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In this paper we propose an improved three-dimensional immersed boundary method coupled 
with a finite-difference code to simulate self-propelled phoretic particles in viscous incompressible 
flows. We focus on the phenomenon of diffusiophoresis which, using the driving of a 
concentration gradient, can generate a slip velocity on a surface. In such a system, both the 
Dirichlet and Neumann boundary conditions are involved. In order to enforce the boundary 
conditions, we propose two improvements to the basic direct-forcing immersed boundary method. 
The main idea is that the immersed boundary terms are corrected by adding the force of the 
previous time step, in contrast to the traditional method which relies only on the instantaneous 
forces in each time step. For the Neumann boundary condition, we add two auxiliary layers inside 
the body to precisely implement the desired concentration gradient. To verify the accuracy of the 
improved method, we present problems of different complexity: The first is the pure diffusion 
around a sphere with Dirichlet and Neumann boundary conditions. Then we show the flow past 
a fixed sphere. In addition, the motion of a self-propelled Janus particle in the bulk and the 
spontaneously symmetry breaking of an isotropic phoretic particle are reported. The results are 
in very good agreements with the data that are reported in previously published literature.

1. Introduction

Active matter has attracted a great attention in recent years from experimental and theoretical perspectives [1–5], owing to 
its potential vast applications in drug delivery, medical treatment and other lab-on-a-chip devices. Interfacial phoretic effects have 
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shown an effective and promising strategy in designing such artificial micro-scale active swimmers, by which the locally generated 
concentration gradient drives the motion of the objects in fluids [6–9]. Self-phoretic swimmers are typically composed of two parts: a 
functional part which modifies the surrounding solvent properties and creates a local gradient field, and a non-functional part which 
is exposed then to the local gradient field. Most existing investigations on the self-phoretic microswimmers consider Janus particles, 
which can be easily synthesized using partial metal coating on colloidal spheres [10] (see the sketch of a Janus particle in Fig. 1). In 
diffusiophoretic microswimmers, the metal coated part catalyzes a chemical reaction, inducing a local concentration gradient, which 
then drives self-propulsion.

The extensive experimental and theoretical studies on phoretic particles have greatly improved our understandings towards 
the dynamics of single and collective behavior of phoretic particles. For more details on the recent development of phoretic self-
propulsion, we refer the readers to the reviews by Maass et al. [11], Moran and Posner [7], Illien et al. [8], and Michelin [9]. From 
the numerical side, the studies are more scarce and two alternative approaches are possible: microscopic (discrete) methods allow 
to describe the behavior of individual particles for a very short time evolution starting from the specific molecular mechanisms. 
In contrast, macroscopic (continuum) descriptions permit the simulation of systems of many particles in complex environments for 
longer evolution times. The price to pay in this second case is that all the microscopic mechanisms are lumped in an effective 
boundary condition. So far, most of the simulations have adopted particle based microscopic discrete models in two dimensions. 
For example, one of the popular methods is the Brownian dynamics method which has been used to simulate the Brownian motion 
of Janus particles by integrating the Langevin equations [12–16]; other methods that are widely used are molecular dynamics 
simulations [17–19], which can become computationally very expensive when considering many molecules; and the direct simulation 
Monte Carlo method [20,21], for which the convergence can be slow and statistical noise large. Recently, a hybrid method has been 
proposed that describes the solvent by a coarse-grained particle-based method, while the interactions of the Janus particle with the 
solvent are simulated by standard molecular dynamics [22,23]. The advantage of the method is that it captures the combined effects 
of Brownian and hydrodynamic forces. However, we note that most physical models of self-diffusiophoresis consider the particle 
and surrounding solution at the macroscopic level, with a constitutive model for the reactions at the surface that generates the 
concentration gradient [6,7,9]. The molecular interaction at the interface is simplified by a slip velocity.

In this manuscript we adopt direct numerical simulations (DNS), with the strict accordance to these continuum models, to 
simulate the motions of phoretic particles. Compared with the microscopic methods mentioned above, DNS is an effective model 
[24–26] that offers a chance to efficiently deal with larger scale problems and more complicated configurations. The difficulties of 
DNS for phoretic particles lie in how to treat the moving boundaries and the complex boundary conditions (Neumann boundary 
conditions). In Stokes flow, spherical harmonic expansion and boundary integral method have been used to discretize the Stokes 
equations [27,28]. Here we choose the immersed boundary method (IBM), which has been widely used in the literature to deal with 
fluid structure interactions, mainly due to its capability of solving flows with complex and moving boundaries on simple Cartesian 
meshes at arbitrary Reynolds numbers. In this work, IBM has been adopted to simulate flows with phoretic particles [29,30]. IBM 
was first introduced by Peskin [31] in 1972 to simulate heart flow. Since then, many variants have been developed [32–35]. Still, 
the basic ideas are the same: a body force is added to the momentum equation to enforce the desired boundary conditions using a 
non body-fitted mesh. Nowadays, IBM is applied not only to biological flows [36–39], but also to particulate flows [40–44], flows 
with surface roughness [32,45–48], and heat transfer problems [49–54].

IBM can be classified into two types: continuous-forcing and direct-forcing [33]. In the continuous-forcing approach, the forcing 
is incorporated into the continuous equations before discretization whereas in the direct-forcing approach, the forcing is introduced 
after the equations are discretized. Alternatively, IBM can also be classified depending on the boundary conditions: those for Dirichlet 
boundary conditions and those for Neumann boundary conditions. For more details on the continuous-forcing and direct-forcing 
IBM for Dirichlet boundary conditions, we refer the readers to the reviews [32–34]. As compared to Dirichlet boundary condition, 
Neumann boundary condition presents a harder challenge and so far only a few studies have been undertaken. Zhang et al. [50]
proposed an auxiliary layer of Lagrangian points outside the boundary to calculate the surface temperature from the gradient. Toja-
Silva et al. [55] proposed a radial basis function to deal with interpolation and spreading for both Dirichlet and Neumann type 
conditions. Luo et al. [52] introduced two points outside the boundary to calculate the temperature inside the boundary. Wang et al. 
[53] utilized two layers of discrete Lagrangian points that respectively placed inside and outside of the solid body with a distance of 
two grid spacings, to calculate temperature corrections implicitly on the boundary. Wu et al. [56] also put two auxiliary layers (one 
inside and one outside the solid boundary) to enhance the Neumann boundary condition with explicit method.

In this manuscript, we introduce an improved direct-forcing immersed boundary method for simulations of three-dimensional 
phoretic particles in incompressible viscous flows. Unlike the existing direct-forcing method [57,40] that calculates the full La-
grangian forces in each time step, we compute the actual Lagrangian forces by adding a correction to the force of the previous time 
step. By doing so, the boundary condition can be satisfied with a greater precision. This method can be thought of as the analogue of 
the pressure correction in fractional step method that has been widely used in last three decades in comparison to the total pressure 
calculation from the original projection method [58]. We note that there are other works in literature that improves the precision 
by adding corrections to forcing, e.g. [59,60] The other improvement is that we add two more auxiliary layers of Lagrangian points 
inside the sphere to precisely implement the desired Neumann boundary condition. The performance of the proposed IBM are tested 
and validated by several benchmarks, ranging from phoretic particle to flow past spheres and spontaneously symmetry breaking 
2

phoretic particles.
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Fig. 1. Schematic description of a Janus particle, which is typically composed of two parts: a functional (catalytic) part which modifies the surrounding solvent 
properties and creates a local gradient field, and a non-functional (inert) part which is exposed then to the local gradient field. The concentration gradient drives the 
slip velocity of the particle.

2. Governing equations and numerical schemes

2.1. Governing equations

The self-propulsion of phoretic particles is driven by diffusiophoresis. This can be achieved by a particle whose surface is divided 
into two parts, one coated by catalyst, and the other by inert material. Owing to chemical reactions, molecules or ions are released 
at the catalytic side, producing a concentration gradient along the surface and driving the motion of the particle, as shown in Fig. 1.

Note that all dimensional physical variables are marked with tildes (e.g. 𝑐, 𝒖̃), while the dimensionless ones without (e.g. 𝑐, 𝒖). 
The control parameter is the strength 𝛼 of the reaction activity at the catalytic surface, i.e. the generation or consumption of solute 
by the reaction. With the diffusion coefficient 𝐷, the concentration boundary condition is then:

𝐷
𝜕𝑐

𝜕𝑛̃
= 𝛼, (1)

where 𝜕𝑐
𝜕𝑛̃

is the gradient at the boundary in the wall-normal direction.
Due to the diffusiophoretic effect, the slip velocity is proportional to the tangential concentration gradient:

𝐮̃𝑠 =𝑀(𝐈− 𝐧𝐧) ⋅∇𝑐, (2)

where 𝑀 is the diffusiophoretic mobility, which is a constant in our case [25], 𝐮̃𝑠 the slip velocity, 𝐈 the identity tensor, and (𝐈 − 𝐧𝐧)
scalarly multiplied by ∇𝑐 yields the tangential component of the concentration gradient.

With the parameters mentioned above and the diameter of the particle 𝐿, we can define the characteristic length, velocity, 
concentration as 𝐿, 𝛼𝑀∕𝐷, 𝛼𝐿∕𝐷, respectively.

The concentration field is governed by the diffusion-convection equation and the flow dynamics are described by the Navier-
Stokes equations. The dimensionless form of the governing equations becomes:

𝜕𝑐

𝜕𝑡
+ 𝐮 ⋅∇𝑐 = 1

𝑃𝑒
∇2𝑐, (3)

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅∇)𝒖 = −∇𝑝+ 𝑆𝑐

𝑃𝑒
∇2

𝒖, 𝛁 ⋅ 𝒖 = 0, (4a,b)

where the Schmidt 𝑆𝑐 and the Péclet 𝑃𝑒 numbers are defined as [24]:

𝑃𝑒 = 𝑀𝛼𝐿

𝐷2 , 𝑆𝑐 = 𝜈

𝐷
. (5a,b)

The inert part of the surface, being a simple impermeable wall, is modeled by a Neumann boundary condition with zero chemical 
reaction, while in contrast, reaction product emits from the catalytic surface:

𝜕𝑐

𝜕𝑛
= 0, at the inert surface;

𝜕𝑐

𝜕𝑛
= 1, at the catalytic surface. (6a,b)

The concentration gradient drives a slip motion at the surface [24,25],
3

𝐮𝑠 = (𝐈− 𝐧𝐧) ⋅∇𝑐, (7)
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which is the dimensionless form of Equation (2).
The flow velocity on the boundaries is the summation between the particle and slip velocities [25]

𝐔𝑏(𝐱, 𝑡) =𝐔+𝝎 × (𝐱𝑠 − 𝐱0) + 𝐮𝑠. (8)

Here 𝐔 is the particle translation velocity, 𝝎 its angular velocity, 𝐱𝑠 and 𝐱0 the spatial positions of the particle surface and center of 
rotation, respectively.

The translational and angular velocities are determined by the following relations:

𝑚𝑝

𝑑𝐔
𝑑𝑡

= 𝐅𝑝, 𝐼𝑝
𝑑𝝎

𝑑𝑡
= 𝐓𝑝, (9a,b)

where 𝑚𝑝 and 𝐼𝑝 are the mass and moment of inertia of the particle, respectively. 𝐅𝑝 and 𝐓𝑝 are the force and torque exerted on the 
particle by the fluids:

𝐅𝑝 = ∫ 𝝈 ⋅ 𝐧𝑑𝑆 = ∫ (𝑝𝐈+ 𝑆𝑐

𝑃𝑒
(∇𝐮+ (∇𝐮)𝑇 )) ⋅ 𝐧𝑑𝑆, (10)

𝐓𝑝 = ∫ (𝐱𝑠 − 𝐱0) × (𝝈 ⋅ 𝐧)𝑑𝑆, (11)

where 𝝈 is the hydrodynamic stress tensor. Equations (3)-(11) all together govern the dynamics of fluid, phoretic particles and their 
interactions.

2.2. Fundamentals of immersed boundary method

In this section, we will shortly summarize the immersed boundary method in [39,61] in order to make the manuscript self-
consistent. To deal with the moving boundary, a moving Lagrangian grid, attached to the surface of the solid particle is applied while 
the fluid phase is solved on a fixed and staggered Cartesian grid. Note that from now on, we will use capital letters to represent the 
quantities on the Lagrangian markers (solid body), whereas lower cases to represent the quantities on the Eulerian meshes (fluid 
domain).

In the IBM by Tullio and Pascazio [39] and Spandan et al. [61], the viscous term is discretized based on the Crank-Nicolson 
scheme. With the explicit three-step Runge-Kutta time advancement scheme, the detailed discrete equations can be written as:
do 𝑖 = 1, 3

𝐮̂− 𝐮𝑖

Δ𝑡
= 𝛼𝑖∇𝑝𝑖 + 𝛾𝑖𝐇𝑖

𝑢
+ 𝜌𝑖𝐇𝑖−1

𝑢
+

𝛼𝑖

2
𝑆𝑐

𝑃𝑒
∇2(𝐮̂+ 𝐮𝑖), (12)

𝐮∗ = 𝐮̂+ 𝐟 𝑖Δ𝑡, (13)

∇2𝑝̂ = ∇ ⋅ 𝐮∗
𝛼𝑖Δ𝑡

, (14)

𝐮𝑖+1 = 𝐮∗ − 𝛼𝑖Δ𝑡∇𝑝̂, (15)

𝑝𝑖+1 = 𝑝𝑖 + 𝑝̂−
𝛼𝑖Δ𝑡

2
𝑆𝑐

𝑃𝑒
∇2𝑝̂. (16)

enddo
𝐇𝑢 denotes the nonlinear explicit (advection) terms, discretized with the Adams-Bashforth scheme. 𝛼𝑖, 𝛾𝑖 and 𝜌𝑖 are the coefficients 
of the three steps Runge-Kutta time advancement scheme, which we apply the same values as [62]. 𝐟 is the forcing term for the 
velocity field.

We have implemented the concentration field in a similar way:
do 𝑖 = 1, 3

𝑐 − 𝑐𝑖

Δ𝑡
= 𝛾𝑖𝐻

𝑖
𝑐
+ 𝜌𝑖𝐻

𝑖−1
𝑐

+
𝛼𝑖

2𝑃𝑒
∇2(𝑐 + 𝑐𝑖), (17)

𝑐𝑖+1 = 𝑐 + 𝑠𝑖Δ𝑡, (18)

enddo
where 𝐻𝑐 is the advection term and 𝑠 is the forcing term for concentration.

The forcing term for velocity is calculated as follows:

Interpolation: 𝐔̂(X) =
𝑁𝑒∑

𝑘=1
𝜙𝑙

𝑘
(𝐗)𝐮̂𝑖, (19)

Forcing: 𝐅 = 𝐔𝑏 − 𝐔̂
Δ𝑡

, (20)

𝑖

𝑁𝑙∑
𝑙

4

Spreading: 𝐟 =
𝑙=1

𝑟𝑙𝜙𝑘
(X)𝐅𝑙, (21)
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𝑟𝑙 is the ratio between the Lagrangian and Eulerian grid volume. The coefficient 𝜙𝑘 is calculated based on the Moving Least Square 
(MLS) method, which is explained in detail in [39,61]. 𝑘 is the index for the Eulerian points and 𝑙 is the index for the Lagrangian 
points.

Concentration and velocity forcing can be calculated using exactly the same method. For concentration field, Neumann boundary 
condition has to be considered and a single outer probe at distance of grid size from surface is applied (Fig. 2(a)). Note that in 
this manuscript, the Cartesian grid around the particle is always uniform in all three directions. The forcing term is added on the 
Lagrangian grids at the surface. For unit concentration gradient ( 𝜕𝑐

𝜕𝑛
= 1, catalytic surface), the intended concentration 𝐶𝐼 at the 

surface is:

𝐶𝐼 = 𝐶𝑝 + ℎ, (22)

where 𝐶𝑝 is the concentration at the outer probe. ℎ is the width of the Eulerian mesh. For zero concentration gradient ( 𝜕𝑐

𝜕𝑛
= 0, inert 

surface), 𝐶𝐼 = 𝐶𝑝. As a consequence, the forcing term for concentration is calculated as:

Interpolation: 𝐶̂(X) =
𝑁𝑒∑

𝑘=1
𝜙𝑙

𝑘
(𝐗)𝑐𝑖, (23)

Forcing: 𝑆 =
𝐶𝐼 − 𝐶̂

Δ𝑡
, (24)

Spreading: 𝑠𝑖 =
𝑁𝑙∑

𝑙=1
𝑟𝑙𝜙

𝑙
𝑘
(X)𝑆𝑙. (25)

The force and torque acting on the particle can be expressed as in [40]:

𝜌𝑝𝑉𝑝

𝑑𝐔
𝑑𝑡

= −𝜌𝑓

𝑁𝑙∑

𝑙=1
𝐅𝑙Δ𝑉 𝑙 + 𝜌𝑓

𝑑

𝑑𝑡
(∫
𝑉𝑝

𝐮𝑑𝑉 ), (26)

𝐼𝑝
𝑑𝝎

𝑑𝑡
= −𝜌𝑓

𝑁𝑙∑

𝑙=1
𝐫𝑙 × 𝐅𝑙Δ𝑉 𝑙 + 𝜌𝑓

𝑑

𝑑𝑡
(∫
𝑉𝑝

𝐫 × 𝐮𝑑𝑉 ), (27)

where the subscript 𝑓 represents the parameter for fluids and 𝑝 for particle. 𝜌 is density. Δ𝑉 𝑙 is the volume of 𝑙th Lagrangian grid 
cell.

2.3. Improvements to the original immersed boundary method

2.3.1. Forcing error

The original method [39,61] does not exactly impose the desired boundary condition, rather, velocity and concentration errors 
remain (see an example in Fig. 4). Following a similar analysis as in [42,63] (based on the IBM by Uhlmann [40]), here we show 
why the error exists. The exact implicit forcing 𝐟 (𝑖) required to yield a desired velocity 𝐮𝑑 reads

𝐟 (𝑖) = 𝐮𝑑 − 𝐮𝑖

Δ𝑡
−

𝛼𝑖𝑆𝑐

𝑃 𝑒
∇2(𝐮𝑑 + 𝐮𝑖) −𝐂𝑖, (28)

where the pressure and the explicit terms are lumped into 𝐂𝑖 for simplicity. However, the explicit forcing in [39,61] is in fact 
calculated using

𝐟 (𝑒) = 𝐮𝑑 − 𝐮𝑖

Δ𝑡
−

𝛼𝑖𝑆𝑐

𝑃 𝑒
∇2(𝐮̂+ 𝐮𝑖) −𝐂𝑖. (29)

Therefore, the forcing error Δ𝐟 = 𝐟 (𝑖) − 𝐟 (𝑒) is given by

Δ𝐟 =
𝛼𝑖𝑆𝑐

𝑃 𝑒
∇2(𝐮̂− 𝐮𝑑 ), (30)

or

(1 −
Δ𝑡𝛼𝑖𝑆𝑐

2𝑃𝑒
)Δ𝐟 = −

𝛼𝑖𝑆𝑐

𝑃 𝑒
∇2(Δ𝑡𝐂𝑖 +

Δ𝑡𝛼𝑖𝑆𝑐

𝑃 𝑒
∇2𝐮𝑖 +Δ𝑡𝐟 (𝑒)). (31)

It can be easily seen that the forcing error is dependent on the Reynolds number (𝑅𝑒 = 𝑃𝑒∕𝑆𝑐), and time step, as shown in [42]. 
The other interesting fact to note is that if the intermediate velocity is closer to the desired velocity, then the forcing error will be 
smaller.

2.3.2. New forcing scheme

We now show how we can improve the forcing through a simple and efficient way. To deal with the forcing error, multidirect 
5

forcing scheme was applied as a remedy in [42], which calculate the force in multiple substeps inside an additional forcing loop. 
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Fig. 2. For the Neumann boundary condition, (a) the original way of obtaining the surface concentration, using only one layer of Lagrangian points, with the help 
of the probe from outside the boundary. (b) an improved way, using two inner layers of Lagrangian points inside the sphere, with the same normal concentration 
gradients among these layers. The probe length is the same as the grid size ℎ.

The precision and efficiency are dependent on the number of the substeps. In comparison, here we present a new forcing scheme, 
in which the intermediate velocity 𝐮̂ is calculated by adding the body force from the last time step into Equation (12) and the IBM 
forces are now given by:

Interpolation: 𝐔̂(X) =
𝑁𝑒∑

𝑘=1
𝜙𝑙

𝑘
(𝐗)𝐮̂𝑖, (32)

Forcing: 𝐅𝑖 = 𝐔𝑏 − 𝐔̂
Δ𝑡

+ 𝐅𝑖−1, (33)

Spreading: 𝐟 𝑖 =
𝑁𝑙∑

𝑙=1
𝑟𝑙𝜙

𝑙
𝑘
(X)𝐅𝑖

𝑙
. (34)

The concentration forcing term is calculated in the same way in the improved method. The method does not need extra steps to 
calculate the force and can achieve much better precision, which will be shown in section 3. The underlying principle behind the 
effectiveness of this straightforward approach lies in the fact that, during the computation of the intermediate velocity 𝐮̂, the inclusion 
of the body force term on the right-hand side significantly aligns it with the desired velocity 𝐮𝑑 , as opposed to when the body force 
term is omitted. With this method, the forcing error becomes

(1 −
Δ𝑡𝛼𝑖𝑆𝑐

2𝑃𝑒
)Δ𝐟 = −

𝛼𝑖𝑆𝑐

𝑃 𝑒
∇2(Δ𝑡𝐂𝑖 +

Δ𝑡𝛼𝑖𝑆𝑐

𝑃 𝑒
∇2𝐮𝑖 +Δ𝑡𝐟 (𝑒)

𝑖+1 −Δ𝑡𝐟 (𝑒)
𝑖
). (35)

Hence, the discrepancy introduced by explicit forcing will be notably diminished when the force undergoes minimal variations 
between consecutive time steps.

Another implication of the discussion here is that employing a full explicit discretization of the diffusion term leads to a reduction 
in boundary error, albeit not its complete elimination. This persistence of error is attributable not only to the inherent forcing error 
but also to the interpolation of velocity and concentration fields, along with the spreading of forcing in discrete form, inevitably 
introducing additional errors. To elucidate this matter, consider the process where the Lagrangian force 𝐅 is dispersed onto Eulerian 
points and subsequently interpolated back to the Lagrangian points. Spreading

𝐟 =
𝑁𝑙∑

𝑙=1
𝑟𝑙𝜙

𝑙
𝑘
(X)𝐅𝑙. (36)

Interpolation produces the values 𝐅∗ at the Lagrangian points, where

𝐅∗(X) =
𝑁𝑒∑

𝑘=1
𝜙𝑙

𝑘
(𝐗)𝐟 . (37)

Inserting equation (36) into (37), we get,

𝐅∗(X) =
𝑁𝑒∑

𝑘=1

𝑁𝑙∑

𝑙=1
𝑟𝑙𝜙

𝑙
𝑘
(X)𝜙𝑙

𝑘
(𝐗)𝐅𝑙 . (38)

It’s worth noting that since the function 𝜙𝑙
𝑘

is regularized, akin to a smoothed delta function, it’s evident that 𝜙𝑙
𝑘
⋅ 𝜙𝑙

𝑘
≠ 𝜙𝑙

𝑘
, hence 

𝐅∗ ≠ 𝐅. A portion of the forcing error also stems from this phenomenon. A test case of explicit diffusion term is given in subsection 
3.1.1, which reduces the boundary error even further, however, it was not entirely eliminated. Note that we will not use it in the 
6

other parts of the manuscript because explicit diffusion term requires very small time step.
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Fig. 3. (a) Setup for the tests performed in section 3.1.1 and section 3.1.3. The size of the domain is 10 × 10 × 10 of the sphere diameter and the grid resolution is 
192 × 192 × 192. The sphere locates at the center of the domain. (b) The sphere is discretized into 5120 triangles and the Lagrangian grid size is around 0.7 times of 
the Eulerian one.

2.3.3. Two-inner-probe method

For the concentration field, the simple one probe method in the previous section cannot guarantee the precision near the interface 
(which are thoroughly discussed in section 3.1) in the cases with the Neumann boundary condition. In this section, we present a 
two-inner-probe method, which is shown in Fig. 2(b). The overall arrangement is such to have one layer of probes (𝑃 ) outside and 
two layers (𝐼1, 𝐼2) inside the body. The concentration forcing terms, which are calculated based on the interpolated concentration 
at the outer probe, are added at two inner probes. For unit concentration gradient, the prescribed concentration at the two inner 
probes are calculated by:

𝐶𝐼1 = 𝐶𝑝 + 2ℎ, 𝐶𝐼2 = 𝐶𝑝 + 3ℎ, (39a,b)

where 𝐶𝑝 is the concentration at outer probe and 𝐶𝐼1, 𝐶𝐼2 are two inner probes. 𝐶𝐼1 and 𝐶𝐼2 are the prescribed concentration 
boundary conditions. By adding forcing on 𝐶𝐼1 and 𝐶𝐼2, we ensure adherence to the Neumann boundary condition on 𝐶𝐼 .This way 
the concentration gradient at the normal direction of the surface is continuous, making an improvement to the satisfaction of the 
boundary condition.

2.4. Numerical method

Throughout the manuscript, the fluid solver is based on our recently developed massively parallelized code AFiD [64–66]. The 
code has been used extensively recently to study rotating turbulence and thermal convection [46–48,54,67–69]. In the code, the 
Navier–Stokes equations are discretized by central second-order finite-difference schemes on a staggered mesh and the resulting 
system is solved by a fractional-step method [58,62,64]. The governing equations are discretized by Crank-Nicolson scheme for the 
viscous terms and an explicit three-step Runge-Kutta scheme for the remaining ones. The time advancement of the solution is:
do 𝑖 = 1, 3

𝑐 − 𝑐𝑖

Δ𝑡
= 𝛾𝑖𝐻

𝑖
𝑐
+ 𝜌𝑖𝐻

𝑖−1
𝑐

+
𝛼1
2𝑃𝑒

∇2(𝑐 + 𝑐𝑖) + 𝑠𝑖−1, (40)

𝐮̂− 𝐮𝑖

Δ𝑡
= 𝛼𝑖∇𝑝𝑖 + 𝛾𝑖𝐇𝑖

𝑢
+ 𝜌𝑖𝐇𝑖−1

𝑢
+

𝛼𝑖

2
𝑆𝑐

𝑃𝑒
∇2(𝐮̂+ 𝐮𝑖) + 𝐟 𝑖−1, (41)

𝐶̂ =
𝑁𝑒∑

𝑘=1
𝜙𝑙

𝑘
(𝐗)𝑐, (42)

𝐔̂ =
𝑁𝑒∑

𝑘=1
𝜙𝑙

𝑘
(X)𝐮̂, (43)

𝑆𝑖 =
𝐶𝐼 − 𝐶̂

Δ𝑡
+ 𝑆𝑖−1, (44)

𝐅𝑖 = 𝐔𝑏 − 𝐔̂
Δ𝑡

+ 𝐅𝑖−1, (45)

𝑠𝑖 =
𝑁𝑙∑

𝑙=1
𝑟𝑙𝜙

𝑙
𝑘
(X)𝑆𝑖

𝑙
, (46)

𝐟 𝑖 =
𝑁𝑙∑

𝑙=1
𝑟𝑙𝜙

𝑙
𝑘
(X)𝐅𝑖

𝑙
, (47)
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𝑐𝑖+1 = 𝑐 + 𝑠𝑖Δ𝑡, (48)
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Fig. 4. Concentration on the surface points of a stationary particle with Dirichlet boundary condition 𝐶 = 1 for original (red), improved (blue), and improved method 
with explicit diffusion term (green). It can be seen that the results of improved forcing method satisfies the boundary condition much better than that of the original 
method. With explicit diffusion term, the error can be reduced even further. The parameters are 𝑆𝑐 = 510 and 𝑃𝑒 = 8.45 × 10−3 . (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

𝐮∗ = 𝐮̂+ 𝐟 𝑖Δ𝑡, (49)

∇2𝑝̂ = ∇ ⋅ 𝐮∗
𝛼𝑖Δ𝑡

, (50)

𝐮𝑖+1 = 𝐮∗ − 𝛼𝑖Δ𝑡∇𝑝̂, (51)

𝑝𝑖+1 = 𝑝𝑖 + 𝑝̂−
𝛼𝑖Δ𝑡

2
𝑆𝑐

𝑃𝑒
∇2𝑝̂. (52)

enddo
For the case of phoretic particle, the concentration boundary condition 𝐶𝐼 is obtained from Equation 39a,b and the velocity boundary 
𝑈𝑏 is based in Equation (8). The forcing term of concentration field for Neumann boundary condition is calculated at the two inner 
probes while the force for the velocity boundary condition is still added at the surface Lagrangian points. The slip velocity is 
calculated with the concentration at neighboring Lagrangian grids, and the procedure is detailed in Appendix.

The motion of the particles is advanced by the same method (Equation (26)) in the previous section. In this manuscript, we 
assume 𝜌𝑓∕𝜌𝑝 = 2 and 𝐼𝑝 = 𝜌𝑝𝜋𝐿

5∕60. Note that due to rotation of the particle, the relative position vector of the Lagrangian point 
and center of the particle 𝐫𝑖

𝑙
= 𝐗𝑖

𝑙
− 𝐱𝑖

𝑐
is independent of time. The force and torque exerted on the particle involves two parts: the 

Lagrangian force on the surface of the particle and the change of momentum/angular momentum inside the particle [41].
Comparing the original and the improved method, the difference is that we calculate the force corrections to the forces of the last 

time step, in contrast to the traditional method of calculating the full forces in each time step. As mentioned before, this method is 
analogous to the pressure correction in fractional step methods [58] which are widely used in last three decades in comparison to 
the total pressure calculation from the original projection method [70]. It is important to also note that the improved method does 
not require any additional computational cost and it can be efficiently implemented into various direct-forcing IBM to enhance the 
boundary condition satisfaction.

3. Results

In this section, we present various numerical examples to showcase the enhancements brought about by the new method, high-
lighting its capability in simulating scenarios involving phoretic particles.

3.1. Phoretic particle

3.1.1. Particle with constant concentration at the surface

We first test the new forcing scheme by solving the three-dimensional diffusion problem from a sphere with unit diameter in a 
cubic box with both the original and the improved method. The simulations are performed in a cubic box of size 10 × 10 × 10 with 
a uniform mesh of 192 × 192 × 192 points. The surface of the sphere is discretized into 5120 triangular elements and the edge of 
the equilateral triangles is 0.7 times the Eulerian grid spacing. The sphere is located at the center of the box. The computational 
box and the Lagrangian meshes are shown in Fig. 3. The reference length is the diameter of the particle. The Schmidt and Péclet 
numbers are selected based on the case of Janus particle in 25% volume fraction 𝐻2𝑂2 solution [25]. The Schmidt number is set 
as 𝑆𝑐 = 510 and the Péclet number is set to 𝑃𝑒 = 8.45 × 10−3 [25]. The time step is fixed at Δ𝑡 = 10−4, which is small enough to 
achieve time step independent results. At the side walls of the box, the concentration is set as 0 and on the surface of the sphere, 
concentration is prescribed as 1. The only difference between the original and improved method lies in the forcing scheme. Fig. 4
8

shows the concentration distribution at Lagrangian points by the two methods after convergence. It can be seen that the error of 
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Fig. 5. (a,b) Normal concentration gradient on the surface of the isotropic phoretic particle (𝜕𝐶∕𝜕𝑛 = 1) by original method (a) and improved method (b) compared 
to the exact boundary condition. (c) Concentration profile along the line 𝑦 = 5, 𝑧 = 5. A zoom in at the surface is plotted in the subplot. (d) Concentration gradient 
component 𝜕𝑐∕𝜕𝑥 along the surface of the stationary Janus particle. A zoom in at the surface is plotted in the subplot. The parameters are 𝑆𝑐 = 510 and 𝑃𝑒 =
8.45 × 10−3 .

the surface concentration is 2.1% for the original method while for the improved method, the error decreases to 0.4%, by applying 
our improvement. In the plot, we also conduct a test case employing the full explicit discretization of the diffusion term (utilizing 
second-order Adams-Bashforth). This test revealed even a further reduction in error; however, it was not entirely eliminated because 
of regularization of interpolation and spreading still cause error.

3.1.2. Fully covered catalytic particle

Here we test the two-inner-probe method for Neumann boundary condition. We solve the three-dimensional convection-diffusion 
problem from a phoretic sphere (with slip velocity due to diffusiophoresis) in a cubic box with both the original and the improved 
method. The concentration gradient at the surface is set as 1 due to the chemical reaction. All the other parameters are the same as 
that in the section 3.1.1.

In Fig. 5, we present a comparative analysis of results obtained using both the original and enhanced methodologies. In the case 
of the original method, it was observed that the gradient error was approximately 12% (as depicted in Fig. 5(a)). However, when 
employing the improved method, a significant enhancement was observed, reducing the error in the concentration gradient at the 
surface to just 1.1% (illustrated in Fig. 5(b)). This discrepancy arises from the treatment of concentration gradient continuity across 
the surface. To illustrate, Fig. 5(c) displays the concentration profile along the line defined by 𝑦 = 5 and 𝑧 = 5. In the zoomed-in 
subplot, we can observe that the original method only maintains concentration gradient continuity in the outward direction, whereas 
the improved method ensures gradient continuity in both directions, achieved through the implementation of the two-inner probe 
method. The difference in continuity has a notable impact on the calculation of the concentration gradient within the code. As 
evidenced in Fig. 5(d), the concentration gradient along the line 𝑦 = 5, 𝑧 = 5 for the original method hovers around 0.67, while 
the improved method closely approximates the intended unit concentration gradient. These findings affirm that the adoption of the 
two-inner probe method enhances surface gradient precision by establishing concentration gradient continuity in both directions 
near the surface.

3.1.3. Janus particle

To demonstrate that our approach also works for Neumann boundary condition, we further test the three-dimensional diffu-
sion problem from a spherical Janus particle. For this case, Golestanian et al. [6] have derived a theoretical formulation for the 
concentration distribution and the theoretical velocity [6]. The theoretical dimensionless terminal velocity of a Janus particle is:

𝑀𝛼
9

𝑉𝑡ℎ𝑒𝑜𝑟𝑦 = 4𝐷𝑉0
= 0.25, (53)
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Fig. 6. Simulation result for the case of moving Janus particle. The parameters are 𝑆𝑐 = 510 and 𝑃𝑒 = 8.45 ×10−3 . (a) Normal concentration gradient on the surface of 
the self-propelled Janus particle as compared to the boundary condition. (b) Concentration distribution along the surface of the self-propelled Janus particle. (c) Slip 
velocity distribution along the surface of the self-propelled Janus particle. The solid lines in (a-c) represents the theoretical results [6]. (d) Error of terminal velocity 
as a function of grid resolution ℎ. (e) Time evolution for the velocity of the self-propelled Janus particle. (f) Streamlines from the present result as compared to that 
from [71]. The streamline on the left is our present results and the one on the right is from [71].

where 𝑉0 =
𝑀𝛼

𝐷
is the characteristic velocity.

Here we show that our numerical results agree very well with the theoretical result under the same conditions, see Fig. 6(a) for 
the satisfaction of the Neumann boundary condition, Fig. 6(b) for the concentration average 𝐶 in azimuthal direction, and Fig. 6(c) 
for the comparison on the slip velocity along the surface between the numerical simulation and the theory. It is seen that our current 
approach can indeed make the concentration gradient smooth enough along the boundary. The terminal velocity also converge to 
the theoretical velocity 𝑉𝑡ℎ𝑒𝑜𝑟𝑦. We plot the error 𝑉𝑝−𝑉𝑡ℎ𝑒𝑜𝑟𝑦

𝑉𝑡ℎ𝑒𝑜𝑟𝑦
as function of grid size ℎ in Fig. 6(d). The order of grid convergence 

is around 1.31. Furthermore, we perform a mass independent test in Fig. 6 (e) to show that the terminal velocity is the same for 
different masses, which agrees with the theoretical result. Last but not least, in Fig. 6 (f) we compare the velocity vectors obtained 
from our simulation with the one from [71] which adopted a cylindrical coordinate and it can be seen that good agreement can be 
found between the two studies.

3.2. Three-dimensional flow past a fixed sphere

In order to show that the proposed method performs equally well also with standard canonical benchmarks, we present here 
the well studied case of the flow past a sphere with no-slip boundary conditions. The computations are performed in the domain of 
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 10 × 10 × 38, where 𝑙𝑧 is the streamwise length. A uniform inflow comes from 𝑧 direction and out-flow boundary 
condition is applied at outlet. The sphere of unit diameter is located at (5, 5, 3). A mesh of uniform size 0.015 is generated in the 
10

vicinity the sphere (1.5 × 1.5 × 1.5). The total grid resolution is 359 × 359 × 431. The control parameter of the system is the Reynolds 



Journal of Computational Physics 509 (2024) 113028X. Zhu, Y. Chen, K.L. Chong et al.

Fig. 7. Time history of the side force 𝐶𝑠 , drag 𝐶𝐷 and lift 𝐶𝐿 coefficients for flow over sphere at (a) Re=100 and (b) Re=300.

Fig. 8. (a,b) Instantaneous three dimensional streamlines for flow over a sphere at (a) 𝑅𝑒 = 100 and (b) 𝑅𝑒 = 300. Colors denote the vorticity at the coordinates.

Fig. 9. Instantaneous vortical structure of flow past a sphere at 𝑅𝑒 = 300.

number 𝑅𝑒 =𝑈𝐿∕𝜈, where 𝑈 is the inflow velocity and 𝐿 is the sphere diameter. Here we consider two Reynolds numbers, 𝑅𝑒 = 100
and 300, the domain size is the same for the two Reynolds number.

The side force, drag and lift coefficients are defined as

𝐶𝑠 =
𝐹𝑠

1∕2𝜌𝑈2𝐿
, 𝐶𝐷 =

𝐹𝐷

1∕2𝜌𝑈2𝐿
, 𝐶𝐿 =

𝐹𝑙

1∕2𝜌𝑈2𝐿
, (54a,b,c)

where 𝐹𝑠, 𝐹𝐷 and 𝐹𝑙 are the time-averaged side, drag and lift forces. After the system reaches a statistical steady state, the side force, 
drag and lift coefficients are shown in Fig. 7. The comparisons of the present simulations with those from the literature are shown in 
Table 1. For both 𝑅𝑒 = 100 and 𝑅𝑒 = 300 cases, our results are in excellent agreement with those from the literature.

At 𝑅𝑒 = 100, the flow is axis-symmetric and steady. A stable separation bubble is generated, while at 𝑅𝑒 = 300, the flow is 
unsteady with vortex shedding; see Fig. 8 (a, b) for the instantaneous streamlines. Furthermore, we plot the streamlines at the 𝑦 − 𝑧

plane of 𝑥 = 5 for both cases 𝑅𝑒 = 100 and 𝑅𝑒 = 300 in Fig. 10. We further show a visualization of the vortical structures for the 
case 𝑅𝑒 = 300 in Fig. 9, with vortex identification method of [77]. It can be seen that the vortical structure is nearly the same as that 
in [63,72]. Table 2 shows good agreement between the current results and previous literature for separation angle 𝜃 length 𝑙 and 
11

vortex position measured by 𝑎 and 𝑏.
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Fig. 10. (a,b) Instantaneous streamlines on the y-z middle plane for flow over a sphere at (a) 𝑅𝑒 = 100 and (b) 𝑅𝑒 = 300.

Table 1

Drag and lift coefficient for flow past sphere at 𝑅𝑒 = 100 and 300.

𝑅𝑒 = 100 𝐶𝐷 𝑅𝑒 = 300 𝐶𝐷 𝐶𝐿

Fornberg (1988) [72] 1.085 Ploumhans et al. (2002) [73] 0.683 −0.061
Fadlun et al. (2000) [57] 1.079 Johnson and Patel (1999) [74] 0.656 −0.069
Kim et al (2001) [49] 1.087
Present result 1.086 Present result 0.684 −0.0695

Table 2

The separation length 𝑙 and vortex position measured by 𝑎 and 𝑏 and sep-
aration angle 𝜃 for flow past sphere at 𝑅𝑒 = 100. The definitions of the 
parameters can be found in Fig. 10.

𝑅𝑒 = 100 𝑙 𝑎 𝑏 𝜃

Magnaudet et al.(1995) [75] 0.847 - - -
Taneda (1956, experiment) [76] 0.899 - - 127.5
Johnson and Patel (1999) [74] 0.84 0.258 0.58 125.5
present result 0.843 0.248 0.58 126.4

Fig. 11. From left to right: The time series of an isotropic phoretic particle with 𝑆𝑐 = 1, 𝑃𝑒 = 10. It can be seen that a spontaneously symmetry breaking happens and 
drives the motion of the particle. The color bar denotes the value of the concentration.

3.3. Spontaneously symmetry breaking of an isotropic phoretic particle

Michelin et al. [24] proposed that even for an isotropic phoretic particle, the system can break the symmetry and a spontaneous 
self-propelled motion can be induced when 𝑃𝑒 > 4. Here we perform several simulations with different 𝑃𝑒 and fixed 𝑆𝑐 = 1. The 
computational settings are the same as those for the Janus particle simulations except the particle is fully covered by the catalyst 
12

with the same boundary condition 𝜕𝐶∕𝜕𝑛 = 1. The radius of the particle is set as characteristic length in this section to keep the 𝑃𝑒
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Fig. 12. Variations of terminal velocity with 𝑃𝑒 for an isotropic phoretic particle at 𝑆𝑐 = 1.

definition the same as that in [24]. Note that in [24], body fitted meshes are used and the equations are solved in a comoving frame 
of reference. Fig. 11 shows the time series of concentration field for isotropic particle with 𝑆𝑐 = 1, 𝑃𝑒 = 10. It can be seen that the a 
spontaneous movement of particle is generated. We further show in Fig. 12 the comparison of the terminal velocity at different 𝑃𝑒

between our results and those from [24]: The terminal velocity agrees very well between the two studies.

4. Conclusions

In this paper, an improved direct-forcing immersed boundary method is developed for Dirichlet and Neumann boundary condi-
tions for the applications to phoretic particles in fluids. The forcing method and the Neumann boundary condition implementation is 
simple and straightforward, thus it can be implemented into many variations of the direct forcing methods. The immersed boundary 
method is combined with a powerful open-source code AFiD, which can be potentially applied to a wide range of flows. The method 
has been validated by several problems with different complexity, including the pure diffusion equation, self-propelled Janus particle, 
flow past a sphere and spontaneously symmetry breaking of an isotropic phoretic particle. Excellent agreements are found between 
the results from our simulations and those from the literature.
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Appendix A. Numerical calculation of slip velocity

The slip velocity of the phoretic particle is driven by the concentration gradient (Equation (7)). Fig. A.13 shows triangular 
Lagrangian elements. For the concentration gradient ∇𝐶 , i.e. 𝜕𝐶∕𝜕𝑥, 𝜕𝐶∕𝜕𝑦, 𝜕𝐶∕𝜕𝑧 at the centroid of triangle 0, we have to use the 
surrounding three triangles 1, 2, 3, with the following equations:

∇𝐶 ⋅ 𝑖01 = ∇𝐶01 =
𝐶1 −𝐶0

𝑑01
, (A.1)

∇𝐶 ⋅ 𝑖02 = ∇𝐶02 =
𝐶2 −𝐶0

𝑑02
, (A.2)

∇𝐶 ⋅ 𝑖03 = ∇𝐶03 =
𝐶3 −𝐶0

𝑑03
, (A.3)

where 𝑖𝑖𝑗 and 𝑑𝑖𝑗 are the unit vector in the direction from center of triangle 𝑖 to the center of triangle 𝑗 and distance between the 
two points, respectively. 𝐶𝑖 the concentration at the center of triangle 𝑖. Using Equation (7) we can then obtain the slip velocity. 
Fig. 6(c) shows the good agreement on the slip velocity between the numerical results and the theoretic prediction. Note that in this 
manuscript we only deal with non-deformable spheres. For deformable spheres, surface triangulations are not always as smooth as 
in Fig. A.13 and more tests are needed for the calculations of surface gradients.

Fig. A.13. Sketch of the four neighboring triangles that are used to calculate the three components for the concentration gradient at point 0 of a Janus particle. The 
colormap is based on the local concentration.

References

[1] S. Ramaswamy, The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys. 1 (2010) 323–345.
[2] M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter, Rev. Mod. Phys. 85 (2013) 1143.
[3] E. Lauga, Bacterial hydrodynamics, Annu. Rev. Fluid Mech. 48 (2016) 105–130.
[4] D. Needleman, Z. Dogic, Active matter at the interface between materials science and cell biology, Nat. Rev. Mater. 2 (9) (2017) 17048.
[5] A. Doostmohammadi, J. Ignés-Mullol, J.M. Yeomans, F. Sagués, Active nematics, Nat. Commun. 9 (2018) 1–13.
[6] R. Golestanian, T. Liverpool, A. Ajdari, Designing phoretic micro- and nano-swimmers, New J. Phys. 9 (5) (2007) 126.
[7] J.L. Moran, J.D. Posner, Phoretic self-propulsion, Annu. Rev. Fluid Mech. 49 (2017) 511–540.
[8] P. Illien, R. Golestanian, A. Sen, ‘Fuelled’ motion: phoretic motility and collective behaviour of active colloids, Chem. Soc. Rev. 46 (2017) 5508–5518.
[9] S. Michelin, Self-propulsion of chemically active droplets, Annu. Rev. Fluid Mech. 55 (2023) 77–101.

[10] A. Walther, A.H.E. Muller, Janus particles: synthesis, self-assembly, physical properties, and applications, Chem. Rev. 113 (2013) 5194–5261.
[11] C.C. Maass, C. Krüger, S. Herminghaus, C. Bahr, Swimming droplets, Annu. Rev. Condens. Matter Phys. 7 (2016) 171–193.
[12] B. ten Hagen, S. van Teeffelen, H. Löwen, Brownian motion of a self-propelled particle, J. Phys. Condens. Matter 23 (2011) 194119.
[13] I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, C. Bechinger, Active Brownian motion tunable by light, J. Phys. Condens. Matter 24 (2012) 284129.
[14] P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Self-propelled Janus particles in a ratchet: numerical simulations, Phys. Rev. Lett. 110 (2013) 268301.
[15] X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Non-Gaussian statistics for the motion of self-propelled Janus particles: experiment 

versus theory, Phys. Rev. E 88 (2013) 032304.
[16] A. Rashidi, S. Razavi, C.L. Wirth, Influence of cap weight on the motion of a janus particle very near a wall, Phys. Rev. E 101 (4) (2020) 042606.
[17] J.F. Brady, Particle motion driven by solute gradients with application to autonomous motion: continuum and colloidal perspectives, J. Fluid Mech. 667 (2011) 

216–259.
[18] H. Rezvantalab, S. Shojaei-Zadeh, Tilting and tumbling of Janus nanoparticles at sheared interfaces, ACS Nano 10 (2016) 5354–5361.
[19] J. Koplik, C. Maldarelli, Molecular dynamics study of the translation and rotation of amphiphilic Janus nanoparticles at a vapor-liquid surface, Phys. Rev. Fluids 

4 (2019) 044201.
[20] M.Á.G. Maestre, R. Fantoni, A. Giacometti, A. Santos, Janus fluid with fixed patch orientations: theory and simulations, J. Chem. Phys. 138 (2013) 094904.
[21] T. Baier, S. Tiwari, S. Shrestha, A. Klar, S. Hardt, Thermophoresis of Janus particles at large Knudsen numbers, Phys. Rev. Fluids 3 (2018) 094202.
[22] J.T. Padding, A.A. Louis, Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales, Phys. Rev. E 74 

(2006) 031402.
[23] M. Yang, A. Wysocki, M. Ripoll, Hydrodynamic simulations of self-phoretic microswimmers, Soft Matter 10 (2014) 6208–6218.
14

[24] S. Michelin, E. Lauga, D. Bartolo, Spontaneous autophoretic motion of isotropic particles, Phys. Fluids 25 (2013) 061701.

http://refhub.elsevier.com/S0021-9991(24)00277-8/bib0479776F2407553C19DCA72E3FC07325s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib4AE481976BDF20F76B4A23A7E752088Fs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibFCD5045128EE08072A59820C2D9BFD14s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibD4A97695E64464F8C3CC7A71F6291866s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib8C43177D896362D5F7048BB49F942C7Ds1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib61557918FE60B01F2972DE1720C12898s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibDB5BE83C7F63514AAEF098C28E7D8633s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib437DA1EB4EC7B0D70310FFD0FBB69E6Ds1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibFDD9486E79AFAD528275864302541257s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibC43C57E9265B06D56999AB8E7E83117Bs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib41992FE25FBA61DC15FFCDAFFDBC65F6s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib5F5ACEDABACF5DECFB4378A34DF13249s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib501748159B073BBE84D68A89C7E535BCs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib7EA2A9F4B07AC3167115C6F0CDE424F7s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibB467C627875C5EE3985E5A8F135C4F4Cs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibB467C627875C5EE3985E5A8F135C4F4Cs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib8B2A8567BEE8883C26FABE215689B888s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibBD4F8A73268A7D1DB61C59009617F599s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibBD4F8A73268A7D1DB61C59009617F599s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibFEC6387F213ECF400D6D3430DADE660Cs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA07776BA9C524E7AB29C3D128719DE63s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA07776BA9C524E7AB29C3D128719DE63s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibC92C0A2F6A93C1A486F14ED85DFD646Fs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib5F90391BAF692A2D295B6B4A22A299C8s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA547FCDCFEC18BD11A7F528EAB110D37s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA547FCDCFEC18BD11A7F528EAB110D37s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib28974095A576804F3F3494B59F71C3BDs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib911B38B0717D96DA9FBE6FFD379F6A59s1


Journal of Computational Physics 509 (2024) 113028X. Zhu, Y. Chen, K.L. Chong et al.

[25] F. Yang, S. Qian, Y. Zhao, R. Qiao, Self-diffusiophoresis of Janus catalytic micromotors in confined geometries, Langmuir 32 (2016) 5580–5592.
[26] W. Hu, T. Lin, S. Rafai, C. Misbah, Chaotic swimming of phoretic particles, Phys. Rev. Lett. 123 (2019) 238004.
[27] T.-S. Lin, W.-F. Hu, C. Misbah, A direct Poisson solver in spherical geometry with an application to diffusiophoretic problems, J. Comput. Phys. 409 (2020) 

109362.
[28] R. Kohl, E. Corona, V. Cheruvu, S. Veerapaneni, Fast and accurate solvers for simulating janus particle suspensions in Stokes flow, Adv. Comput. Math. 49 (4) 

(2023) 45.
[29] Y. Chen, K.L. Chong, L. Liu, R. Verzicco, D. Lohse, Instabilities driven by diffusiophoretic flow on catalytic surfaces, J. Fluid Mech. 919 (2021) A10.
[30] Y. Chen, K.L. Chong, H. Liu, R. Verzicco, D. Lohse, Buoyancy-driven attraction of active droplets, arXiv preprint, arXiv :2302 .14008, 2023.
[31] C.S. Peskin, Flow patterns around heart valves: a numerical method, J. Comput. Phys. 10 (1972) 252–271.
[32] G. Iaccarino, R. Verzicco, Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev. 56 (2003) 331–347.
[33] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[34] F. Sotiropoulos, X. Yang, Immersed boundary methods for simulating fluid–structure interaction, Prog. Aerosp. Sci. 65 (2014) 1–21.
[35] R. Verzicco, Immersed boundary methods: historical perspective and future outlook, Annu. Rev. Fluid Mech. 55 (2023) 129–155.
[36] X. Zhu, G. He, X. Zhang, Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil, Comput. Fluids 97 (2014) 1–20.
[37] X. Zhu, G. He, X. Zhang, Flow-mediated interactions between two self-propelled flapping filaments in tandem configuration, Phys. Rev. Lett. 113 (2014) 238105.
[38] F.-B. Tian, H. Dai, H. Luo, J.F. Doyle, B. Rousseau, Fluid–structure interaction involving large deformations: 3D simulations and applications to biological 

systems, J. Comput. Phys. 258 (2014) 451–469.
[39] M.D. de Tullio, G. Pascazio, A moving-least-squares immersed boundary method for simulating the fluid–structure interaction of elastic bodies with arbitrary 

thickness, J. Comput. Phys. 325 (2016) 201–225.
[40] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys. 209 (2005) 448–476.
[41] W.P. Breugem, A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows, J. Comput. Phys. 231 (2012) 

4469–4498.
[42] T. Kempe, J. Fröhlich, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys. 231 (2012) 

3663–3684.
[43] V. Spandan, V. Meschini, R. Ostilla-Mónico, D. Lohse, G. Querzoli, M.D. de Tullio, R. Verzicco, A parallel interaction potential approach coupled with the 

immersed boundary method for fully resolved simulations of deformable interfaces and membranes, J. Comput. Phys. 348 (2017) 567–590.
[44] V. Mathai, X. Zhu, C. Sun, D. Lohse, Mass and moment of inertia govern the transition in the dynamics and wakes of freely rising and falling cylinders, Phys. 

Rev. Lett. 119 (2017) 054501.
[45] J. Yuan, U. Piomelli, Estimation and prediction of the roughness function on realistic surfaces, J. Turbul. 15 (2014) 350–365.
[46] X. Zhu, R. Ostilla-Mónico, R. Verzicco, D. Lohse, Direct numerical simulation of Taylor–Couette flow with grooved walls: torque scaling and flow structure, J. 

Fluid Mech. 794 (2016) 746–774.
[47] X. Zhu, R. Verzicco, D. Lohse, Disentangling the origins of torque enhancement through wall roughness in Taylor–Couette turbulence, J. Fluid Mech. 812 (2017) 

279–293.
[48] X. Zhu, R.A. Verschoof, D. Bakhuis, S.G. Huisman, R. Verzicco, C. Sun, D. Lohse, Wall roughness induces asymptotic ultimate turbulence, Nat. Phys. 14 (2018) 

417.
[49] J. Kim, H. Choi, An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries, KSME Int. J. 18 (2004) 1026–1035.
[50] N. Zhang, Z.C. Zheng, S. Eckels, Study of heat-transfer on the surface of a circular cylinder in flow using an immersed-boundary method, Int. J. Heat Fluid Flow 

29 (2008) 1558–1566.
[51] W. Ren, C. Shu, W. Yang, An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions, Int. J. Heat Mass Transf. 64 

(2013) 694–705.
[52] K. Luo, Z. Zhuang, J. Fan, N.E.L. Haugen, A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary 

conditions, Int. J. Heat Mass Transf. 92 (2016) 708–717.
[53] Y. Wang, C. Shu, L. Yang, Boundary condition-enforced immersed boundary-lattice Boltzmann flux solver for thermal flows with Neumann boundary conditions, 

J. Comput. Phys. 306 (2016) 237–252.
[54] X. Zhu, R.J.A.M. Stevens, R. Verzicco, D. Lohse, Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection, 

Phys. Rev. Lett. 119 (2017) 154501.
[55] F. Toja-Silva, J. Favier, A. Pinelli, Radial basis function (rbf)-based interpolation and spreading for the immersed boundary method, Comput. Fluids 105 (2014) 

66–75.
[56] B. Wu, J. Lu, H. Lee, C. Shu, M. Wan, An explicit boundary condition-enforced immersed boundary-reconstructed thermal lattice Boltzmann flux solver for 

thermal–fluid–structure interaction problems with heat flux boundary conditions, J. Comput. Phys. 485 (2023) 112106.
[57] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, 

J. Comput. Phys. 161 (2000) 35–60.
[58] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59 (1985) 308–323.
[59] S. Gsell, U. d’Ortona, J. Favier, Explicit and viscosity-independent immersed-boundary scheme for the lattice Boltzmann method, Phys. Rev. E 100 (3) (2019) 

033306.
[60] S. Gsell, J. Favier, Direct-forcing immersed-boundary method: a simple correction preventing boundary slip error, J. Comput. Phys. 435 (2021) 110265.
[61] V. Spandan, D. Lohse, M.D. de Tullio, R. Verzicco, A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed 

boundary simulations, J. Comput. Phys. 375 (2018) 228–239.
[62] M.M. Rai, P. Moin, Direct simulations of turbulent flow using finite-difference schemes, J. Comput. Phys. 96 (1991) 15–53.
[63] S. Wang, X. Zhang, An immersed boundary method based on discrete stream function formulation for two- and three-dimensional incompressible flows, J. 

Comput. Phys. 230 (2011) 3479–3499.
[64] R. Verzicco, P. Orlandi, A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates, J. Comput. Phys. 123 (1996) 402–414.
[65] E.P. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, A pencil distributed finite difference code for strongly turbulent wall-bounded flows, Comput. 

Fluids 116 (2015) 10–16.
[66] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-Mónico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R.J.A.M. Stevens, AFiD-GPU: a 

versatile Navier–Stokes solver for wall-bounded turbulent flows on GPU clusters, Comput. Phys. Commun. 229 (2018) 199–210.
[67] X. Zhu, R.J.A.M. Stevens, O. Shishkina, R. Verzicco, D. Lohse, 𝑁𝑢 ∼𝑅𝑎1∕2 Scaling enabled by multiscale wall roughness in Rayleigh–Bénard turbulence, J. Fluid 

Mech. 869 (2019) R4.
[68] S.H. Bader, X. Zhu, Scaling relations in quasi-static magnetoconvection with a strong vertical magnetic field, J. Fluid Mech. 976 (2023) A4.
[69] J. Song, O. Shishkina, X. Zhu, Scaling regimes in rapidly rotating thermal convection at extreme Rayleigh numbers, J. Fluid Mech. 984 (2024) A45.
[70] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput. 22 (1968) 745–762.
[71] J. de Graaf, G. Rempfer, C. Holm, Diffusiophoretic self-propulsion for partially catalytic spherical colloids, IEEE Trans. Nanobiosci. 14 (2015) 272–288.
[72] B. Fornberg, Steady viscous flow past a sphere at high Reynolds numbers, J. Fluid Mech. 190 (1988) 471–489.
[73] P. Ploumhans, G.S. Winckelmans, J.K. Salmon, A. Leonard, M.S. Warren, Vortex methods for direct numerical simulation of three-dimensional bluff body flows: 
15

application to the sphere at Re= 300, 500, and 1000, J. Comput. Phys. 178 (2002) 427–463.

http://refhub.elsevier.com/S0021-9991(24)00277-8/bibC07B2668BBCF6062969A440DEA3BDD48s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib698DD0084FA60155FA10D986542195D1s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibD6FB8EEA9AA632F6A8A312B9C742D201s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibD6FB8EEA9AA632F6A8A312B9C742D201s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib83EAF382DEAEA10145868787E48F6965s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib83EAF382DEAEA10145868787E48F6965s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib9F1CBE1C82F8F19ACCF61D3F8CB7B456s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib1A22BCA432CA45483A48FB63F99E8FA3s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibFFDA667C0516D789C4E8D2267C9C6CFCs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibB39E9F6542E7D50AC9EDCB8F32C80573s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib06AEFF7F3A4AE8884ADCE72FBC0B2999s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib092405F8D185FDA4FC1BFE438FA3683Fs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA4E32406F5FB13AC3E569DA834A9B16Fs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib29C3B4E531AE112C2204DAF6051A6E6Bs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib50A94A4006A2EA77C358A29F0A8299CDs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib4706196F5615C0B3FDFEB746E8A2C1DBs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib4706196F5615C0B3FDFEB746E8A2C1DBs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA1321498E28A68CDDE399C463F699827s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA1321498E28A68CDDE399C463F699827s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib650138067ACE07CB5BFC4FA0CB07CA76s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA69FCDA6EE63B6983C4ABDE3A30963C1s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA69FCDA6EE63B6983C4ABDE3A30963C1s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib7EEAB2BFBD4F01986E2F971690DA75EBs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib7EEAB2BFBD4F01986E2F971690DA75EBs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib41AFACBD7821780DF4C4356C6F9C2C1Ds1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib41AFACBD7821780DF4C4356C6F9C2C1Ds1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA70B7E9C8631F4DE0675C9788B4FBA9As1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA70B7E9C8631F4DE0675C9788B4FBA9As1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib53BCF2C119686CAEDC7B9077DEC146E6s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib3820CAD22A286A56483C3333717E94CAs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib3820CAD22A286A56483C3333717E94CAs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2A6899ECD91F8DABE5B047BE9E10F5E6s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2A6899ECD91F8DABE5B047BE9E10F5E6s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibC644B11147313E8938FBA8C81BD493ABs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibC644B11147313E8938FBA8C81BD493ABs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibC20F8555B345224D9EEA22E62DA44641s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib5D4AAE1FEE59AA7161CC45CAC9C0C89Cs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib5D4AAE1FEE59AA7161CC45CAC9C0C89Cs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA04BB5E007AE49C91BC257108A862993s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA04BB5E007AE49C91BC257108A862993s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib212C32B61010565EC3D5C3E96BDF6F7Bs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib212C32B61010565EC3D5C3E96BDF6F7Bs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibAD9F5CA250D73FD408E3B53C38740B2Es1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibAD9F5CA250D73FD408E3B53C38740B2Es1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2F4B9BCEABBB728B2EEDA239520C6E62s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2F4B9BCEABBB728B2EEDA239520C6E62s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib25BEB4D42A56F9A0A21AC8F79B6F307Bs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib25BEB4D42A56F9A0A21AC8F79B6F307Bs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2D89F0C7D4E4F5549F9E11AC3CC87A66s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2D89F0C7D4E4F5549F9E11AC3CC87A66s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib3E3A47E3C620D7CAB07DDEEE73A734BCs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib3E3A47E3C620D7CAB07DDEEE73A734BCs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib5064C07C9D4567B541FD3289ECA2F706s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib5D455225067D3C52F5C96D0AE8731C64s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib5D455225067D3C52F5C96D0AE8731C64s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibF01912F22FEC788EE57BF604ABB47B70s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibB65210B26230EEA2C1B6516F82B55F7Fs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibB65210B26230EEA2C1B6516F82B55F7Fs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibA6AD8938C74EF861C0FDFB741B38E1B4s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib6A1AB168424A78D30071AEC84AE93AC8s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib6A1AB168424A78D30071AEC84AE93AC8s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2328A1CD09468057531C5D00A8797D42s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib58E4A553FFA81B7DE9195F472D771241s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib58E4A553FFA81B7DE9195F472D771241s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibCD6F22E2EE07E4CBF21AA4E012C9AA50s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibCD6F22E2EE07E4CBF21AA4E012C9AA50s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibE270CD69972FC83EFC4CA48723C98E12s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibE270CD69972FC83EFC4CA48723C98E12s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib48FC53CAA97353E3DDB36A981331595Bs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib8005813B9AB329E4408328D8624031DAs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2B656D02F196FB5CB07EBEC04E4ECD5Ds1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibD03D7AA2B0BDDCE91D61B01BF3AE54F4s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib2DD1354EDDF783EC3E7AFA53B92C76B0s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibBD6F8B02EEA39859CF05CD5ED39E8111s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibBD6F8B02EEA39859CF05CD5ED39E8111s1


Journal of Computational Physics 509 (2024) 113028X. Zhu, Y. Chen, K.L. Chong et al.

[74] T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech. 378 (1999) 19–70.
[75] J. Magnaudet, M. Rivero, J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow, J. Fluid Mech. 284 (1995) 97–135.
[76] S. Taneda, Experimental investigation of the wake behind a sphere at low Reynolds numbers, J. Phys. Soc. Jpn. 11 (10) (1956) 1104–1108.
16

[77] J. Jeong, F. Hussain, On the identification of a vortex, J. Fluid Mech. 285 (1995) 69–94.

http://refhub.elsevier.com/S0021-9991(24)00277-8/bib65F6EE716D6BA867E0BD8921F1B3E2B5s1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib13CB88CAD9D149ED8C4A3BC317D8F40Fs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bib8006AF627BC1648C719CF110C64507ABs1
http://refhub.elsevier.com/S0021-9991(24)00277-8/bibABA27F6FC2545646DAD1E91B43B54801s1

	A boundary condition-enhanced direct-forcing immersed boundary method for simulations of three-dimensional phoretic particl...
	1 Introduction
	2 Governing equations and numerical schemes
	2.1 Governing equations
	2.2 Fundamentals of immersed boundary method
	2.3 Improvements to the original immersed boundary method
	2.3.1 Forcing error
	2.3.2 New forcing scheme
	2.3.3 Two-inner-probe method

	2.4 Numerical method

	3 Results
	3.1 Phoretic particle
	3.1.1 Particle with constant concentration at the surface
	3.1.2 Fully covered catalytic particle
	3.1.3 Janus particle

	3.2 Three-dimensional flow past a fixed sphere
	3.3 Spontaneously symmetry breaking of an isotropic phoretic particle

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Numerical calculation of slip velocity
	References


