日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Importance of the semimetallic state for the quantum Hall effect in HfTe5

MPS-Authors
/persons/resource/persons248721

Piva,  M. M.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons246936

Wawrzyńczak,  R.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons195511

Kumar,  Nitesh
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons294234

Kutelak,  L. O.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126782

Nicklas,  M.
Michael Nicklas, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Piva, M. M., Wawrzyńczak, R., Kumar, N., Kutelak, L. O., Lombardi, G. A., Dos Reis, R. D., Felser, C., & Nicklas, M. (2024). Importance of the semimetallic state for the quantum Hall effect in HfTe5. Physical Review Materials, 8:, pp. L041202-1-L041202-6. doi:10.1103/PhysRevMaterials.8.L041202.


引用: https://hdl.handle.net/21.11116/0000-000F-5AA8-F
要旨
At ambient pressure, HfTe5 is a material at the boundary between a weak and a strong topological phase, which can be tuned by changes in its crystalline structure or by the application of high magnetic fields. It exhibits a Lifshitz transition upon cooling, and three-dimensional (3D) quantum Hall effect (QHE) plateaus can be observed at low temperatures. Here, we have investigated the electrical transport properties of HfTe5 under hydrostatic pressure up to 3 GPa. We find a pressure-induced crossover from a semimetallic phase at low pressures to an insulating phase at about 1.5 GPa. Our data suggest the presence of a pressure-induced Lifshitz transition at low temperatures within the insulating phase around 2 GPa. The quasi-3D QHE is confined to the low-pressure region in the semimetallic phase. This reveals the importance of the semimetallic ground state for the emergence of the QHE in HfTe5 and thus favors a scenario based on a low carrier density metal in the quantum limit for the observed signatures of the quasiquantized 3D QHE. © 2024 authors. Published by the American Physical Society.