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ABSTRACT: We demonstrate that collective vibrational strong coupling of
molecules in thermal equilibrium can give rise to significant local electronic
polarizations in the thermodynamic limit. We do so by first showing that the full
nonrelativistic Pauli−Fierz problem of an ensemble of strongly coupled molecules
in the dilute-gas limit reduces in the cavity Born−Oppenheimer approximation to
a cavity−Hartree equation for the electronic structure. Consequently, each
individual molecule experiences a self-consistent coupling to the dipoles of all
other molecules, which amount to non-negligible values in the thermodynamic
limit (large ensembles). Thus, collective vibrational strong coupling can alter
individual molecules strongly for localized ”hotspots” within the ensemble.
Moreover, the discovered cavity-induced polarization pattern possesses a zero net
polarization, which resembles a continuous form of a spin glass (or better
polarization glass). Our findings suggest that the thorough understanding of
polaritonic chemistry, requires a self-consistent treatment of dressed electronic
structure, which can give rise to numerous, so far overlooked, physical mechanisms.

Polaritonic chemistry and materials science is a rapidly
growing research field evidenced by a large number of

recent review articles.1−11 The strong coupling of matter and
light within optical cavities offers a novel way not only to alter
and design matter properties, but also to shape the (quantum)
properties of light in various ways. For example, magnetic12 or
metal-to-insulator13 phase transitions can be altered. Fur-
thermore, cavities can also cause the breakdown of topological
protection as reported for the integer quantum Hall effect.14 In
chemistry, the electronic strong coupling, the quantum yield of
emissions15 or intersystem crossings16 can be modified and
photochemical reactions can be influenced.17−22 For vibra-
tional strong coupling even ground-state (thermally driven)
chemical reactions can be affected23−26 However, despite a
plethora of suggested applications and observed novel effects,
we still lack a fundamental understanding of all the relevant
underlying microscopic/macroscopic physical mechanisms,
specifically in the context of vibrational strong coupling
effects.6,27,28 One of the main reasons for this deficiency is
the complexity of the full description, which a priori requires a
holistic approach combining the expertise from different fields
of physics and chemistry such as quantum optics, electronic
structure theory, (quantum) statistical mechanics, quantum
electrodynamics, and molecular and solid state physics.11

Besides questions concerning the observed resonance con-
ditions,29−32 currently one of the most pressing, unresolved
issues in the field is how individual molecules can experience
cavity-induced modifications under collective strong cou-

pling.6,11,27,28 Theoretical attempts to determine how the
coupling of the cavity to the ensemble of molecules can modify
the chemistry of individual molecules in the thermodynamic
limit have so far only been able to describe certain
aspects.33−36 While there have been theoretical suggestions
that collective strong coupling can lead to local changes once
impurities or (thermally induced) disorder is introduced in an
ensemble,37,38 the existence and nature of such effects for a
large ensemble of molecules has remained elusive. In this letter
we close this important gap by demonstrating numerically that
the cavity can indeed induce local polarization effects akin to
those observed for small molecular ensembles38 for collective
coupling in the thermodynamic limit, when treating the many-
molecule problem self-consistently within the cavity Born−
Oppenheimer approximation of the full Pauli−Fierz theory.

We consider a dilute gas-phase ensemble of N molecules
coupled to a photonic environment with confined modes α.
Each molecule consists of Ne electrons and Nn nuclei/ions
such that in the long-wavelength limit the Pauli−Fierz
Hamiltonian becomes39−41
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with Ĥm the usual cavity-free/bare matter Hamiltonian
consisting of N molecules. The coupled polarization operators
are defined as X̂α ≔ ∑n=1

N ∑i dn=1
Nn Zi dn

λα·R̂i dn
and x̂α ≔ −∑n=1

N

∑i dn=1
Ne λα·rî dn

, where Zi dn
is the nuclear charge and R̂i dn

is the
coordinate of the ith nucleus/ion of the nth molecule and
accordingly for the electrons rîdn

. The coupling strength and
polarization to the canonical displacement field operators q̂α
and p̂α with mode frequency ωα are defined by λα and can be
obtained from, e.g., macroscopic quantum electrodynam-
ics.42,43

In the next step we perform the cavity Born−Oppenheimer
approximation (cBOA);44−46 i.e., we treat the electrons of the
ensemble as a conditional many-body wave function of all of
the nuclear degrees of freedom R and all of the displacement
field coordinates q.12 We subsequently assume the dilute-gas
limit and thus the overlaps of local many-electron ground-state
wave functions |χn⟩, of different molecules is considered
negligible, and thus a mean-field ansatz for the ensemble
electronic wave function

| = | |... N1 (2)

becomes accurate (see the Supporting Information (SI)). We
note that this ansatz leads to the same set of equations as a
Slater determinant of all electrons, where we assume that the
individual electronic wave functions of different molecules do
not overlap. This leads to a set of coupled equations, where the
local electronic structure of the nth molecule depends self-
consistently on all the N − 1 other molecules. Disregarding
bare molecular interaction in the dilute limit, we then have to
find the lowest electronic energy state for the following cavity-
Hartree equations
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for all N molecules simultaneously, i.e., by a self-consistent
solution. eq 3 can be solved analytically for an ensemble of N
simple harmonic (model) molecules, which is discussed in ref
47. The bare matter Hamiltonian of a single molecule is
defined as Ĥn from Ĥm(R) = ∑n=1

N Ĥn(R n) within the dilute-
limit approximation and x̂n,α = −∑idn=1

Ne λα·rî dn
is the electronic

polarization operator of the nth molecule and z = r σ the
space−spin variable of an individual electron. Consequently,
the cavity induces an intermolecular dipole−dipole energy
term of the electronic structure

= | | | |
= =

V x x
M

n

N

n n n
m n

N

m m mdd
1 1

, ,
(4)

that scales with N (N − 1) over the entire ensemble size. This
macroscopic scaling is crucial for molecular ensembles, since it
counteracts the usual 1/√N scaling law of the coupling terms
λα for a fixed Rabi splitting, as we show subsequently. Notice
that the nuclear dipole−dipole interaction term is separated off
in the cBOA partitioning of the full quantum problem given in
eq 1 and treated classically in our case (see eq S2 in the
Supporting Information). Indeed, the intermolecular dipole−
dipole interaction is physically straightforward to understand.
Because we work in the length gauge, the electric field operator
is48

=E D P4 ( ) (5)

The effect of the macroscopic polarization P̂ =
−∑α=1

M λα(X̂α+x̂α)/(4π) on the microscopic constituents is
captured by the dipole self-interaction and scales as λα

2. That
these self-interaction terms are important to properly describe
the optical response of a material system has been pointed out
earlier.49 In addition, it is also established that disregarding this
term (as often done in model calculations) and only keeping
the cavity-mediated displacement field D̂ = ∑α=1

M λαωα q̂α/(4π)
introduces severe theoretical inconsistencies for ab initio
simulations.48,50 In the following, we will investigate the
chemical relevance of treating P̂ self-consistently on a
macroscopic and a microscopic scale.

From the self-consistent solution of eq 3 for all N molecules,
we obtain the classical forces for the nuclei/ions and the
displacement-field coordinates. In more detail, we can perform
an ab initio molecular dynamics simulation on the polarization-
dressed ground-state potential energy surface. To account for
classical canonical equilibrium conditions at temperature T,
which are relevant for many ground-state chemical processes,
the classical Langevin equations of motion are propagated;
i.e.,6,51

=

+

+

= + +
+

=

R
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These equations implicitly assume that the Hellmann−
Feynman theorem applies, i.e., that the cavity Hartree
equations are not only globally but also locally solved using
a variational method. The bare matter Hamiltonian Ĥn is
separated into a classical part, describing nuclear interactions
Hn

n, and the quantized electronic part Ĥn
e that parametrically

depends on the nuclear positions. Furthermore, we have
introduced nuclear masses Mi dn

, friction constant γ, and
component-wise δ-correlated Gaussian noise terms, i.e.,
⟨S(t)⟩ = 0, ⟨S(t) S(t′)⟩ = δ(t − t′). Each degree of freedom
possesses its individual independent stochastic noise term
indexed by in and α, respectively. We note here that treating
the displacement coordinates classically with thermal noise
means that we consider photonic excitations due to free
charges to be in a classical thermal state.48

In the first step, the collective Rabi splitting is calculated for
a model system consisting of N = 900 randomly oriented and
slowly rotating Shin−Metiu molecules52 strongly coupled to a
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single cavity mode ωα at T = 158 K, yielding a clear lower and
upper polaritonic resonance, as depicted by the dotted line in
Figure 1a (see the SI for further details). Notice, the differently
aligned molecules in the dilute limit can also be reinterpreted
as aligned molecules coupled to a spatially modulated
displacement field, which makes our results more generally
applicable. Taking into account the self-consistent treatment of
the cavity-induced molecular polarization P̂ leads to a detuning
of the cavity toward lower frequencies, which manifests itself in
the asymmetric splitting with respect to the bare cavity mode
ωα, indicated by the black vertical line. The red shift of the
cavity frequency can directly be related to the refractive indesx
of the ensemble within the harmonic approximation.47,53

Simulations of a few less polarizable hydrogen fluoride (HF)
dimers54,55 show the same tendency as demonstrated in Figure
1b and Figure S3, but of significantly smaller magnitude.
Qualitatively similar results can also be found for perfectly
aligned Shin−Metiu molecules (see Figure S1 in the SI). The
observed cavity induced detuning resembles the dipole−dipole
interaction induced Lorentz red shift within dense atomic
ensembles (in the absence of a cavity), which depends strongly
on the microscopic polarizability of the media, similar to our
result.56,57 Notice that when tuning the cavity to much lower
frequencies (e.g., ro-vibrational regime), the presence (back-
action) of permanent molecular dipoles is expected to
significantly contribute to the red shift alongside the molecular
polarizability. This dynamic reorientation contribution is
neglected in our simulations. The observed collectively
induced red shift of a filled cavity with respect to a bare one
has also been seen in experiments58 and may in principle be
simply approximated by a suitably chosen refractive index of

the ensemble,6 with perfect agreement for harmonic molecules
as discussed in ref 47. We also note that here we get the red
shift directly from the simulation, where we calculate the self-
consistent polarization of the ensemble of molecules. That is,
we calculate implicitly the ensemble polarizability and its back-
action on the cavity mode. In the case of free-space modes, this
is the standard way to determine the refractive index of a
material.49,59,60 Now the question arises, Can the accurate self-
consistent and microscopic treatment of the polarization
additionally induce local field effects that cannot be
disregarded in the thermodynamic limit (N ≫ 1) and that
are not captured by a simple refractive index picture? Earlier
evidence for collective electronic strong coupling for a few
molecules indeed indicates that there might be such an effect,38

yet the existence of similar local polarization effects for a
thermal ensemble under vibrational strong coupling in the
large-N limit remained unclear. As the first local observable, we
analyze the local molecular dipole vibrations for individual
Shin−Metiu molecules, which reveals a (locally) populated
lower polariton (solid line in Figure 1a) and a strongly
populated dark state at ω = ωα. A local upper polariton could
not be identified, i.e., may be too weakly populated to
overcome the thermal broadening for the given system.
Simulations show that the usual √N-collective Rabi split
scaling law of the Tavis−Cumming model remains preserved
collectively as well as locally, when including local polarization
effects self-consistently (see Figure S1 of the Supporting
Information). As the second local observable, we propagate the
system self-consistently and measure at every time step, i.e., for
every realized classical configuration (R, qα), the difference
between the exact solution of eq 3 and the electronic bare

Figure 1. (a) Vibrational absorption spectra α(ω) for 900 randomly oriented Shin−Metiu molecules under collective vibrational strong coupling in
canonical equilibrium at kBT = 0.5 mH. The cavity is tuned to the first vibrational mode of the uncoupled molecule at ωα = 6.27 mH (black vertical
line) with λα = 0.0085. The collective Rabi splitting (dotted line) is calculated from the fluctuations of the total ensemble dipole moment (see SI)
and shows an asymmetric splitting (red-shifted cavity). In addition, local molecular vibrations (bold line) are monitored in a similar way (see SI),
which reveals a significant fraction of individual molecules that are locally strongly coupled, i.e. that vibrate at the frequency of the lower polariton.
Furthermore, the local spectrum also indicates that the dark states at ω = ωα are strongly populated. In contrast, no local populations of the upper
polaritonic states could be detected at the given temperature. (b) Relative red-shifted cavity frequencies ΔΔω = |Δω(N) − Δω(1)| with respect to
the single molecule shift Δω(1) for a few perfectly parallelly aligned HF molecules. The collective Rabi splitting was kept constant with respect to
N for each chosen λ1 by rescaling = N/1 throughout the computations. The cavity is tuned to the first vibrational mode of the uncoupled HF
at ωα = 20.35 mH (see SI for further details). Notice the detuning is about 2 orders of magnitude smaller for the HF molecule than for the Shin−
Metiu molecule. However, the results agree qualitatively, since they suggest a similar finite collective detuning in the large N limit. The overall very
small shift is a consequence of the very low polarizability 0.8 Å3 of the HF molecules.76
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matter problem by monitoring Δrn(t) = ⟨rn̂⟩λ − ⟨rn̂⟩λ=0 in the
electronic ground state. This allows measurement of cavity-
induced local polarization effects in thermal equilibrium, since
the full electronic problem reduces to the bare local matter
problem in the thermodynamic limit if only the displacement
field is considered instead. Our simulation results in Figure 2

revealing a nonvanishing cavity-induced local ensemble
polarization, i.e., ⟨|Δrn|⟩ ≠ 0, that persists even in the large-
N limit. At the same time, the total electronic polarization of
the ensemble remains zero; i.e., ⟨Δrn⟩ = 0, as expected from
the symmetry of eq 1. Consequently, our numerical results
show that the chemical properties of individual molecules can
be locally modified by collective strong vibrational coupling to
the cavity. Fundamentally speaking, our observation of a
continuous distribution of cavity-induced molecular polar-
izations with zero net polarization resembles a continuous form
of a spin-glass61 (or better polarization-glass). The continuous
distribution automatically implies the existence of hotspots
within the molecular ensemble, where the collective coupling
can strongly polarize single molecules and thus significantly
alter their chemical properties. However, the average cavity-
induced polarization remains rather small, which seems in
agreement with recent NMR experiments.62 Notice this
collectively induced local mechanism occurs without external
driving; i.e., the sole presence of a thermal bath is sufficient.
The detailed study of the physical properties of the hotspots
and the polarization glass (e.g., thermodynamics, implied time

scales, distribution, and frustration effects) will be left for
future work, since, in analogy with spin-glasses,61 these are
most likely highly nontrivial, as well as strongly interconnected
theoretical aspects, which will require considerable efforts.
Analogous results hold also for perfectly aligned molecules, as
shown in Figure S2 of the Supporting Information. Physically,
the appearance of local strong-coupling effects can be
understood by interpreting the local polarization in a dipole
picture, as previously done for electronic strong coupling of a
few nitrogen dimers.38 While the total (macroscopic) polar-
ization is zero, nontrivial local dipole modifications are possible
for heterogeneous systems that can still cancel each other, i.e.,
as seen from the sum m ≠ n in eq 3. This local polarization
induces a mirror dipole in the rest of the ensemble. At this
point, we highlight the relevance of (random) disorder in the
ensemble (temperature and/or different molecular orienta-
tions, vibrational states, and polarizabilities), which enables a
heterogeneous structure of modified local polarizations that
can cancel collectively in analogy to a spin-glass.63 For atoms,
which do not have a static dipole moment, no local effect is
expected, as can be confirmed by simulating a small ensemble
of up to five neon atoms (see Figure S4 in the Supporting
Information). In other words, having spherically symmetric
systems without (different) internal nuclear degrees of
freedom, all local dipole contributions will be equivalent and
thus the local polarization needs to be zero, in order to have a
zero macroscopic polarization. Furthermore, the simple
harmonic model considerations in ref 47 demonstrate another
important ingredient for the formation of polarization glass,
which is the presence of a complex electronic structure; i.e.,
anharmonic electron interactions (e.g., Coulomb) are man-
datory. Overall, our results do not contradict well-established
knowledge from quantum-optical models for atomic systems.
However, they show that, for molecular ensembles, the
formalism becomes more involved and the self-consistent (!)
treatment of the local polarization may become decisive in
capturing all relevant aspects of polaritonic chemistry. We also
note that the free-space mode structure of the electromagnetic
field, which is homogeneous and isotropic, is not able to test
for disorder in the same way as cavity modes do by having
preferred polarization directions and frequencies. This break-
ing of symmetry explains why similar effects are not expected
for coupling to free-space modes.

To conclude, we have reformulated the computationally
inaccessible many-molecule Pauli−Fierz problem of polaritonic
chemistry in terms of an efficient cavity−Hartree many-
molecule problem, within the dilute-gas limit and the cBOA.
Simulating the corresponding Langevin equations of motion
under vibrational strong coupling in thermal equilibrium
reveals that solving the cavity−Hartree equations self-
consistently, and thus including dipole−dipole interactions
between molecules, can be decisive for capturing all relevant
aspects of polaritonic chemistry. The reason is that nontrivial
local (on the individual-molecule level) polarization distribu-
tions can arise with zero net polarization, which can persist in
the thermodynamic limit and thus may be regarded as a
polarization-glass phase. The continuous distribution implies
the existence of molecular hotspots, where chemistry is locally
altered significantly by the cavity. Furthermore, our self-
consistent accounting for ensemble polarization effects leads to
a detuning of the cavity toward lower frequencies, which is in
line with experimental evidence58 and shows that the dipole

Figure 2. Statistical evaluation of cavity-induced local electronic
changes Δrn(t) = ⟨rn̂⟩λ − ⟨rn̂⟩λ=0 of the nth molecule with respect to
the bare Shin−Metiu molecule in canonical equilibrium at kBT = 0.5
mH for randomly oriented molecules (see Supporting Information for
details). The Rabi splitting was kept constant when increasing the
number of molecules by choosing a rescaled =N N( ) 0.256/ . By
monitoring |Δrn| (red dots), we observe a nonzero saturation of the
cavity-induced local polarizations in the large-N limit, where the
standard deviations with respect to different molecules are indicated
by vertical red lines. At the same time, the total polarization of the
ensemble, which is related to Δrn (black triangles), quickly
approaches zero, since the cavity cannot induce a nonzero
polarization of the ensemble. Consequently, our simulations suggest
that cavity-induced local strong coupling effects persist in the
thermodynamic limit (N ≫1) of a molecular ensemble under
collective vibrational strong coupling. In other words, the self-
consistent treatment of eq 3 is decisive to describe ground-state
polaritonic chemistry accurately for realistic molecular ensembles.
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self-interaction term is a necessary ingredient to capture the
basic effect of a changed refractive index.

The present result may have far-reaching consequences for
the theoretical description of polaritonic chemistry and
materials science, since they provide a so far overlooked, yet
simple and intuitive, physical mechanism that can induce local
molecular changes in the thermodynamic limit. This local
mechanism may be the missing piece to settle current
discrepancies between existing simplified models for a
macroscopic ensemble of molecules and experiments.
Furthermore, our cavity−Hartree equations are well suited to
be included in existing computational methods,40,45,64−69

which will enable the efficient exploration of the large chemical
space with a multitude of observables. Particularly, large
ensemble sizes under self-consistent vibrational strong
coupling should become accessible by established ab initio
molecular dynamics codes65−67,70 and potentially with the help
of self-consistent embedding schemes.71 Last, but not least, the
existence of a macroscopically induced microscopic polar-
ization mechanism opens many interesting fundamental
physical questions. For instance, can we efficiently control
microscopic (quantum) properties of individual molecules via
a thermal macroscopic field or are the experimentally observed
modifications of chemical reactions purely due to change in the
statistics? Can computationally efficient, single molecular
polaritonic rate theories72−74 be applied on the molecular
hotspots and are there polarization-glass-induced thermody-
namic changes that need to be included as well? On the more
theoretical side, can our results be generalized to the liquid or
even solid phase under collective strong coupling conditions?
What are the physical properties of the suggested cavity-
induced polarization-glass phase and its relation to a spin glass?
Can thus the thermodynamics of molecules under VSC be
affected akin to frustration in a spin-glass (e.g., breakdown of
fluctuation−dissipation theorem with excess of thermal
fluctuations)?61,75 All of these aspects open many interesting
questions that lie at the boundaries between physics and
chemistry and need the combination of various different
viewpoints and methods.2
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