
Glob Change Biol. 2024;30:e17320.	 ﻿	   | 1 of 18
https://doi.org/10.1111/gcb.17320

wileyonlinelibrary.com/journal/gcb

Received: 7 February 2024  | Revised: 29 April 2024  | Accepted: 1 May 2024
DOI: 10.1111/gcb.17320  

R E S E A R C H  A R T I C L E

Controls and relationships of soil organic carbon abundance 
and persistence vary across pedo-climatic regions

Sophie F. von Fromm1,2  |   Alison M. Hoyt3  |   Carlos A. Sierra1  |   
Katerina Georgiou4  |   Sebastian Doetterl2  |   Susan E. Trumbore1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2024 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

1Department of Biogeochemical 
Processes, Max-Planck-Institute for 
Biogeochemistry, Jena, Germany
2Department of Environmental Science, 
ETH Zurich, Zurich, Switzerland
3Department of Earth System Science, 
Stanford University, Stanford, California, 
USA
4Physical and Life Sciences Directorate, 
Lawrence Livermore National Laboratory, 
Livermore, California, USA

Correspondence
Sophie F. von Fromm, Department of 
Biogeochemical Processes, Max-Planck-
Institute for Biogeochemistry, Jena, 
Germany.
Email: sfromm@dartmouth.edu

Present address
Sophie F. von Fromm, Now at Dartmouth 
College, Hanover, New Hampshire, USA

Funding information
International Max Planck Research 
School for Global Biogeochemical Cycles 
(IMPRS-gBGC); H2020 European Research 
Council, Grant/Award Number: 695101

Abstract
One of the largest uncertainties in the terrestrial carbon cycle is the timing and mag-
nitude of soil organic carbon (SOC) response to climate and vegetation change. This 
uncertainty prevents models from adequately capturing SOC dynamics and chal-
lenges the assessment of management and climate change effects on soils. Reducing 
these uncertainties requires simultaneous investigation of factors controlling the 
amount (SOC abundance) and duration (SOC persistence) of stored C. We present 
a global synthesis of SOC and radiocarbon profiles (nProfile = 597) to assess the time-
scales of SOC storage. We use a combination of statistical and depth-resolved com-
partment models to explore key factors controlling the relationships between SOC 
abundance and persistence across pedo-climatic regions and with soil depth. This al-
lows us to better understand (i) how SOC abundance and persistence covary across 
pedo-climatic regions and (ii) how the depth dependence of SOC dynamics relates 
to climatic and mineralogical controls on SOC abundance and persistence. We show 
that SOC abundance and persistence are differently related; the controls on these 
relationships differ substantially between major pedo-climatic regions and soil depth. 
For example, large amounts of persistent SOC can reflect climatic constraints on soils 
(e.g., in tundra/polar regions) or mineral absorption, reflected in slower decomposi-
tion and vertical transport rates. In contrast, lower SOC abundance can be found with 
lower SOC persistence (e.g., in highly weathered tropical soils) or higher SOC persis-
tence (e.g., in drier and less productive regions). We relate variable patterns of SOC 
abundance and persistence to differences in the processes constraining plant C input, 
microbial decomposition, vertical C transport and mineral SOC stabilization potential. 
This process-oriented grouping of SOC abundance and persistence provides a valu-
able benchmark for global C models, highlighting that pedo-climatic boundary condi-
tions are crucial for predicting the effects of climate change and soil management on 
future C abundance and persistence.
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1  |  INTRODUC TION

The timescales and magnitudes of soil organic carbon (SOC) re-
sponses to climate and vegetation change are among the largest 
uncertainties in the terrestrial C cycle. A substantial fraction of 
these uncertainties relates to the persistence and cycling of C in 
soils across scales and depths (Wieder et  al.,  2018). Modeling ra-
diocarbon measurements (Δ14C) provides insights into the aver-
age time a C atom remains in the soil, reflecting SOC persistence, 
which needs to be linked to SOC abundance to better understand 
potential interactions between the timescale and magnitude of SOC 
responses to change. However, most large-scale studies of SOC dy-
namics have mainly focused on either the drivers of SOC abundance 
(e.g., Doetterl et  al., 2015; Luo et  al.,  2021; Quesada et  al.,  2020; 
Rasmussen et al., 2018; von Fromm et al., 2021; Yu et al., 2021) or 
SOC persistence (e.g., Chen et  al.,  2021; He et  al., 2016; Mathieu 
et al., 2015; Shi et  al., 2020; von Fromm et al., 2023). Only a few 
studies have addressed them together; these studies found that the 
controls and relationship between SOC abundance and persistence 
at the continental scale are not necessarily identical (Heckman 
et al., 2021, 2023). Thus, assessing soil responses to changes in veg-
etation and climate and informing C modeling efforts across scales 
require a better understanding of the patterns and controls of both 
SOC abundance and persistence across regions and with soil depth.

Both measures, SOC abundance and persistence, have in com-
mon that they are the result of what remains from past soil C inputs. 
Therefore, their variation with depth depends on incoming C fluxes, 
transport, bio-transformations, and the duration of C protection prior 
to release from the soil (Basile-Doelsch et al., 2020). Carbon inputs 
at a given soil depth include plant litter (above- or belowground), bio-
turbation, and vertical transport of dissolved organic carbon (DOC) 
from one soil layer to another, while losses of SOC are the result of 
mineralization, erosion, and leaching of DOC. Microbial decompo-
sition results in both mineralization and biotransformation of SOC, 
with the potential for aging of C by being recycled internally within 
the microbial community. Other interactions slowing or preventing 
SOC from being decomposed include organo-mineral interactions, 
with the strength of those interactions related to the persistence of 
SOC over varying amounts of time (years to millennia; Oades, 1988; 
Baldock & Skjemstad, 2000). Important mineral groups involved in 
the formation of strong organo-mineral bonds and interactions with 
SOC include poorly crystalline metal phases and 2:1 layered clay 
minerals (i.e., smectite; Chen et  al.,  2021; Rasmussen et  al.,  2018; 
von Fromm et al., 2021; von Fromm et al., 2023; Yu et al., 2021). This 
is due to their large specific surface areas with a high proportion 
of reactive sites (Parfitt & Childs, 1988). Furthermore, the occlu-
sion of SOC in stable microaggregates may also contribute to SOC 
persistence by physically preventing microorganisms from access-
ing otherwise readily available C sources (Six et al., 2000; Tisdall & 
Oades, 1982).

With soil depth, SOC abundance usually decreases (Jobbágy 
& Jackson,  2000; Oades, 1988), whereas SOC persistence (lower 
Δ14C values and older SOC ages) increases (Balesdent et al., 2018; 

He et al., 2016; Shi et al., 2020). This strong depth trend has been 
the focus of many studies (e.g., Ahrens et al., 2020; Don et al., 2013; 
Jobbágy & Jackson, 2000; Kaiser & Kalbitz, 2012). Explanations dif-
fer among these studies, with the depth-trend attributed to (i) re-
duced decomposition rates with depth, (ii) changes in above-  and 
belowground C inputs with depth, (iii) time required for vertical 
C transport by water and (iv) increase in SOC protection (e.g., via 
mineral adsorption or physical protection) with depth. To better un-
derstand which of these factors and processes may dominate SOC 
dynamics under specific environmental conditions, it is necessary to 
assess and model their combined effects on SOC abundance and 
persistence together. Thus, qualitative modeling experiments (i.e., 
conceptualizing changes in SOC abundance and persistence as a lin-
ear system of ordinary differential equations) can be a powerful tool 
to isolate the role that individual processes play in the relationship 
between SOC abundance and persistence with soil depth.

All of these processes, and thus SOC abundance and persistence, 
are influenced and shaped by a combination of climatic, geochemical, 
and biological factors, which can form distinct pedo-climatic condi-
tions at the global scale. Although SOC abundance and persistence 
are influenced by similar factors, they may represent aspects of SOC 
dynamics that are driven by different soil processes. These differ-
ences can also influence the relationship between SOC abundance 
and persistence within a soil profile and thus, result in distinct soil 
profiles depending on pedo-climatic conditions.

Here, we systematically test differences in controls on SOC 
abundance and persistence across pedo-climatic regions and with 
soil depth by using a combination of statistical and depth-resolved 
compartment models. In this work, we are addressing the following 
research questions (RQ):

RQ1: How do SOC abundance and persistence covary across pedo-
climatic regions and with soil depth?

RQ2: What climatic and mineralogical controls best explain regional 
differences in SOC abundance and persistence?

RQ3: Which processes control depth profiles of SOC abundance and 
persistence at the global scale?

2  |  METHODS

2.1  |  Soil profile selection and radiocarbon analysis

We used a subset of the soil layer data from the International Soil 
Radiocarbon Database (ISRaD v2.4.7.; Beem-Miller et  al.,  2021; 
Lawrence et al., 2020) that included both radiocarbon (Δ14C; ‰; here 
used as a proxy for the timescales of SOC persistence) and soil or-
ganic carbon measurements (SOC; wt-%; here used as a measure for 
SOC abundance; von Fromm et al., 2024). We report 14C data as Δ14C, 
which is corrected for the decay of the oxalic acid standard between 
1950 and the measurement year. To account for mass-dependent frac-
tionation effects, the reported 14C/12C ratio of all samples has been 
corrected to a common δ13C value of −25‰ (Stuiver & Polach, 1977). 
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For our analysis, we focus on bulk soil Δ14C measurements, which rep-
resent a mixture of older and younger SOC, and thus reflect the mean 
of an often highly skewed distribution of Δ14C in the sample (Chanca 
et al., 2022; Sierra et al., 2018). Due to a large increase in atmospheric 
Δ14C concentration during intensive nuclear weapons testing in the 
1960s (“bomb” C), Δ14C values >0‰ indicate that most of the SOC 
cycles on decadal timescales (i.e., less persistent). Values of Δ14C < 0‰ 
indicate that sufficient time elapsed for radioactive decay and most of 
the SOC cycles on centennial timescales or even longer (i.e., more per-
sistent; Trumbore, 2009; Sierra et al., 2018). Since Δ14C measurements 
are time dependent, we examined the data by year of measurement. 
We found that two-thirds of the data were collected after 1995. Thus, 
we did not attempt to correct for potential temporal changes and as-
sumed the decline in atmospheric Δ14C during the study period has 
only a small effect on the results, given the relatively longer timescales 
associated with SOC persistence.

For our analyses, we only included mineral soil profiles (no wet-
lands/peatlands/Histosols) with Δ14C and SOC values reported for 
at least three depth layers. This resulted in a total of 597 profiles 
from 110 globally distributed studies (Figure  1). The data cover a 
wide range of climate and soil types (Table S1). However, drier and 
colder conditions tend to be underrepresented in each climate 
zone (Figure S1), which is reflected in the spatial bias toward North 
America (nProfiles = 257) and Central Europe (nProfiles = 85; Figure 1). 
More than half of the profiles are from forests (56%), followed by 
grasslands (19%), croplands (12%), shrublands (6%) and other vege-
tation types (7%).

2.2  |  Identification and grouping of global 
pedo-climatic regions

Pedo-climatic regions are areas of relatively homogenous soil and 
climate conditions (Metzger et al., 2005). Particularly at larger scales, 
they have been proven useful to better understand differences in 
the controls on SOC dynamics and to account for continental-scale 
differences in soil age that can cause correlations between mineral-
ogy and climate (von Fromm et al., 2023). For example, temperate 
and boreal forests in the northern hemisphere are often younger 
soils with different mineralogical compositions than tropical soils. 
We combined the reported Δ14C and SOC data from ISRaD with 
global climate and soil data, either by using the reported variables 
or gap-filling based on globally gridded data products by extract-
ing the corresponding values based on longitude and latitude at the 
profile level. The global data include present-day Köppen–Geiger 
climate zones (Beck et al., 2018), mean annual precipitation (MAP; 
mm) and mean annual temperature (MAT;°C; WorldClim v2; Fick 
& Hijmans,  2017), potential evapotranspiration (PET; mm; Zomer 
et al., 2022), clay content (%; SoilGrids v1; Hengl et al., 2017), and 
soil order (USDA; Shi et al., 2020). We had to limit our analyses to 
these broad climate and soil variables, since more precise data, es-
pecially for soil mineralogy, are not available at the global scale. For 
more information about the exact gap-filling procedure, we refer 

to the R code (see Data availability) and Table S2 which shows the 
relative number of values gap-filled for each variable. Mean annual 
precipitation and PET were used to calculate the aridity index, which 
we defined as PET/MAP (Budyko, 1974). Aridity values >1 indicate 
water-limited (dry) conditions and ratios <1 represent energy-limited 
(wet) conditions.

We grouped all soil profiles according to their main climate 
group and dominant mineral type, respectively. Climate zones were 
grouped into broad climate groups to ensure that each group con-
tained a sufficient number of soil profiles (Figure S1 and Table S1). The 
grouping was based on the first capital letter of the Köppen–Geiger 
classification system, which refers to the five main climate groups, 
namely A—tropical, B—arid, C—warm temperate, D—cold temper-
ate/continental, and E—polar/tundra (Figure  1; Beck et  al.,  2018). 
Profiles that were classified as Gelisols or as Aridisols in the field 
were manually assigned to the polar/tundra or arid climate group, re-
spectively. Andisols (volcanic/amorphous soils) were excluded from 
the climate grouping, since they are a geochemically, mineralogically, 
and pedogenically distinct soil type that are not representative for 
a given climate zone (Parfitt & Clayden, 1991). We recognize that 
other azonal soil types (e.g., Entisols, Mollisols, Inceptisols) exist and 
that climate zones do not capture all soil variability. On a global scale, 
however, climate groups integrate many soil-forming factors and can 
be seen as a conservative grouping of soil profiles that may be highly 
diverse locally but face a similar set of underlying large-scale envi-
ronmental factors.

Soil types were used to identify dominant mineral groups relevant 
for SOC abundance and persistence (Figure 1 and Table S1). We used 
the dominant clay-sized minerals identified by Ito and Wagai  (2017) 
for each soil order as a grouping proxy. All Andisols were classified as 
dominated by amorphous minerals. These amorphous minerals include 
mostly allophanes, which are thought to be highly efficient at adsorb-
ing SOC (Torn et al., 1997). Highly dynamic, young, and eroding land 
surfaces and those experiencing less chemical weathering, such as 
cold or hot arid regions, or mountainous environments, were grouped 
as soils dominated by less weathered clays such as illite, or primary 
minerals such as mica. These soils, including Alfisols, Aridisols, Entisols, 
Gelisols, and Inceptisols (Ito & Wagai, 2017), have an underdeveloped 
potential for mineral SOC stabilization (Mathieu et al., 2015) and are 
generally situated in climate zones less favorable to biological activ-
ity. Soils from intermediately aged, often quaternary land surfaces in 
seasonal or temperate climate zones, were classified as dominated by 
high-activity clays. They include Mollisols, Spodosols and Vertisols 
(Ito & Wagai, 2017). These are dominated by smectite and vermicu-
lite, which are characterized by high surface areas and variable charges 
that can adsorb large amounts of SOC (Khomo et al., 2017; Wattel-
Koekkoek et al., 2003). Soils such as Oxisols and Ultisols from stable, 
often tropical, old land surfaces, were grouped as dominated by low-
activity clays, such as kaolinite (Ito & Wagai, 2017). These have a lim-
ited surface area and therefore tend to adsorb less SOC (Feller, 1993). 
We acknowledge that the grouping of dominant mineral groups based 
on soil orders is an oversimplification of the much more complex soil 
mineralogy. Yet, this classification is widely used and supported by 
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analytical data (Georgiou et  al.,  2022; Ito & Wagai,  2017; Quesada 
et al., 2020; von Fromm et al., 2023). At present, the only approach that 
can be used at the global scale where more precise data on soil miner-
alogy and especially data coexisting with radiocarbon measurements 
are sparse. This approach also allows us to test the applicability of cli-
mate zones and soil orders as a pedo-climatic grouping of soil profiles 
with respect to SOC abundance and persistence at the global scale.

Overall, the applied climate and mineral grouping results in sig-
nificantly different groups based on MAP, MAT, and PET, and clay 
content, respectively (based on Kruskal–Wallis test, followed by a 
post hoc Dunn test with a Bonferroni correction for the p-values; 

p-value <.0001). Only MAP between polar/tundra and arid regions 
is not significantly different (p-value >.5; Figure 2).

2.3  |  Sampling depth harmonization

Since the depth intervals at which samples were collected var-
ied across soil profiles in the ISRaD database, it was necessary 
to harmonize the depth distribution of the data. For this, a mass-
preserving spline function (equal-area quadratic smoothing spline) 
was applied to each profile (Bishop et al., 1999; Ponce-Hernandez 

F I G U R E  1 Distribution and number of soil profiles across the main climate zones, soil orders and dominant mineral type. Climate zones 
are based on Köppen–Geiger climate classifications (Beck et al., 2018). Soils are grouped by soil order, with each soil order associated 
with a dominant mineral type: amorphous = Andisols; primary minerals = Alfisols, Aridisols, Entisols, Gelisols and Inceptisols; high-activity 
clays = Mollisols, Spodosols, Vertisols; low-activity clays = Oxisols, Ultisols.
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et al., 1986). In short, a spline function is a set of local quadratic 
functions tied together with “knots” that describe a smooth 
curve through a set of points (in our case sampling depth; Bishop 
et  al., 1999; Malone et  al., 2009). The spline function allows for 
some “smoothing” so that the fitted curve does not have to pass 
exactly through every sampling point. For each individual profile, 
we applied the spline function to the Δ14C, SOC, and clay content 
(<2 μm) data to obtain a value for each parameter for each cen-
timeter of depth, extending to the maximum sampling depth. We 
used the R package “mpsline2” (O'Brien et al., 2022), which allows 
users to specify the lowest and highest predicted values, as well 
as a smoothing parameter for the spline function. To constrain the 
extrapolation within realistic values, we set the lowest and high-
est values to 0.005 and 60 wt-%, for Δ14C to −1000 and + 350‰, 
and for clay content to 0 and 100%. The smoothing factor was 
set to 0.5 for each profile. After applying the spline function, we 
used 100 cm as a cutoff for the maximum sampling depth. This 
ensured that there were enough data from profiles with deeper 
sampling depths. However, not all soil profiles in this study reach 
100 cm soil depth, and the number of available profiles decreases 
with increasing soil depth to nProfile = 290 at 100 cm. Lastly, since 
our aim is to understand and represent SOC dynamics in mineral 

soil layers, we removed all layers with SOC content >20 wt-% after 
applying the spline function to avoid including organic layers in 
our analysis.

2.4  |  Statistical analyses

We focus on presenting the harmonized soil profile data in a 2D- 
space consisting of Δ14C as a measure of SOC persistence, and SOC 
content as a measure of SOC abundance. In this 2D space, all values 
are sorted by depth to preserve their occurrence within a soil profile.

2.4.1  |  Soil profile comparison

To compare soil profiles across climate and mineral groups, we cal-
culated the median for Δ14C and SOC within each group for each 
centimeter, respectively. The Wilcoxon rank-sum test was used 
to calculate the 95% confidence intervals for each group. At each 
centimeter soil depth, we ensured that the number of profiles was 
at least one-third of the total number of profiles in that group, and 
that these profiles came from at least three different studies and 

F I G U R E  2 Boxplots for clay content, mean annual precipitation (MAP), mean annual temperature (MAT) and mean annual potential 
evapotranspiration (PET) for (a) climate groups and (b) dominant mineral groups (assigned using soil order classification; see Methods).

(a)

(b)
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five different profiles. Due to this filtering, the median profiles for 
amorphous and polar/tundra soils cover a maximum soil depth of 
80 and 90 cm, respectively, and not 100 cm as for the rest of the 
dataset.

2.4.2  |  Statistical modeling

Random forest regressions (Breiman,  2001; Breiman et  al.,  1984) 
were used to identify the most important predictors for SOC abun-
dance and persistence in order to better understand the observed 
patterns between the two target variables. We built one model each 
for Δ14C and SOC content with the same explanatory variables: 
depth, MAT, PET/MAP, and clay content. Note that we did not use the 
random forest models to do any up-scaling, but to better understand 
the nonlinear behavior between the target variables (Δ14C or SOC) 
and the explanatory variables, and how their importance may differ 
across pedo-climatic groups. Furthermore, we limited the analysis 
to these four environmental proxy variables since they (i) have been 
identified by other studies as being important in explaining varia-
tions in Δ14C and SOC at the global scale (Heckman et al., 2022; Luo 
et al., 2021; Mathieu et al., 2015; Shi et al., 2020), (ii) integrate a wide 
range of environmental processes (Wiesmeier et al., 2019), and (iii) 
contain independent information that allows for a better interpreta-
tion of these individual predictors, as they correlate with each other 
only to a lesser degree at broader scales (Table  S3). Furthermore, 
these variables are widely available at reasonable precision and res-
olution at the global scale and therefore used by various global mod-
els to explain soil responses to climate change (Abramoff et al., 2018; 
Sulman et al., 2014; Wieder et al., 2014).

Note that only soils from arid, warm temperate, cold temperate, 
and tropical climate zones were included in the random forest analy-
sis. Andisols and soils from tundra/polar regions had to be excluded 
because their distinct soil characteristics would strongly influence 
the model behavior due to the nature of the regression approach. 
For example, Andisols cover less than 1% of the ice-free land surface 
area but are over-represented in ISRaD (~10% of all soil profiles in-
cluded in this study). Only 28 profiles were available in the dataset 
for tundra/polar profiles from very few clustered sampling regions 
(Figure 1). Including them in the regression analysis would introduce 
a strong local bias in the predictive model that is unlikely to be rep-
resentative of the entire climate zone.

For the validation of the resulting regression models, we per-
formed a 10-fold cross-validation, ensuring that each soil profile was 
either fully within the training (70%) or the test dataset (30%). Model 
evaluation was performed on the testing dataset, including the cal-
culation of the (root) mean square error. To assess the importance 
of each independent variable for the predictive power of the model, 
we calculated the “permutation feature importance.” This measure 
can be interpreted as an explanatory variable being “important” if 
the shuffling of its values increases the model error, indicating that 
the model was relying on that explanatory variable for prediction 
(Molnar,  2022). To further interpret the outcome of the random 

forest models, we used partial dependence plots and individual con-
ditional expectation plots. The partial dependence plots show the 
marginal effects of an explanatory variable on the predicted out-
come of the random forest model (Friedman, 2001). The individual 
conditional expectation plots are similar to partial dependence plots, 
but instead show a line per observation that shows how an observa-
tion's prediction changes when the value of an explanatory variable 
changes (Goldstein et al., 2015; Molnar, 2022). Rather than plotting 
a prediction line for each observation, we calculated the median of 
subsets of observations based on their climate group (which were 
not included as predictors in the random forest). This allows us to in-
terpret the importance of each explanatory variable in these groups, 
respectively.

2.4.3  |  Compartment models of soil organic carbon 
decomposition

We used depth-resolved compartment-based decomposition mod-
els (i.e., one- and two-pool) to identify which model parameters have 
an influence on the relationship between SOC abundance and per-
sistence. In these models, bulk soil organic matter is characterized 
by distinct compartments (pools) with homogenous decomposition 
rates that can interact with each other (Manzoni & Porporato, 2009; 
Sierra et al., 2012). The models allow us to test differences in (i) de-
composition rates, (ii) above-  and belowground C inputs, and (iii) 
vertical transport of C. One- and two-pool models are widely used 
to qualitatively assess SOC dynamics in a simplified way (Manzoni & 
Porporato, 2009).

For the one-pool model, each soil layer is represented by one 
compartment that is vertically connected with the next compart-
ment to mimic soil depth (Figure S2). For the two-pool model, each 
soil layer is represented by two compartments to account for dif-
ferent decomposition rates within the same soil layer (i.e., fast vs. 
slow pool). Similar to the one-pool model, these two compartments 
are vertically connected with the next two compartments to mimic 
soil depth (Figure S2). By using these models, we can isolate individ-
ual soil processes to better understand their importance for SOC 
abundance and persistence and with soil depth without the need 
to constrain the models with observational data. We qualitatively 
compare the modeled soil profiles with the measured soil profiles to 
better understand which factors may control differences between 
their shapes with depth across different pedo-climatic zones.

2.4.3.1 | Model setup
We ran the models within the “SoilR” framework (Sierra et al., 2012, 
2014) and extended the models by adding a depth-resolved version 
(vertical transfer linear model). For each model, we defined 10 verti-
cal layers. Each layer represents 10 cm, so that the whole profile rep-
resents a soil depth of 1 m. The general model of soil organic matter 
decomposition is a linear dynamical system of the following form:

(1)dC(t)∕dt = I + AC(t),
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    |  7 of 18von FROMM et al.

where the amount of SOC in different pools is represented as vector 
C(t), with total SOC inputs (above-  and belowground) represented 
by the vector I. The decomposition operator A is a square matrix of 
dimension m × m, which contains the decomposition rates ki for each 
pool i, and, in the case of the two-pool model, the coefficients αij rep-
resenting the proportion of SOC transferred between pools within a 
soil layer (Sierra et al., 2012). For the depth-resolved version, the di-
mension of the system is increased by the total number of depth layers 
l. Therefore, the matrix A is extended to dimension (m × l) × (m × l), with 
off-diagonal coefficients representing both the proportion of SOC 
transferred vertically from one layer to the next and between pools 
(Figure S2). Analogously, in the depth-resolved version of the model, 
the vector of SOC stocks and the vector of SOC inputs are extended 
to dimension m x l, representing SOC stocks and inputs for each pool 
at each layer, respectively.

Similarly, the dynamical system for radiocarbon in soil organic 
matter can be represented as:

where the amount of radiocarbon in each pool and depth layer is rep-
resented by the vector 14C(t), with the radiocarbon inputs represented 
by I14C(t), and λ as the radioactive decay constant.

Within the framework of “SoilR”, SOC stocks and Δ14C values are 
calculated simultaneously, which allows us to plot the model results 
in the same 2D space as the harmonized soil profile data. Before 
estimating Δ14C values and SOC stocks, we ran the model to steady 
state (50,069 years spin-up with historical atmospheric radiocarbon 
data until 2019; Hua et al., 2022; Reimer et al., 2013). Steady state 
was achieved when total C inputs were equal to C outputs (Sierra 
et al., 2014).

2.4.3.2 | Application
We used the one-pool model to investigate the influence of each 
model parameter on the relationship between SOC stocks and Δ14C 
within the 2D space of SOC abundance and persistence. The tested 
parameters included:

	 (i)	Decomposition rates (k) that are constant with soil depth,
	(ii)	 Decomposition rates (k) that are decreasing with soil depth,
	(iii)	 Aboveground C inputs (Iabove; litter) at the soil surface,
	(iv)	 Belowground C inputs (Ibelow; roots) with soil depth, and
	(v)	Vertical transfer rates (α) to represent leaching of C down the soil 

profile.

Note that the range of values applied for each parameter (i–v) 
is based on expert knowledge and the absolute values of the model 
outputs are not directly comparable to the raw data. In addition, we 
recognize that different combinations of model parameter values can 
lead to similar results (i.e., equifinality). Nevertheless, the qualitative 
models allow for hypothesis testing and a better understanding of 
the observed patterns between SOC and Δ14C. For each model sce-
nario, we only changed one parameter (i–v) at a time (Table S4). To 
have a common model across scenarios (i–v), we defined a reference 

model with Iabove = 1, which can be interpreted as one unit of SOC 
entering the soil from aboveground. Therefore, the units of the mod-
eled SOC stocks are arbitrary and easier to interpret. The decompo-
sition rate was set to k = 1/500 at each depth layer, which translates 
to a turnover time of about 500 years. Belowground SOC inputs 
(Ibelow) were set to 0, except for the model scenario where we tested 
their influence on SOC stocks and Δ14C. Lastly, the downward trans-
fer rate was set to α = 0.005. Since each depth layer has the same 
length (10 × 10 cm), the transfer rate can be interpreted as the pro-
portional movement of SOC per cm soil in the vertical direction.

The two-pool model was used to test the influence of SOC 
protection (i.e., by mineral adsorption) on SOC abundance and per-
sistence. Since the only difference between the one- and two-pool 
models is the movement of C from the “fast” to the “slow” cycling 
pool, we will focus only on the effect of horizontal C transfer for 
the two-pool model. This was explored by changing the transfer 
rate from the “fast” pool (faster decomposition—less C stabilized) 
to the “slow” pool (slower decomposition—more C stabilized). In 
theory, the more SOC that enters the “slow” pool, the higher the 
SOC persistence should be. To test this, we used a model with a k-
value of 1/50 for the “fast” pool and of 1/1250 for the “slow” pool. 
For both pools, the k-values were decreasing with soil depth. We 
included root inputs (Ibelow) at each depth layer, which were decreas-
ing exponentially. We set Iabove = 1, and the vertical transfer rate to 
α = 0.0025 (Table S4).

All analyses were performed within the R computing environ-
ment (version 4.1.1; R Core Team, 2021) including the additional R 
packages “ggpubr” (Kassambara, 2020), “iml” (Molnar et al., 2018), 
“mlr3” (Lang et  al.,  2019), “RColorBrewer” (Neuwirth, 2022), “ras-
ter” (Hijmans,  2021), “scales” (Wickham & Seidel,  2022), “sf” 
(Pebesma, 2018), and “tidyverse” (Wickham et al., 2019).

3  |  RESULTS

3.1  |  Climate and mineral grouping of SOC 
abundance and persistence

We found that the 2D space of SOC abundance and persistence 
provides a useful tool to differentiate between climate and mineral 
groups at the global scale (Figure 3a,b). The same grouping by cli-
mate and mineralogy cannot be resolved when SOC abundance and 
persistence are mapped in the more typical depth-based approach 
as indicated by a larger overlap of the 95th confidence intervals 
(Figure 3c–f).

The climate groups show clear and distinct patterns based on 
SOC abundance and persistence based on the 95th confidence 
intervals. Tropical soils show overall the lowest SOC persistence 
(highest Δ14C values resulting in youngest C) at any given soil depth 
and the smallest change in SOC persistence (Difference (Δ) in 
Δ14C = 352‰) between the surface and 1 m soil depth (Figure 3a). 
Soils from tundra/polar regions have overall a higher SOC abun-
dance and persistence at any given soil depth. This also results in 

(2)d
14
C(t)∕dt = I14C(t) + A

14
C(t) − �

14
C(t),
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8 of 18  |     von FROMM et al.

the largest difference of SOC persistence (ΔΔ14C = 739‰) between 
the surface and the deepest layer. Temperate soils (warm and cold) 
show the largest difference in SOC abundance with soil depth (2.88 
and 4.14 wt-%, respectively) and the second highest total SOC accu-
mulation after tundra/polar soils. The same is true for the difference 
in SOC persistence with soil depth compared to the other profiles 
(ΔΔ14C = 360 and 449‰, respectively). Arid soils show the small-
est accumulation and smallest change of SOC with soil depth (0.70 
wt-%) compared to all other groups. In addition, they have relatively 
high SOC persistence at the surface (Δ14C = 11.4‰), indicating little 
incorporation of “bomb” 14C (after 1960s), yet the absolute change 
in SOC persistence with soil depth (ΔΔ14C = 359‰) is similar to soils 
from warm temperate and tropical regions.

When grouped by dominant mineralogy, differences between 
groupings are less pronounced as indicated by the more overlap-
ping 95th confidence intervals. Amorphous soils show the highest 

accumulation and persistence of SOC (Figure  3b). This is compa-
rable to soils from tundra/polar regions (Figure 3a) and results in a 
large difference in SOC persistence between the surface and the 
deepest layer (ΔΔ14C = 677‰; Figure  3b). Highly weathered soils 
dominated by low-activity clays show the lowest SOC abundance 
and persistence at any given soil depth. This also results in the 
smallest difference in SOC abundance (1.91 wt-%) and persistence 
(ΔΔ14C = 356‰) with soil depth. In contrast, moderately weathered 
soils dominated by high-activity clays have higher SOC abundance 
and persistence at any given soil depth. The difference in SOC 
persistence with soil depth (ΔΔ14C = 397‰) is comparable to soils 
dominated by primary minerals (ΔΔ14C = 393‰). Changes in SOC 
abundance with soil depth are lower for soils dominated by high-
activity clays (2.71 wt-%) compared to the primary mineral group 
(3.26 wt-%). Overall, the differences between the profiles clustered 
by dominant mineral types are smaller compared to the climate 

F I G U R E  3 Median soil profile data based on harmonized data for Δ14C and soil organic carbon (SOC) for (a) climate grouping (excluding 
Andisols) and (b) dominant mineral type. Black dots show 10 cm depth increments and black triangles indicate 0 cm for each group, 
respectively. (c–f) Δ14C and SOC plotted against depth for the climate and mineral grouping, respectively. Note that all SOC axes are log-
scaled. Error bars show 95% confidence intervals based on the Wilcoxon-Rank-Sum test.

(a) (b)

(c) (d) (e) (f)
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    |  9 of 18von FROMM et al.

grouping (except for soils dominated by amorphous minerals) and 
less clear as suggested by the more overlapping 95th confidence in-
tervals. Therefore, we will focus primarily on climate zones in the 
remainder of the manuscript.

3.2  |  Random forest—Climate and mineral controls

Controls on SOC abundance and persistence differ significantly at 
the global scale (Figure 4). Both random forest models explain about 
55% of the observed variation (SOC abundance: R2 = 0.54 ± 0.15 and 
SOC persistence: R2 = 0.55 ± 0.06) with a root mean square error of 
1.5 ± 0.16 w-% and 115 ± 9‰, respectively. For the SOC persistence 
model (Δ14C), soil depth is the most important predictor (relative im-
portance: 31%), followed by MAT (27%), PET/MAP (23%), and clay 
content (19%). In contrast, for the SOC abundance model, PET/MAP 
was the most important predictor (relative importance: 38%), fol-
lowed by MAT (33%), depth (17%), and clay content (13%; Figure 4). 
Both models, SOC abundance and persistence, were able to capture 
differences between climate groups as observed in the harmonized 
soil profiles, even though the climate groups themselves were not in-
cluded as predictors in the random forest model (Figure 5; Figure S3). 
Clay content is the only predictor that covers a wide range within 
each climate group (Figure 2a), allowing further investigation of its 
control on SOC abundance and persistence across climate groups 
(Figure 5).

The effect of clay content on SOC abundance and persistence 
differs significantly within and between climate groups (Figures 2a 
and 5). For the SOC persistence model, higher clay content leads 
to overall more negative predicted Δ14C values in each climate 
group—especially in temperate and arid regions (Figure  5a). For 
the SOC abundance model, higher clay content leads to higher 

predicted SOC values. Below 30% clay content, all climate groups 
are significantly different from each other (based on their 95th 
confidence intervals). In contrast, at higher clay contents, warm 
and cold temperate soils, and arid and tropical soils are not signifi-
cantly different from each other, respectively (Figure 5b). When 
plotting the predicted Δ14C values against the predicted SOC 
values for the 95% data range of each climate group (Figure 5c), 
values with higher clay content (>30%; larger points) fall in the 
lower right corner (high SOC abundance and persistence), whereas 
values with lower clay content (<30%; smaller points) fall in the 
upper left corner (lower SOC abundance and persistence). An ex-
ception are tropical soils that show the smallest absolute change 
in SOC abundance (0.24 wt-%) and persistence (88‰) with clay 
content (derived by subtracting the predicted SOC/Δ14C value at 
the highest clay content from the predicted value at the lowest 
clay content). This suggests that clay content may not play such an 
important role in these soils.

3.3  |  Depth-resolved compartment models—
Parameter testing

We find that a combination of differences in C inputs, decomposi-
tion rates and vertical C transport can reasonably explain the ob-
served patterns of SOC abundance and persistence (Figure 6). The 
identified controls can be linked to our process-understanding 
gained from the grouping of the soil profiles and from the statistical 
modeling. The depth-resolved compartment-based decomposition 
models prove especially useful to separate the influence of (i) de-
composition rates, (ii) above- and belowground C inputs, (iii) vertical 
downward transport, and (iv) SOC protection when visualized within 
the 2D space of SOC abundance and persistence (Figure 6).

F I G U R E  4 Relative variable importance of the random forest models for (a) soil organic carbon (SOC) persistence and (b) SOC abundance. 
Error bars are calculated from the 10-fold cross-validation and represent the median absolute deviation.

(a) (b)
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3.3.1  |  Decomposition rates

Changes in the decomposition rate lead either to accumulation of 
SOC with higher SOC persistence (due to slower decomposition) or 
to lower SOC abundance and persistence (due to faster decomposi-
tion; Figure 6b,c). For relatively fast decomposition rates (k > 1/50; 
Figure S4), the highest Δ14C values are not found at the surface, as 
usually observed in nature (Figure 3). Due to the rapid decomposi-
tion of SOC, more “bomb” 14C (after 1960s) is incorporated deeper 
into the soil profile, and the models lose more SOC with soil depth 
(up to 15 orders of magnitude) than is consistent with the harmo-
nized profile data (Figure  3). Varying the decomposition rate with 
soil depth (Figure 6c) results in soil profile shapes that are more con-
sistent with the harmonized profile data (Figure 3a,b) compared to 
keeping decomposition rates constant with soil depth.

3.3.2  |  Above- and belowground C inputs

In our model experiment, aboveground C inputs (litter) only influ-
ence SOC abundance, but not SOC persistence (Figure 6d). This is 
because these models are at steady state, which means that the 
C stocks do not change over time and C inputs are balanced by 

outputs. Therefore, models with overall higher aboveground C in-
puts have the same SOC persistence as the other models but have 
higher SOC abundance at each soil depth.

In contrast, belowground C inputs (root inputs) influence both 
SOC abundance and persistence (Figure  6e). To compare models 
with different root inputs, we held the sum of root inputs constant 
(ca. 1.58) and only varied the distribution of C inputs with soil depth. 
We tested constant, linear, and exponentially decreasing C inputs 
with depth. Overall, the higher the C inputs with soil depth, the 
higher the SOC abundance, and the lower the SOC persistence. This 
is because more fresh (younger) C enters the soil at depth. The distri-
bution of belowground C inputs determines the exact effect of root 
inputs on SOC abundance and persistence.

3.3.3  |  Vertical downward transport

We observed that changes in the vertical downward transport of 
C can have similar effects on SOC abundance and persistence as 
changes in root inputs (Figure 6f). With lower rates of vertical trans-
port (smaller α-values), less SOC enters the next soil layer, resulting 
in overall lower SOC abundance and higher SOC persistence with 
soil depth. However, the range of tested parameter values can yield 

F I G U R E  5 Partial dependence plots 
(PDP) for clay content derived from the 
random forest model for (a) Δ14C and 
(b) soil organic carbon (SOC). In panel 
(a) and (b), the y-axis shows median 
predicted Δ14C and SOC values for each 
observation grouped by their climate 
group, respectively. Solid lines represent 
95% of the respective data range for each 
climate group (predictions outside this 
range should be interpreted with caution). 
Shaded areas refer to the 95th confidence 
interval. Panel (c) shows median predicted 
Δ14C and SOC values for each clay bin 
(dot size, derived from the PDP) for 
each climate group, respectively. Arrows 
indicate change from low to high clay 
content within each climate group, 
respectively.

Climate grouping cold temperate warm temperate tropical arid

Clay content [%] 0 20 40 60

−300

−200

−100

0

0 20 40 60

M
ed

ia
n 

pr
ed

ic
te

d 
14

C
 [‰

]

0.0

0.5

1.0

1.5

2.0

0 20 40 60
Clay content [%]

M
ed

ia
n 

pr
ed

ic
te

d 
SO

C
 [w

t−
%

]

−300

−200

−100

0

0.5 1 2
Median predicted SOC [wt−%]

M
ed

ia
n 

pr
ed

ic
te

d 
14

C
 [‰

]

(a)

(b)

(c)

F I G U R E  6 Depth-resolved compartment-based decomposition model results. (a) tested model parameters labeled with their 
corresponding graph, (b) different decomposition rates that are constant with soil depth, (c) changes in decomposition rates with soil depth 
from no change (vkm.0) to slower decomposition rates (vkm.3), (d) different litter (aboveground C) input quantities, (e) changes in root 
(belowground C) input distributions; all distributions have a sum of 1.58, (f) different vertical transport rates, (g) different transfer rates from 
“fast” to “slow” pool and (h) conceptual summary of all models. Black dots in (b–g) represent 10 cm depth increments. Purple thick line in 
panel (b–f) is always the same reference model. For more details about model parameters see methods and Table S4. Note that x-axes are on 
a log-scale.
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    |  11 of 18von FROMM et al.

unrealistic results. For example, when the vertical transport rate is 
small (α = 0.0001), the model loses too much SOC with soil depth (up 
to 12 orders of magnitude; Figure S5) compared to the harmonized 

profile data (Figure 3). On the other hand, when the vertical down-
ward transport rates are high (for α > 0.02), all Δ14C values are above 
0‰, indicating that all depth layers are influenced by “bomb” 14C 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(Figure A5), which is again inconsistent with the harmonized profile 
data (Figure 3).

3.3.4  |  Soil organic carbon protection

For the given two-pool model setup, the more SOC that is trans-
ferred to the “slow” pool (i.e., higher SOC protection), the higher the 
SOC abundance and persistence (Figure 6g). Note that the differ-
ences in SOC persistence between models decrease with soil depth. 
This is because less C inputs with high Δ14C values enter the “fast” 
pool at depth, and therefore, the influence of the “fast” pool on the 
“slow” pool decreases with soil depth. In addition, to model similar 
Δ14C values with soil depth (< −175‰) as in the harmonized profile 
data (Figure 3), two pools are needed to ensure that the model does 
not lose too much SOC too quickly with depth, while still achieving 
high SOC persistence (lower Δ14C values).

4  |  DISCUSSION

Our analysis demonstrates that different factors explain the 
global distribution of SOC abundance and persistence to vary-
ing degrees of importance (Figure  4). For example, PET/MAP is 
most important in predicting SOC abundance at the global scale, 
whereas depth is most important in explaining variations in SOC 
persistence. This suggests that while SOC abundance and persis-
tence are related, they reflect different aspects of SOC dynamics 
(Heckman et al., 2021). This finding has important implications for 
predicting effects of soil management and climate change on fu-
ture SOC abundance and persistence.

Our results further highlight differences in the relationship be-
tween SOC abundance and persistence across pedo-climatic regions 
(Figure 3). The identified patterns can be related to differences in 
C inputs (above-  and belowground), decomposition rates, as well 
as vertical and horizontal transfer of C that are characteristic for 
the different regions (Figure 6; Sierra et al., 2024). In the following 
section, we discuss the underlying mechanisms controlling SOC 
abundance and persistence across regions and their implications for 
assessing the response of SOC abundance and persistence within 
their pedo-climatic boundary conditions to changes in soil manage-
ment and climate.

4.1  |  Drivers and interactions of SOC 
abundance and persistence

4.1.1  |  Higher SOC abundance and persistence in 
cold climates and amorphous soils

At the global scale, the highest SOC abundance and persistence are 
found in geochemically younger, less weathered soils (Figure  3). 
This group includes soils that occur in cold temperate and polar/

tundra climate zones, as well as soils dominated by amorphous 
minerals, as has previously been observed in numerous site-scale 
studies (e.g., Basile-Doelsch et al., 2007; Schuur et al., 2008; Torn 
et al., 1997). These soils are characterized, on average, by a rela-
tively short soil development (<12,000 years). Furthermore, the 
harmonized soil profiles of these three pedo-climatic groups (cold 
temperate, polar/tundra and amorphous soils) have in common 
that they are characterized by a relatively large spread in SOC 
persistence with soil depth (ΔΔ14C > 449‰; Figure 3). This is an 
indication that the deeper soil layers at 1 m are less connected 
to surface SOC dynamics. Possible explanations include slower 
decomposition rates, higher SOC adsorption to minerals, slower 
vertical C transport and/or less C inputs with soil depth as sug-
gested by our compartment models (Figure 6; Ahrens et al., 2020; 
Sierra et  al.,  2024). However, the importance of these different 
controls on SOC abundance and persistence varies widely for the 
three pedo-climatic groups.

In amorphous soils, the adsorption of SOC to reactive miner-
als results in higher SOC protection, reduced vertical transport 
and decomposition rates (Figure  6b,c,f,g; Oades,  1988; Torn 
et  al.,  1997). Overall, this makes the SOC in these soils highly 
persistent against decomposition and climate change (McGrath 
et al., 2022). In contrast, in polar/tundra soils, low temperatures 
and high soil moisture typically result in slower decomposition 
rates and contribute to the accumulation of large SOC stocks 
over long time periods (Figure  6b,c; Ping et  al.,  2015; Hugelius 
et  al.,  2014; Shi et  al.,  2020). However, under climate change, 
these large SOC stocks could be easily decomposed if SOC is 
not adsorbed by minerals (Gentsch et  al.,  2018; Hicks Pries 
et al., 2013; Schuur et al., 2008). Soil organic carbon abundance 
and persistence in soils from cold temperate regions are most 
likely controlled by a combination of climate and mineral controls 
(Rasmussen et al., 2006). These soils still show relatively large dif-
ferences in SOC persistence between the surface and deeper lay-
ers (ΔΔ14C = 449‰) and intermediate SOC abundance (Figure 3a). 
This suggests that mineral adsorption of SOC and reduced de-
composition rates are more important than vertical transport of 
SOC and root inputs at deeper depths, resulting in overall more 
persistent SOC (Figure  6b,c,e,f). Soils from cold temperate re-
gions are also dominated by high-activity clays (Figure 1), which 
have a greater capacity to adsorb SOC (Rasmussen et  al.,  2018; 
Yu et al., 2021), reducing overall decomposition rates and vertical 
transport of SOC.

4.1.2  |  Soils with lower SOC abundance and 
persistence

Lower SOC abundance and persistence are found in warm temper-
ate, tropical, and arid regions (Figure  3; Mathieu et  al.,  2015; Shi 
et al., 2020). These soils are, on average, characterized by a longer 
soil development (>12,000 years) and are characterized by smaller 
differences in SOC persistence between the surface and deeper 
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    |  13 of 18von FROMM et al.

layers (ΔΔ14C < 360‰; Figure 3). This suggests that SOC dynamics 
throughout the soil profile are more closely related, either via faster 
vertical transport (Kalbitz & Kaiser, 2008) or higher root inputs with 
soil depth (Jackson et  al., 1996) combined with faster decomposi-
tion rates as suggested by our compartment models (Figure 6b,c,e,f). 
However, the importance of these controls on SOC abundance and 
persistence differs among the three pedo-climatic groups.

Soils from warm temperate regions can efficiently adsorb SOC 
to reactive minerals (Rasmussen et al., 2018; von Fromm et al., 2021; 
Yu et al., 2021) similar to soils in cold temperate climates (Figure 3). 
However, soils in warm temperate regions store less persistent SOC 
at any given soil depth compared to those in cold temperate climates 
(Figure 3). Our results and previous literature suggest that climate- 
and mineral-mediated variations in decomposition rates are the 
main driver of these observed differences (Rasmussen et al., 2006; 
Townsend et  al.,  1995; Trumbore et  al., 1996). For example, soils 
from warmer climates are typically characterized by faster turnover 
rates due to enhanced SOC decomposition (Carvalhais et al., 2014; 
Trumbore et  al., 1996). However, some warm temperate soils are 
also dominated by low-activity clays (i.e., kaolinite; Figure  1), that 
typically adsorb less amounts of SOC, which results in overall less 
persistent SOC (Khomo et  al.,  2017; Six et  al., 2002; von Fromm 
et al., 2021; Wattel-Koekkoek et al., 2003). This is supported by our 
statistical models, which show that increased clay content leads to 
smaller increases in SOC abundance and persistence for warm tem-
perate soils compared to cold temperate soils (Figure 5).

Tropical soils show the smallest change in SOC abundance and 
persistence with increasing clay content (Figure 5). This is because 
these soils are primarily dominated by low-activity clays and other 
end-member weathering mineral products (Figure 1; Feller, 1993). 
Due to the lower SOC adsorption by minerals and fast decompo-
sition rates due to high moisture availability (Figure 6b,c,g; Sierra 
et al., 2021; Xiao et al., 2022), tropical soils have the youngest and 
least persistent C at any given soil depth (Figure  3). This is also 
supported by the fact the tropical soils have the deepest incor-
poration of “bomb” 14C (down to 20 cm; Figure 3) suggesting that 
these soils exchange C relatively fast (decadal timescales) with the 
atmosphere.

Arid soils are characterized by relatively high SOC persistence 
at the surface (Δ14C = 11‰), while deeper soil layers more closely 
resemble warm temperate and tropical soils (Figure  3). This sug-
gests that only small amounts of fresh C (which would have higher 
Δ14C values) enter the soil and that, on average, surface SOC cycles 
on longer timescales compared to the other two pedo-climatic re-
gions. However, given that arid soils are characterized by the lowest 
SOC abundance (Figure 3), low C inputs due to low (root) biomass 
(Jackson et al., 1996) are likely to be the limiting factor rather than 
reduced decomposition rates due to low moisture availability (Ewing 
et  al.,  2008). This is also supported by our compartment models 
(Figure 6). Mineral SOC adsorption may only play a role in arid soils 
where high-activity clays are present (Figure 1; Khomo et al., 2017; 
Quéro et  al.,  2022), and where higher clay content then leads to 
higher SOC abundance and persistence (Figure 5).

4.2  |  Implications for soil C management

Conceptually, by linking the identified patterns and controls of SOC 
abundance and persistence to the results of the compartment-
based model experiment, our findings can be used to assess region-
specific responses of soils to changes in management and climate. 
Our compartment-based models show that high SOC abundance 
and persistence required for long-term SOC storage can be found 
when high C inputs (above- and belowground) are getting adsorbed 
by minerals and/or are only slowly decomposed (Figure 6h). Based 
on our findings, we will briefly conceptualize how soil responses will 
differ across our pedo-climatic regions, using increased C inputs as 
an example.

Centered on current conditions, soils dominated by high-activity 
clays from warm and cold temperate regions, followed by soils from 
arid regions with high-activity clays and high C inputs are charac-
terized by relatively high SOC abundance and persistence due to a 
combination of high C inputs, mineral C adsorption, and reduced de-
composition rates (Figures 3, 5 and 6). In particular, soils from cold 
temperate regions already store large amounts of SOC under cur-
rent conditions (ca. 1581 Pg C in the first meter, Hengl et al., 2017). 
Under increased C inputs, the key challenge will be to ensure that 
newly added C is decomposed slowly, for example, due to mineral 
C adsorption. However, many studies have shown that most of the 
newly entered C, also at deeper depth, is decomposed relatively 
quickly and is typically not contributing to long-term C storage 
(Balesdent et al., 2018; Scheibe et al., 2023; Stoner et al., 2021; Xiao 
et al., 2022).

Our findings imply that tropical soils are the most challenging 
for increasing long-term SOC storage, since they have relatively 
low SOC abundance and persistence under current conditions 
(Figures  3 and 5). Although tropical evergreen forests have the 
highest root biomass globally (Jackson et  al., 1996), most of the 
C decomposes relatively quickly due to environmental and min-
eralogical conditions, as indicated by the deepest incorporation 
of “bomb” C (Figures 3 and 6; Muñoz et al., 2023). In addition, be-
cause these soils are highly weathered (i.e., dominated by 1:1 clay 
minerals; Figure 1), the reactivity of these minerals, and therefore 
the adsorption of C by minerals, cannot be increased. Therefore, 
the focus for tropical soils should be on maintaining SOC rather 
than trying to increase it over longer time periods (Reichenbach 
et al., 2023). This is particularly important because tropical soils 
exchange C with the atmosphere on decadal timescales down to 
20 cm (Figure  3), suggesting that these soils may respond more 
rapidly to environmental changes (Nottingham et al., 2020). In ad-
dition, due to the large area that tropical soils cover, their absolute 
SOC storage in the first meter (ca. 515 Pg C) is greater than that 
of warm temperate soils (ca. 389 Pg C) and arid soils (ca. 318 Pg C; 
Hengl et al., 2017).

Amorphous soils and soils from polar/tundra regions have the 
highest SOC abundance and persistence under current climatic con-
ditions (Figure 3). Due to their large amounts of reactive minerals, 
amorphous soils are likely to be able to store large amounts of SOC 
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over longer time periods, yet these soils cover <1% of the ice-free 
land surface area. Soils from polar/tundra regions currently store 
about 1048 Pg C in the first meter (Hengl et al., 2017), but they are 
at high risk of releasing large amounts of formerly persistent C due 
to climate warming (Schuur et al., 2008).

4.3  |  Implications for global C modeling

Our findings can be a valuable tool for testing the performance of 
global C models and their ability to capture key processes relevant 
to SOC abundance and persistence across regions. Radiocarbon has 
been established as a powerful tool to constrain C cycling rates in 
models (Ahrens et al., 2020; Chen et al., 2019; Koven et al., 2013) and 
for model intercomparison (He et al., 2016; Shi et al., 2020). However, 
a key challenge is that radiocarbon measurements are only available 
from a few sites (Lawrence et al., 2020). Therefore, many C models 
suffer from the difficulty of using information collected at the site level 
and extrapolating to the global scale (Manzoni & Porporato, 2009; 
Reichstein & Beer, 2008). Our harmonized soil profiles of SOC abun-
dance and persistence for different pedo-climatic regions provide a 
promising opportunity to constrain global C models rather than con-
straining them with individual soil profile data that may not always be 
generalizable. However, the unique controls on SOC abundance and 
persistence identified in the pedo-climatic regions limit the ability to 
extrapolate across these regions—this has also implications for statis-
tical modeling of SOC abundance and persistence.

Future work should focus on the relationship between SOC abun-
dance and persistence over time and in other soil fractions. Using bulk 
Δ14C measurements to constrain global C models overlooks the fact 
that these data represent the mean of mostly highly skewed C age dis-
tributions and thus overestimate the C age (Sierra et al., 2018). In addi-
tion, some of this very old C may be rock derived. Soils developed from 
sedimentary rocks may have older SOC ages due to the incorporation 
of the much older organic C of the parent rock material into the soil 
matrix (Bukombe et al., 2021; Grant et al., 2023; Kalks et al., 2021; van 
der Voort et al., 2019). Therefore, analyses that take into account the 
source of C by using fractions and stable isotopes such as 13C and 15N 
can further contribute to a better understanding of the controls and 
interactions between SOC abundance and persistence across regions 
(Brunn et al., 2014; Heckman et al., 2022; Kohl et al., 2015). Previous 
studies have already found distinct relationships between SOC abun-
dance and δ13C (Acton et  al.,  2013; Brunn et  al.,  2014). However, 
some of these data are even less available at the global scale, making 
their use for benchmarking global C models even more challenging. 
Therefore, future work and sampling efforts should also focus on in-
cluding and measuring more diverse soil data.

Lastly, it is important to note that the introduced 2D framework 
of SOC abundance and persistence with soil depth is time depen-
dent. Due to changes in atmospheric 14CO2 concentrations over 
time, observed patterns of soil Δ14C will continue to change with 
time, and this provides an additional model constraint that could be 
used to distinguish process models that can produce a single time 

point with multiple parameter combinations. Thus, the proposed 2D 
framework of SOC abundance and persistence can still be used to 
benchmark global C models and to identify strategies to maintain 
SOC abundance and persistence under global change.

5  |  CONCLUSIONS

In summary, the diverse mix of methods presented are complemen-
tary and allow for a more holistic interpretation of the processes con-
trolling SOC abundance and persistence across regions. Our analysis 
shows that a combination of broad climate grouping with mineral infor-
mation (i.e., soil order and clay content) is useful to better understand 
SOC abundance and persistence at the global scale. Different controls 
and processes explain the variation in SOC abundance and persistence 
across pedo-climatic region. This has implications for assessing effects 
of management and climate change on soils and C modeling efforts.

RQ1: How do SOC abundance and persistence covary across pedo-
climatic regions and with soil depth?

For most soil profiles, as depth increases, SOC abundance de-
clines and SOC persistence increases. However, under extreme cli-
matic and mineral conditions, namely soils from polar/tundra regions 
and amorphous soils, SOC persistence increases with soil depth, 
whereas SOC abundance does not necessarily decrease.

RQ2: Which climatic and soil-related controls best explain regional 
differences in SOC abundance and persistence?

Soil organic carbon abundance and persistence reflect differ-
ent controls, yet their interaction reveals information about SOC 
dynamics that are distinct for different pedo-climatic regions and 
with soil depth. For both measures, climate controls contain more 
information than mineral controls alone at the global scale. However, 
differences between and within pedo-climatic zones can be related 
to mineral controls and are key to assessing global C dynamics.

RQ3: Which processes control depth profiles of SOC abundance and 
persistence at the global scale?

The identified controls can be linked to soil processes that influ-
ence the relationship between SOC abundance and persistence as 
shown by our qualitative compartment model analyses. The model 
exercises show that some of the parameters, such as lower decom-
position rates and higher C protection potential, or lower root inputs 
and slower vertical transport, can have similar effects on the distri-
butions of soil profiles within the 2D space of SOC abundance and 
persistence. However, for most soils, vertical changes in decomposi-
tion rates and root input distributions are more important than ver-
tical transport. Compared to the SOC abundance and persistence 
patterns identified from the grouped profile data, the model results 
obtained from the vertical transport simulations are implausible.

In conclusion, all these findings have implications for assessing 
effects of management and climate change on soils and for inform-
ing C modeling efforts across regions. Our improved understanding 
of patterns and drivers of SOC abundance and persistence across re-
gions contributes to a more process-oriented modeling of future soil 
responses to climate change. Importantly, the variable combination 
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and strength of controls on SOC abundance and persistence in the 
proposed pedo-climatic regions limit the ability to extrapolate across 
these regions and into data-poor regions. Furthermore, global C 
models should be able to accurately represent the identified differ-
ences in the relationship between SOC abundance and persistence 
between pedo-climatic regions and with soil depth.
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