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Abstract
La(FexSi1−x)13 and derived quaternary compounds are well-known for their giant, tunable,
magneto- and barocaloric responses around a first-order paramagnetic-ferromagnetic transition
near room temperature with low hysteresis. Remarkably, such a transition shows a large
spontaneous volume change together with itinerant electron metamagnetic features. While
magnetovolume effects are well-established mechanisms driving first-order transitions, purely
electronic sources have a long, subtle history and remain poorly understood. Here we apply a
disordered local moment picture to quantify electronic and magnetoelastic effects at finite
temperature in La(FexSi1−x)13 from first-principles. We obtain results in very good agreement with
experiment and demonstrate that the magnetoelastic coupling, rather than purely electronic
mechanisms, drives the first-order character and causes at the same time a huge electronic entropy
contribution to the caloric response.

1. Introduction

Large magnetocaloric and barocaloric effects can come from dramatic changes to the magnetic order of a
material when it is subjected to an external magnetic field and/or other mechanical stimuli. Giant caloric
responses for use in solid-state refrigeration can occur around discontinuous (first-order) magnetic
phase transitions. A well-understood and extensively observed mechanism driving such sharp transitions
is a strong coupling of magnetism with the lattice volume, known as magnetovolume coupling [1, 2].
There are some materials, however, that exhibit first-order magnetic phase transitions even though
their magnetoelastic coupling is weak or even negligible, as reported, for example, in Eu2In [3] and
Mn3NiN [4, 5]. The fundamental cause here derives from a response of the complex glue of electrons to the
state of magnetic order, which in turn causes a strong feedback on the magnetic interactions and establishes
an electronic origin for the magnetic discontinuity.

Purely electronic mechanisms driving first-order transitions have a long and subtle history and there are
deeply insightful works such as that on itinerant electron metamagnetism by Wohlfarth and Rhodes [6] and,
more recently, on electronic effects in La(FexSi1−x)13 compounds by Fujita et al [7, 8]. La(FexSi1−x)13
systems, and other derived quaternary compounds, are very promising for applications, being made of
relatively abundant, cheap, and non-toxic elements. In particular, the materials have attracted huge attention
from the caloric refrigeration research community owing to the giant magnetocaloric and barocaloric effects
associated with a first order paramagnetic-ferromagnetic transition near room temperature accompanied by
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a small hysteresis [8–12]. This famous magnetic materials class nonetheless is complicated since the changes
of the lattice spacings that occur at the transition are rather large. Apparently there is a magnetoelastic
coupling which is also playing an important and possibly pivotal role which is intimately connected with the
changes to the itinerant electronic structure. In this work we describe a predictive first principles approach,
based on the disordered local moment (DLM) picture [13], that provides both electronic and magnetoelastic
contributions to first-order magnetic phase transitions, to examine the subtleties in La(FexSi1−x)13. We
obtain a good agreement with experiment regarding both the nature of the transition and also the
consequent caloric responses. We quantify both electronic and magnetoelastic effects, their synergy and
demonstrate that the first-order character of the transition can be said to be driven by the latter while a large
proportion of the caloric effect has an electronic source.

This work is organised as follows. In section 2 we describe our theoretical framework for magnetic phase
transitions and caloric effects. Section 2.2 is devoted to an explanation of how it accounts for the first
principles Gibbs free energy of magnetic materials and describes the origin of first-order magnetic phase
transitions. In section 3 we present results obtained for a specific La(FexSi1−x)13 compound. Our conclusions
are given in the final section 4.

2. Caloric effects and ab initio origin of first-order magnetic phase transitions

2.1. Fluctuating ‘spins’ and the DLM picture
The formation of local magnetic moments in a crystalline solid is a process involving spin-correlated
electronic interactions which occur over very short (femto-second) timescales, τelec, of the electrons hopping
from atomic site to atomic site in the lattice. The central tenet of the DLM theory is to assume that the
orientations of these moments are slowly varying degrees of freedom evolving on a much longer time-scale
ℏ/ESW ≫ τform ≫ τelec, where ESW is a typical spin wave energy and τform is an intermediate time-scale for
the formation of the magnetic moment. Time averages over τform, therefore, result in a temporarily broken
ergodicity labelled by a collection of unit vectors identifying the local moment orientations at each atomic
site n, {ên}, which emerge from the many electron interacting system [13]. If this assumption holds, the
spin-polarisation of the electronic structure in density functional theory (DFT) calculations can be specified
by {ên} such that the magnetic moment density, µ(r,{ên}), is constrained to satisfy

ˆ
Vn

d3rµ(r;{ên}) = µn({ên})ên, (1)

i.e. the orientation of the spin polarization within the volume Vn centred at site n is constrained to be along
ên, µn being its resulting magnitude which can have a dependence on the orientations of the local moments
surrounding it. Figure 1 illustrates this central concept of DLM theory for a ferromagnet by showing
different snapshots of constrained local moment configurations at zero and higher temperatures. Hence, a
magnetic Hamiltonian can be established through the dependence of the material’s total energy on the local
moment orientations,

Hmag =Hmag,int({ên},ω)−B ·
∑
n

µnên, (2)

which definesHmag,int as the Hamiltonian in the absence of an external magnetic field. The ‘spins’ that
emerge from itinerant electron metallic systems such as CoMnSi, Fe2P etc are thus the sets of unit vectors
specifying the orientations of the local moments, the ên’s. Importantly, the interactions among them can
strongly depend on the crystal structure. In this work we focus on the effect of lattice volume changes
produced spontaneously and also by the application of a hydrostatic pressure. For convenience we describe
them relative to the paramagnetic limit,

ω =
V−VPM

VPM
, (3)

where VPM is the unit cell volume obtained from a relaxation in the paramagnetic state. The nature of the
HamiltonianHmag,int can, therefore, be quite complicated and the sampling of the local moment
configurations and the statistical mechanics needs to be carefully carried out, which we address in the
following.

2
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Figure 1. (a) Representation of a ferromagnetic state at zero temperature, described with a value of the magnetic order parameter
mn = 1 at all magnetic sites, see equation (7). Panels (b) and (c) show single snapshots of thermally excited local moment
configurations for increasing values of the temperature, respectively. Panel (c) shows the fully disordered local moment state
wheremn = 0 at all magnetic sites establishes above the Curie transition temperature Tc , while the local moment orientations in
(b) form a partially disordered ferromagnetic state below Tc (0< m< 1).

2.1.1. Statistical mechanics of slowly varying local moment orientations
The description of temperature-dependent properties of materials in terms of the atom-scale magnetic
degrees of freedom is provided byHmag through the corresponding calculation of the partition function for
the local moment orientations in the canonical ensemble,

Zmag = Trmag exp
[
−βHmag({ên},ω)

]
=

ˆ ∏
n

[dên]exp
[
−βHmag({ên},ω)

]
. (4)

Here β = 1
kBT

is the Boltzmann factor, and Trmag is the trace over the magnetic degrees of freedom, which
takes the form of a product of integrals owing to the continuous nature of each of the {ên}. The Boltzmann
probability distribution associated with the thermal fluctuations of these local moment orientations is given
by,

Pmag({ên},ω) =
exp
[
−βHmag({ên},ω)

]
Zmag

, (5)

which leads to the exact magnetic Gibbs free energy of the material by carrying out the appropriate ensemble
averages,

Gmag =−kBT lnZmag =

ˆ ∏
n

[dên]Pmag({ên},ω)
[
Hmag({ên},ω)+ kBT ln Pmag({ên},ω)

]
= Umag −TSmag.

(6)

A central task of the DLM approach is to perform the averages over the local moment orientations of
different quantities of interest. For example, Umag = ⟨Hmag⟩Pmag is the internal magnetic energy, the
single-site average of ên is

mn = ⟨ên⟩Pmag =

ˆ ∏
n

[dên]Pmag({ên},ω)ên, (7)

i.e. a magnetic order parameter at site n, and the associated magnetic entropy in equation (6) is given by

Smag =−kB
〈
lnPmag

〉
Pmag

=−kB

ˆ ∏
n

[dên]Pmag({ên},ω) ln[Pmag({ên},ω)]. (8)

The local moment orientations {ên} emerge from the many-electron interactions and as such they have
an electronic origin. The DLM approximation splits the trace over all the electronic degrees of freedom Trelec
into the following two pieces [13], the first capturing relatively slowly varying electronic degrees of freedom
i.e. the local moment orientations,

Trelec ≈ Tr{̂en}Trrest, (9)

3
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and Trrest traces over the remaining faster ones. Equation (9) thus reflects a time-scale separation. Such a
partition of the trace into sequential parts, Trrest being performed first for constrained values of {ên}, implies
thatHmag is in fact the Gibbs free energy of the faster electronic degrees of freedom,

Umag = ⟨Hmag⟩Pmag ≡ ⟨Gelec⟩Pmag = ⟨Ē⟩Pmag −TSelec, (10)

where Ē is the DFT-based total energy averaged over the faster electronic degrees of freedom, and Selec is the
associated electronic entropy that has been also averaged over with respect to the local moment
configurations{ên}.

2.1.2. Computation of caloric effects
It is a common practice to write the total entropy of the material in terms of the following three different
parts,

Stot = Svib + Smag + Selec, (11)

associated with the fluctuations of vibrational, magnetic, and the remaining electronic degrees of freedom.
The description of caloric effects essentially involves the calculation of entropy changes, both individually
and exchanged between these three different components, and of their response to the application of external
stimuli. The trace-separation made in equation (11) carries fundamental implications. A careful analysis in
relation to equations (9) and (10) shows that equation (11) applies to materials where time-scale separations
between the corresponding sets of degrees of freedom takes place. Particle-hole excitations caused by thermal
fluctuations are described by weighting the Kohn–Sham single electron energies of SDFT by the Fermi–Dirac
distribution, f(E;T) = (exp[(E− ν)/kBT] + 1)−1, ν being the chemical potential (Fermi energy EF at
T= 0K). The corresponding electronic entropy in equation (10) can then be calculated as

Selec({m̂n},ω;T) =
〈ˆ

c

T
dT

〉
Pmag

≈ π2

3
k2BT⟨D(EF)⟩Pmag

, (12)

where the heat capacity, c, is the one associated with the internal energy of the single-electron states and
D(EF) is the density of states at the Fermi energy. Although the exact integral form can be formally
computed, the approximate expression on the right hand side, derived from a Sommerfeld expansion, is a
convenient numerical expression which is easily accessible from DFT calculations. Most importantly, owing
to the ensemble averages over the local moment orientations of the density of states at different lattice
structures, weighted by Pmag, Selec depends on the magnetic order parameters {mn} introduced in
equation (7) and on the relative volume change ω (see equation (3)).

While the underlying assumption of DLM theory is that the local moment orientations vary much more
slowly than the other electronic motions, one can use the Born–Oppenheimer approximation to justify that
the vibrations of the heavy nuclei at positions {Rn} evolve on a still slower time-scale. Indeed, equation (11)
assumes an additional time-scale separation between {ên} and {Rn}. This adiabatic approximation can be
used to obtain the vibrational entropy Svib as a function of the averages of the faster degrees of freedom
[14, 15], calculable within harmonic and quasi-harmonic approximations [16, 17]. A simpler Debye model
can also be employed [18],

Svib = kB

[
−3 ln

(
1− e−

θD
T

)
+ 12

(
θD
T

)3ˆ θD
T

0

x3

ex − 1
dx

]
, (13)

where θD is the Debye temperature obtainable from experiment or other ab initio sources [19]. Results
shown in this work for the calculation of caloric effects have been obtained by making use of equations (8),
(12) and (13), Selec and Smag principally depending on {mn} and ω. To this end, the Gibbs free energy is
computed as a function of {mn} and ω by carrying out the averages in equation (6) (see section 2.1.3) for
different lattice constants. It is then minimized for different values of the temperature and external applied
stimuli. We consider the effect of an external magnetic field, B, and hystrostatic pressure, p. Isothermal
entropy changes can then be directly obtained by applying equation (11),

∆Siso(B0 → Bf;T,p) = Stot(T,Bf,p)− Stot(T,B0,p),

∆Siso(p0 → pf;T,B) = Stot(T,B,pf)− Stot(T,B,p0),
(14)

4
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for magnetocaloric and mechanocaloric effects, respectively. Here subscripts 0 and f indicate initial and final
values of the applied fields. On the other hand, adiabatic temperature changes are obtained by solving the
equations

Stot(T,B0,p) = Stot(T+∆Tad(B0 → Bf;T,p),Bf,p),

Stot(T,B,p0) = Stot(T+∆Tad(p0 → pf;T,B),B,pf),
(15)

where∆Tad(B0 → Bf;T,p) and∆Tad(p0 → pf;T,B) are the corresponding thermal responses.
The magnetocaloric effect associated with the second-order phase transition between the paramagnetic

and ferromagnetic states in pure gadolinium was one of the first cases for which DLM theory was successfully
applied in the context of magnetic refrigeration. The transition temperature Tc as well as isothermal entropy
and adiabatic temperature changes were computed in very good agreement with experiment [20, 21].
Gadolinium’s heavier rare earth element next neighbour, dysprosium, presents a much more complex
magnetic phase diagram containing continuous and discontinuous transitions to helimagnetic and fan
phases [22, 23]. DLM theory has demonstrated that the general features of this magnetic phase diagram and
consequent magnetocaloric effects have their origin in the feedback on the magnetic interactions among the
local moments caused by the response of the mediating valence electrons to different thermal states of
magnetic order [24]. Such a purely electronic mechanism is implicit in any metallic system. It underlies the
presence of higher than pairwise, multisite, magnetic correlations in the Gibbs free energy, which can
generate first order magnetic phase transitions in other materials as shown, for example, in the ordered FeRh
alloy [25], Mn-based antiperovskites [4, 5] and the Eu2In compound [3] that exhibits a near hysteresis-free
first-order transition. In the next sub-section we address the details of how DFT calculations can be used to
perform the ensemble local moment orientational averages at the heart of the first principles description of
these magnetic phase transitions and magneto caloric effects, the elaboration of multisite correlations and
expand on recent computational findings.

2.1.3. Computationally efficient ensemble averaging of local moment configurations: a mean-field approximation
Owing to its complex electronic origins in metallic materials,Hmag, introduced in equation (2), can have a
very complicated dependence on the local moment orientations. A tractable solution is accessible by working
with a trial, solvable, Hamiltonian [13]

Htr =−
∑
n

hn · ên, (16)

where {hn} are single-site molecular fields establishing a mean-field theory for the magnetic
interactions, sometimes referred to as Weiss fields. This approach continues by invoking the Peierls–
Feynman inequality [26, 27], also known as the Gibbs–Bogoliubov inequality [16, 28], which provides an
upper-bound of the magnetic Gibbs free energy [25, 29]:

Gmag,u = ⟨Hmag,int⟩tr −B ·
∑
n

µnmn −TSmag ⩾ Gmag. (17)

Here the ensemble averages ⟨. . .⟩tr are instead carried out with respect to a Boltzmann probability associated
with the trial Hamiltonian,

Ptr({ên}) =
∏
n

Pn(ên), (18)

where

Pn(ên) =
1

Ztr
exp [βhn · ên] , (19)

are single-site probabilities and

Ztr =
∏
n

ˆ
dên exp [βhn · ên] =

∏
n

4π
sinh(βhn)

βhn
(20)

is the corresponding partition function. The local order parameters and magnetic entropy (see equations (7)
and (8)) therefore take the form of

mn = ⟨ên⟩tr =
ˆ

dênPn(ên)ên =

[
−1

βhn
+ coth(βhn)

]
ĥn, (21)

5
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which is the Langevin function, and

Smag =
∑
n

Sn =−kB
∑
n

ˆ
dênPn(ên) lnPn(ên) = kB

∑
n

[
1+ ln

(
4π

sinh(βhn)

βhn

)
−βhn coth(βhn)

]
, (22)

respectively. One can write the corresponding equation of state in this mean-field model by taking the

derivative of equation (17) and solving
∂Gmag,u

∂mn
= 0. This results in

{hn = hn,int +µnB} , (23)

where

hn,int =−
∂⟨Hmag,int⟩tr

∂mn
(24)

is the magnetic exchange contribution to the total molecular field and µn is the average magnitude of a local
moment on a site. Increasing βhn to very large values means that θn, the angle between ên and hn is
statistically close to zero, which corresponds to the values of the order parameter approaching unity and a
low state of magnetic entropy at this site. This is the absolute zero Kelvin limit, while in the high temperature,
disordered, limitmn = 0 and the magnetic entropy takes its maximum, Sn = kB ln(4π), i.e. the paramagnetic
state forms.

The mean-field theory presented above sets up a computationally tractable scheme to calculate the
magnetic Gibbs free energy in equation (17) by reducing the thermally fluctuating local moment
configurations to a numerically affordable and meaningful magnetic phase space given by Ptr. The
corresponding ensemble averages over the local moment orientations with respect to Ptr can be carried out
following two different approaches. The first is based on the so-called coherent potential approximation
(CPA) [30–32], implementable within the formalism of DFT based on multiple-scattering theory known as
the Korringa–Kohn–Rostoker (KKR) electronic structure method [33, 34]. The CPA reproduces the material
properties on the average and directly provides the Weiss fields as given in equation (24) [13]. Typically
self-consistent DLM-DFT calculations are carried out for the paramagnetic state, T> Tc, or a fully ordered
magnetic state appropriate to zero temperature, to form effective potentials and magnetic fields from the
local charge and magnetisation densities. Further information on this computational method is described
elsewhere [35] and with this implementation DLM-DFT has been successfully applied for a number of years
to study temperature-dependent magnetic anisotropy, e.g. [32, 36], magnetic phase transitions and diagrams
of different sorts, e.g. [24, 25, 37–39], and (multi-)caloric effects [3, 4, 40]. The second approach averages the
total energy over NMC supercell calculations containing local magnetic moments that are magnetically
constrained to follow Ptr [5]. In this cited work we have demonstrated that NMC is a computationally
accessible small number even for affordable supercell sizes containing a few hundreds of atoms. It can be
implemented in a wide range of DFT codes not restricted to KKR-based ones, and can describe the coupling
of magnetism with the crystal structure and consequent lattice relaxations as function of magnetic
temperature more accurately.

2.2. The magnetic Gibbs free energy: first-order magnetic phase transitions
One can generally write the average of the magnetic Hamiltonian as

Umag = ⟨Hmag,int⟩tr = U(0) − 1

2

∑
nn ′

U(2)
nn ′mn ·mn ′ − 1

4

∑
nn ′n ′ ′n ′ ′ ′

U(4)
nn ′n ′ ′n ′ ′ ′(mn ·mn ′)(mn ′ ′ ·mn ′ ′ ′)− . . . ,

(25)

where {U(2)
nn ′ ,U

(4)
nn ′n ′ ′n ′ ′ ′ , . . .} are second and higher order coefficients of a Ginzburg-Landau-type

expansion in terms of the magnetic order parameters {mn}. The higher order coefficients describe the effect
of multisite magnetic interactions on the stability and competition of different magnetic phases at finite
temperature [24]. Terms arising from magnetic anisotropy have not been considered for simplicity. Most
importantly, the sizes and signs of these internal energy coefficients are characteristic of each magnetic
material under study. An expression for the Weiss field directly follows by taking the first order derivative to
equation (25)

hn,int =
∑
n ′

U(2)
nn ′ ·mn ′ +

∑
n ′n ′ ′n ′ ′ ′

U(4)
nn ′n ′ ′n ′ ′ ′(mn ′ ′ ·mn ′ ′ ′)mn ′ + · · · (26)

which can be directly computed. The other components of the magnetic Gibbs free energy and their
dependence on {mn}, i.e. the magnetic entropy and the coupling to an applied magnetic field, take a known

6
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analytical form in this mean-field model (see equations (17) and (22)). Gmag,u({mn}) can therefore be
computed, either using the KKR-CPA or supercell approaches, by performing the following steps

1. A set of values {mn}= {m1, . . . ,mN} is chosen, where N is the number of magnetic sites in the magnetic
primitive unit cell or the number of magnetically constrained sites in the supercell, respectively.

2. Ptr({ên}) is obtained from {mn} using equations (18) and (21) via mapping through {βhn}.
3. Information on Umag({mn}) is obtained either by computing its first derivative (CPA approach) or its

value directly (supercell approach).
4. Steps 1.-3. are repeated for different sets of values of {mn} describing the magnetic states of interest.

At this point such ab initio data for many sets of {mn} are fit via a linear regression to output a minimal

set of internal energy coefficients containing the {U(2)
nn ′ ,U

(4)
nn ′n ′ ′n ′ ′ ′ , . . .}. This procedure provides the values

for a reduced number of magnetic coefficients describing particular magnetic states of interest [5, 25, 29].
The additional dependence of Umag on crystal deformation can be calculated by performing the four steps
above for different lattice parameters and distortions, which results in the internal energy coefficients as
functions of the crystal structure. Since the internal magnetic energy Umag is the only material-dependent
term of the Gibbs free energy, the latter is directly given by equation (17) once all the terms and dependencies
of Umag have been obtained following the procedure described here.

In this work we investigate the finite-temperature magnetic properties of La(Fe1−xSix)13 compound. The
crystal structure of this material is of the type NaZn13, which corresponds to the space group Fm3̄c. The
internal atomic positions used in the simulations are those ones observed experimentally [41] scaled by the
relevant lattice parameter. An important trait of the La(Fe1−xSix)13 compounds is that the Fe atoms sit on
two non-equivalent sites corresponding to Wyckoff symbols 96i and 8b. This means that the ferromagnetic
state is in fact described in terms of two different magnetic order parameters,m96i andm8b. The results
shown in section 3 are such thatm8b is self-consistently obtained along with Weiss fields that fully minimise
the Gibbs free energy for a chosen set of values ofm≡m96i, and hence a set of temperatures. To achieve this
we have followed the iterative procedure to compute full equilibriumWeiss fields as done in previous
works [36, 42, 43].

The internal magnetic energy can thus be expressed as Umag(m96i,m8b;ω), where ω is the relative volume
change that we introduced in equation (3). In principle, a larger number of DLM-DFT calculations should
be done to extract such a full dependence, which also describes non-equilibrium states. However, the
primitive unit cell of La(Fe1−xSix)13 contains 24 and 2 Fe atoms at these Wyckoff positions, respectively. A
large contribution to the derivatives of Umag might, therefore, come from those made with respect tom96i. In
this work we have found that this applies to La(Fe1−xSix)13 (x= 0.12) and so have considered the
approximation that the internal magnetic energy is a function ofm≡m96i only. In order to validate this
approximation we performed again all the calculations presented in section 3 but settingm8b = 0,
i.e. constraining the local moment orientations on these sites to be completely disordered. Following this
route we obtained qualitatively similar results. The observed quantitative differences were very small, the
transition remains first-order and magnitudes of caloric effects and spontaneous volume changes were
almost identical. A significant quantitative difference was that the computed linear magnetovolume coupling
of U(2) was 8% smaller. Nonetheless, the role of magnetic order developing on the Fe atoms on the 8b sites
deserves a more careful finite-temperature analysis which we plan to perform in future investigations using
our supercell DLM approach.

2.2.1. Electronic and/or magnetoelastic mechanisms
We illustrate how the analysis of DLM-DFT outputs can be used to investigate first-order phase transitions
and quantify their origin by studying the simplest case of a ferromagnet. Since the unit cell of a ferromagnetic
phase contains a single crystal position, the magnitudes of the magnetic local order parameters are the same
for every site in the lattice. In other words, a single valuem= |mn| is sufficient to specify the state of
ferromagnetic order. We remark that such a scenario also applies approximately to La(Fe1−xSix)13, as
explained in the former section, as well as to fully compensated antiferromagnetic triangular states, as
observed in Mn-based antiperovskite materials [4, 44]. Inclusion of external forces and spontaneous material
responses result in alterations to the unit cell volume, expressed in terms relative to the paramagnetic limit,
ω = V−VPM

VPM
(see equation (3)). In this situation equation (25) in units of energy per atom becomes

1

Nat
Umag =

1

Nat
⟨Hmag,int⟩tr = U(0)(ω)−U(2)(ω)m2 −U(4)(ω)m4 − h.o., (27)
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where Nat is the number of atoms, and

U(2)(ω) =− 1

2Nat

∑
nn ′

U(2)
nn ′(ω)cos∆θnn ′

U(4)(ω) =− 1

4Nat

∑
nn ′n ′ ′n ′ ′ ′

U(4)
nn ′n ′ ′n ′ ′ ′(ω)cos∆θnn ′ cos∆θn ′ ′n ′ ′ ′

(28)

are effective internal energy coefficients containing the effect of the local moment correlations via cos∆θnn ′ .
These are relative angles between the local order parameters at sites n and n′ whose study can be used to
extract more free energy coefficients [24, 38]. Second and higher order of these coefficients describe the
dependence of the single-site Weiss fields againstm as given by equation (26),

hn,int = U(2)(ω)m+ 2U(4)(ω)m3 + 4U(6)(ω)m5 + · · · . (29)

The typical parabolic behavior of the energy in the paramagnetic limit (m→ 0) is captured by

lim
m→0

Umag = U(0)(ω) = U(0)(VPM)+
1

2
γVPMω

2, (30)

where γ is the inverse of the compressibility, or bulk modulus, in the paramagnetic state. For simplicity, we
also assume a magnetovolume coupling that is linear in ω. For second, fourth, and sixth order coefficients
this means that

U(2)(ω)≈ U(2)
0 +α(2)ω,

U(4)(ω)≈ U(4)
0 +α(4)ω,

U(6)(ω)≈ U(6)
0 +α(6)ω.

(31)

The magnetic Gibbs free energy in equation (17) therefore is

1

Nat
Gmag,u =−B ·µm+ pVPMω−TSmag

+U(0)(VPM)+
1

2
γVPMω

2 −
(
U(2)
0 +α(2)ω

)
m2 −

(
U(4)
0 +α(4)ω

)
m4 − h.o.

(32)

This result is minimized with respect to ω to yield

ω =
1

VPMγ

(
α(2)m2 +α(4)m4

)
− p

γ
. (33)

The terms in the Gibbs free energy in equation (32) can be arranged into different orders ofm by using a
Taylor expansion for the magnetic entropy,

Smag = kB
∑
n

(
ln4π − 3

2
m2

n −
9

20
m4

n − ·· ·
)
, (34)

and equation (33) to give

1

Nat
Gmag,u =−kBT ln4π+U(0)(VPM)−

VPMp2

γ
−B ·µm

−
(
U(2)
0 − α(2)p

γ
− 3

2
kBT

)
m2 −

(
U(4)
0 +

[
α(2)

]2
2VPMγ

− α(4)p

γ
− 9

20
kBT

)
m4 − h.o.

(35)

Equation (35) can be used to analyse the character of a magnetic phase transition from the paramagnetic
state. If, in the absence of an external magnetic field (B= 0), such a transition is second-order, i.e. the order
parameter changes continuously fromm= 0 tom ̸= 0 by lowering the temperature, the corresponding

transition temperature can be obtained by solving
∂2Gmag,u

∂m2 |m=0 = 0. This gives

Ttr,sec =
2

3kB

(
U(2)
0 − α(2)p

γ

)
. (36)
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Figure 2. Second- (continuous) and first- (discontinuous) order magnetic phase transitions obtained after minimising
equation (35). (a) Transition temperatures from the paramagnetic (m= 0) to a (partially-)ordered (m> 0) magnetic state

for different values of U
(4)
0 /U

(2)
0 and increasing values of the lowest order of the magnetovolume coupling α(2). Continuous

and discontinuous lines correspond to second- and first-order magnetic phase transitions, respectively. Representative

values of U
(2)
0 = 190 meV, α(4) = 0, γ= 200 GPa, and VPM = 11.3Å3 have been used (approximate for bcc Fe [5]), and

Tref =
2U

(2)
0

3kB
= 1470K is taken as a reference temperature. (b) Magnetic order parameter against T for different values of the

coefficients studied in panel (a). Here α(2) = 0 for the first four, non-solid, coloured lines, while U
(4)
0 /U

(2)
0 = 0 and α(2) = 1700

meV apply to the continuous black curve. Lower panels show the Gibbs free energy below, at, and above Ttr. Results in panel

(d) are also equivalent to those obtained using U
(4)
0 /U

(2)
0 = 0 and α(2) = 1470 meV.

On the other hand, the transition becomes discontinuous when

lim
m→0

∂2Gmag,u

∂m2

∣∣∣∣∣
T=Ttr,sec

= 0−. (37)

A first-order character arises, therefore, when the overall fourth order coefficient at T= Ttr,sec is negative,
which gives rise to the following condition

U(4)
0 +

[
α(2)

]2
2VPMγ

+
p

γ

(
3

10
α(2) −α(4)

)
>

3

10
U(2)
0 . (38)

Equation (38) demonstrates that a magnetovolume coupling for the pairwise correlations, α(2), always
contributes to enhance the first-order character of the magnetic phase transition regardless of its sign. On the

other hand, U(4)
0 has to be positive to do so. In the absence of external stimuli, a purely electronic origin for a

first-order transition, i.e. when α(2) = α(4) = 0, occurs if U(4)
0 is larger than 30% of the absolute magnitude

of U(2)
0 . This is shown in figure 2(a), where the transition temperature is plotted for different values of U(2)

0

and α(2). Here continuous/dashed lines indicate second-/first- order magnetic phase transitions. These
results are obtained after examining the dependence ofm on temperature resulting from the minimization of
the Gibbs free energy Gmag,u, which we show in the vicinity of the transition temperature for some illustrative

cases in panels (b) and (c)–(e), respectively. Indeed, increasing values of U(2)
0 and [α(2)]2 enhance the

first-order character of the transition. Interestingly, equation (38) also shows that the application of a
hydrostatic pressure can change the character of the transition depending on the signs and relative sizes of
the magnetovolume coefficients.

9
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3. The first-order magnetic transition and calculation of caloric effects in La(Fe1−xSix)13
from ab initio theory

La(Fe1−xSix)13 is one of the most important and widely studied magnetic materials classes in the field of
caloric refrigeration. There is strong motivation to obtain a fundamental understanding of the first-order
magnetic phase transition which is heightened by several intriguing aspects and trends. The Curie transition
temperature, varying within the range Tc = 190− 260K, decreases together with an enhancement of the
first-order character by reducing the content of Si (x= 0.6− 0.12), despite the fact that LaFe13 does not
crystallize in experiment [8]. The unit cell volume spontaneously increases by a significant order of
magnitude of 1% when the transition is crossed by lowering the temperature from the paramagnetic state,
the so-called negative thermal expansion [8, 45]. An itinerant electron metamagnetic origin was directly
proposed as the principal mechanism driving the first-order character, ascribed to the observation of how the
density of states responds to magnetic stimuli [8, 46]. On the other hand, it is reasonable to consider the
broadly-invoked magnetoelastic coupling as a source of the discontinuity, which is supported by the
substantial spontaneous volume change at the transition. Here we apply DLM-DFT theory to the
intermetallic La(Fe0.88Si0.12)13 (x= 0.12) in order to quantify both electronic and magnetoelastic
mechanisms, and we conclude that it is latter mechanism which is driving its first-order character.

All the DLM-DFT calculations presented in this work were performed using the MARMOT code [35], an
implementation of the DLM picture within the Korringa–Kohn–Rostoker electronic structure method that
employs the CPA to simulate different states of magnetic disorder at finite-temperature (see section 2.1.3).
We used an atomic sphere approximation together with a scalar-relativistic scheme. The input potentials for
MARMOT were generated to simulate the paramagnetic limit. Here Fe sites are occupied by two magnetic
species distinguished by the orientation of their spin moments (‘up’ and ‘down’) with equal concentrations.
The local spin density approximation was chosen to treat exchange and correlation effects and the single-site
scattering problem was solved using an angular momentum cutoff lmax = 3. The Brillouin zone integration
was carried out to very high numerical accuracy, by setting MARMOT’s parameter tolint to 10−5. The CPA
was also employed to account for the chemical disorder of Si and Fe atoms on the 96i sites [47], see
section 2.2 for information on the crystal structure.

3.1. Construction of the Gibbs free energy: Weiss fields against magnetic order parameters and lattice
changes
Figure 3(a) shows the internal magnetic field hn,int computed for La(Fe0.88Si0.12)13, directly given by
MARMOT [35], as function of ferromagnetic local order parameter (m) for different lattice constants, see
equation (24). As illustrated in section 2.2.1, the analysis of how hn,int depends onm and the crystal structure
provides the Gibbs free energy of the material, which can be minimized at different temperatures and
external fields to obtain the equilibrium states.

In order to achieve this we have performed two consecutive linear regressions. The first is done to hn,int
againstm in order to extract the internal energy coefficients {U(2)(ω),U(4)(ω), . . .} at different values of the
lattice constant (see equation (29)). The latter relates to the volume relative to the paramagnetic state,
ω = V−VPM

VPM
, where we have considered VPM = 14.3Å3 per magnetic atom (total unit cell volume of

VPM = 371.8Å3 with a≈ 11.45Å) as a reference value in order to get a closer agreement with experiment. The
corresponding regression lines are shown as curves in figure 3 and the coefficients given in the top panels of
figure 4 as data points. We observe a pronounced linear behaviour for the lowest, leading, second order term
U(2)(ω). This means that there is a substantial magnetovolume coupling despite the fact that U(4) and U(6)

barely depend on V. The second linear regression is applied to extract another set of magnetovolume
coefficients, shown in table 1, which captures such a linear dependence as given in equation (31). Indeed,
α(2) is the largest and most significant term.

In figure 3(b) and bottom panels of figure 4 we show a similar analysis for the computed density of states
at the Fermi energy, D(EF). Such a calculation is necessary in order to obtain the change of the electronic
entropy following equation (12), which will be used in the next section for the calculation of magnetocaloric
and barocaloric effects. We have found that an expansion up to fourth order suffices to model the density of
states at EF:

D(EF) = d(0) + d(2)m2 + d(4)m4. (39)

As can be seen in figure 3(d)–(f), the second linear regression of these coefficients against the volume,
{d(0)(ω),d(2)(ω),d(4)(ω)}, has required the inclusion of a parabolic magnetovolume coupling.

While the gradient of hn,int in the paramagnetic limit (m→ 0, described by U(2)) gives a major
contribution to the value of Tc (see equation (36)), the deviation of this linear dependence at higher values of

10
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Figure 3. (a) Weiss fields and (b) density of states at the Fermi energy computed for La(Fe0.88Si0.12)13 as functions of the
ferromagnetic local order parameter (m). Results are shown for different values of the lattice constant. Data points and curves in
the graphs correspond to DLM-DFT data and their linear regressions, respectively.

Figure 4. (a)–(c) Internal energy coefficients obtained from a linear regression performed to hn,int, shown in figure 3(a), against
the volume of the unit cell (per magnetic atom). Continuous curves correspond to the second linear regression performed.
Bottom panels (d)–(f) show a similar analysis made for the density of states at the Fermi energy considering our DLM-DFT data
in figure 3(b) and equation (39).

Table 1. Ab initio computed magnetovolume coefficients obtained for La(Fe0.88Si0.12)13 from the analysis of the Weiss fields at different
values of the magnetic order parameter and lattice constant.

α(2) α(4) α(6)

523 meV −6 meV −56 meV

m caused by higher order interactions can generate a first-order character. However, U(4) and U(6) are not
only small but negative. This directly implies that such a potential, electronic, source does not contribute
positively to the generation of a discontinuity at the transition, as given by equation (38). On the other hand,

we have found that α(2) is large enough to do so: [α(2)]2

2γVPMU
(2)
0

= 0.66> 3
10 , where U

(2)
0 = 24meV, and an

estimation of the value of the bulk modulus γ= 97 GPa has been directly taken from experiment [48, 49].
In other words, the first-order phase transition in La(Fe0.88Si0.12)13, and consequent giant caloric effects,
which we address in the following, are driven by a strong magnetovolume coupling.
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Figure 5. Temperature dependence of (a) magnetic local order parameter and (b) relative volume change, ω = V−VPM

VPM
, computed

for La(Fe0.88Si0.12)13 without external stimuli and applying an external magnetic field B= 2 T and a hydrostatic pressure p= 2.1
kbar. Corresponding magnetocaloric and barocaloric effects quantified by isothermal entropy changes are shown in the
right-hand-side panels (c) and (d), respectively. Their total values are composed of magnetic and electronic contributions.

3.2. Magnetocaloric and barocaloric effects
We have extracted all the qualitatively and quantitatively relevant internal energy coefficients,
{U(2)(ω),U(4)(ω), . . .}, and their dependence on volume, which provides Umag(m,ω) =−U(2)(ω)m2

−U(4)(ω)m4 −U(6)(ω)m6. We can, therefore, now access the Gibbs free energy (per magnetic atom),

Gmag,u = Umag −TSmag +
1

2
γVPMω

2 −Bµm+ pVPMω. (40)

Note that the DLM-DFT computational analysis that we have done here has yielded more coefficients than
those used in equation (32), since the latter contained a reduced set for illustrative purposes. Panels (a) and
(b) of figure 5 show the temperature dependence ofm and ω obtained after minimising Gmag,u at different
values of T with respect to these parameters. The effects of applying an external magnetic field B= 2T and a
hydrostatic pressure p= 2.1 kbar are also plotted. Indeed, we find a first-order phase transition from the
paramagnetic to ferromagnetic states. The computed Curie temperature is about Tc = 188 K and the
spontaneous volume change at the transition is approximately∆ω = 0.7%, which are in good agreement
with experimental measurements.

Table 2 summarises a comparison of the results obtained with experiment. The application of pressure p
reduces Tc while enhancing the first-order character, also following experimental trends. The value found is
∆Tc/∆p≈−10 K kbar−1, which is very large in accordance with the strong magnetovolume coupling
calculated earlier and matches very well the experimental measurement of [∆Tc/∆p]exp ≈−9 K kbar−1 [8].
In the right-hand-side panels of the same figure we show the corresponding magnetocaloric and barocaloric
effects quantified by the isothermal entropy change. The total value of each of these quantities at the
transition is giant as measured experimentally, |∆Stot|= 15− 20 J kgK−1, being conventional (negative) and
inverse (positive), respectively. An important observation is that a large component of such responses comes
from the electronic entropy, representing more than 50% of the total change. This is a consequence of the
density of states at the Fermi energy strongly decreasing/increasing in response to the lattice
expansion/compression caused when the transition is crossed by applying a magnetic field/pressure, see
figure 3(b) and equation (12). A further inspection of figure 3(b) reveals that the effect coming from the
change ofm at the transition, i.e.∆D(EF)/∆m, changes sign depending on the value of the lattice constant.
Importantly, while the large negative thermal expansion is tied to the strong magnetovolume coupling, the
sharp change ofm is independent of the fact that the origin of the first order character of the transition is not
electronic.
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Table 2. Comparison of computed theoretical results for La(Fe0.88Si0.12)13 with experiment. The magnetocaloric (MCE) and barocaloric
(BCE) effects are quantified by those isothermal entropy changes observed at the Curie transition temperature that are obtained by
applying B= 2 T and p= 2.1 kbar, respectively. The experimental value for the MCE taken from [45] corresponds to a material with a
slightly different composition in comparison with the one studied in this work. The experimental value given for the BCE has been
taken from [10], which reports measurements made for a La–Fe–Si–Co compound that exhibits a less pronounced first-order character
with a higher transition temperature.

Tc (K)
∆Tc
∆p

(
K

kbar

)
∆ω (%) MCE (J kgK−1) BCE (J kgK−1) References

Theory 188 −10 0.7 −10 +17 This work
Experiment 195–208 −9 1 −14 +9 [8, 10, 45]

Figure 6. Computed local moment magnitudes at both 96i and 8b sites in both (a) the disordered local moment (DLM,m= 0)
and (b) the ferromagnetic states as functions of the unit cell volume. The paramagnetic volume in this work, which expands when
the ferromagnetic state stabilizes, is indicated by a vertical dashed line.

3.3. On the origin and nature of the transition and the role of itinerant-electronmetamagnetism
Our calculations, reported in section 3.1, quantify mechanisms for the first-order character of the
paramagnetic-ferromagnetic phase transition in La(FexSi1−x)13. We have found that the strong
magnetovolume coupling is the principal origin. On the other hand, those complex itinerant electron effects
which are entwined with the transverse fluctuations of the local moment orientations, lead to significantly
large high order coefficients U(n>2) in our theory. The negative signs of these coefficients, however, act to
oppose the occurrence of a first order discontinuity (see equation (38) and figure 4). While seminal works
carried out for La(FexSi1−x)13 and similar compounds [8, 50, 51] focus on itinerant electron metamagnetism
and claim a crucial role for the coupling of the electronic structure with magnetic order, they also
acknowledge the great importance of large magnetoelastic effects and their role in the first-order character of
the transition.

In the context of itinerant electron metamagnetism, several authors have investigated the effect of
variations in the sizes µn of the local moments, by means of fixed-spin-moment (FSM) calculations [52–54].
The terms produced by such calculations, involving longitudinal local moment size fluctuations, are
fundamentally different from the U(n>2) internal energy coefficients computed in our study based on
transverse local moment orientation fluctuations. The application of the FSM approach to La(FexSi1−x)13
has revealed the emergence of several shallow minima in the total energy as a function of the local moment
magnitude in the ferromagnetic state (m= 1) when the lattice is contracted. Such a feature is proposed as a
potential factor for the low thermal hysteresis observed in experiment.

Related itinerant electron physics is captured in the DLM theory in cases where the size of a local
moment on a site is found to depend sensitively on the orientations of the local moments on the sites
surrounding it, µn({ên}), and hence the extent and nature of magnetic order. Indeed, such insights for
La(FexSi1−x)13 could resonate with some features found in early DFT and DLM-DFT studies of
face-centered-cubic iron [55, 56]. Here, as the lattice parameter is decreased, the metal’s T= 0K magnetic
state changes from ferromagnetic with a large,>2µB, magnetisation per atom, to ferromagnetic with a
smaller magnetisation, onto antiferromagnetic and eventually non-magnetic. In the paramagnetic DLM
state, the size of the local moment on a Fe site, when averaged over all configurations, collapses to zero for
lattices with parameters below a critical value.

We have investigated similar circumstances for La(Fe0.88Si0.12)13. In figure 6 we show the computed local
moment magnitudes for both the paramagnetic state as well as for the ferromagnetic phase plotted against
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the unit cell volume. We observe that for the computed paramagnetic volume, VPM, the local moment of an
iron atom at a 96i site in the DLM state is reasonably large, µFe,96i = 1.7µB, and in agreement with
photoemission spectroscopy measurements, µexp = 1.5µB [57]. When the first-order transition takes place,
the lattice expands and ferromagnetic order develops, both events causing an increase of the local moment
sizes. Our calculations fully include the magnetovolume effect but are done throughout using self-consistent
DLM potentials produced for the paramagnetic state,m= 0. In order to investigate the potential influence of
fully self-consistent calculations, and hence sensitivity of the moment sizes to magnetic order and unit cell
volume, we repeated the calculation of the leading magnetovolume coefficient using potentials from the
self-consistent ferromagnetic calculations,m= 1. The result obtained is α(2) = 415 meV, which compares
reasonably with the DLM outcome given in table 1 of 523 meV and indicates that the effects of the local
moments size variations are not overly significant. Further investigations along these lines, however, are
needed to fully quantify these aspects.

4. Conclusions

Around a first-order, discontinuous, magnetic phase transition a material can exhibit a large caloric response
to the application of a small or moderate external field which results from an abrupt change of the state of
thermal order of its local magnetic moments. Analysis shows that such a change originates from a strong
dependence of second order coefficients in the material’s internal magnetic energy on attributes of the
material’s crystal structure and electronic glue. There is a consequent shaping of the material’s Gibbs free
energy with several competing minima and hence a sharp discontinuity in the magnetic order parameters at
the transition temperature. Substantial magnetostructural or magnetovolume couplings are well understood
sources of first-order transitions in this regard [1]. Purely electronic mechanisms, however, are at an earlier
stage of study and have a rich potential for new caloric effects [3, 6, 7].

In this work we have applied the DLM picture in DFT, as a predictive, first-principles tool to quantify the
extent of and interplay between magneto-structural and electronic sources to the origin of the famous
first-order paramagnetic-ferromagnetic phase transition in La(Fe1−xSix)13 for x= 0.12. We have found that
the principal origin of such a transition and of the consequent giant magnetocaloric and barocaloric effects is
a strong magnetovolume coupling while purely itinerant-electron mechanisms linked to transeverse
fluctuations act in opposition to the occurrence of the first-order character. The origin of the transition is
linked to large changes of the magnetic order parameter driven by a sharp dependence of magnetic local
moment interactions on the value of the lattice constant. The substantial negative thermal expansion
computed here and observed in experiment mirrors this fact. The itinerant electron structure, however,
which is fundamental to the determining the crystal structure as well as the local moments and magnetic
properties, adjusts strongly as the lattice changes and leads to the total isothermal entropy changes with very
large magnetic and electronic contributions. Our work demonstrates that the coupling of the electronic
structure in its entirety with the lattice at finite temperature is pivotal for the magnetic and caloric properties
of La(Fe1−xSix)13. Further investigation of the effects of substituting a small proportion of the Fe atoms with
other elements from this perspective show promise for improving and tuning the properties as well as the
understanding of this important materials class.
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