日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling

MPS-Authors

Sidler,  D.
Laboratory for Materials Simulations, Paul Scherrer Institute;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging;

/persons/resource/persons289463

Obzhirov,  A.
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging;

Ruggenthaler,  M.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging;

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
The Hamburg Center for Ultrafast Imaging;
Center for Computational Quantum Physics, Flatiron Institute;
Nano-Bio Spectroscopy Group, University of the Basque Country (UPV/EHU);

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
付随資料 (公開)

suppl.zip
(付録資料), 2MB

引用

Sidler, D., Schnappinger, T., Obzhirov, A., Ruggenthaler, M., Kowalewski, M., & Rubio, A. (2024). Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling. The Journal of Physical Chemistry Letters, 15(19), 5208-5214. doi:10.1021/acs.jpclett.4c00913.


引用: https://hdl.handle.net/21.11116/0000-000F-4AFC-3
要旨
We demonstrate that collective vibrational strong coupling of molecules in thermal equilibrium can give rise to significant local electronic polarizations in the thermodynamic limit. We do so by first showing that the full nonrelativistic Pauli–Fierz problem of an ensemble of strongly coupled molecules in the dilute-gas limit reduces in the cavity Born–Oppenheimer approximation to a cavity–Hartree equation for the electronic structure. Consequently, each individual molecule experiences a self-consistent coupling to the dipoles of all other molecules, which amount to non-negligible values in the thermodynamic limit (large ensembles). Thus, collective vibrational strong coupling can alter individual molecules strongly for localized ”hotspots” within the ensemble. Moreover, the discovered cavity-induced polarization pattern possesses a zero net polarization, which resembles a continuous form of a spin glass (or better polarization glass). Our findings suggest that the thorough understanding of polaritonic chemistry, requires a self-consistent treatment of dressed electronic structure, which can give rise to numerous, so far overlooked, physical mechanisms.