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Abstract 

Comput ational drug sensitivit y models ha v e the potential to impro v e therapeutic outcomes by identifying targeted drugs components that are 
tailored to the transcriptomic profile of a given primary tumor. The SMILES representation of molecules that is used by state-of-the-art drug- 
sensitivity models is not conducive for neural networks to generalize to new drugs, in part because the dist ance bet ween atoms does not 
generally correspond to the distance between their representation in the SMILES strings. Graph-attention networks, on the other hand, are 
high-capacity models that require large training-data volumes which are not a v ailable f or drug-sensitivity estimation. We de v elop a modular drug- 
sensitivity graph-attentional neural netw ork. T he modular architecture allows us to separately pre-train the graph encoder and graph-attentional 
pooling la y er on related tasks for which more data are a v ailable. We observ e that this model outperforms reference models for the use cases 
of precision oncology and drug disco v ery; in particular, it is better able to predict the specific interaction between drug and cell line that is 
not e xplained b y the general cytoto xicity of the drug and the o v erall surviv ability of the cell line. The complete source code is a v ailable at 
https:// zenodo.org/ doi/ 10.5281/ zenodo.8020945 . All experiments are based on the publicly available GDSC data. 
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ntroduction 

he treatment of cancer relies on standard-of-care therapies
hat fail to address the diverse nature of the disease. Can-
er is caused by combinations of genomic alterations of cells;
n combination with the biochemical mechanisms underly-
ng drugs these alterations cause high variations in sensitiv-
ty to drug compounds across cancer cells, and ultimately
ead to diverse therapeutic outcomes for seemingly similar
linical presentations ( 1 ). Advances in sequencing technology
nd the availability of large-scale drug-sensitivity screening
atabases—such as the Genomics of Drug Sensitivity in Can-
er Database (GDSC) ( 2 ,3 ) and the Cancer Cell Line Encyclo-
edia (CCLE) ( 4 )—are driving the development of precision
ncology ( 5 ,6 ). Precision oncology aims at replacing broadly
pplicable chemotherapies that are toxic for healthy cells as
ell ( 7 ) by targeted drugs that are tailored to the transcrip-

omic profile of a given primary tumor. 
Increasingly, machine-learning approaches are used to facil-

tate drug-sensitivity estimation ( 8 ). Specifically, deep-learning
odels show promise at predicting the sensitivity of cell lines

o drugs ( 9 ). Cell lines can be represented by their transcrip-
omic features as input to neural networks, and the neural net-
ork can learn to map this input to a representation that cap-

ures properties which determine sensitivity to specific drug
echanisms. 
Representing chemical molecules in a way that enables the

eural network to generalize well across drugs, on the other
and, is more challenging. State-of-the-art models such as Pac-
Mann ( 9 ) use the Simplified Molecular-Input Line-Entry Sys-
em (SMILES) ( 10 1). However, this representation has less
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desirable properties that impede generalization. Firstly, the
code is not unique; a molecule generally has multiple SMILES
strings. This necessitates data augmentation and imposes a
challenge on the neural network that has to learn a mean-
ingful internal representation. Secondly, the distance between
elements in the string does not always correspond to physical
distance between the entities, which makes it more challenging
for the network to understand physical interactions between
elements that are far apart in the string. 

Recently, diverse deep-learning architectures for graph data
that are referred to as graph neural netw or ks (GNNs) have
been created. They can predict properties of the nodes, of
the edges or properties of the entire graph ( 11 ). Specifi-
cally, GNNs estabish new state-of-the-art results for drug-
discovery-related benchmarks ( 12 ,13 ). GNNs have also been
applied for cancer-related tasks, using graph representa-
tions for either drugs ( 14–17 ), cell lines ( 18 ,19 ), or both
( 20 ,21 ). In this work, we developed and evaluated graph
neural network architectures that allow neural drug sen-
sitivity models to process the graph structure of candi-
date drug molecules, in addition to a transcriptomic tumor
profile. 

In order to comprehensively evaluate the predictive perfor-
mance of the models, we consider two distinct use cases that
reflect highly relevant challenges in cancer research: precision
oncology and drug discovery . In precision oncology , the pri-
mary goal is to identify the optimal treatment strategy for an
individual patient. In this scenario, the transcriptomic profile
of the patient’s primary tumor is available, enabling a person-
alized approach to treatment selection. However, the challenge
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lies in the absence of drug screening data for the patient’s spe-
cific case. Therefore, the task in precision oncology can be
framed as predicting the sensitivity of a new, previously un-
seen cell line to a known panel of drugs. By contrast, the drug
discovery use case focuses on identifying promising candidate
drug compounds for further development and clinical stud-
ies. Here, the sensitivity of a known panel of cell lines to a
new, previously unseen drug molecule is predicted. By prior-
itizing potential candidates for further investigation, the pre-
dictions help reducing the reliance on resource-intensive and
time-consuming experimental validations. 

Most prior work has evaluated drug sensitivity models in
terms of their Pearson correlation between predicted and ob-
served sensitivity ( 9 ,18 ). We argue that this criterion is mis-
aligned with the actual goal of either use case. The sensitivity
of a pair of a cell line and a drug can be decomposed into
a mean value for the cell line that reflects its general abil-
ity to resist treatment, a mean value for the drug which re-
flects its general toxicity, and a specific interaction residual.
In the precision-oncology use case, the model should not be
rewarded for delivering accurate predictions of general drug
toxicities, because in this setting the toxicity of available drugs
is well established. Similarly, in the drug development use case,
precise predictions of cell-line survivability should not be the
basis for evaluating the model’s performance. We argue that
the correlation between predicted and observed interaction
residuals is a better quantification of the model’s merit; it
quantifies the extent to which the drug can impede specific
cellular mechanisms rather than the drug’s general cytotoxic-
ity or the cell line’s survivability. 

In total, this manuscript makes the following contributions.
(i) We propose a new performance metric for drug sensitiv-
ity models that is closely tied to the models’ merit in the use
cases of precision oncology and drug discovery. (ii) We de-
velop a modular deep neural network for drug-sensitivity es-
timation. The modular architecture allows the drug module
to be pre-trained on separate tasks with abundant training
data. This enables the model to process drug molecules in a
rich graph representation instead of as SMILES codes, and to
encode molecules using high-capacity graph-attention layers.
(iii) We find that the developed network architecture is sub-
stantially better than known reference methods. An ablation
study sheds light on the contributions of the modular archi-
tecture, pre-training, and the graph encoder. (iv) We observe
that the new model assigns importance to genes that are func-
tionally more focused than the state of the art. 

Materials and methods 

Problem setting and performance metrics 

We studied two variants of problem settings that represent
the use cases of precision oncology and drug discovery , re-
spectively. The goal of precision medicine is to predict the ef-
fect of a range of available drugs for a given, previously un-
seen, tumor case. Therefore, performance metrics for this use
case were measured for cell lines that did not occur in the
training data. Drug sensitivity is measured in terms of the in-
hibitory concentration IC 50 . For precision medicine, we used
the mean value, across cell lines, of the Pearson correlationR
between predicted and measured inhibitory concentration for
all drugs as the first reference performance measure. We re-
fer to this quantity as R (precision oncology) . In addition, the
mean squared error (MSE) of the predicted IC 50 served as ref- 
erence measure. 

For drug discovery , performance metrics were calculated 

for drug compounds that were not present in the training data.
Here, we measured the mean value, across drugs, of the Pear- 
son correlationR between predicted and measured inhibitory 
concentration for all cell lines as the first reference perfor- 
mance measure. We refer to this measure as R (drug discov- 
ery) . As above, the mean squared error (MSE) was used as 
second reference measure. 

In both settings, the sensitivity y ij of cell line j to drug i can 

be decomposed into a mean value αi of drug i that reflects its 
toxicity, a mean value βj of cell line j that reflects is susceptibil- 
ity, and a residual term γij that reflects the specific interaction 

of drug and cell line: 

y i j = αi + β j + γi j . (1) 

Even though the true values of αi and βj are not known,
they can be estimated robustly in practice by fitting a linear 
model with parameters αi and βj to a given matrix of pre- 
dicted or observed sensitivity values y ij ; the interaction resid- 
uals γij follow immediately from γij = y ij − αi − βj . In later 
sections, we will refer to estimations of these values based on 

the existing data as ̂ y i j , ̂  αi , ̂ β j and ̂ γi j , and in more abstract ref- 
erences to this decomposition they will be denoted by ˜ y i j , ˜ αi ,
˜ β j and ˜ γi j . Note that the linear decomposition of Equation 1 

is always possible and generally has multiple solutions: setting 
all αi and βj to zero leads to the trivial but exact solution y ij 
= γij . Applying � 2 -regularization to the αi and βj and using 
the square of the residuals γij = y ij − αi − βj as loss function 

favors solutions that place large weights on the effects of αi 

and βj . 
Since any drug sensitivity y ij is an aggregate of drug mean,

cell-line mean, and interaction term, the Pearson correlation 

penalizes any deviation between prediction and ground truth 

in any of these constituents equally. We argue that this mis- 
aligns the performance metric from the actual, use-case-driven 

goal. For precision oncology, the model’s ability to predict the 
overall cytotoxicity αi is less relevant because it is generally 
known, and the ability to predict the tumor survivability βj 

is less relevant because it is not the subject of the therapeu- 
tic decision. For drug discovery, both drug toxicity and tumor 
survivability are issues that are relevant, but disparate from 

identifying tumors that a drug candidate might target effec- 
tively. In both cases, the interaction residuals quantify the ex- 
tent to which the drug is an effective match for the tumor at 
hand. 

For precision medicine , we therefore measured the mean,
across cell lines, of the Pearson correlationR between pre- 
dicted and measured interaction residuals, ˆ γi j and γij respec- 
tively, for all drugs as an additional performance measure. We 
refer to this quantity as R interaction (precision oncology) . For 
drug discovery , we measured the mean value, across drugs, of 
the Pearson correlationR between predicted and measured in- 
hibitory concentration for all cell lines as a additional per- 
formance measure that we refer to as R interaction (drug 
discovery) . 

Note that the Pearson correlation is translation and scale 
invariant. A predictive model that scales the inhibitory con- 
centrations incorrectly while sorting compounds for precision 

oncology—or cell lines, for drug discovery—perfectly accord- 
ing to their true inhibitory concentrations can achieve a per- 
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We judged the statistical significance of differences in the
erformances of models with two-sided paired Student’s t -
ests with P -value threshold of between 0.05 and 10 

−4 , and
he resulting P -values were corrected for repeated testing us-
ng the Holm-Šídák method. 

odel architecture 

his section develops the architecture of CANDELA , a can-
er drug sensitivity estimation modular gr aph neur al netw or k ,
isualized in Figure 1 . The network accepts a graph that en-
odes a drug component i , gene expression data of a cell line
 , and produces a prediction 

ˆ y i j of the inhibitory concentra-
ion IC 50 . The network architecture follows the intuition of
 decomposition of the inhibitory effect into a mean value αi

hat reflects the cytotoxicity of drug i , a mean value βj that
eflects the survivability of tumor cell line j , and an interac-
ion residual γij that quantifies the extent to which molecule i
pecifically impedes cellular mechanisms employed by tumor
ell j . The following sections describe the individual modules;
ll hyper-parameter values are the result of a tuning procedure
escribed in the Sections below. 

rug encoder and drug module 
raph representations of molecules have been explored for
ifferent biochemical problems ( 22 ), and a wide range of de-
criptors encodes chemical properties of atoms, bonds and
heir neighborhood in the molecule as node and edge at-
ributes, respectiely ( 23–25 ). In our experiments, node fea-
ures are the degree of each node, the atom type, the num-
er of neighboring heavy atoms, the charge of that atom, the
ybridization type, binary variables that indicate whether the
tom is contained in a ring and whether it is contained in an
romatic ring, the mass of the atom, its scaled van der Waals
adius, and its scaled covalent radius. Edge annotations are
he type of edge (single, double, triple or aromatic), and bi-
ary variables indicating whether the edge is conjugated or
ot, and whether the edge is part of a ring. All discrete anno-
ations are one-hot encoded. 

In the drug encoder , three consecutive stacks of a graph at-
ention layers ( 26 ) with eight attention heads each, interleaved
y a LeakyReLU (leaky rectified linear) activation functions,
enerate an embedding of the nodes with a dimensionality of
28 per node. In the drug module , self-attention pooling ( 27 )
ith a hidden dimension of 1024 is used to aggregate the node

mbeddings into an embedding of the drug molecule with 128
imensions. Finally, a dense layer of 2027 units for drug dis-
overy and 1152 units for precision medicine, followed by
 sigmoidal activation function and another dense layer that
enerates a drug score is applied to the drug embedding. The
enerated scalar value corresponds to ˜ αi in equation 1 . 

xpression encoder and expression module 
rawing inspiration from PaccMann ( 9 ), cell lines are repre-

ented in terms of the expression levels of genes selected using
etwork propagation. The list of 2,089 genes was extracted
rom the original publication. They correspond to the genes
ith the highest random-walk probability to the genes tar-

eted by each drug. Details are elaborated by Manica et al. ( 9 ).
n the expression encoder , two fully-connected layers with
eLU (rectified linear) activations generate an embedding of

he expressions for the 2,089 genes, with an initial dimension

f 1024 and a bottleneck dimension of 128.  
In the expression module , a multi-layer perceptron (MLP)
transforms the encoded gene expression into an scalar score,
corresponding to 

˜ βi in equation 1 . The MLP has an embedding
size of 660 for the precision-oncology setting and 1310 for
drug discovery. 

Interaction module and score generation 

This subnetwork combines the expression and drug embed-
dings into a single score, which captures the specific pair-
wise interaction between the drug and the cell-line. We adapt
the pooling strategy of Manica et al. ( 9 ) and apply cross-
attentional pooling ( 27 ) of the embeddings of each node with
the cell-line embedding into a joint embedding of drug i and
cell line j . Then, the graph-level features are transformed by a
ReLU activation function, followed by a linear layer with hid-
den size 1,212 (precision oncology) or 3744 (drug discovery),
a sigmoid activation function, and a linear layer that maps the
hidden features to a scalar value which corresponds to ˜ γi j in
Equation ( 1 ). 

Finally, the three scalar scores resulting from the gene-
expression, drug, and interaction modules are simply summed
into a scalar prediction 

ˆ y i j of the final output of log (IC 50 ) pre-
dictions. In consequence, this architecture offers additional
possibilities for interpretability, regularization, and separate
pre-training of drug and expression modules. 

Pre-training the graph encoder 

The Genomics of Drug Sensitivity in Cancer project (GDSC)
data ( 2 ,3 )—the largest publicly available drug-sensitivity
database—includes fewer that 1000 cell lines and 282 drugs.
CANDELA , on the other hand, has > 40 million parame-
ters that allow it to model complex relationships between the
molecular structure of drugs, transcriptomes, and inhibitory
effects. In order to bridge this disproportion between train-
ing data and model complexity, the drug encoder can be pre-
trained on tasks for which training data are more abundant.
Pre-training encoders on different but related tasks has proven
to be a powerful tool for computer vision and natural lan-
guage processing, and it can be a useful strategy for graph-
learning tasks ( 28 ). 

The drug module that generates the node embeddings as
well as the self-attentional pooling layer that aggregates these
node embeddings into a drug embedding were pre-trained.
Specifically, we study the merits of the following two pre-
training tasks. 

Pre-training the drug encoder to predict metabolite properties
Molecular properties, such as their sizes or octanol–water par-
tition coefficients are known to play a determinant role in their
interaction with proteins, and hence in their biological proper-
ties ( 29 ). For this reason, and given the large amount of labeled
data, we designed an initial pre-training task where the model
learns to predict such properties. 

First, 123 559 drug- and metabolite-like compounds of
the human interactome were extracted from the STITCH
database ( 30 ). Compounds that also occur in GDSC were dis-
carded to prevent leakage of test data into the training pro-
cess. Then, using the PubChem API ( 31 ), seven numerical fea-
tures that were available for all compounds were retrieved:
the molecular weight, octanol / water partition coefficient, po-
lar surface area, complexity, hydrogen bond donor count,
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Figure 1. Outline of the proposed modular CANDELA architecture. 
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hydrogen bond acceptor count, and rotatable bond count.
This data served as ancillary data for this pre-training step. 

These features were scaled to the range of –1 and 1, and
were used as multi-output regression target for pre-training
the drug encoder. To this end, an attention pooling layer, a
fully-connected layer with 512 hidden units with a dropout
rate of 0.4, and an output layer with seven units were stacked
on top of the embedding layer of the drug encoder. The net-
work was trained to minimize the mean squared error for
1000 epochs using Adam with a learning rate of 3 × 10 

−4

and a batch size of 256. The pre-trained graph-attentional en-
coder layers are subsequently used for initializing the weights
of the drug encoder in the next pre-training task. 

During this pre-training task, the hyper-parameters of the
architecture were selected using Bayesian Optimization Hy-
perband (BOHB) ( 32 ), which combines a Bayesian tree-
structure Parzen estimator for the selection of promising con-
figurations and Hyperband for early stopping and resource
allocation into a single, robust framework. The pre-training 
data sets were split into a training portion, a validation por- 
tion for early stopping, and an evaluation portion. 

Hyper-parameters included parameters of the Adam opti- 
mizer (the learning rate, weight decay and the beta terms), the 
drug encoder architecture (number of graph-attention layers,
number of attention heads and dimension of the node em- 
beddings), the self-attentional pooling layer (number of atten- 
tion heads and dimension of the drug embedding), and the 
ancillary part of the network (number of units in the hidden 

layer and dropout probability in the regression or classifica- 
tion head). The hyper-parameters selected were those min- 
imizing the loss on the evaluation portion of the ancillary 
data. 

Pre-training the drug encoder to predict toxicity 
The toxicity of drugs plays a vital role in their success as can- 
cer therapies ( 33 ), and furthermore, many anticancer drugs 
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re specifically cytotoxic compounds ( 34 ). For these reasons,
nd given the amount of labeled data in public databases, we
tudied a second pre-training strategy related to toxicity. 

The CATMoS database ( 35 ) that contains 11 992 molecules
lassified as non-toxic, moderately toxic and highly toxic com-
ounds constituted the ancillary data for this second pre-
raining step. A network consisting of the pre-trained drug
ncoder obtained in the previous step, an additional atten-
ion pooling layer, and a fully-connected classification head
ith 512 hidden units and a dropout probability of 0.3
as built. It was trained to minimize the cross-entropy loss
etween the predicted and observed classes for 30 epochs,
sing the Adam optimizer with a learning rate of 2.5 ×
0 

−4 and a batch size of 512. The weights learned by the
rug encoder and the attention-pooling module are then
sed as initialization weights for the task of drug sensitivity
rediction. 
During this pre-training task, only hyper-parameters of the

dam optimizer and architecture parameters of the ancil-
ary part of the network were selected using BOHB. The pre-
raining data sets were split into a training portion, a valida-
ion portion for early stopping, and an evaluation portion of
he ancillary data. 

raining the CANDELA model 

fter pre-training the drug encoder and drug self-attentional
ooling following two different pre-training strategies, the
ANDELA model was integrated and trained on GDSC. For

he first pre-trained model only the molecular property pre-
iction task was considered, whereas the second model was
re-trained on both tasks sequentially. The remaining hyper-
arameters were obtained using BOHB and a three-way split
ross-validation schema consisting of 25-fold, where itera-
ively 23-fold were used for training the model, one was used
or selecting hyper-parameters and the last one was used for
valuating the performance attained after hyper-parameter se-
ection. The hyper-parameters tuned were the configuration
f the Adam optimizer (learning rate, weight decay and beta
erms), the number of hidden units and dropout probabilities
n the corresponding fully-connected networks, the number
f hidden units found in the cell-line encoder, and the archi-
ecture parameters of model components that were not pre-
rained (number of graph-attention layers, number of atten-
ion heads, number of hidden units). In all cases, the selected
yper-parameters were those minimizing the mean squared
rror averaged over the tuning portions of the 25 validation
olds. 

itting the modular scores 

etermining the Pearson correlation of the interaction resid-
als ( R interaction) requires the true coefficients αi , βj and γij

nd the predicted coefficients ˆ αi , ˆ β j and ˆ γi j to be known for all
rugs and cell lines. These coefficients were fitted to the ob-
erved and predicted values of IC 50 , respectively, using a ridge
egression with regularization factor α = 10 

−5 . 

eference models 

his section introduces reference methods that represent the
tate of the art and serve as baselines in the experimental
omparison. 
DrugCGN 

represents cell lines as graphs that are obtained from the
protein-protein interaction (PPI) network ( 18 ). A separate
model is learned for each drug using the cell-line graphs as in-
put and a GNN as an encoder. In consequence, this approach
can only generalize to unseen cell lines. Since no information is
shared across models, drugs for which the screening data con-
tained a large number of missing values were discarded and
the model was trained to minimize the MSE of IC 50 values
using only a subset of GDSC. 

GraphDRP 

represents cell lines by a vector of binary features that indi-
cates which of their genes are mutated ( 14 ). Drugs are repre-
sented using graphs. Note that this representation can general-
ize to unseen drugs and cell lines as long as mutation data are
available. An MLP encodes gene expression levels, a GNN per-
forms message passing on the drug graphs, and node features
are max-pooled over all nodes, which results in a graph-level
representation. Finally, the features are combined via concate-
nation, and the predictions are obtained thanks to a series of
fully-connected layers. The learning objective is the MSE of
the predicted IC 50 s. 

PaccMann 

represents cell lines by their expression profiles in the form of
continuous values, and drugs by the SMILES string for each
drug ( 9 ). This representation can generalize to both unseen
drugs and unseen cell lines. Although they present different
versions of the model, the gene expression data is encoded us-
ing a multi-layer perceptron (MLP) and the drugs are encoded
using CNNs. Both representations are fused using attention
over the cell-lines to pool different convoluted sequences ob-
tained from each drug, and the learning objective is to mini-
mize the mean squared error (MSE) between the observed and
predicted IC 50 . 

SubCDR 

represents cell lines by cancer-driving genes taken from the
COSMIC database ( 36 ), masks genes that are not relevant for
a particular tumor type, and applies a one-dimensional CNN
to infer an embedding. Drugs are fragmented using the BRICS
algorithm ( 37 ), molecular fragments represented by extended-
connectivity fingerprints ( 38 ) and are embedded by a gated
recurrent layer. Additionally, this method extracts side infor-
mation by applying Single Value Decomposition to the drug-
responses matrix. Finally, the features are concatenated and an
MLP generates the final log (IC 50 ) predictions ( 39 ). Note that
SVD generates representations that do not generalize for un-
seen drugs or cell lines; for this reason, we discard the drug em-
beddings during the drug discovery experiments, and the cell-
line embeddings during the precision oncology experiments. 

PaccMann 

In PaccMann ( 9 ), cell lines are represented by their expres-
sion profiles in the form of continuous values, and drugs are
represented by the SMILES string for each drug. This repre-
sentation can generalize to both unseen drugs and unseen cell
lines. Although they present different versions of the model,
the gene expression data is encoded using a multi-layer per-
ceptron (MLP) and the drugs are encoded using CNNs. Both
representations are fused using attention over the cell-lines to
pool different convoluted sequences obtained from each drug,
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and the learning objective is to minimize the mean squared er-
ror (MSE) between the observed and predicted IC 50 . 

3D Infomax 

pre-trains a graph neural network to encode information
about the 3D structure of molecules on databases of molec-
ular properties. To this end, it is trained to maximize the
mutual information between 2D and 3D representations of
molecules ( 40 ). The resulting molecular embedding can be
used as input representation for a range of downstream
tasks. The molecular architecture of CANDELA was designed
specifically to make use of pre-trained drug embeddings. As
an alternative to pre-training the drug encoder on matabolite
properties and toxicity, we have studied the use of the 3D In-
fomax encoding for drugs. 

Data 

The Genomics of Drug Sensitivity in Cancer project (GDSC)
database ( 2 ,3 ) contains screening data for tumoral cell lines
under different anticancer treatments. It contains two dif-
ferent experiments: GSDC1 and GDSC2 ( 41 ). GDSC1 has
a larger number of experiments (up to 345 different com-
pounds were screened), whereas the GDSC2 started later and
tried to improve and standardize the quality of the screen-
ing methodology. Since it still contains the lower number
of 192 screened compounds, GDSC1 is used in our experi-
ments. Cell lines cover the spectrum of common and rare types
of adult and childhood cancers of epithelial, mesenchymal
and haematopoietic origin. Cell lines were characterized using
data from six different sources (whole exome sequencing, gene
expression, copy number alterations, DNA methylation, gene
fusions and microsatellite stability). GDSC1 contains 310 904
IC 50 values for 987 cell lines and 367 compounds. The IC 50

is measured using fluorescence-based cell viability assays fol-
lowing 72 h of drug treatment. 

Results 

In this section, the performance of CANDELA will be com-
pared to that of state-of-the-art models under the precision
medicine and drug discovery settings, and also against ablated
versions. The global performance of the models and their abil-
ity to recover the different latent features found in the data will
be analyzed. To further understand how CANDELA works,
the features driving the predictions will be studied. 

Comparison of methods 

For the use-case of precision oncology, Figure 2 A shows that
both versions of CANDELA outperform all reference methods
with respect to MSE, Pearson correlation R between predicted
and measured IC 50 values, and Pearson correlation between
predicted and measured interaction residuals of IC 50 values at
Holm–Šídák-corrected significance levels of 0.01 and lower.
For drug discovery, Figure 2 B again shows that both versions
of CANDELA outperform all reference models with respect to
all three performance measures at significance levels of 0.05
and below. 

In both settings, CANDELA shows a significantly higher
Pearson correlation between predicted and measured interac-
tion residuals of IC 50 values. This means that CANDELA’s
performance cannot just be attributed to a better ability to
predict drug cytotoxicity or cell-line survivability; it specif-
ically excels at predicting whether a drug has an inhibitory 
interaction with a particular cell line. When comparing in de- 
tail the distributions of observations vs. predictions, and their 
squared residuals in Figure 3 , it can be seen that under both 

settings CANDELA has a higher density of predictions with 

low residual errors, and that furthermore the predictions with 

low value—which correspond to strong inhibitions—are more 
accurately predicted. 

Extended omics-representations 

CANDELA represents the cell-lines using exclusively the ex- 
pression level of genes. While mutation and copy-number vari- 
ations are often known for established cell lines, restricting 
CANDELA to expression-level input makes the method more 
broadly applicable in precision-oncology and drug-discovery 
scenarios. Nevertheless, we further investigated if the addition 

of other sources of omics data leads to better performance.
We added the copy number variations (CNVs) and binary 
features representing mutation events as additional input fea- 
tures. These features are available for 902 of the cell lines in 

GDSC; we performed 10-fold cross validation on these cell 
lines along cell lines and drugs for precision oncology and 

drug discovery , respectively . 
Table 1 shows that performance differences between CAN- 

DELA with and without copy-number-variation and mutation 

information are minimal and statistically insignificant. 

Ablation study 

We compare the performance of the CANDELA model to var- 
ious ablated versions of CANDELA. We distinguish between 

CANDELA pre-trained on both pre-training tasks (marked 

by ‘two tasks’ in column ‘pre-training’ of Table 2 ) and CAN- 
DELA pre-trained only on metabolite properties (marked as 
‘one task’). We compare these models to an ablated ver- 
sion without any pre-training (marked as ‘ ×’ in column ‘pre- 
training’). Additionally, we also trained CANDELA with pre- 
trained node embeddings obtained using the 3D Infomax 

method ( 40 ). 
In an ablated version without score decomposition , the 

drug module and expression module were removed; the in- 
teraction module is trained to predict the inhibitory concen- 
tration by itself. The modular drug encoder and expression en- 
coder remain and can be pre-trained. The model without score 
decomposition and pre-training combines both ablations. In 

a model without score decomposition, graph attention, and 

pre-training we replace each graph-attention layer by a graph- 
convolutional layer with equally many units; as a result, this 
model cannot process the edge features. 

CANDELA fuses the node embeddings of drug encoder and 

expression encoder by cross-attentional pooling (marked as 
‘cross-attention’) in column ‘fusion’ of Table 2 . We also study 
an ablated version in which the embeddings are concatenated,
and a subsequent fully-connected layer can learn any non- 
linear integration function (marked as ‘concatenation’). 

Table 2 shows the results and highlights configurations that 
perform significantly better and worse than the CANDELA 

model, based on a pairwise t -test with α = 0.05. The P - 
values were corrected for multiple testing using the Holm–
Šídák method. For both precision oncology and drug discov- 
ery, Table 2 shows that pre-training on metabolite properties is 
uniformly better than both pre-training on two tasks, not pre- 
training and the usage of pre-trained embeddings obtained 
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A B C

D E F

Figure 2. Performance measures for CANDELA and reference models for precision oncology ( A–C ) and drug discovery ( D–F ). ‘CANDELA (one task)’ 
refers to the model pre-trained on only metabolite properties. ‘CANDELA (two tasks)’ was pre-trained on metabolites properties and toxicity 
sequentially. B o x es displa y the median value and interquartile range; whiskers extend up to the most extreme data point within 1.5 IQR, other points are 
considered outliers. The upper bars depict the result of the corrected P -values obtained from t -tests, and the number of asterisks corresponds to the 
Holm–Šídák-corrected significance le v els of *: 0.01 < P ≤ 0.05, **: 10 −3 < P ≤ 0.01, ***: 10 −4 < P ≤ 10 −03 , ****: P ≤ 10 −04 . 
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rom 3D infomax; for most configurations, the deterioration is
tatistically significant. For drug design, only the MSE of two
re-training tasks is slightly (but insignificantly) lower than
or one pre-training tasks. 

This outcome led us to the hypothesis that the number
f molecules in the toxicity data (11 992) is too small, and
he molecules are too different from the molecules in GDSC,
or this pre-training task to benefit the model. The STITCH
atabase of metabolite properties is larger by an order of
agnitude (123 559 molecules). We quantified the similar-

ty similarity between the molecules found in GDSC with the
olecules found in STITCH and CATMos. For each query
olecule from the GDSC, we selected 10 random samples of
12 target molecules from each of these datasets, and we cal-
ulated the Tanimoto coefficient between the query molecule
nd each target molecule. We then compared the mean over
ll batches for the maximum observed Tanimoto coefficient
n each batch. We observed that the average maximum Tani-
oton coefficient between GDSC and STITCH is 0.304 while

he average maximum Tanimoto coefficient between GDSC
nd CATMoS is 0.255. The similarity between GDSC and
TITCH is 18.7% larger than the similarity between GDSC
nd CATMoS, which is consistent with our hypothesis that
ATMoS is too different to be beneficial for pre-training. 
For precision oncology, the ablated model without score de-

omposition performs marginally better than CANDELA. For
rug design, CANDELA significantly outperforms the ablated
model without score decomposition. The ablated model with-
out score decomposition has fewer model parameters, and
while higher-capacity networks can model more complex rela-
tionships, they require more training data to avoid over-fitting.
Our interpretation is that the score decomposition is benefi-
cial for drug design, while a lower-capacity model turns out
to offer a better trade-off for precision oncology. 

For both precision oncology and drug design, ablated ver-
sions without graph attention perform significantly worse.
Also for both problems, fusion by concatenation plus a
fully connected layer performs worse than fusion by cross-
attention, albeit the deterioration is not significant. 

For both precision oncology and drug discovery, using
the pre-trained 3D Infomax embedding deteriorates CAN-
DELA’s performance compared to pre-training the embedding
on STITCH. While 3D Infomax encourages the drug embed-
ding to preserve information about the spatial structure of the
molecule, we conclude that predicting metabolites is a more
closely related, meaningful pre-training task. 

Cytotoxic versus targeted drugs 

GDSC contains cytotoxic, targeted, and other drugs. Given
the radical differences in the mechanism of action between
cytotoxic and targeted drugs, one could expect differences in
performance for the different models between these classes of
drugs compounds. For this reason, we further study the ability
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A B

DC

Figure 3. ( A ) Empirical cumulative distribution function of the squared loss (y i j − ˆ y i j ) 2 for precision oncology; ( B ) Comparison of observed and predicted 
values of log(IC 50 ) for precision oncology; ( C ) empirical cumulative distribution function of the squared loss (y i j − ˆ y i j ) 2 for drug discovery; and ( D ) 
comparison of observed and predicted values of log ( IC 50 ) for drug discovery. 

Table 1. CANDELA with and without cop y -number v ariation and mutation features: perf ormance measures ± standard error of the mean 

Metric 

Setting CNVs & mutations MSE R R interaction 

Precision oncology × 0.003 ± 0.000 0.901 ± 0.002 0.327 ± 0.009 
� 0.003 ± 0.000 0.899 ± 0.001 0.327 ± 0.005 

Drug discovery × 0.012 ± 0.001 0.468 ± 0.006 0.110 ± 0.009 
� 0.012 ± 0.001 0.475 ± 0.007 0.125 ± 0.010 
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of the different models to perform predictions for new drugs
of these two classes. 

First, we compared the performance achieved by CAN-
DELA and reference methods in the drug discovery setting
between cytotoxic and targeted compounds. Figure 4 shows
that for targeted compounds, the differences in performance
are very similar to the overall performance in terms of R (drug
discovery), but the absolute values of R (drug discovery) are
higher. This is unsurprising, due to targeted drugs constituting
the larger fraction of GDSC1, and also having killing patterns 
that are, in terms of biological expectations, more predictable.
Interestingly, for cytotoxic compounds, the performance of all 
models is higher than for targeted drugs, but this effect is more 
extreme for CANDELA and SubCDR. 

We further analyzed the ability of the different ablated ver- 
sions of CANDELA to predict the response of cytotoxic and 

targeted drugs in the drug-discovery setting. We found that the 
average correlations for the targeted drugs using the modular 
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Table 2. Ablation study: performance measures ± standard error of the mean. ‘ � ’ indicates included, ‘ ×’ indicates e x cluded model components; the 
first tw o ro ws are the complete CANDELA model with the two different pre-training stragies. Models marked ‘ † ’ are significantly worse than CANDELA 

using only one pre-training task. Models marked ‘ * ’ are significantly better (pairwise t -test, α = 0.05, corrected for multiple testing using Holm–Šídák). 
B old v alues indicate the best configuration 

Model components Metric 

Score Graph 
Pre-training decomposition attention Fusion MSE R R interaction 

Precision Two tasks � � Cross-attention 0.0032 ± 0.0000 0.8929 ± 0.0023 † 0.2743 ± 0.0057 † 

oncology One task � � Cross-attention 0.0032 ± 0.0000 0.8941 ± 0.0022 0.2926 ± 0.0059 
3D Infomax � � Cross-attention 0.0045 ± 0.0002 † 0.8632 ± 0.0062 † 0.1210 ± 0.0061 † 

× � � Cross-attention 0.0205 ± 0.0002 † 0.6765 ± 0.0097 † 0.0801 ± 0.0034 † 

Two tasks × � Cross-attention 0.0034 ± 0.0000 † 0.8865 ± 0.0024 † 0.2600 ± 0.0061 † 

One task × � Cross-attention 0.0031 ± 0.0000 * 0.8957 ± 0.0023 * 0.3557 ± 0.0055 * 

× × � Cross-attention 0.0035 ± 0.0001 † 0.8832 ± 0.0025 † 0.1228 ± 0.0157 † 

× × × Cross-attention 0.0034 ± 0.0000 † 0.8830 ± 0.0024 † 0.2070 ± 0.0074 † 

Two tasks � � Concatenation 0.0034 ± 0.0000 † 0.8819 ± 0.0023 † 0.0263 ± 0.0038 † 

One task � � Concatenation 0.0034 ± 0.0000 † 0.8821 ± 0.0024 † 0.0364 ± 0.0056 † 

Drug Two tasks � � Cross-attention 0.0114 ± 0.0007 0.4846 ± 0.0071 0.0800 ± 0.01300 † 

discovery One task � � Cross-attention 0.0106 ± 0.0007 0.4963 ± 0.0068 0.1238 ± 0.01300 
3D Infomax � � Cross-attention 0.0112 ± 0.0008 0.4339 ± 0.0070 † 0.0269 ± 0.0061 † 

× � � Cross-attention 0.0136 ± 0.0009 0.4829 ± 0.0069 0.0281 ± 0.0099 † 

Two tasks × � Cross-attention 0.0123 ± 0.0009 0.4860 ± 0.0070 0.0335 ± 0.0109 † 

One task × � Cross-attention 0.0123 ± 0.0010 0.4128 ± 0.0069 † 0.0199 ± 0.0078 † 

× × � Cross-attention 0.0126 ± 0.0010 0.4354 ± 0.0075 † − 0.0123 ± 0.0105 † 

× × × Cross-attention 0.0127 ± 0.0010 0.4038 ± 0.0095 † 0.0203 ± 0.0060 † 

Two tasks � � Concatenation 0.0116 ± 0.0007 0.4675 ± 0.0068 † − 0.0122 ± 0.0098 † 

One task � � Concatenation 0.0116 ± 0.0008 0.4954 ± 0.0068 0.0091 ± 0.0074 † 

A B

Figure 4. Pearson correlation coefficient between observed and predicted values for ( A ) targeted drugs and ( B ) cytotoxic drugs for CANDELA and 
reference methods. The upper bars depict the result of the corrected P -values obtained from t -tests, and the number of asterisks corresponds to the 
Holm–Šídák-corrected significance le v els of ns: not significant, *0.01 < P ≤ 0.05, **10 −3 < P ≤ 0.01, ***10 −4 < P ≤ 10 −03 , **** P ≤ 10 −04 . 
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rchitecture with one pre-training task ( R = 0.519 ± 0.02)
r two pre-training tasks ( R = 0.507 ± 0.02) is in a sim-
lar range when compared to other baselines without score
ecomposition ( R = 0.511 ± 0.012). In contrast, when the
redictions for cytotoxic compounds were analyzed, we ob-
erved that CANDELA with one pre-training task ( R = 0.561

0.025) and two pre-training tasks ( R = 0.560 ± 0.013) has
etter performance than the best-performing baseline without
core decomposition ( R = 0.517 ± 0.019). 

iomarker importance 

n order to challenge the biological plausibility of the fea-
ures that appear important for judging either resistance or
sensitivity of cell lines to drugs, we extracted the mean over-
all absolute feature importances for each of the 2,089 genes
across all drug-cell line combinations using integrated gradi-
ents ( 42 ). Thus, a feature gained importance if it contributes
to explain either resistance or sensitivity with respect to drug-
cell line combinations. Next we argue that plausibility of these
important features can be assessed with respect to the enrich-
ment of the gene sets in biological pathways similar to Prasse
et al. ( 43 ). 

We compared CANDELA to PaccMann by extracting the
genes with the highest overall feature importances from both
models and performing over-representation analysis with re-
spect to a comprehensive collection of 5578 human path-
ways integrated from various resources in the Consensus-
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A B

Figure 5. ( A ) Overlap between the 10% most relevant expression features of CANDELA, PaccMann, and a randomly drawn set of gene-expression 
features. ( B ) Strength of enrichment of biological pathw a y s with different feature sets. X-axis: box plots for gene sets reflecting top 5% of the important 
features from CANDELA (left panel) and PaccMann (middle panel) respectively (104 genes), top 10% (209 genes), top 15% (313 genes) and top 20% 

(418 genes). Bars show max and min values, boxes show 25–75% range of –log 10 ( q -values). The right panel corresponds to four randomly chosen gene 
sets (209 genes each). Y-axis: –log 10 of the enrichment q -value. Significance of differences between CANDELA and PaccMann q -values is judged by an 
unpaired Wilco x on test (**** P ≤ 1.0e −04). 
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PathDB ( 44 ). Figure 5 (A) shows that the two methods as-
sign overall importances to different genes. For example, only
17 out of 209 (8%) of the top 10% important genes overlap
among the two methods—a fraction that resembles an over-
lap to randomly chosen genes as shown in Figure 5 (A). Thus,
both models use different features to predict drug sensitiv-
ity presumably due to redundant variables in the data. Over-
representation analysis of different gene sets with high impor-
tances (top 5%, 104 genes, top 10%, 209 genes, top 15%, 313
genes, and top 20%, 418 genes), yields a significantly higher
enrichment ( P < 10 

−4 ) of the genes selected by CANDELA
compared to the gene sets selected by PaccMann or randomly
chosen gene sets among the 2089 drug target genes under
consideration (see Figure 5 (B)). Thus, CANDELA, when com-
pared to the PaccMann model, appears to assign importance
to features that are more focused on specific cellular pathways
and functions, which suggests a larger biological relevance and
plausability for biomarker selection. 

We can observe that CANDELA attributes high impor-
tances to genes that reflect the biological mechanism of the
targeted drugs. We exemplify this with two drugs, fedratinib
and refamitinib. Fedratinib is a highly specific kinase inhibitor
of JAK2 and FLT3 tyrosine kinase, and we found an over-
all good correlation of 0.68 between predicted and ground
truth log(IC 50 ) values. Fedratinib has been recently approved
for the treatment of myeloproliferative neoplasm-associated
myelofibrosis, a disease of the blood cells that cover differ-
ent leukemias such as CML ( 45 ). From the prediction results
we observe a high agreement between predictability and ap-
proved prescription with 45 different blood cell lines having
been assigned a high sensitivity to that drug. Furthermore,
both major targets of fedratinib, FLT3 (fms related receptor
tyrosine kinase 3) and JAK2, have been assigned high impor-
tances with 2.27- and 1.35-fold above the median importance
value across all 2090 drug–target genes. Additionally, many
members of the JAK / ST A T signalling pathway were found
highly attributed by CANDELA. JAK2 signalling typically ap-
pears through cytokines and growth factors that bind to their
corresponding receptors, leading to receptor dimerization and
recruitment of related JAKs ( 46 ). Elevated importances at-
tributed to key hormone and cytokine receptors reflect this sig-
nalling, for example growth hormone 2 (GH2, 1.63-fold fea-
ture importance) and growth hormone receptor (GRH, 1.75),
leptin (LEP, 1.46) and prolactin receptor (PPLR, 2.01). Also,
for resistance mechanisms cross-talk between the JAK / ST A T 

pathway and other pathways is important. Such cross-talk 

has been reported for example with the PI3K–AKT signalling 
pathway ( 47 ). Interestingly, many components of that path- 
way have also been assigned high importances by CANDELA,
most prominently FLT3 (2.27), TEK (TEK receptor tyrosine 
kinase, 2.18) and ERBB2 (erb-b2 receptor tyrosine kinase 2,
1.94). 

Refamitinib, a targeted therapy against MEK1 / 2 and in- 
hibitor of the ERK-MAPK signaling pathway, is another ex- 
ample with an overall correlation of 0.71 between predicted 

and ground truth log(IC 50 ) values. This pathway is relevant 
for several cancer types, such as melanoma because ERK- 
MAPK signalling is a crucial regulator of melanocyte prolif- 
eration and differentiation ( 48 ). Our results list melanoma 
as the predominant cell line type representing sensitive cell 
lines in agreement to the experimental log (IC 50 ) measure- 
ments. CANDELA gene importances for members of the sig- 
nalling pathway are enriched, genes with high importances are 
for example MAP4K1 (2.06), HGF (hepatocyte growth fac- 
tor, 2.03), CSF1R (colony stimulating factor 1 receptor, 2.02) 
or FGFR2 (fibroblast growth factor receptor 2, 1.98). Major 
cross-talk from the highly attributed genes ( > 1.5 × median im- 
portance value, in total 554 genes) can be observed with the 
PI3K-AKT signalling pathway (30 genes). Both pathways are 
often activated in the presence of driver mutations and lead to 

uncontrolled proliferation in malignant melanoma and com- 
binatorial therapies targeting MEK and PI3K are currently 
tested and have shown to be more effective against metastatic 
melanoma compared to monotherapies ( 49 ). 

Finally, the most salient features were compared for three 
drugs (5-Fluorouracil, Imatinib, and Masitinib). Imatinib and 

Masitinib are highly similar compounds targeting several 
serine / threonine kinases, whereas 5-Fluorouracil is an an- 
timetabolite similar to the nucleobase Thymine. Analyzing 
the intersections between the top k features for each of the 
compounds (where k corresponds to 1%, 5%, 10% and 

20% of the input genes), it is clearly seen in Figure 6 how 

both targeted drugs also share a higher number of impor- 
tant features compared to 5-fluorouracil. Furthermore, even 

with as many as 20% of the genes, the number of genes 
uniquely found important for 5-fluorouracil remains high,
showing the specificity of the genes used for generating the 
predictions. 
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B

Figure 6. Overlap between top k features for 5-Fluorouracil, Imatinib and Masitinib ( A ) k = 20 (1% of all features); ( B ) k = 104 (5%); ( C ) k = 209 (10%); 
and, ( D ) k = 418 (20%). 
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iscussion 

e have developed CANDELA, a novel cancer drug sensitiv-
ty estimation modular graph neural network. The score de-
omposition allows for the drug encoder and self-attentional
raph pooling layer to be pre-trained on tasks for which
abeled training data are more abundant than for drug-
ensitivity estimation: predicting metabolite properties and
redicting compound toxicity. CANDELA processes a rich
raph structure and uses graph-attention layers to encode
rug molecules. In the context of other biochemical appli-
ations, previous work has explored a range of graph-level
eatures that can be extracted from chemical molecules and
ariations of their graphical representation, as well as atten-
ion mechanisms that are suitable for their respective applica-
ions. For instance, ( 23 ) uses super-nodes in order to represent
raph-level features and a graph-edit attention mechanism
hat is specifically tailored to model chemical reactions. In
ur approach, given our multi-instance prediction setting, we
everaged the creation of graph-level feature vectors through
 cross-attention mechanism that fusions cell-line and node-
evel attributes. 

We found that CANDELA significantly outperforms Pac-
Mann and other reference models, both for precision on-
ology (estimation for unseen cell lines) and drug discovery
estimation for unseen drugs). The inhibitory concentration
C 50 of drug i for cell line j can always be decomposed into a
rug toxicity αi , a cell-line survivability βj , and an interaction
esidual γij . We argue that a model’s overall ability to predict
C 50 values can be dominated by the model’s ability to predict
rug toxicity and cell-line survivability. While these are rele-
ant problems in their own right, they are not in alignment
ith the ultimate goal of either precision oncology or drug
iscovery. The toxicity of approved drugs is generally known,
nd the survivability of tumor cells is not subject to thera-
eutic decisions. By studying the models’ ability to predict
the interaction residuals, we can show that CANDELA ex-
cels at identifying drugs that specifically target given cell lines.
In particular, the ability of the model to predict the specific
pairwise interactions measured by the correlation between
the observed and predicted latent interaction terms was in-
creased by 10.8% for precision oncology and 49.3% for drug
discovery. 

Our ablation study shows that while pre-training on the
larger database of metabolite properties is beneficial, addition-
ally pre-training on the smaller toxicity database is detrimen-
tal. Without pre-training, CANDELA performs exceptionally
poorly, because the number of its parameters are dispropor-
tionally high compared to the volume of the GDSC data that
are used for training. The score decomposition has a benefi-
cial effect only for drug discovery. Models without graph at-
tention for the fusion of the node embeddings and cell-line
embeddings show a deteriorated performance. 

An analysis of the importance of the gene features relative
to three drugs (Imatinib, Masitinib, 5-fluorouracil) showed
that independently of the number of features selected the
level of overlap of important features between Imatinib
and Masitinib was consistently larger when compared to
5-Fluorouracil. This agrees with our expectations, because
Masitinib and Imatinib are almost identical drugs. Further-
more, the changes in importance with respect to the global
level showed that the predictions for targeted drugs such
as Imatinib and Masitinib displayed extremely increased im-
portances for several genes, whereas 5-Fluorouracil (an an-
timetabolite) did not. 

Data availability 

The original Genomics of Drug Sensitivity in Can-
cer Database (GDSC) ( 2 ,3 ) is available at https:
// ftp.sanger.ac.uk/ project/ cancerrxgene/ releases/ release-8.2/ . 

https://ftp.sanger.ac.uk/project/cancerrxgene/releases/release-8.2/
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The CATMoS data is available at https://ehp.niehs.
nih.gov/ action/ downloadSupplement?doi=10.1289% 

2FEHP8495&file=ehp8495.s002.codeanddata.acco.zip . 
The source code and the processed version of both
data sets used during our experiments are available at
https:// zenodo.org/ doi/ 10.5281/ zenodo.8020945 . The im-
plementation for the different baselines is available in
their respective repositories ( https:// github.com/ BML- 
cbnu/ DrugGCN , https:// github.com/ hauldhut/ GraphDRP ,
https:// github.com/ PaccMann/ paccmann _ predictor _ tf). 
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