日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

 前へ次へ 

公開

学術論文

Valence study of Li(Ni0.5Mn0.5)1-xCox O2 and LiNi1-xCox O2: The role of charge transfer and charge disproportionation

MPS-Authors
/persons/resource/persons212985

Takegami,  Daisuke
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons294089

Ferreira-Carvalho,  Miguel
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126821

Rößler,  Sahana
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126717

Kuo,  Chang-Yang
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126565

Chang,  Chun-Fu
Chun-Fu Chang, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  Liu Hao
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Takegami, D., Kawai, K., Ferreira-Carvalho, M., Rößler, S., Liu, C.-E., Kuo, C.-Y., Chang, C.-F., Minamida, A., Miyazaki, T., Okubo, M., Tjeng, L. H., & Mizokawa, T. (2024). Valence study of Li(Ni0.5Mn0.5)1-xCox O2 and LiNi1-xCox O2: The role of charge transfer and charge disproportionation. Physical Review Materials, 8(5):, pp. 1-6. doi:10.1103/PhysRevMaterials.8.055401.


引用: https://hdl.handle.net/21.11116/0000-000F-6977-6
要旨
The series of LiMO2 (M: transition metal) materials are highly relevant as cathode materials of Li-ion batteries. The stability of such systems remains an important factor for their usability in batteries, and depends strongly on the electronic configuration of the transition-metal ions. In particular, the promising class of multi-transition-metal systems exhibits complicated valence states due to intermetallic charge transfer and charge disproportionation. Here we perform a systematic study on the valence of the transition-metal ions using x-ray absorption spectroscopy on the M-L2,3 edges and O-K edges. In Li(Ni0.5Mn0.5)1-xCoxO2 we established that the valence is Co3+ and Ni0.52+Mn0.54+ throughout the whole series. Meanwhile, in LiNi1-xCoxO2 we found that the Ni displays a behavior consistent with a charge disproportionated negative charge transfer system, and that with increased concentration of Co3+, the disproportionation signal decreases. Since the number of O 2p holes also gets reduced, we infer that the material will also become more unstable. © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by Max Planck Society.