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Type of probability distribution reflects how close mixing dynamics in river 
chemistry are to thermodynamic equilibrium 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Thermodynamic states are closely 
linked to frequency distributions. 

• Type of distribution is linked to the 
dissipative weathering and mixing 
dynamics. 

• Hypothesis is tested that power-law 
distributions are found far-from- 
equilibrium. 

• Observations of the Arno river chemis-
try in central Italy confirm hypothesis. 

• The extent of disequilibrium constrains 
the range of power-law scaling.  
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A B S T R A C T   

The distribution of geochemical species are typically either (log)normally distributed or follow power laws. Here 
we link these types of distributions to the dynamics of the system that generates these distributions, showing that 
power laws can emerge in dissipative systems far from equilibrium while (log)normal distributions are found for 
species for which the concentrations are close to equilibrium. We use observations of the chemical composition 
of river water from the sampling space in central Italy as well as discharge data to test this interpretation. We 
estimate the dissipation rate that results when groundwater drains into the river and the dissolved chemical 
species mix with the river water. We show that calcium (Ca2+) and bicarbonate (HCO−

3 ) concentrations are close 
to saturation along most of the downstream length of the Arno river, with decreasing dissipation rates and a 
lognormal distribution, while sodium (Na+) and chloride (Cl− ) concentrations increase substantially down-
stream, show increased dissipation rates, and are power-law distributed. This supports our hypothesis that power 
law distributions appear to be indicative of dissipative systems far from thermodynamic equilibrium, while (log) 
normal distributions indicate weakly dissipative systems close to equilibrium. What this implies is that proba-
bility distributions are likely to be indicative of the thermodynamics of the system and the magnitude of 
disequilibrium constrains the range over which power-law scaling may be observed. This should help us to better 
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identify the generalities and mechanisms that result in these common types of distributions and to better classify 
variability in systems according to how dissipative these are.   

1. Introduction 

Geochemical elements typically show characteristic frequency dis-
tributions, being either normally or log-normally distributed (Allégre 
and Lewin, 1995; Limpert et al., 2001; Ott, 1990; Vistelius, 1960; 
Ahrens, 1954; Mitzenmacher, 2004; Aitchison and Brown, 1957; Buc-
cianti et al., 2018), or they show a power-law distribution (van Rooij 
et al., 2013; Gozzi et al., 2018). A substantial body of literature aims to 
relate these types of distributions to the underlying processes that cause 
these distributions. Examples include mixing phenomena (Allégre and 
Lewin, 1995), repeated dilution or concentration processes (Kapteyn, 
1903; Gibrat, 1930; Ott, 1990), self-organized criticality for power law 
distributions (Bak et al., 1987; Newman, 2005; Mitzenmacher, 2004; 
van Rooij et al., 2013), although power-law distributions can also 
emerge when frequency distributions are being combined (Porporato 
and Yin, 2022; Perri and Porporato, 2022). 

Nevertheless, in many cases of natural systems, power-law distri-
butions are associated with scale-invariance and are typical examples of 
fractal dynamics, where heavy tails represent large magnitudes of rare 
events and where the scaling exponent quantifies the rate of decay of the 
tail of the distribution. The characteristics of a fractal distribution has 
been suggested to be associated with mechanisms able to dissipate en-
ergy optimally and produce entropy at maximum rates (Dewar, 2003; 
Seely and Macklem, 2012). Other studies (Buccianti and Zuo, 2016; 
Buccianti et al., 2018; Kirchner and Neal, 2013) connected fractal dis-
tribution to the presence of complex irregular systems, characterized by 
intermittent behavior in space or time, across a range of systems (Seely 
and Macklem, 2012; Seely et al., 2014; Rodríguez-Iturbe and Rinaldo, 
2001; Coulthard and Van De Wiel, 2007; Aguirre et al., 2009; van Rooij 
et al., 2013; Sornette, 2006). The use of multifractals in the applied 
sciences has been correlated with the presence of multiplicative cascade 
events and the necessity to describe phenomena with an entire spectrum 
of generalized fractal dimensions. In this case, sparser and denser re-
gions of a time/space distribution might have different scaling behaviors 
(Mandelbrot, 2003; Dentz et al., 2023). 

Here, we focus on a case in which power laws emerge in a natural 
dissipative system. This link between the dissipative behavior of a pro-
cess and the frequency distribution of the involved variables is yet un-
clear. We aim to link these distributions to the thermodynamic setting in 
which these are generated, particularly how these are linked to the 
dissipative dynamics associated with the depletion of disequilibrium 
conditions within the Earth system (Kleidon, 2012, 2016). Note that we 
use the terms disequilibrium and equilibrium strictly with reference to 
the thermodynamic state, i.e., in reference to states of maximum en-
tropy, and not in reference to whether a system has reached a steady 
state, i.e., that the mean of a variable does not change in space or time. A 
steady state may indicate that a system exhibits no dynamics, either 
because it has reached thermodynamic equilibrium or because of other 
constraints that prevent dynamics to occur, e.g., for very slow kinetics of 
the chemical reactions involved. Both cases are non-dissipative systems, 
while here we focus on dissipative systems that actively deplete their 
state of disequilibrium. We hypothesize that power laws are found in 
such dissipative systems in far-from-equilibrium conditions. Power law 
distributions can then be seen as an indication for a special type of 
dissipative, thermodynamic systems. This, in turn, should have wider- 
ranging implications in that this insight should hold for many environ-
mental variables that are associated with thermodynamic Earth system 
processes. Such a thermodynamic link may then supplement previous 
explanations - after all, the suggested mechanisms such as mixing phe-
nomena and repeated dilution or concentration are all irreversible, 
dissipative processes. 

To link frequency distributions with the thermodynamic behavior, 
we use concentrations of dissolved chemical species in river water 
within the Arno catchment in central Italy as our thermodynamic system 
(Fig. 1a). These concentrations are routinely measured over the whole 
catchment. The thermodynamic disequilibrium is caused when precip-
itation adds essentially desalinated water to the surface, which is in 
disequilibrium with the minerals of the regolith of the Arno catchment 
(Fig. 1b). Chemical weathering reactions within the critical zone deplete 
this disequilibrium, so that concentrations in groundwater increase. As 
this groundwater drains into the river, its chemical composition mixes 
with river water, resulting in concentrations within river water to in-
crease (for conservative species that are not further transformed e.g., by 
metabolic activities within the river water). Hence, the concentrations of 
chemical species are expected to increase from the spring of the Arno 
river to its mouth, reaching concentrations closer to or at equilibrium 
when it drains into the sea. This, however, takes place at contrasting 
rates, depending on the minerals, the regolith, and the weathering re-
actions involved. 

How, then, is the frequency distribution of concentrations reflective 
of the thermodynamics of the system? A substance containing a species 
that weathers fast, like calcium, reaches saturated concentrations and 
thus a state of thermodynamic equilibrium relatively quickly. This trend 
towards saturation, including a certain degree of random variations, is 
illustrated using artificial data in Fig. 1c. Saturation represents our 
reference state of thermodynamic equilibrium here because it is at this 
state at which the rates of dissolution of minerals and their precipitation 
into the solid state balance each other. This is a consequence of the Law 
of Mass Action and equivalent to chemical equilibrium, in which the 
rates of the forward (dissolution) and backward (precipitation) chemical 
reactions are equal. 

This equilibrium state is then perturbed by random variations in the 
input to the river. Input from supersaturated groundwater, from unsat-
urated surface runoff after a rainfall event, or discharge of sub-basins 
represent sources of variability to the input of water and weathered 
material into the river. Note, however, that these random variations are 
macroscopic in their nature, that is, expressed in variations in thermo-
dynamic variables which assume local thermodynamic equilibrium, and 
not related to fluctuations at the microscopic, molecular scale in sta-
tistical mechanics. The resulting chemical disequilibrium in the river 
water – characterized by macroscopic, thermodynamic variables – is 
then depleted once mixed within the river. Because these random var-
iations can perturb the equilibrium state more or less equally in both 
directions, we would expect a symmetric distribution of the 
composition. 

This thermodynamic setting of such a weakly dissipative system near 
equilibrium should then be linked to a (log)normal distribution (Fig. 1c), 
depending on the prevalence of additive or multiplicative phenomena 
(van Rooij et al., 2013). When perturbations add water and dissolved 
material, thus representing a multiplicative mixing, this case has pre-
viously been linked to a lognormal distribution (Allégre and Lewin, 
1995). In either case, this mixing is associated with dissipation, although 
the levels should be relatively small and continuous along the course of 
the river because it is already close to or at thermodynamic equilibrium. 
A lognormal distribution is thus likely to represent a system that is near 
equilibrium, where the effect of trends within the system is small. 
Because the perturbations of thermodynamic equilibrium are relatively 
small, this weakly dissipative system should also have little autocorre-
lation in its spatiotemporal variability. 

When we then look at those minerals that are weathered strongly, 
but their concentrations do not reach equilibrium but remain far from 
equilibrium because the disequilibrium is very large, we should expect 
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power-law scaling across scales (Mandelbrot, 2003; Dentz et al., 2023). 
To explain this, we use the interpretation of power laws in economics 
(Gabaix, 2016), where it has been shown that power laws are the 
outcome of proportionate random growth in the presence of weak fric-
tion. In this explanation, the growth of each entity in the system (Gabaix 
considered firms in an economy, Gabaix (2016)) is proportional to its 
size (with random variations), which results in exponential growth. Yet, 
the presence of friction causes some of the entities to drop out, ensuring 
overall a steady-state of the system. 

Applied to our river catchment, we do not have proportionate 
random growth, but for some minerals a proportionate random increase 
of the weathering rates along the main branch of the river. The rate of 
weathering is proportional to the magnitude of disequilibrium, leading 
to an exponential depletion of this disequilibrium. This is superimposed 
by the same variability as above, that is, by random input perturbations 
of groundwater, sub-basins, and surface runoff. When the initial 
disequilibrium is large and the depletion rate is small compared to the 
disequilibrium, then the state of saturation is not reached within the 
catchment. The “friction” of Gabaix’s interpretation is then the slow 
depletion of the disequilibrium state. The power-law distribution should 
thus be reflective of a far-from-equilibrium system with a trend towards 
equilibrium. This trend is illustrated with artificial data in Fig. 1d. 
Because of the trend, we should find that the autocorrelation within the 
system is greater than the near-equilibrium system described above. 

We test these interpretations with the observations from the Arno 
catchment. For the thermodynamic interpretation, we developed a 
simple model described in the next section and combined it with these 
observations to capture the mean trends and to infer the level of dissi-
pation associated with different chemical species and their distributions. 

2. Materials and methods 

To link probability distributions with the thermodynamics of the 
system, we considered the concentrations of major elements in river 
water within the Arno river basin in central Italy. These concentrations 
were combined with discharge data and interpolated with Hack’s law to 
diagnose the intensity of dissipation by river mixing. 

2.1. Observations of river concentrations and discharge 

The Arno river is the most important basin in the Tuscany Region and 
the fifth largest in Italy with a catchment surface area of 8228 km2 and a 
course of 242 km. The river springs out from Mt. Falterona (1654 m a.s. 
l.), in the Northern Apennines, and flows towards south-west up to the 
mouth, faced to the Ligurian Sea and placed in the coastal area of the city 
of Pisa (Fig. 1a). 

The annual rainfall pattern is typical of the Mediterranean region, 
with a low regime in summer (minimum in August) and two peaks of 
precipitation in winter (December and February–March). Since the 
majority of the basin is characterized by low-permeability rocks, an 
efficient infiltration under the surface is hindered, thus facilitating 
surface runoff. With a slight delay, discharge variations follow those of 
precipitation events (Dinelli et al., 2005). This particularly applies to 
mountain regions, where strong and abrupt flow regime variations can 
occur, also because of the scarce presence of permanent springs. Mean 
annual rainfall ranges from 600 mm in the lowlands up to 3000 mm on 
the Apennine ridge (Nisi et al., 2008). Higher discharge pertain to the 
Chiana and Sieve rivers and the wider gaps between rainfall and 
discharge take place in Chiana, Sieve and Elsa sub-basins. Areas with 
lower differences in rainfall and discharge are those characterized by 
higher elevation and lower temperature, with more surface runoff and 

Fig. 1. (a) Geological map of the Arno river basin in central Italy including its sub-basins and sampling points; (b)weathering in a river catchment as a dissipative, 
thermodynamic system; (c) near equilibrium behavior and (log)normal distribution; (d) far from equilibrium behavior and power law distribution. Examples (c) and 
(d) are based on hypothetical data for illustration. 
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lower evapotranspiration (Nisi, 2005a). For what concerns the 
outcropping rocks, the Arno river basin is featured mainly by the pres-
ence of sedimentary folded and faulted Mesozoic and Tertiary units 
(Abbate et al., 1992; Moretti, 1994), related to the Apennine orogeny 
(Elter et al., 1975; Boccaletti and Coli, 1983; Carmignani et al., 1994; 
Cortecci et al., 2002). 

We used a subset of species from the chemical composition of 508 
samples (473 riverine cases, 31 springs) of Ca2+, Mg2+, Na+, K+, HCO−

3 , 
CO2−

3 , SO2−
4 , Cl− , SiO2, F− , Br− , B, NH+

4 , NO−
2 , and NO−

3 . Details of the 
analytical methodologies can be found in Nisi (2005b). The samples 
were collected in different periods to take into account seasonal varia-
tions, changes in the flow regime and more long time-scale effects. 

2.2. Diagnosing dissipation by river water mixing 

We estimated the dissipation, Dmix, associated with mixing the 
chemical species of river water with the water input using the obser-
vations as well as mass balances for river water and chemical species. We 
use the downstream distance, L, of the main branch of the Arno river 
from its source as our independent variable. The main variables to 
quantify dissipation are then the river discharge, Q, and the concen-
trations c of dissolved minerals in the river water, cr, and in the 
groundwater, cg. We assume that the main, climatological variation in 
these variables is along the downstream distance L and do not treat their 
temporal variations. Note also that these variables have inherently 
random contributions, as discussed in the introduction. Here, we neglect 
this random component and focus only on the mean variation of these 
variables along the downstream distance L. The observations of 
discharge and measured concentrations are then used together with the 
analytic descriptions derived below to estimate the dissipation rates by 
mixing along the river. 

We used the observations of discharge from the Arno basin and fitted 
these to Hack’s law (Hack, 1957) to get an explicit relationship of how 
river discharge, Q (in units of litres/second, L/s), along the main branch 
varies with distance, L, from the source. Hack’s law is commonly written 
as 

L = γ⋅Qα (1)  

where γ is a conversion factor and α ≈ 0.59 is the Hack’s exponent, 
which can be explained by the fractal scaling of river basins (Rinaldo 
et al., 1992). We can also reformulate Hack’s law to make the down-
stream distance our main, independent variable and express discharge 
as a function of L. This yields: 

Q =

(
L
γ

)1/α

(2)  

with an exponent of 1/α ≈ 1.69, and a value of γ = (L/Qα) ≈ 0.41 for the 
Arno river basin with L in km and Q in L/s. 

In the fitting of concentrations to observations, we distinguished two 
cases: In Case A the concentrations are close to saturation and thermo-
dynamic equilibrium (i.e., cr ≈ csat), while in Case B, the initial stage is 
far from equilibrium (i.e., cr≪csat). Case A was then fitted to a power law 
of the form 

cr(L) ≈ a⋅Lb. (3) 

For Ca2+, we obtain a best fit with values of a = 2.73⋅10− 4 and b =

0.356 with a r2 = 0.43 and RMSE = 7.69, while for HCO−
3 , we obtained 

a = 1.48⋅10− 3 and b = 0.172 with a r2 = 0.80 and RMSE = 0.07 mol/L. 
In case B, the concentrations are far from saturation (i.e., far from 

thermodynamic equilibrium), and follow approximately an exponential 
growth 

cr(L) ≈ a⋅ebL. (4) 

For Na+, we obtain a best fit with values of a = 2.08⋅10− 4 and b =

0.018 with a r2 = 0.93 and RMSE = 0.12, while for Cl− , we obtained a =

1.59⋅10− 4 and b = 0.017 with a r2 = 0.94 and RMSE = 0.12 mol/L. 
We next infer the concentrations, cg, of the chemical compounds in 

the water that is added to the river by the mass balance of the chemical 
compound within river water, 

d(crQ)

dL
= cr⋅

dQ
dL

+
dcr

dL
⋅Q = cg⋅

dQ
dL

. (5) 

Note that this formulation of the mass balance only considers the 
mean variations along the downstream distance L and neglects the role 
of random variations. 

Using Hack’s law (Eq. 2), this can be used to infer the concentrations 
cg: 

cg = cr + αL⋅
dcr

dL
(6)  

where the term dcr/dL is calculated from Eq. 3 or 4 with the respective 
parameters for the chemical species. 

The dissipation due to the mixing of chemical compounds of the 
added water with river water is then calculated using chemical poten-
tials, μ = μ0 + RTlnc, where μ0 is a reference chemical potential, R is the 
molar gas constant, and T is temperature. Dissipation, Dmix, is then given 
by 

Dmix = −
d(cr⋅Q⋅μr)

dL
+ cg⋅

dQ
dL

⋅μg. (7) 

Using the mass balance (Eq. 5), this expression can be rearranged 
into 

Dmix = −
RT
Q

⋅
( (

cg − cr
)
+ cg⋅ln

(
cr
/
cg
) )

⋅
dQ
dL

(8)  

where cg is calculated from Eq. 6, cr from Eq. 3 or 4, and dQ/dL from Eq. 
2 using the fitted parameters as well as the values of γ and α to calculate 
Q. 

We calculate Dmix as follows: river discharge Q(L) is described by Eq. 
2, with parameter values α = 0.59 and γ = 0.41 for the Arno river basin. 
The concentration of river water cr(L) is obtained for each chemical 
species from Eq. 3 or 4. The concentration of added water cg(L) is then 
inferred from Eq. 6. With the functions Q, cr, and cg being specified, we 
can then use Eq. 8 to calculate the dissipation rate Dmix. 

2.3. Power-law fitting 

We used the PLFIT(x) function of Matlab to estimate xmin and the 
scaling exponent k according to the goodness-of-fit-based method 
described in Clauset et al. (2009). The function uses a vector of obser-
vations of some quantity x (our river concentrations cr(L)) to which we 
wish to fit the power-law distribution P(x) ∼ x− k for x ≥ xmin. The fitting 
procedure works as follows: 1) For each possible choice of xmin, k is 
estimated via the method of maximum likelihood, and the calculus of 
the Kolmogorov-Smirnov goodness-of-fit statistic D; and 2) the estimate 
of xmin is the value that gives the minimum value D over all values of 
xmin. 

3. Results and discussion 

3.1. Downstream variations of discharge, composition, and dissipation 

To link the distribution of chemical species within the Arno river 
with their extent of disequilibrium and level of dissipation, we first 
consider their downstream variations along the main branch. These are 
shown in Fig. 2. 

While measurements of chemical concentrations are directly avail-
able (Fig. 2b), to diagnose the associated dissipation due to mixing, we 
also need the discharge volume flux as a function of downstream 
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distance (Fig. 2a). We used observations of discharge and fitted Hack’s 
law to these to get a functional relationship of river discharge Q as a 
function of downstream distance L (red line in Fig. 2a). We obtained a 
relationship Q(L) = 0.416⋅L1.69, with L in units of km, Q in units of litres 
per second, L/s, 0.416 is a parameter obtained from fitting, and 1.69 is 
the inverse of the typical value for the Hack exponent of 0.59 (Rinaldo 
et al., 1992). 

To have functional relationships for the mean variation of chemical 

concentrations along the river, we distinguished two cases: Case A 
represents chemical species close to equilibrium for which we expect a 
(log)normal distribution. Their concentrations were fitted to a power 
law of the form cr(L)∝a⋅Lb. Case B assumes the species being far from 
equilibrium, for which we expect power-law scaling. Their concentra-
tions were fitted to an exponential function, cr∝a⋅ebL. The fits are shown 
by the solid lines in Fig. 2b. The parameters obtained for the fit as well as 
the r2 values for the four chemical species considered are provided in the 
Material and Methods section. 

To estimate the dissipation by mixing, we need the increase of river 
flow as well as the increase in concentration. From the derivatives dQ/dL 
and dcr/dL we obtain the addition of streamflow as well as dissolved 
species as a function of L, from which we can then calculate the rate of 
dissipation, Dmix, due to the addition of water and dissolved species to 
the river (Eq. 8). 

The resulting trends are shown in Fig. 2c. We note that the concen-
trations of calcium (Ca2+) and bicarbonates (HCO−

3 ) quickly saturate 
along the main branch and only increase slightly with downstream 
distance. The concentrations of sodium (Na+) and chloride (Cl− ), how-
ever, increase nearly exponentially with downstream distance. This re-
sults in different variation in the dissipation: while calcium and 
carbonates show low levels of dissipation with river water, the dissi-
pation of mixing increases substantially for sodium and chloride with 
downstream distance. 

3.2. Linking distributions with dissipative behavior 

We next link the diagnosed values of dissipation back to the distri-
bution of chemical species. To do so, we used the observed concentra-
tions of Ca2+, HCO−

3 , Na+, and Cl− within the whole Arno catchment and 
sorted them by abundance to infer their complementary cumulative 
distribution function (CCDF). The CCDF is defined as the cumulative 
probability Pr of concentrations Cr exceeding cr, i.e. Pr[Cr ≥ cr]. A power 
law distribution is then identified in a log-log plot against the logarithm 
of the concentration (ln(cr)) when the CCDF follows a straight line. This 
provides a simple empirical test for whether a variable follows a power- 
law distribution (Mitzenmacher, 2004). 

In Fig. 3, we show the CCDFs as well as what would be expected for a 
lognormal distribution, obtained from the mean and variance derived 
from observed data (colored lines). The lognormal distribution describes 
the behavior of Ca2+ and HCO−

3 very well (Fig. 3b, Kolmogorov-Smirnov 
test with p > 0.05, null hypothesis H0 of lognormality accepted). For 
Na+ and Cl− , there are marked deviations from lognormal scaling 
(p < 0.05, null hypothesis H0 of lognormality refused), and a power-law 
fit yields a better description above a certain threshold concentration 
(Fig. 3b). 

To identify this threshold and obtain a power-law fit, we used the 
approach of Clauset et al. (2009) and calculated the likelihood estima-
tors for fitting the power-law distribution of the form p(cr)∝c− k

r for 
concentrations above a threshold cr ≥ cr,min to the data of Na+ and Cl−

(see Materials and methods section). The scaling parameter k (i.e., the 
slope in the log-log plot) and the value for the threshold cr,min were 
estimated, associated with the minimum value of the Kolmogorov- 
Smirnov goodness-of-fit statistic. For Na+ a power law behavior was 
obtained for cr ≥ 0.0022 mol/L (51.2 mg/L) (k = 3), and for Cl− for cr ≥

0.0021 mol/L (72.7 mg/L) (k = 3.2). The logarithms of the obtained 
estimations for cr,min in mol/L are shown in Fig. 3a and c as vertical lines 
and correspond to ln(cr) = − 6.11 and − 6.19 for Na+ and Cl− , 
respectively. 

Fig. 3c and d shows the associated rates of dissipation by mixing. By 
comparison we note that the onset of the power-law scaling behavior for 
Na+ and Cl− corresponds to a change in dissipative behavior, where it 
reflects a steady increase using the log-scale, i.e., the dissipation by 
mixing also increases exponentially. The onset of power-law scaling thus 

Fig. 2. (a) River discharge (Q, in units of litres per second, L/s) as a function of 
downstream distance (L, in units of kilometers, km) with observations marked 
by the black circles and the interpolation using Hack’s law shown by the red 
line. (b) Concentrations of chemical species in river water (cr , in units of moles 
per litre, mol/L), along the downstream distance, with observations marked by 
dots and lines representing the fitted model. (c) Dissipation by mixing of 
groundwater with river water (Dmix, in units of Watt per litre, W/L) for the four 
chemical species considered, normalized by discharge. 
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appears directly related to the increased dissipation for Na+ and Cl− in 
the regime where their concentrations show an exponential-like growth 
of concentrations of Na+ and Cl− with downstream distance. For Ca2+

and HCO−
3 we see a substantially different pattern in dissipation, which 

is rapidly declining with downstream distance and exhibits very low 
magnitudes compared to Na+ and Cl− . The dissipative behavior of 
mixing thus appears to be indicative of the onset and presence of power- 
law scaling. 

3.3. Dissipation and compositional data 

To test whether the obtained relationships are due to the composi-
tion of river water rather than that of single species, we applied 
compositional analysis to the data (Aitchison, 1982; Gozzi and Buc-
cianti, 2022; Buccianti and Gozzi, 2021). The subcomposition given by 
Ca2+ and HCO−

3 , and Na+ and Cl− is transformed according to Egozcue 
et al. (2003); Gozzi et al. (2020) to obtain independent real coordinates. 
The values of the isometric log-ratio between HCO−

3 and Ca2+ versus Cl−

and Na+ are analyzed as a function of the Dmix values of Cl− and Na+. 
The isometric log-ratio values are obtained by applying the partition 

method as reported in Egozcue et al. (2003). As shown in Fig. 4, the 
dissipation is a feature of the sub-composition that is maintained even 
when the relationships among all the variables are taken into account. 
The dissipation due to mixing processes is a property of the composition 
and not only of single species. 

3.4. Interpretation and implications 

The chemical species we considered in our analysis are relatively 
conservative — their concentration is not altered much by, e.g., biotic 
activity within the river (which alters silicates) or by agriculture (with 
inputs of nitrate and potassium). Hence, we obtain a relatively clear 
scaling behavior and distribution function as a function of downstream 
distance. This specific application may thus not necessarily be appli-
cable to other, non-conservative species. Nevertheless, the scaling 
behavior we found results from the dissipation of the mixing process. 
That is, it is a property of the composition, and not only of a single 
species. This is confirmed by compositional analysis that separates the 
composition of river water into independent variables (Aitchison 
(1982); Egozcue et al. (2003); Gozzi et al. (2020), see Section 3.3.). Also, 

Fig. 3. Complementary cumulative distribution function CCDF for the natural logarithm of the concentrations (ln(cr)) of (a) Na+, Cl− and (b) Ca2+, HCO−
3 . The 

colored curves reflect a fit to a lognormal distribution obtained from the obtained with mean and variance of observed data, the black dashed line represents a power 
law distribution. (c) and (d) show the associated, diagnosed values of dissipation by river mixing (Dmix, in units of Watt per litre, W/L). The vertical lines in (b) and 
(d) indicate thresholds (cr > cr,min) above which a power-law scaling yields a more adequate fit (Kolmogorov-Smirnov goodness-of-fit statistics). 
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we did not account for variations in the regolith or specifics of the re-
action kinetics. These factors may limit the general insights we can gain 
for weathering dynamics to some extent. 

The analysis with respect to dissipation nevertheless provides some 
insights on how weathering dynamics are related to the dissipation of 
mixing. In the case of Ca2+ and HCO−

3 , the concentrations are governed 
by both the availability of elements and solubility reactions related to 
fast kinetics. In the case of Na+ and Cl− , the lower availability and the 
lack of common solubility reactions restrict their weathering reactions. 
Thus, it is possible to conclude that for Ca2+ and HCO−

3 , dissipation takes 
place almost entirely by weathering within the critical zone, so dissi-
pation within the river is low, while for Na+ and Cl− , more of this 
dissipation takes place when the added water mixes with river water. In 
other words, the change in dissipation along the downstream distance is 
indicative of the intensity of weathering dynamics in the critical zone. 

We can also derive more general insights from our analysis, linking 
these back to the general question of how the distribution of geochem-
ical species is related to dissipative dynamics, and, more generally, to 
the link between power-law scaling and thermodynamic systems. 

Our analysis links closely to the interpretation of power-law behavior 
of Gabaix (Gabaix, 2016). For Na+ and Cl− , we observe a large 
disequilibrium in concentrations, an exponential increase in mean 
concentration (Fig. 2b) and dissipative behavior along downstream 
distance (Fig. 2c). This directly relates to the proportionate growth in 
Gabaix’s explanation for power-law emergence (Gabaix, 2016). Hence, 
we find this scaling for these chemical species (Fig. 3d). In the absence of 
this exponential growth, as in our cases of Ca2+ and HCO−

3 , the con-
centrations do not increase much (Fig. 2b) and the magnitude of dissi-
pation (Fig. 2c) decreases along the river. Consequently, the resulting 
concentrations are shaped by (log)normal scaling behavior (Fig. 3c). 

Our interpretation is consistent with an alternative interpretation of 
how power laws emerge from history-dependent processes that reduce 
the sample space due to their breaking of symmetry (Corominas-Murtra 
et al., 2018). The connection to our thermodynamic interpretation is 
that the history – or memory, or the sample space – of the system reflects 
the disequilibrium state, while the breaking of symmetry relates to the 
preferential direction towards thermodynamic equilibrium. The reduc-
tion of the sample space then is represented by the dissipation of the 
disequilibrium state. While not all cases of power laws are thermody-
namic processes, when it comes to environmental processes, these are 

generally thermodynamic in their nature and typically related to 
disequilibrium states. 

What our thermodynamic interpretation adds to these explanations 
is that the dynamics are related to the presence of thermodynamic 
disequilibrium within the system. A disequilibrium state is non-trivial, 
as it typically requires a system to perform work to maintain such 
disequilibrium states within the Earth system (Kleidon, 2012) and this 
work is thermodynamically limited as well (Kleidon, 2023). The degree 
of disequilibrium then sets an upper bound to the range over which 
power-law scaling may be observed. Furthermore, the depletion of 
disequilibrium is typically what drives dynamics, so that the magnitude 
of processes are related to the degree of disequilibrium. This propor-
tionality links, again, to Gabaix’s stochastic proportionate growth as a 
prerequisite of finding power-law scaling. We thus gain an interpreta-
tion of power-law scaling that is embedded within the general thermo-
dynamic setting of Earth system processes. 

Our interpretation should thus be applicable to a wide range of Earth 
system processes that reflect power-law scaling behavior. To illustrate 
this wider applicability, we can consider other instances of power-law 
scaling of Earth system processes, e.g., forest fires (Malamud et al., 
1998), clouds (Lovejoy, 1982), or earthquakes (Bak and Tang, 1989). 
Forest fires deplete the disequilibrium represented by reduced carbon in 
biomass and atmospheric oxygen, clouds deplete the disequilibrium in 
form of the latent heat stored in water vapor, while earthquakes dissi-
pate the energy stored in stresses within the Earth’s crust. It should thus 
be possible to frame power laws of these (and other) cases in the general 
context of thermodynamic disequilibrium despite the nature of the 
associated disequilibrium being rather different. 

4. Conclusions 

We used observed variations in chemical composition along the Arno 
river in Central Italy and linked the resulting frequency distributions to 
their respective thermodynamic state. The chemical species of Ca2+ and 
HCO−

3 weather rapidly, their river concentrations are close to saturation 
and thermodynamic equilibrium, and their frequency distributions 
follow a lognormal distribution. On the other hand, Na+ and Cl− react 
more slowly, their concentrations remain far from equilibrium, and their 
distributions show power-law scaling. The presence of power-law 
scaling in our case is thus representative of a dissipative system far 

Fig. 4. Isometric log-ratio between HCO−
3 and Ca2+ versus Cl− and Na+ represented as a function of the dissipation by river mixing (Dmix, in units of Watt per litre, 

W/L) for the values of Cl− and Na+. 
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from thermodynamic equilibrium, while (log)normal distributions 
appear to be representative of systems close to thermodynamic 
equilibrium. 

We showed that this thermodynamic interpretation of power-law 
behavior is consistent to previous explanations of proportionate 
random growth (Gabaix, 2016) and sample-space reduction Corominas- 
Murtra et al. (2018). When thermodynamic systems are far from equi-
librium, the dissipation is typically proportional to the disequilibrium, 
thus resulting in proportionate change, as required by Gabaix’s inter-
pretation. At the same time, disequilibrium represents memory of the 
system, and the dissipation of disequilibrium is associated with a 
reduction of this memory, resulting in sample-space reduction (Coro-
minas-Murtra et al., 2018). 

What this implies is that frequency distributions in natural thermo-
dynamic systems are indicative of the thermodynamic state of that 
system. Since power-law scaling is associated with disequilibrium, 
which needs work to be generated, this means that thermodynamics 
should set the range over which power-law scaling can be observed for 
Earth system processes, and, more generally, on the magnitude of 
variability. This would, however, require further investigations. 
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