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Age and sex influence antibody profiles
associated with tuberculosis progression
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Antibody features vary with tuberculosis (TB) disease state. Whether clinical
variables, such as age or sex, influence associations between Mycobacterium

tuberculosis-specific antibody responses and disease state is not well
explored. Here we profiled Mycobacterium tuberculosis-specific antibody
responses in 140 TB-exposed South African individuals from the Adolescent
Cohort Study. We identified distinct response features in individuals
progressing to active TB from non-progressing, matched controls.

A multivariate antibody score differentially associated with progression
(SeroScore) identified progressors up to 2 years before TB diagnosis, earlier
than that achieved with the RISK6 transcriptional signature of progression.
We validated these antibody response features in the Grand Challenges
6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB
progressionin adolescents compared with adults, and in males compared
with females. This suggests that age and sex are important, underappreciated
modifiers of antibody responses associated with TB progression.

Up to a quarter of the world’s population is estimated to have been
infected with Mycobacterium tuberculosis (Mtb), the aetiologic agent
of tuberculosis (TB), and one of the deadliest global pathogens’. Only
5-10% of individuals withimmune sensitization to Mtb consistent with
infection ever develop the morbidity, mortality and transmission risks
associated withactive TB% Identifying individuals at risk of progression
to active disease is a cornerstone of the World Health Organization’s
End TB Strategy’. However, theimmunology of TB progression remains
incompletely understood, and current diagnostics—the tuberculin
skin test (TST) and interferon gamma release assay (IGRA)—corre-
late poorly with progression*. Better understanding of the range of
immune phenotypes of individuals destined to progress to active TB
isurgently needed.

Recent proteomic, metabolomic and transcriptomic stud-
ies have defined markers of progression to incident TB disease'® .

Multi-gene transcriptomic signatures robustly identify individuals
at greatest risk of TB progression'>***>, collectively pointing to an
expanded inflammatory response marked by complementactivation
andtypelandllinterferon (IFN) signalling that increases approaching
the time of TB disease manifestation’.IFN has beenimplicated in Mtb
pathogenesis both in mouse models and in human patients with T,
and it has been proposed that the identified inflammatory transcrip-
tomic signatures reflect early or subclinical TB disease'*'*. However,
these signatures are not pathogen specific and may be influenced
by other inflammatory states**. A recent study demonstrated the
existence of Mtb-specific adaptive immune correlates of progression
indistinct antigen-specific T cell receptor (TCR) repertoires that accu-
mulate in progressors versus non-progressors>.

We and others have demonstrated that Mtb-specific antibody
signatures vary across TB clinical states” *. These studies have
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revealed unrecognized immune phenotypes, including the presence
of Mtb-specific humoral responses in the so-called resisters, who are
highly exposed to Mtb but do not mount the sustained IFN-dominated
T cell response that underlies the diagnostic TST and IGRA tests***.
The effects of human immunodeficiency virus (HIV) on humoral
immune responses have been assessed”*°. However, the impact of
other clinical variables such as age and sex on antibody responses in
Mtb-infected people, or indeed on other TB immune phenotypes, is
largely unexplored.

In this Article, we used a systems serology approach to inves-
tigate the association of Mtb-specific antibody responses with TB
disease progression in a well-characterized longitudinal cohort of
HIV-negative, IGRA-positive or TST-positive participants, the Ado-
lescent Cohort Study (ACS)™. We identified changes in Mtb-specific
antibody profilesin progressors compared with non-progressor con-
trols, up to 2 years before the diagnosis of active TB, and assessed
the reproducibility of these features in a second cohort, Grand Chal-
lenges 6-74 (GC6)". These dataindicate that progressors have distinct
Mtb-specific antibody profiles ascompared with non-progressors and
thatage and sex are critical modifiers of theimmune phenotypes that
define TB progression.

Results

Progressors have distinct Mtb-specific antibody responses
Changes in Mtb-specific antibody levels, isotype selection and Fc gly-
cosylation are sensitive biomarkers of TB disease states2>***, We
therefore sought to determine the extent to which Mtb-specific anti-
body profiles, which can distinguish active TB from latent infection?**°,
pre-date the diagnosis of active TB. We comprehensively profiled the
Mtb-specific humoralimmune response inlongitudinal serum samples
collected from 36 adolescent progressors before the diagnosis of active
TBand 104 matched non-progressors from the ACS cohort™ (Fig.1aand
Supplementary Table1). Averaged across all timepoints, overall levels
of Mtb-specificlgG, the dominantisotypeintheblood, trended higher
in progressors compared with non-progressors (Fig. 1b). Lipoarabi-
nomannan (LAM)-specific IgG, IgGl, IgG4, IgA2 and IgM were all sig-
nificantly increased in progressors compared with non-progressors, as
were purified protein derivative (PPD)-specificIgG, IgG2 and IgAl, and
culturefiltrate protein 10 (CFP10)-specific IgG2. Mtb-specific Fc recep-
tor binding antibodies were also increased in progressors, including
LAM-specific FcyR2A and FcyR2B, PPD-specific FcyR2A, FcyR2B and
FcyR3B, heat shock protein X (HspX)-specific FcyR2A, FcyR2B, FcyR3A
and FcyR3B, and 1-tuberculosinyl adenosine 1 (TbAd)-specific FcyR3A.
LAM- and antigen 85 complex (Ag85)-specific Fc binding of lectins
Sambucus nigra agglutinin (SNA) and Ricinus communis agglutinin |
(RCA) were selectively increased in non-progressors, indicating ele-
vated Fc sialylation and galactosylation; decreased Fc sialic acid and
galactose have been associated with the inflammatory humoral pro-
file of active TB?. We assessed antibody-mediated effector functions,
but no differences between progressors and non-progressors were

identified inantibody-dependent cellular or neutrophil phagocytosis
across several Mtb-specific antigens.

We next used amixed linear model to rank and identify the most dif-
ferential antibody features between progressors and non-progressors,
controlling for the effects of demographic confounders and study
timepoints (Fig. 1c). The modelidentified antibody responses target-
ingLAM asincreased in progressors compared with non-progressors,
including LAM-specific total IgG, IgG1, FcyR2A and FcyR2B binding
levels. PPD-specific total IgG and IgAl were also selectively enriched in
progressors, albeit to alesser extent, as were Ag85-specific total IgG,
IgG1and FcyR2A, and TbAd-specific FcyR3A binding. By contrast, no
measured Mtb-specific antibody features were significantly enriched
innon-progressors.

Mtb-specific antibody responses vary longitudinally

Prior analyses of the ACS cohort found thatblood transcriptional signa-
tures of progressionincreased closer to the time of TB diagnosis'>">''%,
whereas the frequency of TCR specificities enriched in progressors
remained relatively stable across the study period**. We therefore
examined the longitudinal evolution of antibody features that were sig-
nificantly increased in progressors as compared with non-progressors
(Fig.1d-gand Extended DataFig.1). The temporal andinter-individual
variability of each measured feature was high. In progressors, some
antibody features, such as LAM-specific IgG and PPD-specific IgAl,
increased at timepoints proximal to TB diagnosis. However, others,
such as LAM-specific FcyR2A binding and TbAd-specific FcyR3A
binding, remained stably elevated in progressors over the duration
of follow-up. Thus, while some measured antibody featuresincreased
approaching the time of clinical diagnosis, like the transcriptional
signatures, others appeared to be longitudinally stable up to 2 years
before TB diagnosis, as observed for TCR specificities.

An Mtb-specific SeroScore detects TB progression risk
A parsimonious transcriptomic signature was previously developed,
RISK6, which differentiates progressors from non-progressors in the
ACS cohort®. RISK6 signature scores were determined by a pair-ratio
approach using three transcripts upregulated in progressors
(SERPINGI, GBP2 and FCGR1B) and three downregulated in progres-
sors (TRMT2A, SDR39U1 and TUBGCP6). We next asked whether the
measured differential antibody features captured the same or distinct
immunological processes as those marked by RISK6, by measuring cor-
relations between Mtb-specific antibody features and RISK6 scores and
transcriptexpression levels. The two sets of RISK6 transcripts showed
the expected correlations with each other, consistent with how they
were identified (Fig. 2a). However, the measured antibody features
showed minimal correlation with RISK6 and its individual component
transcripts (Fig. 2a), suggesting that Mtb-specific antibody profiles
capture distinct biologic processes.

We next defined a minimal set of antibody features associated
with progression. We used the least absolute shrinkage and selection

Fig.1| ACS progressors exhibit distinct Mtb-specific antibody profiles.

a, Serum collected longitudinally from a cohort of South African adolescents
who later progressed to active TB disease (n = 36) or who maintained
asymptomatic infection (n=104). For analyses in the current study, progressors
were aligned by time of diagnosis and non-progressors by time of enrolment.

b, Systems serologic assays performed against a panel of Mtb antigens, including
the selection of antibody isotype and subclasses, the binding of Fcy receptors,
the binding to Fc of lectins SNA (recognizes sialic acid) and RCA (recognizes
galactose), and the ability to recruit antibody-mediated cellular phagocytosis
(ADCP) and neutrophil phagocytosis (ADNP). For each indicated assay,

values for each individual were averaged over time. Each heatmap represents
log,(median value in progressors/median value in non-progressors).

The statistical significance of the differences between progressors and non-
progressors was measured by two-sided Mann-Whitney test followed by

Benjamini-Hochberg (BH) correction for multiple comparisons. *P < 0.05;

**P < 0.01. ¢, Mixed-effects linear modelling to evaluate the association between
antibody features and progressor status by controlling age, sex, ethnicity, school
code and time of sample collection. Likelihood ratio test was used to compare the
two paired models, and Pvalues were corrected for multiple comparisons by the
BH method. The x axis indicates the effect size as a normalized coefficient of the
variable of progression, and the y axis —log,, of the adjusted P values. The dotted
line represents the corrected Pvalue of 0.05. d, Raw values of LAM-specific IgG
measurements for all individuals plotted over time from enrolment (non-
progressors, teal) or time to TB (progressors, orange). The solid lines indicate
asmooth of median values, using a generalized additive model, and the grey
shadingindicates one standard deviation. e-g, Plots for PPD-specific IgAl (e),
LAM-specific antibody binding of FcyR2A (f) and TbAd-specific antibody binding
of FcyR3A (g).
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Fig.2| An Mtb-specific SeroScore differentiates progressors from non-
progressors. a, For all individuals at all timepoints, Spearman correlations
were calculated between all measured Mtb-specific antibody features and
RISK6 score (n =377 measurements) or transcript expression levels of each of
its six components (n = 312 measurements). The heatmap indicates Spearman
correlation coefficient for each comparison. b, A multivariate SeroScore was
developed on the basis of systems serology data in ACS. The heatmap represents
Z-scored data for the six features included in the SeroScore. Each column
represents one individual (n =36 progressors and n =104 non-progressors).
Individuals are sorted by overall SeroScore as shown in the track beneath the
heatmap. RISK6 score and progressor/non-progressor status of each individual
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O 025 050 075 ’IAO
False positive rate
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False positive rate

arealsoindicatedin tracks. ¢, ROC curves developed assessing the ability to
differentiate progressors (n =29) from non-progressors (n = 99) of RISK6 (left),
SeroScore (middle) and both RISK6 and SeroScore in combination (right). ROC
curves were generated 50 times using randomly selected 80% of samples with
group stratification. The mean curve is indicated in blue, with grey shading
indicating one standard deviation. The mean AUC with 95% confidence interval
isindicated. d-f, Additional ROC curves developed only including progressors
in time windows 0-9 months before diagnosis (n =19 progressors) (d),

9-18 months before diagnosis (n = 18 progressors) (e) and 18-27 months before
diagnosis (n =10 progressors) (f).

operator (LASSO) technique to identify the most relevant features
differentiating progressor and non-progressor groups and identified
the combination of features with the highest discriminative ability
(Extended Data Fig. 2a). This analysis generated a minimal set of seven
features (PPD-specific 1gG2, IgAl, IgA2, IgM, FcyR3B, LAM-specific
IgGl and early secretory antigen 6 (ESAT6)-specific IgG2) that enabled

resolution of progressors and non-progressors in ACS (Fig. 2b). We
used these seven features to define a SeroScore, a multivariate score
differentially associated with progression.

To further understand whether the SeroScore and RISK6 captured
similar or different biologic processes, we compared their ability to
differentiate progressors and non-progressors over time. Across the
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full study period, RISK6 and SeroScore similarly differentiated progres-
sors, each with an area under the curve (AUC) of 0.82 independently,
which improved to 0.86 in combination (Fig. 2c). At 0-9 months, the
time window most proximal to diagnosis of active TB, the SeroScore
had amedian AUC of 0.79, compared with 0.86 for RISK6; combining
the two scoresin this timeframe did notimprove performance beyond
that of RISK6 alone (Fig. 2d). At 9-18 months (Fig. 2e) and 18-27 months
(Fig. 2f), RISK6 performance declined to AUC of 0.83 and 0.67, respec-
tively, but the SeroScore remained stable with AUC of 0.78 and 0.86.
These findings suggest that, particularly at timepoints more remote
from diagnosis, the SeroScore captured biologic information that
RISK6 did not.

Sex influences scores associated with progression

Sex is a well-established modifier of immune responses® %, and the
global prevalence of active TB in males exceeds that in females with a
ratio of 1.7 (ref. 39). We sought to determine whether sex influenced the
association of the SeroScore or the RISK6 signature with progression
in the ACS cohort, whichis 67.1% female. Across the full study period,
both the SeroScore and RISK6 identified male progressors slightly
better than females (Fig. 3a,b). We then combined the SeroScore and
RISK6 linearly to determine whether they had better ability to identify
progressors in combination. The combined score was better able to
identify progressorsin both male and female subgroups, but the mean
AUC among female participants, at 0.84, remained lower than among
male participants, whereit reached 0.94 (Fig. 3c). Whenwe directly plot-
ted SeroScore by sex and progressor status, male progressors trended
towards higher SeroScores and RISK6 scores than female progressors,
while both scores were similar in male and female non-progressors
(Fig. 3d). Thus, despite being discovered in a predominantly female
cohort, boththe SeroScore and RISK6 signatures captured progression
better among males than females.

The ACS SeroScore detects TB progression among adolescents
We next sought to assess the performance of the ACS SeroScore in a
second cohort of 39 progressors and 169 non-progressors from the
South African subcohort of GC6, alongitudinal study of TB household
contacts®. Prior work demonstrated that the ACS-defined RISK6 signa-
ture had reduced performance in the GC6 cohort, whichwas attributed
todifferencesinstudy design, environmental or temporal exposure to
TB, geography of the participants and wider age range (Supplementary
Table 2 and Extended Data Fig. 3)".

Whenappliedtothe GC6 cohort, the ACS-derived SeroScoreidenti-
fied progressors marginally, withan overallmean AUC of 0.60 (Fig. 4a).
To more closely align the demographic features of GC6 with ACS, we
stratified the GC6 subjects into adolescents, who were 8-20 years of
age atenrolment (14 progressors and 63 non-progressors), and adults,
who were 21-60 years of age at enrolment (25 progressors and 106
non-progressors). The AUC of the SeroScore differed with age, with
amean value of 0.72 among adolescents and only 0.53 among adults
(Fig. 4b). Interestingly, among individuals with an available RISK6
score, the RISK6 test performance alsoimproved among the adolescent
GCé6 group (Extended Data Fig. 4). As in the ACS cohort, the ability of
the ACS-derived SeroScore to identify progressors remained longitu-
dinally stable in GC6 up to 18 months before diagnosis, but the small
sample size limited evaluation at timepoints earlier than 18 months
(Extended DataFig. 5).

Given the increased heterogeneity of the GC6 cohort, we next
aimed toindependently determine whether distinct Mtb-specific anti-
body features associated with progression existed in GC6. Humoral dif-
ferences between progressors and non-progressors were more subtlein
the GC6 cohort compared with ACS (Fig. 4c). Among adolescents, sev-
eral Mtb-specific antibody responses were selectively enriched among
progressors, including markedly increased LAM-specific IgG1, IgG2
and IgG3 levels and binding of FcyR2A, FcyR2B and FcyR3A, though,

giventhe small sample size, none achieved statistical significance after
multiple test correction. As observedin ACS, Fcsialylation and galacto-
sylationtrended towards an enrichment in non-progressors (Fig. 4d).
Inamixed linear model, IgG and IgAl responses to PPD, LAM and Ag85,
and FcyR binding to these antigen-specific antibodies, were signifi-
cantly enriched in progressors (Fig. 4e). Thus, while the differences
were smaller in magnitude, the specific discriminatory Mtb-specific
antibody profiles observed across progressors and non-progressors
in GC6 resembled featuresidentified in the ACS cohort (Fig. 1).

Class-switched Mtb antibodies emerge with increasing age

We postulated that the reduced association of antibody features with
progression among GC6 adults might be due to chronic Mtb expo-
sure increasing background Mtb-specific antibody levels among
non-progressors. We measured the relationship between antibody
features and the age at the time of enrolment in the non-progressors
in GC6 (Fig. 4f). We found that class-switched antibody responses,
primarily IgG2, IgG3 and IgAl, positively correlated with age at enrol-
ment. Conversely, IgM levels and Fc sialylation and galactosylation,
represented by SNAand RCA, demonstrated negative correlations with
age. Together, these datademonstrate that, with increasing age, indi-
viduals without known active TB disease exhibit broad class-switching
of Mtb-specific antibody responses and decreased Fc sialylation
and galactosylation, antibody features suggestive of increased
inflammatory tone*’.

The GC6 SeroScore detects progressors across cohorts

Finally, we hypothesized that profiles of progression identified in
amore heterogeneous population would be more likely to yield an
epidemiologically concordant score of TB progression. We therefore
defined anindependent SeroScore in GC6 (Extended Data Fig. 2b)
with markers that were disproportionately enriched among progres-
sors (Fig. 5a). The LASSO algorithm is designed to avoid selecting
multiple co-correlated variables to limit the risk of model overfitting,
and thus may select different features for different datasets, even
when the underlying architecture is very similar. Nevertheless, the
GCé6-derived SeroScore included some of the same features as the
ACS-derived SeroScore, including PPD-specific IgAland IgG2. Similarly,
LAM-and ESATé6-specific total IgG were included in the GC6 SeroScore,
whereas subclasses LAM-specific IgGl and ESAT6-specific IgG2 had
beenincluded in the ACS SeroScore.

The GCé6-derived SeroScore differentiated progressors from
non-progressors in GC6 at all tested time windows, with a longitudi-
nally stable mean AUC of 0.72-0.73 at 0-9 months, 9-18 months and
18-27 months, and over all time windows (Fig. 5b). Similar to the ACS
SeroScore, the GC6-derived SeroScore identified progressors better
among adolescents thanadults, with mean AUC values of 0.82 and 0.69,
respectively (Fig. 5c). The G6C SeroScore was able to discriminate pro-
gressorsin ACS, withan AUC of 0.66 overall (Fig. 5d). It also performed
betterin males, withan AUC of 0.83 as compared with females withan
AUC of 0.63. These findings highlight the presence of similar humoral
features differentiating progressors from non-progressorsinboth the
ACS and GCé6 cohorts, including enhanced expansion of class-switched
Mtb-specificlgA and IgG2, and higher levels of LAM-specific antibodies
in progressors. We also find that age and sex modify the relationship
between these Mtb-specific humoral features and TB progression.

Discussion

An explosion of novel profiling tools has begun to define correlates
of progression in individuals who go on to develop TB disease'* %%,
Here, we investigated the association of Mtb-specific humoral profiles
with TB progression in a well-characterized cohort of HIV-negative,
IGRA-positive South African adolescents™. A multivariate Mtb-specific
SeroScore associated with progression was longitudinally stable for
the study duration, up to 2 years before TB diagnosis. The SeroScore
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Fig.3|Sex modulates the association of SeroScore and RISK6 with TB
progression. ROC curves were developed measuring the ability of the ACS-
derived SeroScore and RISK6 to differentiate progressors from non-progressors
in ACS. a, The identification of progressors by the ACS-derived SeroScore among
all ACSindividuals (n =29 progressors and n = 99 non-progressors), males

only (n =7 progressors and n = 37 non-progressors) and females only (n = 22
progressors and n = 63 non-progressors). b, As in a, the performance of RISK6
among all ACS, males only and females only. ¢, The identification of progressors

by the ACS-derived SeroScore and RISK6 in combination among all ACS, males
only and females only. For a-c, the mean of 50 curvesis shown in blue, with grey
shading indicating one standard deviation. The mean AUC with 95% confidence
intervalisindicated on each plot.d, The ACS SeroScore and RISK6 signature
score were plotted for female (n =22) and male (n = 7) progressors (P, orange) and
female (n = 63) and male (n = 37) non-progressors (NP, teal) from ACS. The groups
were compared by Kruskal-Wallis test, with Pvalues <0.05 indicated.

was marked by elevated levels of Mtb-specific antibodies including
class-switched IgG and IgA isotypes, Fc receptor-binding antibodies,
andreduced Fcsialylation and galactosylation. The ACS SeroScore was
also associated with risk of progressionin the adolescent participants
fromamore epidemiologically diverse cohort of household contacts,
GC6, but it poorly identified progression among adults. In addition,
both the ACS SeroScore and a SeroScore derived from GC6 partici-
pants better differentiated male as compared with female progressors.

Surprisingly, we also found that the performance of the well-studied
RISK6 transcriptional signature was modulated by age and sex. Thus,
age and sex are critical modifiers of these antibody responses and other
immune phenotypes associated with TB progression.

The ability of both SeroScores and RISK6 to detect progres-
sors better among adolescents that adults suggests that adolescent
progressors harbour unique immune phenotypes. The observed
age-associated increases in class-switched IgA and IgG to multiple
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Fig. 4 | Mtb-specific antibody profiles correlate with progressionin GC6
adolescents. a, ROC curves developed to evaluate the ability of the ACS-derived
SeroScore to differentiate progressors (n = 39) and non-progressors (n = 169)
among individuals from the GC6 cohort. The grey shading indicates one standard
deviation. The mean AUC isindicated. b, ROC curves evaluating the ability of

the ACS-derived SeroScore to differentiate progressors from non-progressors
among GC6 adolescents (age 8-20 years at enrolment, n =14 progressors

and n = 63 non-progressors) and adults (age >20 years at enrolment, n = 25
progressors and n =106 non-progressors). The mean of 50 curves is shownin
blue, with grey shading indicating one standard deviation. The mean AUC with
95% confidence intervalisindicated. ¢, Mtb-specific systems serology used to
profile serum collected longitudinally from the GC6 cohort. For each indicated
assay, values for eachindividual were averaged over time. In the heatmap,

each cell represents log,(median value in progressors/median value in non-
progressors). The statistical significance of the differences between progressors
and non-progressors was measured by two-sided Mann-Whitney test followed by
Benjamini-Hochberg (BH) correction for multiple comparisons. *P < 0.05 after

correction. d, A heatmap representing averaged values over time for adolescent
individuals only. Each cell represents log,(median value in progressors/median
value in non-progressors). The statistical significance of the differences between
progressors and non-progressors were measured by two-sided Mann-Whitney
test followed by BH correction for multiple comparisons. *P < 0.05 after
correction. e, Among all GC6 individuals, mixed-effects linear modelling was
used to evaluate the association between antibody features and progressor
status by controlling age, sex and time of sample collection. Likelihood ratio

test was used to compare the two paired models, and P values were corrected

for multiple comparisons by the BH method. The x axis indicates effect size as
normalized coefficient of the variable of progression, and the y axis —log;, of

the adjusted Pvalues. The dotted line represents the corrected Pvalue of 0.05.

f, Aheatmap representing Spearman correlation coefficients between each
antibody feature and age among GC6 non-progressors only (n =169). Pvalues for
each correlation were adjusted for multiple comparisons by the BH method, and
adjusted Pvalues are indicated: *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig.5|A GC6-derived SeroScore detects humoral correlates of progression.
a, Amultivariate SeroScore was developed in GC6. The heatmap represents
Z-scored data for the six features included in the SeroScore. Each column
represents one individual (n =39 progressors and n = 169 non-progressors).
Theindividuals are sorted by overall SeroScore as shown in the track beneath
the heatmap. The RISK6 score and progressor/non-progressor status of each
individual are also indicated in tracks. b, To evaluate the ability of the GC6-
derived SeroScore to identify progressors in the same cohort, ROC curves
were developed over the total study period (n = 39 progressors, n =169
non-progressors) and for progressors in time windows 0-9 months (n =30
progressors), 9-18 months (n =19 progressors) and 18-27 months (n=8

False positive rate

False positive rate False positive rate

progressors) before the diagnosis of active TB. The mean of 50 curves is shown
inblue, with grey shading indicating one standard deviation. The mean AUC with
95% confidence intervalisindicated. c, ROC curves measure the ability of the
GCé6-derived SeroScore to identify GC6 progressors in an age-stratified analysis
ofadolescents (n =14 progressors and n = 63 non-progressors) and adults
(n=25progressors and n =106 non-progressors).d, The ROC curves measure
the ability of the GC6-derived SeroScore to identify progressors in the full

ACS cohort (n =29 progressors and n = 99 non-progressors), males only
(n=7progressors and n =37 non-progressors) and females only (n =22
progressors and 1 = 63 non-progressors).

antigens, including the relatively Mtb-specific antigen CFP10, suggest
that adults have experienced prior exposures to Mtb. Alternatively,
the observed differences may reflect adolescents’ relatively more
recent Mtb exposure**? or age-specific differences in B and T helper
cellresponses™®.

Similarly, both transcriptomic and serologic scores were less
able to identify progressors among females. Sex has been linked to
extensive differencesin both innate and adaptiveimmunity, including
altered complement activity, higher IFN levels and increased antibody
responses in females®**® that may affect transcriptomic and sero-
logic signatures. Additional epidemiologic factors that may affect
Mtb-specific humoral responses, such as co-morbidities including
HIV co-infection, geography and race***¢, were not evaluated here.

While the focus of many clinical correlate studies is the similarity
of biomarkers across cohorts, understanding how immune corre-
lates vary across epidemiologically distinct groups may elucidate
population-specific determinants of disease risk.

The longitudinal stability of several of the observed serologic
responses in progressors is reminiscent of the longitudinal stabil-
ity of the TCR specificities elevated in the ACS progressors®. These
longstanding adaptive immune phenotypes suggest that progressor
status is determined very early on. It is possible that these responses
reflect a higher or more persistent lung mycobacterial burden in pro-
gressors before development of symptoms; however, itis also possible
that they mark early qualitative differences between a protective and
non-protectiveimmune response. Other antibody features, including
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LAM-specificlgG2 and PPD-specific IgAl, mirror the increase of inflam-
matory transcriptomic signatures towards the onset symptomatic
TB" 58 suggesting they may be more sensitive markers of B cell sur-
veillance of increasingly inflamed lung tissue. Future longitudinal
studies will be essential in detailing the temporal interplay of Mtb
culture positivity, lung pathology and symptom onset with signatures
of progression.

Althoughantibody correlates of progression have not previously
been examined, prior studies of individuals with active TB have identi-
fied heterogeneous, broadly increased Mtb-specific IgG levels com-
pared with asymptomatic controls, correlating with their bacterial
burden*™°, Systems serology approaches have shown that active
TB is defined by increased levels of IgG across many Mtb antigens,
higher levels of FcR binding and more inflammatory, less sialylated
and galactosylated Fc glycoforms® %%, The antibody features dif-
ferentially associated with progressors here resemble those differen-
tially enriched in active TB. It is possible that the emergence of these
antibody featuresin progressorslongbefore the diagnosis of active TB
reflects smouldering, tissue-level disease. It remains unclear whether
the differences in Mtb-specific antibodies that distinguish progressors
and non-progressors play functional roles in control of infection, and
thisis anactive area of ongoing investigation.

In sum, we have shown here that distinct antibody features
are associated with TB disease progression in South African ado-
lescents in an age- and sex-dependent fashion. We find evidence
for early Mtb-specific humoral immune responses that may mark
longstanding subclinical disease, and other antibody features that
increase closer to the time of TB diagnosis. The observed alterations
in humoral responses among progressors provide critical insights
into the immunology of TB progression and emphasize the impor-
tance of clinical variables in modulating immune phenotypes of TB
disease states.

Methods

Study design

ACS. The ACS was a prospective cohort study that enrolled 6,363
healthy, HIV-negative South African adolescents aged 12-18 years™.
Among participants with evidence of Mtb infection, diagnosed by a
positive QuantiFERON TB Gold in-tube assay or positive TST, progres-
sors were those who developed active intrathoracic TB during the
follow-up period, defined by either two sputum smears positive for
acid-fast bacilli or one positive sputum culture with microbiologically
confirmed Mtb. For each progressor, at least two QuantiFERON-positive
non-progressors were matched by age at enrolment, sex, ethnic origin,
school of attendance and presence or absence of previous episodes of
TBdisease. Adolescents provided written, informed assent, and parents
or legal guardians provided written, informed consent. The original
clinical study was reviewed and approved by the Human Research Ethics
Committee of the University of Cape Town, and the systems serology
analysis by Massachusetts General Hospital.

All samples from progressors with at least 200 ml of available
serum were included in the current study (72 samples from 36 indi-
viduals). In the absence of prior data on serologic responses in TB
disease progression, a formal power calculation was not performed.
Sample size was dictated by the number of available progressors in
the original cohort and was similar to prior systems serology studies
in the setting of HIV or different TB disease states®***°, At least two
non-progressors were matched to each progressor individual by age,
sex, school code and ethnicity (264 samples from 104 individuals).
Demographics of theincluded individuals from ACS are presentedin
Supplementary Table 1.

GC6. Samples were additionally included from participants in the
GC6 (refs.12,16). Briefly, HIV-negative people aged 10-60 years who
had household exposure to an adult with sputum smear-positive TB

were enrolled to this study and followed for 2 years. In total, 85.7% of
South African subjects were TST positive at baseline’. Progressors
had intrathoracic TB, defined by sputum culture, smear micros-
copy and clinical signs. For each progressor, four controls were
matched according torecruitment region, age category (<18 years,
19-25 years, 26-35 years or 236 years), sex and year of enrolment.
Study protocols were approved by the relevant human research
ethics committees. Written informed consent was obtained from
participants. For adolescents, consent was obtained from parents
or legal guardians of adolescents and written informed assent from
each adolescent.

Samples from progressors (114 samples from 39 individuals) and
matched non-progressors (458 samples from 169 individuals) were
includedinthe currentstudy. For age-stratified analyses, adolescents
were defined as individuals aged 8-20 years (14 progressors and 63
non-progressors), and adults as those older than 20 years (25 progres-
sorsand 106 non-progressors). While the original study included South
Africa, Gambia, Ethiopia and Uganda, to better control for exposure
to similar Mtb strains as well as environmental non-tuberculous myco-
bacteria exposure, only South African participants wereincludedin the
current study. Demographics of allincluded individuals from GCé are
presented in Supplementary Table 2.

Measurement of biophysical properties of Mtb-specific serum
antibodies

A customized, multiplex Luminex assay was used to measure Mtb
antigen-specific antibody responses across multiple isotypes and
subclasses. Antigens included commercially available Mtb products:
PPD (Staten Serum Institute), LAM (BEI Resources NR-14848), ESAT6
(BEIResources NR-49424), CFP10 (BEI Resources NR-49425), Ag85 (BEI
Resources NR-14855), HspX (BEI Resources NR-49428) and TbAd (agen-
erous gift fromthelaboratory of Dr Branch Moody). An equal mixture
of influenza antigens from HA1(B/Brisbane/60/2008) and HA1(HIN1)
(A/New Caledonia/20/99) (Immune Technology Corp.) was used as a
positive control, and recombinant HA-tagged ebolavirus glycoprotein
minus the transmembrane domain (EBOV GPdTM, Mayflower Biosci-
ence 0501-001) was used as a negative control. All peptide antigens
were coupled to carboxylate-modified microspheres (Luminex Corp.)
by covalent N-hydroxysuccinimide (NHS)-ester linkages by 1-ethyl-3-(
3-dimethylaminopropyl)carbodiimide hydrochloride (Thermo Fisher
Scientific) and Sulfo-NHS (Thermo Fisher Scientific) per the manufac-
turer’sinstructions. Glycan antigens (LAM and TbAd) were first modi-
fied in 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium
chloride (Sigma-Aldrich) at 9.25 mg ml™ at room temperature for 1h,
desalted with a PD-10 column and thenincubated with Luminex beads
with rotation overnight at room temperature.

Assays were optimized over a dilution curve, to ensure selection
of adilution within the linear range of the assays. A 1:200 dilution was
selected to maximize the dynamic range across control samples and
to capture the AUC for the full range of dilutions tested. Diluted serum
samples were incubated with pooled microspheres for 2 h at room
temperature, and then washed three times with phosphate-buffered
saline (PBS) with 0.1% bovine serum albumin and 0.05% Tween to wash
away unbound antibodies. Secondary detection reagents included
phycoerythrin-conjugated goat anti-humanIgG, IgG1,1gG2, 1gG3, 1gG4,
IgM, IgAl and IgA2 (Southern Biotech) and fluorescein-conjugated
SNA and RCA (VectorLabs). For FcR binding, recombinant human
FcyR2A, Fcy2B, Fcy3A and Fcy3B (Duke University Protein Produc-
tion Core) were biotinylated using BirA (Avidity) and conjugated to
streptavidin-PE (Phycolink). Allsecondaryincubations were performed
over 1h at room temperature. The median fluorescence intensity for
each bead region was measured using an iQue Plus Screener (Intelli-
cyt). All samples were assayed in duplicate, and values were averaged.
SNA and RCA measurements were normalized to the corresponding
IgG measurements.
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Antibody-dependent cellular phagocytosis

Cellular phagocytosis of fluorescent beads coated with PPD, LAM and
ESAT6 was performed®. The human cell line THP-1was used to source
monocytes from the assay in a reproducible and high-throughput
format. Briefly, antigens were biotinylated with 50-fold excess biotin
with EZ-link NHS-long chain biotin (Thermo Fisher) following the
manufacturer’sinstructions, and thenadsorbed onto1 pmfluorescent
neutravidin beads (Invitrogen) at a 1:1 (ug:pl) ratio of biotinylated
polysaccharide to beads. Ten microlitres of a 1:100 suspension of
antigen-coupled beads were added to each well of a96-well plate along
withequal volume of serum diluted 1:30, and plates were incubated for
2hat37°C, and then washed with PBS. A total of 25,000 THP-1 cells
(human acute monocytic leukaemia cell line, American Type Culture
Collection) were added and incubated at 37 °C for 18-20 h. Cells were
fixed with 4% paraformaldehyde before data acquisition. Phagocytosis
was measured by iQue Plus Screener (Intellicyt). Phagocytic scores
were calculated as (per cent bead-positive cells) x (geometric mean
fluorescence intensity (MFI))/10,000. Each sample was assayed in two
independent technical replicates and averaged.

Antibody-dependent neutrophil phagocytosis

Neutrophil phagocytosis was evaluated®’. To optimize the
signal-to-noise ratios, phagocytosis was performed using total
donor leukocytes, and analysis was performed on the neutrophil
subset. Briefly, as described for cellular phagocytosis, PPD,LAM and
ESAT6 were biotinylated and coupled to1 pm fluorescent neutravidin
beads. Ten microlitres of a1:160 dilution of coupled beads in PBS were
opsonized with 10 pl of serum diluted 1:30 at 37 °C for 2 h. Whole
blood was collected from healthy donors, red blood cells were lysed
with ACK lysis buffer (Quality Biological), and primary leukocytes
wereisolated by centrifugation and washed in PBS. A total of 50,000
isolated leukocytes were added per well and incubated for1hat 37 °C.
The cells were then stained with 10 mg ml™ Pacific Blue anti-human
CD66b antibody (BioLegend) and fixed in 4% paraformaldehyde
before measurement and analysis on the iQue Plus Screener (Intel-
licyt). Neutrophils were then gated on CD66b", and phagocytic scores
were calculated as above. Two healthy leukocyte donors were used
as biological replicates for each sample and assayed in parallel, and
replicates were averaged.

Statistics

Univariate comparisons of individual assayed antibody features were
performed in GraphPad Prism 9. Progressor and non-progressor
groups were compared using two-sided Mann-Whitney tests, fol-
lowed by multiple test correction with the Benjamini-Hochberg
method. Male and female progressor and non-progressor groups
were compared using two-sided Kruskal-Wallis tests. All remaining
data visualizations and analyses were performed in Python version
3.9.16 or Rversion4.0.2.

Nested mixed linear model

To evaluate the difference of each individual measurement between
the progressor and non-progressor groups by controlling the effects
ofthe potential cofoundersincluding demographic features of age, sex
andschool (ACS only) and the timepoint of sample collection, we used
anested mixed linear model. In detail, we applied two nested mixed
linear models (null and full model) without/with progressor group
information to assess the significance of the association between meas-
urements and progressor group while controlling for these potential
confounding characteristics. We fit two mixed linear models using the
maximum likelihood estimation (MLE) and estimated theimprovement
in model fit by likelihood ratio test (LRT), which follows a chi-square
(A\?) distribution to identify the associated measurements.

Null model : my; ~ 1+ Sex; + Age; + District; + VisitDate; + (1/ID;)

Full model : m; ~ 1+ Sex; + Age; + District; + group,

+ VisitDate; + (1/ID;)

MLE in full model 5

Likelihood ratiotest : LRT= -2 X —————— ~
MLE in null model

Here, ‘District’,identified by the ‘SchoolCode’, represents the geo-
graphical difference, while ‘ID’ denotes individual participant. The R
package Ime4 was used to fit the mixed linear model to each measure-
mentand test for differences in measurements, depending on whether
each sample belongs to progressor group or non-progressor group.
The Pvalue from the likelihood ratio test was adjusted by multiple
testing correction using the Benjamini-Hochberg procedure, and
the ¢ value (normalized coefficients) associated with the progressor/
non-progressor status, ‘Group’in the fullmodel, were visualizedin a vol-
cano plotusingthe ggplot functioninR package ‘ggplot2’ (version3.3.5).

Definition of SeroScores

SeroScores were defined as multivariate antibody signatures differ-
entially associated with progressors. To define SeroScores, measure-
ments from ACS or GC6 were log,-transformed to correct the skewness
of distribution and then Z-scored. Measurements were averaged if
more than one sample was collected from the same patient within the
given time window.

Next, LASSO regularization® was used to select representative
features. In detail, 100 sample sets were generated through random
sampling. Each sample set included a randomly selected 80% of all
samples with group stratification. For each sample set, LASSO feature
selection was performed ten times, and features that occurred at least
80% ofthe time (that s, at least eight among ten times) were selected.
The feature selection process was run on 100 generated datasets in
parallel. Selected features were ordered by occurrence and the top
K (typically 12) features were selected as the final candidates. K was
manually chosenin different experiments. The procedure was imple-
mented in the select_lasso function in the systemsseRology (version
1.1) packageinR.

All additive feature combinations from the selected set of K can-
didates were then evaluated exhaustively. The performance of each
combination was evaluated by calculating the mean AUC of receiver
operating characteristic (ROC) curves generated using a randomly
selected 80% of samples for 50 iterations. Feature combinations with
the largest mean AUC value were selected to define the SeroScore.

Measurement of receiver operating characteristics

Toevaluate the performance of SeroScores and RISK6, respectively and
in combination, we generated ROC curves in various conditions. For
each condition, we estimated the mean AUC from 50 runs, where for
each run 80% of the samples with group stratification were randomly
selected. The 95% confidence interval of the AUC value was estimated
as+two standard deviations from the mean, under the assumption of
Gaussian distribution. ROC curve visualization and AUC calculation
were implemented on the basis of the functions roc_curve, auc and
RocCurveDisplay inthe Python package sklearn.metrics (version1.2.1).
The 95% confidence interval was programmed using the functionnorm.
intervalin the Python package scipy.stats (version1.10.1).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Full systems serology datasets for ACS and GC6 are publically avail-
able’*. RISK6 scores used in this paper were previously calculated for
both the ACS cohort"” and the GC6 cohort (GEO accession number
GSE94438).Source data are provided with this paper.
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Code availability

All the code used for analysis in this paper is deposited on Zenodo at
https://doi.org/10.5281/zenodo.10637145 (ref. 54) and on Github at
https://github.com/ChuangqiWang/TB_Progressor (ref. 55).
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Extended Data Fig. 1| Temporal trajectories of additional Mtb-specific
antibody features significantly enriched in ACS progressors. Raw values

of measured antibody features for all indivduals were plotted over time from
enrollment (non-progressors, teal) or time to TB (progressors, orange). Solid
lines indicate asmooth of median values, using a generalized additive model, and

grey shading indicates 95% confidence interval. Data is shown fora) LAM IgG1, b)
LAMFcgR2B, c¢) Ag851gG, d) Ag85 FcgR2A, e) PPD IgG, f) Ag851gGl1, and g) LAM
IgG2. These include all antibody features found to statistically differ between
progressors and non-progressors in mixed effects linear modeling, as well as
LAM IgG2, which did not statistically differ but is shown for comparison.
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Extended DataFig. 2| Selection of antibody features for inclus

indicate the threshold defining the features that were evaluated in combination
for each SeroScore.

SeroScores. Fora) ACS, and b) GC6, LASSO (Least Absolute Shrinkage and
Selection Operator) regularization was applied to 100 randomly selected

subsets, each containing 80% of the full dataset, and iterated 10 times.
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Extended DataFig. 5| Longitudinal ability of the ACS-derived SeroScore to months prior to diagnosis of active TB. ROC curves were generated 50 times

identify GC6 adolescent and adult progressors. The SeroScore derived in ACS using randomly selected 80% of samples with group stratification. The mean
was used to develop ROC curves for GC6 adolescents (age 8-20 years) and adults curveisindicated in blue, with grey shading indicating one standard deviation.
(>21years) over time windows a) 0-9 months, b) 9-18 months, and ¢) 18-27 Mean AUC with 95% confidence intervalisindicated.
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Data collection  All systems serology data generated on the iQue Plus Screener was collected using Forecyt software.

Data analysis Univariate comparisons of individual assayed antibody features were performed in GraphPad Prism 9. Mixed linear models were created using
the R package "Ime4" and visualized using "ggplot2" version 3.3.5 in R version 4.0.2. LASSO features selection using the R package
"systemsseRology". ROC curves were generated, and AUC calculated, in Python using package "sklearn.metrics" version 1.2.1, and confidence
intervals programmed using "scipy.stats" version 1.10.1.
The code used for the analyses in this paper is available on Github at https://github.com/ChuangqiWang/TB_Progressor.
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Reporting on sex and gender Both male and female participants, by self-reported sex, were included in both ACS and GC6 studies. Included participants
from ACS were 67.1% female, and those from GC6 were 58.7% female. Sex-stratified analyses of the measured Mtb-specific
antibody responses are key findings presented in the manuscript, and they are shown in Figures 3 and 5.
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Population characteristics ACS is a cohort of HIV-negative South African adolescents aged 12-18 years. GC6 is a cohort of HIV-negative people aged 10—
60 years who had household exposure to an adult with sputum smear-positive TB, and all included participants here were
from South Africa. Available demographic data for each cohort is described in Supplementary Tables 1 and 2.

Recruitment See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392204/#SD2

Ethics oversight All clinical research performed in this study was performed in accordance with the Declaration of Helsinki. The clinical

samples analyzed in this manuscript were collected as part of the original ACS and GC6-74 observational studies and are
described in detail in the original publication and in the Experimental Design section. Samples were collected at all sites only
after written informed consent was given by the patients’ legal guardian. Subjects in ACS were compensated an amount of
R50 (approximately 7 US dollars) in the form of a non-cash payment such as a voucher at every occasion of a blood draw.
Subjects in GC6 were compensated for loss of income and transport costs incurred due to research visits. For the ACS cohort
study, protocols were approved by the University of Cape Town Research Ethics Committee, Cape Town, South Africa. For the
GC6-74 study, protocols were approved by the institutional review boards of Stellenbosch University, Case Western Reserve
University, the Uganda National Council for Science and Technology, and the Joint Gambian Government/MRC Ethics
Committee. The systems serology analysis was approved by Massachusetts General Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined based on sample availability at the clinical sites where the ACS and G6-74 studies were conducted.

Data exclusions  Raw data were excluded if they failed to meet quality control measures, specifically if the Luminex bead count was less than 20 for a given
data point. Otherwise, no data were excluded.

Replication All assays were performed in two technical replicates, or two biological replicates where applicable, and strong correlation between replicates
was confirmed as part of quality control of raw data. The univariate and multivariate antibody signatures identified as associated with

progression in the ACS cohort were validated in a second cohort, GC6.

Randomization Participant allocation was not random, but rather included matched cases and controls. ACS and GC6 were both conducted as large
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Randomization  prospective cohort studies. A number of individuals within each study progressed to active TB within the study period. All available samples
from these progressors were included in the current study, as well as non-progressors matched by available demographic features.

Blinding Investigators were blinded as to progressor/non-progressor status during experimental data collection. We performed a supervised
computational analysis, and thus analysis was not performed in a blinded manner.
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Antibodies
Antibodies used Phycoerythrin (PE)-conjugated goat anti-human antibodies from Southern Biotech: IgG (9040-09), IgG1 (9052-09), IgG2 (9070-09),
18G3 (9210-09), 1gG4 (9200-09), IgA1 (9130-09), IgA2 (9140-09), and IgM (9020-09). Anti-human CD66b antibody from BioLegend
(305112).
Validation All antibodies used were validated by the manufacturers. RRID numbers are available for all antibody reagents as follows:

AB_2796601 (IgG), AB_2796621 (IgG1), AB_2796639 (1gG2), AB_2796701 (IgG3), AB_2796693 (1gG4), AB_2796656 (IgAl),
AB_2796664 (IgA2), AB_2796577 (IgM), AB_2563294 (CD66b).

Eukaryotic cell lines
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Cell line source(s) THP-1 cells (human acute monocytic leukemia cell line, American Type Culture Collection);
Authentication Cell lines were not authenticated after purchase.
Mycoplasma contamination Cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines No commonly misidentified cell lines were used in this study.
(See ICLAC register)
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