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Age and sex influence antibody profiles 
associated with tuberculosis progression
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Kathryn A. Bowman    1,2, Stephanie Fischinger1, Mark Hatherill    5, 
Michelle Fisher5, Stanley Kimbung Mbandi    5, Miguel Rodo5, 
Tom H. M. Ottenhoff    7, Hazel M. Dockrell    8, Jayne S. Sutherland    8, 
Harriet Mayanja-Kizza9, W. Henry Boom10, Gerhard Walzl    11, 
Stefan H. E. Kaufmann    12,13,14, Elisa Nemes    5, Thomas J. Scriba    5, 
Douglas Lauffenburger    4, Galit Alter    1,15   & Sarah M. Fortune    16 

Antibody features vary with tuberculosis (TB) disease state. Whether clinical 
variables, such as age or sex, influence associations between Mycobacterium 
tuberculosis-specific antibody responses and disease state is not well 
explored. Here we profiled Mycobacterium tuberculosis-specific antibody 
responses in 140 TB-exposed South African individuals from the Adolescent 
Cohort Study. We identified distinct response features in individuals 
progressing to active TB from non-progressing, matched controls.  
A multivariate antibody score differentially associated with progression 
(SeroScore) identified progressors up to 2 years before TB diagnosis, earlier 
than that achieved with the RISK6 transcriptional signature of progression. 
We validated these antibody response features in the Grand Challenges 
6–74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB 
progression in adolescents compared with adults, and in males compared 
with females. This suggests that age and sex are important, underappreciated 
modifiers of antibody responses associated with TB progression.

Up to a quarter of the world’s population is estimated to have been 
infected with Mycobacterium tuberculosis (Mtb), the aetiologic agent 
of tuberculosis (TB), and one of the deadliest global pathogens1. Only 
5–10% of individuals with immune sensitization to Mtb consistent with 
infection ever develop the morbidity, mortality and transmission risks 
associated with active TB2. Identifying individuals at risk of progression 
to active disease is a cornerstone of the World Health Organization’s 
End TB Strategy3. However, the immunology of TB progression remains 
incompletely understood, and current diagnostics—the tuberculin 
skin test (TST) and interferon gamma release assay (IGRA)—corre-
late poorly with progression4–9. Better understanding of the range of 
immune phenotypes of individuals destined to progress to active TB 
is urgently needed.

Recent proteomic, metabolomic and transcriptomic stud-
ies have defined markers of progression to incident TB disease10–16.  

Multi-gene transcriptomic signatures robustly identify individuals 
at greatest risk of TB progression12,14,15,17, collectively pointing to an 
expanded inflammatory response marked by complement activation 
and type I and II interferon (IFN) signalling that increases approaching 
the time of TB disease manifestation18. IFN has been implicated in Mtb 
pathogenesis both in mouse models and in human patients with TB19–21, 
and it has been proposed that the identified inflammatory transcrip-
tomic signatures reflect early or subclinical TB disease14,18. However, 
these signatures are not pathogen specific and may be influenced 
by other inflammatory states22,23. A recent study demonstrated the 
existence of Mtb-specific adaptive immune correlates of progression 
in distinct antigen-specific T cell receptor (TCR) repertoires that accu-
mulate in progressors versus non-progressors24.

We and others have demonstrated that Mtb-specific antibody 
signatures vary across TB clinical states25–33. These studies have 
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identified in antibody-dependent cellular or neutrophil phagocytosis 
across several Mtb-specific antigens.

We next used a mixed linear model to rank and identify the most dif-
ferential antibody features between progressors and non-progressors, 
controlling for the effects of demographic confounders and study 
timepoints (Fig. 1c). The model identified antibody responses target-
ing LAM as increased in progressors compared with non-progressors, 
including LAM-specific total IgG, IgG1, FcγR2A and FcγR2B binding 
levels. PPD-specific total IgG and IgA1 were also selectively enriched in 
progressors, albeit to a lesser extent, as were Ag85-specific total IgG, 
IgG1 and FcγR2A, and TbAd-specific FcγR3A binding. By contrast, no 
measured Mtb-specific antibody features were significantly enriched 
in non-progressors.

Mtb-specific antibody responses vary longitudinally
Prior analyses of the ACS cohort found that blood transcriptional signa-
tures of progression increased closer to the time of TB diagnosis12,15,17,18, 
whereas the frequency of TCR specificities enriched in progressors 
remained relatively stable across the study period24. We therefore 
examined the longitudinal evolution of antibody features that were sig-
nificantly increased in progressors as compared with non-progressors 
(Fig. 1d–g and Extended Data Fig. 1). The temporal and inter-individual 
variability of each measured feature was high. In progressors, some 
antibody features, such as LAM-specific IgG and PPD-specific IgA1, 
increased at timepoints proximal to TB diagnosis. However, others, 
such as LAM-specific FcγR2A binding and TbAd-specific FcγR3A 
binding, remained stably elevated in progressors over the duration 
of follow-up. Thus, while some measured antibody features increased 
approaching the time of clinical diagnosis, like the transcriptional 
signatures, others appeared to be longitudinally stable up to 2 years 
before TB diagnosis, as observed for TCR specificities.

An Mtb-specific SeroScore detects TB progression risk
A parsimonious transcriptomic signature was previously developed, 
RISK6, which differentiates progressors from non-progressors in the 
ACS cohort15. RISK6 signature scores were determined by a pair-ratio 
approach using three transcripts upregulated in progressors  
(SERPING1, GBP2 and FCGR1B) and three downregulated in progres-
sors (TRMT2A, SDR39U1 and TUBGCP6). We next asked whether the 
measured differential antibody features captured the same or distinct 
immunological processes as those marked by RISK6, by measuring cor-
relations between Mtb-specific antibody features and RISK6 scores and 
transcript expression levels. The two sets of RISK6 transcripts showed 
the expected correlations with each other, consistent with how they 
were identified (Fig. 2a). However, the measured antibody features 
showed minimal correlation with RISK6 and its individual component 
transcripts (Fig. 2a), suggesting that Mtb-specific antibody profiles 
capture distinct biologic processes.

We next defined a minimal set of antibody features associated 
with progression. We used the least absolute shrinkage and selection 

revealed unrecognized immune phenotypes, including the presence 
of Mtb-specific humoral responses in the so-called resisters, who are 
highly exposed to Mtb but do not mount the sustained IFN-dominated 
T cell response that underlies the diagnostic TST and IGRA tests34,35. 
The effects of human immunodeficiency virus (HIV) on humoral 
immune responses have been assessed25,30. However, the impact of 
other clinical variables such as age and sex on antibody responses in 
Mtb-infected people, or indeed on other TB immune phenotypes, is 
largely unexplored.

In this Article, we used a systems serology approach to inves-
tigate the association of Mtb-specific antibody responses with TB 
disease progression in a well-characterized longitudinal cohort of 
HIV-negative, IGRA-positive or TST-positive participants, the Ado-
lescent Cohort Study (ACS)14. We identified changes in Mtb-specific 
antibody profiles in progressors compared with non-progressor con-
trols, up to 2 years before the diagnosis of active TB, and assessed 
the reproducibility of these features in a second cohort, Grand Chal-
lenges 6–74 (GC6)12. These data indicate that progressors have distinct 
Mtb-specific antibody profiles as compared with non-progressors and 
that age and sex are critical modifiers of the immune phenotypes that 
define TB progression.

Results
Progressors have distinct Mtb-specific antibody responses
Changes in Mtb-specific antibody levels, isotype selection and Fc gly-
cosylation are sensitive biomarkers of TB disease states25–29,34,35. We 
therefore sought to determine the extent to which Mtb-specific anti-
body profiles, which can distinguish active TB from latent infection26,30, 
pre-date the diagnosis of active TB. We comprehensively profiled the 
Mtb-specific humoral immune response in longitudinal serum samples 
collected from 36 adolescent progressors before the diagnosis of active 
TB and 104 matched non-progressors from the ACS cohort14 (Fig. 1a and 
Supplementary Table 1). Averaged across all timepoints, overall levels 
of Mtb-specific IgG, the dominant isotype in the blood, trended higher 
in progressors compared with non-progressors (Fig. 1b). Lipoarabi-
nomannan (LAM)-specific IgG, IgG1, IgG4, IgA2 and IgM were all sig-
nificantly increased in progressors compared with non-progressors, as 
were purified protein derivative (PPD)-specific IgG, IgG2 and IgA1, and 
culture filtrate protein 10 (CFP10)-specific IgG2. Mtb-specific Fc recep-
tor binding antibodies were also increased in progressors, including 
LAM-specific FcγR2A and FcγR2B, PPD-specific FcγR2A, FcγR2B and 
FcγR3B, heat shock protein X (HspX)-specific FcγR2A, FcγR2B, FcγR3A 
and FcγR3B, and 1-tuberculosinyl adenosine 1 (TbAd)-specific FcγR3A. 
LAM- and antigen 85 complex (Ag85)-specific Fc binding of lectins  
Sambucus nigra agglutinin (SNA) and Ricinus communis agglutinin I 
(RCA) were selectively increased in non-progressors, indicating ele-
vated Fc sialylation and galactosylation; decreased Fc sialic acid and 
galactose have been associated with the inflammatory humoral pro-
file of active TB27. We assessed antibody-mediated effector functions, 
but no differences between progressors and non-progressors were 

Fig. 1 | ACS progressors exhibit distinct Mtb-specific antibody profiles.  
a, Serum collected longitudinally from a cohort of South African adolescents  
who later progressed to active TB disease (n = 36) or who maintained 
asymptomatic infection (n = 104). For analyses in the current study, progressors 
were aligned by time of diagnosis and non-progressors by time of enrolment.  
b, Systems serologic assays performed against a panel of Mtb antigens, including 
the selection of antibody isotype and subclasses, the binding of Fcγ receptors, 
the binding to Fc of lectins SNA (recognizes sialic acid) and RCA (recognizes 
galactose), and the ability to recruit antibody-mediated cellular phagocytosis 
(ADCP) and neutrophil phagocytosis (ADNP). For each indicated assay,  
values for each individual were averaged over time. Each heatmap represents  
log2(median value in progressors/median value in non-progressors).  
The statistical significance of the differences between progressors and non-
progressors was measured by two-sided Mann–Whitney test followed by 

Benjamini–Hochberg (BH) correction for multiple comparisons. *P < 0.05; 
**P < 0.01. c, Mixed-effects linear modelling to evaluate the association between 
antibody features and progressor status by controlling age, sex, ethnicity, school 
code and time of sample collection. Likelihood ratio test was used to compare the 
two paired models, and P values were corrected for multiple comparisons by the 
BH method. The x axis indicates the effect size as a normalized coefficient of the 
variable of progression, and the y axis −log10 of the adjusted P values. The dotted 
line represents the corrected P value of 0.05. d, Raw values of LAM-specific IgG 
measurements for all individuals plotted over time from enrolment (non-
progressors, teal) or time to TB (progressors, orange). The solid lines indicate 
a smooth of median values, using a generalized additive model, and the grey 
shading indicates one standard deviation. e–g, Plots for PPD-specific IgA1 (e), 
LAM-specific antibody binding of FcγR2A (f) and TbAd-specific antibody binding 
of FcγR3A (g).
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operator (LASSO) technique to identify the most relevant features 
differentiating progressor and non-progressor groups and identified 
the combination of features with the highest discriminative ability 
(Extended Data Fig. 2a). This analysis generated a minimal set of seven 
features (PPD-specific IgG2, IgA1, IgA2, IgM, FcγR3B, LAM-specific 
IgG1 and early secretory antigen 6 (ESAT6)-specific IgG2) that enabled 

resolution of progressors and non-progressors in ACS (Fig. 2b). We 
used these seven features to define a SeroScore, a multivariate score 
differentially associated with progression.

To further understand whether the SeroScore and RISK6 captured 
similar or different biologic processes, we compared their ability to 
differentiate progressors and non-progressors over time. Across the 
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Fig. 2 | An Mtb-specific SeroScore differentiates progressors from non-
progressors. a, For all individuals at all timepoints, Spearman correlations 
were calculated between all measured Mtb-specific antibody features and 
RISK6 score (n = 377 measurements) or transcript expression levels of each of 
its six components (n = 312 measurements). The heatmap indicates Spearman 
correlation coefficient for each comparison. b, A multivariate SeroScore was 
developed on the basis of systems serology data in ACS. The heatmap represents 
Z-scored data for the six features included in the SeroScore. Each column 
represents one individual (n = 36 progressors and n = 104 non-progressors). 
Individuals are sorted by overall SeroScore as shown in the track beneath the 
heatmap. RISK6 score and progressor/non-progressor status of each individual 

are also indicated in tracks. c, ROC curves developed assessing the ability to 
differentiate progressors (n = 29) from non-progressors (n = 99) of RISK6 (left), 
SeroScore (middle) and both RISK6 and SeroScore in combination (right). ROC 
curves were generated 50 times using randomly selected 80% of samples with 
group stratification. The mean curve is indicated in blue, with grey shading 
indicating one standard deviation. The mean AUC with 95% confidence interval 
is indicated. d–f, Additional ROC curves developed only including progressors 
in time windows 0–9 months before diagnosis (n = 19 progressors) (d), 
9–18 months before diagnosis (n = 18 progressors) (e) and 18–27 months before 
diagnosis (n = 10 progressors) (f).
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full study period, RISK6 and SeroScore similarly differentiated progres-
sors, each with an area under the curve (AUC) of 0.82 independently, 
which improved to 0.86 in combination (Fig. 2c). At 0–9 months, the 
time window most proximal to diagnosis of active TB, the SeroScore 
had a median AUC of 0.79, compared with 0.86 for RISK6; combining 
the two scores in this timeframe did not improve performance beyond 
that of RISK6 alone (Fig. 2d). At 9–18 months (Fig. 2e) and 18–27 months 
(Fig. 2f), RISK6 performance declined to AUC of 0.83 and 0.67, respec-
tively, but the SeroScore remained stable with AUC of 0.78 and 0.86. 
These findings suggest that, particularly at timepoints more remote 
from diagnosis, the SeroScore captured biologic information that 
RISK6 did not.

Sex influences scores associated with progression
Sex is a well-established modifier of immune responses36–38, and the 
global prevalence of active TB in males exceeds that in females with a 
ratio of 1.7 (ref. 39). We sought to determine whether sex influenced the 
association of the SeroScore or the RISK6 signature with progression 
in the ACS cohort, which is 67.1% female. Across the full study period, 
both the SeroScore and RISK6 identified male progressors slightly 
better than females (Fig. 3a,b). We then combined the SeroScore and 
RISK6 linearly to determine whether they had better ability to identify 
progressors in combination. The combined score was better able to 
identify progressors in both male and female subgroups, but the mean 
AUC among female participants, at 0.84, remained lower than among 
male participants, where it reached 0.94 (Fig. 3c). When we directly plot-
ted SeroScore by sex and progressor status, male progressors trended 
towards higher SeroScores and RISK6 scores than female progressors, 
while both scores were similar in male and female non-progressors 
(Fig. 3d). Thus, despite being discovered in a predominantly female 
cohort, both the SeroScore and RISK6 signatures captured progression 
better among males than females.

The ACS SeroScore detects TB progression among adolescents
We next sought to assess the performance of the ACS SeroScore in a 
second cohort of 39 progressors and 169 non-progressors from the 
South African subcohort of GC6, a longitudinal study of TB household 
contacts12. Prior work demonstrated that the ACS-defined RISK6 signa-
ture had reduced performance in the GC6 cohort, which was attributed 
to differences in study design, environmental or temporal exposure to 
TB, geography of the participants and wider age range (Supplementary 
Table 2 and Extended Data Fig. 3)15.

When applied to the GC6 cohort, the ACS-derived SeroScore identi-
fied progressors marginally, with an overall mean AUC of 0.60 (Fig. 4a). 
To more closely align the demographic features of GC6 with ACS, we 
stratified the GC6 subjects into adolescents, who were 8–20 years of 
age at enrolment (14 progressors and 63 non-progressors), and adults, 
who were 21–60 years of age at enrolment (25 progressors and 106 
non-progressors). The AUC of the SeroScore differed with age, with 
a mean value of 0.72 among adolescents and only 0.53 among adults 
(Fig. 4b). Interestingly, among individuals with an available RISK6 
score, the RISK6 test performance also improved among the adolescent 
GC6 group (Extended Data Fig. 4). As in the ACS cohort, the ability of 
the ACS-derived SeroScore to identify progressors remained longitu-
dinally stable in GC6 up to 18 months before diagnosis, but the small 
sample size limited evaluation at timepoints earlier than 18 months 
(Extended Data Fig. 5).

Given the increased heterogeneity of the GC6 cohort, we next 
aimed to independently determine whether distinct Mtb-specific anti-
body features associated with progression existed in GC6. Humoral dif-
ferences between progressors and non-progressors were more subtle in 
the GC6 cohort compared with ACS (Fig. 4c). Among adolescents, sev-
eral Mtb-specific antibody responses were selectively enriched among 
progressors, including markedly increased LAM-specific IgG1, IgG2 
and IgG3 levels and binding of FcγR2A, FcγR2B and FcγR3A, though, 

given the small sample size, none achieved statistical significance after 
multiple test correction. As observed in ACS, Fc sialylation and galacto-
sylation trended towards an enrichment in non-progressors (Fig. 4d). 
In a mixed linear model, IgG and IgA1 responses to PPD, LAM and Ag85, 
and FcγR binding to these antigen-specific antibodies, were signifi-
cantly enriched in progressors (Fig. 4e). Thus, while the differences 
were smaller in magnitude, the specific discriminatory Mtb-specific 
antibody profiles observed across progressors and non-progressors 
in GC6 resembled features identified in the ACS cohort (Fig. 1).

Class-switched Mtb antibodies emerge with increasing age
We postulated that the reduced association of antibody features with 
progression among GC6 adults might be due to chronic Mtb expo-
sure increasing background Mtb-specific antibody levels among 
non-progressors. We measured the relationship between antibody 
features and the age at the time of enrolment in the non-progressors 
in GC6 (Fig. 4f). We found that class-switched antibody responses, 
primarily IgG2, IgG3 and IgA1, positively correlated with age at enrol-
ment. Conversely, IgM levels and Fc sialylation and galactosylation, 
represented by SNA and RCA, demonstrated negative correlations with 
age. Together, these data demonstrate that, with increasing age, indi-
viduals without known active TB disease exhibit broad class-switching 
of Mtb-specific antibody responses and decreased Fc sialylation 
and galactosylation, antibody features suggestive of increased  
inflammatory tone40.

The GC6 SeroScore detects progressors across cohorts
Finally, we hypothesized that profiles of progression identified in 
a more heterogeneous population would be more likely to yield an 
epidemiologically concordant score of TB progression. We therefore 
defined an independent SeroScore in GC6 (Extended Data Fig. 2b) 
with markers that were disproportionately enriched among progres-
sors (Fig. 5a). The LASSO algorithm is designed to avoid selecting 
multiple co-correlated variables to limit the risk of model overfitting, 
and thus may select different features for different datasets, even 
when the underlying architecture is very similar. Nevertheless, the 
GC6-derived SeroScore included some of the same features as the 
ACS-derived SeroScore, including PPD-specific IgA1 and IgG2. Similarly, 
LAM- and ESAT6-specific total IgG were included in the GC6 SeroScore, 
whereas subclasses LAM-specific IgG1 and ESAT6-specific IgG2 had 
been included in the ACS SeroScore.

The GC6-derived SeroScore differentiated progressors from 
non-progressors in GC6 at all tested time windows, with a longitudi-
nally stable mean AUC of 0.72–0.73 at 0–9 months, 9–18 months and 
18–27 months, and over all time windows (Fig. 5b). Similar to the ACS 
SeroScore, the GC6-derived SeroScore identified progressors better 
among adolescents than adults, with mean AUC values of 0.82 and 0.69, 
respectively (Fig. 5c). The G6C SeroScore was able to discriminate pro-
gressors in ACS, with an AUC of 0.66 overall (Fig. 5d). It also performed 
better in males, with an AUC of 0.83 as compared with females with an 
AUC of 0.63. These findings highlight the presence of similar humoral 
features differentiating progressors from non-progressors in both the 
ACS and GC6 cohorts, including enhanced expansion of class-switched 
Mtb-specific IgA and IgG2, and higher levels of LAM-specific antibodies 
in progressors. We also find that age and sex modify the relationship 
between these Mtb-specific humoral features and TB progression.

Discussion
An explosion of novel profiling tools has begun to define correlates 
of progression in individuals who go on to develop TB disease12–18,24. 
Here, we investigated the association of Mtb-specific humoral profiles 
with TB progression in a well-characterized cohort of HIV-negative, 
IGRA-positive South African adolescents14. A multivariate Mtb-specific 
SeroScore associated with progression was longitudinally stable for 
the study duration, up to 2 years before TB diagnosis. The SeroScore 
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was marked by elevated levels of Mtb-specific antibodies including 
class-switched IgG and IgA isotypes, Fc receptor-binding antibodies, 
and reduced Fc sialylation and galactosylation. The ACS SeroScore was 
also associated with risk of progression in the adolescent participants 
from a more epidemiologically diverse cohort of household contacts, 
GC6, but it poorly identified progression among adults. In addition, 
both the ACS SeroScore and a SeroScore derived from GC6 partici-
pants better differentiated male as compared with female progressors. 

Surprisingly, we also found that the performance of the well-studied 
RISK6 transcriptional signature was modulated by age and sex. Thus, 
age and sex are critical modifiers of these antibody responses and other 
immune phenotypes associated with TB progression.

The ability of both SeroScores and RISK6 to detect progres-
sors better among adolescents that adults suggests that adolescent 
progressors harbour unique immune phenotypes. The observed 
age-associated increases in class-switched IgA and IgG to multiple 
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Fig. 3 | Sex modulates the association of SeroScore and RISK6 with TB 
progression. ROC curves were developed measuring the ability of the ACS-
derived SeroScore and RISK6 to differentiate progressors from non-progressors 
in ACS. a, The identification of progressors by the ACS-derived SeroScore among 
all ACS individuals (n = 29 progressors and n = 99 non-progressors), males 
only (n = 7 progressors and n = 37 non-progressors) and females only (n = 22 
progressors and n = 63 non-progressors). b, As in a, the performance of RISK6 
among all ACS, males only and females only. c, The identification of progressors 

by the ACS-derived SeroScore and RISK6 in combination among all ACS, males 
only and females only. For a–c, the mean of 50 curves is shown in blue, with grey 
shading indicating one standard deviation. The mean AUC with 95% confidence 
interval is indicated on each plot. d, The ACS SeroScore and RISK6 signature 
score were plotted for female (n = 22) and male (n = 7) progressors (P, orange) and 
female (n = 63) and male (n = 37) non-progressors (NP, teal) from ACS. The groups 
were compared by Kruskal–Wallis test, with P values <0.05 indicated.
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Fig. 4 | Mtb-specific antibody profiles correlate with progression in GC6 
adolescents. a, ROC curves developed to evaluate the ability of the ACS-derived 
SeroScore to differentiate progressors (n = 39) and non-progressors (n = 169) 
among individuals from the GC6 cohort. The grey shading indicates one standard 
deviation. The mean AUC is indicated. b, ROC curves evaluating the ability of 
the ACS-derived SeroScore to differentiate progressors from non-progressors 
among GC6 adolescents (age 8–20 years at enrolment, n = 14 progressors 
and n = 63 non-progressors) and adults (age >20 years at enrolment, n = 25 
progressors and n = 106 non-progressors). The mean of 50 curves is shown in 
blue, with grey shading indicating one standard deviation. The mean AUC with 
95% confidence interval is indicated. c, Mtb-specific systems serology used to 
profile serum collected longitudinally from the GC6 cohort. For each indicated 
assay, values for each individual were averaged over time. In the heatmap, 
each cell represents log2(median value in progressors/median value in non-
progressors). The statistical significance of the differences between progressors 
and non-progressors was measured by two-sided Mann–Whitney test followed by 
Benjamini–Hochberg (BH) correction for multiple comparisons. *P < 0.05 after 

correction. d, A heatmap representing averaged values over time for adolescent 
individuals only. Each cell represents log2(median value in progressors/median 
value in non-progressors). The statistical significance of the differences between 
progressors and non-progressors were measured by two-sided Mann–Whitney 
test followed by BH correction for multiple comparisons. *P < 0.05 after 
correction. e, Among all GC6 individuals, mixed-effects linear modelling was 
used to evaluate the association between antibody features and progressor 
status by controlling age, sex and time of sample collection. Likelihood ratio 
test was used to compare the two paired models, and P values were corrected 
for multiple comparisons by the BH method. The x axis indicates effect size as 
normalized coefficient of the variable of progression, and the y axis −log10 of 
the adjusted P values. The dotted line represents the corrected P value of 0.05. 
f, A heatmap representing Spearman correlation coefficients between each 
antibody feature and age among GC6 non-progressors only (n = 169). P values for 
each correlation were adjusted for multiple comparisons by the BH method, and 
adjusted P values are indicated: *P < 0.05, **P < 0.01, ***P < 0.001.
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antigens, including the relatively Mtb-specific antigen CFP10, suggest 
that adults have experienced prior exposures to Mtb. Alternatively, 
the observed differences may reflect adolescents’ relatively more 
recent Mtb exposure41,42 or age-specific differences in B and T helper 
cell responses43.

Similarly, both transcriptomic and serologic scores were less 
able to identify progressors among females. Sex has been linked to 
extensive differences in both innate and adaptive immunity, including 
altered complement activity, higher IFN levels and increased antibody 
responses in females36–38 that may affect transcriptomic and sero-
logic signatures. Additional epidemiologic factors that may affect 
Mtb-specific humoral responses, such as co-morbidities including 
HIV co-infection, geography and race44–46, were not evaluated here.  

While the focus of many clinical correlate studies is the similarity 
of biomarkers across cohorts, understanding how immune corre-
lates vary across epidemiologically distinct groups may elucidate 
population-specific determinants of disease risk.

The longitudinal stability of several of the observed serologic 
responses in progressors is reminiscent of the longitudinal stabil-
ity of the TCR specificities elevated in the ACS progressors24. These 
longstanding adaptive immune phenotypes suggest that progressor 
status is determined very early on. It is possible that these responses 
reflect a higher or more persistent lung mycobacterial burden in pro-
gressors before development of symptoms; however, it is also possible 
that they mark early qualitative differences between a protective and 
non-protective immune response. Other antibody features, including 
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progressors) before the diagnosis of active TB. The mean of 50 curves is shown 
in blue, with grey shading indicating one standard deviation. The mean AUC with 
95% confidence interval is indicated. c, ROC curves measure the ability of the 
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LAM-specific IgG2 and PPD-specific IgA1, mirror the increase of inflam-
matory transcriptomic signatures towards the onset symptomatic  
TB13–15,18, suggesting they may be more sensitive markers of B cell sur-
veillance of increasingly inflamed lung tissue. Future longitudinal 
studies will be essential in detailing the temporal interplay of Mtb 
culture positivity, lung pathology and symptom onset with signatures 
of progression.

Although antibody correlates of progression have not previously 
been examined, prior studies of individuals with active TB have identi-
fied heterogeneous, broadly increased Mtb-specific IgG levels com-
pared with asymptomatic controls, correlating with their bacterial 
burden47–50. Systems serology approaches have shown that active 
TB is defined by increased levels of IgG across many Mtb antigens, 
higher levels of FcR binding and more inflammatory, less sialylated 
and galactosylated Fc glycoforms25–27,30,40. The antibody features dif-
ferentially associated with progressors here resemble those differen-
tially enriched in active TB. It is possible that the emergence of these 
antibody features in progressors long before the diagnosis of active TB 
reflects smouldering, tissue-level disease. It remains unclear whether 
the differences in Mtb-specific antibodies that distinguish progressors 
and non-progressors play functional roles in control of infection, and 
this is an active area of ongoing investigation.

In sum, we have shown here that distinct antibody features 
are associated with TB disease progression in South African ado-
lescents in an age- and sex-dependent fashion. We find evidence 
for early Mtb-specific humoral immune responses that may mark 
longstanding subclinical disease, and other antibody features that 
increase closer to the time of TB diagnosis. The observed alterations 
in humoral responses among progressors provide critical insights 
into the immunology of TB progression and emphasize the impor-
tance of clinical variables in modulating immune phenotypes of TB 
disease states.

Methods
Study design
ACS. The ACS was a prospective cohort study that enrolled 6,363 
healthy, HIV-negative South African adolescents aged 12–18 years14. 
Among participants with evidence of Mtb infection, diagnosed by a 
positive QuantiFERON TB Gold in-tube assay or positive TST, progres-
sors were those who developed active intrathoracic TB during the 
follow-up period, defined by either two sputum smears positive for 
acid-fast bacilli or one positive sputum culture with microbiologically 
confirmed Mtb. For each progressor, at least two QuantiFERON-positive 
non-progressors were matched by age at enrolment, sex, ethnic origin, 
school of attendance and presence or absence of previous episodes of 
TB disease. Adolescents provided written, informed assent, and parents 
or legal guardians provided written, informed consent. The original 
clinical study was reviewed and approved by the Human Research Ethics 
Committee of the University of Cape Town, and the systems serology 
analysis by Massachusetts General Hospital.

All samples from progressors with at least 200 ml of available 
serum were included in the current study (72 samples from 36 indi-
viduals). In the absence of prior data on serologic responses in TB 
disease progression, a formal power calculation was not performed. 
Sample size was dictated by the number of available progressors in 
the original cohort and was similar to prior systems serology studies 
in the setting of HIV or different TB disease states25,26,30. At least two 
non-progressors were matched to each progressor individual by age, 
sex, school code and ethnicity (264 samples from 104 individuals). 
Demographics of the included individuals from ACS are presented in 
Supplementary Table 1.

GC6. Samples were additionally included from participants in the 
GC6 (refs. 12,16). Briefly, HIV-negative people aged 10–60 years who 
had household exposure to an adult with sputum smear-positive TB 

were enrolled to this study and followed for 2 years. In total, 85.7% of 
South African subjects were TST positive at baseline12. Progressors 
had intrathoracic TB, defined by sputum culture, smear micros-
copy and clinical signs. For each progressor, four controls were 
matched according to recruitment region, age category (≤18 years, 
19–25 years, 26–35 years or ≥36 years), sex and year of enrolment. 
Study protocols were approved by the relevant human research 
ethics committees. Written informed consent was obtained from 
participants. For adolescents, consent was obtained from parents 
or legal guardians of adolescents and written informed assent from 
each adolescent.

Samples from progressors (114 samples from 39 individuals) and 
matched non-progressors (458 samples from 169 individuals) were 
included in the current study. For age-stratified analyses, adolescents 
were defined as individuals aged 8–20 years (14 progressors and 63 
non-progressors), and adults as those older than 20 years (25 progres-
sors and 106 non-progressors). While the original study included South 
Africa, Gambia, Ethiopia and Uganda, to better control for exposure 
to similar Mtb strains as well as environmental non-tuberculous myco-
bacteria exposure, only South African participants were included in the 
current study. Demographics of all included individuals from GC6 are 
presented in Supplementary Table 2.

Measurement of biophysical properties of Mtb-specific serum 
antibodies
A customized, multiplex Luminex assay was used to measure Mtb 
antigen-specific antibody responses across multiple isotypes and 
subclasses. Antigens included commercially available Mtb products: 
PPD (Staten Serum Institute), LAM (BEI Resources NR-14848), ESAT6 
(BEI Resources NR-49424), CFP10 (BEI Resources NR-49425), Ag85 (BEI 
Resources NR-14855), HspX (BEI Resources NR-49428) and TbAd (a gen-
erous gift from the laboratory of Dr Branch Moody). An equal mixture 
of influenza antigens from HA1(B/Brisbane/60/2008) and HA1(H1N1)
(A/New Caledonia/20/99) (Immune Technology Corp.) was used as a 
positive control, and recombinant HA-tagged ebolavirus glycoprotein 
minus the transmembrane domain (EBOV GPdTM, Mayflower Biosci-
ence 0501-001) was used as a negative control. All peptide antigens 
were coupled to carboxylate-modified microspheres (Luminex Corp.) 
by covalent N-hydroxysuccinimide (NHS)-ester linkages by 1-ethyl-3-(
3-dimethylaminopropyl)carbodiimide hydrochloride (Thermo Fisher 
Scientific) and Sulfo-NHS (Thermo Fisher Scientific) per the manufac-
turer’s instructions. Glycan antigens (LAM and TbAd) were first modi-
fied in 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium 
chloride (Sigma-Aldrich) at 9.25 mg ml−1 at room temperature for 1 h, 
desalted with a PD-10 column and then incubated with Luminex beads 
with rotation overnight at room temperature.

Assays were optimized over a dilution curve, to ensure selection 
of a dilution within the linear range of the assays. A 1:200 dilution was 
selected to maximize the dynamic range across control samples and 
to capture the AUC for the full range of dilutions tested. Diluted serum 
samples were incubated with pooled microspheres for 2 h at room 
temperature, and then washed three times with phosphate-buffered 
saline (PBS) with 0.1% bovine serum albumin and 0.05% Tween to wash 
away unbound antibodies. Secondary detection reagents included 
phycoerythrin-conjugated goat anti-human IgG, IgG1, IgG2, IgG3, IgG4, 
IgM, IgA1 and IgA2 (Southern Biotech) and fluorescein-conjugated 
SNA and RCA (VectorLabs). For FcR binding, recombinant human 
FcγR2A, Fcγ2B, Fcγ3A and Fcγ3B (Duke University Protein Produc-
tion Core) were biotinylated using BirA (Avidity) and conjugated to 
streptavidin-PE (Phycolink). All secondary incubations were performed 
over 1 h at room temperature. The median fluorescence intensity for 
each bead region was measured using an iQue Plus Screener (Intelli-
cyt). All samples were assayed in duplicate, and values were averaged. 
SNA and RCA measurements were normalized to the corresponding  
IgG measurements.
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Antibody-dependent cellular phagocytosis
Cellular phagocytosis of fluorescent beads coated with PPD, LAM and 
ESAT6 was performed51. The human cell line THP-1 was used to source 
monocytes from the assay in a reproducible and high-throughput 
format. Briefly, antigens were biotinylated with 50-fold excess biotin 
with EZ-link NHS-long chain biotin (Thermo Fisher) following the 
manufacturer’s instructions, and then adsorbed onto 1 μm fluorescent 
neutravidin beads (Invitrogen) at a 1:1 (μg:μl) ratio of biotinylated 
polysaccharide to beads. Ten microlitres of a 1:100 suspension of 
antigen-coupled beads were added to each well of a 96-well plate along 
with equal volume of serum diluted 1:30, and plates were incubated for 
2 h at 37 °C, and then washed with PBS. A total of 25,000 THP-1 cells 
(human acute monocytic leukaemia cell line, American Type Culture 
Collection) were added and incubated at 37 °C for 18–20 h. Cells were 
fixed with 4% paraformaldehyde before data acquisition. Phagocytosis 
was measured by iQue Plus Screener (Intellicyt). Phagocytic scores 
were calculated as (per cent bead-positive cells) × (geometric mean 
fluorescence intensity (MFI))/10,000. Each sample was assayed in two 
independent technical replicates and averaged.

Antibody-dependent neutrophil phagocytosis
Neutrophil phagocytosis was evaluated52. To optimize the 
signal-to-noise ratios, phagocytosis was performed using total 
donor leukocytes, and analysis was performed on the neutrophil 
subset. Briefly, as described for cellular phagocytosis, PPD, LAM and 
ESAT6 were biotinylated and coupled to 1 μm fluorescent neutravidin 
beads. Ten microlitres of a 1:160 dilution of coupled beads in PBS were 
opsonized with 10 µl of serum diluted 1:30 at 37 °C for 2 h. Whole 
blood was collected from healthy donors, red blood cells were lysed 
with ACK lysis buffer (Quality Biological), and primary leukocytes 
were isolated by centrifugation and washed in PBS. A total of 50,000 
isolated leukocytes were added per well and incubated for 1 h at 37 °C. 
The cells were then stained with 10 mg ml−1 Pacific Blue anti-human 
CD66b antibody (BioLegend) and fixed in 4% paraformaldehyde 
before measurement and analysis on the iQue Plus Screener (Intel-
licyt). Neutrophils were then gated on CD66b+, and phagocytic scores 
were calculated as above. Two healthy leukocyte donors were used 
as biological replicates for each sample and assayed in parallel, and 
replicates were averaged.

Statistics
Univariate comparisons of individual assayed antibody features were 
performed in GraphPad Prism 9. Progressor and non-progressor 
groups were compared using two-sided Mann–Whitney tests, fol-
lowed by multiple test correction with the Benjamini–Hochberg 
method. Male and female progressor and non-progressor groups 
were compared using two-sided Kruskal–Wallis tests. All remaining 
data visualizations and analyses were performed in Python version 
3.9.16 or R version 4.0.2.

Nested mixed linear model
To evaluate the difference of each individual measurement between 
the progressor and non-progressor groups by controlling the effects 
of the potential cofounders including demographic features of age, sex 
and school (ACS only) and the timepoint of sample collection, we used 
a nested mixed linear model. In detail, we applied two nested mixed 
linear models (null and full model) without/with progressor group 
information to assess the significance of the association between meas-
urements and progressor group while controlling for these potential 
confounding characteristics. We fit two mixed linear models using the 
maximum likelihood estimation (MLE) and estimated the improvement 
in model fit by likelihood ratio test (LRT), which follows a chi-square 
(λ2) distribution to identify the associated measurements.

Null model ∶ mij ∼ 1 + Sexj + Agej + Districtj + VisitDatej + (1|IDj)

Full model ∶ mij ∼ 1 + Sexj + Agej + Districtj + groupi

+VisitDatej + (1|IDj)

Likelihood ratio test ∶ LRT = −2 × MLE in fullmodel
MLE in nullmodel

∼ λ2

Here, ‘District’, identified by the ‘SchoolCode’, represents the geo-
graphical difference, while ‘ID’ denotes individual participant. The R 
package lme4 was used to fit the mixed linear model to each measure-
ment and test for differences in measurements, depending on whether 
each sample belongs to progressor group or non-progressor group. 
The P value from the likelihood ratio test was adjusted by multiple 
testing correction using the Benjamini–Hochberg procedure, and 
the t value (normalized coefficients) associated with the progressor/
non-progressor status, ‘Group’ in the full model, were visualized in a vol-
cano plot using the ggplot function in R package ‘ggplot2’ (version 3.3.5).

Definition of SeroScores
SeroScores were defined as multivariate antibody signatures differ-
entially associated with progressors. To define SeroScores, measure-
ments from ACS or GC6 were log2-transformed to correct the skewness 
of distribution and then Z-scored. Measurements were averaged if 
more than one sample was collected from the same patient within the 
given time window.

Next, LASSO regularization53 was used to select representative 
features. In detail, 100 sample sets were generated through random 
sampling. Each sample set included a randomly selected 80% of all 
samples with group stratification. For each sample set, LASSO feature 
selection was performed ten times, and features that occurred at least 
80% of the time (that is, at least eight among ten times) were selected. 
The feature selection process was run on 100 generated datasets in 
parallel. Selected features were ordered by occurrence and the top 
K (typically 12) features were selected as the final candidates. K was 
manually chosen in different experiments. The procedure was imple-
mented in the select_lasso function in the systemsseRology (version 
1.1) package in R.

All additive feature combinations from the selected set of K can-
didates were then evaluated exhaustively. The performance of each 
combination was evaluated by calculating the mean AUC of receiver 
operating characteristic (ROC) curves generated using a randomly 
selected 80% of samples for 50 iterations. Feature combinations with 
the largest mean AUC value were selected to define the SeroScore.

Measurement of receiver operating characteristics
To evaluate the performance of SeroScores and RISK6, respectively and 
in combination, we generated ROC curves in various conditions. For 
each condition, we estimated the mean AUC from 50 runs, where for 
each run 80% of the samples with group stratification were randomly 
selected. The 95% confidence interval of the AUC value was estimated 
as ± two standard deviations from the mean, under the assumption of 
Gaussian distribution. ROC curve visualization and AUC calculation 
were implemented on the basis of the functions roc_curve, auc and 
RocCurveDisplay in the Python package sklearn.metrics (version 1.2.1). 
The 95% confidence interval was programmed using the function norm.
interval in the Python package scipy.stats (version 1.10.1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Full systems serology datasets for ACS and GC6 are publically avail-
able54. RISK6 scores used in this paper were previously calculated for 
both the ACS cohort15 and the GC6 cohort (GEO accession number 
GSE94438). Source data are provided with this paper.
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Code availability
All the code used for analysis in this paper is deposited on Zenodo at 
https://doi.org/10.5281/zenodo.10637145 (ref. 54) and on Github at 
https://github.com/ChuangqiWang/TB_Progressor (ref. 55).
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Extended Data Fig. 1 | Temporal trajectories of additional Mtb-specific 
antibody features significantly enriched in ACS progressors. Raw values 
of measured antibody features for all indivduals were plotted over time from 
enrollment (non-progressors, teal) or time to TB (progressors, orange). Solid 
lines indicate a smooth of median values, using a generalized additive model, and 

grey shading indicates 95% confidence interval. Data is shown for a) LAM IgG1, b) 
LAM FcgR2B, c) Ag85 IgG, d) Ag85 FcgR2A, e) PPD IgG, f) Ag85 IgG1, and g) LAM 
IgG2. These include all antibody features found to statistically differ between 
progressors and non-progressors in mixed effects linear modeling, as well as 
LAM IgG2, which did not statistically differ but is shown for comparison.
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Extended Data Fig. 2 | Selection of antibody features for inclusion in 
SeroScores. For a) ACS, and b) GC6, LASSO (Least Absolute Shrinkage and 
Selection Operator) regularization was applied to 100 randomly selected 
subsets, each containing 80% of the full dataset, and iterated 10 times.  

The frequency of selection of each antibody feature is shown. Red lines  
indicate the threshold defining the features that were evaluated in combination 
for each SeroScore.
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Extended Data Fig. 3 | Age distributions for included subjects from ACS and GC6. a) Histogram of age distributions for ACS progressors and non-progressors.  
b) Histogram of age distributions for GC6 progressors and non-progressors. For GC6 subjects, adolescents were defined as those with age at enrollment between 8  
and 20 years, and adults were those with age at enrollment of 21 or more years.
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Extended Data Fig. 4 | Ability of RISK6 to identify GC6 adolescent and  
adult progressors. ROC curves were developed over the full study duration  
for the subset of individuals in GC6 for whom the RISK6 score was available.  
A) ROC curve indicates performance of RISK6 among all GC6 individuals (n = 35 
progressors and n = 135 non-progressors). B) ROC curve for performance of 
RISK6 among GC6 adolescents (age 8–20 years, n = 12 progressors and n = 49 

non-progressors) and adults (age ≥21 years, n = 23 progressors and n = 86 non-
progressors). ROC curves were generated 50 times using randomly selected 80% 
of samples with group stratification. The mean curve is indicated in blue, with 
grey shading indicating one standard deviation. Mean AUC with 95% confidence 
interval is indicated.
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Extended Data Fig. 5 | Longitudinal ability of the ACS-derived SeroScore to 
identify GC6 adolescent and adult progressors. The SeroScore derived in ACS 
was used to develop ROC curves for GC6 adolescents (age 8–20 years) and adults 
(≥21 years) over time windows a) 0–9 months, b) 9–18 months, and c) 18–27 

months prior to diagnosis of active TB. ROC curves were generated 50 times 
using randomly selected 80% of samples with group stratification. The mean 
curve is indicated in blue, with grey shading indicating one standard deviation. 
Mean AUC with 95% confidence interval is indicated.
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