Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Recall Them All: Retrieval-Augmented Language Models for Long Object List Extraction from Long Documents

MPG-Autoren
/persons/resource/persons270904

Singhania,  Sneha
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons212613

Razniewski,  Simon
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:2405.02732.pdf
(Preprint), 586KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Singhania, S., Razniewski, S., & Weikum, G. (2024). Recall Them All: Retrieval-Augmented Language Models for Long Object List Extraction from Long Documents.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-75A0-8
Zusammenfassung
Methods for relation extraction from text mostly focus on high precision, at
the cost of limited recall. High recall is crucial, though, to populate long
lists of object entities that stand in a specific relation with a given
subject. Cues for relevant objects can be spread across many passages in long
texts. This poses the challenge of extracting long lists from long texts. We
present the L3X method which tackles the problem in two stages: (1)
recall-oriented generation using a large language model (LLM) with judicious
techniques for retrieval augmentation, and (2) precision-oriented
scrutinization to validate or prune candidates. Our L3X method outperforms
LLM-only generations by a substantial margin.