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Gravitational memory effects and the BMS freedoms exhibited at future null infinity have recently
been resolved and utilized in numerical relativity simulations. With this, gravitational wave models
and our understanding of the fundamental nature of general relativity have been vastly improved.
In this paper, we review the history and intuition behind memory effects and BMS symmetries,
how they manifest in gravitational waves, and how controlling the infinite number of BMS freedoms
of numerical relativity simulations can crucially improve the waveform models that are used by
gravitational wave detectors. We reiterate the fact that, with memory effects and BMS symmetries,
not only can these next-generation numerical waveforms be used to observe never-before-seen physics,
but they can also be used to test GR and learn new astrophysical information about our universe.

I. INTRODUCTION

One of the most pressing challenges for physics in the
near future is performing stringent and robust tests of
Einstein’s theory of general relativity (GR). These tests
are of the utmost importance because they will inform
us about the nature of gravity within our universe and
will reveal when our long-standing theory of GR fails
to explain real world phenomena. At present, the most
prospective tests of GR that we can perform are those
which involve analyses of the gravitational waves (GWs)
that are created by binary black hole mergers (BBHs).1
This is because the GWs that are produced by BBHs are
largely influenced by the strong-gravity regimes sourced
by two coalescing black holes and should thus capture
whatever deviations from GR there may be. However,
to verify whether certain features in observed GWs are
evidence for unknown physics, we first need to have a
sound understanding of the GWs that GR predicts.

At present, the best solutions to Einstein’s equations,
i.e., the GW templates used to perform tests of GR, are
those produced by numerical relativity (NR) simulations.
Calculating the GWs sourced during the coalescence of two
black holes is impossible to work out with pen and paper
due to the overall complexity of the partial differential
equations that need to be solved.

Furthermore, even if one uses perturbation theory to
try to predict the GWs, this fails to produce reliable
results during the merger phase of the binary, which is

∗ kmitman@caltech.edu
1 While the imaging of black holes, such as those performed by the

EHT Collaboration, can also test Einstein’s theory of GR, this
typically probes much lower curvatures than are accessible by the
LIGO-Virgo-KAGRA Collaboration and thus probe alternative,
but also complementary, regimes of GR.

typically the loudest and most detectable part of the GW
signal. So, even GW models that are built using per-
turbation theory or by making certain phenomenological
assumptions, like EOB or Phenom models [1–10], need
to be calibrated against NR waveforms. Consequently,
NR simulations, which can achieve arbitrary accuracy
with the right computational tools, are at the heart of
producing accurate and robust solutions to GR.

Nonetheless, NR can still fail to accurately simulate
GR if the code infrastructure is not formulated correctly
or if the necessary numerical resolution is not achieved.
One such example of this inaccuracy was the inability of
NR simulations to resolve a collection of observables in
GR that are colloquially referred to as memory effects.
These effects are not-yet observed, nonlinear predictions
of GR that physically correspond to the net displacement
that two freely-falling observers will experience due to
the passage of transient GWs. However, apart from being
a curious prediction of GR, what makes memory effects
particularly tantalizing is that they are intimately tied—
through conservation laws—to the symmetry group of
future null infinity—part of the asymptotic boundary
of spacetime. This symmetry group is not the usual
Poincaré group of special relativity, but is a larger group
called the BMS group [11, 12]. Thus, there is hope that
with the detection of memory we can not only conduct
more stringent tests of GR, but we may even obtain a
better understanding of the asymptotic structure of our
encompassing universe, which is of immense interest to
theorists trying to formulate a theory of quantum gravity
through topics such as celestial holography [13–17].

In this review, we highlight recent advancements made
in the NR community to resolve memory effects as well
as some recent work showing how fixing the BMS free-
doms at future null infinity drastically improves both
the accuracy and robustness of GW models and analy-
ses. Specifically, in Sec. II we begin by providing some
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motivation for and intuition behind the BMS group and
memory effects. Next, in Sec. III we provide a review of
the literature surrounding memory, the BMS group, and
BMS frame fixing. Then, in Sec. IV, we provide a more
formal explanation of the origins of the BMS group and
how memory effects can be understood as stemming from
certain conservation laws related to the symmetries of null
infinity. In Sec. V, we transition to a review of the code
frameworks used to compute gravitational waves at null
infinity and we highlight the advancements in the NR com-
munity that has made the resolution of memory effects
possible. Then, in Sec. VI, we demonstrate the formalism
from Sec. IV using binary black hole merger simulations.
In particular, we present how the BMS conservation laws
can be used to efficiently analyze gravitational waves and
understand memory effects. Furthermore, in this section
we also provide a review of the detectability of memory
and the forecast for its detection in the coming decade.
In Sec. VII we highlight the often-overlooked importance
of fixing the BMS freedom of NR waveforms to ensure
that waveform modeling is performed both accurately
and robustly. We show this by reviewing the notion of a
superrest frame [18–20], and demonstrating its utility by
comparing NR waveforms to post-Newtonian waveforms
and by fitting NR waveforms with predictions made by
black hole perturbation theory. Finally, in Sec. VIII we
summarize the main points of this review and provide
some outlook regarding the future of numerical relativity,
memory effects, and testing the nature of gravity.

II. PEDAGOGICAL APPROACH TO BMS AND
MEMORY

Despite its importance and interesting characteristics,
many relativists are not familiar with the BMS group or
its effect on asymptotic data. In this section, we provide
a pedagogical introduction to the BMS group, with the
intention of making the rest of the paper more accessible.
We begin by motivating the need for a coordinate system
that is adapted to inertial observers, e.g., GW detectors,
and discuss how such a coordinate system is provided by
“Bondi gauge”—in which the metric asymptotes to the
usual Minkowski metric at large radius. This is crucial
because GW waveforms are always studied in a certain
coordinate system, so to provide meaningful waveforms we
need a meaningful coordinate system that matches that
of our inertial detectors. As we will see, it turns out that
once such a coordinate system is constructed by mapping
the metric to Bondi gauge, there is a residual ambiguity
in the coordinates, i.e., a symmetry, which is described by
the BMS group. The BMS group, however, is simply the
usual Lorentz group, augmented by a generalized class of
spacetime translations called supertranslations [11, 12].
Consequently, it is fairly straightforward to understand
the BMS group once the origin of and intuition behind
supertranslations is understood. Thus, once we motivate
the need for a meaningful coordinate system, we will then

provide some intuition for supertranslations through a
few informative examples involving null rays propagating
in Minkowski space. Following this, we then conclude
this pedagogical overview by showing how the BMS group
changes the asymptotic data that can be measured by an
inertial observer. This action forms the basis for fixing the
BMS frame in numerical relativity, as outlined in Sec. IV,
and also provides a unique way to study memory effects,
which we utilize in Sec. II F and in the rest of the paper.

A. Motivation

Choosing coordinates in GR is one of the more delicate
and, at times, confusing components of Einstein’s theory.
In fact, for decades after GR’s development, researchers—
including Einstein—wavered over the issue of whether or
not gravitational waves were really physically observable
or simply gauge artifacts [21]. Ultimately, the reason for
their misgivings was that GWs are often studied in terms
of components of the metric or Riemann tensors, with
respect to some basis determined by the coordinates,2 and
expressed as functions of those coordinates. Fortunately,
this confusion regarding the observability of GWs was
resolved by Pirani in 1956, who clarified their existence
using tetrad methods and worldlines of particles [24].
Pirani’s approach, however, was really only useful for
formulating theoretical perspectives and could not be
used to make statements about particular systems, like
black hole mergers. For this, a more suitable framework
was developed in a series of works by Bondi, van der Burg,
Metzner, and Sachs [11, 12, 25–27]. Their approach to
studying GWs, which we describe in Sec. II B, involves
constructing an explicit coordinate system and assuming
a particular, but well-motivated asymptotic behavior of
the spacetime metric in those coordinates.

As an alternative perspective regarding the subtleties
of coordinates in GR, consider a numerical simulation.
At the simplest level, numerical relativists must produce
waveforms as tables of timestamps and corresponding
strain values measured at a variety of angular locations
encompassing the source.3 However, the meaning of those
time coordinates, the angular locations at which the strain
is measured, and the basis with respect to which the strain
is evaluated rely on the essentially arbitrary coordinates
used in the numerical simulation—coordinates imprinted
by the vagaries of initial data and complicated gauges.
Despite confusing declarations that may be found in the

2 See, e.g., Refs. [22, 23] for interesting efforts to find tetrads
specified by the geometry rather than arbitrary coordinates.

3 In reality, numerical relativists provide the angular dependence
of the strain by representing the strain with respect to some set
of angular basis functions, like spin-weighted spherical harmonics.
However, to make the connection to coordinates more apparent,
in this discussion we ignore this detail and instead consider the
naive representation in terms of points on the two-sphere.
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NR literature, no GW extraction method can produce
“invariant” results in the sense of being independent of
the choice of coordinates. Even at linear order in the size
of the gauge perturbation, every waveform description
is coordinate-dependent. But this issue is not unique
to NR simulations. Other gravitational wave modelers,
such as those working in post-Newtonian (PN) or even
post-Minkowskian (PM) theory, face similar ambiguities.
Ideally, we would resolve these coordinate issues in a
consistent way, so that waveforms from other simulations,
or other models, can be compared to each other.

Due to the diffeomorphism invariance of GR, there is a
rich set of coordinate systems that, in principle, could be
used to study GWs. In practice, however, working with so
many possible coordinate systems is not feasible. Instead,
we need some well-motivated way to limit the possible
coordinate systems that we can use when studying GWs.
To do this, one property that we might impose is that the
coordinate systems we consider be adapted to trajectories
of inertial observers. That is, curves that have constant
spatial coordinates could be timelike geodesics, and the
time coordinate for those curves could be the proper time
measured on those geodesics. While this would certainly
be possible, one issue that arises is that the coordinates
we consider would then depend on their initial conditions,
and would surely encounter coordinate singularities. But,
it turns out that if we instead consider the region of
spacetime infinitely far away from the source, then it is
sometimes possible4 to find a set of coordinates that is
asymptotically inertial. This realization is exactly what
Bondi, van der Burg, Metzner, and Sachs came to in the
1960s [11, 12, 25–27]. The core idea is that one should
instead model a GW source as an isolated system, with
the spacetime approaching Minkowski space far from the
source, so that one can then match the coordinates to the
more familiar inertial trajectories of Minkowski space.

B. Bondi gauge and inertial observers

The Bondi-Sachs formalism5 begins with a collection of
coordinates called Bondi-Sachs coordinates that are suited
to the problem of outgoing radiation. Essentially, in this

4 This possibility rests on some fairly stringent requirements about
the spacetime, including the existence of the infinite radius limit,
and the fall-off behavior of the metric in that limit. In particular,
these requirements rule out direct application to, for example,
FLRW spacetimes. Nonetheless, recent work has sought to extend
similar analyses to FLRW spacetimes [28–33].

5 For reasons that are not immediately apparent from the literature,
various aspects of this formalism are credited to various subsets
of the authors of the papers in which they first appeared: Bondi,
van der Burg, Metzner, and Sachs [11, 12, 25–27]. In particular,
Bondi is credited for the gauge or frame; Bondi and Sachs for
the coordinates, metric, and formalism generally; and Bondi,
Metzner, and Sachs for the (BMS) group. For some reason, van
der Burg seems to be left out of the conversation. In this work,
we follow this convention without claiming to understand why.

formalism we have the usual spherical coordinates (θ, ϕ)
as well as a null, retarded-time coordinate u, such that the
u direction is orthogonal to the θ and ϕ directions, and
an areal coordinate r relative to the (θ, ϕ) coordinates.
Anywhere that such a set of coordinates exists, the metric
can be written in Bondi-Sachs form as

ds2 = −Ue2βdu2 − 2e2βdudr

+ r2γAB

(
dxA − UAdu

) (
dxB − UBdu

)
, (2.1)

where capital Latin indices range over (θ, ϕ), and we have
introduced the arbitrary functions U , β, UA, and γAB,
each of which is a function of the coordinates (u, r, θ, ϕ).

With this set of intuitive coordinates, we then restrict
the possible metrics that we allow by imposing certain
boundary conditions, i.e., some asymptotic behavior in
the limit of large radius. In particular, to ensure that the
metric in this Bondi-Sachs coordinate system approaches
the standard Minkowski metric in the large radius limit,
we require that our metric functions obey

U → 1, (2.2a)
β → 0, (2.2b)

UA → 1, (2.2c)

γAB →
(
1 0
0 sin2 θ

)
. (2.2d)

This asymptotic restriction is exactly what is meant by
being in “Bondi gauge” or some “Bondi frame”. It provided
an early notion of what is called “asymptotic flatness”.

After this work of Bondi, various authors introduced
important generalizations of this falloff condition [34–39],
most of which will be beyond the scope of this paper.
But one that will be conceptually useful for this review is
Penrose’s notion of conformal compactification [35, 36].
This compactification, which introduces extra points to
construct a boundary of spacetime in the r → ∞ limit,
is essential for formulating “future null infinity” I+: the
final destination of outgoing radiation.6 This boundary
is obtained by taking this r → ∞ limit for fixed u, which
yields a region of spacetime parameterized by (u, θ, ϕ).
When studying GWs and other asymptotic data, we will
be interested in the value of this data on this boundary.
This is because, as one approaches I+, curves of constant
(r, θ, ϕ) are nearly geodesics, with u nearly parametrizing
the proper time, and errors in this geodesic approximation
falling off as 1/r. Consequently, GWs measured by a
distant inertial observer can be approximated (at least
over finite time spans) by GWs studied at I+. In fact,
the Bondi frame is sometimes even referred to as the
“asymptotic inertial frame” [40].

Now, apart from constructing a coordinate system and
a region of spacetime that can be used to study GWs

6 Note that an identical description also exists at past null infinity.
But, because we will focus on future null infinity in this review,
we ignore this subtlety for the remainder of this work.
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that agrees (up to 1/r corrections) with what a distant,
inertial observer would see, the other import consequence
of constructing the Bondi frame is that, by doing so, we
have drastically reduced the coordinate ambiguity that
would otherwise plague our GW waveforms. In particular,
for the numerical simulation example, we no longer have
to express the waveform in terms of the simulation’s
arbitrary coordinates, which are ambiguous up to the
entire diffeomorphism group. Nor do we have to integrate
a family of timelike geodesics and evaluate the waveform
along those curves, still ambiguous up to the choice of
initial conditions for each geodesic. Instead, we can simply
express the waveform as a function of (u, θ, ϕ) on I+.

But one obvious question persists: how much ambiguity
still remains in this Bondi frame description? Intuitively,
we might expect that the answer would simply be the
transformations that leave the usual Minkowski metric
unchanged, i.e., the Poincaré group. In fact, this is indeed
what Bondi, van der Burg, Metzner, and Sachs thought
they would find when studying the symmetry group of
future null infinity. However, this intuition turns out to
be only nearly correct. Specifically, the symmetry group
of future null infinity is the Poincaré group, but with
the usual spacetime translations replaced by a larger set
of spacetime transformations called “supertranslations”.
This is the BMS group.

C. The BMS group

The full BMS group is simply the set of transformations
of the asymptotic coordinates—that is, (u, θ, ϕ)—that
preserve the asymptotic form of the metric described in
Eqs. (2.1) and (2.2).7 It should be intuitively obvious
that simple rotations satisfy these criteria, as do boosts.
Given that the Poincaré group is the group of symmetries
in Minkowski space, we might also expect analogs of
spacetime translations to be allowed, but it turns out that
our use of the retarded time u and the fact that we are
taking the r → ∞ limit complicates matters.

To see this consider the following. A time translation
δt will surely affect only the retarded time via u 7→ u− δt,
but it is not obvious what to do with a space translation

7 With the condition that the angular metric γAB must asymptote
to the usual unit sphere metric, Eq. (2.2d), the asymptotic gauge
conditions are preserved by the standard BMS group. However,
by relaxing the condition on γAB so that it must asymptote
to anything conformally related to the usual unit sphere metric
(where the conformal factor can depend on both the angular and
retarded-time coordinates), we instead obtain the “extended” [41]
BMS group. By relaxing the condition so that the determinant
of γAB must asymptote merely to have a specified determinant
(which may be a function of u, θ, and ϕ), we then obtain the
“generalized” [42–45] BMS group. While these BMS variants are
certainly interesting in some contexts, like celestial holography
(see, e.g., Ref. [17]), they exhibit more freedom than what is
needed for the transformation of NR waveforms.

by some finite δx⃗. If we take (θ, ϕ) as the direction of the
unit vector n̂, then the usual space translation changes
the radial coordinate via r 7→ r + δx⃗ · n̂. Clearly this
has no effect on the r → ∞ limit, nor does it affect the
angular coordinates in that limit. However, it will affect
the retarded time because of the mixture of time and
space that the retarded time represents. Considering the
prototypical retarded time u ≡ t − r, we can intuit the
correct impact of a space translation, which is simply
u 7→ u − δx⃗ · n̂. The slightly surprising feature here is
that a space translation affects the retarded time in a
direction-dependent way. While a time translation has a
monopolar effect, a space translation has a dipolar effect.

Naturally, this invites the intriguing question of whether
higher-order multipoles might also be permissible. In fact,
if we pose

u 7→ u− α(θ, ϕ), (2.3)

with an arbitrary (sufficiently smooth) function α(θ, ϕ),
we can check that the asymptotic form of the metric does
not change under such a transformation. The function
α(θ, ϕ) is exactly a supertranslation and is the ingredient
that is needed for constructing the BMS group. It contains
the usual spacetime translations as ℓ = 0, 1 components,
when viewed in terms of spherical harmonic modes.

Like the usual spacetime translations, we may combine
two supertranslations by pointwise addition, and can thus
turn the set of supertranslations into an abelian group T.
In fact, this abelian group T is a normal subgroup of the
full BMS group, with the factor group of the BMS group
by T being the usual restricted Lorentz group SO+(3, 1).
The latter, however, is not a normal subgroup. Therefore,
the full BMS group is formally the semidirect product
T ⋊ SO+(3, 1). Put more simply, we can express any
BMS transformation as a supertranslation followed by a
Lorentz transformation (see Appendix A for more details).
For a boost with velocity v⃗, and thus a conformal factor

k(θ, ϕ) ≡
√
1− |v⃗|2

1− v⃗ · n̂(θ, ϕ) , (2.4)

the combined effect on the retarded time of a supertrans-
lation α(θ, ϕ) followed by this Lorentz transformation is
simply Eq. (2.3) but with a Doppler factor, i.e.,

u 7→ k(θ, ϕ)(u− α(θ, ϕ)). (2.5)

Note that the (θ, ϕ) angular coordinates are not affected
by a supertranslation, but are altered through the more
familiar rotation and relativistic aberration (see Ref. [46]).

To summarize, the BMS group of future null infinity
represents the remaining spacetime coordinate freedom
that must be fixed when working with asymptotic data,
like GWs, in Bondi gauge. It is made up of the usual
Lorentz rotations and boosts, as well as a new set of
transformations called supertranslations that extend the
spacetime translations of the Poincaré group. While we
hope that this section has provided some motivation for
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why the existence of supertranslations is perhaps expected
from a mathematical perspective, in the next section we
provide some physical intuition for why they are expected
to be symmetries of future null infinity.

D. Understanding supertranslations

For the moment, consider a pure supertranslation, i.e.,
a supertranslation which is not a time or space translation.
In terms of spherical harmonics, this corresponds to a
function α(θ, ϕ) whose spherical harmonics decomposition
only consists of ℓ ≥ 2 modes. Formally, supertranslations
are rather elementary: they are angle-dependent offsets
in the retarded time, as illustrated through Eq. (2.3).
Specifically, for each distant inertial observer at I+, a
supertranslation corresponds to a simple change in the
origin of the time coordinate. To understand why they
are symmetries of future null infinity, we consider the
following thought experiment.

Consider some asymptotically flat spacetime with an
isolated astrophysical event—like a supernovae explosion
or a binary black hole merger—that is emitting radiation,
such as photons or gravitational waves, outward in a
spherical manner. Furthermore, imagine a network of
distant inertial observers that are surrounding this event,
each at some finite radius from the event that need not
be the same as the other observers. If these observers
can communicate, then they could—in principle—use
their knowledge of their locations relative to each other
and to the central event to synchronize their clocks to
ensure that their measurements of the central event are
simultaneous in some sense. Now, consider what happens
if these observers were placed at larger (but finite) radii.
At these new, farther away positions, the signals that they
use to synchronize their clocks will take longer to travel
between them, but there is no fundamental obstacle to
this synchronization in principle.

However, as this network of inertial observers limits to
an infinite radius away from this central event, then they
become causally disconnected from each other. Formally,
what this means is that each observer approaches some
generator of I+, and because every generator of I+ is
causally disconnected from any other, so too are the
inertial observers. In this r → ∞ limit, the observers can
no longer synchronize their clocks, and therefore they can
no longer ensure that they receive the same radiation from
the central event at the same time. That is, the invariance
with respect to standard time and space translations of the
Poincaré group at finite radius yields, at infinite radius,
the invariance to the angle-dependent supertranslations.
This fact, i.e., the notion that each and every point on
I+ is causally disconnected from any other, is one way
to intuit why supertranslations are indeed symmetries of
future null infinity and thus elements of the BMS group.

E. The effects of BMS transformations

As mentioned earlier, waveforms are not invariant in
any useful sense. At best, they are components of tensors
defined with respect to a coordinate basis. Consequently,
as we change the coordinates, the value of the waveform at
each physical point will also change. Thus, when working
with waveforms and their coordinate freedom we really
have two main concerns: first, to transform the waveform,
and second to transform the coordinates upon which the
waveform is evaluated. As we have already explained, the
latter can be expressed rather simply via the following.

Instead of working with Bondi coordinates, i.e., (u, θ, ϕ),
it tends to be simpler (at least mathematically) to use
the complex stereographic coordinate

ζ ≡ eiϕ cot(θ/2). (2.6)

With this, the action of a BMS transformation on the
coordinates of future null infinity can then be written as

(u, ζ) 7→
(
k(ζ, ζ̄)(u− α(ζ, ζ̄)),

aζ + b

cζ + d

)
, (2.7)

where the conformal factor k(ζ, ζ̄) is

k(ζ, ζ̄) ≡ 1 + |ζ|2
|aζ + b|2 + |cζ + d|2 , (2.8)

(a, b, c, d) are complex coefficients with ad− bc = 1 that
encode the Lorentz rotation and boost, and α(ζ, ζ̄) is a
real, smooth function that encodes the supertranslation.
See App. A for details on how the Möbius transformation
(a, b, c, d) is related to usual Lorentz rotations and boosts.
As an illustration of the impact of these transformations,
see Fig. 1, which shows how an example Lorentz boost,
space translation, and proper supertranslation change the
retarded time u as a function of θ.

From this coordinate transformation, by examining how
the tetrad on I+ transforms, one can then ascertain that
the gravitational wave shear σ, which is related to the
strain h via h ≡ 2σ̄, and the Weyl scalars transform as

σ′ =
1

k
e2iλ

[
σ − ð2α

]
, (2.9a)

Ψ′
A =

1

k3
e(2−A)iλ

4∑
a=A

(
4−A
a−A

)(
−1

k
ðu′
)a−A

Ψa.

(2.9b)

where A ∈ {0, 1, 2, 3, 4}, λ is the “spin phase”

eiλ ≡
[
∂ζ̄ ′

∂ζ̄

(
∂ζ ′

∂ζ

)−1
] 1

2

=
cζ + d

c̄ζ̄ + d̄
, (2.10)

and ð and ð̄ are the usual GHP spin-weight operators [47].
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FIG. 1. “Cylinder” diagram of I+ to provide intuition about (i) boosts, (ii) space translations, and (iii) proper supertranslations.
The retarded time coordinate u runs vertically in each plot, while the polar coordinate θ runs azimuthally. Black circles
correspond to surfaces of constant u in the untransformed frame. A Lorentz boost dilates u by some factor at each θ point,
while a space translation and a proper supertranslation instead shift u by some function of θ, which can be written as some
combination of ℓ = 1 spherical harmonics for space translations, and some combination of ℓ ≥ 2 spherical harmonics for proper
supertranslations. The boost is in the ẑ direction; the space translation is proportional to the spherical harmoinc Y(1,0)(θ, ϕ),
i.e., the ẑ direction; and the proper supertranslation is proportional the spherical harmonic Y(2,0)(θ, ϕ).

In spherical coordinates they can be written as

ðf = − 1√
2
(sin θ)

+s
(∂θ + i csc θ∂ϕ)

[
(sin θ)

−s
f
]
,

(2.11a)

ð̄f = − 1√
2
(sin θ)

−s
(∂θ − i csc θ∂ϕ)

[
(sin θ)

+s
f
]
.

(2.11b)

Note that the conventions used here are consistent
with the Moreschi-Boyle convention that is used across
Refs. [18, 20, 46, 48–51] and the code scri [52–54].

With this information, one then has everything that is
needed to transform asymptotic data on I+ and therefore
fix the coordinate freedom of that data to match some
canonical frame. This notion of mapping asymptotic data
to a certain frame is called BMS frame fixing and will be
reviewed in Sec. VII.

F. Pedagogical approach to memory

Without delving into the complicated mathematics of
Einstein’s equations, memory effects can be most easily
understood as coming from conservation laws that stem
from the symmetries of null infinity: the BMS group.
Consequently, to provide some motivation behind why
memory effects exist in GR and how they can be studied,
before examining them with a more mathematical lens, as
is performed in Sec. IV, we will first provide some insight
by studying them with respect to BMS transformations.

With these additional symmetries of the BMS group,

Noether’s theorem8 interestingly implies that there should
be a conservation law for each supertranslation. Thus,
because supertranslations are effectively angle-dependent
spacetime translations, one can easily imagine that such
a balance law might be of the form

0 = “change in angle-dependent mass”
+ “flux of angle-dependent energy” (2.12)

This expression, in fact, is nearly correct. The one piece
of information that is missing is that these two terms on
the right-hand side of Eq. (2.12) need not fully cancel out.
One way to realize this is by considering the scattering
of two particles in linearized gravity [57]. First note that,
because of the linearization, there will be no energy flux.
However, because the particles scatter, there will still be
a change in the angle-dependent mass, i.e., a change in
the mass multipole moment. Then, because a change in
the mass multipole moment corresponds to a change in
the shear—or, equivalently, the strain—one can intuit
that there should also be a term on the left-hand side of
Eq. (2.12) that corresponds to the shear, e.g.,

“shear” = “change in angle-dependent mass”
+ “flux of angle-dependent energy” (2.13)

In fact, if one formally works through the mathematics,
as is carried out in Sec. IV and shown through Eq. (4.6a),

8 Note that Noether’s theorem is modified for this situation since the
nonzero flux of gravitational radiation implies that the charges are
not conserved. We instead have non-conservation laws precisely
quantifying how much each charge changes. The interested reader
can see Refs. [55, 56] to read about this subtlety.
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one discovers that the conservation law stemming from
supertranslations states exactly this.

Using Eq. (2.13), one can then learn a large amount of
interesting physics about gravitational waves. For one,
we observe that, apart from the gravitational wave strain
being sourced by the mass multipole moment, there is
also a contribution from an angle-dependent energy flux.
Furthermore, if we think about the net change in the
strain between non-radiative regimes, i.e., the memory,
we immediately find that there are two contributions:
one from the angle-dependent mass and one from the
angle-dependent energy. These unique contributions are
the ordinary and null contributions to the memory [58].9
They can be understood as being sourced by two types
of physical processes. In particular, ordinary memory is
sourced by systems that contain unbound matter, i.e.,
massive particles, which approach future timelike infinity.
Examples of systems that source this effect are hyperbolic
black hole encounters, supernovae, or neutron star merg-
ers. Meanwhile, null memory is sourced by null radiation
that escapes to null infinity, e.g., gravitational waves or
electromagnetic waves. For an example of what the null
memory looks like in the GW produced by a binary black
hole merger, see Fig. 2.

III. LITERATURE REVIEW

Gravitational memory effects were first realized in 1974
when Zel’dovich and Polnarev successfully calculated the
gravitational radiation that is produced by two objects on
flyby, i.e., hyperbolic, trajectories [59].10 By working with
Einstein’s equations in linearized GR, they found that,
because the stress energy tensor exhibits a net change
between early and late times due to the change in the
mass distribution of the flyby objects, the strain will also
exhibit such a net change. Consequently, because this
can also be understood as stemming from a change in
the Bondi mass aspect, the effect that they unearthed is
what we now call ordinary displacement memory. Later,
in 1985, the consequences of their result was elaborated
upon by Braginski and Grishchuk who first named this
effect the “memory effect” [60]. Then, in 1987, Braginsky
and Thorne found a simple equation for the memory for
scattering scenarios in terms of the four-momentum of
the ingoing and outgoing massive particles [61]. It says
that for a system of N particles, the net change in the

9 Previously, these contributions were called linear and nonlinear
(or Christodoulou). However, they have since been renamed to
better reflect the way in which they are sourced [59–63].

10 Even earlier, in 1966, Newman and Penrose identified that, near
null infinity, the strain of surfaces of constant retarded time will
change between spacelike and future timelike infinity [64].

gravitational-wave strain between early and late times is

∆hTT
ij =

4

r
∆

N∑
A=1

MA√
1− v2A

(
viAv

j
A

1− vA cos(θA)

)TT

(3.1)

where r is the distance from the observer to the source,
MA is the mass of particle A, v⃗A is the velocity with
viA the ith component and vA the norm, θA is the angle
between v⃗A and the observer, and the ∆ in front of the
sum on the right-hand side refers to the difference in this
sum evaluated for the outgoing and ingoing particles.

After these early works, it was largely thought that
memory effects were understood. This opinion, however,
was completely overturned when in 1991 Christodoulou
found that gravitational waves themselves will also source
a certain type of memory effect, through a subtle, but
detectable nonlinear interaction with themselves [62].11
Christodoulou obtained this important result by working
with null hypersurface equations and asymptotic limits to
obtain an equation that is similar in spirit to Eq. (2.13).
In particular, he found that the strain is related to the
flux of radiation through each point on the two-sphere.
Because of this connection to the energy flux, we now call
this effect the null displacement memory. A year later,
Thorne identified Christodoulou’s finding as equivalent
to that of Ref. [63], but with the massive particles being
replaced by null gravitons, i.e.,

∆hTT
ij =

4

r

∫
dE

dΩ′

(
ξi

′
ξj

′

1− cos(θ′)

)TT

dΩ′, (3.2)

where E is the energy of the radiation, ξi
′
is a unit vector

pointing from the source toward dΩ′, and θ′ is the angle
between ξi

′
and the observer [63]. In Sec. IV, we will

connect Eqs. (3.1) and (3.2) to the modern interpretation
of memory, which is more straightforward to understand
in terms of gravitational systems and radiation.

As for the BMS group, this was realized well before
memory effects in 1962 by Bondi, Metzner, van der Burg,
and Sachs [11, 12]. However, the connection between the
BMS group and memory was not explicitly stated until
Refs. [67–69] in 2014, even though this relationship has
been largely understood since, e.g., Refs. [55, 64, 70–72].
What makes this history even more interesting, though, is
in Refs. [69, 73] the duality between memory effects and
BMS symmetries was extended to be a triangle, since it
was found that BMS symmetries and memory effects could
also be related to soft theorems [74]. This finding created
a large stir of interest in theory communities, since soft
theorems are inherently useful for studying the S-matrix
of a quantum theory, so BMS symmetries are integral to
understanding quantum gravity. The “soft limit” means

11 This discovery was also realized by Payne (somewhat indirectly)
as well as Blanchet and Damour in Refs. [65] and [66].
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FIG. 2. Top: Comparing the gravitational wave computed by a simulation of a binary black hole merger when memory effects
are not included (left, incorrect) and when memory effects are included (right, correct). The binary black hole simulation is an
equal-mass, aligned spin system with a total mass of 60M⊙, a luminosity distance of 400Mpc, an edge-on orientation, and
equal dimensionless black hole spins of magnitude 0.6 in the direction of the orbital angular momentum. Each waveform is
shown in black and in the plot on the right, we show the contribution to the gravitational wave coming from the energy flux, i.e.,
a proxy for the memory, in blue. Bottom: The initial (black) and final (orange) positions of a series of test particles before
and after the passage of a gravitational wave without (left) and with (right) memory traveling through the plane of the figure.
Because of the orientation of the binary black hole system relative to the test particles, the GW exhibits a ‘+’ polarization.

taking a particle’s energy to zero, so soft particles can
not be directly measured at colliders. However, memory
effects will soon be observed via gravitational waves with
current detectors [75–77], and therefore serve as a natural
probe of this exciting realm of physics. This excitement
was only further enhanced once more memory effects
were unearthed through this connection. In particular, in
Refs. [78–80], by studying extensions of the BMS group
to include “superrotations” [81–84], i.e., extensions of the
Lorentz transformations, two new memory effects were
found: the spin memory and the center-of-mass memory.
These two effects correspond to the net displacement
that two observers with an initial relative velocity will
experience due to the passage of transient gravitational
radiation.12 Ever since, the field of celestial holography,

12 They can also viewed as the magnetic and electric components of
the more general drift memory [85].

which aims to firmly establish a holographic dictionary
between gravitational scattering in asymptotically flat
spacetimes and a certain kind of conformal field theory
on the celestial sphere, has reached unprecedented levels
of interest [13–17].

At the same time as these theoretical developments
regarding memory were occurring, significant progress in
resolving memory effects in numerical simulations was
also being achieved. In particular, in early 2010 Ref. [86]
was able to successfully simulate the memory sourced by
a binary black hole merger using a more robust method
for extracting the NR waveforms at future null infinity:
Cauchy-characteristic evolution (CCE).13 Later, in 2020,
Ref. [87] performed a similar series of simulations using
a more efficient version of the code and calculated the

13 We will elaborate more on this waveform extraction procedure,
as well as others, in Sec. V.
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individual contributions to the gravitational wave strain
in terms of the charges and fluxes of Eqs. (2.13) and (4.6).
This showed that, as expected, the memory in binary
black hole mergers is indeed sourced by the null memory.

One complexity that arose, however, was, with these
new NR waveforms that contained memory, it was not
exactly obvious how to compare these finite waveforms
to post-Newtonian (PN) waveforms that had information
about the entire past history of the binary inspiral and
thus had a larger prediction for the instantaneous value of
the strain [88]. This was important because if one wanted
to construct a hybridization between these NR waveforms
and PN waveforms to build a waveform model from, the
hybridization would fail because the two predictions would
not agree (see, e.g., Fig. 6). This was resolved in a
series a works which established a program now called the
BMS frame fixing program [18–20]. Ever since, numerous
findings and advancements in gravitational wave physics
using these developments have been made [89–93].

IV. MATHEMATICAL OVERVIEW

Recall that Eq. (2.1) provides the general form of the
metric in Bondi gauge, in terms of the functions U , β, UA,
and γAB, where A and B range over (θ, ϕ). In general,
these functions can each depend on all four coordinates.
However, Bondi gauge demands specific behavior in the
limit of r → ∞. To proceed, we expand this behavior in
powers of 1/r:

U = 1− 2m

r
− 2M

r2
+O(r−3), (4.1a)

β =
β0

r
+

β1

r2
+

β2

r3
+O(r−4), (4.1b)

UA =
UA

r2
+

1

r3

[
− 2

3
NA +

1

16
DA

(
CBCC

BC
)

+
1

2
CABDCCBC

]
+O(r−4), (4.1c)

γAB = qAB +
CAB

r
+

DAB

r2
+

EAB

r3
+O(r−4), (4.1d)

where the various coefficients on the right-hand sides are
functions of (u, θA) only, and qAB(θ

A) is the metric on
the two-sphere, i.e., in the usual spherical coordinates
qAB(θ, ϕ)dx

AdxB = dθ2 + sin2 θ dϕ2. Of these functions,
the most important ones are the Bondi mass aspect m,
the Bondi angular momentum aspect NA, and finally the
shear tensor CAB , whose retarded time derivative is the
Bondi news tensor NAB ≡ ∂uCAB, which characterizes
the presence of radiation in a spacetime.

At this point one can then impose Einstein’s equations
to obtain evolution equations for the various functions.
Specifically, from the O(uu, r−2) and O(uA, r−2) parts14

14 Here the first argument corresponds to the component of the
metric tensor that is being examined, while the second argument
corresponds to the relevant term in the 1/r expansion.

of the Einstein tensor one obtains

∂um =
1

4
DADBN

AB − 1

8
NABN

AB , (4.2a)

∂uN̂A =
1

4

(
DBDADCC

BC −D2DBCAB

)
−
[3
8
[
(
NABDCC

BC − CABDCN
BC
)

− 1

8

(
NBCDBCAC − CBCDBNAC

) ]
− uDA∂um, (4.2b)

where N̂A is the angular momentum aspect with the
Wald-Zoupas correction [56]:

N̂A ≡ NA − uDAm

− 1

4
CABDCC

BC − 1

16
DA

(
CBCC

BC
)
. (4.3)

By contracting these evolution equations with dyads on
the two-sphere15 and making use of the Bianchi identities
for the Weyl scalars, one can then rewrite Eqs. (4.2) in
terms of spin-weighted functions as

∂um = −∂uRe [Ψ2 + σ ˙̄σ] , (4.4a)

∂uN̂ = −∂u

[
Ψ1 + σðσ̄ + uðm+

1

2
ð (σσ̄)

]
. (4.4b)

Then, by working with the Bianchi identities, i.e.,

Ψ̇1 = ðΨ2 + 2σΨ3, (4.5a)

Ψ̇2 = ðΨ3 + σΨ4, (4.5b)

Im [Ψ2] = −Im
[
ð2σ̄ + σ ˙̄σ

]
, (4.5c)

Ψ̇3 = −ð ˙̄σ, (4.5d)

Ψ̇4 = −¨̄σ, (4.5e)

reorganizing terms, and integrating with respect to time,
one can rewrite Eqs. (4.4) as

Re
[
ð2σ̄

]
= m+ E , (4.6a)

Im
[
ð2σ̄

]
= ð−1∂uIm

[
N̂ + J

]
, (4.6b)

where

E ≡
∫ u

−∞
|σ̇|2 du, (4.7a)

J ≡
∫ u

−∞

1

2
(3σ̇ðσ̄ − 3σð ˙̄σ + σ̄ðσ̇ − ˙̄σðσ) du. (4.7b)

Eq. (4.6a) is called the supertranslation conservation law
and can be thought of as the conservation law that stems
from the supertranslation symmetry of I+; Eq. (4.6b),

15 See, e.g., Ref. [20] for more details.
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however, is not often presented in the literature, in part
because it does not have as clear of an interpretation as
Eq. (4.6a) as being the conservation law corresponding
to a symmetry contained in the BMS group. Nonetheless,
other symmetry groups of future null infinity have also
been proposed that contain more symmetries than the
BMS group for which Eq. (4.6b) can be understood as
a conservation law [81–84]. Specifically, Eq. (4.6b) has
been referred to as the superrotation conservation law.
These other groups are extensions of the BMS group.
They are obtained by relaxing the fall off conditions in
Eqs. (4.1a) to be less restrictive, which ends up enabling
the existence of other symmetries that extend the usual
Lorentz transformations. But, because in this review we
restrict our attention to focus on the BMS group, for the
remainder of this paper we will not consider these other
symmetry groups and instead refer the interested reader
to explore these extensions further in Refs. [81–84].

To provide more motivation as to why, at least to some
degree, Eqs. (4.6) should be viewed as conservation laws,
let us first consider what the Bondi mass aspect and the
angular momentum aspect represent. In particular, from
these aspects one can construct Poincaré charges, i.e., the
translation, rotation, and boost charges:

P a(u) =
1

4π

∫
S2

namdΩ, (4.8a)

Ja(u) =
1

4π

∫
S2

Im
[(
ð̄na

)
N̂
]
dΩ, (4.8b)

Ka(u) =
1

4π

∫
S2

Re
[(
ð̄na

)
N̂
]
dΩ, (4.8c)

where na with a ∈ t, x, y, z is the four vector

nt = 1

=
√
4πY(0,0), (4.9a)

nx = sin θ cosϕ

=

√
4π

3

[
1√
2

(
Y(1,−1) − Y(1,+1)

)]
, (4.9b)

ny = sin θ sinϕ (4.9c)

=

√
4π

3

[
i√
2

(
Y(1,−1) + Y(1,+1)

)]
, (4.9d)

nz = cos θ (4.9e)

=

√
4π

3
Y(1,0). (4.9f)

Meanwhile, the quantities E and J defined in Eqs. (4.7)
are the usual energy and angular momentum fluxes. So, if
one takes Eqs. (4.6) and instead writes them in terms of
spherical harmonics, it can readily be seen that, since ð2σ̄
has no ℓ = 0 or ℓ = 1 components, these equations are
the four and angular momentum conservation laws that
correspond to the translation and rotation symmetries.
Obtaining such charges can be achieved by following the
prescription of Wald and Zoupas [56] or the derivation of
these exact charges by Dray and Streubel [55].

As for the ℓ ≥ 2 components of Eqs. (4.6), these parts
correspond to the supertranslation (and superrotation)
conservation laws mentioned earlier. This can be seen,
for example, from the fact that here the energy flux that
appears in Eq. (4.6a) is a function of angular coordinates
and thus corresponds to the energy radiated at each point
on the celestial two-sphere, which is reminiscent of the
pedagogical example presented in Sec. II F. However, to
view Eq. (4.6a) as a supertranslation conservation law,
we should also identify the charge that corresponds to
supertranslations. Naively, one might expect that the
supertranslation charge is simply Eq. (4.8a), but with na

replaced by some arbitrary function on the two-sphere,
e.g.,

P(ℓ,m)(u) =
1

4π

∫
S2

 ∑
ℓ≥0,|m|≤ℓ

α(ℓ,m)Y(ℓ,m)

mdΩ,

(4.10)

where α(ℓ,m) are spherical harmonic coefficients for some
real-valued, smooth function α(θ, ϕ). This, in fact, is a
reasonable hypothesis for this charge. In particular, the
only possible expressions for the supertranslation charge,
or what some call the “supermomentum”, are

Pp,q(u, θ, ϕ) = Ψ2 + σ ˙̄σ + p
(
ð2σ̄

)
− q

(
ð̄2σ

)
, (4.11)

where p and q are real numbers [55]. This was pointed
out by Dray and Streubel in Ref. [55] and was also later
independently realized by Wald and Zoupas in Ref. [56].
From this supermomentum expression, it can be easily
shown that if p + q = 1 then the supermomentum is
real and if p = q there is no supermomentum flux in
Minkowski space, both of which are nice properties [55].
Consequently, the natural choice of supermomentum is
the Geroch (G) supermomentum with p = q = 1

2 , i.e.,

PG(u, θ, ϕ) ≡ Ψ2 + σ ˙̄σ + iIm
[
ð2σ̄

]
= −m, (4.12)

which, up to a sign, is exactly the Bondi mass aspect.
Thus, the naive guess for the supermomentum being that
which appears in Eq. (4.10) is indeed correct.

At this point, having established the BMS charges, i.e.,
Eqs. (4.8) as well as Eq. (4.10), we can now return to the
examination of Eqs. (4.6) as the BMS conservation laws.
In particular, since ð2σ̄ has no ℓ = 0 or ℓ = 1 components
when written in terms of spherical harmonics, we readily
find that the ℓ = 0 component of Eq. (4.6a) is stating
energy conservation, while the ℓ = 1 component is stating
linear momentum conservation. As for Eq. (4.6b), the
ℓ = 0 component of this equation is trivially zero. But,
the ℓ = 1 is stating angular momentum conservation.
And, finally, if we now examine the ℓ ≥ 2 components
of Eq. (4.6a), we readily find a statement regarding the
conservation of supermomentum. For Eq. (4.6b), this
has sometimes been viewed as a statement regarding the
conservation of super angular momentum, but we stress
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that to do so requires extending the symmetry group of
future null infinity to be larger than the BMS group.

Now, besides providing a clear and straightforward
connection between the various BMS symmetries and
the conservation of charges and fluxes at null infinity,
Eqs. (4.6) also provide a unique and useful means for
studying gravitational waves. In particular, because the
right-hand side of Eqs. (4.6) contain the shear, which is
related to the gravitational wave strain h via h = 2σ̄, one
can readily use Eqs. (4.6) to study contributions to the
strain in terms of BMS charges and fluxes. In particular,
as explained in Sec. II F, the contribution from the charges
in Eqs. (4.6) correspond to the ordinary memory while
the flux contributions corresponds to the null memory.

V. NUMERICAL CODE FRAMEWORKS

In this section we briefly outline the code frameworks
that are required to simulate a binary black hole merger
and extract the waveform data to future null infinity.
Readers who are primarily interested in examining the
waveforms output by the numerical simulations and how
they can be studied using Eqs. (4.6), rather than the
details of the numerical simulation, may skip to Sec. VI.

When simulating a binary black hole merger, there are
two types of numerical evolutions that need to be run.16
The first, and the bulk of the computation, is what is
typically called the Cauchy evolution. This part of the
NR simulation involves solving Einstein’s equations on a
finite region of spacetime near the binary black holes to
obtain the metric and its derivatives at a finite radius.

Once the Cauchy evolution is complete and the metric
and its derivatives are obtained at a finite radius, it is
then possible to run a waveform extraction to obtain the
waveform data at future null infinity. This is what we
use as a proxy for the data that GW detectors should
observe on Earth, because the extra information from
being at a finite distance from the GW-sourcing event are
higher order in the 1/r expansion of the angular part of
the metric and should therefore be highly subdominant.
Ultimately, there are two ways this can be performed:

• extrapolation, which consist of fitting metric data
to polynomials in 1/r to extract waveform data at
future null infinity via Eq. (4.1); or

• a characteristic evolution, which consists of solving
Einstein’s equations on hypersurfaces that connect
a finite radius worldtube to future null infinity.

16 In practice constructing initial data for the binary that one aims
to simulate is also an important part of the simulation. However,
because here we aim to review the parts of the simulation that
produce meaningful waveform data, we will restrict ourselves to
a discussion of the different types of evolutions. The interested
reader can look to Ref. [94] for more on initial data construction.

As one may imagine, the characteristic evolution, albeit
more challenging to perform, is much more accurate than
extrapolation: both in terms of the numerical precision
that can be achieved as well as ensuring that the expected
physics is accurately captured.17 Effectively, the way
that the characteristic evolution works, which is formally
called a Cauchy-characteristic evolution (CCE), is through
the following. First, treat the worldtube at some finite
radius and the initial null hypersurface that connects the
worldtube to future null infinity as two sets of initial data.
Then, reduce Einstein’s equations to a series of ordinary
differential equations (ODEs). Finally, solve this series
of ODEs by integrating in retarded time to obtain data
for the waveforms on subsequent null hypersurfaces and
eventually the whole of future null infinity. By performing
this sequence of tasks, one can then accurately compute
the strain as well as the Weyl scalars at future null infinity.
One subtlety, however, is that choosing the initial data on
the first null hypersurface is a highly nontrivial problem.
An incorrect choice of this initial data effectively amounts
to putting the output waveform data in some arbitrary
BMS frame that needs to be manipulated in order to
perform robust waveform model comparisons or analyses.
This issue is covered in more detail in Sec. VII A.

The idea of CCE was first theorized in 1996 [95, 96].
However, it was not until 2009 when a CCE code was first
used on binary black hole merger simulations [86, 97–99].
This version of CCE was run using the finite-difference
Pitt Null code [86, 97–99]. In 2014, an improved ver-
sion of CCE using spectral methods was incorporated
into the SpEC code [100–102]. And, finally, in 2020 and
2021 an even more-improved version of CCE that en-
abled the extraction of the Weyl scalars was developed by
Ref. [103] and incorporated into the SpECTRE code [104]
by Ref. [105]. This version of CCE is the most advanced
version and is what will be used throughout this review.

VI. NUMERICAL WAVEFORMS
AND MEMORY EFFECTS

A. Examining conservation laws in Eqs. (4.6)

With the pedagogical and mathematical theory behind
the BMS group, its corresponding conservation laws, and
memory effects presented in Sec. II F, we now turn to a
numerical study of GWs in the context of asymptotics.
In particular, to highlight the usefulness of Eqs. (4.6), we
first present Fig. 3 to illustrate how the gravitational wave
strain can be easily interpreted in terms of BMS charges
and fluxes. In this figure we show four spin weight −2
spherical harmonic modes of the gravitational wave strain
as well as the contributions to the strain coming from

17 In particular, waveform data produced using extrapolation is
known to not capture memory effects. We will discuss this failure,
and how it can be mitigated, more in Sec. VIC.
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FIG. 3. Four different spin-weight −2 spherical harmonic modes of the gravitational wave strain and the contributions from the
BMS charges and fluxes appearing in the right-hand side of Eqs. (4.6). The system is a mass ratio q = 1.22 binary black hole,
whose black hole spins are parallel to the system’s orbital angular momentum and have the values χ

(1)
z = 0.33 and χ

(2)
z = −0.44.

Note that this system (SXS:BBH:0305) has parameters which are consistent with those of the first GW detection GW150914.
Top Left: The real part of the (ℓ,m) = (2, 2) mode of the strain. The Bondi mass aspect’s and energy flux’s contributions are
shown in blue and green. Bottom Left: Identical to that shown in the top left panel, but for the real part of the (2, 0) mode.
Top Right: The real part of the (3, 2) mode of the strain. The angular momentum aspect’s and flux’s contributions are shown in
orange and purple. Bottom Right: Identical to that shown in the top right panel, but for the imaginary part of the (3, 0) mode.
The horizontal axis for each plot is the retarded time u, with upeak the peak of the L2 norm of the news over the two sphere.

the BMS charges and fluxes in the right-hand sides of
Eqs. (4.6). The system considered is a mass ratio q = 1.22
binary black hole, whose black hole spins are parallel to
the system’s orbital angular momentum and have the
dimensionless magnitudes χ

(1)
z = 0.33 and χ

(2)
z = −0.44.

These parameters resemble the most likely parameters of
the first gravitational wave detection, GW150914.

Let us first consider what is shown in the top left panel,
i.e., the (ℓ,m) = (2, 2) mode. As can be seen, the strain
is nearly entirely sourced by the Bondi mass aspect. This,
however, is expected because the Bondi mass aspect can
effectively be thought of as the mass multipole moment.
So all that this plot is showing is an illustration of the
fact that gravitational waves are predominantly sourced
by the mass quadrupole moment. If we now examine
the top right panel, we see a similar phenomenon, but
now illustrating the fact that gravitational waves are also
sourced by the current multipole moment. In this panel
we show the (3, 2) mode of the strain as well as the two
contributions from the angular momentum aspect and
the angular momentum flux. Like the top left panel, we
find that the strain is primarily sourced by the charge in
Eqs. (4.6). And, since the angular momentum aspect can
be related to the current multipole moment, this plot also
highlights the fact that the current multipole moment

also sources the strain, albeit subdominantly.
The perhaps more interesting panel in Fig. 3, however,

is the bottom left panel. In this plot we now show the
(2, 0) mode of the strain as well as the contributions
from both the Bondi mass aspect and the energy flux.
As can be seen, instead of the strain being sourced by
the Bondi mass aspect, we instead find that there is a
large and dominating contribution from the energy flux.
Furthermore, there is the unique phenomenon that the
strain no longer decays to zero; this is the memory effect!18
More specifically, this is the term that we associate with
the memory. What we mean by this is the following.
Formally, gravitational wave memory is a phenomenon
that can only be measured between two non-radiative
regions of spacetime, e.g., before and after the passage of
a burst of gravitational radiation. In practice, however,

18 One also may observe that there is a nonnegligible contribution
from the Bondi mass aspect near the peak of the strain. This is
because when the black holes are merging, they form an excited
remnant black hole that emits gravitational waves in a process
called the ringdown. The contribution from the mass aspect is
exactly this ringing that occurs as the remnant black hole settles
to be in a state of equilibrium, i.e., a Kerr black hole
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FIG. 4. Amplitude spectral density of the GW strain (black)
evaluated at (θ, ϕ) = (π/2, 0) and the contributions to the
strain from the (2,±2) modes (blue) and energy flux (green).
The NR system is an equal-mass, aligned spin binary with a
total mass of 60M⊙, a luminosity distance of 400Mpc, and
equal dimensionless black hole spins of magnitude 0.6 in the
direction of the orbital angular momentum. This simulation
is used to show a more optimistic observation of the memory.
As a reference, we include the LIGO A+ noise curve in orange
and the CE noise curve in magenta.

gravitational wave detectors are not really freely-falling19

and measure the strain in the frequency domain. Thus,
to measure memory we need to associate the memory
with some nonzero frequency, which is most naturally
whatever the frequency of the energy flux is, because it
is the source of the memory for these binary systems, as
illustrated through the bottom left panel of Fig. 3. So,
for the remainder of the paper when we refer to memory
what we will really be referring to is the evolution of the
memory, as measured through the BMS fluxes.

Finally, in the bottom right panel of Fig. 3 we again
highlight a similar result to that of the bottom left panel,
but now illustrated through the imaginary part of the
(3, 0) mode of the strain. As is shown, the strain is again
predominantly sourced by the flux contribution, but now
the contribution looks like a delta function, rather than a
step function; this is the spin memory effect. As outlined
in Sec. III, unlike the displacement memory, which affects
initially co-moving observers, the spin memory instead
affects observers with a non-zero initial relative velocity.
This can be understood in part by thinking about the
time integral of the strain, in which case this contribution
would instead manifest as a step function.

19 This is because the test masses in a gravitational wave detector
are influenced by actuators that are always working to restore
the initial configuration of the detector.

B. Detectability of Memory Effects

While Fig. 3 is useful in that it clearly illustrates the
fact that the energy flux is the contribution responsible
the memory exhibited by the gravitational wave strain,
it does not provide the overall magnitude of this effect.
This is because when the strain is evaluated at a point on
the celestial sphere, e.g., if the strain were observed by
a gravitational wave detector, one needs to consider the
sum of the strain’s modes weighted by the spin weighted
spherical harmonics. As a result, while the memory looks
fairly prominent in the bottom left panel of Fig. 3, if one
evaluates the strain at a point on the sky the memory
can be noticeably suppressed. This is in part because the
(2, 0) spin weight −2 spherical harmonic is

−2Y(2,0)(θ, ϕ) =
1

4

√
15

2π
sin(θ)2, (6.1)

so the memory is maximized for systems that, from the
binary’s viewpoint, are viewed edge-on (θ = π/2) and is
minimized for systems that are viewed face-on (θ = 0).
This fact is clearly highlighted in Fig. 2, which shows
what the whole gravitational wave strain looks like for
this binary black hole system when evaluated at the point
on the sky with (θ, ϕ) = (π/2, 0). As can be seen, even
for an ideal orientation (as well as an ideal binary, i.e.,
equal mass and large black hole spins in the direction of
the orbital angular momentum), the net memory that is
induced on the gravitational wave detector is ≲ 50% of
the magnitude of the full signal.

Furthermore, a unique challenge for observing memory
in a real-world detector is the fact that detectors do not
observe the GW strain in the time domain, but rather
the frequency domain. This is an issue because the part
of the strain that sources the memory, even though it can
have a large amplitude, is a low-frequency effect since it
resembles a step function and is not as oscillatory as the
other modes of the strain. We highlight this in Fig. 4,
which shows the Amplitude Spectral Density (ASD), i.e.,
the root of the Power Spectral Density (PSD), of the
gravitational wave strain evaluated at (θ, ϕ) = (π/2, 0).
We also show the contributions to the strain from the
(2,±2) modes and the energy flux. The NR system is
the same as that in Fig. 2. Before Fourier transforming
the waveform we first window the waveform data using
a Planck window with an ϵ value of 0.01. As is shown,
the ASD of the strain is primarily represented by the
(2,±2) modes, while the energy flux, i.e., the memory,
only contributes to the ASD at frequencies below 10Hz.20
This is what makes memory challenging to observe in
current ground-based detectors. Because of seismic noise,

20 Note that the reason why the ASD of the (2,±2) contribution
falls off around 20Hz is because this is for a finite NR waveform
whose initial (2, 2) frequency is 20Hz. If one examined the ASD
for an infinitely long NR/PN hybrid, this falloff would not occur.
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this waveform. The system used is the same as in Fig. 3.

LVK detectors are not sensitive to signals below ∼10Hz.
In particular, the signal-to-noise ratio (SNR) ρ of the
strain and the memory contribution to the strain, i.e.,

ρ =

√
4

∫ fmax

fmin

|h̃(f)|2
Sn(f)

df, (6.2)

where h̃(f) is the Fourier transform of the strain, Sn(f)
is the noise PSD, are ≈ 1,000 and ≈ 5. As a result,
current efforts to observe memory rely on a procedure
called “stacking” which combine the SNR estimates of
the memory from various events to instead compute a
type of population measurement [75–77]. Put differently,
these stacking efforts aim to show that memory has been
detected in a population of events. To detect memory
in a single event, we will most-certainly need to rely on
future ground-based detectors like the Einstein Telescope
or Cosmic Explorer (CE) or perhaps even one of the
planned space-based detectors like LISA, which are more
susceptible to the lower frequency regimes.

C. Memory Correction

Although we have so far primarily presented memory
as being easily resolvable in NR simulations, this is not
the case. In particular, prior to the creation of a CCE
code framework by Ref. [86] in 2010 and a more efficient
framework by Ref. [87] in 2020, there was no memory in
the waveforms that were produced by NR simulations.
This was because, when not using CCE, NR simulations
relied on extrapolation to produce predictions for what

the gravitational wave strain should be at null infinity.
However, because extrapolation is not an exact solution
to Einstein’s equations, it is unable to accurately resolve
memory effects. This important fact is shown in Fig. 5,
which shows the (2, 0) mode of the strain for waveforms
extracted using CCE and extrapolation. As can be seen,
the CCE waveform captures both the memory and the
oscillations induced in the merger and ringdown phases,
but the extrapolated waveform only captures the later.

Even so, Ref. [106] showed that extrapolated waveforms
can be corrected, through a sort of post-processing, to in-
clude the contribution from the memory and exhibit much
better agreement with CCE waveforms. In Ref. [106], it
was found that for a wide range of binary simulations,
the extrapolated strain waveforms simply seem to fail to
capture the energy flux contribution in Eq. (4.6a). Thus,
the authors argued that since the energy flux is only a
function of the strain, the extrapolated strain waveforms
can be self-consistently corrected to include the missing
memory contribution. In doing so, they found that with
such a correction the extrapolated waveforms then satisfy
the supertranslation conservation law to a higher degree
and better match the CCE waveforms. For completeness,
we also show this phenomenon in Fig. 5. By eye, one can
easily see that once the extrapolated strain waveform is
corrected to include the missing energy flux contribution,
then it agrees much better with the CCE waveform.

VII. BMS FRAME FIXING

Up until this point, we have primarily been focused on
utilizing the charge/flux perspective enlightened through
the BMS group to understand the means by which the
gravitational wave strain is sourced and memory effects.
For the rest of this review, we will turn out attention to
how the transformations of the BMS group are crucial
for performing robust analyses with NR waveforms and
building waveform models to test Einstein’s theory of GR
with gravitational wave detector data.

A. Fixing the frame with BMS charges

As is the case in every field of physics, fixing the frame
of the system that one is studying is vitally important to
ensure that the observed phenomenon are physical and
not just gauge artifacts. For binary black hole mergers,
the situation is no different. In particular, whenever we
study the gravitational radiation from a binary merger,
we are often implicitly fixing part of the frame without
knowing it. For example, by specifying a ẑ-axis, e.g.,
the direction of the binary’s orbital angular momentum
or the direction of the remnant black hole’s spin axis,
with respect to which we construct spherical harmonics
to decompose the gravitational wave strain in, we are
inherently fixing the rotation freedom by constructing a
canonical direction. However, while this aspect of the
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frame fixing may seem trivial, there are other freedoms
that need to be fixed that are more subtle.

When fixing the frame of a system, one needs to fix the
transformations that are contained within the system’s
symmetry group. For gravitational radiation, in which
the symmetry group is the BMS group, this means that
to fix the frame of, say, the waveform radiated to future
null infinity in a binary black hole merger, one must not
only fix the rotation freedom, but also the boost and the
supertranslation freedom. But, for an arbitrary system,
how should these freedoms be fixed? In principle, there
is no canonical frame, since GR has no preferred frame.
In practice, however, whatever analysis one would like to
conduct on a system often has its own canonical frame,
in the sense that there is a certain frame which makes
the analysis much simpler. For example, when using the
quadrupole formula to compute the gravitational wave
emitted by a binary system, it tends to be easier to do
the calculation in the frame in which the binary system’s
orbital angular momentum is aligned with the ẑ-axis. If a
different orientation is used, then certain simplifications
that would otherwise occur do not and one is instead met
with many more terms than are necessary to explain the
underlying physics. For studying numerical simulations,
the same holds true. In particular, because working with
NR results often consists of comparing NR waveforms
to certain perturbative solutions to Einstein’s equations,
like post-Newtonian (PN) in the early inspiral phase or
black hole perturbation theory (BHPT) in the ringdown,
the ideal frame is typically set by the perturbative result.
Then, to map the NR system to this canonical frame
one must work with the charges corresponding to the
frame freedoms, i.e., the BMS charges in Eqs. (4.8) and
Eq. (4.10), and find the transformation which maps these
charges in the NR system to the values expected by the
canonical frame. For example, to map to the system’s

center-of-mass frame, one can simply take the translation
and boost charges in Eqs. (4.8) and find the translation
and boost which maps these charges to zero.

While at first this business of fixing the frame may
seem trivial, we stress that performing this procedure is
of the utmost importance to extract meaningful physics.
To help highlight this, we present Fig. 6, which shows
the consequence of not accounting for the difference in
frames between an NR and a PN system. One important
aspect of waveform modeling is constructing waveforms
which span the entire frequency band of GW detectors.
This means that one must build waveforms that contain
thousands of orbits. NR simulations, however, typically
only contain tens or perhaps hundreds of orbits, but not
nearly as many as required to span the frequency bands
of current and future observatories. Therefore, there is
a constant need to “hybridize” finite NR waveforms with
perturbative solutions that are accurate during the early
inspiral regimes and can be more efficiently calculated.
Often these hybrid waveforms are built by hybridizing
finite NR waveforms with PN waveforms. This results in
waveforms which are PN during the early inspiral phase,
a smooth blend of PN and NR over a window called the
hybridization window, and NR for the remainder of the
binary coalescence. As is shown by Fig. 6, however, if
one does not account for the freedoms resulting from the
BMS group, i.e., if one does not map the NR system
to be in the same BMS frame as the PN system, then
this hybridization procedure will fail in the sense that it
will introduce unphysical features in the hybrid waveform.
Fortunately, this issue can be mitigated rather easily by
simply mapping the NR system to be in the right frame.
But, in order to do so, one needs to know how the various
BMS symmetries transform the asymptotic coordinates
as well as the asymptotic data of interest.

Fortunately, this was already presented in Sec. II E.
With both Eq. (2.7) and Eqs. (2.9), one has all of the
information that is needed to transform asymptotic data.
The only ingredient that remains for fixing the frame of
the asymptotic data is which charges one should use to
constrain the BMS freedoms. Normally, one could simply
use the charges presented in Eqs. (4.8) and Eq. (4.10).
However, because it is often the case that one wishes to
compare NR systems to PN predictions for which there
is only the strain and not the Weyl scalars, it turns out
that there are more convenient charges that can be used.
In particular, rather than working with the translation
and boost charges, i.e., Eq. (4.8a) and Eq. (4.8c), it is
instructive to instead construct the center-of-mass charge

Ga(u) = (Ka + uP a)/P t

=
1

4π

∫
S2

Re
[(
ð̄na

) (
N̂ + uðm

)]
dΩ. (7.1)

This charge is useful because we will almost always want
to examine systems in their center-of-mass frame, which
can be mapped to by finding the translation and boost
which minimize Eq. (7.1). As for the rotation charge,
again because we typically do not have access to either of
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the Ψ1 and Ψ2 Weyl scalars in PN theory, one typically
utilizes a rotation-like charge that can be computed from
the strain. In particular, in Ref. [53] such a rotation
charge was built by finding the angular velocity which
keeps the radiative fields, e.g., the strain, as constant
as possible in the corotating frame of the binary system.
This “charge” is

ω⃗(u) = −⟨L⃗L⃗⟩−1 · ⟨L⃗∂t⟩, (7.2)

where

⟨L⃗∂t⟩a ≡
∑

ℓ,m,m′

Im
[
f̄(ℓ,m′)⟨ℓ,m′|La|ℓ,m⟩ḟ(ℓ,m)

]
, (7.3a)

⟨L⃗L⃗⟩ab ≡
∑

ℓ,m,m′

f̄(ℓ,m′)⟨ℓ,m′|L(aLb)|ℓ,m⟩f(ℓ,m), (7.3b)

and f(u, θ, ϕ) is some function corresponding to the
asymptotic radiation, such as the GW strain or the news.
In Eq. (7.2), L⃗ is the infinitesimal generator of rotations.

When the system only consists of one black hole, as is
the case, for example, when studying the ringdown phase,
this prescription can break down. In this case, it is more
useful to fix the rotation freedom using the intrinsic spin
of the black hole, to ensure that one is in the frame of the
individual black hole. To compute this, one can either
map to the center-of-mass frame of the black hole and
compute the angular momentum charge, or, for simplicity,
they can instead compute

χ⃗(u) =
γ

M2
B

(
J⃗ + v⃗ × K⃗

)
− γ − 1

M2
B

(
v̂ · J⃗

)
v̂, (7.4)

which achieves the same result. Here

γ(u) ≡
(
1− |v⃗|2

)−1/2 (7.5)

is the Lorentz factor,

MB(u) ≡
√

−ηµνPµP ν (7.6)

is the Bondi mass,

v⃗(u) ≡ P⃗ /P t (7.7)

is the velocity vector, and the vectors J⃗ and K⃗ are the
angular momentum and boost charges found in Eq. (4.8b)
and Eq. (4.8c). With this “charge”, one can then map to
the frame of the black hole by, say, finding the rotation
which aligns this charge with the positive ẑ-axis.

For fixing the supertranslation, since for fixing the
Poincaré transformations we have been able to rely on
the charges in Eqs. (4.8), one may naively think that we
can simply use the supermomentum charge in Eq. (4.10).
This charge, however, turns out to be supertranslation-
invariant in nonradiative regimes of future null infinity,
i.e., regimes where the news is zero. As a result, it
cannot be used to fix the supertranslation freedom.21

21 This phenomenon should not necessarily come as a surprise, as
this also happens for the translation-invariant momentum charge.

Instead, one has to construct a different supertransla-
tion “charge” which transforms in a meaningful way. In
Ref. [49–51, 107], such a charge was presented. It is sim-
ply Eq. (4.11) with p = 1 and q = 0 and is the Moreschi
supermomentum:

PM(u, θ, ϕ) ≡ Ψ2 + σ ˙̄σ + ð2σ̄
= −m+Re

[
ð2σ̄

]
=

∫ u

−∞
|σ̇|2 du−MADM (7.8)

An important property of the Moreschi supermomentum
is that, because it transforms as

P ′
M =

1

k3
(PM − ð2ð̄2α)

=
1

k3
(
−m+Re

[
ð̄2
(
σ − ð2α

)])
, (7.9)

in Minkowski space where m = 0, minimizing the
Moreschi supermomentum corresponds to finding the
supertranslation that ensures the spacetime is really
Minkowski, not supertranslated Minkowski. Furthermore,
this property is true so long as the ℓ ≥ 2 components
of the mass aspect are zero, which is the same as there
being no Geroch supermomentum. This is useful because
isolated black holes cannot have Geroch supermomentum,
so if one instead uses of the Moreschi supermomentum to
fix the BMS freedom, they ensure that they are always
working in the frame that is the most natural frame from
the perspective of the individual black hole. We will call
the BMS frame with no Moreschi supermomentum the
superrest frame, as is it in some sense an extension of the
notion of a rest frame. To map to such a frame, one can
simply solve Eq. (7.9) for P ′

M = −MB , which yields

ð2ð̄2α = PM (u = α, θ, ϕ) + krest(α, θ, ϕ)
3MB(α) (7.10)

where krest is a special case of the conformal factor in
Eq. (2.4) in the sense that it is the conformal factor for a
boost whose velocity matches the momentum charge:

krest(u, θ, ϕ) ≡
1

γ (1− v⃗ · r⃗) =
MB

Pana
. (7.11)

Furthermore, in Ref. [51], the authors proved that, for
a condition on the energy flux, which is always obeyed
in nonradiative regimes of future null infinity, Eq. (7.10)
always has a regular solution. It was also shown that
Eq. (7.10) can be solved iteratively. That is, if one wishes
to find the supertranslation that maps a system to the
superrest frame at some time u0, they can evaluate the
right-hand side of Eq. (7.10) at time u = u0, solve for α,
evaluate the right-hand side at time u = α, solve for a
new α, etc., until α converges to a solution. This is the
underpinning of the frame fixing program. Specifically,
by utilizing this fact, one can always solve for the infinite
degree of freedom in the BMS transformation and map to
a target BMS frame in an iterative fashion. For example,
to map a NR system to the PN BMS frame, one can
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(i) Construct a window during the early inspiral phase
over which to align an NR system to a PN system;

(ii) Iteratively solve Eq. (7.10) for the supertranslation
which maps the ℓ ≥ 2 components of the difference
of the NR/PN Moreschi supermomenta to zero; this
is equivalent to mapping to the superrest frame at
u → −∞, i.e., in the infinite past of the binary;

(iii) Find the frame rotation that maps the NR system’s
angular velocity vector (see Eq. (7.2)) to match that
of the PN system;

(iv) Find the translation and boost which minimize the
center-of-mass charge (see Eq. (7.1));

(v) Perform a time and phase translation optimization
to align the NR and PN waveforms in the window;

(vi) Repeat steps (i) - (v), until the error between the
NR and PN waveforms converges.

For mapping to the frame of an individual black hole, like
a remnant black hole, the process is identical, but in step
(ii) one can minimize the Moreschi supermomentum, since
the target Moreschi supermomentum is −MB and in step
(iii) the rotation charge should be the spin of the black
hole (see Eq. (7.4)). Furthermore, step (v) is no longer
necessary since there is no preferred way to fix the time
or phase freedom from the perspective of the remnant
black hole. In the subsequent sections, we explain in more
detail how to map a system to either the PN BMS frame
or the superrest frame of an individual black hole and
provide some numerical results showing why frame fixing
is important and the success of this procedure at mapping
NR systems to some reasonable BMS frame.

B. PN BMS frame

At the end of Sec. VIIA the steps for mapping to
the PN BMS frame through an iterative process using
the BMS charges was outlined. Ultimately, to map to
this frame one must simply find the BMS transformation
which maps the charges of the NR system to match those
of the PN system. This, however, requires that one has
knowledge of the charges in PN theory. Unfortunately,
most PN calculations focus on computing the strain and
not the Weyl scalars, so the majority of the canonical
BMS charges can not be computed in a PN formulation.
Therefore, one can either compute these charges in PN
or try to use alternative charges that are functions of
only the strain. Because the later is easier, this is what
is typically used in BMS frame fixing. But, even if one
uses charges that are only functions of the strain, these
charges must still be computed in PN. Fortunately, the
center-of-mass charge, which is zero for PN systems, and
the angular velocity vector, which can easily be computed
numerically from the PN strain, are painless to obtain.
The PN Moreschi supermomentum, however, because it

involves a time integral, cannot be computed numerically
and must instead be worked out analytically. This was
first performed in Ref. [20], which computed it from the
PN strain using Eq. (7.8) to 3PN order without spins
and 2PN order with spins. They then implemented this
iterative procedure for fixing the frame of NR systems in
the publicly available python module scri.
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FIG. 7. The (2, 0) mode of the strain waveform computed in a
NR system (solid/black), a PN system (dashed/blue), and the
corresponding NR/PN hybrid waveform (dash-dotted/green).
The hybridization window is the highlighted region in yellow.
In the bottom panel, we show he absolute error between the
NR and PN waveforms (green), the hybrid and NR (black),
and the hybrid and the PN (blue). The NR simulation is the
same as that used in Figs. 3, 5, and 6.

In Fig. 7, we demonstrate the overall success of the
BMS frame fixing procedure by mapping a NR system
to the PN BMS frame and computing the error between
the NR waveform and the PN waveform in this frame.
This figure is identical to Fig. 6, but correctly utilizes
the BMS freedoms at future null infinity to perform the
waveform alignment. As can be seen, by mapping the
NR waveform to the PN BMS frame, the absolute error
between the two waveforms is decreased by three orders
of magnitude. Also, as seen through the hybrid waveform
built from these two inputs, by fixing the frame properly
the hybrid waveform no longer has an unphysical feature
that could bias data analyses that used this waveform.
Furthermore, we stress that although here the effects of
fixing the frame are a bit pronounced due to us studying
the (2, 0) mode, if one instead studies other modes they
will still find that the absolute error is improved.

C. Superrest frame

Apart from comparing NR systems to PN predictions
to construct more effective hybrid waveforms and models,
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NR simulations of black holes are also particularly useful
for extracting the quasi-normal mode (QNM) amplitudes
that are expected by perturbation theory. A subtle issue,
however, is that when a perturbed black hole is formed,
either through a black hole merger or stellar collapse, it
is not in the frame that black hole perturbation theory
is typically performed in. Put differently, the remnant
black hole formed in some astrophysical event may not be
described by the usual Kerr metric, but instead a boosted
or a supertranslated version. Consequently, if one tries to
study the perturbations of the remnant black hole formed
in a NR simulation without accounting for the difference
in BMS frames, then the analysis will fail in the same
way that the hybridization shown in Fig. 6 fails.
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FIG. 8. Top row: The (2, 0) mode of the strain waveform for
an NR system (black) and the best fit QNM model (blue).
The QNM model contains seven (2, 0) overtones. On the left,
the NR waveform is in the PN BMS frame, while on the right,
it is instead in the superrest frame of the remnant black hole.
Bottom row: Residual between the NR waveform and the fit.

In particular, in Fig. 8, we show exactly this. In the
top row we show two fits of QNMs to the (2, 0) mode
of the NR strain waveform from the simulation shown
in Figs. 3, 5, and 6. Meanwhile, in the bottom row we
show the residuals. The QNM model that we consider
has seven overtones and both mirror modes.22 As seen
through the left-most column, which corresponds to the
NR waveform in the PN BMS frame, i.e., the wrong frame
for BHPT analyses, when the NR system is not in the
superrest frame of the remnant black hole the strain can
not be fit with QNMs, in part because of the nonzero
asymptotic value resulting from the memory effect. But,
if one maps the NR system to the superrest frame of the
remnant black hole, then the QNM fit can be performed

22 We stress that here we use this model only for simplicity and to
show the importance of fixing the frame. In reality, when trying
to correctly fit an NR waveform with QNMs, one should take
precaution to ensure that the QNMs are meaningfully resolved.

successfully and the residual is reduced by three orders
of magnitude. This illustrates that fixing the frame is
essential for extracting physical QNM amplitudes.

Another important result that can be seen through
Fig. 8 and the bottom-left panel of Fig. 3 is an example
of the nonlinear nature of GR and a highlight of the need
for predictions from second-order perturbation theory to
study the ringdown of NR waveforms. More specifically,
since a large portion of the (2, 0) mode of the strain is
sourced by the energy flux, i.e., Eq. (4.7a), this means
that first-order perturbation theory is not sufficient to
explain the ringdown excitations of the strain near the
point of peak luminosity upeak. In particular, because
the energy flux is inherently nonlinear, i.e., it goes as
the strain squared, this means it can only be modeled by
second-order black hole perturbation theory, e.g., by the
quadratic QNMs studied in Refs. [89, 108].

VIII. DISCUSSION

In this review, we have presented a vast amount of
information regarding memory effects and the BMS group.
In particular, we began by providing some motivation for
and physical intuition behind why one should study GWs
at future null infinity, rather than at some point in the
bulk of a NR simulation. Following this, we showed
why the BMS group is the symmetry group of future
null infinity and why it is important to understand the
symmetries contained in the BMS group to ensure that
GWs are modeled and studied accurately and robustly.
Next, using this physical intuition for the BMS group
that we developed, we provided some motivation for why
memory effects can be expected to fall out of Einstein’s
theory of GR due to conservation laws stemming from the
BMS symmetries. This set the stage for our overarching
literature review on memory effects and the BMS group
as well as a more formal mathematical review of memory
and the various BMS conservation laws.

After presenting this more introductory information, we
then provided some discussion regarding memory effects
and BMS frame fixing in the context of NR simulations.
Specifically, we showed that the BMS conservations laws
and the charges and fluxes that are associated with them
provide a unique and helpful way to study a variety of
features of NR waveforms. Furthermore, we showed that
constraining the BMS freedoms of NR waveforms to match
the canonical BMS frame of other waveform models, such
as PN waveforms or black hole perturbation theory, is
critically important for building accurate GW models as
well as performing robust analyses with NR waveforms.

It is our hope that this review will serve as a resource for
those interested in learning more about memory effects
and the BMS group in the context of NR simulations
and GW modeling more generally. As new and more
accurate GW detectors come online, understanding the
complexities of GWs that GR predicts, such as those
we have covered here, will be of the utmost importance,
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as they will likely be key to observing never-before-seen
physics that will futher illuminate how our Universe works.
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Appendix A: Expressing a BMS transformation in
terms of rotations, boosts, and supertranslations

In this Appendix, we briefly outline how one can write
an arbitrary BMS transformation as a supertranslation
followed by a Lorentz transformation. This is useful
for mapping NR waveforms to a particular BMS frame
because it enables one to compose BMS transformations.
We begin by studying Lorentz transformations.

a. SL(2,C) representation of a Lorentz transformation

Let us begin with rotations. For a rotation R by an
angle θ about the axis r̂ = (rx, ry, rz), one may write this
as the quaternion

q = exp

(
1

2
θr̂

)
= cos(θ/2)I+ (rxi+ ryj+ rzk) sin(θ/2), (A1)

where I, i, j, k are the elementary quaternions obeying
the usual multiplication rules. Using spin matrices, i.e.,
elements of SL(2,C), one may write these quaternions as

σ ≡ (I, i, j,k)

=

((
1 0
0 1

)
,

(
0 i
i 0

)
,

(
0 −1
1 0

)
,

(
i 0
0 −i

))
. (A2)

Therefore, the rotation R has the SL(2,C) representation

R̃ = (cos(θ/2), r̂ sin(θ/2)) · σ. (A3)

Note that in Eq. (A3) R̃ is a unitary matrix. Meanwhile,
for boosts, since a boost B by rapidity w along the axis
v̂ = (vx, vy, vz) is nothing more than a rotation by the
angle iw about the axis v̂, a boost has the representation

B̃ = (cosh(w/2), iv̂ sinh(w/2)) · σ. (A4)

Note that in Eq. (A4) B̃ is a Hermitian matrix. Because
L̃ is invertible, it has a unique polar decomposition. Cor-
respondingly, a general Lorentz transformation can be

written as a composition of a boost followed by a rotation,
which in the SL(2,C) representation is

L̃ = R̃ · B̃
= [(cos(θ/2), r̂ sin(θ/2)) · σ]

· [(cosh(w/2), iv̂ sinh(w/2)) · σ] . (A5)

Note though that what is shown above is for a passive
Lorentz transformation. Put simply, the transformation
is acting on the coordinates themselves. Under L, our
original coordinates X are transformed to an intermediate
coordinate system X ′ by a boost, and then to a final
coordinate system X ′′ by a rotation. The parameters of
the rotation should be interpreted as a rotation in the X ′

coordinate system, not in the X coordinate system.

b. Decomposing an SL(2,C) matrix into rotation and boost

Because SL(2,C) is a double cover of the restricted
Lorentz group SO+(3, 1), we can always write the SL(2,C)
representation of a Lorentz transformation L as

L̃ ≡
(
a b
c d

)
(A6)

for some a, b, c, d ∈ C with ad − bc = 1. We would like
to perform a polar decomposition as either L̃ = R̃ · B̃ or
L̃ = B̃′ · R̃′, where R̃ or R̃′ is unitary and thus a rotation,
and where B̃ or B̃′ is hermitian and thus a boost, as seen
in Eqs. (A3) and (A4). This is easily accomplished with
a singular value decomposition,

L̃ = U · Σ · V †, (A7)

where U and V are complex unitary matrices and Σ is
diagonal, and in this case Hermitian. Using the inverse
properties of U and V , we can write L̃ in the more sug-
gestive form

L̃ =
(
U · V †) · (V · Σ · V †) (A8)

or

L̃ =
(
U · Σ · U†) · (U · V †) , (A9)

which give our desired decompositions,

L̃ = R̃ · B̃ with R̃ = U · V † and B̃ = V · Σ · V † (A10)

or

L̃ = B̃′ · R̃′ with B̃′ = U · Σ · U† and R̃′ = U · V †.
(A11)

c. Composition of BMS elements

Equipped with the SL(2,C) representation of arbitrary
Lorentz transformations, we also want a decomposition of
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BMS group elements as compositions of supertranslations
followed by Lorentz transformations, or vice versa. This
will make it computationally convenient to compose BMS
transformations. Such a decomposition is possible since
supertranslations T are a normal subgroup of the BMS
group B. Namely, we can construct the homomorphism to
the quotient group φ : B → B/T ≃ SO(3, 1). We can say
that a BMS group element s is a “pure supertranslation”
if s ∈ kerφ.

Now let a BMS transformation be

g = l ◦ s, (A12)

for l a Lorentz transformation and s a supertranslation.
The Lorentz transformation component of a BMS trans-
formation l = φ(g) is clearly well-defined. Alternatively

we can write a g as

g = ŝ ◦ l (A13)

for ŝ = l ◦ s ◦ l−1 some other pure supertranslation.
We can now consider composing g1, g2 ∈ B,

g = g2 ◦ g1 = l2 ◦ s2 ◦ l1 ◦ s1. (A14)

Because s2 is in the normal subgroup, we can write it as
conjugate to another pure supertranslation, namely

s2 = l1 ◦ s′ ◦ l−1
1 (A15)

for some s′ ∈ T. Thus

g = (l2 ◦ l1) ◦ (s′ ◦ s1) (A16)

with s′ = l−1
1 ◦ s2 ◦ l1. Note that here the composition

of the Lorentz transformations can be carried out via
the SL(2,C) representation, whereas the composition of
supertranslations is simply additive.
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