Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Asymptotic predictions on the velocity gradient statistics in low-Reynolds-number random flows: onset of skewness, intermittency and alignments

MPG-Autoren
/persons/resource/persons268676

Carbone,  Maurizio
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons192996

Wilczek,  Michael
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Carbone
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Carbone, M., & Wilczek, M. (2024). Asymptotic predictions on the velocity gradient statistics in low-Reynolds-number random flows: onset of skewness, intermittency and alignments. Journal of Fluid Mechanics, 986: A25. doi:10.1017/jfm.2024.165.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-51B3-B
Zusammenfassung
Stirring a fluid through a Gaussian forcing at a vanishingly small Reynolds number produces a Gaussian random field, while flows at higher Reynolds numbers exhibit non-Gaussianity, cascades, anomalous scaling and preferential alignments. Recent works (Yakhot & Donzis, Phys. Rev. Lett., vol. 119, 2017, 044501; Khurshid et al., Phys. Rev. E, vol. 107, 2023, 045102) investigated the onset of these turbulent hallmarks in low-Reynolds-number flows by focusing on the scaling of the velocity gradients and velocity increments. They showed that the onset of power-law scalings in the velocity gradient statistics occurs at low Reynolds numbers, with the scaling exponents being surprisingly similar to those in the inertial range of fully developed turbulence. In this work we address the onset of turbulent signatures in low-Reynolds-number flows from the viewpoint of the velocity gradient dynamics, giving insights into its rich statistical geometry. We combine a perturbation theory of the full Navier-Stokes equations with velocity gradient modelling. This procedure results in a stochastic model for the velocity gradient in which the model coefficients follow directly from the Navier-Stokes equations and statistical homogeneity constraints. The Fokker-Planck equation associated with our stochastic model admits an analytic solution that shows the onset of turbulent hallmarks at low Reynolds numbers: skewness, intermittency and preferential alignments arise in the velocity gradient statistics through a smooth transition as the Reynolds number increases. The model predictions are in excellent agreement with direct numerical simulations of low-Reynolds-number flows.