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Abstract
One of the largest uncertainties in the terrestrial carbon cycle is the timing and mag-
nitude	of	soil	organic	carbon	(SOC)	response	to	climate	and	vegetation	change.	This	
uncertainty prevents models from adequately capturing SOC dynamics and chal-
lenges the assessment of management and climate change effects on soils. Reducing 
these uncertainties requires simultaneous investigation of factors controlling the 
amount	 (SOC	abundance)	 and	duration	 (SOC	persistence)	of	 stored	C.	We	present	
a global synthesis of SOC and radiocarbon profiles (nProfile = 597)	to	assess	the	time-
scales	of	SOC	storage.	We	use	a	combination	of	statistical	and	depth-	resolved	com-
partment	models	to	explore	key	factors	controlling	the	relationships	between	SOC	
abundance	and	persistence	across	pedo-	climatic	regions	and	with	soil	depth.	This	al-
lows	us	to	better	understand	(i)	how	SOC	abundance	and	persistence	covary	across	
pedo-	climatic	 regions	and	 (ii)	how	 the	depth	dependence	of	SOC	dynamics	 relates	
to climatic and mineralogical controls on SOC abundance and persistence. We show 
that SOC abundance and persistence are differently related; the controls on these 
relationships	differ	substantially	between	major	pedo-	climatic	regions	and	soil	depth.	
For	example,	large	amounts	of	persistent	SOC	can	reflect	climatic	constraints	on	soils	
(e.g.,	 in	tundra/polar	regions)	or	mineral	absorption,	reflected	in	slower	decomposi-
tion and vertical transport rates. In contrast, lower SOC abundance can be found with 
lower	SOC	persistence	(e.g.,	in	highly	weathered	tropical	soils)	or	higher	SOC	persis-
tence	(e.g.,	in	drier	and	less	productive	regions).	We	relate	variable	patterns	of	SOC	
abundance and persistence to differences in the processes constraining plant C input, 
microbial decomposition, vertical C transport and mineral SOC stabilization potential. 
This	process-	oriented	grouping	of	SOC	abundance	and	persistence	provides	a	valu-
able	benchmark	for	global	C	models,	highlighting	that	pedo-	climatic	boundary	condi-
tions are crucial for predicting the effects of climate change and soil management on 
future C abundance and persistence.
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1  |  INTRODUC TION

The	 timescales	 and	 magnitudes	 of	 soil	 organic	 carbon	 (SOC)	 re-
sponses to climate and vegetation change are among the largest 
uncertainties	 in	 the	 terrestrial	 C	 cycle.	 A	 substantial	 fraction	 of	
these uncertainties relates to the persistence and cycling of C in 
soils across scales and depths (Wieder et al., 2018).	Modeling	 ra-
diocarbon measurements (Δ14C)	 provides	 insights	 into	 the	 aver-
age time a C atom remains in the soil, reflecting SOC persistence, 
which needs to be linked to SOC abundance to better understand 
potential interactions between the timescale and magnitude of SOC 
responses	to	change.	However,	most	large-	scale	studies	of	SOC	dy-
namics have mainly focused on either the drivers of SOC abundance 
(e.g., Doetterl et al., 2015; Luo et al., 2021; Quesada et al., 2020; 
Rasmussen et al., 2018; von Fromm et al., 2021; Yu et al., 2021)	or	
SOC persistence (e.g., Chen et al., 2021; He et al., 2016;	Mathieu	
et al., 2015; Shi et al., 2020; von Fromm et al., 2023).	Only	a	 few	
studies have addressed them together; these studies found that the 
controls and relationship between SOC abundance and persistence 
at the continental scale are not necessarily identical (Heckman 
et al., 2021, 2023).	Thus,	assessing	soil	responses	to	changes	in	veg-
etation and climate and informing C modeling efforts across scales 
require a better understanding of the patterns and controls of both 
SOC abundance and persistence across regions and with soil depth.

Both measures, SOC abundance and persistence, have in com-
mon that they are the result of what remains from past soil C inputs. 
Therefore,	their	variation	with	depth	depends	on	incoming	C	fluxes,	
transport,	bio-	transformations,	and	the	duration	of	C	protection	prior	
to	release	from	the	soil	(Basile-	Doelsch	et	al.,	2020).	Carbon	inputs	
at	a	given	soil	depth	include	plant	litter	(above-		or	belowground),	bio-
turbation,	and	vertical	transport	of	dissolved	organic	carbon	(DOC)	
from one soil layer to another, while losses of SOC are the result of 
mineralization,	erosion,	and	 leaching	of	DOC.	Microbial	decompo-
sition results in both mineralization and biotransformation of SOC, 
with the potential for aging of C by being recycled internally within 
the microbial community. Other interactions slowing or preventing 
SOC	from	being	decomposed	 include	organo-	mineral	 interactions,	
with the strength of those interactions related to the persistence of 
SOC over varying amounts of time (years to millennia; Oades, 1988; 
Baldock & Skjemstad, 2000).	 Important	mineral	groups	involved	in	
the	formation	of	strong	organo-	mineral	bonds	and	interactions	with	
SOC include poorly crystalline metal phases and 2:1 layered clay 
minerals (i.e., smectite; Chen et al., 2021; Rasmussen et al., 2018; 
von Fromm et al., 2021; von Fromm et al., 2023; Yu et al., 2021).	This	
is due to their large specific surface areas with a high proportion 
of reactive sites (Parfitt & Childs, 1988).	 Furthermore,	 the	 occlu-
sion of SOC in stable microaggregates may also contribute to SOC 
persistence by physically preventing microorganisms from access-
ing	otherwise	readily	available	C	sources	(Six	et	al.,	2000; Tisdall & 
Oades, 1982).

With soil depth, SOC abundance usually decreases (Jobbágy 
& Jackson, 2000; Oades, 1988),	 whereas	 SOC	 persistence	 (lower	
Δ14C	values	and	older	SOC	ages)	 increases	(Balesdent	et	al.,	2018; 

He et al., 2016; Shi et al., 2020).	This	strong	depth	trend	has	been	
the	focus	of	many	studies	(e.g.,	Ahrens	et	al.,	2020; Don et al., 2013; 
Jobbágy & Jackson, 2000; Kaiser & Kalbitz, 2012).	Explanations	dif-
fer	among	these	studies,	with	 the	depth-	trend	attributed	 to	 (i)	 re-
duced	 decomposition	 rates	with	 depth,	 (ii)	 changes	 in	 above-		 and	
belowground	 C	 inputs	 with	 depth,	 (iii)	 time	 required	 for	 vertical	
C	 transport	by	water	 and	 (iv)	 increase	 in	SOC	protection	 (e.g.,	 via	
mineral	adsorption	or	physical	protection)	with	depth.	To	better	un-
derstand which of these factors and processes may dominate SOC 
dynamics under specific environmental conditions, it is necessary to 
assess and model their combined effects on SOC abundance and 
persistence	 together.	 Thus,	 qualitative	modeling	 experiments	 (i.e.,	
conceptualizing changes in SOC abundance and persistence as a lin-
ear	system	of	ordinary	differential	equations)	can	be	a	powerful	tool	
to isolate the role that individual processes play in the relationship 
between SOC abundance and persistence with soil depth.

All	of	these	processes,	and	thus	SOC	abundance	and	persistence,	
are influenced and shaped by a combination of climatic, geochemical, 
and	biological	factors,	which	can	form	distinct	pedo-	climatic	condi-
tions	at	the	global	scale.	Although	SOC	abundance	and	persistence	
are influenced by similar factors, they may represent aspects of SOC 
dynamics that are driven by different soil processes. These differ-
ences can also influence the relationship between SOC abundance 
and persistence within a soil profile and thus, result in distinct soil 
profiles	depending	on	pedo-	climatic	conditions.

Here, we systematically test differences in controls on SOC 
abundance	 and	 persistence	 across	 pedo-	climatic	 regions	 and	with	
soil	depth	by	using	a	combination	of	statistical	and	depth-	resolved	
compartment models. In this work, we are addressing the following 
research	questions	(RQ):

RQ1: How	do	SOC	abundance	and	persistence	covary	across	pedo-	
climatic regions and with soil depth?

RQ2: What	climatic	and	mineralogical	controls	best	explain	regional	
differences in SOC abundance and persistence?

RQ3: Which processes control depth profiles of SOC abundance and 
persistence at the global scale?

2  |  METHODS

2.1  |  Soil profile selection and radiocarbon analysis

We used a subset of the soil layer data from the International Soil 
Radiocarbon	 Database	 (ISRaD	 v2.4.7.;	 Beem-	Miller	 et	 al.,	 2021; 
Lawrence et al., 2020)	that	included	both	radiocarbon	(Δ14C; ‰; here 
used	 as	 a	 proxy	 for	 the	 timescales	 of	 SOC	persistence)	 and	 soil	 or-
ganic	carbon	measurements	(SOC;	wt-	%;	here	used	as	a	measure	for	
SOC abundance; von Fromm et al., 2024).	We	report	14C data as Δ14C, 
which	is	corrected	for	the	decay	of	the	oxalic	acid	standard	between	
1950	and	the	measurement	year.	To	account	for	mass-	dependent	frac-
tionation effects, the reported 14C/12C ratio of all samples has been 
corrected to a common δ13C	value	of	−25‰	(Stuiver	&	Polach,	1977).	
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    |  3 of 18von FROMM et al.

For our analysis, we focus on bulk soil Δ14C measurements, which rep-
resent	a	mixture	of	older	and	younger	SOC,	and	thus	reflect	the	mean	
of an often highly skewed distribution of Δ14C in the sample (Chanca 
et al., 2022; Sierra et al., 2018).	Due	to	a	large	increase	in	atmospheric	
Δ14C concentration during intensive nuclear weapons testing in the 
1960s	 (“bomb”	C),	Δ14C values >0‰ indicate that most of the SOC 
cycles	on	decadal	timescales	(i.e.,	less	persistent).	Values	of	Δ14C < 0‰	
indicate that sufficient time elapsed for radioactive decay and most of 
the SOC cycles on centennial timescales or even longer (i.e., more per-
sistent; Trumbore, 2009; Sierra et al., 2018).	Since	Δ14C measurements 
are	time	dependent,	we	examined	the	data	by	year	of	measurement.	
We	found	that	two-	thirds	of	the	data	were	collected	after	1995.	Thus,	
we did not attempt to correct for potential temporal changes and as-
sumed the decline in atmospheric Δ14C during the study period has 
only a small effect on the results, given the relatively longer timescales 
associated with SOC persistence.

For our analyses, we only included mineral soil profiles (no wet-
lands/peatlands/Histosols)	with	Δ14C and SOC values reported for 
at	 least	 three	depth	 layers.	This	 resulted	 in	a	 total	of	597	profiles	
from 110 globally distributed studies (Figure 1).	 The	 data	 cover	 a	
wide range of climate and soil types (Table S1).	However,	drier	and	
colder conditions tend to be underrepresented in each climate 
zone (Figure S1),	which	is	reflected	in	the	spatial	bias	toward	North	
America	 (nProfiles = 257)	 and	Central	Europe	 (nProfiles = 85;	Figure 1).	
More	 than	half	of	 the	profiles	are	 from	forests	 (56%),	 followed	by	
grasslands	(19%),	croplands	(12%),	shrublands	(6%)	and	other	vege-
tation	types	(7%).

2.2  |  Identification and grouping of global 
pedo- climatic regions

Pedo-	climatic	 regions	 are	 areas	of	 relatively	 homogenous	 soil	 and	
climate	conditions	(Metzger	et	al.,	2005).	Particularly	at	larger	scales,	
they have been proven useful to better understand differences in 
the	controls	on	SOC	dynamics	and	to	account	for	continental-	scale	
differences in soil age that can cause correlations between mineral-
ogy and climate (von Fromm et al., 2023).	For	example,	 temperate	
and boreal forests in the northern hemisphere are often younger 
soils with different mineralogical compositions than tropical soils. 
We combined the reported Δ14C and SOC data from ISRaD with 
global climate and soil data, either by using the reported variables 
or	 gap-	filling	 based	 on	 globally	 gridded	 data	 products	 by	 extract-
ing the corresponding values based on longitude and latitude at the 
profile	 level.	 The	 global	 data	 include	 present-	day	 Köppen–Geiger	
climate zones (Beck et al., 2018),	mean	annual	precipitation	(MAP;	
mm)	 and	 mean	 annual	 temperature	 (MAT;°C;	 WorldClim	 v2;	 Fick	
& Hijmans, 2017),	 potential	 evapotranspiration	 (PET;	 mm;	 Zomer	
et al., 2022),	clay	content	(%;	SoilGrids	v1;	Hengl	et	al.,	2017),	and	
soil	order	(USDA;	Shi	et	al.,	2020).	We	had	to	limit	our	analyses	to	
these broad climate and soil variables, since more precise data, es-
pecially for soil mineralogy, are not available at the global scale. For 
more	 information	 about	 the	 exact	 gap-	filling	 procedure,	 we	 refer	

to the R code (see Data availability)	and	Table S2 which shows the 
relative	number	of	values	gap-	filled	for	each	variable.	Mean	annual	
precipitation	and	PET	were	used	to	calculate	the	aridity	index,	which	
we	defined	as	PET/MAP	(Budyko,	1974).	Aridity	values	>1 indicate 
water-	limited	(dry)	conditions	and	ratios	<1	represent	energy-	limited	
(wet)	conditions.

We grouped all soil profiles according to their main climate 
group and dominant mineral type, respectively. Climate zones were 
grouped into broad climate groups to ensure that each group con-
tained a sufficient number of soil profiles (Figure S1 and Table S1).	The	
grouping	was	based	on	the	first	capital	letter	of	the	Köppen–Geiger	
classification system, which refers to the five main climate groups, 
namely	 A—tropical,	 B—arid,	 C—warm	 temperate,	 D—cold	 temper-
ate/continental,	 and	 E—polar/tundra	 (Figure 1; Beck et al., 2018).	
Profiles	 that	were	 classified	 as	Gelisols	 or	 as	Aridisols	 in	 the	 field	
were manually assigned to the polar/tundra or arid climate group, re-
spectively.	Andisols	(volcanic/amorphous	soils)	were	excluded	from	
the climate grouping, since they are a geochemically, mineralogically, 
and pedogenically distinct soil type that are not representative for 
a given climate zone (Parfitt & Clayden, 1991).	We	 recognize	 that	
other	azonal	soil	types	(e.g.,	Entisols,	Mollisols,	Inceptisols)	exist	and	
that climate zones do not capture all soil variability. On a global scale, 
however,	climate	groups	integrate	many	soil-	forming	factors	and	can	
be seen as a conservative grouping of soil profiles that may be highly 
diverse	locally	but	face	a	similar	set	of	underlying	large-	scale	envi-
ronmental factors.

Soil types were used to identify dominant mineral groups relevant 
for SOC abundance and persistence (Figure 1 and Table S1).	We	used	
the	dominant	clay-	sized	minerals	 identified	by	 Ito	and	Wagai	 (2017)	
for	each	soil	order	as	a	grouping	proxy.	All	Andisols	were	classified	as	
dominated by amorphous minerals. These amorphous minerals include 
mostly allophanes, which are thought to be highly efficient at adsorb-
ing SOC (Torn et al., 1997).	Highly	dynamic,	young,	and	eroding	land	
surfaces	 and	 those	 experiencing	 less	 chemical	 weathering,	 such	 as	
cold or hot arid regions, or mountainous environments, were grouped 
as soils dominated by less weathered clays such as illite, or primary 
minerals	such	as	mica.	These	soils,	including	Alfisols,	Aridisols,	Entisols,	
Gelisols, and Inceptisols (Ito & Wagai, 2017),	have	an	underdeveloped	
potential	for	mineral	SOC	stabilization	(Mathieu	et	al.,	2015)	and	are	
generally situated in climate zones less favorable to biological activ-
ity. Soils from intermediately aged, often quaternary land surfaces in 
seasonal or temperate climate zones, were classified as dominated by 
high-	activity	 clays.	 They	 include	 Mollisols,	 Spodosols	 and	 Vertisols	
(Ito & Wagai, 2017).	These	are	dominated	by	smectite	and	vermicu-
lite, which are characterized by high surface areas and variable charges 
that can adsorb large amounts of SOC (Khomo et al., 2017;	Wattel-	
Koekkoek et al., 2003).	Soils	such	as	Oxisols	and	Ultisols	from	stable,	
often	tropical,	old	land	surfaces,	were	grouped	as	dominated	by	low-	
activity clays, such as kaolinite (Ito & Wagai, 2017).	These	have	a	lim-
ited surface area and therefore tend to adsorb less SOC (Feller, 1993).	
We acknowledge that the grouping of dominant mineral groups based 
on	soil	orders	is	an	oversimplification	of	the	much	more	complex	soil	
mineralogy. Yet, this classification is widely used and supported by 
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analytical data (Georgiou et al., 2022; Ito & Wagai, 2017; Quesada 
et al., 2020; von Fromm et al., 2023).	At	present,	the	only	approach	that	
can be used at the global scale where more precise data on soil miner-
alogy	and	especially	data	coexisting	with	radiocarbon	measurements	
are sparse. This approach also allows us to test the applicability of cli-
mate	zones	and	soil	orders	as	a	pedo-	climatic	grouping	of	soil	profiles	
with respect to SOC abundance and persistence at the global scale.

Overall, the applied climate and mineral grouping results in sig-
nificantly	different	groups	based	on	MAP,	MAT,	and	PET,	and	clay	
content,	 respectively	 (based	on	Kruskal–Wallis	 test,	 followed	by	a	
post hoc Dunn test with a Bonferroni correction for the p-	values;	

p-	value	<.0001).	Only	MAP	between	polar/tundra	and	arid	regions	
is not significantly different (p-	value	>.5;	Figure 2).

2.3  |  Sampling depth harmonization

Since the depth intervals at which samples were collected var-
ied across soil profiles in the ISRaD database, it was necessary 
to	harmonize	the	depth	distribution	of	the	data.	For	this,	a	mass-	
preserving	spline	function	(equal-	area	quadratic	smoothing	spline)	
was applied to each profile (Bishop et al., 1999;	Ponce-	Hernandez	

F I G U R E  1 Distribution	and	number	of	soil	profiles	across	the	main	climate	zones,	soil	orders	and	dominant	mineral	type.	Climate	zones	
are	based	on	Köppen–Geiger	climate	classifications	(Beck	et	al.,	2018).	Soils	are	grouped	by	soil	order,	with	each	soil	order	associated	
with	a	dominant	mineral	type:	amorphous = Andisols;	primary	minerals = Alfisols,	Aridisols,	Entisols,	Gelisols	and	Inceptisols;	high-	activity	
clays = Mollisols,	Spodosols,	Vertisols;	low-	activity	clays = Oxisols,	Ultisols.
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    |  5 of 18von FROMM et al.

et al., 1986).	In	short,	a	spline	function	is	a	set	of	 local	quadratic	
functions	 tied	 together	 with	 “knots”	 that	 describe	 a	 smooth	
curve through a set of points (in our case sampling depth; Bishop 
et al., 1999;	Malone	et	 al.,	2009).	The	 spline	 function	allows	 for	
some	“smoothing”	so	that	the	fitted	curve	does	not	have	to	pass	
exactly	through	every	sampling	point.	For	each	individual	profile,	
we applied the spline function to the Δ14C, SOC, and clay content 
(<2 μm)	data	 to	obtain	 a	 value	 for	 each	parameter	 for	 each	 cen-
timeter	of	depth,	extending	to	the	maximum	sampling	depth.	We	
used	the	R	package	“mpsline2”	(O'Brien	et	al.,	2022),	which	allows	
users to specify the lowest and highest predicted values, as well 
as a smoothing parameter for the spline function. To constrain the 
extrapolation	within	realistic	values,	we	set	the	lowest	and	high-
est	values	to	0.005	and	60	wt-	%,	for	Δ14C	to	−1000	and + 350‰,	
and	 for	 clay	 content	 to	 0	 and	 100%.	 The	 smoothing	 factor	was	
set	to	0.5	for	each	profile.	After	applying	the	spline	function,	we	
used	 100 cm	 as	 a	 cutoff	 for	 the	maximum	 sampling	 depth.	 This	
ensured that there were enough data from profiles with deeper 
sampling depths. However, not all soil profiles in this study reach 
100 cm	soil	depth,	and	the	number	of	available	profiles	decreases	
with increasing soil depth to nProfile = 290	at	100 cm.	Lastly,	since	
our aim is to understand and represent SOC dynamics in mineral 

soil layers, we removed all layers with SOC content >20	wt-	%	after	
applying the spline function to avoid including organic layers in 
our analysis.

2.4  |  Statistical analyses

We	 focus	on	presenting	 the	harmonized	 soil	 profile	data	 in	 a	2D-		
space consisting of Δ14C as a measure of SOC persistence, and SOC 
content as a measure of SOC abundance. In this 2D space, all values 
are sorted by depth to preserve their occurrence within a soil profile.

2.4.1  |  Soil	profile	comparison

To compare soil profiles across climate and mineral groups, we cal-
culated the median for Δ14C and SOC within each group for each 
centimeter,	 respectively.	 The	Wilcoxon	 rank-	sum	 test	 was	 used	
to	calculate	the	95%	confidence	intervals	for	each	group.	At	each	
centimeter soil depth, we ensured that the number of profiles was 
at	least	one-	third	of	the	total	number	of	profiles	in	that	group,	and	
that these profiles came from at least three different studies and 

F I G U R E  2 Boxplots	for	clay	content,	mean	annual	precipitation	(MAP),	mean	annual	temperature	(MAT)	and	mean	annual	potential	
evapotranspiration	(PET)	for	(a)	climate	groups	and	(b)	dominant	mineral	groups	(assigned	using	soil	order	classification;	see	Methods).

(a)

(b)
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6 of 18  |     von FROMM et al.

five different profiles. Due to this filtering, the median profiles for 
amorphous	and	polar/tundra	soils	cover	a	maximum	soil	depth	of	
80	and	90 cm,	respectively,	and	not	100 cm	as	for	the	rest	of	the	
dataset.

2.4.2  |  Statistical	modeling

Random forest regressions (Breiman, 2001; Breiman et al., 1984)	
were used to identify the most important predictors for SOC abun-
dance and persistence in order to better understand the observed 
patterns between the two target variables. We built one model each 
for Δ14C	 and	 SOC	 content	 with	 the	 same	 explanatory	 variables:	
depth,	MAT,	PET/MAP,	and	clay	content.	Note	that	we	did	not	use	the	
random	forest	models	to	do	any	up-	scaling,	but	to	better	understand	
the nonlinear behavior between the target variables (Δ14C	or	SOC)	
and	the	explanatory	variables,	and	how	their	importance	may	differ	
across	 pedo-	climatic	 groups.	 Furthermore,	we	 limited	 the	 analysis	
to	these	four	environmental	proxy	variables	since	they	(i)	have	been	
identified	by	other	 studies	 as	 being	 important	 in	 explaining	 varia-
tions in Δ14C and SOC at the global scale (Heckman et al., 2022; Luo 
et al., 2021;	Mathieu	et	al.,	2015; Shi et al., 2020),	(ii)	integrate	a	wide	
range of environmental processes (Wiesmeier et al., 2019),	and	(iii)	
contain independent information that allows for a better interpreta-
tion of these individual predictors, as they correlate with each other 
only to a lesser degree at broader scales (Table S3).	 Furthermore,	
these variables are widely available at reasonable precision and res-
olution at the global scale and therefore used by various global mod-
els	to	explain	soil	responses	to	climate	change	(Abramoff	et	al.,	2018; 
Sulman et al., 2014; Wieder et al., 2014).

Note	that	only	soils	from	arid,	warm	temperate,	cold	temperate,	
and tropical climate zones were included in the random forest analy-
sis.	Andisols	and	soils	from	tundra/polar	regions	had	to	be	excluded	
because their distinct soil characteristics would strongly influence 
the model behavior due to the nature of the regression approach. 
For	example,	Andisols	cover	less	than	1%	of	the	ice-	free	land	surface	
area	but	are	over-	represented	in	ISRaD	(~10%	of	all	soil	profiles	in-
cluded	in	this	study).	Only	28	profiles	were	available	in	the	dataset	
for tundra/polar profiles from very few clustered sampling regions 
(Figure 1).	Including	them	in	the	regression	analysis	would	introduce	
a strong local bias in the predictive model that is unlikely to be rep-
resentative of the entire climate zone.

For the validation of the resulting regression models, we per-
formed	a	10-	fold	cross-	validation,	ensuring	that	each	soil	profile	was	
either	fully	within	the	training	(70%)	or	the	test	dataset	(30%).	Model	
evaluation was performed on the testing dataset, including the cal-
culation	of	the	(root)	mean	square	error.	To	assess	the	 importance	
of each independent variable for the predictive power of the model, 
we	calculated	the	“permutation	feature	importance.”	This	measure	
can	be	 interpreted	as	an	explanatory	variable	being	 “important”	 if	
the shuffling of its values increases the model error, indicating that 
the	model	was	 relying	 on	 that	 explanatory	 variable	 for	 prediction	
(Molnar,	 2022).	 To	 further	 interpret	 the	 outcome	 of	 the	 random	

forest models, we used partial dependence plots and individual con-
ditional	expectation	plots.	The	partial	dependence	plots	 show	the	
marginal	 effects	 of	 an	 explanatory	 variable	 on	 the	 predicted	 out-
come of the random forest model (Friedman, 2001).	The	individual	
conditional	expectation	plots	are	similar	to	partial	dependence	plots,	
but instead show a line per observation that shows how an observa-
tion's	prediction	changes	when	the	value	of	an	explanatory	variable	
changes (Goldstein et al., 2015;	Molnar,	2022).	Rather	than	plotting	
a prediction line for each observation, we calculated the median of 
subsets of observations based on their climate group (which were 
not	included	as	predictors	in	the	random	forest).	This	allows	us	to	in-
terpret	the	importance	of	each	explanatory	variable	in	these	groups,	
respectively.

2.4.3  |  Compartment	models	of	soil	organic	carbon	
decomposition

We	used	depth-	resolved	compartment-	based	decomposition	mod-
els	(i.e.,	one-		and	two-	pool)	to	identify	which	model	parameters	have	
an influence on the relationship between SOC abundance and per-
sistence. In these models, bulk soil organic matter is characterized 
by	distinct	compartments	(pools)	with	homogenous	decomposition	
rates	that	can	interact	with	each	other	(Manzoni	&	Porporato,	2009; 
Sierra et al., 2012).	The	models	allow	us	to	test	differences	in	(i)	de-
composition	 rates,	 (ii)	 above-		 and	 belowground	 C	 inputs,	 and	 (iii)	
vertical	transport	of	C.	One-		and	two-	pool	models	are	widely	used	
to	qualitatively	assess	SOC	dynamics	in	a	simplified	way	(Manzoni	&	
Porporato, 2009).

For	 the	one-	pool	model,	 each	 soil	 layer	 is	 represented	by	 one	
compartment	 that	 is	 vertically	 connected	with	 the	 next	 compart-
ment to mimic soil depth (Figure S2).	For	the	two-	pool	model,	each	
soil layer is represented by two compartments to account for dif-
ferent decomposition rates within the same soil layer (i.e., fast vs. 
slow	pool).	Similar	to	the	one-	pool	model,	these	two	compartments	
are	vertically	connected	with	the	next	two	compartments	to	mimic	
soil depth (Figure S2).	By	using	these	models,	we	can	isolate	individ-
ual soil processes to better understand their importance for SOC 
abundance and persistence and with soil depth without the need 
to constrain the models with observational data. We qualitatively 
compare the modeled soil profiles with the measured soil profiles to 
better understand which factors may control differences between 
their	shapes	with	depth	across	different	pedo-	climatic	zones.

2.4.3.1 | Model setup
We	ran	the	models	within	the	“SoilR”	framework	(Sierra	et	al.,	2012, 
2014)	and	extended	the	models	by	adding	a	depth-	resolved	version	
(vertical	transfer	linear	model).	For	each	model,	we	defined	10	verti-
cal	layers.	Each	layer	represents	10 cm,	so	that	the	whole	profile	rep-
resents	a	soil	depth	of	1 m.	The	general	model	of	soil	organic	matter	
decomposition is a linear dynamical system of the following form:

(1)dC(t)∕dt = I + AC(t),
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    |  7 of 18von FROMM et al.

where the amount of SOC in different pools is represented as vector 
C(t),	 with	 total	 SOC	 inputs	 (above-		 and	 belowground)	 represented	
by the vector I. The decomposition operator A	 is	a	square	matrix	of	
dimension m × m, which contains the decomposition rates ki for each 
pool i,	and,	in	the	case	of	the	two-	pool	model,	the	coefficients	αij rep-
resenting the proportion of SOC transferred between pools within a 
soil layer (Sierra et al., 2012).	For	the	depth-	resolved	version,	the	di-
mension of the system is increased by the total number of depth layers 
l.	Therefore,	the	matrix	A	is	extended	to	dimension	(m × l) × (m × l),	with	
off-	diagonal	 coefficients	 representing	 both	 the	 proportion	 of	 SOC	
transferred	vertically	from	one	 layer	to	the	next	and	between	pools	
(Figure S2).	Analogously,	in	the	depth-	resolved	version	of	the	model,	
the	vector	of	SOC	stocks	and	the	vector	of	SOC	inputs	are	extended	
to dimension m x l, representing SOC stocks and inputs for each pool 
at each layer, respectively.

Similarly, the dynamical system for radiocarbon in soil organic 
matter can be represented as:

where the amount of radiocarbon in each pool and depth layer is rep-
resented by the vector 14C(t),	with	the	radiocarbon	inputs	represented	
by I14C(t),	and	λ as the radioactive decay constant.

Within	the	framework	of	“SoilR”,	SOC	stocks	and	Δ14C values are 
calculated simultaneously, which allows us to plot the model results 
in the same 2D space as the harmonized soil profile data. Before 
estimating Δ14C values and SOC stocks, we ran the model to steady 
state	(50,069 years	spin-	up	with	historical	atmospheric	radiocarbon	
data	until	2019;	Hua	et	al.,	2022; Reimer et al., 2013).	Steady	state	
was achieved when total C inputs were equal to C outputs (Sierra 
et al., 2014).

2.4.3.2 | Application
We	used	 the	one-	pool	model	 to	 investigate	 the	 influence	of	 each	
model parameter on the relationship between SOC stocks and Δ14C 
within the 2D space of SOC abundance and persistence. The tested 
parameters included:

	 (i)	Decomposition	rates	(k)	that	are	constant	with	soil	depth,
	(ii)	 Decomposition	rates	(k)	that	are	decreasing	with	soil	depth,
	(iii)	 Aboveground	C	inputs	(Iabove;	litter)	at	the	soil	surface,
	(iv)	 Belowground	C	inputs	(Ibelow;	roots)	with	soil	depth,	and
	(v)	Vertical	transfer	rates	(α)	to	represent	leaching	of	C	down	the	soil	

profile.

Note	 that	 the	 range	of	values	applied	 for	each	parameter	 (i–v)	
is	based	on	expert	knowledge	and	the	absolute	values	of	the	model	
outputs are not directly comparable to the raw data. In addition, we 
recognize that different combinations of model parameter values can 
lead	to	similar	results	(i.e.,	equifinality).	Nevertheless,	the	qualitative	
models allow for hypothesis testing and a better understanding of 
the observed patterns between SOC and Δ14C. For each model sce-
nario,	we	only	changed	one	parameter	(i–v)	at	a	time	(Table S4).	To	
have	a	common	model	across	scenarios	(i–v),	we	defined	a	reference	

model with Iabove = 1,	which	can	be	 interpreted	as	one	unit	of	SOC	
entering the soil from aboveground. Therefore, the units of the mod-
eled SOC stocks are arbitrary and easier to interpret. The decompo-
sition rate was set to k = 1/500	at	each	depth	layer,	which	translates	
to	 a	 turnover	 time	 of	 about	 500 years.	 Belowground	 SOC	 inputs	
(Ibelow)	were	set	to	0,	except	for	the	model	scenario	where	we	tested	
their influence on SOC stocks and Δ14C. Lastly, the downward trans-
fer rate was set to α = 0.005.	Since	each	depth	 layer	has	the	same	
length	(10 × 10 cm),	the	transfer	rate	can	be	interpreted	as	the	pro-
portional movement of SOC per cm soil in the vertical direction.

The	 two-	pool	 model	 was	 used	 to	 test	 the	 influence	 of	 SOC	
protection	(i.e.,	by	mineral	adsorption)	on	SOC	abundance	and	per-
sistence.	Since	the	only	difference	between	the	one-		and	two-	pool	
models	 is	the	movement	of	C	from	the	“fast”	to	the	“slow”	cycling	
pool, we will focus only on the effect of horizontal C transfer for 
the	 two-	pool	 model.	 This	 was	 explored	 by	 changing	 the	 transfer	
rate	 from	 the	 “fast”	 pool	 (faster	 decomposition—less	 C	 stabilized)	
to	 the	 “slow”	 pool	 (slower	 decomposition—more	 C	 stabilized).	 In	
theory,	 the	more	 SOC	 that	 enters	 the	 “slow”	 pool,	 the	 higher	 the	
SOC persistence should be. To test this, we used a model with a k-	
value	of	1/50	for	the	“fast”	pool	and	of	1/1250	for	the	“slow”	pool.	
For both pools, the k-	values	were	 decreasing	with	 soil	 depth.	We	
included root inputs (Ibelow)	at	each	depth	layer,	which	were	decreas-
ing	exponentially.	We	set	Iabove = 1,	and	the	vertical	transfer	rate	to	
α = 0.0025	(Table S4).

All	 analyses	were	 performed	within	 the	R	 computing	 environ-
ment (version 4.1.1; R Core Team, 2021)	 including	the	additional	R	
packages	 “ggpubr”	 (Kassambara,	2020),	 “iml”	 (Molnar	et	al.,	2018),	
“mlr3”	 (Lang	 et	 al.,	 2019),	 “RColorBrewer”	 (Neuwirth,	2022),	 “ras-
ter”	 (Hijmans,	 2021),	 “scales”	 (Wickham	 &	 Seidel,	 2022),	 “sf”	
(Pebesma, 2018),	and	“tidyverse”	(Wickham	et	al.,	2019).

3  |  RESULTS

3.1  |  Climate and mineral grouping of SOC 
abundance and persistence

We found that the 2D space of SOC abundance and persistence 
provides a useful tool to differentiate between climate and mineral 
groups at the global scale (Figure 3a,b).	The	same	grouping	by	cli-
mate and mineralogy cannot be resolved when SOC abundance and 
persistence	are	mapped	in	the	more	typical	depth-	based	approach	
as	 indicated	 by	 a	 larger	 overlap	 of	 the	 95th	 confidence	 intervals	
(Figure 3c–f).

The climate groups show clear and distinct patterns based on 
SOC	 abundance	 and	 persistence	 based	 on	 the	 95th	 confidence	
intervals. Tropical soils show overall the lowest SOC persistence 
(highest Δ14C	values	resulting	in	youngest	C)	at	any	given	soil	depth	
and the smallest change in SOC persistence (Difference (Δ)	 in	
Δ14C = 352‰)	between	the	surface	and	1 m	soil	depth	 (Figure 3a).	
Soils from tundra/polar regions have overall a higher SOC abun-
dance and persistence at any given soil depth. This also results in 

(2)d
14
C(t)∕dt = I14C(t) + A

14
C(t) − �

14
C(t),
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8 of 18  |     von FROMM et al.

the largest difference of SOC persistence (ΔΔ14C = 739‰)	between	
the	surface	and	the	deepest	layer.	Temperate	soils	(warm	and	cold)	
show the largest difference in SOC abundance with soil depth (2.88 
and	4.14	wt-	%,	respectively)	and	the	second	highest	total	SOC	accu-
mulation after tundra/polar soils. The same is true for the difference 
in SOC persistence with soil depth compared to the other profiles 
(ΔΔ14C = 360	 and	 449‰,	 respectively).	 Arid	 soils	 show	 the	 small-
est accumulation and smallest change of SOC with soil depth (0.70 
wt-	%)	compared	to	all	other	groups.	In	addition,	they	have	relatively	
high SOC persistence at the surface (Δ14C = 11.4‰),	indicating	little	
incorporation	of	“bomb”	14C	(after	1960s),	yet	the	absolute	change	
in SOC persistence with soil depth (ΔΔ14C = 359‰)	is	similar	to	soils	
from warm temperate and tropical regions.

When grouped by dominant mineralogy, differences between 
groupings are less pronounced as indicated by the more overlap-
ping	95th	confidence	 intervals.	Amorphous	soils	 show	the	highest	

accumulation and persistence of SOC (Figure 3b).	 This	 is	 compa-
rable to soils from tundra/polar regions (Figure 3a)	and	results	in	a	
large difference in SOC persistence between the surface and the 
deepest layer (ΔΔ14C = 677‰;	 Figure 3b).	 Highly	 weathered	 soils	
dominated	 by	 low-	activity	 clays	 show	 the	 lowest	 SOC	 abundance	
and persistence at any given soil depth. This also results in the 
smallest	difference	in	SOC	abundance	(1.91	wt-	%)	and	persistence	
(ΔΔ14C = 356‰)	with	soil	depth.	In	contrast,	moderately	weathered	
soils	dominated	by	high-	activity	clays	have	higher	SOC	abundance	
and persistence at any given soil depth. The difference in SOC 
persistence with soil depth (ΔΔ14C = 397‰)	 is	comparable	 to	soils	
dominated by primary minerals (ΔΔ14C = 393‰).	 Changes	 in	 SOC	
abundance	with	 soil	 depth	 are	 lower	 for	 soils	 dominated	by	 high-	
activity	 clays	 (2.71	wt-	%)	 compared	 to	 the	 primary	mineral	 group	
(3.26	wt-	%).	Overall,	the	differences	between	the	profiles	clustered	
by dominant mineral types are smaller compared to the climate 

F I G U R E  3 Median	soil	profile	data	based	on	harmonized	data	for	Δ14C	and	soil	organic	carbon	(SOC)	for	(a)	climate	grouping	(excluding	
Andisols)	and	(b)	dominant	mineral	type.	Black	dots	show	10 cm	depth	increments	and	black	triangles	indicate	0 cm	for	each	group,	
respectively.	(c–f)	Δ14C	and	SOC	plotted	against	depth	for	the	climate	and	mineral	grouping,	respectively.	Note	that	all	SOC	axes	are	log-	
scaled.	Error	bars	show	95%	confidence	intervals	based	on	the	Wilcoxon-	Rank-	Sum	test.

(a) (b)

(c) (d) (e) (f)
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    |  9 of 18von FROMM et al.

grouping	 (except	 for	 soils	 dominated	 by	 amorphous	minerals)	 and	
less	clear	as	suggested	by	the	more	overlapping	95th	confidence	in-
tervals. Therefore, we will focus primarily on climate zones in the 
remainder of the manuscript.

3.2  |  Random forest—Climate and mineral controls

Controls on SOC abundance and persistence differ significantly at 
the global scale (Figure 4).	Both	random	forest	models	explain	about	
55%	of	the	observed	variation	(SOC	abundance:	R2 = 0.54 ± 0.15	and	
SOC persistence: R2 = 0.55 ± 0.06)	with	a	root	mean	square	error	of	
1.5 ± 0.16	w-	%	and	115 ± 9‰,	respectively.	For	the	SOC	persistence	
model (Δ14C),	soil	depth	is	the	most	important	predictor	(relative	im-
portance:	31%),	followed	by	MAT	(27%),	PET/MAP	(23%),	and	clay	
content	(19%).	In	contrast,	for	the	SOC	abundance	model,	PET/MAP	
was	 the	most	 important	 predictor	 (relative	 importance:	 38%),	 fol-
lowed	by	MAT	(33%),	depth	(17%),	and	clay	content	(13%;	Figure 4).	
Both models, SOC abundance and persistence, were able to capture 
differences between climate groups as observed in the harmonized 
soil profiles, even though the climate groups themselves were not in-
cluded as predictors in the random forest model (Figure 5; Figure S3).	
Clay content is the only predictor that covers a wide range within 
each climate group (Figure 2a),	allowing	further	investigation	of	its	
control on SOC abundance and persistence across climate groups 
(Figure 5).

The effect of clay content on SOC abundance and persistence 
differs significantly within and between climate groups (Figures 2a 
and 5).	For	the	SOC	persistence	model,	higher	clay	content	leads	
to overall more negative predicted Δ14C values in each climate 
group—especially	 in	 temperate	 and	 arid	 regions	 (Figure 5a).	 For	
the SOC abundance model, higher clay content leads to higher 

predicted	SOC	values.	Below	30%	clay	content,	all	climate	groups	
are	 significantly	 different	 from	 each	 other	 (based	 on	 their	 95th	
confidence	 intervals).	 In	 contrast,	 at	 higher	 clay	 contents,	 warm	
and cold temperate soils, and arid and tropical soils are not signifi-
cantly different from each other, respectively (Figure 5b).	When	
plotting the predicted Δ14C values against the predicted SOC 
values	 for	 the	95%	data	 range	of	each	climate	group	 (Figure 5c),	
values with higher clay content (>30%;	 larger	 points)	 fall	 in	 the	
lower	right	corner	(high	SOC	abundance	and	persistence),	whereas	
values with lower clay content (<30%;	 smaller	 points)	 fall	 in	 the	
upper	left	corner	(lower	SOC	abundance	and	persistence).	An	ex-
ception are tropical soils that show the smallest absolute change 
in	 SOC	 abundance	 (0.24	wt-	%)	 and	 persistence	 (88‰)	with	 clay	
content (derived by subtracting the predicted SOC/Δ14C value at 
the highest clay content from the predicted value at the lowest 
clay	content).	This	suggests	that	clay	content	may	not	play	such	an	
important role in these soils.

3.3  |  Depth- resolved compartment models—
Parameter testing

We find that a combination of differences in C inputs, decomposi-
tion	 rates	and	vertical	C	 transport	 can	 reasonably	explain	 the	ob-
served patterns of SOC abundance and persistence (Figure 6).	The	
identified	 controls	 can	 be	 linked	 to	 our	 process-	understanding	
gained from the grouping of the soil profiles and from the statistical 
modeling.	 The	 depth-	resolved	 compartment-	based	 decomposition	
models	prove	especially	useful	 to	 separate	 the	 influence	of	 (i)	 de-
composition	rates,	(ii)	above-		and	belowground	C	inputs,	(iii)	vertical	
downward	transport,	and	(iv)	SOC	protection	when	visualized	within	
the 2D space of SOC abundance and persistence (Figure 6).

F I G U R E  4 Relative	variable	importance	of	the	random	forest	models	for	(a)	soil	organic	carbon	(SOC)	persistence	and	(b)	SOC	abundance.	
Error	bars	are	calculated	from	the	10-	fold	cross-	validation	and	represent	the	median	absolute	deviation.

(a) (b)
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10 of 18  |     von FROMM et al.

3.3.1  |  Decomposition	rates

Changes in the decomposition rate lead either to accumulation of 
SOC	with	higher	SOC	persistence	(due	to	slower	decomposition)	or	
to lower SOC abundance and persistence (due to faster decomposi-
tion; Figure 6b,c).	For	relatively	fast	decomposition	rates	(k > 1/50;	
Figure S4),	the	highest	Δ14C values are not found at the surface, as 
usually observed in nature (Figure 3).	Due	to	the	rapid	decomposi-
tion	of	SOC,	more	“bomb”	14C	(after	1960s)	is	incorporated	deeper	
into the soil profile, and the models lose more SOC with soil depth 
(up	to	15	orders	of	magnitude)	 than	 is	consistent	with	the	harmo-
nized profile data (Figure 3).	Varying	 the	decomposition	 rate	with	
soil depth (Figure 6c)	results	in	soil	profile	shapes	that	are	more	con-
sistent with the harmonized profile data (Figure 3a,b)	compared	to	
keeping decomposition rates constant with soil depth.

3.3.2  |  Above-		and	belowground	C	inputs

In	our	model	experiment,	 aboveground	C	 inputs	 (litter)	only	 influ-
ence SOC abundance, but not SOC persistence (Figure 6d).	This	 is	
because these models are at steady state, which means that the 
C stocks do not change over time and C inputs are balanced by 

outputs. Therefore, models with overall higher aboveground C in-
puts have the same SOC persistence as the other models but have 
higher SOC abundance at each soil depth.

In	 contrast,	 belowground	C	 inputs	 (root	 inputs)	 influence	both	
SOC abundance and persistence (Figure 6e).	 To	 compare	 models	
with different root inputs, we held the sum of root inputs constant 
(ca.	1.58)	and	only	varied	the	distribution	of	C	inputs	with	soil	depth.	
We	 tested	 constant,	 linear,	 and	exponentially	 decreasing	C	 inputs	
with depth. Overall, the higher the C inputs with soil depth, the 
higher the SOC abundance, and the lower the SOC persistence. This 
is	because	more	fresh	(younger)	C	enters	the	soil	at	depth.	The	distri-
bution	of	belowground	C	inputs	determines	the	exact	effect	of	root	
inputs on SOC abundance and persistence.

3.3.3  |  Vertical	downward	transport

We observed that changes in the vertical downward transport of 
C can have similar effects on SOC abundance and persistence as 
changes in root inputs (Figure 6f).	With	lower	rates	of	vertical	trans-
port (smaller α-	values),	less	SOC	enters	the	next	soil	layer,	resulting	
in overall lower SOC abundance and higher SOC persistence with 
soil depth. However, the range of tested parameter values can yield 

F I G U R E  5 Partial	dependence	plots	
(PDP)	for	clay	content	derived	from	the	
random	forest	model	for	(a)	Δ14C and 
(b)	soil	organic	carbon	(SOC).	In	panel	
(a)	and	(b),	the	y-	axis	shows	median	
predicted Δ14C and SOC values for each 
observation grouped by their climate 
group, respectively. Solid lines represent 
95%	of	the	respective	data	range	for	each	
climate group (predictions outside this 
range	should	be	interpreted	with	caution).	
Shaded	areas	refer	to	the	95th	confidence	
interval.	Panel	(c)	shows	median	predicted	
Δ14C and SOC values for each clay bin 
(dot	size,	derived	from	the	PDP)	for	
each	climate	group,	respectively.	Arrows	
indicate change from low to high clay 
content within each climate group, 
respectively.

Climate grouping cold temperate warm temperate tropical arid
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F I G U R E  6 Depth-	resolved	compartment-	based	decomposition	model	results.	(a)	tested	model	parameters	labeled	with	their	
corresponding	graph,	(b)	different	decomposition	rates	that	are	constant	with	soil	depth,	(c)	changes	in	decomposition	rates	with	soil	depth	
from	no	change	(vkm.0)	to	slower	decomposition	rates	(vkm.3),	(d)	different	litter	(aboveground	C)	input	quantities,	(e)	changes	in	root	
(belowground	C)	input	distributions;	all	distributions	have	a	sum	of	1.58,	(f)	different	vertical	transport	rates,	(g)	different	transfer	rates	from	
“fast”	to	“slow”	pool	and	(h)	conceptual	summary	of	all	models.	Black	dots	in	(b–g)	represent	10 cm	depth	increments.	Purple	thick	line	in	
panel	(b–f)	is	always	the	same	reference	model.	For	more	details	about	model	parameters	see	methods	and	Table S4.	Note	that	x-	axes	are	on	
a	log-	scale.
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    |  11 of 18von FROMM et al.

unrealistic	results.	For	example,	when	the	vertical	transport	rate	is	
small (α = 0.0001),	the	model	loses	too	much	SOC	with	soil	depth	(up	
to 12 orders of magnitude; Figure S5)	compared	to	the	harmonized	

profile data (Figure 3).	On	the	other	hand,	when	the	vertical	down-
ward transport rates are high (for α > 0.02),	all	Δ14C values are above 
0‰,	 indicating	 that	 all	 depth	 layers	 are	 influenced	by	 “bomb”	 14C 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

 13652486, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17320 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [20/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 18  |     von FROMM et al.

(Figure A5),	which	is	again	inconsistent	with	the	harmonized	profile	
data (Figure 3).

3.3.4  |  Soil	organic	carbon	protection

For	 the	 given	 two-	pool	model	 setup,	 the	more	 SOC	 that	 is	 trans-
ferred	to	the	“slow”	pool	(i.e.,	higher	SOC	protection),	the	higher	the	
SOC abundance and persistence (Figure 6g).	Note	 that	 the	differ-
ences in SOC persistence between models decrease with soil depth. 
This is because less C inputs with high Δ14C	values	enter	the	“fast”	
pool	at	depth,	and	therefore,	the	influence	of	the	“fast”	pool	on	the	
“slow”	pool	decreases	with	soil	depth.	In	addition,	to	model	similar	
Δ14C values with soil depth (<	−175‰)	as	in	the	harmonized	profile	
data (Figure 3),	two	pools	are	needed	to	ensure	that	the	model	does	
not lose too much SOC too quickly with depth, while still achieving 
high SOC persistence (lower Δ14C	values).

4  |  DISCUSSION

Our	 analysis	 demonstrates	 that	 different	 factors	 explain	 the	
global distribution of SOC abundance and persistence to vary-
ing degrees of importance (Figure 4).	 For	 example,	 PET/MAP	 is	
most important in predicting SOC abundance at the global scale, 
whereas	depth	 is	most	 important	 in	explaining	variations	 in	SOC	
persistence. This suggests that while SOC abundance and persis-
tence are related, they reflect different aspects of SOC dynamics 
(Heckman et al., 2021).	This	finding	has	important	implications	for	
predicting effects of soil management and climate change on fu-
ture SOC abundance and persistence.

Our results further highlight differences in the relationship be-
tween	SOC	abundance	and	persistence	across	pedo-	climatic	regions	
(Figure 3).	The	 identified	patterns	can	be	 related	 to	differences	 in	
C	 inputs	 (above-		 and	 belowground),	 decomposition	 rates,	 as	 well	
as vertical and horizontal transfer of C that are characteristic for 
the different regions (Figure 6; Sierra et al., 2024).	In	the	following	
section, we discuss the underlying mechanisms controlling SOC 
abundance and persistence across regions and their implications for 
assessing the response of SOC abundance and persistence within 
their	pedo-	climatic	boundary	conditions	to	changes	in	soil	manage-
ment and climate.

4.1  |  Drivers and interactions of SOC 
abundance and persistence

4.1.1  |  Higher	SOC	abundance	and	persistence	in	
cold climates and amorphous soils

At	the	global	scale,	the	highest	SOC	abundance	and	persistence	are	
found in geochemically younger, less weathered soils (Figure 3).	
This group includes soils that occur in cold temperate and polar/

tundra climate zones, as well as soils dominated by amorphous 
minerals,	as	has	previously	been	observed	in	numerous	site-	scale	
studies	(e.g.,	Basile-	Doelsch	et	al.,	2007; Schuur et al., 2008; Torn 
et al., 1997).	These	soils	are	characterized,	on	average,	by	a	rela-
tively short soil development (<12,000 years).	 Furthermore,	 the	
harmonized	soil	profiles	of	these	three	pedo-	climatic	groups	(cold	
temperate,	 polar/tundra	 and	 amorphous	 soils)	 have	 in	 common	
that they are characterized by a relatively large spread in SOC 
persistence with soil depth (ΔΔ14C > 449‰;	Figure 3).	This	 is	an	
indication	 that	 the	 deeper	 soil	 layers	 at	 1 m	 are	 less	 connected	
to	 surface	 SOC	 dynamics.	 Possible	 explanations	 include	 slower	
decomposition rates, higher SOC adsorption to minerals, slower 
vertical C transport and/or less C inputs with soil depth as sug-
gested by our compartment models (Figure 6;	Ahrens	et	al.,	2020; 
Sierra et al., 2024).	 However,	 the	 importance	 of	 these	 different	
controls on SOC abundance and persistence varies widely for the 
three	pedo-	climatic	groups.

In amorphous soils, the adsorption of SOC to reactive miner-
als results in higher SOC protection, reduced vertical transport 
and decomposition rates (Figure 6b,c,f,g; Oades, 1988; Torn 
et al., 1997).	 Overall,	 this	 makes	 the	 SOC	 in	 these	 soils	 highly	
persistent	 against	 decomposition	 and	 climate	 change	 (McGrath	
et al., 2022).	 In	contrast,	 in	polar/tundra	soils,	 low	temperatures	
and high soil moisture typically result in slower decomposition 
rates and contribute to the accumulation of large SOC stocks 
over long time periods (Figure 6b,c; Ping et al., 2015; Hugelius 
et al., 2014; Shi et al., 2020).	 However,	 under	 climate	 change,	
these large SOC stocks could be easily decomposed if SOC is 
not adsorbed by minerals (Gentsch et al., 2018; Hicks Pries 
et al., 2013; Schuur et al., 2008).	Soil	organic	carbon	abundance	
and persistence in soils from cold temperate regions are most 
likely controlled by a combination of climate and mineral controls 
(Rasmussen et al., 2006).	These	soils	still	show	relatively	large	dif-
ferences in SOC persistence between the surface and deeper lay-
ers (ΔΔ14C = 449‰)	and	intermediate	SOC	abundance	(Figure 3a).	
This suggests that mineral adsorption of SOC and reduced de-
composition rates are more important than vertical transport of 
SOC and root inputs at deeper depths, resulting in overall more 
persistent SOC (Figure 6b,c,e,f).	 Soils	 from	 cold	 temperate	 re-
gions	are	also	dominated	by	high-	activity	 clays	 (Figure 1),	which	
have a greater capacity to adsorb SOC (Rasmussen et al., 2018; 
Yu et al., 2021),	reducing	overall	decomposition	rates	and	vertical	
transport of SOC.

4.1.2  |  Soils	with	lower	SOC	abundance	and	
persistence

Lower SOC abundance and persistence are found in warm temper-
ate, tropical, and arid regions (Figure 3;	Mathieu	 et	 al.,	 2015; Shi 
et al., 2020).	These	soils	are,	on	average,	characterized	by	a	longer	
soil development (>12,000 years)	and	are	characterized	by	smaller	
differences in SOC persistence between the surface and deeper 
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    |  13 of 18von FROMM et al.

layers (ΔΔ14C < 360‰;	Figure 3).	This	suggests	that	SOC	dynamics	
throughout the soil profile are more closely related, either via faster 
vertical transport (Kalbitz & Kaiser, 2008)	or	higher	root	inputs	with	
soil depth (Jackson et al., 1996)	 combined	with	 faster	decomposi-
tion rates as suggested by our compartment models (Figure 6b,c,e,f).	
However, the importance of these controls on SOC abundance and 
persistence	differs	among	the	three	pedo-	climatic	groups.

Soils from warm temperate regions can efficiently adsorb SOC 
to reactive minerals (Rasmussen et al., 2018; von Fromm et al., 2021; 
Yu et al., 2021)	similar	to	soils	in	cold	temperate	climates	(Figure 3).	
However, soils in warm temperate regions store less persistent SOC 
at any given soil depth compared to those in cold temperate climates 
(Figure 3).	Our	results	and	previous	literature	suggest	that	climate-		
and	 mineral-	mediated	 variations	 in	 decomposition	 rates	 are	 the	
main driver of these observed differences (Rasmussen et al., 2006; 
Townsend et al., 1995; Trumbore et al., 1996).	 For	 example,	 soils	
from warmer climates are typically characterized by faster turnover 
rates due to enhanced SOC decomposition (Carvalhais et al., 2014; 
Trumbore et al., 1996).	 However,	 some	warm	 temperate	 soils	 are	
also	 dominated	by	 low-	activity	 clays	 (i.e.,	 kaolinite;	Figure 1),	 that	
typically adsorb less amounts of SOC, which results in overall less 
persistent SOC (Khomo et al., 2017;	 Six	 et	 al.,	2002; von Fromm 
et al., 2021;	Wattel-	Koekkoek	et	al.,	2003).	This	is	supported	by	our	
statistical models, which show that increased clay content leads to 
smaller increases in SOC abundance and persistence for warm tem-
perate soils compared to cold temperate soils (Figure 5).

Tropical soils show the smallest change in SOC abundance and 
persistence with increasing clay content (Figure 5).	This	is	because	
these	soils	are	primarily	dominated	by	low-	activity	clays	and	other	
end-	member	weathering	mineral	products	(Figure 1; Feller, 1993).	
Due to the lower SOC adsorption by minerals and fast decompo-
sition rates due to high moisture availability (Figure 6b,c,g; Sierra 
et al., 2021; Xiao et al., 2022),	tropical	soils	have	the	youngest	and	
least persistent C at any given soil depth (Figure 3).	 This	 is	 also	
supported by the fact the tropical soils have the deepest incor-
poration	of	“bomb”	14C	(down	to	20 cm;	Figure 3)	suggesting	that	
these	soils	exchange	C	relatively	fast	(decadal	timescales)	with	the	
atmosphere.

Arid	 soils	 are	 characterized	by	 relatively	high	SOC	persistence	
at the surface (Δ14C = 11‰),	while	deeper	 soil	 layers	more	closely	
resemble warm temperate and tropical soils (Figure 3).	 This	 sug-
gests that only small amounts of fresh C (which would have higher 
Δ14C	values)	enter	the	soil	and	that,	on	average,	surface	SOC	cycles	
on	 longer	timescales	compared	to	the	other	two	pedo-	climatic	re-
gions. However, given that arid soils are characterized by the lowest 
SOC abundance (Figure 3),	 low	C	inputs	due	to	 low	(root)	biomass	
(Jackson et al., 1996)	are	likely	to	be	the	limiting	factor	rather	than	
reduced decomposition rates due to low moisture availability (Ewing 
et al., 2008).	 This	 is	 also	 supported	 by	 our	 compartment	 models	
(Figure 6).	Mineral	SOC	adsorption	may	only	play	a	role	in	arid	soils	
where	high-	activity	clays	are	present	(Figure 1; Khomo et al., 2017; 
Quéro et al., 2022),	 and	where	 higher	 clay	 content	 then	 leads	 to	
higher SOC abundance and persistence (Figure 5).

4.2  |  Implications for soil C management

Conceptually, by linking the identified patterns and controls of SOC 
abundance	 and	 persistence	 to	 the	 results	 of	 the	 compartment-	
based	model	experiment,	our	findings	can	be	used	to	assess	region-	
specific responses of soils to changes in management and climate. 
Our	 compartment-	based	 models	 show	 that	 high	 SOC	 abundance	
and	persistence	 required	 for	 long-	term	SOC	storage	can	be	 found	
when	high	C	inputs	(above-		and	belowground)	are	getting	adsorbed	
by minerals and/or are only slowly decomposed (Figure 6h).	Based	
on our findings, we will briefly conceptualize how soil responses will 
differ	across	our	pedo-	climatic	regions,	using	increased	C	inputs	as	
an	example.

Centered	on	current	conditions,	soils	dominated	by	high-	activity	
clays from warm and cold temperate regions, followed by soils from 
arid	 regions	with	high-	activity	 clays	and	high	C	 inputs	are	 charac-
terized by relatively high SOC abundance and persistence due to a 
combination of high C inputs, mineral C adsorption, and reduced de-
composition rates (Figures 3, 5 and 6).	In	particular,	soils	from	cold	
temperate regions already store large amounts of SOC under cur-
rent	conditions	(ca.	1581	Pg	C	in	the	first	meter,	Hengl	et	al.,	2017).	
Under increased C inputs, the key challenge will be to ensure that 
newly	added	C	 is	decomposed	slowly,	 for	example,	due	to	mineral	
C adsorption. However, many studies have shown that most of the 
newly entered C, also at deeper depth, is decomposed relatively 
quickly	 and	 is	 typically	 not	 contributing	 to	 long-	term	 C	 storage	
(Balesdent et al., 2018; Scheibe et al., 2023; Stoner et al., 2021; Xiao 
et al., 2022).

Our findings imply that tropical soils are the most challenging 
for	 increasing	 long-	term	SOC	 storage,	 since	 they	have	 relatively	
low SOC abundance and persistence under current conditions 
(Figures 3 and 5).	 Although	 tropical	 evergreen	 forests	 have	 the	
highest root biomass globally (Jackson et al., 1996),	most	of	 the	
C decomposes relatively quickly due to environmental and min-
eralogical conditions, as indicated by the deepest incorporation 
of	“bomb”	C	(Figures 3 and 6;	Muñoz	et	al.,	2023).	In	addition,	be-
cause these soils are highly weathered (i.e., dominated by 1:1 clay 
minerals; Figure 1),	the	reactivity	of	these	minerals,	and	therefore	
the adsorption of C by minerals, cannot be increased. Therefore, 
the focus for tropical soils should be on maintaining SOC rather 
than trying to increase it over longer time periods (Reichenbach 
et al., 2023).	This	 is	particularly	 important	because	 tropical	 soils	
exchange	C	with	the	atmosphere	on	decadal	timescales	down	to	
20 cm	 (Figure 3),	 suggesting	 that	 these	 soils	 may	 respond	more	
rapidly	to	environmental	changes	(Nottingham	et	al.,	2020).	In	ad-
dition, due to the large area that tropical soils cover, their absolute 
SOC	storage	in	the	first	meter	(ca.	515	Pg	C)	is	greater	than	that	
of	warm	temperate	soils	(ca.	389	Pg	C)	and	arid	soils	(ca.	318	Pg	C;	
Hengl et al., 2017).

Amorphous	 soils	 and	 soils	 from	polar/tundra	 regions	 have	 the	
highest SOC abundance and persistence under current climatic con-
ditions (Figure 3).	Due	to	their	 large	amounts	of	reactive	minerals,	
amorphous soils are likely to be able to store large amounts of SOC 

 13652486, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17320 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [20/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 of 18  |     von FROMM et al.

over longer time periods, yet these soils cover <1%	of	the	ice-	free	
land surface area. Soils from polar/tundra regions currently store 
about 1048 Pg C in the first meter (Hengl et al., 2017),	but	they	are	
at high risk of releasing large amounts of formerly persistent C due 
to climate warming (Schuur et al., 2008).

4.3  |  Implications for global C modeling

Our findings can be a valuable tool for testing the performance of 
global C models and their ability to capture key processes relevant 
to SOC abundance and persistence across regions. Radiocarbon has 
been established as a powerful tool to constrain C cycling rates in 
models	(Ahrens	et	al.,	2020; Chen et al., 2019; Koven et al., 2013)	and	
for model intercomparison (He et al., 2016; Shi et al., 2020).	However,	
a key challenge is that radiocarbon measurements are only available 
from a few sites (Lawrence et al., 2020).	Therefore,	many	C	models	
suffer from the difficulty of using information collected at the site level 
and	extrapolating	 to	 the	global	 scale	 (Manzoni	&	Porporato,	2009; 
Reichstein & Beer, 2008).	Our	harmonized	soil	profiles	of	SOC	abun-
dance	and	persistence	for	different	pedo-	climatic	regions	provide	a	
promising opportunity to constrain global C models rather than con-
straining them with individual soil profile data that may not always be 
generalizable. However, the unique controls on SOC abundance and 
persistence	identified	in	the	pedo-	climatic	regions	limit	the	ability	to	
extrapolate	across	these	regions—this	has	also	implications	for	statis-
tical modeling of SOC abundance and persistence.

Future work should focus on the relationship between SOC abun-
dance and persistence over time and in other soil fractions. Using bulk 
Δ14C measurements to constrain global C models overlooks the fact 
that these data represent the mean of mostly highly skewed C age dis-
tributions and thus overestimate the C age (Sierra et al., 2018).	In	addi-
tion, some of this very old C may be rock derived. Soils developed from 
sedimentary rocks may have older SOC ages due to the incorporation 
of the much older organic C of the parent rock material into the soil 
matrix	(Bukombe	et	al.,	2021; Grant et al., 2023; Kalks et al., 2021; van 
der	Voort	et	al.,	2019).	Therefore,	analyses	that	take	into	account	the	
source of C by using fractions and stable isotopes such as 13C and 15N	
can further contribute to a better understanding of the controls and 
interactions between SOC abundance and persistence across regions 
(Brunn et al., 2014; Heckman et al., 2022; Kohl et al., 2015).	Previous	
studies have already found distinct relationships between SOC abun-
dance and δ13C	 (Acton	 et	 al.,	 2013; Brunn et al., 2014).	 However,	
some of these data are even less available at the global scale, making 
their use for benchmarking global C models even more challenging. 
Therefore, future work and sampling efforts should also focus on in-
cluding and measuring more diverse soil data.

Lastly, it is important to note that the introduced 2D framework 
of SOC abundance and persistence with soil depth is time depen-
dent. Due to changes in atmospheric 14CO2 concentrations over 
time, observed patterns of soil Δ14C will continue to change with 
time, and this provides an additional model constraint that could be 
used to distinguish process models that can produce a single time 

point with multiple parameter combinations. Thus, the proposed 2D 
framework of SOC abundance and persistence can still be used to 
benchmark global C models and to identify strategies to maintain 
SOC abundance and persistence under global change.

5  |  CONCLUSIONS

In	summary,	the	diverse	mix	of	methods	presented	are	complemen-
tary and allow for a more holistic interpretation of the processes con-
trolling SOC abundance and persistence across regions. Our analysis 
shows that a combination of broad climate grouping with mineral infor-
mation	(i.e.,	soil	order	and	clay	content)	is	useful	to	better	understand	
SOC abundance and persistence at the global scale. Different controls 
and	processes	explain	the	variation	in	SOC	abundance	and	persistence	
across	pedo-	climatic	region.	This	has	implications	for	assessing	effects	
of management and climate change on soils and C modeling efforts.

RQ1: How do SOC abundance and persistence covary across pedo- 
climatic regions and with soil depth?

For most soil profiles, as depth increases, SOC abundance de-
clines	and	SOC	persistence	increases.	However,	under	extreme	cli-
matic and mineral conditions, namely soils from polar/tundra regions 
and amorphous soils, SOC persistence increases with soil depth, 
whereas SOC abundance does not necessarily decrease.

RQ2: Which climatic and soil- related controls best explain regional 
differences in SOC abundance and persistence?

Soil organic carbon abundance and persistence reflect differ-
ent controls, yet their interaction reveals information about SOC 
dynamics	 that	 are	 distinct	 for	 different	 pedo-	climatic	 regions	 and	
with soil depth. For both measures, climate controls contain more 
information than mineral controls alone at the global scale. However, 
differences	between	and	within	pedo-	climatic	zones	can	be	related	
to mineral controls and are key to assessing global C dynamics.

RQ3: Which processes control depth profiles of SOC abundance and 
persistence at the global scale?

The identified controls can be linked to soil processes that influ-
ence the relationship between SOC abundance and persistence as 
shown by our qualitative compartment model analyses. The model 
exercises	show	that	some	of	the	parameters,	such	as	lower	decom-
position rates and higher C protection potential, or lower root inputs 
and slower vertical transport, can have similar effects on the distri-
butions of soil profiles within the 2D space of SOC abundance and 
persistence. However, for most soils, vertical changes in decomposi-
tion rates and root input distributions are more important than ver-
tical transport. Compared to the SOC abundance and persistence 
patterns identified from the grouped profile data, the model results 
obtained from the vertical transport simulations are implausible.

In conclusion, all these findings have implications for assessing 
effects of management and climate change on soils and for inform-
ing C modeling efforts across regions. Our improved understanding 
of patterns and drivers of SOC abundance and persistence across re-
gions	contributes	to	a	more	process-	oriented	modeling	of	future	soil	
responses to climate change. Importantly, the variable combination 
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and strength of controls on SOC abundance and persistence in the 
proposed	pedo-	climatic	regions	limit	the	ability	to	extrapolate	across	
these	 regions	 and	 into	 data-	poor	 regions.	 Furthermore,	 global	 C	
models should be able to accurately represent the identified differ-
ences in the relationship between SOC abundance and persistence 
between	pedo-	climatic	regions	and	with	soil	depth.
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