
17

Promptable Game Models: Text-guided Game Simulation via Masked
Diffusion Models

WILLI MENAPACE, University of Trento, Italy

ALIAKSANDR SIAROHIN, Snap Inc., USA

STÉPHANE LATHUILIÈRE, LTCI, Télécom Paris, Institut Polytechnique de Paris, France

PANOS ACHLIOPTAS, Snap Inc., USA

VLADISLAV GOLYANIK, MPI for Informatics, SIC, Germany

SERGEY TULYAKOV, Snap Inc., USA

ELISA RICCI, University of Trento, Fondazione Bruno Kessler, Italy

Fig. 1. We propose Promptable Game Models (PGMs), controllable models of games that are learned from annotated videos. Our PGM enables the genera-
tion of videos using prompts, a wide spectrum of conditioning signals such as player poses, object locations, and detailed textual actions (see) indicating
what each player should do. Our Animation Model uses this information to generate future, past, or interpolated environment states according to the learned
game dynamics. At this stage, the model is able to perform complex action reasoning such as generating a winning shot if the action “the [other] player
does not catch the ball” is specified, as shown in the figure. To accomplish this goal, the model decides that the bottom player should hit the ball with a
“lob” shot, sending the ball high above the opponent, who is unable to catch it. Our model renders the scene from a user-defined viewpoint (see) using a
Synthesis Model where the style of the scene (see) can be controlled explicitly.

W. Menapace’s work performed while the author was an intern at Snap Inc.
This work was partially supported by the EU HEU AI4TRUST (101070190) project.
Authors’ addresses: W. Menapace, University of Trento, Italy; e-mail: willi.menapace
@gmail.com; A. Siarohin, P. Achlioptas, and S. Tulyakov, Snap Inc., USA; e-mails:
asiarohin@snapchat.com, pachlioptas@gmail.com, stulyakov@snapchat.com; S. Lat-
huilière, LTCI, Télécom Paris, Institut Polytechnique de Paris, France; e-mail:
stephane.lathuiliere@telecom-paris.fr; V. Golyanik, MPI for Informatics, SIC, Ger-
many; e-mail: golyanik@mpi-inf.mpg.de; E. Ricci, University of Trento, Fondazione
Bruno Kessler, Italy; e-mail: e.ricci@unitn.it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

Neural video game simulators emerged as powerful tools to generate and

edit videos. Their idea is to represent games as the evolution of an envi-

ronment’s state driven by the actions of its agents. While such a paradigm

for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/01-ART17 $15.00
https://doi.org/10.1145/3635705

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

https://orcid.org/0000-0002-0715-9300
https://orcid.org/0000-0001-9252-1775
https://orcid.org/0000-0001-6927-8930
https://orcid.org/0000-0001-6427-6055
https://orcid.org/0000-0003-1630-2006
https://orcid.org/0000-0003-3465-1592
https://orcid.org/0000-0002-0228-1147
mailto:permissions@acm.org
https://doi.org/10.1145/3635705
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3635705&domain=pdf&date_stamp=2024-01-03

17:2 • W. Menapace et al.

enables users to play a game action-by-action, its rigidity precludes more

semantic forms of control. To overcome this limitation, we augment game

models with prompts specified as a set of natural language actions and

desired states. The result—a Promptable Game Model (PGM)—makes it pos-

sible for a user to play the game by prompting it with high- and low-level

action sequences. Most captivatingly, our PGM unlocks the director’s mode,

where the game is played by specifying goals for the agents in the form of

a prompt. This requires learning “game AI,” encapsulated by our animation

model, to navigate the scene using high-level constraints, play against an

adversary, and devise a strategy to win a point. To render the resulting

state, we use a compositional NeRF representation encapsulated in our

synthesis model. To foster future research, we present newly collected,

annotated and calibrated Tennis and Minecraft datasets. Our method

significantly outperforms existing neural video game simulators in terms

of rendering quality and unlocks applications beyond the capabilities of

the current state-of-the-art. Our framework, data, and models are available

at snap-research.github.io/promptable-game-models.

CCS Concepts: • Computing methodologies → Rendering; Anima-

tion;

Additional Key Words and Phrases: Neural radiance fields, diffusion mod-

els, human motion generation, language modeling

ACM Reference format:

Willi Menapace, Aliaksandr Siarohin, Stéphane Lathuilière, Panos Achliop-

tas, Vladislav Golyanik, Sergey Tulyakov, and Elisa Ricci. 2024. Promptable

Game Models: Text-guided Game Simulation via Masked Diffusion Models.

ACM Trans. Graph. 43, 2, Article 17 (January 2024), 16 pages.

https://doi.org/10.1145/3635705

1 INTRODUCTION

Recent video generation methods, thanks to their training on

extensive web-scale datasets [Schuhmann et al. 2022], exhibit a

remarkable capacity for generating a vast amount of different con-

cepts and scenes [Blattmann et al. 2023; Ho et al. 2022a; Singer et al.

2022]. Despite this, their generic nature hinders their comprehen-

sion of the dynamics of the modeled scenes. When generating or

editing videos of a game, such as a tennis match, this limitation

impedes their ability to attain precise control of the player move-

ments or to devise optimal strategies to reach desired states of the

game, such as victory over the opponent.

Neural video game simulators, a growing category of video gen-

eration methods, make an important step in this direction by focus-

ing on modeling the dynamics of an environment, often a sports

or computer game, with high fidelity and degree of control, and

show that annotated videos can be used to learn to generate videos

interactively [Davtyan and Favaro 2022; Huang et al. 2022; Kim

et al. 2021, 2020; Menapace et al. 2021] and build 3D environments

where agents can be controlled through a set of discrete actions

[Menapace et al. 2022]. However, when applied to complex or real-

world environments, these works present several limitations: They

do not accurately model the game’s dynamics, do not model phys-

ical interactions of objects in 3D space, do not learn precise con-

trols, do not allow for high-level goal-driven control of the game

flow, and, finally, do not model intelligent behavior of the agents,

a capability often referred to as “game AI.”

In this work, we overcome these limitations by introducing

game models trained on a set of annotated videos that support com-

plex prompts. Due to the versatility of the applications enabled by

diverse prompting methods (see Section 4), we call them Prompt-

able Game Models (PGMs). More formally, we define PGMs as

those models supporting a core set of game modeling and prompt-

ing functions including rendering from a controllable viewpoint,

modeling of game’s dynamics, precise character control, high-level

goal-driven control of the game, and game AI. Making a first step

towards the realization of such models, we propose a framework

that supports these characteristics.

To overcome the limitations of Davtyan and Favaro [2022],

Huang et al. [2022], Kim et al. 2021, 2020, and Menapace et al. 2021,

2022, not only do we model the states of an environment, but we

also consider detailed textual representations of the actions taking

place in it. We argue that training on user commentaries describing

detailed actions of a game greatly facilitates learning the dynam-

ics of the game and game AI—important parts of PGMs—and that

such commentaries are a key component in enabling a series of im-

portant model capabilities related to precise character control and

high-level goal-driven control of the game flow.

In its simplest form, for games like tennis, this enables control-

ling each player in a precise manner with instructions such as “hit

the ball with a backhand and send it to the right service box.” More-

over, language enables users to take the director’s mode and prompt

the model with high-level game-specific scenarios or scripts, spec-

ified by means of natural language and desired states of the environ-

ment. As an example, given desired starting and ending states, our

promptable game model can devise in-between scenarios that led

to the observed outcome. Most interestingly, as shown in Figure 1,

given the initial states of a real tennis video in which a player lost

a point, our model prompted by the command “the [other] player

does not catch the ball” can perform the necessary action to win

the point.

Broadly speaking, a game maintains states of its environments

[Curtis et al. 2022; Stanton et al. 2016; Starke et al. 2019], renders

them using a controllable camera, and evolves them according to

user commands, actions of non-playable characters controlled by

the game AI, and the game’s dynamics. Our framework follows this

high-level structure highlighted in Figure 1. Our synthesis model

maintains a state for every object and agent included in the game

and renders them in the image space using the compositional NeRF

of Menapace et al. [2022] followed by a learnable enhancer for

superior rendering quality. To model the dynamics of games and

game AI that determine the evolution of the environment states,

we introduce an animation model. Specifically, inspired by Han

et al. [2022], we train a non-autoregressive text-conditioned diffu-

sion model that leverages masked sequence modeling to express

the conditioning signals corresponding to a prompt. In particu-

lar, we show that using text labels describing actions happening

in a game is instrumental in learning such capabilities. While cer-

tain prior work [Kim et al. 2021, 2020; Menapace et al. 2021, 2022]

explored maintaining and rendering states of games, we are not

aware of any generative method that attempts to enable precise

control, modeling sophisticated goal-driven game dynamics, and

learning game AI to the extent explored in this article.

The task of playing games and manipulating videos in the di-

rector’s mode has not been previously introduced in the literature.

With this work, we attempt to introduce the task and set up a

solid framework for future research. To do that, we collected two

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

https://snap-research.github.io/promptable-game-models/
https://doi.org/10.1145/3635705

Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models • 17:3

monocular video datasets. The first one is the Minecraft dataset

containing 1.2 hours of videos, depicting a player moving in a

complex environment. The second is a large-scale real-world

dataset with 15.5 hours of high-resolution professional tennis

matches. For each frame in these datasets, we provide accurate

camera calibration, 3D player poses, ball localization, and, most

importantly, diverse and rich text descriptions of the actions

performed by each player in each frame.

In summary, our work brings the following contributions:

— A framework for the creation of Promptable Game Models. It

supports detailed offline rendering of high-resolution, high-

frame rate videos of scenes with articulated objects from

controllable viewpoints. It can generate actions specified by

detailed text prompts, model opponents, and perform goal-

driven generation of complex action sequences. As far as we

are aware, no existing work provides this set of capabilities

under comparable data assumptions.

— A synthesis model, based on a compositional NeRF backed by

an efficient plane- and voxel-based object representation that

operates without upsampling. With respect to the upsampler-

based approach of Menapace et al. [2022], it doubles the out-

put resolution, can synthesize small objects, and does not

present checkerboard upsampling artifacts.

— An animation model, based on a text-conditioned diffusion

model with a masked training procedure, which is key to sup-

porting complex game dynamics, object interactions, game AI,

and understanding detailed actions. It unlocks applications

currently out of reach of state-of-the-art neural video game

simulators (see Section 4).

— A large-scale 15 h Tennis and a 1 h Minecraft video datasets

with camera calibration, 3D player poses, 3D ball localization,

and detailed text captions.

2 RELATED WORK

Our Promptable Game Model relates to neural game simulation lit-

erature, game engines, character animation, neural rendering, se-

quential data generation, and text-based generation. We review the

most recent related works in this section.

2.1 Neural Video Game Simulation

In the past few years, video game simulation using deep neural net-

works has emerged as a new research trend [Davtyan and Favaro

2022; Huang et al. 2022; Kim et al. 2021, 2020; Menapace et al. 2021,

2022]. The objective is to train a neural network to synthesize

videos based on a specific type of prompt: a sequence of actions

provided at every timestep.

This problem was first addressed using training videos anno-

tated with the corresponding action labels at each timestep [Chi-

appa et al. 2017; Kim et al. 2020; Oh et al. 2015]. They consider

a discrete action representation that is difficult to define a priori

for real-world environments. More recently, Kim et al. [2021]

proposed a framework that uses a continuous action represen-

tation to model real-world driving scenarios. Devising a good

continuous action representation for an environment, however, is

complex. To avoid this complexity, Menapace et al. Menapace et al.

[2021, 2022], propose to learn a discrete action representation.

Huang et al. [2022] expand on this idea by modeling actions as

a learned set of geometric transformations, while Davtyan and

Favaro [2022] represent actions by separating them into a global

shift component and a local discrete action component.

Differently from our PGM, previous works perform generation

in an autoregressive manner, conditioned on the actions and,

therefore, are unable to answer prompts entailing constraint- or

goal-driven generation for which non-sequential conditioning is

necessary. We find the proposed text-based action representation

and masked training procedure to be crucial to unlocking such

applications.

Among these works, Playable environments [Menapace et al.

2022] is the most closely related to ours. Rather than employing a

2D model, they use a NeRF-based renderer [Mildenhall et al. 2020]

that enables them to represent complex 3D scenes. We follow this

high-level design but introduce a more efficient plane- and voxel-

based NeRF representation that enables the rendering of outputs at

double the original resolution without the use of upsampling mod-

ules, which we found to be the cause of checkerboard artifacts,

failures in rendering of small objects, and to be prone to failure

when training at higher resolutions. In addition, the employed dis-

crete action representation shows limitations in complex scenarios

such as tennis, where it is only able to capture the main movement

directions of the players and does not model actions such as ball

hitting. In contrast, we employ a text action representation that

specifies actions at a fine level of granularity (i.e., which particular

ball-hitting action is being performed and where the ball is sent),

while remaining interpretable and intuitive for the user. Last, we

replace the adversarially trained LSTM animation module with a

more capable masked diffusion transformer.

2.2 Game Engines

Game engines brought a revolution to game development by

providing extensible and reusable software that can be employed

to create a wide range of game models [Gregory 2018]. Nowadays,

a range of game engines exists (Unity, Unreal, id Tech, Source,

CRYENGINE, Frostbite, RAGE) and have grown to become vast

software ecosystems. Modern game engines are organized into

components including a rendering engine [Müller et al. 2020],

a resource manager, a module for physics and collision, an

animation manager, and, importantly, a gameplay foundation

system that models the game rules and encapsulates game AI

functionalities [Gregory 2018]. The presence of these components,

coupled with the labor of a range of trained experts including

software engineers, artists (animators, 3D modelers, texture and

lighting artists), and game developers, enables the construction

of sophisticated game models supporting low-level character

control and scripted agent behavior. We show that monocular

videos annotated with a fraction of the effort (see Supplement I.1)

can be used to learn models of games that support answering

challenging prompts related to agent intelligence, a capability

difficult to achieve through scripted agent behavior.

2.3 Character Animation

Character animation is a long-standing problem in computer

graphics. Several recent methods have been proposed that pro-

duce high-quality animations. Holden et al. [2020] propose a learn-

able version of Motion Matching [Büttner and Clavet 2015] that

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

17:4 • W. Menapace et al.

formulates character animation as retrieval of the closest motion

from a motion database and supports interaction with other char-

acters or objects. Other approaches model the evolution of charac-

ters using time series models conditioned on the preceding state

and control signals [Holden et al. 2017; Lee et al. 2018; Starke et al.

2019, 2020]. Starke et al. [2019] propose a model based on a mix-

ture of experts that controls character locomotion and object in-

teractions; in a follow-up work [Starke et al. 2020] they introduce

local motion phases to model complex character motions and in-

teraction with a second character.

To produce high-quality animations the methods rely on

difficult-to-acquire motion capture data enriched with contact in-

formation [Holden et al. 2020; Starke et al. 2019, 2020], motion

phases [Starke et al. 2019], or engineered action labels [Starke

et al. 2019, 2020]. Additionally, handcrafted dataset-specific fea-

ture representations and mappings from user controls to such

representations are often leveraged, and additional knowledge is

injected through postprocessing steps such as inverse kinemat-

ics or external physics models. While these assumptions promote

high-quality outputs, they come at a significant effort. In contrast,

our method sidesteps these requirements by not using motion cap-

ture and basing user control on natural language that is cheaper

to acquire (see Supplement I.1) and does not require manual en-

gineering. Finally, character animation methods support limited

goal-driven control such as interacting with a specific object while

avoiding collisions [Starke et al. 2019]. In contrast, our method

models complex game AI tasks such as modeling strategies to de-

feat the opponent, which are instrumental in answering complex

user prompts.

2.4 Neural Rendering

Neural rendering was recently revolutionized by the advent

of NeRF [Mildenhall et al. 2020]. Several modifications of the

NeRF framework were proposed to model deformable objects [Li

et al. 2022; Park et al. 2021a, b; Tretschk et al. 2021; Weng et al.

2022] and decomposed scene representations [Kundu et al. 2022;

Menapace et al. 2022; Müller et al. 2022; Niemeyer and Geiger

2021; Ost et al. 2021]. In addition, several works improved the

efficiency of the original MLP representation of the radiance field

[Mildenhall et al. 2020] by employing octrees [Martel et al. 2021;

Yu et al. 2021], voxel grids [Fridovich-Keil et al. 2022], triplanes

[Chan et al. 2022], hash tables [Müller et al. 2022], or factorized

representations [Chen et al. 2022].

Our framework is most related to that of Weng et al. [2022],

since we model player deformations using an articulated 3D prior

and linear blend skinning (LBS) [Lewis et al. 2000]. Differently

from them, however, we consider scenes with multiple players and

apply our method to articulated objects with varied structures for

their kinematic trees. While similar to the rendering framework

of Menapace et al. [2022], our framework does not adopt compu-

tationally inefficient MLP representations, using voxel [Fridovich-

Keil et al. 2022] or plane representations instead, thus does not rely

on upsampler networks.

2.5 Sequential Data Generation with Diffusion Models

In prior work, sequential data generation was mainly addressed

with auto-regressive formulations combined with adversarial

[Kwon and Park 2019] or variational [Babaeizadeh et al. 2018;

Fortuin et al. 2020] generative models. Recently, diffusion models

have emerged as a promising solution to this problem, leading to

impressive results in multiple applications such as audio [Chen

et al. 2021; Kong et al. 2020; Lam et al. 2022; Leng et al. 2022] and

video synthesis [Blattmann et al. 2023; Ho et al. 2022a, b; Singer

et al. 2022], language modeling [Dieleman et al. 2022], and human

motion synthesis [Dabral et al. 2023; Zhang et al. 2022]. Following

this methodological direction [Tashiro et al. 2021], introduce a

score-based diffusion model for imputing missing values in time

series. They introduce a training procedure based on masks that

simulate missing data. This approach motivates our choice of a sim-

ilar masking strategy to model the conditions entailed by the given

prompt and generate the unknown environment states. In this

work, we show that mask-based training is highly effective in mod-

eling geometric properties together with textual data modalities.

2.6 Text-based Generation

In recent years, we have witnessed the emergence of works on the

problem of text-based generation. Several works address the prob-

lem of generating images [Ramesh et al. 2022, 2021; Rombach et al.

2021; Saharia et al. 2022] and videos with arbitrary content [Ho

et al. 2022a, b; Hong et al. 2022; Singer et al. 2022], and arbitrary

3D shapes [Achlioptas et al. 2023; Jain et al. 2022; Lin et al. 2023].

Han et al. [2022] introduced a video generation framework that

can incorporate various conditioning modalities in addition to text,

such as segmentation masks or partially occluded images. Their ap-

proach employs a frozen RoBERTa [Liu et al. 2020] language model

and a sequence masking technique. Fu et al. [2023] propose an anal-

ogous framework. Our animation framework employs a similar

masking strategy, but we model text conditioning at each timestep

in the sequence, use diffusion models that operate on continuous

rather than discrete data, and generate scenes that can be rendered

from arbitrary viewpoints.

More relevant to our work, several papers introduced models

to generate human motion sequences from text [Athanasiou et al.

2022; Tevet et al. 2022]. Recently, diffusion models have shown

strong performance on this task [Dabral et al. 2023; Zhang et al.

2022]. In these works, sequences of human poses are generated by

a diffusion model conditioned on the output of a frozen CLIP text

encoder. It is worth noting that these prior works model only a sin-

gle human, while our framework supports multiple human agents

and objects and models their interactions with the environment.

3 METHOD

This section introduces our framework for the creation of Prompt-

able Game Models that allows the user to perform a range of dy-

namic scene editing tasks, formulated as a set of conditioning

prompts.

We divide our PGM into two modules: a synthesis model and an

animation model. The synthesis model generates an image given

the representation of the environment state. The animation model,

instead, aims at modeling the game’s dynamics, with player actions

and interactions, in the high-level space of the environment states.

Actions are modeled as text, which is an expressive, yet intuitive

form of control for a wide range of tasks. The overview of our

framework is provided in Figure 2(a).

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models • 17:5

Fig. 2. (a) Overview of our framework. The animation model produces states s based on user-provided conditioning signals, or prompts, s
c , a

c that are
rendered by the synthesis model. (b) The diffusion-based animation model predicts noise ϵ k applied to the noisy states s

p

k
conditioned on known states

s
c and actions a

c with the respective masks m
s, m

a, diffusion step k and framerate ν . The text encoder T produces embedding for the textual actions,
while the temporal model A performs noise prediction. (c) The synthesis model renders the current state using a composition of neural radiance fields, one
for each object. A style encoder E extracts the appearance ω of each object. Each object is represented in its canonical pose by C, and deformations of
articulated objects are modeled by the deformation model D. After integration and composition, the feature grid G is rendered to the final image using the
feature enhancer F .

In more detail, our model defines the state of the entire envi-

ronment as the combination of all individual object states. Con-

sequently, each individual state is the set of the object properties

such as the position of each object in the scene, their appearance,

or their pose. Formally, the environment state at time t can be rep-

resented by st ∈ S = (Rn1 × · · · × RnP), P properties of variable

lengthni defined as the union of the properties of each object. This

state representation captures all variable aspects of each object in

the environment, thus it can be used by the synthesis model to

generate the scene.

However, the animation model predicts the evolution of an envi-

ronment in time, which is represented by the sequence of its states

{s1, s2, . . . sT } = s ∈ ST , whereT is the length of the sequence. The

model provides control over sequence generation with the help of

user-defined conditioning signals, or prompts, that can take two

forms: explicit state manipulation and high-level text-based edit-

ing. With respect to the former, the user could change the position

of the tennis ball at timestep t , and the model would automatically

adapt the position of the ball in other nearby states. As far as the

latter is concerned, users could provide high-level text-based val-

ues of actions such as “The player takes several steps to the right and

hits the ball with a backhand” and the model would generate the

corresponding sequence of states (see Figure 3). These generic ac-

tions in the form of text are central to enabling high-level, yet fine-

grained control over the evolution of the environment. To train

our framework, we assume a dataset of camera-calibrated videos,

where each video frame is annotated with the corresponding states

s and actions a.

3.1 Synthesis Model

In this section, we describe the synthesis model that renders states

from controllable viewpoints (see Figure 2(c)). We build our model

based on a compositional NeRF [Menapace et al. 2022] framework

that enables explicit control over the camera and represents a scene

as a composition of different, independent objects. Thanks to the

independent representation of objects, each object property is di-

rectly linked to an aspect of the respective object and can thus be

easily controlled and manipulated. The compositional NeRF frame-

work allows different, specialized NeRF architectures to be used

for each object based on its type. To further improve quality, rather

than directly rendering RGB images with the NeRF models, we ren-

der features and make use of a feature enhancer CNN to produce

the RGB output. To represent objects with different appearances,

we condition the NeRF and enhancer models on the style codes

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

17:6 • W. Menapace et al.

extracted with a dedicated style encoder [Menapace et al. 2022].

Our model is trained using reconstruction as the main guiding

signal.

In Sections 3.1.1–3.1.6, we illustrate the main components of the

synthesis module, and in Section 3.1.7, we describe the training

procedure.

3.1.1 Scene Composition with NeRFs. Neural radiance fields

represent a scene as a radiance field, a 5D function parametrized

as a neural network mapping the current position x and viewing

direction d to density σ and radiance c.

To allow controllable generation of complex scenes, we adopt a

compositional strategy where each object in the scene is modeled

with a dedicated NeRF model [Menapace et al. 2022; Müller et al.

2022; Xu et al. 2022]. The scene is rendered by sampling points

independently for each object and querying the respective object

radiance field Ci . The results for all objects are then merged and

sorted by distance from the camera before being integrated.

All objects are assumed to be described by a set of properties

whose structure depends on the type of object, e.g., a player, the

ball, the background. We consider the following properties:

— Object location. Each object is contained within an axis-

aligned bounding box b
3D
i , which is defined by size and po-

sition. In the case of the ball, we additionally consider its ve-

locity to model blur effects (Section 3.1.6).

— Object style. All objects have an appearance that may vary in

different sequences, thus we introduce a style code ωi as an

additional property for all objects. Since it is difficult to define

such style information a priori, we assume it to be a latent

variable and learn it jointly during training.

— Object pose. Articulated objects such as humans require addi-

tional properties to model varying poses. We model the defor-

mation of articulated objects as a kinematic tree with Ji joints

and consider as object properties the rotation R and transla-

tion tr parameters associated with each joint (Section 3.1.4).

From now on, we drop the object index i to simplify notation.

3.1.2 Style Encoder. Representing the appearance of each ob-

ject is challenging, since it changes based on the type of object

and illumination conditions. We treat the style ω for each object

as a latent variable that we regress using a convolutional style en-

coder E. Given the current video frame I with O objects, we com-

pute 2D bounding boxes b
2D for each object. First, a set of resid-

ual blocks is used to extract frame features that are later cropped

around each object according to b
2D using RoI pooling [Girshick

et al. 2013]. Later, a series of convolutional layers with a final pro-

jection is used to predict the style codeω from the cropped feature

maps.

3.1.3 Volume Modeling for Efficient Sampling. Radiance fields

are commonly parametrized using MLPs [Mildenhall et al. 2020]

but such representation requires a separate MLP evaluation for

each sampled point, making it computationally challenging to

train high-resolution models. To overcome such issue, we model

the radiance field C of each object in a canonical space using two

alternative parametrizations.

For three-dimensional objects, we make use of a voxel grid

parametrization [Fridovich-Keil et al. 2022; Weng et al. 2022].

Starting from a fixed noise tensor V
′ ∈ RF ′×H ′

V
×W ′

V
×D′

V , a series

of 3D convolutions produces a voxel V ∈ RF+1×HV ×WV ×DV con-

taining the features and density associated to each point in the

bounded space. Here, F ′ and F represent the number of features,

while HV , WV , and DV represent the size of the voxel. Given a

point in the object canonical space xc , the associated features and

density σ are retrieved using trilinear sampling on V. To model the

different appearance of each object, we adopt a small MLP condi-

tioned on the style ω to produce a stylized feature with the help

of weight demodulation [Karras et al. 2020].

For two-dimensional objects such as planar scene elements, we

make use of a similar parametrization where a fixed 2D noise

tensor P
′ ∈ RF ′×H ′

P
×W ′

P is mapped to a plane of features P ∈
R

F×HP×WP using a series of 2D convolutions. Given a ray r , we

compute the intersection point x between the plane and the ray

that is used to sample P using bilinear sampling. Similarly to the

voxel case, a small MLP is used to model object appearance accord-

ing to ω. We assume planes to be fully opaque and assign a fixed

density value σ to each sample. Thanks to this representation, a

single point per ray is sufficient to render the object.

3.1.4 Deformation Modeling. Since the radiance field C alone

supports only rendering of rigid objects expressed in a canonical

space, to render articulated objects such as humans, we introduce

a deformation model D. Given an articulated object, we assume

its kinematic tree is known and that the transformation [Rj |trj]

from each joint j ∈ 1, . . . , J to the parent joint is part of the

object’s properties. We then implement a deformation procedure

based on linear blend skinning (LBS) [Lewis et al. 2000] and

inspired by HumanNeRF [Weng et al. 2022], which employs the

joint transformations and a learned volume of blending weights

W ∈ RJ+1×HW ×WW ×DW to associate each point in the bounding

box of the articulated object to the corresponding one in the canon-

ical volume. We present additional details in Supplement C.

3.1.5 Enhancer. NeRF models are often parametrized to output

radiance c ∈ R3 and directly produce an image. However, we find

that such approach struggles to produce correct shading of the ob-

jects, with details such as shadows being difficult to synthesize.

Also, to improve the computational efficiency of the method, we

sample a limited number of points per ray that may introduce sub-

tle artifacts in the geometry. To address these issues, we param-

etrize the model C to output features where the first three chan-

nels represent radiance and the subsequent represent learnable fea-

tures. Then, we produce a feature grid G ∈ RF×H×W and an RGB

image Ĩ ∈ R3×H×W . We introduce an enhancer network F mod-

eled as a UNet [Ronneberger et al. 2015] architecture interleaved

with weight demodulation layers [Karras et al. 2020] that maps G

and the style codes ω to the final RGB output Î ∈ R3×H×W .

3.1.6 Object-specific Rendering. Our compositional approach

allows the use of object-specific techniques. In particular, in the

case of tennis, we detail in Supplement B how we can apply dedi-

cated procedures to enhance the rendering quality of the ball, the

racket, and the 2D user interfaces such as the scoreboards. The

rendering of the tennis ball is treated specially to render the blur

that occurs in real videos in the case of fast-moving objects. The

racket can be inserted in a post-processing stage to compensate for

the difficulty of NeRFs to render thin, fast-moving objects. Finally,

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models • 17:7

the UI elements are removed from the scene, since they do not be-

have in a 3D-consistent manner. For Minecraft, we describe how

the scene skybox is modeled.

3.1.7 Training. We train our model using reconstruction as the

main driving signal. Given a frame I and reconstructed frame Î,

we use a combination of L2 reconstruction loss and the perceptual

loss of Johnson et al. [2016] as our training loss. To minimize the

alterations introduced by the enhancer and improve view consis-

tency, we impose the same losses between I and Ĩ, the output of the

model before the feature enhancer. All losses are summed without

weighting to produce the final loss term. To minimize GPU mem-

ory consumption, instead of rendering full images, we impose the

losses on sampled image patches instead [Menapace et al. 2022].

We train all the components of the synthesis model jointly us-

ing Adam [Kingma and Ba 2015] for 300k steps with batch size 32.

We set the learning rate to 1e − 4 and exponentially decrease it to

1e − 5 at the end of training. The framework is trained on videos

with 1024× 576 px resolution. We present additional details in Sup-

plement D.1 and in Supplement E.1 and discuss inference details

in Supplement F.

3.2 Animation Model

In this section, we describe the animation model (see Figure 2(b)),

whose task is that of generating sequences of states s ∈ ST accord-

ing to user inputs. The animation model allows users to specify

conditioning signals, or prompts, in two forms. First, conditional

signals can take the form of values that the user wants to impose

on some object properties in the sequence, such as the player posi-

tion at a certain timestep. This signal is represented by a sequence

s
c ∈ ST . This form of conditioning allows fine control over the se-

quence to generate but requires directly specifying values of prop-

erties. Second, to allow high-level, yet granular control over the

sequence, we introduce actions in the form of text a
c ∈ LA×T that

specify the behavior of each of the A actionable objects at each

timestep in the sequence, where L is the set of all strings of text.

To maximize the flexibility of the framework, we consider all val-

ues in s
c and a

c to be optional, thus we introduce their respective

masks m
s ∈ {0, 1}P×T and m

a ∈ {0, 1}A×T that are set to 1 when

the respective conditioning signal is present. We assume elements

where the mask is not set to be equal to 0. The animation model

predicts s
p ∈ ST conditioned on s

c and a
c such that:

s = s
p + s

c , (1)

where we consider the entries in s
p and s

c to be mutually exclusive,

i.e., an element of s
p is 0 if the corresponding conditioning signal

in s
c is present according to m

s. Note that the prediction of actions

is not necessary, since s is sufficient for rendering.

We adopt a temporal model A based on a non-autoregressive

masked transformer design and leverage the knowledge of a pre-

trained language model in a text encoder T to model action condi-

tioning information [Han et al. 2022]. The masked design provides

support for the optional conditioning signals and is trained using

masked sequence modeling, where we sample m
s and m

a accord-

ing to various strategies that emulate desired inference tasks.

In Section 3.2.1, we define our text encoder, Section 3.2.2

defines the diffusion backbone, and in Section 3.2.3, we describe

the training procedure.

3.2.1 Text Encoder. We introduce a text encoder T that en-

codes textual actions into a sequence of fixed-size text embeddings:

a
emb = T (ac) ∈ RA×T×Nt , (2)

where Nt is the size of the embedding for the individual sentence.

Given a textual action, we leverage a pretrained T5 text model [Raf-

fel et al. 2022] Tenc that tokenizes the sequence and produces an

output feature for each token. Successively, a feature aggregator

Tagg modeled as a transformer encoder [Vaswani et al. 2017] pro-

duces the aggregated text embedding from the text model features.

To retain existing knowledge into Tenc, we keep it frozen and only

train the feature aggregator Tagg.

3.2.2 Temporal Modeling. In this section, we introduce the tem-

poral model A that predicts the sequence of states s conditioned

on known state values s
c , action embeddings a

emb, and the respec-

tive masks m
s and m

a. Since only unknown state values need to

be predicted, the model predicts s
p and the complete sequence of

states is obtained as s = s
p + s

c , following Equation (1). Diffusion

models have recently shown state-of-the-art performance on sev-

eral tasks closely related to our setting such as sequence modeling

[Tashiro et al. 2021] and text-conditioned human motion genera-

tion [Dabral et al. 2023; Zhang et al. 2022]. Thus, we follow the

DDPM [Ho et al. 2020] diffusion framework, and we frame the pre-

diction of s
p = s

p
0 as a progressive denoising process s

p
0 , . . . , s

p
K

,

where we introduce the diffusion timestep index k ∈ 0, . . . ,K . The

temporal modelA acts as a noise estimator that predicts the Gauss-

ian noise ϵk in the noisy sequence of unknown states s
p

k
at diffu-

sion timestep k :

ϵ
p

k
= A

(
s
p

k
|sc , aemb,ms,ma,k

)
. (3)

An illustration of the proposed diffusion model is shown in

Figure 2(b).

We realizeA using a transformer encoder [Vaswani et al. 2017].

To prepare the transformer’s input sequence, we employ linear pro-

jection layers P with separate parameters for each object prop-

erty. Since corresponding entries in s
p

k
and s

c are mutually exclu-

sive, we only consider the one that is present as input to the trans-

former, and we employ different projection parameters to enable

the model to easily distinguish between the two. An analogous

projection is performed for a
emb and, subsequently, the projection

outputs for states and actions are concatenated into a single se-

quence e ∈ RP+A×T×E , which constitutes the input to the trans-

former. An output projection layer with separate weights for each

object property produces the prediction ϵ
p

k
at the original dimen-

sionality. To condition the model on the diffusion timestep k , we

introduce a weight demodulation layer [Karras et al. 2020] after

each self-attention and feedforward block [Zhang et al. 2022].

To model long sequences while keeping reasonable computa-

tional complexity and preserving the ability to model long-term

relationships between sequence elements, it is desirable to build

the sequences using states sampled at a low framerate. However,

this strategy would not allow the model to generate content at the

original framerate and would prevent it from understanding dy-

namics such as limb movements that are clear only when observ-

ing sequences sampled at high framerates. To address this issue, we

use the weight demodulation layers to further condition our model

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

17:8 • W. Menapace et al.

on the sampling framerate ν to enable a progressive increase of the

framerate at inference time (see Supplement F.2.1).

3.2.3 Training. To train our model, we sample a sequence s

with corresponding actions a from a video in the dataset at a uni-

formly sampled framerate ν . Successively, we obtain masks m
s and

m
a according to masking strategies we detail in Supplement E.2.

The sequences for training are obtained following s
p
0 = s� (1−m

s)
and s

c = s �m
s, and actions as a

c = a �m
a, where � denotes the

Hadamard product.

We train our model by minimizing the DDPM [Ho et al. 2020]

training objective:

Ek∼U (1,K),ϵ∼N (0, I) | |ϵ
p

k
− ϵk | |, (4)

where ϵ
p

k
is the noise estimated by the temporal model A accord-

ing to Equation (3). Note that the loss is not applied to positions in

the sequence corresponding to conditioning signals [Tashiro et al.

2021].

Our model is trained using the Adam [Kingma and Ba 2015] op-

timizer with a learning rate of 1e − 4, cosine schedule, and with

10k warmup steps. We train the model for a total of 2.5M steps

and a batch size of 32. We set the length of the training sequences

to T = 16. The number of diffusion timesteps is set to K = 1,000

and we adopt a linear noise schedule [Ho et al. 2020]. Additional

details are presented in Supplement D.2 and Supplement F.

4 APPLICATIONS

Our framework enables a series of applications that are unlocked

by its expressive state representation, the possibility to render it

using a 3D-aware synthesis model, and the ability to generate se-

quences of states with an animation model that understands the

game dynamics and can be conditioned on a wide range of signals.

In the following, we demonstrate a set of selected applications.

Our state representation is modular, where the style is one of

the components. Style swapping is enabled by swapping the style

of the desired object ω in the original image with the one from

a target image. Similarly to a traditional game engine, our syn-

thesis model renders the current state of the environment from a

user-defined perspective. This enables our model to perform novel

view synthesis. We show in Supplement G examples of both these

capabilities.

We now show a set of applications enabled by the animation

model. In Figure 3, we show results for generating different se-

quences using textual actions starting from a common initial state.

Thanks to the textual action representation, it is possible to gain

fine control over the generated results and to make use of referen-

tial language.

Our animation model, however, is not limited to generate se-

quences given step-by-step actions. Thanks to its understanding

of the game’s dynamics, the model can tackle more complex tasks

such as modeling an opponent against which a user-controlled

player can play (see Figure 4), or even controlling all players with-

out user intervention (see Figure 5) in a way similar to a “game AI.”

The animation model also unlocks the “director’s mode,” where

the user can generate sequences by specifying prompts consisting

in a desired set of high-level constraints or goals. The model is

able to reason on actions to find a solution satisfying the given

constraints. As a first example, Figure 6 demonstrates results for a

navigation problem, where the user specifies a desired initial and

final player position in the scene, and the model devises a path be-

tween them. Notably, the user can also constrain the solution on

intermediate waypoints by means of natural language. As a sec-

ond example, Figure 7 shows that the model is capable of devis-

ing strategies to defeat an opponent. Given an original sequence

where the player commits a mistake and loses, the model can de-

vise which actions the player should have taken to win. Notably,

these model capabilities are learned by just observing sequences

annotated with textual actions.

5 EVALUATION

In this section, we introduce our Tennis and Minecraft datasets

(Section 5.1), describe our experimental protocol (Section 5.2), and

perform evaluation of both the synthesis model (Section 5.3) and

the animation model (Section 5.4). Additional evaluation results

are shown in Supplement H.

5.1 Datasets

We collect two datasets to evaluate our method. Both datasets and

the employed data collection tools are publicly available. In the fol-

lowing, we describe their structure and the available annotations.

5.1.1 Tennis Dataset. We collect a dataset of broadcast tennis

matches starting from the videos in Menapace et al. [2022]. The

dataset depicts matches between two professional players from

major tennis tournaments, captured with a single, static bird’s eye

camera.

To enable the construction of PGMs, we collect a wide range of

annotations with a combination of manual and automatic methods

(see Supplement A.1):

— For each frame, we perform camera calibration.

— For each of the two players, we perform tracking and collect

full SMPL [Loper et al. 2015] body parameters. Note that, in

our work, we only use a subset of the parameters: rotation

and translation associated with each joint and the location of

the root joint in the scene.

— For each player and frame, we manually annotate textual de-

scriptions of the action being performed. We structure cap-

tions so each includes information on where and how the

player is moving, the particular type of tennis shot being per-

formed, and the location where the shot is aimed (see Supple-

ment A.4). Captions make use of technical terms to describe

shot types and field locations. In contrast to other video-text

datasets that contain a single video-level [Bain et al. 2021] or

high-level action descriptions weakly aligned with video con-

tent [Miech et al. 2019], the captions in our dataset are sepa-

rate for each object and constitute a fine-grained description

of the actions taking place in the frame.

— For the ball, we perform 3D tracking and provide its position

in the scene and its velocity vector indicating the speed and

direction of movement.

We collect 7,112 video sequences in 1920 × 1080 px resolution

and 25 fps starting from the videos in Menapace et al. [2022]

for a total duration of 15.5 h. The dataset features 1.12M fully

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models • 17:9

Fig. 3. Different sequences predicted on the Tennis and Minecraft datasets starting from the same initial state and altering the text conditioning. Our
model moves players and designates shot targets using domain-specific referential language (e.g., “right service box,” “no man’s land,” “baseline”). The model
supports fine-grained control over the various tennis shots using technical terms (e.g., “forehand,” “backhand,” “volley”).

Fig. 4. Sequences generated by specifying actions for one of the players and letting the model act as the game AI and take control of the opponent. The
game AI successfully responds to the actions of the player by running to the right (see top sequence) or towards the net (see bottom sequence), following
two challenging shots of the user-controlled player.

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

17:10 • W. Menapace et al.

Fig. 5. Sequences generated without any user conditioning signal. The actions of all players are controlled by the model that acts as the game AI. In tennis,
the players produce a realistic exchange, with the bottom player advancing aggressively toward the net and the top player defeating him with a shot along
the right sideline. The Minecraft player and tennis ball trajectories are highlighted for better visualization.

Fig. 6. Given an initial and a final state, we generate all the states in between. We repeat the generation multiple times, conditioning it using different
actions indicating the desired intermediate waypoints.

Fig. 7. Given a sequence where the bottom player loses (see top), we ask the model to modify it such that the bottom player wins instead (see bottom). To
do so, we condition the top player on the action “The player does not catch the ball.” While in the original sequence the bottom player aims its response to
the center of the field where the opponent is waiting, the model now successfully generates a winning set of moves for the bottom player that sends the
ball along the left sideline, too far for the top player to reach.

annotated frames and 25.5k unique captions with 915 unique

words. We highlight key statistics of the dataset and show samples

in Supplement A.

We note that broadcast Tennis videos are monocular and do not

feature camera movements other than rotation, thus the dataset

does not make it possible to recover the 3D geometry of static ob-

jects [Menapace et al. 2022].

5.1.2 Minecraft Dataset. We collect a synthetic dataset from

the Minecraft video game. This dataset depicts a player performing

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models • 17:11

Fig. 8. Synthesis model qualitative results on the Tennis dataset. Compared to PE [Menapace et al. 2022], our model generates sharper players and static
scene elements. Our ablation study shows corruption of the player geometry when voxels or our deformation model are not used. When removing our
canonical plane representation, static scene elements appear blurry. When our feature enhancer is removed, the model does not generate shadows and
players lose quality.

a series of complex movements in a static Minecraft world that in-

cludes walking, sprinting, jumping, and climbing on various world

structures such as platforms, pillars, stairs, and ladders. A single,

monocular camera that slowly orbits around the scene center is

used to capture the scenes. We collect a range of synthetic anno-

tations using a game add-on we develop starting from ReplayMod

[2022]:

— Camera calibration for each frame.

— Player rotation and translation parameters associated with

each joint in the Minecraft kinematic tree format and the lo-

cation of the root joint in the scene (see Supplement A.2).

— A synthetically generated text caption describing the action

being performed by the player. We assign varied, descriptive

names to each element of the scene and build captions that de-

scribe scene elements or directions towards which the player

is moving. Additionally, our captions capture how movement

is happening, i.e., by jumping, sprinting, walking, climbing,

or falling. We adopt a stochastic caption generation proce-

dure that generates multiple alternative captions for each

frame.

A total of 61 videos are collected in 1024 × 576 px resolu-

tion and 20 fps for a total duration of 1.21 h. The dataset con-

tains 68.5k fully annotated frames and 1.24k unique captions with

117 unique words. We highlight key statistics for the dataset in

Supplement A.

5.2 Evaluation Protocol

We evaluate the synthesis and the animation models separately,

following a similar evaluation protocol. We divide the test dataset

into non-overlapping sequences of 16 frames sampled at 5 fps and

4 fps, respectively, for the Minecraft and Tennis datasets and make

use of the synthesis or animation model to reconstruct them. In

the case of the synthesis model, we directly reconstruct the video

frames and compute the following metrics:

— LPIPS [Zhang et al. 2018] is a standard metric for evaluating

the reconstruction quality of the generated images.

— FID [Heusel et al. 2017] is a widely used metric for image gen-

eration quality.

— FVD [Unterthiner et al. 2018] is a standard metric for assessing

the quality of generated videos.

— Average Detection Distance (ADD) [Menapace et al. 2021]

measures the average distance in pixels between the bound-

ing box centers of ground truth bounding boxes and bounding

boxes obtained from the generated sequences through a pre-

trained detector [Ren et al. 2015].

— Missing Detection Rate (MDR) [Menapace et al. 2021] es-

timates the rate of bounding boxes that are present in the

ground truth but that are missing in the generated videos

For the animation model, we evaluate reconstruction of the ob-

ject properties. Note that different strategies for masking affect the

behavior of the model and the nature of the reconstruction task,

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

17:12 • W. Menapace et al.

thus we separately evaluate different masking configurations cor-

responding to different inference tasks. We compute metrics that

address both the fidelity of the reconstruction and the realism of

the produced sequences:

— L2 computes the fidelity of the reconstruction by measuring

the distance between the ground truth and reconstructed ob-

ject properties along the sequence.

— Fréchet Distance (FD) [Fréchet 1957] measures the realism

of each object property by computing the Fréchet Distance

between the distribution of real sequences of a certain object

property and of generated ones.

We select different reconstruction tasks for evaluation:

— Video prediction conditioned on actions consists in reconstruct-

ing the complete sequence starting from the initial state while

the actions are specified for all timesteps. This setting corre-

sponds to the evaluation setting of Menapace et al. [2022].

— Unconditioned video prediction consists in reconstructing the

complete sequence starting from the first state only.

— Opponent modeling consists in reconstructing the object prop-

erties of an unknown player, based on the state of the other

player, with actions specified only on the known player. Good

performance in this task indicates the ability to model an op-

ponent against which a user can play.

— Sequence completion consists in reconstructing a sequence

where eight consecutive states are missing. No actions are

specified for the missing states. Good performance in this task

indicates ability in reasoning on how it is possible to reach a

certain goal state starting from the current one.

5.3 Synthesis Model Evaluation

In this section, we evaluate the performance of the synthesis

model.

5.3.1 Comparison to Baselines. We evaluate our method

against Playable Environments (PE) [Menapace et al. 2022], the

work most related to ours in that it builds a controllable 3D en-

vironment representation that is rendered with a compositional

NeRF model where the position of each object is given and pose pa-

rameters are treated as a latent variable. Since the original method

supports only outputs at 512 × 288 px resolution, we produce base-

lines trained at both 512 × 288 px and 1024 × 576 px resolution,

which we name PE and PE+, respectively. For a fair comparison,

we also introduce in the baselines our same mechanism for repre-

senting ball blur and train a variant of our model using the same

amount of computational resources as the baselines (Ours Small).

Results of the comparison are shown in Table 1, while qualita-

tive results are shown in Figure 8. Our method scores best in terms

of LPIPS, ADD, and MDR. Compared to PE+, our method produces

significantly better FID and FVD scores. As shown in Figure 8, PE

and PE+ produce checkerboard artifacts that are particularly no-

ticeable on static scene elements such as judge stands, while our

method produces sharp details. We attribute this difference to our

ray sampling scheme and feature enhancer design that, in contrast

to PE, do not sample rays at low resolution and perform upsam-

pling, but rather directly operate on high resolution. In addition,

thanks to our deformation and canonical space modeling strategies

Table 1. Comparison with Baselines and Ablation of the
Synthesis Model

Tennis LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓
PE† [Menapace et al. 2022] 0.188 11.5 349 3.74 0.200

PE+ [Menapace et al. 2022] 0.232 40.4 2432 132.3 49.7

w/o enhancer F 0.167 15.6 570 3.02 0.0728

w/o explicit deformation in D 0.156 13.3 524 3.10 0.0587

w/o planes in C 0.241 30.4 1064 2.94 0.0611

w/o voxels in C 0.170 17.1 757 3.03 0.0399

w/o our encoder E 0.174 15.0 600 3.18 0.0564

Ours Small 0.156 13.4 523 2.88 0.0470

Ours 0.152 12.8 516 2.88 0.0423

Minecraft LPIPS↓ FID↓ FVD↓ ADD↓ MDR↓
PE† [Menapace et al. 2022] 0.0235 13.9 21.5 5.77 0.0412

PE+ [Menapace et al. 2022] 0.0238 15.5 51.7 120.6 0.939

Ours Small 0.00996 3.56 8.83 2.02 0.0529

Ours 0.00814 2.81 7.08 1.98 0.0508

MDR in %, ADD in pixels. Note that FID and FVD are computed on images
downscaled to the feature extractor training resolution, thus blurriness in the PE
baseline caused by its reduced resolution is not captured by these metrics. LPIPS
correctly reflects lack of sharpness in the PE results (see Figure 8). †denotes
output in 512 × 288 px rather than 1024 × 576 px resolution.

and higher resolution, our method produces more detailed play-

ers with respect to PE, where they frequently appear with missing

limbs and blurred clothing. Finally, our model produces a realistic

ball, while PE struggles to correctly model small objects, presum-

ably due to its upsampling strategy that causes rays to be sampled

more sparsely and thus do not intersect with the ball frequently

enough to correctly render its blur effect.

5.3.2 Ablation. To validate our design choices, we produce sev-

eral variations of our method, each produced by removing one of

our proposed architectural elements: We remove the enhancer F
and directly consider Ĩ as our output; we remove the explicit defor-

mation modeling procedure in D of Section 3.1.4 and substitute it

with an MLP directly predicting the deformation using a learnable

pose code as in Menapace et al. [2022]; Tretschk et al. [2021]; we

remove the plane-based canonical volume representation in C for

planar objects and use an MLP instead; we remove the voxel-based

volume representation in C and use an MLP instead; we substitute

our style encoder E with an ad hoc encoder for each object in the

scene, following Menapace et al. [2022].

We perform the ablation on the Tennis dataset and show results

in Table 1 and Figure 8. To reduce computation, we train the

ablation models using the same hyperparameters as the “Ours

Small” model.

When removing the enhancer F , our model produces players

with fewer details and does not generate shadow effects below

players (see first row in Figure 8). When our deformation mod-

eling procedure is not employed, the method produces compara-

ble LPIPS, FID, and FVD scores, but an analysis of the qualitatives

shows that players may appear with corrupted limbs (see last row

in Figure 8). In addition, the use of such learned pose representa-

tion would reduce the controllability of the synthesis model with

respect to the use of an explicit kinematic tree. When plane-based

or voxel-based canonical modeling is removed, we notice artifacts

in the static scene elements, such as corrupted logos, and in the

players, such as detached or doubled limbs. Finally, when we re-

place our style encoder design with the one of Menapace et al.

[2022], we notice fewer details in scene elements.

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models • 17:13

5.4 Animation Model Evaluation

In this section, we evaluate the performance of the animation

model.

5.4.1 Comparison to Baselines. Similarly to the synthesis

model, we compare our animation model against the one of

Playable Environments (PE) [Menapace et al. 2022], the most

related to our work, since it operates on a similar environment rep-

resentation. While the baseline jointly learns discrete actions and

generates sequences conditioned on such actions, we assume the

text action representations to be available in our task, so, for fair-

ness of evaluation, we introduce our same text encoder T in the

baseline to make use of the action information. To reduce compu-

tation, we perform the comparison using half of the computational

resources and a reduced training schedule; consequently, we also

retrain our model, producing a reduced variant (Ours Small). To

render results, we always make use of our synthesis model.

We show results averaged over all inference tasks in Table 2 and

report the results for each task in Supplement H.2. Our method

outperforms the baseline in all evaluation tasks according to both

L2 and FD metrics. From the qualitative results in Figure 9 and in

accordance with the FD metrics, we notice that our method pro-

duces more realistic player poses with respect to PE that tends to

keep player poses close to the average pose and to slide the players

on the scene. We attribute this difference to the use of the diffu-

sion framework in our method. Consider the example of generat-

ing a player walking forward. It is equally probable that the player

moves the left or right leg first. In the case of a reconstruction-

based training objective such as the main one of PE, the model is en-

couraged to produce an average leg movement result that consists

in not moving the legs at all. However, diffusion models learn the

multimodal distributions of the motion, thus they are able to sam-

ple one of the possible motions without averaging its predictions.

5.4.2 Ablation. To validate this hypothesis and demonstrate

the benefits of our diffusion formulation, we produce two varia-

tions of our method. The first substitutes the diffusion framework

with a reconstruction objective, keeping the transformer-based ar-

chitecture unaltered. The second, in addition to using the recon-

struction objective, models A using an LSTM, similarly to the PE

baseline. Differently from the PE baseline, however, this variant

does not make use of adversarial training and employs a single

LSTM model for all objects, rather than a separate model for each.

We show results in Table 2. Our model consistently outper-

forms the baselines in terms of FD, showing a better ability to

capture realistic sequences. Consistently with our assessment in

Section 5.4.1, Figure 9 shows that our method trained with a re-

construction objective produces player movement with noticeable

artifacts analogously to PE, validating the choice of the diffusion

framework.

5.5 Limitations

Since the model is trained on a dataset showing only plausible

actions, the model’s behavior is not defined when an implausible

action is specified, such as hitting a ball while moving in the wrong

direction to intercept it or jumping on a pillar that is out of reach. In

these cases, we find the model to ignore the implausible part of the

Fig. 9. Qualitative results on the Tennis dataset. Sequences are produced
in a video prediction setting that uses the first frame object properties and
all actions as conditioning. The location of players is consistently closer
to the ground truth for our method. Our method captures the multimodal
distribution of player poses and generates vivid limb movements, while
the baselines produce poses as the average of the distribution, resulting
in reduced limb movement and tilted root joints. Additional samples are
shown in Supplement H.2.

command and produce the closest plausible command or, less fre-

quently, to produce implausible outcomes such as irrealistic long

jumps (see Figure 10). In addition, the model does not generate ac-

tions extremely out of distribution such as performing a backflip or

doing a push-up. This aspect could be addressed by jointly train-

ing the animation model on multiple diverse datasets, which we

consider an interesting future direction.

While our Tennis dataset contains varied text annotations that

allow the model to generalize to text inputs with varied structure,

our Minecraft dataset’s synthetic text annotations are less varied,

and the fixed synthetic structure of sentences tends to be memo-

rized, making the model less effective if a different syntax is used

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

17:14 • W. Menapace et al.

Fig. 10. Behavior of the model when implausible actions are provided. In the left example, the model generates an irrealistic long jump to reach the specified
pillar. In the right example, the bottom player is instructed to move left to intercept a ball coming to his right. In this case, the left movement command is
ignored by the model to produce the closest plausible outcome.

Table 2. Animation Model Comparison with Baselines and
Ablation with Results Averaged over All Inference Tasks

Tennis
Position Root angle Joints 3D

L2↓ FD↓ L2↓ FD↓ L2↓ FD↓
PE 3.291 229.112 1.126 15.953 0.303 53.242
Rec. LSTM 1.597 7.253 0.907 7.051 0.193 16.735
Rec. Transf. 1.074 4.402 0.767 6.838 0.175 14.845
Ours Small 1.380 1.443 1.014 0.560 0.148 1.253
Ours 1.099 0.929 0.844 0.356 0.129 0.836

Minecraft
Position Root angle Joints 3D

L2↓ FD↓ L2↓ FD↓ L2↓ FD↓
PE 2.739 105.973 1.620 31.232 0.311 39.572
Rec. LSTM 2.292 47.296 1.702 49.971 0.489 99.843
Rec. Transf. 2.154 53.198 1.430 36.123 0.385 69.977
Ours Small 1.084 4.461 1.077 6.016 0.140 3.590
Ours 1.065 4.815 0.956 4.083 0.132 3.360

Position and Joints 3D in meters, Root angle in axis-angle
representation.

(see Section H.1). To address this issue, a more sophisticated al-

gorithm can be employed to generate action annotation on the

Minecraft dataset.

Our model learns to associate referential language to scene coor-

dinates rather than the appearance of the referred object, and the

model memorizes the position of contact surfaces. While tennis

scenes always have the same structure, for Minecraft the model

cannot generalize to different scenes. This concern can be ad-

dressed by conditioning the animation model on the scene’s ge-

ometry, which we leave as future work.

We find our animation model to overfit to the Tennis dataset

when less than 60% of the training data is used (see Supple-

ment H.4). We leave as an interesting avenue of future work

the investigation of regularization techniques such as dropout or

weight decay, which have the potential to reduce overfitting in this

scenario.

Our animation model outperforms baselines that operate under

the same data assumptions [Menapace et al. 2022] in terms of an-

imation quality. With respect to recent character animation meth-

ods [Holden et al. 2020; Starke et al. 2019, 2020] making use of

richly annotated motion capture data and dataset-specific hand-

crafted optimizations (see Section 2.3), our method demonstrates

more advanced game dynamics and game AI modeling capabilities

but produces foot-sliding artifacts. We expect continuous improve-

ments in diffusion models to alleviate such artifacts and expect

further improvements by considering different parametrizations

of pose parameters taking into consideration the distance of limbs

from the terrain, which we will explore in future work.

Last, our animation model does not yet produce results in real-

time. We discuss inference speed and strategies to make the model

real-time in Supplement F.1. Improving the sampling speed of dif-

fusion models is an actively investigated problem [Meng et al. 2022;

Salimans and Ho 2022; Song et al. 2021] that is orthogonal to ours.

6 CONCLUSIONS

In this article, we demonstrate the feasibility of learning game mod-

els able to answer challenging user prompts and show that tex-

tual action representations are critical for unlocking fine-grained

control over the generation process and enabling compelling

constraint- and goal-driven generation applications. These re-

sults, jointly with two richly annotated text-video datasets, pave

the way towards learning game models for complex, real-world

scenes.

ACKNOWLEDGEMENTS

We would like to thank Christian Theobalt for his feedback on the

manuscript draft, Denys Poluyanov, Eugene Shevchuk, and Olek-

sandr Pyshchenko for the useful discussion and validation of the

use cases of PGMs, Maryna Diakonova for her support in data la-

beling, and Anton Kuzmenko and Vadym Hrebennyk for their as-

sistance in creating the accompanying video.

REFERENCES
Panos Achlioptas, Ian Huang, Minhyuk Sung, Sergey Tulyakov, and Leonidas Guibas.

2023. ChangeIt3D: Language-assisted 3D shape edits and deformations. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’23).

Nikos Athanasiou, Mathis Petrovich, Michael J. Black, and Gül Varol. 2022. TEACH:
Temporal action compositions for 3D humans. In Proceedings of the International
Conference on 3D Vision (3DV’22).

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey
Levine. 2018. Stochastic variational video prediction. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR’18).

Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. 2021. Frozen in time: A
joint video and image encoder for end-to-end retrieval. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV’21).

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim,
Sanja Fidler, and Karsten Kreis. 2023. Align your latents: High-resolution video
synthesis with latent diffusion models. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR’23).

Michael Büttner and Simon Clavet. 2015. Motion matching—The road to next gen
animation. In Proceedings of Nucl.AI.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De
Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. 2022. Efficient geometry-aware 3D generative ad-
versarial networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’22).

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF: Ten-
sorial radiance fields. In Proceedings of the European Conference on Computer Vi-
sion (ECCV’22).

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William
Chan. 2021. WaveGrad: Estimating gradients for waveform generation. In Pro-
ceedings of the International Conference on Learning Representations (ICLR’21).

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

Promptable Game Models: Text-guided Game Simulation via Masked Diffusion Models • 17:15

Silvia Chiappa, Sébastien Racanière, Daan Wierstra, and Shakir Mohamed. 2017. Re-
current environment simulators. arXiv (2017).

Cassidy Curtis, Sigurdur Orn Adalgeirsson, Horia Stefan Ciurdar, Peter McDermott,
J. D. Velásquez, W. Bradley Knox, Alonso Martinez, Dei Gaztelumendi, Nor-
berto Adrian Goussies, Tianyu Liu, and Palash Nandy. 2022. Toward believable
acting for autonomous animated characters. In Proceedings of the 15th ACM SIG-
GRAPH Conference on Motion, Interaction and Games.

Rishabh Dabral, Muhammad Hamza Mughal, Vladislav Golyanik, and Christian
Theobalt. 2023. MoFusion: A framework for denoising-diffusion-based motion
synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR’23).

Aram Davtyan and Paolo Favaro. 2022. Controllable video generation through global
and local motion dynamics. In Proceedings of the European Conference of Computer
Vision (ECCV’22).

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav
Ganin, Pierre H. Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor
Durkan, Curtis Hawthorne, Rémi Leblond, Will Grathwohl, and Jonas Adler.
2022. Continuous diffusion for categorical data. https://doi.org/10.48550/arXiv.
2211.15089

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. 2020. GP-
VAE: Deep probabilistic time series imputation. In Proceedings of the International
Conference on Artificial Intelligence and Statistics. PMLR.

Maurice Fréchet. 1957. Sur la distance de deux lois de probabilité. Comptes Rendus
Hebdom. Seances Acad. Sci. 244, 6 (1957), 689–692.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’22).

Tsu-Jui Fu, Licheng Yu, Ning Zhang, Cheng-Yang Fu, Jong-Chyi Su, William Yang
Wang, and Sean Bell. 2023. Tell me what happened: Unifying text-guided video
completion via multimodal masked video generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’23).

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2013. Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’13).

Jason Gregory. 2018. Game Engine Architecture. CRC Press.
Ligong Han, Jian Ren, Hsin-Ying Lee, Francesco Barbieri, Kyle Olszewski, Shervin

Minaee, Dimitris Metaxas, and Sergey Tulyakov. 2022. Show me what and tell
me how: Video synthesis via multimodal conditioning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’22).

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. 2017. GANs trained by a two time-scale update rule converge to a
local Nash equilibrium. In Advances in Neural Information Processing Systems
(NeurIPS’17).

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Grit-
senko, Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and
Tim Salimans. 2022. Imagen Video: High Definition Video Generation with Diffusion
Models. https://doi.org/10.48550/arXiv.2210.02303

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. In Advances in Neural Information Processing Systems (NeurIPS’20).

Jonathan Ho, Tim Salimans, Alexey A. Gritsenko, William Chan, Mohammad Norouzi,
and David J. Fleet. 2022b. Video diffusion models. In Proceedings of the ICLR Work-
shop on Deep Generative Models for Highly Structured Data.

Daniel Holden, Oussama Kanoun, Maksym Perepichka, and Tiberiu Popa. 2020.
Learned motion matching. ACM Trans. Graph. 39, 40 (2020).

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Trans. Graph. 36, 4 (2017).

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. 2022. CogVideo:
Large-scale Pretraining for Text-to-Video Generation via Transformers. https://doi.
org/10.48550/arXiv.2205.15868

Jiahui Huang, Yuhe Jin, Kwang Moo Yi, and Leonid Sigal. 2022. Layered controllable
video generation. In Proceedings of the European Conference of Computer Vision
(ECCV’22).

Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter Abbeel, and Ben Poole. 2022.
Zero-shot text-guided object generation with dream fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR’22).

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual losses for real-time
style transfer and super-resolution. In Proceedings of the European Conference of
Computer Vision (ECCV’16).

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. 2020. Analyzing and improving the image quality of StyleGAN. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20).

Seung Wook Kim, Jonah Philion, Antonio Torralba, and Sanja Fidler. 2021. DriveGAN:
Towards a controllable high-quality neural simulation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR’21).

Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler.
2020. Learning to simulate dynamic environments with GameGAN. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’20).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, (ICLR’15), San
Diego, CA, Conference Track Proceedings. Retrieved from http://arxiv.org/abs/
1412.6980

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2020. Dif-
fWave: A versatile diffusion model for audio synthesis. In Proceedings of the In-
ternational Conference on Learning Representations (ICLR’20).

Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas J.
Guibas, Andrea Tagliasacchi, Frank Dellaert, and Thomas A. Funkhouser. 2022.
Panoptic neural fields: A semantic object-aware neural scene representation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’22).

Yong-Hoon Kwon and Min-Gyu Park. 2019. Predicting future frames using retrospec-
tive cycle GAN. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR’19).

Max W. Y. Lam, Jun Wang, Dan Su, and Dong Yu. 2022. BDDM: Bilateral denoising
diffusion models for fast and high-quality speech synthesis. In Proceedings of the
International Conference on Learning Representations (ICLR’22).

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive character animation by
learning multi-objective control. ACM Trans. Graph. 37, 6 (2018).

Yichong Leng, Zehua Chen, Junliang Guo, Haohe Liu, Jiawei Chen, Xu Tan, Danilo
Mandic, Lei He, Xiangyang Li, Tao Qin, sheng zhao, and Tie-Yan Liu. 2022. Binau-
ralGrad: A two-stage conditional diffusion probabilistic model for binaural audio
synthesis. In Proceedings of the Conference on Advances in Neural Information Pro-
cessing Systems (NeurIPS’22).

J. P. Lewis, Matt Cordner, and Nickson Fong. 2000. Pose space deformation: A unified
approach to shape interpolation and skeleton-driven deformation. In Proceedings
of the SIGGRAPH Conference.

Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhofer, Jurgen Gall, Angjoo
Kanazawa, and Christoph Lassner. 2022. TAVA: Template-free animatable vol-
umetric actors. In Proceedings of the European Conference of Computer Vision
(ECCV’22).

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun
Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3D:
High-resolution text-to-3D content creation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR’23).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2020. RoBERTa: A
robustly optimized BERT pretraining approach. In Proceedings of the International
Conference on Learning Representations (ICLR’20).

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A skinned multi-person linear model. ACM Trans. Graph. 34,
6 (2015).

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and
Gordon Wetzstein. 2021. Acorn: Adaptive coordinate networks for neural scene
representation. ACM Trans. Graph. 40, 4 (2021).

Willi Menapace, Stephane Lathuiliere, Sergey Tulyakov, Aliaksandr Siarohin, and
Elisa Ricci. 2021. Playable video generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’21).

Willi Menapace, Stéphane Lathuilière, Aliaksandr Siarohin, Christian Theobalt,
Sergey Tulyakov, Vladislav Golyanik, and Elisa Ricci. 2022. Playable environ-
ments: Video manipulation in space and time. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR’22).

Chenlin Meng, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. 2022. On distillation of guided diffusion models. In Proceedings of the
NeurIPS 2022 Workshop on Score-based Methods.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan
Laptev, and Josef Sivic. 2019. HowTo100M: Learning a text-video embedding by
watching hundred million narrated video clips. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV’19).

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance
fields for view synthesis. In Proceedings of the European Conference of Computer
Vision (ECCV’20).

Norman Müller, Andrea Simonelli, Lorenzo Porzi, Samuel Rota Bulò, Matthias
Nießner, and Peter Kontschieder. 2022. AutoRF: Learning 3D object radiance fields
from single view observations. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR’22).

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph. (2022). Retrieved from https://arxiv.org/abs/2201.05989

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural con-
trol variates. ACM Trans. Graph. 39, 6 (2020).

Michael Niemeyer and Andreas Geiger. 2021. GIRAFFE: Representing scenes as com-
positional generative neural feature fields. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’21).

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder Singh.
2015. Action-conditional video prediction using deep networks in Atari games.

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

https://doi.org/10.48550/arXiv.2211.15089
https://doi.org/10.48550/arXiv.2210.02303
https://doi.org/10.48550/arXiv.2205.15868
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2201.05989

17:16 • W. Menapace et al.

In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS’15).

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. 2021. Neural
scene graphs for dynamic scenes. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR’21).

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B. Goldman,
Steven M. Seitz, and Ricardo Martin-Brualla. 2021a. Nerfies: Deformable neural
radiance fields. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV’21).

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz,
Dan B. Goldman, Ricardo Martin-Brualla, and Steven M. Seitz. 2021b. HyperNeRF:
A higher-dimensional representation for topologically varying neural radiance
fields. ACM Trans. Graph. 40, 6 (2021).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2022. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 1 (2022).

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022.
Hierarchical Text-Conditional Image Generation with CLIP Latents. https://doi.org/
10.48550/arXiv.2204.06125

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. 2021. Zero-shot text-to-image generation. In Pro-
ceedings of the 38th International Conference on Machine Learning (ICML’21).

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Proceedings of the
Conference on Advances in Neural Information Processing Systems (NeurIPS’15).

ReplayMod. 2022. ReplayMod. Retrieved from https://github.com/ReplayMod/
ReplayMod

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-
mer. 2021. High-resolution image synthesis with latent diffusion models. arXiv
(2021).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolu-
tional networks for biomedical image segmentation. In Proceedings of the
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI’15).

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Den-
ton, Seyed Kamyar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol
Ayan, Tim Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi. 2022.
Photorealistic text-to-image diffusion models with deep language understand-
ing. In Advances in Neural Information Processing Systems. Retrieved from https:
//openreview.net/forum?id=08Yk-n5l2Al

Tim Salimans and Jonathan Ho. 2022. Progressive distillation for fast sampling of
diffusion models. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR’22).

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W. Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, Patrick Schramowski, Srivatsa R. Kundurthy, Katherine Crowson,
Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. 2022. LAION-5B: An open
large-scale dataset for training next generation image-text models. In Proceedings
of the Conference on Neural Information Processing Systems (NeurIPS’22) Datasets
and Benchmarks Track.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan
Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv
Taigman. 2023. Make-A-Video: Text-to-video generation without text-video data.

In The Eleventh International Conference on Learning Representations. Retrieved
from https://openreview.net/forum?id=nJfylDvgzlq

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising diffusion implicit
models. In Proceedings of the International Conference on Learning Representations
(ICLR’21).

Matt Stanton, Sascha Geddert, Adrian Blumer, Paul Hormis, Andy Nealen, Seth
Cooper, and Adrien Treuille. 2016. Large-scale finite state game engines. In Pro-
ceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation.

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine
for character-scene interactions. ACM Trans. Graph. 38, 6 (2019).

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion
phases for learning multi-contact character movements. ACM Trans. Graph. 39,
4 (2020).

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. 2021. CSDI: Condi-
tional score-based diffusion models for probabilistic time series imputation. In
Proceedings of the Conference on Advances in Neural Information Processing Sys-
tems (NeurIPS’21).

Guy Tevet, Brian Gordon, Amir Hertz, Amit H. Bermano, and Daniel Cohen-Or. 2022.
MotionCLIP: Exposing human motion generation to CLIP space. In Proceedings
of the European Conference of Computer Vision (ECCV’22).

Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael Zollhöfer, Christoph Lass-
ner, and Christian Theobalt. 2021. Non-rigid neural radiance fields: Reconstruc-
tion and novel view synthesis of a dynamic scene from monocular video. In Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV’21).

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin
Michalski, and Sylvain Gelly. 2018. Towards accurate generative models of video:
A new metric & challenges. CoRR abs/1812.01717, (2018). Retrieved from http:
//arxiv.org/abs/1812.01717

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Pro-
ceedings of the Conference on Advances in Neural Information Processing Systems
(NeurIPS’17).

Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan, Jonathan T. Barron, and Ira
Kemelmacher-Shlizerman. 2022. HumanNeRF: Free-viewpoint rendering of mov-
ing people from monocular video. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR’22).

Yinghao Xu, Menglei Chai, Zifan Shi, Sida Peng, Ivan Skorokhodov, Aliaksandr Siaro-
hin, Ceyuan Yang, Yujun Shen, Hsin-Ying Lee, Bolei Zhou, and Sergey Tulyakov.
2023. DisCoScene: Spatially disentangled generative radiance fields for control-
lable 3D-aware scene synthesis. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR’23). 4402–4412.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
PlenOctrees for real-time rendering of neural radiance fields. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV’21).

Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang,
and Ziwei Liu. 2022. MotionDiffuse: Text-driven human motion generation with
diffusion model. https://doi.org/10.48550/arXiv.2208.15001

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018.
The unreasonable effectiveness of deep features as a perceptual metric. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’18).

Received 2 May 2023; revised 30 September 2023; accepted 13 November

2023

ACM Transactions on Graphics, Vol. 43, No. 2, Article 17. Publication date: January 2024.

https://doi.org/10.48550/arXiv.2204.06125
https://github.com/ReplayMod/ReplayMod
https://openreview.net/forum?id=08Yk-n5l2Al
https://openreview.net/forum?id=nJfylDvgzlq
http://arxiv.org/abs/1812.01717
https://doi.org/10.48550/arXiv.2208.15001

