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Abstract

Solid-liquid interfaces are at the core of many relevant technologies like fuel cells and elec-

trolyzers, which are prominent solutions for energy storage and production of hydrogen as a

future energy carrier. Even though these devices have become more efficient over the past

decades, their widespread use is limited by their high cost, which originates to a large degree

from expensive e.g. platinum-based catalysts. Identifying and characterizing the catalytic

centers as well as their reactivity under realistic conditions is therefore of utmost importance

to designing new catalysts for reactions at solid-liquid interfaces. Advances in computing

power and atomistic modeling techniques allow today to predict the catalytic activity with

semi-quantitative accuracy from atomistic simulation. Nonetheless, the computational cost

for an exhaustive sampling of catalyst-electrolyte interfaces under realistic conditions is still

prohibitively expensive, which necessitates the use of simplifications e.g. the omission of the

electrolyte or the idealization of the catalyst.

In this thesis, the detailed structure and energetics of metal-water interfaces are analyzed

using atomistic simulations. First, a protocol is developed to represent interfacial water as

two-dimensional, ice-like films, which capture a wide variety of structural motives that are

similarly diverse as found in more demanding molecular dynamics simulations of a full liquid

electrolyte. The resulting dataset allows the assessment of the sensitivity of the energetics

towards the detailed arrangement and intermolecular connectivity of static water layers, which

remain the predominant interfacial models to study interfacial electrochemical reactions, e.g.

the adsorption process of a proton. However, interfacial water does not only act as an inert

environmental matrix within which electrochemical reactions happen. It can equally influence

more directly the free energy change by an adsorbing, reactive species. In particular, inter-

facial water can compete with any other adsorbate for free, catalytically active surface sites.

The second part of this thesis quantifies such effects by measuring cavity formation ener-

gies at different metal-water interfaces from exhaustive free energy calculations. The study

reveals a simple and direct relation between the binding strength of water to a substrate and

the energetic cost of removing interfacial water to form an interfacial cavity which naturally

occurs upon an adsorption reaction. These results imply a significant deviation of interfa-

cial reactivity, e.g. when adsorption energies are studied in solution and compared to gas

phase. On a broader scope, our results provide a pathway to correct computationally appeal-

ing implicit solvation models with their continuum representation of water to account for this

competition.
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Zusammenfassung

Fest-Flüssig-Grenzflächen sind integraler Bestandteil vieler relevanter Technologien wie Brennstof-

fzellen und Elektrolyseure, die herausragende Lösungen für die Energiespeicherung und die

Produktion von Wasserstoff als Energieträger der Zukunft darstellen. Obwohl diese Geräte in

den letzten Jahrzehnten immer leistungsfähiger geworden sind, ist ihr weit verbreiteter Ein-

satz durch ihre hohen Kosten begrenzt, die zu einem großen Teil auf teure Katalysatoren, z.

B. auf Basis von Platin, zurückzuführen sind. Die Identifizierung und Charakterisierung der

katalytischen Zentren sowie deren Reaktivität unter realistischen Bedingungen ist daher von

größter Bedeutung für die Entwicklung neuer Katalysatoren für Reaktionen an Fest-Flüssig-

Grenzflächen. Fortschritte bei der Rechenleistung und den atomistischen Modellierungstech-

niken ermöglichen es heute, die katalytische Aktivität mit semiquantitativer Genauigkeit aus

atomistischen Simulationen vorherzusagen. Dennoch sind die Rechenkosten für eine um-

fassende Untersuchung von Katalysator-Elektrolyt-Grenzflächen unter realistischen Bedin-

gungen immer noch unerschwinglich hoch, was Vereinfachungen, wie zum Beispiel das We-

glassen des Elektrolyten oder das Idealisieren des Katalysators, erforderlich macht.

In dieser Arbeit wird die detaillierte Struktur und Energetik von Metall-Wasser-Grenzflächen

mit Hilfe atomistischer Simulationen analysiert. Zunächst wird ein Protokoll entwickelt, um

Grenzflächenwasser als zweidimensionale, eisähnliche Filme darzustellen, die eine Vielzahl

von strukturellen Motiven erfassen, die ähnlich vielfältig sind wie bei anspruchsvolleren Moleku-

lardynamiksimulationen eines vollständigen flüssigen Elektrolyten. Der daraus resultierende

Datensatz ermöglicht die Bewertung der Empfindlichkeit der Energetik gegenüber der de-

taillierten Anordnung und der intermolekularen Konnektivität statischer Wasserschichten, die

nach wie vor die vorherrschenden Grenzflächenmodelle zur Untersuchung elektrochemischer

Grenzflächenreaktionen, z. B. des Adsorptionsprozesses eines Protons, sind. Grenzflächen-

wasser fungiert jedoch nicht nur als reaktionsträge Umgebungsmatrix, in der elektrochemis-

che Reaktionen ablaufen. Es kann auch die freie Energieänderung durch eine adsorbierende,

reaktive Spezies direkt beeinflussen. Insbesondere kann Grenzflächenwasser mit jedem an-

deren Adsorbat um freie, katalytisch aktive Oberflächenplätze konkurrieren. Im zweiten Teil

dieser Arbeit werden solche Effekte durch Messung der freien Energiekosten zur Bildung

einer Kavität an verschiedenen Metall-Wasser-Grenzflächen quantifiziert. Die Studie zeigt

eine einfache und direkte Beziehung zwischen der Bindungsstärke von Wasser an ein Sub-

strat und den energetischen Kosten für die Entfernung von Grenzflächenwasser zur Bildung

einer Kavität, der natürlich bei einer Adsorptionsreaktion entsteht. Diese Ergebnisse deuten

auf eine erhebliche Abweichung der Reaktivität an der Grenzfläche hin, wenn z. B. die Ad-

sorptionsenergien in Lösung und in der Gasphase untersucht werden. Im weiteren Sinne

bieten unsere Ergebnisse einen Weg zur Korrektur rechnerisch ansprechender impliziter Sol-

vatationsmodelle mit ihrer Kontinuums Darstellung von Wasser, um diese Konkurrenz zwis-

chen Adsorbate und Lösungsmittel zu berücksichtigen.
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1. Introduction

Achieving the Paris Climate Agreement’s goal of limiting global warming to well below 2.0 ◦C

by 2100 requires an immediate and rapid reduction of carbon dioxide emissions [1]. For

example, the European Union’s agreed target is to reduce the emissions of greenhouse gases

by at least 80% (compared to 1990) by 2050 [2]. Therefore, the energy supply must shift

quickly from typical carbon-based sources such as coal, oil, or natural gas to derivatives of

renewable energy sources [3].

However, most renewable energy sources (like wind or solar power) do not offer consistent,

scalable, electricity generation, but are instead subject to fluctuations during the day and

seasons. This necessitates energy storage systems to balance this volatile behavior [4, 5].

Beyond the generation of electricity, hydrogen could replace fossil fuels because it has a high

energy density, its combustion does not emit carbon dioxide, and it can be used as a reducing

agent in chemical processes such as steel refining [6]. The large-scale generation of clean

hydrogen from renewable energies is, therefore, an important step towards an emission-

neutral world [7]. The electrochemical water splitting in electrolyzers and the reverse reaction

in fuel cells are promising solutions to these challenges [4–6].

Currently, the production and demand of clean hydrogen are limited, as hydrogen production

from fossil sources is significantly cheaper [7]. Two major challenges are the overall efficiency

of electrolyzers and fuel cells and their cost [4, 8, 9]. Both are related to the catalysts used in

the electrochemical processes. Many commercial fuel cells and electrolyzers operate at low

temperatures with an acidic electrolyte and a polymer membrane to separate the half-cells

[6]. The reactions take place over platinum-based catalysts, which are nanoparticles embed-

ded in a matrix [8, 10]. Platinum is extremely rare and thus expensive, but the efficiency of

platinum-based catalysts is comparatively high [8, 10–12]. For the oxygen evolution reaction,

iridium and ruthenium oxides are employed, which are costly as well [4, 9]. Better catalysts

would be cheaper, e.g. by reducing the amount of platinum and other expensive materials,

and more efficient, while also being stable under the reaction conditions, selective for the

desired reactions, and environmentally friendly. Therefore, knowledge of the active centers

and the structure of the catalyst-electrolyte interface is of utmost importance for the design of

new catalysts according to these goals [13].

Atomistic simulations can directly resolve interfacial structures under different conditions and

are thus a versatile tool for the discovery of new catalysts [13]. In addition, the assessment of

yet unstudied e.g. newly designed materials via computational screening is more efficient and

faster than via experimental methods [14]. As an example, Nørskov and coworkers predicted

the activity of different pristine metal surfaces for the oxygen reduction reaction from gas

phase adsorption energies [15]. In this pioneering work, they introduced the computational

hydrogen electrode by referencing the protons and electrons to the standard hydrogen elec-

trode (SHE) potential, allowing them to directly link theoretical calculations to experimental

results. For the hydrogen evolution reaction, they found a correlation between the adsorption

energy of hydrogen with the experimentally measured exchange current density on different
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metal surfaces [16].

However, this early model is highly idealized: the effect of the solvent is (largely) omitted,

as well as adsorption-induced work function change. Later additions to this model have

recovered some of these effects like double-layer charging [17] or pH dependencies [18], but

the current models are still far from the complexity of real systems [19]. In particular, studying

the effects of the solvent is challenging because water on many interesting catalyst materials

such as Pt(111) exhibits very slow dynamics, requiring long and exhaustive calculations to

converge the results [20].

The central focus of this work is the detailed, atomistic study of the interface between water

and metals, especially Pt(111). The mentioned slow dynamics are likely caused by a poten-

tial energy surface with high energetic barriers between minima and different phase space

regions commonly referred to as super basins [21]. To speed up the sampling of different su-

per basins, a global exploration of the phase space is desirable, which yields representative

structures of the different regions. These structures could exhibit different geometries such

as squares or hexagons. Water exhibits many of these motifs in 2D for different surface den-

sities [22] or temperatures and lateral pressures, respectively [23]. Thus, a natural approach

to represent interfacial water is via the use of 2D static water films. Historically, the hexagonal

bilayer has been taken as a representative structure because its geometry is consistent with

the (111) surface of fcc metals and experimental observations at low temperatures on these

surfaces [24–26].

This approach was tested for the Pt(111)-water interface in the first publication of this the-

sis [27]. After placing water films on the metal substrate and performing a local geometry

optimization, a diverse set of local minima structures with different water orientations and

bonding geometries was obtained. The broad range of work functions and adsorption ener-

gies allowed us to analyze the sensitivity of this system to the precise arrangement of water,

and the comparison to ab initio molecular dynamics simulations from Refs. [28, 29] revealed a

structural bias. The static approach tends to form too many hydrogen bonds at the interface,

as the prominent hexagonal layers were less similar than one-dimensional chains of water

molecules to the reference data. Despite the bias in the static water layers, the approach

could be useful for future studies, e.g. the assessment of kinetic barriers within different

interfacial solvent structures.

The second part of this work focuses on a shortcoming of implicit solvation models, which rep-

resent water as a continuum and are hoped to capture the average interactions of the solvent

with the solute [30]. The exclusion of water from a specific region, the formation of a cavity,

is one energetic contribution of the solvation energy and can change drastically at solid-liquid

interfaces [20, 31]. However, existing models are typically parameterized via bulk solvation

energies and thus describe cavity formation as in the bulk solvent. Such parametrizations

are unable to capture effects due to competitive adsorption which leads to a stabilization of

adsorbates at solid-liquid interfaces since the energetic cost of removing interfacial water is

underestimated [29, 32, 33]. Therefore, knowledge about the free energy of cavity formation

at the metal-water interface is one of the key ingredients for improving implicit solvent mod-

els which motivated their assessment across a wide range of metallic, substrate materials in
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the second publication of this thesis [34]. One significant outcome of these studies was the

possibility of rationalizing the observed substrate dependence with the adsorption energy of

water, which emphasized the competitive nature of adsorption processes at these interfaces.

Finally, we compared our result with the existing literature for bulk cavity formation [35–37] to

check the convergence of our result as well as the adsorption of phenol to Pt(111), which is

known to be affected by the competitive adsorption with water [32, 33, 38, 39]. We found very

good agreement for both aspects, which demonstrates the predictive quality and importance

of our results for understanding adsorption at solid-liquid interfaces. Our finding that com-

petitive effects correlate well with adsorption energies of single solvent molecules might pave

the way for an approximate but straightforward inclusion of such effects in future, improved

implicit solvation models.

An overview of the theoretical concepts and methods used is given before summarizing the

main results of the published papers.

3





2. Theoretical Background

2.1. Potential Energy Surface

A typical assumption made in atomistic simulations is the Born-Oppenheimer approxima-

tion (BOA) [40]. Since electrons are many times lighter than nuclei, the BOA assumes that

electrons immediately adjust to changes in the position of nuclei, separating the degrees of

freedom of electrons and nuclei. Therefore, the BOA allows the description of the potential

energy U (x) as a function of the nuclear coordinates x (hereafter called atomic positions).

Furthermore, the electrons should adiabatically follow any change in the nuclei and remain

in their respective ground states for a given set of atomic positions. The BOA is only valid

if the different electronic states are separated. The resulting hypersurface U (x) is called

the potential energy surface (PES) and is 3N dimensional, where N is the number of atoms

[40].

Typical points of interest on the PES are the minima, which are (meta)stable states, e.g.

isomers of a molecule, and the saddle points, which are transition states connecting them.

Furthermore, the measurement of any property X at equilibrium ⟨X⟩ in classical statistical

mechanics requires the evaluation of the PES as

⟨X⟩ =
∫ ∫

X (x, p)Q (N,V, T )−1 exp (−βEtot (x, p))︸ ︷︷ ︸
P (x,p)

dx dp, (2.1)

where Q (N,V, T ) is the canonical partition function, β is (kBT )
−1, x and p are the atomic

positions and momenta, Etot (x, p) is the total energy of a state in phase space, and P (x, p)

is its probability. Within the canonical ensemble the number of particles N , the volume V ,

and the temperature T of a system are fixed. The canonical ensemble describes closed

systems that do not exchange particles with the environment or change their volume and are

embedded in a heat bath at a fixed temperature. Unless otherwise stated, this is the ensemble

of interest in the present work. The corresponding partition function can be rewritten as

Q (N,V, T ) =
1

N !h3N

∫ ∫
exp (−βEtot (x, p)) dx dp (2.2)

=
1

Λ3NN !

∫
exp (−βU (x)) dx

︸ ︷︷ ︸
Z(N,V,T )

, (2.3)

such that one part depends only on the potential energy U / the PES, called the configu-

rational integral Z (N,V, T ), and the other part contains all contributions related to the ki-

netic energy, where h is the Planck’s constant and Λ the temperature-dependent de Broglie

5



wavelength [41]. Furthermore, the integration over dp is also analytically possible for the

probability, which gives

P (x) = Z (N,V, T )−1 · exp [−βU (x)] . (2.4)

Eq. 2.4 relates the potential energy of a given set of atomic positions to its probability/importance

in the canonical ensemble. Since states with low potential energies have the highest probabil-

ities according to Eq. 2.4, they contribute the most to the average ensemble value in Eq. 2.1.

The global minimum represents the most stable state of the system at 0K and is therefore

of particular importance [40]. An example of a two-dimensional PES with two minima and a

transition state between them is shown in Fig. 1.

x 1

x2

U

Figure 1 An example of a two-dimensional potential energy surface:
U = (1.5x1)

2 + x1/2 + x1y2 + (1.5x2)
2 + cos (1.5πx2) + x2/2− 0.5.

Obtaining the appropriate probabilities P (x) of individual states necessitates performing the

integral in Eq. 2.4 over the whole PES. This can be done e.g. numerically on a grid, as done

in Fig. 1. However, such a direct method is only possible for very small systems such as

an isolated water molecule [42], since the number of grid points scales exponentially with

N . Similarly, restricting the search to all minima is not feasible either, since the number

of minima on a PES is estimated to grow exponentially with N [21, 43]. Therefore, many

different techniques such as molecular dynamics (MD), as discussed in section 2.4, have

been developed to only sample regions of high probability according to Eq. 2.4.

Finally, there are two common ways to calculate the potential energy given the atomic po-

sitions: 1. quantum mechanics and 2. molecular mechanics. In quantum mechanics, the

system of interest is described at the subatomic level with nuclei and electrons, and the cal-

culation of the potential energy requires the determination of the electronic structure. Density

functional theory (DFT) belongs to this category and is discussed in the following section.
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Molecular mechanics instead treats the system as a collection of classical particles, e.g.

without explicitly considering the electronic degrees of freedom. The interactions between

the particles are described by effective potentials, which in the simplest case are analytical

functions like a harmonic spring between spheres. The parameters required for this model

are obtained from experimental or theoretical data. These models are also called force fields

(FF) [40].

2.2. Density Functional Theory

The core of all quantum mechanical calculations is the Schrödinger equation [40, 44], which

in its time-independent form can be written as

HΨ = EΨ. (2.5)

Eq. 2.5 is an eigenvalue problem with the Hamiltonian H , a wave function Ψ as eigenvector

and the energy E as eigenvalue. The Hamiltonian consists of five different contributions

H = Te + Tn︸︷︷︸
0

+Vne + Vee + Vnn︸︷︷︸
constant

(2.6)

which include the kinetic energy T of the electrons e and the nuclei n, the attraction between

nuclei and electrons Vne, and the repulsion between electrons Vee and nuclei Vnn. The brack-

ets in Eq. 2.6 are the results of the BOA. The kinetic energy of the nuclei Tn is neglected

and set to zero, and the nuclei-nuclei interaction Vnn is constant for a set of fixed atomic po-

sitions. As a result, in the BOA the atomic positions enter the Schrödinger equation as fixed

parameters and the eigenvalue problem is solved for the degrees of freedom of the elec-

trons. However, exact analytical solutions are only possible for very few systems, so further

simplifications are needed to find approximate solutions. Treating the electrons as indepen-

dent particles interacting with the average potential created by all other electrons yields an

eigenvalue problem that can be solved numerically. However, since the average potential

depends on the solution, this approach requires an iterative procedure to make the solutions

self-consistent, called self-consistent field method [40, 44].

As Hohenberg and Kohn showed [45], all electronic ground state properties can be expressed

as a function of the ground state electron density ρ (x), thus circumventing the need to solve

the many-body problem using many-body wavefunctions. Furthermore, the ground state

electron density can be obtained by minimizing an energy functional E [ρ]. In contrast to

the electronic many-particle wavefunction Ψ(x1, x2, ...), which depends on the 3Ne spatial

coordinates of the Ne electrons, the electron density ρ (x) is simply a function in the 3 spa-

tial coordinates, which leads to a significant simplification (dimensionality reduction) of the

problem.
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However, an exact expression for the density functional E [ρ] is unknown. Approaches that

build on this original idea and rely only on a density functional E [ρ] are typically referred

to today as orbital-free DFT approaches. Unfortunately, most orbital-free DFT functionals

known today exhibit significant errors [44]. However, significant improvements in accuracy,

and thus the widespread adoption of DFT, was made possible by the reformulation of the

DFT approach by Kohn and Sham [46].

Kohn and Sham introduced the concept of an (artificial) reference system of non-interacting

electrons, which yields the same electron density as the real, interacting one. In the non-

interacting case, it is possible to express the many-particle wavefunction as a product of

single-particle wavefunctions, for which the kinetic energy and the electron-electron repulsion

can be calculated straightforwardly. In Kohn-Sham DFT, the total energy is given by the sum

of four functionals of the electron density

E [ρ] = TS [ρ] + Ene [ρ] + J [ρ] + Exc [ρ] , (2.7)

where TS is the kinetic energy of the reference system, Ene and J are the classical Coulomb

potentials for the nuclear-electron and electron-electron interactions, respectively. The energy

difference to the real system is summed up in the so-called exchange-correlation functional

Exc. It includes the difference in kinetic energy between the non-interacting and the real

system, and the aforementioned exchange and correlation contribution due to the quantum-

mechanical nature of the interacting electrons. Finally, contributions due to self-interaction

within the electron density would also be accounted for, if the ’true’ Exc functional were known.

This advantage comes at the cost of reintroducing wave functions into DFT. The resulting

one-electron Hamiltonian in Kohn-Sham DFT is as follows

hKS
i = −1

2
∇2

i −
nuclei∑

k

Zk

|xi − xk|
+

∫
ρ (x′)

|xi − x′|dx
′ + Vxc. (2.8)

Since the electrons do not interact, the total Hamiltonian is the sum of the one-electron oper-

ators from Eq. 2.8 as

N∑

i=1

hKS
i |χ1χ2 . . . χN ⟩ =

N∑

i=1

ϵi|χ1χ2 . . . χN ⟩ (2.9)

with the wavefunction |χ1χ2 . . . χN ⟩ consisting of one-electron orbitals χi. Since the expres-

sion of the first three contributions is fixed and exact, the improvement of Kohn-Sham DFT

relies on finding Exc to correct for the mentioned shortcomings. As a first step, Exc is ex-

pressed as a function of the local density, and the individual contributions are summed up,

hence the correction is called the local density approximation (LDA). The exchange energy

for the uniform electron gas is analytically known and can be used for this purpose. The
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corrections for the other contributions are more complicated and the expressions are fitted

to known references. LDA works well for systems with a fairly uniform electron density, such

as metals, but gives poor results for systems with strongly varying electron densities, such

as molecules [44]. Including the local gradient of the electron density in Exc yields the gen-

eralized gradient approximation (GGA), which improves the performance of DFT for these

systems. More sophisticated corrections involve the curvature (meta-generalized gradient) or

mix in contributions from wavefunction methods such as Hartree-Fock (hybrid) [40, 44].

2.3. Force Fields

Instead of solving the complicated eigenvalue problem to obtain the potential energy as a

function of nuclear coordinates described in the previous section, FFs have a fixed functional

form which, in the simplest case, takes the atomic positions as input to yield a potential energy

[40]. A classic example is the well-known Lennard-Jones potential (LJ)

ULJ (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
, (2.10)

which describes the energy as a function of the distance r between two atoms. It is therefore

a pair potential and has two free parameters: the potential well depth ϵ and the distance σ,

at which the potential is zero. ULJ exhibits a minimum at 21/6σ, commonly referred to as r0.

Numerical values for these parameters are usually determined by experimental or theoretical

data for all atomic species in a calculation and serve purpose for only a specific system. The

total potential energy is the sum of the partial energies of all atoms. Since the LJ potential has

a simple analytical form, the forces acting on each atom are simply obtained as the derivative

of the energy with respect to the distance r. The choice of an appropriate FF for the system

of interest is crucial since they can only capture effects that are described by explicit terms.

Common choices are harmonic potentials for covalent bonds or angles between three atoms

that force them to oscillate around their equilibrium value. The topology information, which

atoms are bonded or form such an angle, must also be specified. Similarly, charges can

be assigned to atoms as point charges and the electrostatic interactions can be calculated

via the Coulomb potential [40]. Consequently, there is a wide variety of classical FF in the

literature, most of which are intended for a specific type of system. For example, the em-

bedded atom method, which includes a term for the dislocated electrons of conductors, has

proven useful for simulating metals, whereas FF describing explicit bonds are typically used to

describe organic matter such as proteins [47]. Alternatively, machine-learned interatomic po-

tentials can predict energies and forces without also solving the Schrödinger equation, which

has the advantage over classical FF of not requiring an assigned functional form. Therefore,

machine-learned interatomic potentials can capture a wide variety of interactions. However,

the construction/parametrization of such machine-learned interatomic potentials needs a con-

siderable amount of reference data to determine (learn) their more complex functional form
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and thus arrive at accurate predictions [48].

2.4. Molecular Dynamics

As mentioned in the previous section 2.1, a brute force approach to evaluate the full PES

is only possible for extremely simple systems [49]. In addition, many states have negligible

probabilities and thus their contribution to any averaged quantity is also negligible. Since low

energy states have the highest probabilities according to Eq. 2.1, sampling these regions,

typically around the low-lying minima, should yield accurate averages. Exploring this relevant

region of phase space by following the temporal evolution of the system is the basic idea of

molecular dynamics (MD) [49]. The most straightforward application of MD is within the micro-

canonical ensemble, where the time evolution of a closed system is simulated by numerically

integrating Newton’s equations of motion for a finite, chosen timestep ∆t. The available inte-

gration techniques are best understood by considering Taylor expansions of atomic positions

x⃗ and velocities v⃗.

x⃗ (t+∆t) = x⃗ (t) +
dx⃗ (t)

dt
∆t+

1

2!

d2x⃗ (t)

d2t
∆t2 +

1

3!

d3x⃗ (t)

d3t
∆t3 + . . . (2.11)

v⃗ (t+∆t) = v⃗ (t) +
dv⃗ (t)

dt
∆t+

1

2!

d2v⃗ (t)

d2t
∆t2 +

1

3!

d3v⃗ (t)

d3t
∆t3 + . . . . (2.12)

The first-order velocity term is Newton’s second law of motion F⃗ = m · a⃗ = m · dv⃗ (t) /dt and

shows that MDs require the calculation of forces F⃗ . Using this expression and truncating the

expansion after the first order term, one obtains the so-called Euler algorithm

x⃗ (t+∆t) = x⃗ (t) + v⃗ (t) ·∆t+O
(
∆t2

)
(2.13)

v⃗ (t+∆t) = v⃗ (t) +
F⃗ (t)

m
·∆t+O

(
∆t2

)
. (2.14)

The Euler algorithm is simple but requires very small timesteps for simulations since the error

scales with the square of the timestep O
(
∆t2

)
. A more stable algorithm, which also demands

only one force evaluation, is the Störmer-Verlet time integration [50]. Several schemes of this

algorithm exist, but the most popular is the so-called Velocity-Verlet algorithm implemented

in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [51]. The algo-

rithm introduces a half-step in Eq. 2.13:
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1. v⃗

(
t+

∆t

2

)
= v⃗ (t) +

F⃗ (t)

m
· ∆t

2

2. x⃗ (t+∆t) = x⃗ (t) + v⃗

(
t+

∆t

2

)
·∆t

3. v⃗ (t+∆t) = v⃗

(
t+

∆t

2

)
+

F⃗ (t+∆t)

m
· ∆t

2
.

First, the velocities are updated by half of the timestep t+
∆t

2
with the force at time t. In the

second step, the positions are propagated with the half-step velocity and finally, the velocities

are updated again with the new positions, so that at the end of each iteration the positions

and velocities are in phase. In addition, the algorithm has other advantages, it is fully time-

reversible and energy-conserving for rather large timesteps, even though the error scales with

O
(
∆t2

)
as well [52].

MD simulations can be run in different ensembles with their constraints for energy, volume,

temperature, or pressure, among others. The corresponding ensembles are the microcanon-

ical (NV E), the canonical (NV T ), or the isothermal-isobaric (NPT ) ensemble. A micro-

canonical MD using the same example PES is shown in Fig. 2. The total energy is fixed so

that the energy is transformed from potential to kinetic energy and vice versa. The simulation

samples the environment of a minimum and is similar in this respect to a marble in a bowl

without friction.

−1 0 1
x1

−1.0

−0.5

0.0

0.5

1.0

x 2 U

Figure 2 A microcanonical (NV E) MD on the example PES from Fig. 1. The dot marks the initial position and the initial
velocity is set to zero.

Simulating the other ensembles, such as the canonical ensemble, is more difficult because

it requires a controlled temperature rather than just fixing the total energy. For the latter, the

relationship between temperature and velocity via the equipartition theorem is used:
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1

2
m⟨v2⟩ = n

2
·NkBT → T =

m⟨v2⟩
n ·NkB

, (2.15)

where n is the number of translational degrees of freedom. Furthermore, the velocities in a

canonical ensemble should follow the Maxwell-Boltzmann distribution as

P (v) =

(
β

2πm

)1.5

exp

(
−β

mv2

2

)
, (2.16)

so that for a finite system the temperature in the canonical ensemble fluctuates around the set

value. The simple approach of applying Eq. 2.15 by multiplying all velocities by a factor so that

the temperature remains constant is called the Berendsen thermostat [53]. However, such a

’simple’ rescaling approach does not sample the canonical ensemble [49]. Instead, a common

thermostat to properly sample the canonical ensemble is the Nosé-Hoover thermostat [54,

55], which couples the atomistic system to a virtual heat bath of the specified temperature.

This modifies the equations of motion by introducing a friction coefficient ξ, which also evolves

with time. The equations then become

ẋ = v (2.17)

v̇ = F/m− ξv (2.18)

ξ̇ =

(∑

i

miv
2
i −

3N

β

)
/Q, (2.19)

where the dot above the variables denotes their time derivative and Q is the coupling param-

eter to the heat bath. It is important to note, that a single Nosé-Hoover thermostat will fail

under certain conditions, such as in systems with more than one conserved quantity [49, 52].

However, using a chain of such thermostats acting on each other has been shown to sample

the canonical ensemble accurately even in these cases [56]. Finally, a trajectory that correctly

samples the specified ensemble should yield accurate time-averaged quantities such as

⟨X⟩t =
1

M

M∑

i

X (ti) . (2.20)

The equivalence of the time ⟨X⟩t and the ensemble mean ⟨X⟩ is called the ergodic hypoth-

esis and implies that the system can explore the entire relevant phase space. Since MD

simulations evolve the system in time, samples with a small time difference are correlated.

Therefore, the averages in Eq. 2.20 will be biased if the trajectory is not long enough to

decorrelate the samples. The necessary steps for the decorrelation of samples depend on
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the property of interest and need to be verified, e.g. by running several independent simula-

tions and comparing the resulting averages [49].

2.5. Free Energy Surface

Similar to the calculation of average quantities (cf. Eq. 2.1), the absolute free energy F of a

system [41, 49] necessitates the computation of the partition function

F = −β−1 · ln Q (N,V, T ) . (2.21)

Again, evaluating the entire phase space is impossible except for simple model systems, thus

making Q (N,V, T ) inaccessible. Similarly, the absolute free energy is not measurable in

experiments unlike free energy differences ∆F . In that regard, the free energy difference

between state A and B is

∆F = FA − FB = −β−1 · ln
(
QA

QB

)
= −β−1 · ln

(
ZA

ZB

)
, (2.22)

where the configurational integrals ZA and ZB demand sampling of the relevant phase space

of state A and B, respectively. These are as well connected to the probability of the respective

states as discussed in sec 2.4. If both states can be separated by a variable z, the probability

P of state A is

PA = C−1

∫ ∫
exp (−βEtot (x, p)) δ (z − zA) dx dp = C−1QA, (2.23)

where C is a normalization constant and the PES is only evaluated in the space space volume

of state A through the δ-function. Combining Eq. 2.22 and Eq. 2.23 yields a direct approach

to calculate a free energy surface (FES) as a histogram of z:

∆F = FA − FB = −β−1 · ln
(
PA

PB

)
→ ∆F ({z}) = −β−1 · ln [P ({z})] . (2.24)

From Eq. 2.24 is is evident that the PES and the FES ∆F ({z}) have two major differences:

1. The number of dimensions of the PES involve all atoms (3N ), whereas the dimensions

of an FES depend on the so-called collective variable (CV) or order parameter ({z}).
FESs have in general a lower dimensionality than the PES.

2. The PES is in principle unique for a chosen system and methodology to calculate the

energy. In contrast, there are infinitely many FESs for the same system.
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Therefore, the quality of an FES depends crucially on the chosen CV. An ideal CV should

separate the states of interest and has as few dimensions as possible. To this end, all de-

grees of freedom, which are not important to describe a process/transformation should be

integrated out, leaving only the CV. As an example, the same PES from the previous sections

is plotted in Fig. 3 with two possible CVs (x1, x2). Evidently, x1 is not a suitable choice to

discriminate between the two wells, while taking x2 as CV yields an FES with the two wells.

x1

x 2
∆

F
({

x 1
} )

∆F ({x2})

U

Figure 3 The exemplary PES from Fig. 1 with two possible FESs using x1 and x2 as CVs and Eq. 2.24.

A more application oriented example is the folding of a protein in water [57]. The degrees

of freedom of the water molecules are not of interest, but, e.g. the distance between two

protein chains, which are not bound to each other and in close proximity in the folded state.

Hence, this distance could be a suitable descriptor to separate the unfolded and folded state.

Many different configurations are then mapped to the same CV, hence the dimensionality is

reduced and the process can be understood in one dimension. The CV does not have to

be a combination of Cartesian coordinates, but can also be the charge or the coordination

number [58]. In addition to these considerations about CVs, Eq. 2.24 states that free energy

differences can be calculated from MDs by recording the value of the CV. For an ergodic sys-

tem, which means that the whole phase space is accessible, an infinitely long MD simulation

should yield an accurate FES. In reality, an MD run might be trapped in a minimum or a region

in phase space as shown in Fig. 2. This will naturally bias the FES and exemplifies that this

approach is only feasible for systems without e.g. large energetic differences between states

and barriers. Any such bottleneck limits the sampling of the relevant phase space and leads

to errors. For these cases, more complex methods have been developed to overcome these

bottlenecks and access the free energy difference [41, 49]. One of these methods is free

energy perturbation (FEP), which will be explained in detail in the following section and was

used in the second publication [34] of this thesis.
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2.6. Free Energy Perturbation

The basic idea of free energy perturbation (FEP) can be derived from Eq. 2.22 [41, 49]. Both

states are described by their own Hamiltonians and the energy difference for a given set of

configurations ∆U (x) of both Hamiltonians is used to calculate the free energy difference.

This approach allows the alchemical transformation of atoms or the restriction of the system

to a certain part of the phase space, e.g. by fixing the value of the CV and changing it over

different runs [59]. The latter is particularly useful for driving the system into regions that are

rarely sampled in an unconstrained MD simulation. The free energy difference can then be

obtained via Eq. 2.28, the so-called Zwanziger equation [60]. It is obtained from Eq. 2.22 by

multiplying with exp [−βUB (x)] · exp [βUB (x)]:

∆F = FA − FB = −β−1 · ln
(
ZA

ZB

)
(2.25)

= −β−1 · ln
∫
exp [−βUA (x)] dx∫
exp [−βUB (x)] dx

(2.26)

= −β−1 · ln
∫

PB (x) exp (−β [UA (x)− UB (x)]) dx (2.27)

= −β−1 · ln ⟨exp (−β [UA (x)− UB (x)])⟩B . (2.28)

In principle, only state B needs to be sampled and, subsequently, the free energy difference

is extrapolated by calculating the potential energy difference between state A and B. This

method works if state A and B overlap/are close in the phase space. For further separated

states, the path between them can be divided into several smaller steps and Eq. 2.28 applied

to all neighboring ones to go from A to B or vice versa. Unfortunately, this simple approach

is prone to statistical errors, since only the overlap of two states is used and only in one

direction. A better scheme would employ the difference between several states and using the

overlap in both directions. This issue was addressed by Bennet [61] and further refined by

Shirts [62]. Starting from the identity in Eq. 2.29, Bennet introduced a weighting w (x) to the

forward and backward integration

QA

QB
=

QA

QB
·
∫
w (x) · exp [−βUA (x)] · exp [−βUB (x)] dx∫
w (x) · exp [−βUA (x)] · exp [−βUB (x)] dx

(2.29)

∆F = −β−1 · ln ⟨w (x) · exp [−βUA (x)]⟩B
⟨w (x) · exp [−βUB (x)]⟩A

. (2.30)

Eq. 2.30 is valid for any choice of w (x), but Bennet found the optimal choice, which minimizes

the estimated statistical error in the free energy difference σ∆F , to be

w (x) =
K

(QA/NA) exp [−βUB (x)] + (QB/NB) exp [−βUA (x)]
, (2.31)
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where K is a constant and N the number of (uncorrelated) samples from state A and B.

Combining Eq. 2.31 and Eq. 2.30 yields the common expression of the Bennett Acceptance

Ratio (BAR) method [61] as

∆F = −β−1 · ln
[ ⟨{1 + exp (β [UA (x)− UB (x) + C])}−1⟩B
⟨{1 + exp (β [UB (x)− UA (x)− C])}−1⟩A

· exp (βC)

]
, (2.32)

with C = −∆F + β−1 · ln (NB/NA) in case of the optimal choice. Since the ratio ∆F is

on both sides of Eq. 2.32, this equation must be solved self-consistently for ∆F . BAR was

generalized to the free energy difference of multiple states by Shirts and Chodera into the

Multistate Bennet Acceptance Ratio (MBAR) method [62]. Multistate free energy differences

are calculated between all sampled states and not only for neighbouring states. This leads to

a set of equations, which need to be solved self-consistently and reads as

Fi = −β−1 ln

K∑

k=1

Nk∑

n=1

exp [−βUi (xkn)]∑K
k′=1N

′
k exp [βFk′ − βUk′ (xkn)]

, (2.33)

where the first and third sums run over the K states of interest and the second sum over the

number of samples Nk in state k. The free energy Fi is only determined up to an additive

constant, such that only free energy differences ∆F are meaningful. Similar to the Zwanziger

Equation, MBAR can estimate the free energy difference to states, which were not explicitly

sampled. For this purpose, Nk of the unsampled state is set to zero and this procedure is

especially useful to e.g. interpolate between points to generate a smooth free energy profile

[62]. Analogous to the weightings from Eq. 2.31, MBAR determines weightings/probabilities

for all configurations in each state, which can be used to calculate expectation values (cf.

Eq. 2.1) from all sampled configurations. This is useful to remove the bias introduced in MDs

to sample free energies or monitor the change of a property with respect to the CV [63].

As an example, FEP with MBAR was applied to the exemplary PES in Fig. 4. Eleven evenly

spaced values x2 were fixed and a canonical ensemble was generated. For each ensemble

six uncorrelated samples were drawn, which are marked with crosses in the left panel of

Fig. 4. Afterwards, all configurations were evaluated in each of the eleven ensembles by

adjusting x2 to the respective position. These energies were finally used to run MBAR with

the software package pymbar [62]. The resulting free energy profile is plotted on the right side

of Fig. 4. In addition, the free energy surface from the grid evaluation of the PES is plotted as

well. Since both curves are largely the same, MBAR has successfully predicted the FES.

Furthermore, MBAR can integrate over several CVs at the same time. For the investigation of

cavities at solid-liquid interfaces (SLIs) in Ref. [34], we calculated the free energy differences

between states with a different cavity position and size at the same time, which resulted in a

well converged free energy profile. Another important advantage of BAR and MBAR is the

direct calculation of the statistical error of the obtained free energy with MBAR being the best

estimator for free energy differences [64]. To this end, the disadvantage of MBAR is the costly
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MBAR
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po
t

Figure 4 FES using x2 as CV using Eq. 2.24 (Exact) and FEP via Eq. 2.33 with pymbar [62]. Eleven independent, canonical
ensembles were generated at evenly spaced values of x2 for the calculation with MBAR. The crosses in the left panel mark the
location of the samples.

post-processing, if many samples in different states need to be evaluated, such that solving

Eq. 2.33 becomes very memory intensive [63]
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3. Metal-Water Interfaces in Electrochemistry

3.1. Overview

Metal-water interfaces are present in many electrochemical devices like fuel cells and elec-

trolyzers, which are prominent solutions for the global energy storage and conversion chal-

lenges [1, 4, 6, 65]. The schematic setup of a fuel cell, which generates electricity from the

reaction of hydrogen and oxygen is shown in Fig. 5. A fuel cell consists of two half-cells with

the electrode and the electrolyte as well as an electron conductor and an ion conductor, which

is typically a polymer membrane in modern fuel cells/electrolyzers operating at low temper-

atures. At the anode, the oxidation reaction takes place, and at the cathode, the reduction

reaction, which is the hydrogen oxidation and the oxygen reduction reaction, respectively. In

an electrolyzer, the reactions and flows are reverted by applying the opposite potential [65].

V
Anode Cathodee− e−

H2 → 4H+ + 4e− O2 + 4H+ + 4e− → 2H2O

O2H2 H+

H2OH2O

E
le

ct
ro

de

E
le

ct
ro

de

Ion conductor

Electron conductor

Figure 5 Schematics of a fuel cell for the conversion of hydrogen and oxygen gas to water.

The driving force for the reaction is the overpotential, which is the difference to the equilibrium

potential of the reaction and is lost as heat during operation. The magnitude of this overpoten-

tial depends on the electrodes. During the reactions shown in Fig. 5 the reactants adsorb on

the surface and are converted stepwise to the final product, which desorbs from the surface.

A potential has to be applied, such that the free energy change of all steps becomes negative

and thus the reaction runs spontaneously [65]. As demonstrated by Nørskov and coworkers,

this concept allows for the prediction of catalyst activities from free energy diagrams [15]. In

addition, the catalyst governs the kinetics of the reactions. Following the Sabatier principle,

the binding strength of the catalyst has to be strong enough to prevent the desorption of the

reactants and intermediates before the reaction takes place. However, the products are not

desorbing if the binding is too strong, which blocks the catalyst for other reactants [65].
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For the hydrogen evolution reaction, Nørskov and coworkers found the relation between the-

oretical binding strength and experimentally measured exchange current density for pure

metal catalysts [16], which exemplifies the utility of theoretical predictions for the develop-

ment and understanding of catalysts. For both the hydrogen oxidation and oxygen reduction

reaction platinum-based catalysts are employed in current fuel-cells since they compromise

low overpotentials with comparably fast kinetics [6, 11–13, 66]. However, the low abundance

of platinum and the associated costs limit its applicability [4]. Better catalysts would consist of

cheap and abundant materials, are stable during operation, and be selective towards the de-

sired reaction while maintaining/enhancing the efficiency and kinetics of the current ones. To

systematically optimize catalysts following these targets, it is necessary to identify the active

center of the catalyst under reaction conditions [13]. The above-mentioned predictions on

the hydrogen evolution reaction were based on adsorption energies in the gas phase without

modelling the electrolyte. However, the omission of the electrolyte can alter the energetics

tremendously [38]. Therefore, atomistic simulations of the SLI are an important tool to unravel

the detailed structure and hence aid the development of new catalysts. Currently, though,

most theoretical studies are focused on well-defined test systems like the Pt(111)-water in-

terface [67] because of the high computational cost of accurate first-principles calculations.

The interfaces in commercially available fuel cells are way more complex as the catalysts are

nanoparticles with different facets, edges, kinks, and defects, while the electrolyte contains

salts and other additives [19]. Therefore, the transfer of knowledge from the model systems to

real systems is a huge challenge in molecular modeling, which necessitates coarse-graining

to reduce the computational costs [68]. To this end, coarse-grained models for water, e.g.

implicit solvation or static water models, enable the scanning of many catalyst materials and

sites, which allows for the modelling of more complex systems and aids the discovery of new

catalysts [30].

3.2. Atomistic Simulations of Metal-Water Interfaces

Despite its simple molecular formula, water exhibits a variety of anomalous properties. An

everyday example is the particularly high surface tension and the density anomaly of water

which makes ice float on liquid water. Such behaviors originate to a large extent from the

interplay of the two intermolecular forces: Van der Waals interaction and hydrogen bonding

[69, 70]. Van der Waals forces occur through fluctuations in the electron density and lead

to an interaction modeled by the LJ potential. The hydrogen bonding of water results from

the polar, covalent bond between oxygen and hydrogen. The positively charged hydrogen

interacts with a lone pair of the negatively charged oxygen of another water molecule. In the

simplest case, this interaction is approximated as an electrostatic interaction with no charge

transfer [70], which is described by the Coulomb interaction of fixed partial charges. The

classical FF model of water [71] used in the second publication of this thesis [34] describes

the interactions in exactly this manner and can predict many properties such as the density

with a reasonable accuracy [72].
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The hydrogen bond formation is the dominating factor for the structuring of water and leads

to the preferred tetrahedral arrangement of water. Expressed as the Bernal-Fowler rules,

the oxygen in ice phases should be fourfold coordinated by other oxygens, while only one

hydrogen should link two oxygens forming a hydrogen bond [73, 74]. However, there are

many possibilities in the overall ordering of water and its phase diagram contains many of

them [74]. While a variety of most stable phases and coexistence lines between multiple

phases for the specified conditions (here: temperature and pressure) at equilibrium is known,

several theoretically predicted phases have not yet been observed [75].

This complexity of the water structure is equally present in two-dimensional systems. Here,

the diversity of structural motifs spans many different polygons like squares, pentagons, or

hexagons [22, 23]. In contrast to bulk water, where all water molecules donate two hydro-

gen bonds and accept two according to the Bernal-Fowler rules [73], these numbers vary in

two dimensions. In a hexagonal lattice, each water molecule forms three hydrogen bonds

(2 acceptors and 1 donor / 1 acceptor and 2 donors). This hexagonal arrangement is com-

mensurate with the (111) surface of fcc metals and was also observed in low-temperature

experiments making it a model for these systems [24–26]. Because of the presence of water

in e.g. low-temperature fuel cells and electrolyzers or heterogeneous catalysis at metal-water

interfaces, knowledge about the structuring of interfacial water is of fundamental interest, as

any adsorbate or intermediate will interact with water as the solvent. Therefore, the ener-

getics of static water layers can be considered a baseline for any further calculations, e.g.

at metal-water interfaces. Two key properties, which can be accessed from atomistic simu-

lations of metal-water interfaces, are adsorption energies Eads and work functions Φ. The

former is a measure of the binding strength of the metal surface to one or multiple adsorbates

and in the case of adsorbing water is calculated as

Eads =
1

NH2O

[
Eslab|H2O − (Eslab +NH2O · EH2O)

]
, (3.1)

where Eslab|H2O is the energy of combined system, Eslab of the clean slab, EH2O of an iso-

lated water molecule and NH2O the number of water molecules [27]. Within the framework

of the computational hydrogen electrode (CHE) of Nørskov et al. [15], the stability of a struc-

ture and the activity of a catalyst are predicted based on an identical measure of adsorption

energies of relevant reaction intermediates, e.g. adsorbed hydrogen.

Computing such adsorption energies at applied potential conditions necessitates, in addition,

charging of the interface by an appropriate amount [17]. In this respect, one of the central

quantities of interest is the work function of the interfacial system, as it directly impacts how

much excess charges are present on the surface at a given applied potential and therewith

the energetics of e.g. charged adsorbates. Adsorbed water on a metallic electrode is known

to reduce the work function significantly which leads to a sizeable offset of the so-defined

potential of zero charge (PZC) from the respective vacuum value [17]. As a result, obtaining

realistic PZC values within a given interfacial water model, e.g. static water environment, is a

prerequisite to model appropriately the interfacial conditions at an applied electrode potential.

Typically the work function of the total system is referenced to the clean slab and therefore in
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the case of adsorbing interfacial water we evaluated the work function change ∆Φ as

∆Φ = Φslab|H2O − Φslab, (3.2)

which can be directly compared to the experimentally measured PZC. At this potential, the

electrode has no excess charge and corresponds, therefore, to the simulation of the metal-

water interfaces in a canonical ensemble [28].

The analysis of static water structures clarifies that ∆Φ and Eads depend sensitively on the

precise arrangement of water molecules as shown in Fig. 6 for the Pt(111)-water interface,

taken from Ref. [27]. Because water has a significant dipole, the opposite orientation of every

second water molecule in both structures leads to a difference in the work function of roughly

1.5 eV. Similar effects of the water reorientation on the work function were reported in the

literature [24, 76–78]. Note that this difference exceeds by far the predicted electrochemical

stability window of water on Pt(111) [79]. Furthermore, the connectivity of the two structures

is different, which is underlined by the blue color of parallel-oriented and tightly adsorbed

water molecules. The configuration on the left is additionally slightly closer to the slab, which

together with the previous points causes the large difference in the adsorption energy of

almost 0.1 eV per water molecule. These values are similar to reported values in the literature

[24, 76–78].

∆Φ = −1.00eV
Eads = −0.59eV

∆Φ = −2.43eV
Eads = −0.50eV

Figure 6 Example configurations for a hexagonal water arrangement on Pt(111), where the dangling hydrogen bond is either
pointing towards (H-down) or away from the surface (H-up). The different orientation of the non-planar water molecules
induces a significant reduction of the work function ∆Φ. The structures and values for the work function reduction and
adsorption energy were taken from Ref. [27]. Intermolecular hydrogen bonds are marked with dotted lines and
parallel-oriented and tightly adsorbed water molecules are colored blue.

While these two configurations can be considered as potential prototype structures of water

at negatively and positively charged Pt(111), respectively, the metal-water interface at ambi-

ent conditions does not show this degree of order [80, 81] as displayed in Fig. 7. In addition,

many ab initio molecular dynamics (AIMD) studies on different metal-water interfaces have

21



revealed, that the ordering and orientation of interfacial water depends sensitively on the

metal surface [28, 80, 82–84]. While the first water layer on Pt(111)/Pd(111) has a bimodal

density distribution, only one density peak exists on Au(111)/Ag(111) [28]. Additionally, the

closely bound water molecules on Pt(111)/Pd(111) exhibit a very low mobility [83, 85]. Also,

the orientation and hydrogen bonding depends on the metal [28, 82, 84, 86]. Especially un-

der electrochemical conditions with applied potential or charge, the first water layer changes

its orientation and adsorption behavior [31, 83, 85, 87–89]. Despite all these differences to

ice-layers, the interfacial water has very slow dynamics [20, 90, 91], such that MD simulations

rather explore the local phase space than the global one. This results in differences in aver-

aged values between different MD runs [29] and limits these simulations to a few test cases

like water on Pt(111) or Au(111) [67]. A possible solution to this problem relies on the explo-

ration of the global space via the creation of a diverse set of structures. Since the properties

of water in the second water layer are already similar to bulk water, this approach can be lim-

ited to the interfacial water. Through a local geometry optimization such an approach could

explore many different local minima. Finally, averages over such an ensemble should yield

similar results as MD simulations and this was the basic idea of the first publication described

in this thesis [27].

t = 0ps t = 5ps t = 10ps

Figure 7 Example snapshots from an AIMD of interfacial water on Pt(111). Intermolecular hydrogen bonds are marked with
dotted lines and parallel-oriented and tightly adsorbed water molecules are colored blue.

In addition, water (or any other solvent) changes the energetics of other adsorbates at the

SLI. For example, the experimentally observed adsorption energy of phenol on Pt(111) is

reduced in an aqueous environment compared to the gas-phase adsorption [38], which is

referred to as competitive adsorption. The connection between competitive adsorption and

interfacial solvation can be rationalized by considering the free energy change of bringing a

solute to an interface in a solvent. This free energy change can be decomposed, at least

phenomenologically, into the free energy changes due to the (partial) removal of the solvation

shell of the solute, the removal of the local solvation environment of the substrate, and finally

the formation of a (chemical or physical) bond between the solute and the substrate. The
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first and last contributions depend on the solute-solvent and solute-substrate interactions,

respectively. The energetic cost of interfacial solvent removal, on the other hand, is likely to

be dominated by the specific interactions between the solvent and the substrate only. These

general baseline free energy contributions are rather agnostic to the specific adsorbate being

studied and relate only to the interfacial solvation properties of the substrate. It is these ideas

that motivated the studies in the second publication [34].

3.3. Interfacial Cavity Formation

As outlined in the previous section, calculating converged values of adsorption energies or

work functions at metal-water interfaces requires excessive sampling. To screen different

adsorption processes on various metal surfaces under different conditions, the sampling of

water’s degrees of freedom has to be sped up. Similarly to the dimensionality reduction in an

FES, the degrees of freedom of water might be integrated out by replacing the explicit water

with a continuum representation. Such models are called implicit solvation models [30] and

the free energy change of solvation can be calculated as

∆Gsol = ∆Gel +∆Gcav +∆Grep +∆Gdis +∆Gtm + P∆V,︸ ︷︷ ︸
non−electrostatic terms

(3.3)

where ∆Gel is the contribution of the dielectric response and all other terms regard the non-

electrostatic contributions [92, 93]. They include the creation of a free volume for the solute

∆Gcav, the repulsion between solute and solvent ∆Grep, the attractive dispersion ∆Gdis,

the change of the thermal motion ∆Gtm, and the change of the volume/ the required work

P∆V [92, 93]. While the decomposition of solvation energies into individual parts is not un-

ambiguous, a general understanding of adsorption processes at SLIs under electrochemical

conditions e.g. applied potential can be obtained by the usage of implicit solvation models

[94–96]. Following Eq. 3.3, a solvation process can be understood in two steps: the creation

of the cavity ∆Gcav in the solvent and subsequently the insertion of the solute and the em-

bedding of the solute into the solvent ∆Gemb, which contains all other terms. This idea is

illustrated in Fig. 8.

By construction of the decompositon and as evident from Fig. 8, ∆Gcav and thus its com-

putational assessment only requires knowing the cavity’s size and shape. Therefore, cavity

formation applies to any solute and is, therefore, of fundamental interest for solvation pro-

cesses. From thermodynamics, the work required to create an infinitely large spherical cavity

(or in this case, a bubble) can be expressed as

W (rcav) = P
4

3
πr3cav + 4πr2cavγ = PV + γA, (3.4)
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∆Gcav ∆Gemb

∆Gsol

Solvent

Solute

Figure 8 Solvation as a two-step process. 1. The cavity is created within the solvent to accommodate the solute. 2. The solute
is inserted into the cavity and embedded into the solvent.

where P is the surrounding pressure, rcav is the radius of the spherical cavity and γ the

surface tension [97]. However, for smaller cavities and droplets, it is known that the surface

tension is size dependent, which can be expressed using the Tolman length δ [98] as

γ̃ (rcav) = γ

(
1− 4δ

rcav

)
. (3.5)

It is generally accepted that δ is positive for cavities and negative for droplets [99]. Combining

Eqs. 3.4 and 3.5 yields an expression suitable for smaller cavities:

W (rcav) = P
4

3
πr3cav + 4πr2cavγ

(
1− 4δ

rcav

)
. (3.6)

Furthermore, a similar expression can be derived from scaled particle theory (SPT), which

uses the known radial distribution function of a liquid of hard spheres to calculate the required

work to form a cavity [100]. Finally, the work is expressed as a polynomial expansion

W (rcav) = K0 +K1 · rcav +K2 · r2cav +K3 · r3cav, (3.7)

where the coefficients are a function of the diameter of the hard spheres and the density

of the pure liquid, as well as the pressure and temperature [101]. Comparing Eq. 3.6 and

Eq. 3.7 shows that the atomistic treatment added a cavity size-independent term K0, which

has no counterpart in thermodynamics. Normalizing the work or cavity formation by the

created interfacial area yields a size-dependent or effective surface tension, which is plotted
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for both expressions in Fig. 9. Focusing on the effective surface tension is justified, since the

contribution of the pressure for small cavities is negligible at ambient conditions [102]. For

the 4 coefficients, SPT relations were used:

K0 = β

[
− ln (1− y) +

9

2

(
y

1− y

)2
]
− πpa3

6
(3.8)

K1 = −β

a

[
6y

1− y
+ 18

(
y

1− y

)2
]
+ πpa2 (3.9)

K2 =
β

a2

[
12y

1− y
+ 18

(
y

1− y

)2
]
− 2πpa (3.10)

K3 =
4

3
πp (3.11)

with a being the hard sphere diameter of water, ρ the number density and y = πa3ρ/6 the

packing fraction.
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Figure 9 Area-normalized cavity formation free energy at 20 ◦C and 1 atm according to Eq. 3.6 (Tolman lenth: δ = 0.7582Å
[103], surface tension of water: γ = 0.0728 Jm−2 [102]) and Eq. 3.8 (number density of water: ρ = 0.0334Å−3 [104],
hard-sphere diameter of water: σ = 2.888Å [102]).

It is evident from Fig. 9 that the study of small cavities (rcav < 10Å) is of particular interest,

since the effective surface tension changes drastically in this regime. However, the solvent

and the solute are approximated as single hard spheres in the SPT framework and, due

to the ambiguity of choosing appropriate hard-sphere diameters – e.g. for non-spherical

solvent molecules – results are only semiquantitative and highly sensitive [102]. In contrast,

free energy calculations from atomistic simulations can access the size dependence of the

effective surface tension and clarify these shortcomings of SPT [35–37, 105, 106]. Using

the established connection between probability and free energy (cf. Eq. 2.24), the cavity

formation free energy can be determined by inserting test particles into a configuration and
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evaluating their interaction with all other particles in the system, commonly referred to as

Widom insertion method [107]. Since the interaction between a cavity modelled as a hard

sphere and all other atoms is infinite if the atoms are closer than the hard sphere radius

and zero beyond that, it is sufficient to check the distance between test particles and closest

neighbouring atom. Afterwards the free energy is calculated as

∆Gcav = −β−1 · ln [P (rcav)] (3.12)

with the probability P (rcav), that the distance to the closest neighbouring atom is smaller

than the cavity size rcav, for all inserted test particles. This approach utilizes the trajectories

of simulations / a simulation without an explicit cavity and demands a simple post-processing.

However, the statistical error is large as large cavities are rarely formed naturally thus lim-

iting its applicability to small cavities only [106]. For spatially inhomogeneous systems, the

probability in Eq. 3.12 can be evaluated as a function of space as well [20, 108]. A different

approach introduces explicit cavities to the solvent and calculates the energy difference for

expanding the cavity. The cavity would be modeled via a repulsive potential which creates a

solvent-free space. The size depends on the parameters of the employed potential and the

free energy difference can be calculated with FEP for the different sized cavities [109]. The

results of this approach are not directly comparable to SPT or particle insertion, because they

treat the particles as hard spheres, while in FEP the cavity is modeled via a soft potential.

Therefore, relations between a soft potential and hard spheres are required, which are es-

tablished for the so-called Weeks-Chandler-Andersen (WCA) potential [110, 111]. The WCA

potential is a shifted and truncated LJ potential:

UWCA(r) =





4ϵ ·
[(σ

r

)12
−
(σ
r

)6]
+ ϵ r ≤ 21/6σ

0 r > 21/6σ ,

(3.13)

It was shown that the Boltzmann factor criteria links the potential to the corresponding hard

sphere radius, such that UWCA(r = rcav) = kBT [110, 111]. An example for a LJ and a

corresponding WCA potential is shown in Fig. 10. The hard sphere radius and the cutoff

of the WCA potential are shown as well. The WCA potential can easily be constructed by

choosing these two parameters and calculating ϵ and σ correspondingly.

Furthermore, these free energy calculations demand long MD runs to converge and the sys-

tem size must be large enough that cavities do not interact with their periodic images. There-

fore, these studies are mainly carried out with FFs [35–37, 105, 106]. However, there is a

dependence on the chosen FF for key properties like the surface tension [72]. Furthermore,

the formation of cavities might change heavily at an SLI [20, 31, 112, 113]. A simple explana-

tion is that at hydrophobic surfaces, water is expelled and the formation of cavities is favored,

while at hydrophilic surfaces it is the other way around [113]. This rather trivial connection,
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Figure 10 Example of the LJ and WCA potential with σ = 1.5Å and ϵ = 2kBT . The blue line marks the corresponding radius
of a hard sphere for U (rcav) = kBT and the dashed, black line the cutoff of the WCA potential.

however, does not allow for a quantification of this phenomenon, which is required for ad-

sorption processes at an SLI. In Fig. 11 this is demonstrated by showing the corresponding

two-step process at these interfaces. The competition between the solvent and an adsorbate

for the adsorption site on a substrate is called competitive adsorption [29, 33, 38, 39] and it

can to a large degree be understood by considering cavity formation at an SLI as depicted

in Fig. 11 [30]. A comparison with Fig. 8, clarifies the central difference to cavity formation in

bulk liquids: While only one type of interface is present for a cavity in solution, two types of

interfaces are created when forming it at an SLI – the solution-cavity and the substrate-cavity

interface.

∆Gcav ∆Gemb

∆Gads

Solvent

Substrate

Adsorbate

Figure 11 Adsorption at SLIs as a two-step process. 1. The cavity is created at the SLI to create space for the adsorbate. 2.
The adsorbate is inserted into the cavity, binds to the substrate and is embedded into the solvent.

As described in the previous sections, reactions at SLI are highly relevant but predictions

of current implicit solvation models are prone to errors [29, 33]. This originates from the
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parametrization of these models, since they are trained on bulk solvation energies and hence

take cavity formation energies only into account in its bulk form as shown in Fig. 8 [29, 30].

For bigger adsorbates as phenol or benzene, the adsorption energies at the Pt(111)-water

interface from implicit solvation models are significantly lower than in experiments [38] or

in calculations with explicit solvation models [33, 39]. However, in principle implicit solvation

models can be adjusted to account for cavity formation at SLI as shown by Bramley et al. [32],

which reduces the deviations from experimental values. This requires to include substrate-

specific ∆Gcav in such implicit solvent models. As the respective parameter values are not

known a priori and hardly accessible from experiments the focus of the second publication

of this thesis is the calculation of the cavity formation free energy for different metal-water

interfaces [34]. The cavity was modelled via WCA potentials and their position and size were

changed to calculate the free energy difference.
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4. Publications

4.1. Static and dynamic water structures at interfaces: A case

study with focus on Pt(111)

Alexandra C. Dávila López*, Thorben Eggert*, Karsten Reuter, and Nicolas G. Hörmann

J. Chem. Phys. 2021, 155, 194702.
*These authors contributed equally to the work.

Summary: In this work, we analyzed the structural and energetic properties of static and

dynamic water layers from first principles of the Pt(111)-water interface. For this purpose, we

developed a routine for the systematic creation of static water layers on different substrates.

First, predefined water films of different geometries like chains or hexagons were placed on a

substrate via lattice matching. Subsequent geometry optimization with DFT yielded a diverse

set of configurations with a wide range of work function changes and adsorption energies.

Through the study of the hydrogen bonding and comparison with existing data from AIMDs,

we found correlations between the number of hydrogen bonds and the adsorption energy

and a systematic bias towards free hydrogen bonds pointing towards the surface within the

static ensemble. We attributed this structural bias to the absence of further water layers and

the thermal motion from the AIMDs. Encoding the chemical environment with the smooth

overlap of atomic positions (SOAP) as descriptor confirmed this finding as the most similar

structures from the static ensemble were the ones with a few hydrogen bonds and a chain-like

geometry. Nonetheless, we outlined the utility of a diverse set of interfacial water structures

in prevalent high throughput studies that rely on quasi-static water environments, as AIMDs

are too expensive, as well as for calculations of kinetic barriers.

Individual Contributions: I performed the structural comparison between the static and

dynamic layers included in this work. This includes the geometrical properties like the coor-

dination number and the hydrogen bonding, as well as the encoding of the local environment

with the SOAP descriptor and the subsequent dimensionality reduction via principal compo-

nent analysis. Additionally, the first water layer of the literature data sets needed to be iden-

tified, for which I contributed to the development of an inhouse algorithm to detect surface

atoms. I performed the DFT single-point simulations of data from Ref [28] to reanalyze the

work function change and adsorption energy. Furthermore, I contributed to the python pack-

age published alongside this work. Finally, Alexandra C. Dávila López, Nicolas G. Hörmann

and I wrote the manuscript.
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4.2. Cavity formation at metal-water interfaces

Thorben Eggert, Nicolas G. Hörmann, and Karsten Reuter

J. Chem. Phys. 2023, 159, 194702.

Summary: In this study, we analyzed cavity formation at eight different metal-water inter-

faces with classical force fields. Free energy perturbation with MBAR was performed to calcu-

late the cavity formation free energy as a function of cavity position and size. The subsequent

analysis of the obtained free energy profiles revealed substrate-dependent cavity formation

energies. We rationalized this dependency with the binding strength of the substrates with

water as the adsorption energy of a single water molecule. In addition, we used a simple

Gibbs-Model of two phases with a sharp interface to fit the curves, which yielded effective

interface tensions for the substrate-water and water-vacuum interface. We benchmarked our

findings for the effective surface tension of water against literature values and found a good

agreement. The investigation of the substrate-water effective surface tensions revealed a

deviation from the expected asymptotic behavior from SPT. As the origin, we pointed out

the lattice of the substrate, which resulted in a modulation of the free energy depending on

the surface sites blocked by the cavity. Lastly, we pointed out that our findings are in good

agreement with studies of the adsorption of phenol on Pt(111) in an aqueous environment,

which exemplifies the utility of our approach to correct implicit solvation models with substrate-

dependent cavity formation energies.

Individual Contributions: Nicolas G. Hörmann and I developed the general idea to spa-

tially resolve the cavity formation free energies at different metal-water interfaces together. I

generated and analyzed the data for this publication. For this purpose, I developed the proto-

col for the MD simulations with an explicit cavity and the subsequent free energy perturbation

via MBAR. Together with Nicolas G. Hörmann and Karsten Reuter, we related our findings to

SPT and the concept of competitive adsorption. The manuscript was written jointly by Nicolas

G. Hörmann, Karsten Reuter, and me.
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5. Conclusion and Outlook

Even though SLIs are present in many (electro)chemical applications, resolving their atom-

istic structure remains an ongoing challenge with many unknowns. The complicated nature

of these systems limit studies at present to a few model systems like the Pt(111)-water inter-

face. Despite the impressive findings on these systems, the models are of course idealized,

and the thermodynamic conditions may differ in experiments or real applications [19]. There-

fore, transferring the knowledge gained from these models to real systems is necessary to

systematically improve them [30, 68].

In the first publication of this work [27], we investigated the possibility of efficiently exploring

the phase space of SLIs by combining substrates with two-dimensional water films. This

approach yielded a diverse set of local minima with different water orientations and bonding

geometries. In addition, the configurations demonstrated the sensitivity of the work function

and adsorption energy to the precise structuring of the interfacial water. The comparison

with AIMD data [28, 29] revealed a structural bias towards hydrogen pointing to the surface

and higher degree of hydrogen bonding within the interfacial water layer of the most stable

structures, whereas the closest similarity was found for chain-like structures. However, the

construction protocol enables easy access to different local minima and might therefore be a

tool for efficient sampling by providing initial structures to MDs. In addition, previous studies

on the adsorption of molecules in the presence of water often utilized the static hexagonal

water bilayer, but as shown in this paper other configurations from our protocol might be more

appropriate to represent water at ambient conditions.

In the second paper [34], we further developed this idea. Instead of using representative

static water structures for the study of competitive adsorption processes at metal-water inter-

faces, we wanted to quantify the free energy required to remove water from such interfaces.

Accessing this energy would allow to improve implicit solvation models [30], which fail to

describe competitive adsorption processes at SLIs [29]. We demonstrated that cavity for-

mation at the interface is indeed connected to the metal-water binding strength and that the

energetic contribution becomes significant already for rather small adsorbates. Especially

for molecules with similar sizes of phenol, we found that the inclusion of cavity formation

changed adsorption energies from implicit solvation models by roughly 1 eV for the Pt(111)-

water interface. These findings are in good agreement with experimental findings for phenol

on Pt(111) and theoretical works with explicit solvation [32, 33, 38, 39]. The inclusion of

substrate-specific cavity formation into implicit solvent models might, therefore, enable the

study of adsorption processes at more complex and less ideal systems. In particular, cal-

culations of nanoparticles with edges and kinks, which resemble the catalyst under reaction

conditions more closely, would benefit from these findings, since they cannot be sampled

appropriately with AIMDs. In addition, the assessment of free energy differences is still rare

in AIMD studies as free energy perturbation or integration methods require significantly more

sampling and/or direct manipulations of the system’s Hamiltonian. From the energetic cost to

replace water from the interface, a generic destabilization of adsorbates on hydrophilic sub-
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strates is expected, which might shift Volcano plots based on gas-phase adsorption energies,

as found for furfural at metal–water interfaces from AIMDs [114].

For future work, the static water layers and the developed protocol can serve as a starting

point for calculating kinetic barriers [115, 116] under electrochemical conditions, e.g. at ap-

plied potential. The various two-dimensional water films allow a sensitivity analysis of the

barriers to the chosen configuration of water. The findings regarding competitive adsorption

and cavity formation are not specific to metal-water interfaces but are transferable to other

systems. On the same metal, the competitive nature can be adjusted by the solvent [117],

which can also be accessed through the study of interfacial cavities. In addition, the cor-

relation between the blocking of favorable adsorption sites and the increasing free energy

of cavity formation is an interesting starting point for the study of less homogeneous sub-

strates such as metal oxides [118], where the adsorption energies on the different atoms

can vary drastically. In addition, the setup can be adapted to include more complexity of the

real system like polarization, ions, and the specific adsorption of water, which will necessi-

tate using more complex force fields or machine-learned potentials. Finally, the inclusion of

substrate-dependent cavity formation energies in implicit solvent models and their efficient

parameterization is an ongoing challenge.
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ABSTRACT

An accurate atomistic treatment of aqueous solid–liquid interfaces necessitates the explicit description of interfacial water ideally via ab initio
molecular dynamics simulations. Many applications, however, still rely on static interfacial water models, e.g., for the computation of (elec-
tro)chemical reaction barriers and focus on a single, prototypical structure. In this work, we systematically study the relation between density
functional theory-derived static and dynamic interfacial water models with specific focus on the water–Pt(111) interface. We first introduce
a general construction protocol for static 2D water layers on any substrate, which we apply to the low index surfaces of Pt. Subsequently, we
compare these with structures from a broad selection of reference works based on the Smooth Overlap of Atomic Positions descriptor. The
analysis reveals some structural overlap between static and dynamic water ensembles; however, static structures tend to overemphasize the
in-plane hydrogen bonding network. This feature is especially pronounced for the widely used low-temperature hexagonal ice-like structure.
In addition, a complex relation between structure, work function, and adsorption energy is observed, which suggests that the concentration
on single, static water models might introduce systematic biases that are likely reduced by averaging over consistently created structural
ensembles, as introduced here.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0067106

I. INTRODUCTION

Solid–liquid interfaces (SLIs) are ubiquitous in nature, and
their study is highly relevant for understanding the (electro)chemical
transformation processes that lead to natural corrosion or (elec-
tro)catalytic applications, such as in batteries, electrolyzers, or fuel
cells.1–6 While liquid properties at distances larger than ∼1 nm from
the interface are already bulk-like7,8 and approximately described
with standard continuum models,9,10 the structure and composi-
tion of the first (few) solvent layers in contact with a solid sur-
face typically show a significant dependence on, e.g., the solid sub-
strate and the thermodynamic conditions, e.g., applied electrode
potentials in electrochemistry contexts.11–19 In aqueous solutions,
an accurate atomistic treatment of the substrate–water interface
necessitates the explicit inclusion of at least the first water layer
for a wide range of properties such as adsorption energies or the

potential of zero charge (PZC).15,20–23 On the other hand, the
sensitive dependence of these properties on the interfacial water
structure24–27 necessitates, in principle, an appropriate sampling of
these to obtain reliable thermodynamic averages.11,21,26,28,29 Indeed,
as the accurate description of electronic degrees of freedom and the
chemical reactivity of the substrate are important, ab initio molec-
ular dynamics (AIMD) results based on density functional theory
(DFT) are the only reliable benchmarks to date. The long relax-
ation times of interfacial water30–32 pose, however, a significant
challenge to AIMD simulations and restrict such studies to only a
few selected model systems.14–18,21,26,33–36 As a result, many studies,
e.g., on adsorption and solvation energies across different substrates
and adsorbates27,37–41 or on electrochemical reaction barriers42–49

still rely on simplified and quasi-static interfacial water models.
The water–Pt(111) interface is most likely the best studied of such
systems and has been addressed by AIMD simulations13,14,21,29,50,51

J. Chem. Phys. 155, 194702 (2021); doi: 10.1063/5.0067106 155, 194702-1
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and static low-temperature water models.25,50,52–54 Typical static
interfacial water models are comprised of ice-like, hexagonal inter-
facial layers,20,48–50,52,54 Hdown, Hup, and chain-Hdown, and also
involve more complex phases52–55 such as

√
37 ×√37R25.3○ and√

39 ×√39R16.1○. The latter structure comprises five, six, and seven
water rings.52–54 Such structures are typically less prominent in room
temperature AIMD studies16,50,56 where only (predominant) local
water configurations can be identified.16 This puts forward the ques-
tion about the relation between theoretical results from static and
dynamically sampled extended interfacial water structures and pos-
sible structural biases due to the dominant use of hexagonal water
(bilayer) arrangements in applied works.42,48,49 Furthermore, as no
“standard” static water models seem available for other than the pro-
totypical fcc-(111) surface, there is a dramatic lack of knowledge of
interfacial water structures on other interfaces and substrates.

In order to fill this void, we systematically study and compare
ensembles of static and dynamic water structures. We introduce first
our construction protocol for obtaining a consistent set of static
water structures at solid interfaces for any given surface termina-
tion, supercell size, and crystal structure. Here, we start by creat-
ing a dataset of selected, topologically different 2D water layers in
vacuum. The created 2D water layers can be adsorbed on any given
substrate, leveraging optimal lattice matching algorithms and con-
secutive geometric relaxation via DFT. Subsequently, we apply the
algorithm to construct a dataset of 2D static water (2DSW) struc-
tures on low index Pt surfaces and compare the obtained structural
ensemble of interfacial water with the structure of water layers from
other reference works. In particular, we investigate structural sim-
ilarities within quasi-2D water layers in bulk liquid water and ice,
at (liquid) water–vacuum interfaces, and at Pt(111)–water inter-
faces using the local structure descriptor SOAP (Smooth Overlap of
Atomic Positions).57 One central aspect in this respect is the analy-
sis of the relations between structure, adsorption energy, and work
function reduction for Pt(111) with a single adsorbed water layer
and as obtained from AIMD and our 2DSW ensemble. In general,
the analysis reveals a bias of 2DSW structures toward three inter-
molecular hydrogen bonds per water and excess hydrogen bonds
pointing to the substrate, which yield a maximization of the overall
number of bonds within the interface in contrast to the AIMD con-
figurations (see Secs. III B and III C). Nevertheless, we find a decent
overlap between AIMD and 2DSW ensemble averages, while sin-
gle selected static models exhibit large variations in their predictive
quality.

II. CONSTRUCTION PROTOCOL FOR WATER LAYERS
ON SUBSTRATES

Our starting point for the proposed protocol is the common
understanding that the first water layer is extremely important for a
variety of properties at metal–water interfaces and that H2O–H2O
interactions dominate the total energy, at least on coinage metal low
index surfaces.8,58,59 An intuitive approach to model adsorbed water
is by using water layers in vacuum as a starting guess, which directly
motivates the following procedure:

● Creation of a dataset of 2D water phases in vacuum.● Creation of the target substrate [(hkl) surface and supercell
size].

● Adsorption of 2D water phases that match the substrate
supercell geometry.● Relaxation of the water adsorbate layer.

A. 2D water structures in vacuum
Based on DFT calculations, we initially investigated 15 differ-

ent polymorphs of 2D water in vacuum consisting of 1–8 water
molecules in the primitive cell as reported in the literature.60–63

We varied lattice constants and unit cell shapes in order to get an
overview of the typical 2D water orderings in vacuum. 2D water
is highly flexible, and typical literature studies are in the context of
confined water, e.g., in between two sheets of graphene, rationaliz-
ing size or pressure restrictions in the out-of-plane direction.61 As
these are not present here, a compression mainly leads to a change in
the degree of buckling and stacking of water molecules into several
layers, an expansion typically to the formation of 1D water chains
with varying degrees of separation. In general, energetic differences
per molecule between the considered systems with different num-
bers of water are small, indicating that complex, large-scale water
patterns are not necessary to describe the approximate energetic
landscape. Furthermore, a wide variety of observed water patterns
can already be achieved with only four water molecules62 in a rect-
angular primitive lattice, featuring water molecules arranged in rect-
angles, parallelograms, and hexagons (see Fig. 1). Note that known
prototypical motives such as squares, rectangles, parallelograms, and
hexagons can be understood within rectangular cells by a variation
in the relative position of the molecules within the cell, as shown
in Fig. 1(a). Furthermore, all observed buckling patterns (water
molecules not in one plane) fall in four classes, where the water net-
work is in a plane, exhibits horizontal or vertical chains, or forms a
2D checkerboard arrangement [see Fig. 1(b)]. In addition, the rela-
tive orientation of the water molecules can follow several patterns;
the most symmetric (in-plane) representations where each water
molecule can maximize the number of hydrogen bonds are drawn
in Fig. 1(c).

After these observations that a wide variety of different topolo-
gies are, indeed, already possible for four molecules in rectangular
cells, we decided to limit ourselves to polymorphs, which obey these
restrictions, as they have several advantages: On the one hand, the
relatively small water unit cells allow for a more exhaustive repre-
sentation of the structural landscape due to the reduced number
of degrees of freedom. On the other hand, lattice matching can be
achieved by smaller increments in the (water) supercell size. As a
result, it is more likely to find small substrate supercells, which is
beneficial, e.g., in terms of applying the protocol to many different
systems. In addition, the choice of equal lattices for all water poly-
morphs ensures the consistent inclusion of all the considered water
topologies on any substrate.

Our final set of 2D water structures consists of eight differ-
ent topologies [Fig. 1(d)] that are observed in the studied selection
of 15 low-temperature polymorphs and include a large variety of
position (p), buckling (b), and orientation (o) patterns. We fur-
thermore scanned the lattice constants on a logarithmically spaced
grid (99 grid points), for which we report the relative stability with
respect to the optimum lattice constant in Fig. 1(e). This clarifies
the small energetic differences of any of these topological variants.
The first six topologies are chains in the direction of the lattice
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FIG. 1. (a)–(c) Basic motives of high symmetry water structures with four H2O molecules in a rectangular cell can be discriminated by the following: (a) Different high
symmetry oxygen positions in the unit cell, which yields water arrangements in rectangles, squares, parallelograms (and mixed versions), and hexagons. (b) Out-of-plane
buckling patterns. Dark red is used for oxygen atoms in a lower plane. (c) Relative water orientations (fulfilling water rules). (d) Our selected set of 2D water polymorphs,
named according to the topological descriptors in (a)–(c). (e) Relative energies per water molecule for different lateral dimensions scanned on a grid. Within the eight
selected polymorphs, p5b2o4/p3b1o3 yields the most/least stable water structure (cf. minimum energies reported above the energy landscapes).

vector a such that their energy is highly sensitive to changes in
that direction and largely invariant for changes in the direction of
the lattice vector b. In contrast, the energy of the latter two con-
figurations with their hexagonal geometry is sensitive to changes
in both directions. A logarithmic lattice spacing is chosen as it
leads to identical relative offsets of neighboring lattice vectors (here
10%), which ensures lattice matching (see below) without overlaps.
Finally, we reduced this set to 20 identical lattice constant com-
binations for all eight polymorphs, which cover the lowest energy
regions in order to construct our final dataset of 160 2D static water
polymorphs.

B. Choice of substrate supercells
Choosing an appropriate substrate supercell evidently depends

on the quantities and systems of interest. As surface cells with
maximum distances to periodic images in the lateral directions
are expected to yield the least periodic boundary artifacts, we
think all studies on surfaces should ideally be performed in such

maximally isotropic supercells. For this purpose, we implemented
an algorithm that yields (with minimal user intervention) slabs
in vacuum, which are maximally isotropic in the in-plane direc-
tions for any given substrate material, (hkl) surface, and tar-
get surface area. The algorithm is outlined in the supplementary
material, and a Python implementation is provided alongside this
work.

C. 2D lattice matching of 2D water phases
With our given dataset of 2D water prototypes at the varying

lattice constant and chosen substrate supercell, we use (a slightly
modified version of) pymatgen64–66 to adsorb 2D water on the sub-
strate via leveraging its implemented lattice matching67 functionality
similarly as implemented in the pymatgen.analysis.interface
module. The logarithmic lattice spacing in our dataset ensures con-
sistency with the lattice vector mismatch constraints in pymatgen
(relative length differences) and enables non-overlapping matches
for neighboring lattice constants.
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In addition, we include possible lateral shifts of the adsorbed
water layer (scanned on a regular grid within the primitive surface
unit cell and a lateral grid spacing of ∼2 Å) while also taking both
possible water layer orientations into account in case the water pro-
totype is polar in the out-of-plane direction. A self-contained Python
implementation of the outlined 2DSW construction protocol is
provided alongside this publication.

D. The 2DSW protocol applied to low-index
Pt surfaces

Using the outlined approach, we created lattice-matched 2DSW
water structures on maximally isotropic substrate supercells for
supercell sizes between 6 and 36 surface atoms for the low
index surfaces (100), (110), and (111) of fcc-Pt. While a wide vari-
ety of possible combinations for the cell size and number of water
molecules is possible, interfaces with 8 and 16 water molecules
take a special role as they yield matches for all three (hkl) termi-
nations. Here, we restrict our analysis to minimal supercell sizes
with only eight water molecules. For the Pt(111) termination, which
we will analyze in more detail subsequently, the algorithm auto-
matically chooses the well-known (√12 ×√12)R30○ supercell and
yields 80 different initial configurations for interfacial water. These
are relaxed via DFT, and we compute the adsorption energetics, as
well as geometric and electronic properties (eight initial structures
ran into convergence problems, which were not further analyzed
and discarded). The computational parameters are reported in Sub-
section 2 of the Appendix, and the results for Pt(100) and Pt(110)
surfaces are shown in the supplementary material.

III. PROPERTIES OF WATER LAYERS
A. Methodology

In order to analyze the water ordering of quasi-2D water lay-
ers, we used a variety of sources, including ab initio-determined
bulk ice68 and bulk liquid water structures,72 liquid water slabs in
vacuum,72 liquid water on Pt(111),15,21 and static ice-like-layers on
Pt(111) from Ref. 54 and from our 2DSW construction protocol.
Table I lists the according datasets together with our chosen naming
convention and the most important associated properties. Note that

TABLE I. Overview of the datasets used in this paper and the correspondingly used
exchange–correlation functionals (plus vdW correction). The column “Setup” discrimi-
nates between the properties of the original dataset—bulk and symmetric/asymmetric
slab calculations. All datasets are publicly available (see original publications), apart
from the AIMD(P/R) trajectories, which were provided by the (co-)authors of the
respective publications, Le et al.21 and Heenen et al.15

Name Reference Setup Functional(-vdW)

H2O ice 68 Bulk revPBE069,70-D371

H2O AIMD 72 Bulk rVV1073

H2O/vacuum AIMD 72 Sym. rVV1073

H2O@Pt(111) AIMD(P) 21 Sym. PBE74-D375,76

H2O@Pt(111) AIMD(R) 15 Asym. RPBE77-D375,76

H2O@Pt(111) ice 54 Asym. optPBE-vdW78

H2O@Pt 2DSW This work Asym. PBE74

only the latter two sets of structures [H2O@Pt(111) ice and H2O@Pt
2DSW] include natively well-defined quasi-2D water layers, while
all other sources also incorporate in parts or in full bulk-like water
regions. However, water layers are also evidently present in 3D bulk
water structures (H2O ice, H2O AIMD) and are, in particular, dis-
tinct and non-bulk-like for water–vacuum (H2O/vacuum AIMD)
or water–Pt interfaces [H2O@Pt(111) AIMD(P), H2O@Pt(111)
AIMD(R)].

In order to study the structure within these layers, we create
from the latter datasets first systems with water–vacuum boundaries,
if needed, and subsequently extract water layers at water–vacuum
interfaces. In particular, we selected snapshots from the bulk H2O
AIMD trajectory and introduced vacuum layers at random positions
along the z direction while enforcing the integrity of H2O molecules.
Similarly, for H2O ice (54 ice phases from Ref. 68), we created
water slabs up to a maximum Miller index of 3 using pymatgen64–66

again while enforcing molecular integrity. For the water–Pt AIMD
trajectories [H2O@Pt(111) AIMD(P), H2O@Pt(111) AIMD(R)],
we removed all Pt-atoms from the system, thus creating a
vacuum void. Interfacial water layers were then extracted from
the so-preprocessed structures by determining all interfacial water
molecules only for the respective vacuum–water interfaces of inter-
est (e.g., the original H2O@Pt interface) via the algorithm described
in Subsection 1 of the Appendix.

The so-created structural datasets for water layers in bulk, at
vacuum–water, and at Pt–water interfaces are analyzed via the use
of an abstract representation for atomic environments, in particu-
lar, based on the local structure descriptor SOAP57 as implemented
in the Dscribe package79 and as similarly performed for 3D peri-
odic water structures.68 Local environments are represented for each
water molecule by computing a SOAP vector centered on the oxygen
atom and using a cutoff radius of 4 Å, consistent with the geomet-
rical characteristics of water. Interfacial water structures are char-
acterized by the average over all SOAP vectors taken from each O
atom in a configuration,79 which thus also allows (global) for a struc-
ture comparison across structures that differ in the number of H2O
molecules (cf. also Subsection 3 of the Appendix).

B. The structure of extended water layers
In order to gain an intelligible, e.g., visual, representation of

the similarity between and within the different structural ensem-
bles of extended water layers, we apply principal component analysis
(PCA) to the complete dataset of average SOAP vectors. The first and
second PCA components are depicted in Fig. 2, and the solid lines
indicate approximate locations for each dataset as obtained via ker-
nel density estimation.80 Additional dataset-specific plots are pro-
vided in the supplementary material. Figures 2(a) and 2(b) and the
color-coding illustrate how PCA discriminates between the average
number of intermolecular hydrogen bonds (upper left to the lower
right) and the average number of oxygens within the SOAP radius
(lower left to the upper right). Hydrogen bonds between two water
molecules are defined as in Ref. 16, where the oxygens are closer
than 3.5 Å to each other and the angle between O–O–H is less than
35○. There is a broad distribution of structures in the analyzed data,
ranging from rather isolated water molecules to highly coordinated
ones with four hydrogen bonds to its neighbors and the bulk-ice-
derived layers (green line) covering the whole range, with selected
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FIG. 2. PCA map for the structure within water layers based on the average SOAP vector (one point corresponds to one structure; cf. Subsection 3 of the Appendix). The
datasets are those of Table I, and the color-codings in (a) and (b) correspond to the average number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩ as defined in Ref. 16 and the number
of nearby oxygen atoms ⟨NO⟩ within a cutoff radius of 4 Å, respectively. The contour lines illustrate the locations of each dataset as obtained via kernel density estimation.
For each dataset, we show an exemplary structure as indicated by the frame color.

examples plotted in Fig. 2. Bulk liquid water (H2O AIMD, red) is
mainly located in the low density region at the lower left corner,
while water at water–vacuum interfaces (H2O/vacuum AIMD, vio-
let) and [H2O@Pt(111) AIMD(P/R), orange/brown] move upward
along the diagonal, toward higher density structures. Note that
the increase in density (number of nearby oxygens ⟨NO⟩) does
not dramatically alter the number of H-bonds ⟨NO–H⋅ ⋅ ⋅O⟩ within
the water layer, as can be rationalized from the color codings in
Figs. 2(a) and 2(b) and from the reported average values provided
in Table II.

TABLE II. Average number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩ and number of nearby
oxygens ⟨NO⟩ within the cutoff radius of 4 Å per H2O molecule for each dataset and
respective standard deviations in brackets.

Dataset ⟨NO–H⋅ ⋅ ⋅O⟩ ⟨NO⟩
H2O ice68 1.86(0.88) 3.41(1.38)
H2O AIMD72 1.29(0.45) 2.30(0.51)
H2O/vacuum AIMD72 2.20(0.38) 3.14(0.46)
H2O@Pt(111) AIMD(P)21 2.21(0.21) 4.17(0.41)
H2O@Pt(111) AIMD(R)15 2.19(0.33) 4.17(0.62)
H2O@Pt(111) ice54 3.00(0.00) 3.00(0.03)
H2O@Pt(111) 2DSW 2.56(0.45) 3.07(0.47)

For comparison, we also marked in Fig. 2 specifically the
prototypical low-temperature structures54—(hexagonal) Hup/down

and
√

37/√39—which fall in the region of our static water dataset
H2O@Pt 2DSW, which includes natively hexagonal water layers. It
is worth mentioning that the widely used Hup/down structures are
observed at the extreme boundaries of the configurational space,
whereby on average oxygen atoms in Hup/down structures form 0.8
more hydrogen bonds than in H2O@Pt(111) AIMD, as shown in
Table II. While there is no overlap between these and the AIMD
sampled interface structures on Pt(111) (orange and brown lines),
our 2DSW protocol yields at least some overlap. In particular, struc-
tures with less hydrogen bonds, which mainly consist of chain-like
water arrangements, fall in the region of AIMD results (see also dis-
cussion below). These results indicate that ensemble averages based
on 2DSW static water structures might approximate AIMD aver-
ages more accurately than using only selected low-temperature (e.g.,
hexagonal) structural models. Interestingly, Le et al. pointed out that
beyond the first solvation layer, the hydrogen bonding is mainly
affected by the water–water interaction rather than the water–metal
interaction.16 This suggests that better results might be achieved by
including more water layers in the system.

C. Water layers on Pt(111)
While all 2DSW water structures are provided alongside this

work, we show a selection of three obtained structures in Fig. 3,
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FIG. 3. Selected water–Pt(111) configurations initialized from the p3b1o3 and p2b3o3 polymorphs and their corresponding relaxed structures. (a) The most stable relaxed
structure of the whole 2DSW dataset. [(b) and (c)] Two slightly less stable configurations (ΔE = 0.03 eV/H2O). Oxygen atoms corresponding to flat H2O molecules are
colored by dark red in the relaxed structures.

namely, the lowest energy configuration after relaxation (a) and two
local minima [(b) and (c)].

Interestingly, the starting structure of the least stable poly-
morph p3b1o3 [Fig. 3(a)] leads to the most stable relaxed structure
in our set, which is characterized by hexagonal H2O rings, in which
the hydrogen network is distinguished by two chains: one consti-
tuted of only Hdown oriented water molecules and the other chain
comprises H2O molecules parallel to the surface. Here, the structure
is stabilized by forming the three hydrogen bonds per oxygen atom
as in other ice-like water layers. Furthermore, this structure was also
reported by Clabaut et al.54 as the most stable among the hexagonal
ice adlayers.

The configuration in Fig. 3(b) is also initialized from the
p3b1o3 polymorph, but the start configurations differ from each
other in the atomic positions of the water molecules, while Fig. 3(c)
started from chain-like water structures. Both relaxed structures in
Figs. 3(b) and 3(c) form chains of hexagonal H2O rings, however,
with differing water orientations. Regarding energy, both structures
are only 0.03 eV/H2O less stable relative to the lowest energy config-
uration [Fig. 3(a)]. Similar chain-structures have been reported for
(110) metal surfaces.53

In general, our 2DSW protocol yields a variety of hexagonal
ring structures comprised of Hdown, Hup oriented water molecules
and water molecules parallel to the surface, similarly as shown
in Fig. 1(a) at 11 ps in Ref. 51, supporting their importance for
simulations in small unit cells.

For the analysis of water layers on the substrate Pt(111), we fol-
low the previous approach and leverage the average SOAP vector as
the structural descriptor, this time, however, including specifically
the Pt substrate atoms in the atomic environments (see Subsection 3
of the Appendix). Furthermore, we use a SOAP-based average dis-
tance measure ⟨D̄⟩ to evaluate the structural similarity of a single
structure with the AIMD(P) ensemble of interfacial water structures,
which we took as our reference (cf. Subsection 3 of the Appendix).
The PCA map in Fig. 4 yields similar results as before and illustrates
how ⟨D̄⟩ (cf. color) is able to measure structural similarity to the ref-
erence ensemble. As expected, both AIMD simulations remain close
to each other. For the H2O@Pt(111) ice layers (diamonds), we find
a clear trend in distances D̄, namely, Hup (0.27) > Hdown ≈ chain-
Hdown >√37 >√39 (0.21), where the rather large dissimilarity of the

hexagonal structures is likely ascribed to the lack of disorder. Simi-
larly as before, our 2DSW ensemble shows better agreement with the
AIMD results, although some large dissimilarities ⟨D̄⟩ are observed.
Further analysis is reported in the supplementary material, where
we also analyze other commonly used descriptors of (interfacial)
water, such as the atomic density distribution as a function of the
distance to the surface and the radial distribution functions within
the water adlayers. In general, we find good qualitative agreement in
the vertical density profile for the 2DSW ensemble, which is able to
reproduce the bimodal oxygen peak structure at the approximately
right vertical distance zPt–O between slab and bottom-most oxygen
atoms {2.2 Å (2DSW) vs 2.0 Å [AIMD(P)]}. However, some differ-
ences are observed in the oxygen density profile, e.g., the first peak
for AIMD data is wider than the peak for 2DSW, as shown in Fig. S4
of the supplementary material. This can be ascribed to the absence
of the dynamic interchange of interfacial water molecules within the
solvation layer and with the bulk liquid water.

FIG. 4. PCA map for interfacial water structures on Pt(111) with the atomic posi-
tions of the substrate Pt atoms included in the SOAP descriptors. Datasets from
other sources are highlighted by black edges, and the colors indicate the aver-
age SOAP distance ⟨D̄⟩ to the AIMD(P) reference dataset, which consists of the
colorless circles. (For more details, see the text and Subsection 3 of the Appendix.)
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To this point, we have compared structural similarity to the
AIMD(P) reference trajectory; however, we have not yet analyzed
how far this influences derived quantities such as average adsorption
energies and work function changes, which show a strong structural
sensitivity, e.g., to the distance between the metal surface and the
water adlayer, as pointed out by Tripkovic et al.25 Similarly, AIMD
simulations are comprised of a variety of interfacial water struc-
tures due to fluctuating water orientations and ad- and desorption
events, which strongly influences the work function due to interfa-
cial charge transfer from the first water layer.17,18,36 In this regard,
Surendralal et al. reported values of absolute potentials ranging from
2.5 to roughly 7.5 eV for H2O@Pt(111) AIMD simulations, which
result in an average of 4.86 eV (see the supplementary material in
Ref. 81), and it is of interest to see how far 2DSW ensemble averages
relate to such AIMD-based reference results. Here, we evaluate the
adsorption energy per water molecule as

Eads = 1
NH2O

[EDFT
H2O–Pt − (EDFT

Pt +NH2O EDFT
H2O)], (1)

where NH2O is the number of water molecules at the interface and
EDFT

H2O–Pt, EDFT
Pt , and EDFT

H2O are the total energy of the surface with
the adsorbed water layer, the energy of a clean surface, and the
energy of an isolated water molecule, respectively. The work func-
tion change ΔΦ due to the adsorption of a water film is determined
by the difference in the work function between water-covered and
clean slab ΔΦ = ΦH2O–Pt −ΦPt, both of which are readily accessible
as the position of the Fermi level relative to the electrostatic poten-
tial in the vacuum region. We computed the respective quantities for
our 2DSW dataset but reanalyzed in the same way the AIMD(P) tra-
jectory with all waters removed except for the first interfacial water
layer. Gratifyingly, the so-computed work function reduction ⟨ΔΦ⟩
for the AIMD(P) trajectory by only the first water layer is identical
to the results reported in the original study by Le et al.21 (−1.11 eV
here vs −1.1 eV in Ref. 21). This supports once more the major role
of only the first water layer.22,23

In order to understand better the impact of different possi-
ble choices of static interfacial water structures, we studied two
specific subsets of our raw 2DSW dataset, which include (i) only
configurations with an energy difference ΔE ≤ 0.05 eV/H2O rel-
ative to the lowest energy configuration and (ii) configurations
with ⟨D̄⟩ < 0.21. These two subsets are inspired by two typical
assumptions in theoretical works, namely, to focus (i) on low energy
structures and (ii) on structures that are close to some accurate
reference (e.g., experiments or as here more accurate theoretical

simulations). Table III summarizes the central properties of the
considered structural datasets.

Structurally, the low energy subset (i) exhibits the highest
observed number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩, and the number
of nearby oxygens ⟨NO⟩ is close to 3, which likely derives from
the fact that structural optimization leads to a maximized number
of hydrogen bonds within the water layer and maximized number
of bonds with the metal surface [cf. most stable configuration in
Fig. 3(a)]. Therefore, the structures mainly consist of the hexag-
onal (NO–H⋅ ⋅ ⋅O = 3) and some two-dimensional chain structures
(NO–H⋅ ⋅ ⋅O = 2.5). In contrast, the latter subset (ii), which is opti-
mized for structural similarity with the AIMD(P) dataset, is charac-
terized by chain structures, as shown in Fig. 3(b), where the average
number of hydrogen bonds (2.23) and the average number of nearby
oxygen atoms (3.41) are close to the values of the reference set (cf.
Table III and Fig. 4).

For all static water ensembles, we find Eads values that are sig-
nificantly lower than the AIMD(P) average, as the latter structures
were dynamically sampled with additional bonding partners in the
second water layer in the original simulations, which are (artificially)
removed in our analysis. Within our dataset, Eads of the structurally
most similar configuration [see Fig. 5(a)] is roughly 0.1 eV higher
than the lowest energy configuration. On the other hand, our average
adsorption energies fall close to the reported adsorption energies for
static water models.20,52,58,82 While the numerical differences to the
AIMD averages are thus evident, a diverse set of local minima con-
figurations as starting points for further investigations, e.g., based on
short AIMD simulations or nudged elastic band calculations, might
be beneficial for a better understanding of the effects of local water
environments on other processes, such as solvation, diffusion, or
electrochemical reactions.

In terms of the work function reduction, the better struc-
tural agreement of subset (ii) with the AIMD(P) reference dataset
does not lead to better agreement in the work function reduction
[⟨ΔΦ⟩ = −0.43/ − 0.30 eV for 2DSW/subset (ii) vs −1.11 eV for
AIMD(P)]. Indeed, the low energy subset (i) performs best with⟨ΔΦ⟩ =−0.83 eV, which lies within the margin of errors of published
AIMD reference results (−1.1 to −0.55 eV14,21,81). Note that accurate
work functions and work function reductions are relevant for appli-
cations in electrochemical contexts as they are directly related to the
potential of zero charge of the electrode on an absolute potential
scale.83

In order to get a better understanding of the correlations
between the structural distances ⟨D̄⟩, the adsorption energy Eads,

TABLE III. Central properties of the (reevaluated) H2O@Pt(111) AIMD(P) and the 2DSW dataset and of two analyzed subsets: (i) (ΔE < 0.05 eV/H2O with respect the lowest
energy configuration) and (ii) (⟨D̄⟩ < 0.21). We report the average number of hydrogen bonds ⟨NO–H⋅ ⋅ ⋅O⟩, the number of nearby oxygens ⟨NO⟩, the adsorption energies ⟨Eads⟩,
the work functions ⟨ΦPt⟩ of the bare surfaces, and the work function change ⟨ΔΦ⟩ due to one water adlayer. The standard deviations as obtained from the study of Nconf
configurations are reported in parentheses, as well as the estimated uncertainty (standard error of the mean).

Nconf ⟨NO–H⋅ ⋅ ⋅O⟩ ⟨NO⟩ ⟨Eads⟩ (eV/H2O) ⟨ΦPt⟩ (eV) ⟨ΔΦ⟩ (eV)

H2O@Pt(111) AIMD(P)21 176 2.21(0.21) 4.17(0.41) −0.34 ± 0.00(0.03) 5.75 ± 0.00(0.01) −1.11 ± 0.03(0.33)
H2O@Pt(111) 2DSW 72 2.56(0.45) 3.07(0.47) −0.51 ± 0.01(0.05) 5.77 ± 0.00(0.01) −0.43 ± 0.09(0.76)
H2O@Pt(111) 2DSW(i)[ΔE < 0.05 eV/H2O] 21 2.83(0.24) 2.93(0.17) −0.58 ± 0.00(0.01) 5.76 ± 0.00(0.00) −0.84 ± 0.13(0.60)
H2O@Pt(111) 2DSW(ii)[⟨D̄⟩ < 0.21] 22 2.23(0.29) 3.41(0.44) −0.49 ± 0.01(0.05) 5.77 ± 0.00(0.01) −0.30 ± 0.10(0.48)
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FIG. 5. (a)–(c) The correlations between the average SOAP distance ⟨D̄⟩, adsorption energy per H2O, and work function change for the 2DSW dataset reveal a complex
structure–property relationship for interfacial water on Pt(111). The beige areas in (a) and (b) correspond to our selection criteria for subsets (i) and (ii) of the 2DSW dataset,
respectively. Triangular data points correspond to hexagonal Hdown and Hup ice layers from Ref. 50.

and the work function change ΔΦ, we plot an according analysis of
the complete 2DSW dataset in Fig. 5. The beige areas in Figs. 5(a)
and 5(b) correspond to our selection criteria for subsets (i) and (ii),
respectively. Consistent with the described lower stability of dynam-
ical water structures, we also observe here that the best matching
structures (blue) are higher in energy [∼0.1 eV, Fig. 5(a)]. At the
same time, at these Eads values, the distance measure ⟨D̄⟩ seems
to exhibit a bimodal distribution, thus also incorporating a signifi-
cant amount of structures with maximal ⟨D̄⟩ values. The observed
work function change ΔΦ exhibits a rather large spread [Fig. 5(b)],
which is slightly larger at higher ⟨D̄⟩ values. Indeed, structures with
different ⟨D̄⟩ values can still exhibit similar energies and work func-
tion change [Fig. 5(c)], indicating a high degree of complexity for
the studied structure–property relationships, providing renewed evi-
dence for the difficulty in treating SLIs, in particular water–metal
surfaces with simplified, e.g., individual, static interfacial water mod-
els. As energies and work functions are not included in the PCA,
the prediction can be a challenging task in some cases as here
shown.84

IV. DISCUSSION AND CONCLUSIONS

The systematic study of static interfacial water layers on Pt(111)
revealed that prototypical, low energy interfacial water structures
exhibit quite special orderings and lie rather at the boundaries of
the observed configuration space of AIMD simulations. At vari-
ance, our 2DSW ensemble, which includes a wide variety of water
topologies, does exhibit some more overlap. The main structural
discrepancy is the overemphasis of a high number of in-layer
H2O–H2O bonds for static, single layer water models, which is most
prominent for the lowest energy structures (cf. Table III). These

differences are, on the one hand, linked to the conceptual differ-
ences between local minimum structures and finite temperature MD
trajectories and, on the other hand, to the neglect of more water lay-
ers in the present work, which can influence the configuration of
interfacial water through providing donors and acceptors for hydro-
gen bonds.51 Some better structural agreement might be obtained
already by extending/substituting the dataset of 2D water start con-
figurations with multilayer water models. Whether an implicit sol-
vent environment22,23,47,85–87 can appropriately emulate the bond-
ing to the second water layer and whether AIMD simulations
of minimal explicit–implicit hybrid models can reproduce results
from fully explicit AIMD simulations remain an open question. In
particular, similar results would only be expected if the implicit
model would stabilize stronger non-H-bond-saturated water struc-
tures at the interfaces, e.g., Hup, which clarifies the need for such
models.

Furthermore, the observed overstructuring of interfacial water
might also be influenced by the choice of the substrate supercell,
as the studied

√
12 ×√12 Pt(111) substrate allows for commen-

surate hexagonal water orderings. Our protocol thus also provides
a starting point for a consistent analysis of such (artificial) peri-
odic boundary effects, which are often discussed, but not yet well
understood.

In general, while the work function change and the adsorption
energy can vary dramatically for different static water structures,
our 2DSW ensemble averages can provide relatively robust averages
that show decent correlations with AIMD results, at least trend-
wise. As many applications still necessitate the study of quasi-static
water models, e.g., for evaluating reaction barriers via nudged elastic
band methods, these results suggest that ensemble averages over a
consistent set of static water structures might provide more robust
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predictions. Indeed, the application of clustering methods to our
2DSW dataset reveals a total number of 11 topologically different
prototype structures (see Sec. S.5.A of the supplementary material),
which indicates that such an approach would still remain computa-
tionally much more feasible than brute-force AIMD-based methods.

Finally, our approach, in particular the implementation as a
Python package provided alongside this work, might serve as a good
starting point for the study of low-temperature water structures
(or other solvents) on other surface supercell sizes and substrate
materials or as uncorrelated starting points for AIMD simulations.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) a discussion about the
choice of supercell in the construction protocol, (ii) a description
of the in-house algorithm to find water molecules at the interface,
(iii) PCA maps for the water configurations by using the local SOAP
descriptors, (iv) density profile and O–O radial distribution func-
tion plots for H2O@Pt(111) systems listed in Table I, (v) an overview
of the prototype structures found in H2O@Pt(111) 2DSW, and (vi)
further results for Pt(100) and Pt(110) surfaces. For access to the
relevant data of this work, see the Data Availability section.
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APPENDIX: METHODS

1. Determination of interfacial water molecules
Interfacial water layers at (artificially created or naturally

present) water–vacuum interfaces are selected by first determining
all interfacial O atoms and then adding all chemically bound H
atoms (bond cutoff = 1.2 Å). Interfacial O atoms are determined
via the following algorithm that is inspired from the definition of
quantum mechanical cavities in the context of implicit solvation
methods:89,90

(a) Define the water-filled region Ω by superimposing soft
spheres localized on the atoms with given radius r0 and that
smooth decay from a value of 1 within the sphere to 0 outside
it. Evaluate the so-obtained filling function Ω on a numerical
grid and renormalize all values Ω > 1 to 1.

(b) Estimate the surface of Ω by computing the numerical deriva-
tive S = ∇Ω, and define a grid point i as an interfacial grid
points iS whenever

∥SiS∥ ≥ τ max
i
∥Si∥, τ < 1. (A1)

(c) Interface atoms are given by the set of closest oxygen atoms
to the real space positions {riS} of all interface grid points.

More details, e.g., on the numerical implementation in periodic
boundary conditions and chosen numerical parameters (e.g., r0, τ)
are provided in the supplementary material.

2. Computational details
Periodic DFT calculations are performed with the Quantum

ESPRESSO package91 (PWscf) and the Perdew–Burke–Ernzerhof-
generalized gradient approximation (PBE-GGA)74 for the
exchange–correlation energy functional. All atoms are repre-
sented by ultrasoft pseudopotentials from the open-source GBRV
library92 with density and wave function cutoffs of 360and45 Ry,
respectively. The water films, modeled with eight H2O molecules,
are placed on side of the surface, and a dipole correction as imple-
mented in ENVIRON85 is applied. The Pt surfaces are simulated
by using a (3 × 3) supercell with three layers for Pt(100), a (3 × 2)
supercell with four layers for Pt(110), and a (√12 ×√12)R30○
supercell with three layers for Pt(111). The two bottommost metal
layers are fixed at their ideal bulk positions. Slabs are separated
by ≈17 Å. Geometry optimizations are carried through until the
forces on all relaxed atoms were smaller than 0.1 eV Å−1. Brillouin
zone integrations are performed using Γ-centered Monkhorst–Pack
meshes of (4 × 4 × 1) and a Marzari–Vanderbilt smearing of
0.02 Ry.

Single point calculations of the interfacial water on Pt(111) for
the AIMD simulation from the work of Le et al.21 were performed
with the same settings, except that a (2 × 2 × 1) k-point grid was
used. The symmetric setup of the original AIMD was split in two
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asymmetric setups with three layers of platinum each. The bottom
half was rotated by 180○ around the y axis to have the same orien-
tation for both sides. No further manipulations were performed on
the cell or positions of the atoms.

3. Structural similarity measures
We selected the local structure descriptor SOAP57 as imple-

mented in the Dscribe package79 and as similarly performed for
3D periodic water structures68 for the representation of the atomic
environment. The local environment 𝒳 around an atom is mod-
eled by summing over Gaussians centered on each atom i in the
structure within a cutoff, yielding the density ρ𝒳 (r). After expan-
sion of the density in a basis of orthonormal radial functions gb(∣r∣)
and spherical harmonics Ylm(r̂), the power spectrum p(𝒳 )b1b2 l can
be expressed in terms of expansion coefficients cblm as

ρ𝒳 (r) = ∑
i∈𝒳 exp(−(xi − r)2

2σ2 ), (A2)

ρ𝒳 (r) =∑
blm

cblmgb(∣r∣)Ylm(r̂), (A3)

p(𝒳 )b1b2 l = π
√

8
2l + 1∑m (cb1 lm)†cb2 lm. (A4)

The cblm coefficients form the components of an abstract SOAP
descriptor vector, which is conveniently used for measuring struc-
tural similarity throughout this work.

For the analysis of the internal structure of water layers, we
evaluate the SOAP vectors centered on the oxygen atoms, including
neighboring H and O atoms up to a cutoff radius of 4 Å. For the anal-
ysis of water layers on top of Pt(111), we also include the substrate Pt
positions in the environment within the sphere defined by the cut-
off. In both cases, crossover terms between different atomic species
in the power spectrum were allowed to include the information of
hydrogen and, in the later case, platinum as well. A description of the
entire system was obtained by using the inner average of the SOAP
vectors.79 The hyperparameters for computing the SOAP descrip-
tors used throughout this work are nmax = 8, lmax = 8, σ = 0.3, and
rcutoff = 4 Å.

For comparing the structural similarity of single structures A
with a reference structure B, we use the average distance D̄93 as given
by the average kernel K̄93 and defined by

D̄(A, B) =√2 − 2 K̄(A, B), (A5)

K̄(A, B) = [ 1
N∑i

p(𝒳 A
i )] ⋅ ⎡⎢⎢⎢⎢⎣

1
M∑j

p(𝒳 B
j )⎤⎥⎥⎥⎥⎦, (A6)

where N and M are the number of atoms in structures A and B,
respectively. The so-obtained distance measure D̄ is subsequently
averaged over all structures in the reference dataset to obtain an
average structural dissimilarity measure ⟨D̄⟩ with the reference
ensemble, which we call shortly average SOAP distance, here. In the
present work, the reference ensemble was created by taking snap-
shots every 0.1 ps from the AIMD(P) trajectory21 that was provided
by Cheng.
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ABSTRACT

The free energy cost of forming a cavity in a solvent is a fundamental concept in rationalizing the solvation of molecules and ions. A detailed
understanding of the factors governing cavity formation in bulk solutions has inter alia enabled the formulation of models that account for this
contribution in coarse-grained implicit solvation methods. Here, we employ classical molecular dynamics simulations and multistate Bennett
acceptance ratio free energy sampling to systematically study cavity formation at a wide range of metal–water interfaces. We demonstrate
that the obtained size- and position-dependence of cavitation energies can be fully rationalized by a geometric Gibbs model, which considers
that the creation of the metal–cavity interface necessarily involves the removal of interfacial solvent. This so-called competitive adsorption
effect introduces a substrate dependence to the interfacial cavity formation energy that is missed in existing bulk cavitation models. Using
expressions from scaled particle theory, this substrate dependence is quantitatively reproduced by the Gibbs model through simple linear
relations with the adsorption energy of a single water molecule. Besides providing a better general understanding of interfacial solvation, this
paves the way for the derivation and efficient parametrization of more accurate interface-aware implicit solvation models needed for reliable
high-throughput calculations toward improved electrocatalysts.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0167406

I. INTRODUCTION

Atomistically resolved simulations of liquids are particularly
challenging due to the simultaneous presence of dynamic disorder
and significant chemical interactions, such as H-bonding networks
in aqueous solutions.1–4 In particular, when it comes to solva-
tion, there is, therefore, a long-standing tradition to replace explicit
dynamical simulations with a statistically relevant number of solvent
molecules through computationally more efficient coarse-grained
simulations. The corresponding implicit solvation approaches then
embed the finite, atomically resolved solute (molecule or ion) into
a solvent region that, in the simplest case, is merely described as a
dielectric continuum.5,6 Not least from the angle of such implicit sol-
vation models, cavity formation and concomitant cavity formation
energies thus emerge as fundamental concepts in the general under-
standing of solvation. The latter energies denote the free energy cost
of creating an excluded volume Vcav in the solvent that can then be
occupied by the solute.

At a constant pressure, the cavitation free energy arises simply
from the created internal interface between the solvent at the outside

and vacuum at the inside of the cavity. It, therefore, scales naturally
with the surface area of the cavity Acav, with a liquid–cavity (LC)
surface tension γLC as a proportionality factor,

Fcav, bulk = γLCAcav. (1)

For large enough cavities, this proportionality factor is the macro-
scopic liquid–vapor (LV) surface tension, γLC → γLV for Acav→∞.7–9 For smaller cavities, γLC is generally size-dependent. Within
scaled particle theory (SPT), this size dependency can be derived
rigorously for spherical cavities and expressed as a polynomial
expansion in the cavity radius.8,10,11 For small cavities, the thus
approximately linear scaling of γLC with radius leads then overall to
an approximate cubic scaling of Fcav, bulk with radius, i.e., Fcav, bulk∝ Vcav for Vcav → 0.7–9,12–15 As a result, it is not surprising that
appropriately parametrized, effective continuum solvation models
that use area and/or volume scaling to approximate Fcav, bulk

6,11,16,17

succeed in accurately reproducing experimental solvation energies
of different species in aqueous16,17 and non-aqueous18,19 bulk solvent
environments.
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More recently, according models have been applied to study
the stability of adsorbates at extended solid–liquid interfaces (SLIs),
for which an accurate account of solvation effects is generally
critical to reach the predictive accuracy necessary to develop, for
example, improved electrocatalysts.20–23 Unfortunately, however,
the present bulk continuum models fail to reach this desired accu-
racy in the description of solvation at such interfaces.20–24 One
evident source of error is that these models are agnostic to competi-
tive adsorption.20,23,25,26 The latter describes the necessity to remove
specifically bound solvent molecules from the surface to create space
for the adsorbate. This is more difficult at strongly binding sur-
faces, and cavity formation should thus depend on the interaction
strength between substrate and solvent.24 Instead, the existing bulk
parametrizations only consider the scaling with the overall cavity
area and/or volume.

To quantify the energetic contribution of competitive adsorp-
tion and derive simple models for cavity formation at SLIs, we here
employ free energy sampling methods for cavity formation at vari-
ous metal–water interfaces using classical molecular dynamics (MD)
simulations. By screening different sizes and distances of the cav-
ity to the substrate, we obtain effective interface tensions for each
SLI. We find that these correlate with the adsorption energy of an
individual water molecule on a substrate, in agreement with the con-
cept of competitive adsorption. Cast into a simple geometric Gibbs
model, which accounts for the introduced and removed interfaces,
these results provide the basis for the efficient parameterization of
an interface-aware general cavity formation model. They also ratio-
nalize why competitive adsorption effects are, in some cases, less
important than expected and where their account in atomistic SLI
simulations will be critical.

II. METHODS

Our systematic MD simulations employ the SPC model (CVFF)
for water27 and classical metal–water potentials (12-6 Lennard-
Jones) by Heinz and co-workers28 to investigate eight different
Me(111)–water SLIs (Me = Pt, Ni, Pd, Cu, Au, Ag, Al, and Pb)
that cover a wide range of interaction strengths and thus compet-
itive adsorption effects. The atomic structures were managed with
the atomic simulation environment (ASE),29 and the initial water
slabs were created with Packmol.30 The simulation cell contains a
four-layer metal(111) slab with a (12 × 12) surface unit cell. The two
lowest layers were fixed to their initial positions. A 25 Å thick water
film above one side of the slab is followed by 20 Å wide vacuum
on both sides. The simulations were performed with Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)31 in a
canonical ensemble (NVT) at 300 K, which yields cavity formation
energies without pressure contributions since the water volume can
freely readjust upon the creation of the cavity. The lattice constants
and the number of water molecules for each system are reported in
Table S1 of the supplementary material.

Cavities were modeled as soft spheres and interacted only
with the oxygen atoms of water via a Weeks–Chandler–Andersen
potential,32

U(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4ε × [(σ
r
)12 − (σ

r
)6] + ε, r ≤ 21/6σ,

0, r > 21/6σ,
(2)

which is a shifted and truncated Lennard-Jones potential; cf. Fig. S5
of the supplementary material.

It approaches zero smoothly at the cutoff rcut = 21/6σ. The
corresponding radius of a hard sphere was obtained through a
Boltzmann factor criterion as U(r = rcav) = kBT.33 We set rcav= rcut − 0.5Å for the different runs. Seven equally spaced cavity sizes
rcav between 2.5 and 5.5 Å were investigated in this study, and the
lateral position of the cavity center was fixed to be above a top site.
The z-coordinate of the cavity center was varied between ztop − rcut
and ztop + rcut + 10Å, where ztop is the position of the uppermost
metal layer. Within this range, independent NVT-MDs runs were
performed at every 0.25 Å at 300 K. The first 100 ps was used to
equilibrate the system, and further 200 ps was used for data pro-
duction. Atomic positions were saved every 1 ps. Ultimately, the
free energy differences between all runs of one metal–water interface
were calculated via MBAR as implemented in pymbar,34

f̂ i = − ln
K∑

j=1

Nj∑
n=1

exp [−ui(xjn)]
∑K

k=1Nk exp [ f̂ k − uk(xjn)] , (3)

where K denotes the thermodynamic states, N j denote the uncorre-
lated equilibrium samples, u is the reduced potential, x denotes the
atomic positions, and the index i is the state of interest. The equa-
tion is solved self-consistently for the dimensionless free energy f̂ i,
and then, all states are referenced to the initial state to obtain the
free energy difference. This requires the calculation of the reduced
(dimensionless) energy of all trajectories for one system with all
possible cavity sizes and positions.

III. RESULTS AND DISCUSSION
A. Size dependence of cavitation energies at
metal–water interfaces

Previous studies on the cavity formation energy on metal–water
interfaces relied on particle insertion to access the spatially resolved
free energy.35,36 However, this approach is limited by the probability
of finding cavities in an MD simulation, which becomes increasingly
unlikely for larger ones. To drive the system to create larger cavities,
they need to be explicitly included in the MD, and their respective
free energy is calculated using free energy integration methods.15 In
this regard, our approach is similar to the work of Godawat and co-
workers, who investigated the cavity formation free energy at self-
assembled monolayers for large cavities (up to ∼10 Å).37

Exemplary cavity formation free energies FMBAR
cav for Pt(111) as

a function of distance and cavity radius are plotted in Fig. 1(c). The
results obtained for all other surfaces follow an analogous pattern;
see below and Fig. S1 of the supplementary material. At most neg-
ative zcav, the cavity is still completely inside the metal surface and
FMBAR

cav is correspondingly zero.
We do not include any interaction between the metal and the

cavity, since the focus of this work is to understand exclusively the
free energy cost of creating a cavity, aka free space, within the sol-
vent. In this regard, our approach is similar to the cavitation free
energy costs in implicit solvation models, which have no repul-
sive interaction between the cavity and the substrate.38 In order to
understand how repulsive interactions between the substrate and a
solute within the cavity would modify the overall free energy cost,
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FIG. 1. Cavity formation at a Pt(111)–water interface. (a) Snapshot from an MD simulation with an explicit cavity cap emerging from the metal surface. (b) Continuum Gibbs
model considering a sharp interface between the metal substrate and the solvent. The cavity creates new interfaces of the two subsystems with vacuum inside the cavity. (c)
MD-simulated cavity formation free energy FMBAR

cav as a function of distance of the cavity center to the Pt(111) surface zcav. Results are shown for different cavity radii from
2.5 to 5.5 Å. (d) Corresponding cavity formation free energy FGibbs

cav from the Gibbs model fitted to the MD data. Note that the fitting procedure includes a z-shifting (zoffset) to
align the curves in (c) and (d) (see the text).

we reevaluated the free energy calculations by adding a repulsive
metal–cavity interaction identical to the water–cavity interaction
(cf. Fig. S2 of the supplementary material), which leads to a sharp
increase in Fcav for zcav < rcav, but the profiles remain unchanged for
zcav > rcav.

With increasing zcav, the cavity formation free energy then rises
to an initial peak that is followed by a smaller peak or shoulder
before it reaches a constant plateau value. Since all investigated metal
surfaces in this study show perfect wetting (Wad > 2γlv) and are
hydrophilic,28 this overall pattern can be rationalized qualitatively in
a straightforward way by the additional cost to remove water from
the substrate. With the cavity cap emerging from the metal surface at
increasing zcav, more and more water molecules are displaced from
the interface to the bulk liquid. This leads to an increase in FMBAR

cav
up to a maximum, beyond which it reduces toward the bulk water
level, where the favorable substrate–water interface has been reestab-
lished. Obviously, both the initial peak and the plateau value thus
also scale with the size of the cavity.

As explained in Fig. 1(b), we can cast this qualitative under-
standing into a simple geometric Gibbs model39,40 that considers
the sum of infinitely sharp continuum interfaces introduced by the
cavity times their effective interface tensions,

FGibbs
cav = γSC ⋅ ASC + γLC ⋅ ALC − γSL ⋅ ASC

= γ̃ Me ⋅ ASC + γLC ⋅ ALC, (4)

where ASC is the contact area of the spherical cavity with the metal-
lic surface and ALC is the surface area of the cavity that is accessible
to the solvent [cf. dashed and dotted lines in Fig. 1(b), respectively].
γSC, γLC, and γSL are the effective interface tensions for the different
interfaces—solid–cavity (SC), liquid–cavity (LC), and solid–liquid
(SL), respectively. γ̃ Me = (γSC − γSL) thus introduces competitive
adsorption by accounting for the substrate-dependent differential
cost of removing water from the metal contact area instead of creat-
ing an equally sized internal water–vacuum interface as considered
in bulk solvation models.

As already mentioned initially, previous studies have clarified
that for small cavities, a purely geometric Gibbs model with size-
independent interface tensions fails in describing cavity formation
in the case of bulk solvation.7–9,12–15 We correspondingly fit Eq. (4)
separately to the MD data obtained for each cavity radius, i.e., γ̃ Me

= γ̃ Me(rcav) and γLC = γLC(rcav). The areas ASC and ALC are entirely
determined by geometric considerations and are given by the cav-
ity radius rcav, the cavity position zcav, and one offset fit parameter
zMe

offset(rcav), which accounts for the shift between the position of the
topmost metal layer atoms in the MD simulations and the idealized
position of the SLI in the continuum model. γLC(rcav) is assumed
to be independent of the metal surface, consistent with a substrate-
independent cavitation energy in bulk water. It is important to note
here that making interface energies in Eq. (4) size-dependent allows
us to capture any functional dependence on rcav, including from
common correction terms, such as the line tension. Figure 1(d)
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shows FGibbs
cav obtained from the fit for Pt(111). It compares almost

perfectly with the simulated FMBAR
cav shown in Fig. 1(c), except for the

second peak/shoulder. This feature is probably caused by the sec-
ond water layer, which is not accounted for in the present Gibbs
model and thus absent in FGibbs

cav . Previous studies on Au(100)36,41

and Pt(100)/Pt(111)35 reported a reduced cavity formation between
the first and second water layers for small cavities. In addition, the
study by Serva and co-workers reported that with increasing size,
this position becomes unfavorable because the gap between the lay-
ers fits only small cavities.36 Our results show the same behavior
for the small cavities (rcav ≤ 3 Å), for which the profile in Fig. 1(b)
shows a minimum between the two peaks caused by the water layers.
For larger cavities, this becomes a shoulder and the cavity is desta-
bilized compared to the bulk. A comparison of the heights of the
two peaks clarifies that the cavity formation energy at the interface
is dominated by the first water layer, which justifies the omission of
second water layer effects in our energy model. It should be kept in
mind, though, that the contribution of the second water layer can be∼0.15 eV for larger cavities.

Figure 2 shows the cavity-size dependence of the parameters
γLC(rcav) and γ̃ Me(rcav) for Me = Pt. The results obtained for all
other surfaces are listed in Table S2 of the supplementary material.
Both interface tensions increase with cavity size. The roughly lin-
ear scaling for rcav ≲ 4 Å will lead to a cavity formation energy that
scales proportional to the cavity volume, as often also included in
continuum solvation models.38,42,43 The saturation of γLC(rcav) and
γ̃ Pt(rcav) slowly setting in for the larger rcav values, in turn, indicates
the approach to the area-scaling Fcav of an infinitely large cavity.
The absolute values of γLC(rcav) are in almost perfect quantitative
agreement with those determined in earlier bulk cavity formation
studies by Hummer et al.,13 Floris et al.,14 and Grigor’ev et al.9;
cf. Figure 2(b). We attribute the small differences at larger cavities
to differences in the employed water potential. The SPC model44

employed by Hummer et al. and us (CVFF)27 is known to underesti-
mate the surface tension of liquid water45 as compared to the TIP4P
model46 employed by Floris et al. and Grigor’ev et al.

We can accurately interpolate the similar and smooth size
dependencies of γ̃ Me(rcav) and γLC(rcav) with the following expres-
sions:

FIG. 2. Fitted parameters of the Gibbs model for the Pt(111)–water SLI as a func-
tion of cavity radius rcav. (a) Effective interface tension γ̃ Pt as extracted from the
MD simulations (circles) and fit according to Eq. (5) (solid line). (b) Same for the
effective surface tension for bulk water γLC (circles and solid line). The standard
deviation is smaller than the size of the marker. The crosses show the reference
data from bulk simulations of Floris et al. (blue),14 Hummer et al. (orange),13 and
Grigor’ev et al. (red).9

γ̃ Me(rcav) = kMe
0 /r2

cav + kMe
1 /rcav + γ̃Me∞ ,

γLC(rcav) = kwater
0 /r2

cav + kwater
1 /rcav + γLV,

(5)

where γ̃Me∞ is the difference of the macroscopic solid–vapor and
SL interface tensions and γLV is the afore-introduced macroscopic
surface tension of liquid water. The coefficients kwater

0 , kwater
1 (and

analogously kMe
0 , kMe

1 ) relate to the coefficients of the polynomial
expansion in rcav for the cavity formation free energy on the basis
of SPT as performed by Pierotti.11 Mapping this expansion in rcav
back onto surface areas (r2

cav) then naturally yields Eq. (5). The next
higher order term that is proportional to the cavity volume was
shown to be negligible at atmospheric pressures8 and is apparently
also not required for the data in Fig. 2. Within SPT, the coefficient
k1 is negative—consistent with the observations here—and related
to the density of the liquid and the curvature of the cavity.11,47 The
other coefficient k0 emerges from the atomistic dimension of the
cavity and is absent in macroscopic thermodynamic descriptions.8
Taking published γ̃Me∞ for the employed interatomic potentials28 and
γLV from independent own simulations, we fit the coefficients kMe

0 ,
kMe

1 and kwater
0 , kwater

1 to obtain the accurate interpolations shown in
Fig. 2 for Pt(111) and in Fig. S1 of the supplementary material for
the other metals. The fitted coefficients for all interfaces are listed
in Table S3 of the supplementary material. This accuracy, together
with the overall similar size variations in γ̃ Me(rcav) and γLC(rcav),
suggests that SPT considerations apply as well for the free energy
cost of creating the two-dimensional cavity contact area at an SLI.

Furthermore, we performed additional free energy calcula-
tions for Pt(111) with a chain of cavities to test the applicability of
Eq. (4). The chain consists of three stacked cavities, where the lowest
cavity is centered in the interfacial water layer. We compared this
setup with results for a single cavity placed at the same position. For a
fixed total excluded volume, the two setups create different amounts
of the areas ALC and ASC. Since the chain creates less ASC, its cavity
formation free energy is for all investigated excluded volumes lower
than an equivalent single cavity at the interface, even though its
total surface area is greater. Applying Eq. (4) and taking the coef-
ficients from Table S2 of the supplementary material for both setups
yields results in good agreement with the free energy calculations.
These findings underline the possibility of separating interfacial
cavity formation into two components, which depend on the solvent(γLC × ALC) and the substrate–solvent interface (γ̃ Me × ASC).
B. Variation with substrate

Figure 3(a) shows the MD-simulation results for the cavity for-
mation free energy for Ni(111), Au(111), and Pb(111) and for a
cavity radius of 5.5 Å. The corresponding data for the other metal
surfaces and cavity sizes are provided in Fig. S1 of the supplementary
material. All FMBAR

cav collapse for zcav > 11 Å. At these large distances
from the surface, the cavity is fully immersed in the water and we
consistently recover the substrate-independent bulk cavity forma-
tion free energy value. In contrast, a strong substrate dependence
results for the prominent first peak where the cavity cap emerges
from the surface—and to a lesser degree also for the small second
peak/shoulder attributed to the second water layer. Not surpris-
ingly from the perspective of competitive adsorption, this substrate
dependence correlates with the binding strength of the substrate.
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FIG. 3. Substrate dependence of the cavity formation free energy. (a) MD-simulated cavity formation free energy FMBAR
cav (solid lines) and fitted Gibbs model FGibbs

cav (dashed
lines) as a function of distance zcav above Ni(111), Au(111), and Pb(111). Shown are the data for a fixed cavity radius of rcav = 5.5 Å. (b) Fitted effective interface tension γ̃ Me

of the continuum Gibbs model as in Fig. 2(a), now for all eight metal surfaces.

It is much less favorable to form the cavity at the strongly bind-
ing Ni(111) surface as compared to Pb(111), and the ordering over
the eight metals for the formation cost follows the one, for example,
expected from the macroscopic work of adhesion of water at these
surfaces: Pt > Ni > Pd > Cu > Au > Ag > Al > Pb.28

As apparent from Fig. 3(a) and Fig. S1 of the supplementary
material, excellent fits to the MD data are also achieved for the other
metals and cavity sizes, which then allows us to conveniently dis-
cuss the variations over substrates and cavity size on the basis of the
γ̃ Me interface tension that contributes the competitive adsorption
related part to the overall cavity formation free energy. The corre-
sponding data summarized in Fig. 3(b) reveal a size dependence for
all metals that is analogous to the one discussed for Pt(111) before.
All γ̃ Me become smaller for smaller cavities. Intriguingly, they do so
with different slopes though. For the strongest binding surfaces with
the largest interface tension, the drop of γ̃ Me toward smaller rcav is
also strongest. Expressed in the parameters of the SPT equation (5),
the coefficient kMe

1 is thus always negative and more negative for the
stronger interacting substrates. This makes perfect sense as denser
liquids generally exhibit more negative k1 coefficients.8 All here

considered surfaces are wetting, which induces a water density peak
directly at the SLI; cf. Fig. S4 of the supplementary material. This
density peak is stronger for stronger interacting substrates, which,
in turn, leads to more negative kMe

1 coefficients.
This understanding suggests that kMe

1 should also correlate with
the adsorption energy of a single water molecule EH2O

ads , as the lat-
ter is a simple descriptor for the interaction strength at the SLI.
The same correlation with EH2O

ads should also hold for the γ̃Me∞ para-
meter in Eq. (5), as this difference of the macroscopic solid–vapor
and SL interface tensions trivially relates to the work of adhesion at
the SLI for which the adsorption energy of a single water molecule
is again a suitable descriptor.48 In fact, we had already seen above
that γ̃ Me(rcav) for the larger cavity radius of 5.5 Å in Fig. 3(b) does
follow the ordering expected from the work of adhesion. Figure 4
confirms this expected linear correlation and demonstrates that it
also extends to the third parameter kMe

0 of the SPT equation (5).
Expecting that these simple correlations equally hold for other inter-
action potentials, for example, from first-principles calculations,
suggests then a computationally highly efficient approach to param-
eterize an interface-aware cavity formation free energy model for

FIG. 4. Simple descriptor for the parameter determination of the Gibbs model. Correlation of all three parameters of the SPT equation (5) for the interface tension γ̃ Me with
the adsorption energy of a single water molecule EH2O

ads : (a) kMe
0 , (b) kMe

1 , and (c) γ̃Me∞.
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FIG. 5. Comparison of the area-normalized free energy of formation F∗cav/(πr2
cav) of cavities positioned in the center of the density peak of the first water layer (Pt, Au: zcav= 2.75 Å; Pb: zcav = 3.00 Å) using MD runs of 200 ps and 2.5 ns. The results are plotted against the (a) absolute size of the cavity and (b) the size of the cavity relative to the

nearest-neighbor distance dNN with a solid line serving as a guide to the eye. The results demonstrate that convergence is already obtained from 200 ps MD sampling and
that the oscillation frequency scales with the lattice of the underlying substrate. Further studies (see the text and supplementary material) confirm that they originate from the
sequential exclusion of water adsorption on different adsorption sites.

substrates from all across the periodic system and any surface orien-
tation. In this case, it would be sufficient to simulate ∼3 cavity sizes
for only two different materials to obtain the slopes and offsets of
Figs. 4(a)–4(c). From this, one can then infer the kMe

0 , kMe
1 , and γ̃∞

parameters (and therewith γ̃ Me) for any other material or surface
orientation based on the calculation of the adsorption energy of a
single water molecule.

C. Effect of the lattice
The careful eye notices that our fit to the data in Fig. 3(b)

is not perfect, but the data points rather oscillate around an aver-
age trend captured by the fit function. To further investigate this
behavior and demonstrate the overall convergence of our setup,
we performed a more detailed analysis for Pt, Au, and Pb. Only
cavities centered in the adsorbed water layer were considered; how-
ever, the studied size range was increased up to 9.5 Å and the MD
runtime was significantly extended to 2.5 ns. Free energy differ-
ences F∗cav are computed between all sizes and a reference calculation
without a cavity. Figure 5(a) displays the area-normalized quantity
F∗cav/πr2

cav from this and the previous set of calculations (cf. Fig. S1
of the supplementary material), demonstrating the overall conver-
gence and revealing that the oscillations are neither an artifact of
our free energy calculation nor the fitting procedure. Renormalizing
the cavity size to the substrates’ nearest-neighbor distances results in
the alignment of the oscillations across all substrates [Fig. 5(b)]. The
oscillations thus likely arise from the preference of water to adsorb at
specific sites, and an increase in the (normalized) cavity radius leads
to the sequential exclusion of different sets of adsorption sites and
thus oscillating cavity formation energies. As an example, the block-
ing of top sites demands less energy for the present force field (see
Table S4 of the supplementary material), leading to a shallow slope
between 1.7 ≤ dNN ≤ 2.0, while the blocking of fcc/hcp sites between
1.1 ≤ dNN ≤ 1.6 results in a steep slope. This hypothesis is supported
by the observed shifted oscillations, when placing the cavities at a

different lateral position (see Fig. S3 of the supplementary material).
Although these deviations of ∼0.1 eV from the average trend are
relevant for small cavities, their magnitude becomes increasingly
negligible compared to the overall free energy cost for larger cavities.
Similarly, the impact on the differences between different substrate
materials is only minor, which justifies our oscillation-free fit with a
smooth, low-order polynomial, as above.

Nonetheless, the choice of the force field plays a crucial role
in this regard. Static49,50 and dynamic51,52 first-principle calculations
have shown that water preferably adsorbs on the top site of the inves-
tigated metal surfaces. However, the employed force field predicts
adsorption on the threefold coordinated hcp and fcc sites (cf. Table
S4 of the supplementary material). Therefore, the oscillations in
Fig. S3(B) of the supplementary material should have a maximum
when we replace water from the favorable top site and a minimum
for the less favorable hcp/fcc sites for more realistic models. The
amplitude depends likely on the energetic difference between the
adsorption sites.

Finally, the interface tension γ̃ Me of the metal–water interface
and the convergence tendency (kMe

0 , kMe
1 ) against this value might be

affected by a different calculation method as well. However, the com-
parison with the existing theoretical and experimental benchmarks
in Sec. IV underlines that our results are within a reasonable range.

IV. SUMMARY AND CONCLUSION

Our results demonstrate that cavity formation at solid–liquid
interfaces is strongly substrate-dependent and that the observed
trends are fully consistent with the idea of competitive adsorption.
In general, cavitation energies Fcav increase with cavity size and sub-
strate reactivity. Both dependencies can be fully rationalized based
on a simple geometric Gibbs model that explains Fcav via the free
energy cost of introduced interfaces—namely the cavity–solvent and
cavity–solid interfaces. The creation of the cavity–solid interface is
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associated with removing interfacial solvent from a given surface
contact area, and, as a result, its energy cost correlates with the
adsorption strength of individual solvent molecules. Using expres-
sions from SPT, the parameters of the Gibbs model exhibit even a
simple, intelligible linear correlation with this adsorption strength.
On the one hand, this opens an avenue for the simple parametriza-
tion of a general interface-aware cavitation model that could replace
the existing bulk cavitation models in common implicit solvation
approaches. On the other hand, it suggests that the present insight
gained specifically for water is transferable to other solvents as well.

One shortcoming of the current setup is the omission of polar-
ization effects. Therefore, we computed the cavity formation energy
on Au(111) with a polarizable force field,53 which is based on the
same framework and adds a core–shell description for the metal. The
results agree well with the ones obtained from the non-polarizable
force field (cf. Fig. S6 of the supplementary material), which is not
surprising since the interface tensions of both models are similar
(γ̃ Au =0.30 J m−2 vs γ̃Au

pol = 0.32 J m−2).28,53

Apart from generating leads to improved solvation models, the
here identified trends also provide important insights into the gen-
eral relevance and effects of competitive adsorption. The observed
material- and size-dependence of the effective interface energies
leads to cavity formation energies for small adsorbates (rcav ≈ 3 Å)
that are, on the one hand, significantly smaller than that estimated
from the macroscopic interface tensions [e.g., by a factor of 2
for Pt(111)] and that, on the other hand, exhibit a smaller-than-
expected spread between the different substrates, which makes the
missing account in existing implicit solvation methods less dra-
matic.54 However, the account of competitive adsorption is crucial
for understanding the stability of large adsorbates.26,55–57 This is,
for example, already the case for phenol21,22,26,58,59 (rcav ≈ 4.35 Å),
for which the adsorption energy on Pt(111) in an aqueous envi-
ronment is smaller by 1.6 eV than in gas phase.26 While schemes
that include explicit solvation through QM/MM setups21 or the
three-dimensional reference interaction site model (3D-RISM)58

predict a comparable reduction as the experiment, current implicit
solvation models leave the adsorption energy in solvent essen-
tially unchanged.21,22,60,61 However, including cavitation free energy
costs via geometric considerations already explains an additional
energy cost of ∼0.95 eV, as estimated from our model and simi-
larly from the model of Akinola et al. (0.92 eV) when assuming a
contact area of ASC ∼ 60 Å226 and γ̃ Pt = 16 meV Å−2. An accord-
ing energy cost can be included in the non-electrostatic cavitation
energy descriptions of implicit models by making these curvature-
and substrate-dependent—a possible pathway for future improved
implementations.

Another important aspect of competitive adsorption in solvent
is the reduction in reactivity differences between different substrates
or adsorption sites. This arises from the fact that reactive sites
are typically more reactive toward not only a given adsorbate but
also the solvent molecules, thus leading to higher cavitation costs
at more reactive sites and thus to differences in adsorption ener-
gies in solvent that are smaller than in vacuum. Trends such as
prevalent volcano plots in surface catalysis may, therefore, be dis-
torted when computed in vacuum, with the amount of distortion
depending on overall reactivity, e.g., the coordination of considered
adsorption site.60,62 As an example, reactive edge and kink sites that
are characterized as too strongly binding or poisoned in vacuum

calculations might as well exhibit suitable reactivity upon immersion
in solvent.

SUPPLEMENTARY MATERIAL

The supplementary file contains the following:

● Table S1: The lattice constant and number of water
molecules for each investigated system.● Table S2: The effective interface tensions for all investigated
sizes and interfaces.● Table S3: The polynomial coefficients to fit the size-
dependent interface tensions.● Table S4: Adsorption energies of a single water molecule on
each metal surface for the different adsorption sites.● Figure S1: Free energy profiles of all metal–water interfaces
for all investigated sizes.● Figure S2: Free energy profiles of all metal–water interfaces
for all investigated sizes, including a repulsive metal–cavity
interaction.● Figure S3: Comparison between the cavity formation free
energy at the Pt(111)/water interface for the adsorption on
the top and hcp site.● Figure S4: Oxygen density profile along the surface normal
and areal density of adsorbed water molecules on the studied
metal substrates as a function of adsorption energy.● Figure S5: Weeks–Chandler–Andersen potentials for the
seven investigated cavity sizes.● Figure S6: Comparison of cavity formation energies at
the Au(111)/water interface as obtained from the non-
polarizable and polarizable force fields.● Figure S7: Comparison of cavity formation energies at the
Pt(111)/water interface as obtained for two different cavity
geometries (one sphere and a chain of three spheres).
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tems and the obtained coefficients for Eq. (5) are tabulated in the
supplementary file. In addition, it contains information about the
setup (lattice constant and number of water molecules) for each
system.
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10.17617/3.WERJXN, together with an exemplary input script.

APPENDIX: EFFECTIVE SURFACE TENSION OF WATER

The effective surface tension for bulk water γLC(rcav) was fit-
ted to the free energy profile in the range between ztop + rcut+ 5 Å
and ztop + rcut+ 10 Å. This ensures that the cavity is always fully sur-
rounded by bulk water, and therefore, the cavity formation energy
is constant. After fixing γLC(rcav), the effective interface tensions
γ̃ Me(rcav) and zMe

offset were fitted through Eq. (4) and shifting of the
free energy profile. The macroscopic surface tension of liquid water
γLV was calculated from the ensemble-averaged pressure tensor63 via

γLV = Lz

2
⟨pzz − 1

2
(pxx + pyy)⟩. (A1)

For this purpose, we created a cube of (40 Å)3 filled with 2140 water
molecules. After adding 30 Å of vacuum along the z direction on
both sides and running an NVT-MD for 10 ns, we determined a
surface tension of 48.2 mJ m−2.
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