (i.e., 
non-invariance) in the data-generating process and how these 
mechanisms influence our observed variables.

One option to model the data-generating process depicted 
in Figure 5 is a type of moderated SEM called moderated non- 
linear factor analysis (MNLFA) (Bauer, 2017; Bauer & 
Hussong, 2009). MNLFA is especially suitable in this case 
because it allows the model parameters to depend on any cova
riate V in the data. In our example, we can model the expected 
loadings and intercepts by the regression equations Ki ¼

K0 þ DRegionRegioni þ DAgeAgei and si ¼ s0 þ bRegionRegioni þ

bAgeAgei, respectively.8 K0 and s0 are the baseline loadings and 

Figure 5. DAG with a selection node pointing into the observed covariate Age 
which influences all observed variables Y1−5 (depicted by the dotted box 
around the observed variables).

5The use of selection nodes to depict non-invariance highlights that—from a 
causal inference perspective—the concept of MI is related to transportability. 
We refer interested readers to Deffner et al. (2022) and Pearl and Bareinboim 
(2014) for more details.
6Because DAGs do not impose a functional form on the relationships between 
variables, all variables jointly causing another variable can also interact 
(Deffner et al., 2022; Elwert, 2013).
7With N ¼ 1000 (n ¼ 500 per group), IB � Nð0, 1Þ, and diagðWÞ �
Uniformð0:2, 0:6Þ: Together with loadings of 

ffiffiffiffiffiffi
0:6
p

, this results in an average 
item variance of 1.

8Similarly, all other model parameters—like factor means or residual 
covariances—can be modeled as functions of covariates. Thus, MNLFA could 
be seen as a flexible extension to multiple indicator multiple cause models 
(MIMIC models; Muth�en, 1989).
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intercepts, D and b are vectors9 of linear effects of the covari
ates Region and Age on the parameters, and i denotes the per
son index. This model formulation allows us to estimate the 
baseline parameters as well as the individual effects a covariate 
has on the item parameters. Of course, if more detailed 
assumptions about which items are influenced by the covariates 
can be made, the equations above can be adjusted by setting 
the effects of the covariates on some items to 0. The covariate 
Region is also included to test its direct effect on the parameters 
(besides the assumed direct causal effect of Age). MNLFA can 
be estimated in R (R Core Team, 2021) via the package 
OpenMx (Boker et al., 2011). We refer readers to Kolbe et al. 
(2022) for a detailed guide on how to estimate MNLFA in 
OpenMx and specifically how to use it to investigate MI.

From a causal inference perspective, we can justify the 
model choice like this: the less we know about our measure
ment model and the covariates surrounding it, the more 
potential differences in parameters we have to consider dur
ing estimation and testing. The more potential differences 
we have to consider, the more arrows we should draw in 
our DAG.

5. Simulated Example

Table 1 shows the estimated results of a MNLFA for the 
simulated example described above. The model parameters 
(in our example: loadings and intercepts) are allowed to be 
moderated by covariates Region and Age as described above. 
This is the configural model. The advantage of modeling the 
assumed causal relationships like this is that we get detailed 
estimates of parameters and possible interactions for every 
item. As can be seen, Region does not have an influence on 
neither intercepts nor loadings, whereas Age has an influ
ence of around 0.3 on the baseline loadings K0, which are 
around 

ffiffiffiffiffiffi
0:6
p

: Beyond visual inspection of the parameter 
estimates, we can also investigate metric and scalar MI. This 
is done by setting the effects of the covariates on the load
ings (for metric MI), and loadings as well as intercepts (for 
scalar MI) to 0 and comparing these nested models. The 
results of this model comparison are shown in Table 2. 
They show that metric MI is violated (by the covariate Age), 
whereas scalar MI is supported (i.e., there is no significant 
moderation of the intercepts by the covariates).

By taking into account the whole causal model and using 
a more flexible method than simply relying on MG-CFA, 
we can make a more informed decision regarding MI. Had 
we only used MG-CFA, we would try to explain why the 
two regions western and eastern have non-invariant meas
urement models, which would be the wrong question. On 
the basis of theoretical and empirical assumptions regarding 
the causal relationships, however, we can now reason about 
why the relationship between the latent variable IB and its 
items grows stronger with increasing age. It should be high
lighted again that drawing a DAG with many arrows and 
using MNLFA entails less assumptions (or assumptions that 
are less strong) than using MG-CFA with one covariate. 
From a causal inference perspective, MG-CFA could be seen 
as the MI testing approach with the most assumptions.

6. Empirical Example

To mimic the analysis of the simulated example in the 
example on the real data published by Bago et al. (2022), we 
only considered observations from group western whose age 
was above 30 years. This was done to achieve two approxi
mately equally sized groups (nwestern ¼ 2, 911; neastern ¼ 2, 941) 
with differing mean ages (Mwestern ¼ 43:22; Meastern ¼ 26:13). 
Note that this changes the real data, which was done simply 
for didactic purposes; the following results should not be inter
preted from a substantive research perspective.

Table 3 shows the results of a MG-CFA, where again a 
one-dimensional model is specified and MI is investigated 
between the two groups western and eastern. We see that 
the results of the v2-difference test is statistically significant 
for the evaluation of both metric and scalar MI. This is an 
indication that neither of these two levels of MI hold, that 
is, neither loadings nor intercepts are equivalent across 
groups. Considering the RMSEA, the difference between the 
configural and metric model does not exceed commonly 
suggested cut-offs, therefore supporting metric MI (Chen, 
2007; Cheung & Rensvold, 2002; Rutkowski & Svetina, 
2014). The RMSEA difference between the metric and the 
scalar model again indicates a violation of scalar MI. Based 

Table 1. Results of moderated non-linear factor analysis for the toy example.

Item s0 bRegion bAge K0 DRegion DAge

Item 1 −0.07 0.15 −0.05 1.04 −0.05 0.00
Item 2 −0.08 0.03 −0.03 0.80 −0.07 0.35
Item 3 −0.06 0.12 −0.04 0.75 0.01 0.27
Item 4 −0.09 0.06 −0.04 0.74 −0.03 0.30
Item 5 −0.04 0.04 −0.05 0.73 0.04 0.30

Note. s0 ¼ Baseline intercepts, bRegion ¼ (Additive) Effects of covariate Region 
on baseline intercepts, bAge ¼ (Linear) Effects of covariate Age on baseline 
intercepts, K0 ¼ Baseline loadings, DRegion ¼ (Additive) Effects of covariate 
Region on baseline loadings, DAge ¼ (Linear) Effects of covariate Age on base
line loadings. Effects of Region and Age on other model parameters, e.g., 
residual variances, are not reported here. Reference category of Region is 
Eastern. The loading of item 1 was simulated as 1 for identification purposes.

Table 3. Results of multi-group confirmatory factor analysis for the empirical 
example between regions Western and Eastern.

Model df v2 Dv2 Ddf p-Value RMSEA

Configural 10 104.36 – – – 0.06
Metric 14 142.72 38.36 4 0.00 0.06
Scalar 18 373.54 230.83 4 0.00 0.08

Note. df¼Degrees of freedom, v2 ¼ Value of the test statistic, Dv2 ¼

Difference in values of the test statistics, Ddf ¼ Difference in degrees of free
dom, RMSEA¼ Root mean square error of approximation. A p-value of 0 
means that it is < 0:005:

Table 2. Results of v2-difference tests between the configural, metric, and 
scalar moderated non-linear factor analyses for the simulated example.

Comparison D − 2LL Ddf p-Value

Configural vs. metric 290.39 10.00 0.00
Metric vs. scalar −113.63 6.00 1.00

Note. D − 2LL ¼ difference in −2 times the log-likelihood of the models, Ddf 
¼ Difference in degrees of freedom. A p-value of 0 means that it is < 0:005:

9In case of more than one latent variable, D would be a matrix with the same 
dimensions as K0:
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on these results, all we can conclude for now is that MI 
does not hold between the two regions western and eastern.

To be able to reason more about the role of non-invari
ance in the underlying data-generating process, we again 
have to consider the complete DAG and model the data- 
generating process accordingly. Table 4 shows the results of 
a MNLFA, where both covariates Age and Region are 
allowed to moderate the parameter estimates. In the empir
ical example, these results paint a different picture than 
before. Age has no effect on both loadings and intercepts, 
whereas Region directly influences (primarily) the item 
intercepts. Specifically, in the group western, the intercepts 
of items 1, 2, and 4 are higher compared to group eastern, 
whereas for item 3, the intercept is lower. Effects of Region 
on the loadings are less strong. Similar to the simulated 
example, a v2-difference test can be conducted. By this we 
can test whether allowing that the parameters are moderated 
by the covariates Region and Age significantly increases 
model fit (and thus, whether MI is violated).

Table 5 shows that both levels of MI, metric and scalar, 
are violated. That is, the covarirates Region and Age signifi
cantly influence the loadings and intercepts in our measure
ment model. Because the model outputs estimates for all item 
parameters and their moderators, we are able to reason in 
more detail about the causes of non-invariance, given our 
assumptions encoded in the DAG. Of course, detailed inspec
tion of item contents would now be necessary to explain why 
a covariate influences the item parameters. Since this would 
be beyond the scope of this paper and since we are not sub
ject matter experts in moral psychology, we end our empir
ical demonstration here. However, we hope that this example 
proves as a starting point for showing how MI can be investi
gated according to the underlying causal assumptions.

7. Discussion

In this paper, we first introduced the connection between 
DAGs used in causal inference and path diagrams of 

measurement models, which are more common in the psy
chometric literature. We then showed how a lack of MI can 
be depicted by a DAG. We demonstrated how taking into 
account the causal relationships between the measurement 
model and the surrounding covariates yields more inform
ative results when investigating MI. If MI is directly violated 
by a covariate that is not of primary interest (e.g., age in 
our example above), DAGs can help to visualize the under
lying assumptions. Specifically, they depict the assumed 
mechanisms by which the data-generating process differs 
between groups. In this, researchers can find appropriate 
statistical models like MNLFA that allow them to estimate 
an extended measurement model. This also lets us reason 
about the causes of non-invariance. Only by investigating 
why MI does not hold, we can see it as an important finding 
by itself and draw conclusions about how different groups 
interpret a construct (Putnick & Bornstein, 2016).

One critique against DAGs is that it is difficult to specify 
all causal relationships (surrounding the measurement 
model, in our case). This is true but we deem this an argu
ment against poor psychological theories and not against 
DAGs. A sound theory should allow us to specify the rela
tionships between the variables it comprises. Besides, as 
mentioned in the introduction, also an incomplete or even 
wrong DAG can help us to reveal specific issues in theories. 
For example, drawing a DAG and realizing that there is 
uncertainty regarding some relationships, can be the starting 
point of further scientific discourse. In the end, DAGs are 
not about adding assumptions—they are about revealing the 
assumptions that are otherwise made implicitly (Deffner 
et al., 2022; Pearl & Bareinboim, 2014).

DAGs and path diagrams are part of a broader class of 
graphical models that have been introduced in the psycho
metric literature. Other examples are graphical Rasch mod
els and graphical regression models that explicitly depict 
and model differential item functioning or local dependence 
(i.e., correlated item responses even after conditioning on 
the latent variable) (Anderson & B€ockenholt, 2000; Kreiner 
& Christensen, 2002, 2011). Similarly, latent class models 
have been visualized as categorical causal models, again 
facilitating the representation of underlying model assump
tions, such as local independence (Bartolucci & Forcina, 
2005; Hagenaars, 1998; Humphreys & Titterington, 2003; 
Rijmen et al., 2008). In this notion, local dependence is 
intertwined with unobserved confounding (i.e., failing to 
include a covariate that influences the item response in the 
measurement model).

8. Limitations and Future Research

Our goal was to provide a translation between path dia
grams of measurement models and DAGs, thereby framing 
MI and its investigation as a causal inference problem. In 
this, we showed only one example with one observed covari
ate (i.e., age with different distributions between groups). 
Needless to say, many more causal relationships leading to a 
violation of MI are conceivable, for example one in which 
the cause of non-invariance is latent. A prominent example 

Table 4. Results of moderated non-linear factor analysis for the empirical 
example.

Item s0 bRegion bAge K0 DRegion DAge

Item 1 3.68 0.22 0.00 0.96 −0.16 0.00
Item 2 3.21 0.24 0.01 1.41 0.02 −0.01
Item 3 4.26 −0.19 0.01 0.68 0.12 0.00
Item 4 2.77 0.49 0.02 0.82 0.10 0.00
Item 5 3.42 0.05 0.01 1.17 −0.10 0.00

Note. s0 ¼ Baseline intercepts, bRegion ¼ (Additive) Effects of covariate Region 
on baseline intercepts, bAge ¼ (Linear) Effects of covariate Age on baseline 
intercepts, K0 ¼ Baseline loadings, DRegion ¼ (Additive) Effects of covariate 
Region on baseline loadings, DAge ¼ (Linear) Effects of covariate Age on base
line loadings. Effects of Region and Age on other model parameters, e.g., 
residual variances, are not reported here. Reference category of Region is 
Eastern.

Table 5. Results of v2-difference tests between the configural, metric, and 
scalar moderated non-linear factor analyses for the empirical example.

Comparison D − 2LL Ddf p-Value

Configural vs. metric 44.66 10.00 0.00
Metric vs. scalar 276.26 6.00 0.00

Note. D − 2LL ¼ difference in –2 times the log-likelihood of the models, Ddf 
¼ Difference in degrees of freedom. A p-value of 0 means that it is < 0:005:
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of this in the literature is acquiescence bias, that is, the ten
dency of respondents to agree more to statements or items, 
irrespective of the content of the item (D’Urso et al., 2023; 
Lechner et al., 2019). Even further, beyond the representa
tion of latent variables as common causes of observed varia
bles, DAGs might help to depict (non-)invariance in other 
representations of multivariate data. Most notably, network 
models have been proposed as such an alternative conceptu
alization (Borsboom et al., 2021), and this field is increas
ingly interested in the investigation of invariance of 
networks across groups (e.g., Hoekstra et al., 2023). In these 
cases, graphical tools from the causal inference literature 
might also aid to reason about the causes of non-invariance 
and to find appropriate approaches with which the causal 
relationships can be modeled. Future studies could therefore 
illustrate the usefulness of DAGs when investigating MI in 
different scenarios or conceptualizations.

9. Conclusion

Many psychological studies concern some comparison of 
latent scores between groups. Investigating whether meas
urement models of the latent variables are equivalent 
between groups is crucial for unbiased conclusions. We dis
cussed a theoretical framework in which MI can be viewed 
from a causal inference perspective. Reasoning about causes 
of differences in how constructs and their measures function 
across groups can create valuable insights for scale construc
tion or even theory building. Drawing a DAG which enco
des assumptions about non-invariance helps researchers to 
make informed modeling choices. In this, it might encour
age them to view MI as part of the modeling process and as 
an interesting topic of research by itself—and not just as an 
additional test prior to the actual data analysis. Ultimately, 
we hope to contribute to an increase in the prevalence of 
investigations of MI.
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