
GN-SINDy: Greedy Sampling Neural
Network in Sparse Identification of

Nonlinear Partial Differential Equations

Ali Forootani∗ Peter Benner∗
∗Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany.

Email: forootani@mpi-magdeburg.mpg.de, ORCID: 0000-0001-7612-4016
2 Email: benner@mpi-magdeburg.mpg.de, ORCID: 0000-0003-3362-4103

Abstract: The sparse identification of nonlinear dynamical systems (SINDy) is a data-
driven technique employed for uncovering and representing the fundamental dynamics
of intricate systems based on observational data. However, a primary obstacle in the
discovery of models for nonlinear partial differential equations (PDEs) lies in addressing
the challenges posed by the curse of dimensionality and large datasets. Consequently,
the strategic selection of the most informative samples within a given dataset plays a
crucial role in reducing computational costs and enhancing the effectiveness of SINDy-
based algorithms. To this aim, we employ a greedy sampling approach to the snapshot
matrix of a PDE to obtain its valuable samples, which are suitable to train a deep
neural network (DNN) in a SINDy framework. SINDy based algorithms often consist
of a data collection unit, constructing a dictionary of basis functions, computing the
time derivative, and solving a sparse identification problem which ends to regularised
least squares minimization. In this paper, we extend the results of a SINDy based
deep learning model discovery (DeePyMoD) approach by integrating greedy sampling
technique in its data collection unit and new sparsity promoting algorithms in the least
squares minimization unit. In this regard we introduce the greedy sampling neural
network in sparse identification of nonlinear partial differential equations (GN-SINDy)
which blends a greedy sampling method, the DNN, and the SINDy algorithm. In the
implementation phase, to show the effectiveness of GN-SINDy, we compare its results
with DeePyMoD by using a Python package that is prepared for this purpose on numerous
PDE discovery.

Keywords: Discrete Empirical Interpolation Method (DEIM), Deep Neural Network
(DNN), Sparse Identification of Nonlinear Dynamical Systems (SINDy)

Mathematics subject classification: MSC1, MSC2, MSC3

Novelty statement: We introduce the Greedy Sampling Neural Network in Sparse
Identification of Nonlinear Partial Differential Equations (GN-SINDy), a pioneering
approach that seamlessly integrates a novel greedy sampling technique, deep neu-
ral networks, and advanced sparsity-promoting algorithms. Our method not only
addresses the formidable challenges posed by the curse of dimensionality and large
datasets in discovering models for nonlinear PDEs but also sets a new standard for
efficiency and accuracy by redefining the data collection and minimization units
within the SINDy framework. By combining the strengths of these diverse techniques,
GN-SINDy represents a leap forward in the realm of model discovery, promising un-
precedented insights into the intricate dynamics of complex systems.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

ar
X

iv
:2

40
5.

08
61

3v
1

 [
m

at
h.

D
S]

 1
4

M
ay

 2
02

4

mailto:forootani@mpi-magdeburg.mpg.de
https://orcid.org/0000-0001-7612-4016
mailto:benner@mpi-magdeburg.mpg.de
https://orcid.org/0000-0003-3362-4103

F. Author, S. Author: Example short title 2

1. Introduction
Nonlinear dynamical systems are often encountered in various scientific fields, ranging from physics
and biology to economics and engineering. Such systems can be extremely complex and difficult
to understand, especially when they involve a large number of variables. Sparse identification of
nonlinear dynamics (SINDy[1]) is a powerful approach that can help unravel the mysteries of these
systems. Using a combination of machine learning and optimisation techniques, SINDy can identify
the governing equations of a nonlinear dynamical system from noisy and scarce data [2, 3].

When dealing with partial differential equations (PDEs), SINDy can be adapted to identify sparse
representations of the nonlinear terms in the PDE [4,5]. Traditional methods for PDE identification
often depend on a combination of domain specific knowledge, mathematical derivations, and ex-
perimental data. However, these approaches can be labor-intensive and may encounter limitations
when applied to complex or poorly understood systems. Overcoming these challenges requires in-
novative techniques that can efficiently identify PDEs, provide a more comprehensive understanding
of intricate physical phenomena, and enable improved predictions in diverse applications [6, 7].

In the existing body of literature, the predominant focus has been on solving PDEs through either
analytical or numerical means. Analytical approaches involve techniques like variable transforma-
tions to render the equation amenable or the derivation of an integral form of the solution [8]. While
these methods find applicability in handling straightforward PDEs, their efficacy diminishes when
faced with more intricate equations. On the other hand, numerical methods aim to approximate
the solution of a PDE by discretizing its domain and solving a set of algebraic equations. Widely
used numerical techniques include the finite difference method (FDM) [9] and the finite element
method (FEM) [10].

Besides solving the PDEs with conventional methods, recent advances in machine learning tech-
niques have proved their potential to address PDE problems in scenarios with limited dataset. This
implies having access solely to the PDE problem data, rather than an extensive set of value pairs for
the independent and dependent variables [11]. In addition, modern machine learning software envi-
ronments have provided automatic differentiation capabilities for functions realized by deep neural
networks (DNN) which is a mesh-free approach and can break the curse of dimensionality of the
conventional methods [12]. This approach was introduced in [13], where the term physics-informed
neural networks(PINNs) was coined. With the emergence of PINN, employing a neural network has
become a prominent method to construct a surrogate for data and subsequently conduct sparse
regression on the network’s predictions [14–16]. Alternatively, Neural ODEs have been introduced to
unveil unknown governing equations [17] from physical datasets. Diverse optimization strategies,
employing the method of alternating direction, are explored in [18], and graph-based approaches
are formulated in [19]. Symmetry incorporation into neural networks is addressed directly by [20],
utilizing both the Hamiltonian and Lagrangian frameworks. Furthermore, auto-encoders have been
utilized to model PDEs and uncover latent variables [21]. However, this approach does not yield an
explicit equation and demands substantial amounts of data. It is worth to highlight that unlike the
traditional PDE solvers that focus more on methods such as the FDM [9] and FEM [10], the DNN based
approaches (such as PINN) are mesh free and therefore highly flexible.

The technique that we focus in this paper for PDE identification is based on SINDy algorithm, i.e.
a method able to select, from a large dictionary, the correct linear, nonlinear, and spatial derivative
terms, resulting in the identification associated PDEs from data [22]. In SINDy only those dictionary
terms that are most informative about the dynamics are selected as part of the discovered PDE.
Previous sparse identification algorithms faced a number of challenges [22]: They were not able to
handle sub-sampled spatial data, and the algorithm did not scale well to high-dimensional mea-
surements. Standard model reduction techniques such as proper orthogonal decomposition (POD)
were used to overcome the high-dimensional measurements, allowing for a lower-order ODE model
to be constructed on energetic POD modes. This procedure resembles standard Galerkin projection
onto POD modes [4]. SINDy already applied on various model discovery applications, including for
reduced-order models of fluid dynamics [23] and plasma dynamics [24], turbulence closures [25],
mesoscale ocean closures [26], nonlinear optics [27], computational chemistry [28], and numerical
integration schemes [29]. However, SINDy algorithm in its original form has drawbacks such as
sensitivity to accurate derivative information, lack of performance in the scarce data, sensitivity
to the noisy dataset [4].

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 3

Enhancements to the SINDy framework have aimed at improvement its resilience to noise, provid-
ing uncertainty quantification, and adapting it for the modeling of stochastic dynamics [28,30–33].
Nevertheless, these extensions have typically depended on computationally intensive methods for
acquiring the necessary knowledge about probability distributions.

1.1. Contribution
Expressing the unknown differential equation as ∂tu = f(u,ux, . . .) and assuming that the right-
hand side is a linear combination of predefined terms, i.e., f(u,ux, . . .) = au + bux + · · · =
Θξ, simplifies model discovery to identifying a sparse coefficient vector ξ. The challenge lies in
computing the time derivative ut and the function dictionary Θ, especially when dealing with
large dataset. The associated error in these terms tends to be high due to the utilization of
numerical differentiation techniques like finite difference or spline interpolation. This limitation
confines classical model discovery to datasets characterized by low noise and dense sampling. In
contrast, deep learning-based methods overcome this challenge by constructing a surrogate from the
data and determining the feature library Θ, along with the time derivative ut, through automatic
differentiation. The DNN can be integrated seamlessly into SINDy algorithm and be employed
to effectively model the data, therefore facilitating the construction of a comprehensive function
dictionary.

A pivotal aspect of this approach involves the dynamic application of a mask during training
loop of the DNN, selectively activating terms in the function dictionary. In this regard the DNN is
constrained to conform to solutions derived from these active terms. To determine this mask,
any non-differentiable sparsity-promoting algorithm can be employed, such as STRidge [22]. This
sophisticated approach not only allows for the use of a constrained neural network to precisely
model the data and construct a robust function library but also employs an advanced sparsity-
promoting algorithm to dynamically unveil the underlying equation based on the network’s output.
However, as the the number of training samples increase for a DNN, the longer it takes to train the
network. To alleviate this situation, it becomes crucial to choose a set of informative samples for
training the network together with sparsity promoting algorithm (SINDy), and later, for PDE model
discovery.

In this study, the Discrete Empirical Interpolation Method (DEIM [34]) is employed to strategi-
cally select informative samples from a snapshot matrix associated to a PDE. The objective is to
reduce the dimensionality of the high-dimensional system while retaining essential features, ulti-
mately enhancing the efficiency of subsequent data-driven methodologies. DEIM is a discrete variant
of the empirical interpolation method (EIM) designed for constructing approximations of non-affine
parameterized functions in continuous bounded domains, offering an associated error bound on
the quality of approximation [35]. In particular, we utilize Q-DEIM method which improves upon
the original DEIM algorithm by providing a superior upper bound error and exhibiting numerically
robust, high-performance procedures available in widely-used software packages such as Python,
LAPACK, ScaLAPACK, and MATLAB [34].

The selected Q-DEIM samples are employed to train a DNN within the context of a SINDy-based
algorithm. This integrated approach leverages the strengths of both Q-DEIM and neural networks,
where Q-DEIM efficiently captures the most relevant information from the PDE solution snapshots,
and the neural network learns the underlying dynamics. Therefore, we name our proposed ap-
proach greedy sampling neural network for sparse identification of nonlinear dynamical systems
(GN-SINDy). In a detailed exploration, we systematically assess the influence of most informative
samples obtained through Q-DEIM on the snapshot matrix of a partial differential equation (PDE) for
the purpose of discovering its governing equation. Additionally, we conduct a comparative analysis
between the outcomes of GN-SINDy and DeePyMoD[5] which uses random sampling approach. Our
results underscore the substantial effect of leveraging highly informative samples on the training
process of the DNN architecture for sparse identification of nonlinear PDE. Moreover, a Python pack-
age is prepared to support different implementation phases of GN-SINDy and its comparison with
DeePyMoD on PDE model discovery corresponding to the Allen-Cahn equation, Burgers’ equation
and Korteweg-de Vries equation.

This article is organised as follows: In Section 2, we provide an overview of the SINDy algorithm,
focusing on its application for identifying PDEs. We elaborate on our approach to greedy sampling

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 4

and its utilization in selecting the most informative samples from the dataset associated with PDEs
in Section 3. The GN-SINDyalgorithm, introduced in Section 4, is dedicated to the discovery of PDEs.
In Section 5, we delve into the simulation and comparative analysis of GS-PINN with DeePyMoD.
The paper concludes with a summary in Section 6.

2. An Overview of SINDy for PDE identification
Consider a nonlinear partial differential equations of the form

ut = f(u,ux,uxx, . . . , x), (1)

where the subscripts denote partial differentiation in either time t ∈ [0, tmax], or space x ∈
[xmin, xmax], and f is an unknown right-hand side that is generally a non-linear function of u(x, t),
and its derivatives. The goal in SINDy algorithm is to discover f(·) from the time series measure-
ments of the dynamical system at a set of spatial points x. The main assumption behind SINDy is
that the un-known function f(·) has only a few terms which makes the functional form sparse
with respect to large space of possible contributing terms. For instance we can name Allen-Chan
equation (f = 0.0001uxx − 5u3 + 5u) or Korteweg-De Vries equation (f = −6uux − uxxx).
SINDy algorithm is summarized in the following four steps.

1. Data collection:

To do so we first measure u at m different time instances and n spatial locations, and we
construct a single column vector U ∈ Rn·m.

2. Constructing the dictionary of basis functions:

At the second step we have to construct a dictionary consist of D candidate liner, nonlinear,
and partial derivatives for the PDE:

Θ(U) =
[
1, U, U2, . . . , Ux, UUx, . . .

]
, Θ ∈ Rnm×D, (2)

where each single column of the matrix Θ contains all of the values of a particular candidate
function across all of the n ·m space-time grid points that data are collected. For example
if we measure our process at 200 spacial locations, at 300 time instances and we include
40 candidate terms in the PDE, then Θ ∈ R200·300×40. These basis functions represent the
possible dynamics that the system can exhibit. The choice of basis functions depends on the
specific problem and can range from simple polynomials to more complex functions such as
trigonometric functions or exponential functions and it is quite essential for the success of
the algorithm.

3. Computing the time derivative:

The third step in the SINDy algorithm is to compute the time derivative of U, which is
often implemented numerically. Having Ut and other ingredients we can write the system of
equation (1) in the following form:

Ut = Θ(U)ξ, (3)

where ξ ∈ RD is an unknown vector that has to be computed by proper algorithm and
its elements are coefficients corresponding to the active terms in the dictionary Θ(·) that
describe the evolution of the dynamic system in time. We show by ξi, the ith element of this
column vector.

4. Solving the sparse identification problem: The last and fourth step in the SINDy algorithm is
to compute the coefficient vector ξ through a least squares optimization formulation which is
a Nondeterministic Polynomial time (NP) mathematical hard problem. Therefore, there is a
need to introduce a regularization technique that promotes sparsity. In the realm of regression
analysis, different techniques address the challenges associated with model complexity and
overfitting. Ordinary least squares (OLS) optimization, a classical method, often leads to
complex models vulnerable to overfitting. Recognizing this limitation, sparse optimization

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 5

techniques, such as LASSO and Ridge regression, introduce regularization to the OLS objective
function [36, 37]. LASSO employs an l1 penalty, promoting sparsity in the coefficient vector
and facilitating effective feature selection, while Ridge regression, utilizing an l2 penalty,
enhances stability by addressing multicollinearity and preventing overfitting.

The sequential threshold ridge regression (STRidge) algorithm builds on these principles,
introducing a regularized variant of OLS that effectively deals with challenges in discovering
physical laws within highly correlated and high-dimensional datasets. STRidge addresses
the limitations of standard regression methods, making it particularly useful in scenarios
involving spatio-temporal data or complex, correlated features. Each of these approaches
represents a nuanced trade-off between model complexity and predictive accuracy, allowing
researchers and practitioners to tailor their choices based on the specific characteristics of
their datasets and the goals of their modeling endeavors.

In the original SINDy algorithm authors used STRidge to unveil elusive governing equations,
typically expressed as ODEs [22]. This approach laid the foundation for a broader framework
known as PDE-functional identification of nonlinear dynamics (PDE-FIND)[4], facilitating the
discovery of unknown relationships within the system [38]. In some other approaches as dis-
cussed in [39, 40], the authors considered to have some prior knowledge regarding non-zero
terms in the coefficient vector ξ, which contradicts with the main assumption of SINDy based
approaches. The hyperparameters in STRidge include the regularization weight λSTR toler-
ance level tolSTR, and maximum iteration max-iterSTR which are to be tuned to identify
appropriate physical models. The convergence of analysis of sequential thresholding can be
found in [41].

3. Importance of the sampling methods for PDE discovery
By strategically opting the most informative samples, we can ensure that the identified PDE faith-
fully represents the intricate dynamics of the system. This careful selection not only enhances the
predictive capacity of the model but also provides valuable insights into the underlying physical
processes. Moreover, choosing the most informative samples expedite the training time of the DNN,
and hence reduces the associated computational cost. Conversely, an inadequate sampling strategy
may lead to inaccuracies in PDE identification, hindering scientific advancements in diverse fields.
Therefore, the judicious combination of an effective sampling strategy with the consideration of
informative samples is pivotal for the successful and reliable identification of PDEs.

Within the existing body of literature, several residual point sampling methodologies have pre-
dominantly found application. Noteworthy among these are non-adaptive uniform sampling tech-
niques, including (i) the equispaced uniform grid, (ii) uniformly random sampling, (iii) Latin hyper-
cube sampling [13], (iv) the Halton sequence [42], (v) Hammersley sequence [43], and (vi) the Sobol
sequence [44]. Additionally, adaptive non-uniform sampling approaches, such as Residual-based
Adaptive Distribution (RAD) and Residual-based Adaptive Refinement with Distribution (RAR-D)
[45], have been explored. Despite the potential offered by these methodologies, they exhibit a strong
dependence on specific problem characteristics and commonly entail laborious and time-intensive
processes. Notably, adaptive sampling methods like RAD or RAR-D necessitate dataset re-sampling
within the training loop of the NN, introducing considerable computational overhead to the asso-
ciated algorithm. For a comprehensive exploration of non-adaptive and residual-based adaptive
sampling strategies and their comparisons in PINN training, the interested reader is directed to the
detailed investigation presented in [45].

In numerous practical scenarios, like phase-field modeling or fluid dynamics, sensors are com-
monly employed to measure state variables. The quantity of sensors is often restricted by physical
or financial constraints, and strategically situating these sensors is vital for attaining accurate es-
timations. Unfortunately, identifying the optimal locations for sensors to deduce the parameters
of the PDE poses an inherent combinatorial challenge. Existing approximation algorithms may not
consistently yield efficient solutions across all pertinent cases. The matter of optimal sensor place-
ment captivates research attention, extending its significance even into domains such as control
theory and signal processing [16].

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 6

Literature have documented five categories of strategies for positioning sensors, as follows: (i)
techniques relying on proper orthogonal decomposition (POD) [46] or sparse sensing like compressed
sensing [47], (ii) methodologies involving convex optimization [48], (iii) algorithms guided by a
greedy approach, exemplified by Frame-Sens [49], (iv) heuristic methods, including population-
based search [50], and (v) application of machine learning methodologies [51]. The applicability
of these methods is limited to particular cases due to conservative assumptions, complexity in
implementation for large scale problems.

An interesting numerical technique that can be employed as a sampling method is Q-DEIM algo-
rithm which is originated in the context of model order reduction for high-dimensional dynamical
systems [52]. It is particularly useful when dealing with large-scale problems, such as those aris-
ing in computational physics or engineering simulations. Q-DEIM aims to identify a reduced set
of basis functions that capture the essential dynamics of the system by exploiting the empirical
interpolation idea. The method tactically selects a sparse set of interpolation points from the high-
dimensional state space, enabling an efficient representation of the system’s behavior. Q-DEIM has
proven to be effective in reducing the computational cost associated with solving complex systems
by constructing a low-dimensional surrogate model while preserving key system features.

In the case of PDE discovery, and specifically DNN framework, with an increase in the number
of training samples, the training duration also extends. To address this issue, selecting a set of
informative samples for network training becomes crucial. Our subsequent goal is to identify the
governing PDE underlying the data set within SINDy procedure. To be more precise, we methodically
investigate the impact of the most informative samples acquired via Q-DEIM on PDE snapshot matrix.

3.1. Notes on Q-DEIM algorithm
Herein, we provide a concise introduction to Q-DEIM algorithm, emphasizing its association with
a well-known model order reduction technique known as POD. POD has been used widely to select
measurements in the state space that are informative for feature space reconstruction [53]. Consider
the set of snapshots {u1, . . . , um} ∈ Rn and an associated snapshot matrix U = [u1, . . . , um] ∈
Rn×m that is constructed by measuring the solution at m different time instances and n different
spatial locations of a PDE. In the conventional POD, we construct an orthogonal basis that can
represent the dominant characteristics of the space of expected solutions that is defined as Range U ,
i.e., the span of the snapshots. We compute the singular value decomposition (SVD) of the snapshot
matrix U ,

U = ZΣY⊤, (4)

where Z ∈ Rn×n, Σ ∈ Rn×m, and Y ∈ Rm×m with Z⊤Z = In, Y⊤Y = Im, and Σ =
diag(σ1, σ2, · · · , σz) with σ1 ≥ σ2 ≥ · · · ≥ σz ≥ 0 and z = min{m,n}. The POD will select V
as the leading r left singular vectors of U corresponding to the r largest singular values. Using
Python-Numpy array notation, we denote this as V = Z[:, : r]. The basis selection via POD mini-
mizes V := minΦ∈Rn×r ∥U −ΦΦ⊤U∥2F , where ∥ · ∥F is the Frobenius norm, over all Φ ∈ Rn×r with
orthonormal columns. In this regard, we can say U = ZΣY⊤ ≈ ZrΣrY

⊤
r , where matrices Zr and

Y⊤
r contain the first r columns of Z and Y⊤, and Σr contains the first r × r block of Σ. More

details regarding POD can be found in [54].
While the reduced-order model resides within the r-dimensional subspace, the conventional

POD encounters a challenge when transitioning back to the original space. To address this issue,
various approaches have been proposed in the literature, with DEIM being one such solution [52].
Notably, DEIM offers the distinct advantage of flexibility, allowing its outcomes to extend beyond
the realm of model order reduction, especially in the context of nonlinear function approximation.
Additionally, the performance of the original DEIM algorithm has been enhanced by incorporating
QR-factorization, resulting in two notable improvements: (i) a reduction in upper bound error
and (ii) increased simplicity and robustness in implementation. Q-DEIM leverages the pivoted
factorization of QR factorization and the SVD, providing a robust sampling method. Specifically,
we employ QR factorization with column pivoting on Z⊤

r and Y⊤
r to identify the most informative

samples in the snapshot matrix U . This pivoting technique offers an approximate greedy solution
for feature selection, termed submatrix volume maximization, as the matrix volume is defined
by the absolute value of the determinant. Note that QR-factorization has been implemented and

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 7

optimized in most scientific computing packages and libraries, such as MATLAB, and Python. Further
details about Q-DEIM, its theoretical analysis, and applications can be found in [52,53].

3.2. Applying Q-DEIM algorithm on PDE dataset
We employ the Q-DEIM algorithm to acquire the most valuable samples on the spatio-temporal grid,
utilizing the snapshot matrix U . To accomplish this, initially SVD is performed on the snapshot
matrix U , yielding matrices Z, Σ, and Y⊤. Choosing r leading singular values is determined
based on a precision value ϵthr, which is associated with the underlying dynamical system and is
subject to heuristic selection. In the literature, ϵthr is commonly known as the energy criterion
[55]. Specifically, the r leading singular values are chosen to satisfy the following criterion:

1−
∑r

j=1 σj∑z
k=1 σk

< ϵthr, r < z, (5)

once the desired level of precision is attained, we create a reduced approximation of the snapshot
matrix U by extracting the first r columns of matrix Z, the first r singular values from the
diagonal matrix Σ, and the initial r rows of Y⊤. In Python notation, this process is expressed
as Zr = Z[:, : r], Σr = Σ[: r, : r], and Y⊤r = Y⊤[: r, :]. To identify significant time and space
indices, we implement QR decomposition with column pivoting on the reduced-order matrices Y⊤

r
and Z⊤

r , housing the foremost r left and right singular vectors. The indices corresponding to the
most informative spatio-temporal points in the snapshot matrix U are denoted as indx and indt.
For simplicity, we represent pairs of space-time points as (ti, xi) and their associated solutions as
ui. Algorithm 1 succinctly outlines the essential steps of the Q-DEIM sampling approach, taking the
snapshot matrix U , spatio-temporal domains x, t, and the precision value ϵthr as inputs and yielding
sampled pairs (ti, xi) along with the corresponding measured values u(ti, xi). The cardinality of
the sampled dataset is denoted as N .

3.2.1. Importance of domain division

To analyze the local dynamics in the dataset and pinpoint optimal points in the spatio-temporal
domain, we utilize a method that involves partitioning the time domain into uniform intervals.
This approach employs the Q-DEIM on each sub-domain to enhance efficiency. The parameter
representing the number of divisions in the time domain is denoted as tdiv. In this particular
setup, the subdomains are non-overlapping, resulting in the total number of selected points being
a combination of samples chosen from each subdomain.

In the context of Python notation, if we opt to divide the time domain into three parts, the
representation will be as follows: the first part as U [:, : m/3], the second part as U [:, m/3 : 2m/3],
and the third part as U [:, 2m/3 :]. This decomposition strategy is designed to capture the local dy-
namics of the partial differential equation (PDE) in each subdomain, focusing on sampling the most
informative segments of the snapshot matrix. The rationale behind this lies in recognizing that
the system’s behavior might showcase variations across different domains, with specific physical
attributes exhibiting notable distinctions. Noteworthy examples include issues related to abrupt
features like shock waves, which may manifest these differences. Furthermore, dividing a large
domain into smaller sub-domains and independently applying Q-DEIM to each sub-domain serves
to alleviate the necessity for intricate neural network structures in PDE discovery. This stream-
lined approach enhances computational efficiency and facilitates a more targeted analysis of local
variations within the dataset.

4. GN-SINDy: Greedy Sampling Neural Network for Sparse
Identification of PDEs

The DNN has been widely used in literature for solving PDEs due to their strength as the universal
function approximators that can represent and learn complex relationships between input data
and output solutions. This property is especially valuable in the context of PDEs, where finding
analytical solutions may be challenging or impossible for certain complex systems [56]. However,

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 8

Algorithm 1: Sample selection based on a two-way Q-DEIM procedure
Data: U , {xk}nk=1, {tk}mk=1, ϵthr.
Result: indt, indx, domain sampled pairs (ti, xi) and u(ti, xi).

1 r = 1;
2 Z,Σ,Y⊤ ← SVD(U), ▷ computing SVD on snapshot matrix U ;

3 Find the lowest r, such that 1−
∑r

j=1 σj∑z
j=1 σj

≥ ϵthr;

4 Zr ← Z[:, : r], Y⊤
r ← Y⊤[: r, :], ▷ selecting r dominant left and right singular vectors;

5 indx ← QR(Z⊤
r , pivoting = True), ▷ storing pivots from pivoted QR factorization of Z⊤

r ;
6 indt ← QR(Yr, pivoting = True), ▷ storing pivots from pivoted QR factorization of Y⊤

r ;
7 xi ← from indx, ti ← from indt, u(ti, xi);

for the case of PDE model discovering from a given snapshot matrix there exist a few works that
addressed such problem. Our DNN structure is similar to the work reported in [5] with mainly
difference in the Q-DEIM algorithm that we employ to select the most valuable samples in the
training loop. Several other works extended the results of [5] for the case of noisy and scarce
dataset by using integration scheme in the DNN training loop [2, 3].

The process of model discovery through deep learning involves the utilization of a neural network
to generate a surrogate model, denoted as û, for the given data u. A collection of potential
terms, represented by the dictionary Θ, is established through automatic differentiation from û.
The neural network is then restricted to solutions permissible within this term dictionary. The
network’s loss function encompasses two key components: (i) a mean square error aimed at learning
the mapping (t, x)→ û and (ii) a term designed to impose constraints on the network’s solutions,

L =
1

N

N∑
i=1

(
u(ti, xi)− û(ti, xi)

)2

+
1

N

N∑
i=1

(∂û(ti, xi)

∂ti
−Θ

(
û(ti, xi)

)
ξ
)2

, (6)

where the domain sampled pairs (ti, xi), and u(ti, xi) are computed by employing Q-DEIM algorithm
on the snapshot matrix U .

The sparse vector ξ is being learned during the training loop, and has two roles: (i) identifying
the active elements, or those with non-zero values, in the PDE, and (ii) imposing constraints on the
network based on these active terms. In our implementation we dissociate these two objectives
by uncoupling the constraint from the actual process of selecting sparsity. Initially, we compute
a sparsity mask, denoted as g, and subsequently restrict the network solely based on the active
terms identified within this mask. In the sense that rather than imposing constraints on the neural
network using ξ alone, we opt to constrain it with the element-wise multiplication of ξ and g,
thereby replacing equation (6) with:

L =
1

N

N∑
i=1

(
u(ti, xi)− û(ti, xi)

)2

+
1

N

N∑
i=1

(∂û(ti, xi)

∂ti
−Θ

(
û(ti, xi)

)
(ξ · g)

)2

. (7)

The training process according to equation (7) involves a two-step procedure. Initially, we
compute the sparsity mask, denoted as g, utilizing a sparse estimator. Subsequently, we minimize
it with respect to network parameters, employing the masked coefficient vector. Importantly, the
sparsity mask g does not necessitate a differentiable calculation, allowing for the utilization of any
traditional, non-differentiable sparse estimator.

This approach has the following advantages: i) it furnishes an impartial estimate of the coefficient
vector by abstaining from applying l1 or l2 regularization on ξ ii) the sparsity pattern is derived
from the complete dictionary Θ rather than solely from the persisting active terms, enabling the
dynamic inclusion and exclusion of active terms throughout the training process. In this regard our
training loop consist of a (i)function approximator that creates a surrogate model of the dataset,
(ii) a dictionary Θ of possible terms and time derivatives ∂û

∂t , (iii) a sparsity estimator that creates
a mask to choose the active columns in the dictionary using sparse regression technique, and (iv)
a constraint that imposes the function approximator to the solutions allowed by the active terms
obtained by sparsity estimator.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 9

Notes on sparsity mask and sparsity estimator The sparsity mask g is computed using an
estimator which is not involved in the training loop of the DNN structure and it is not differentiable.
Therefore, the right procedure to update the sparsity mask g within the training loop is essential
for the success of the algorithm. In particular, it is important to allow the function approximator
unit learns the solution u for some iterations, then the sparsity mask be updated. We control the
update of the sparsity mask g with parameters patience, periodicity. We define the patience as
the number of iterations that we allow the DNN to learn the solution u before applying the sparsity
mask. Moreover, the periodicity refers to the consistent intervals at which we check whether
sparsity mask needs to be updated or not within the training iterations. Sparsity threshold δspr is a
value that we impose on the solution that is computed via sparsity estimator to update the sparsity
mask g. Note that the sparse estimator solves ∂û(ti,xi)

∂ti
−Θ

(
û(ti, xi)

)
ξest = 0 , where ξest is its

solution. The elements of the vector ξest that have absolute values less than sparsity threshold δspr
will be used to update the sparsity mask g. It is worth to highlight that an appropriate algorithm
that promotes sparsity can be used to compute ξest such as STRidge [4], LASSO [57].

Notes on constraint The sparse coefficient vector ξ is computed concurrently through the DNN train-
ing loop. When the sparsity mask g is updated, the dictionary columns corresponding to inactive
terms are omitted in the solution of ∂û(·)

∂t −Θ
(
û(·)

)
ξ = 0. Note that by default it is assumed that

all the dictionary terms are active (sparsity mask g). Omitting inactive terms in the dictionary Θ
in parallel to decreasing mean square error which decreases the complexity of finding the coefficient
vector ξ. Moreover, any suitable algorithm that promotes sparsity can be used to compute ξ such
as STRidge [4], LASSO [57].Algorithm 2 summarizes the procedure that has been explained in this
section. Moreover a schematic diagram of GN-SINDy algorithm is depicted in Figure 1.

Algorithm 2: GN-SINDy: greedy sampling neural network for sparse identification of
nonlinear PDEs

Data: U , x, t, ϵthr for the Q-DEIM algorithm, a neural network Gθ (parameterized by θ),
maximum iterations max-iter, patience, periodicity, and sparsity threshold
δspr

Result: Estimated coefficient vector ξ
1 (ti, xi), u(ti, xi)← Apply Q-DEIM(U) based on Algorithm 1 ▷ selecting most informative

samples;
2 Initialize the DNN module parameters;
3 k = 1;
4 Initialize the sparsity mask g;
5 while k < max-iter do
6 - Feed the domain pairs (ti, xi) as an input to the DNN (Gθ) and predict output

û(ti, xi);
7 - Construct the library Θ

(
û(ti, xi)

)
;

8 - Compute the derivative information ∂û(ti,xi)
∂ti

using automatic differentiation;
9 - Compute the coefficient vector ξ by sparsity promoting algorithm such as STRidge,

subject to the sparsity mask g to solve ∂û(ti,xi)
∂ti

−Θ
(
û(ti, xi)

)
(ξ · g) = 0;

10 - Compute the cost function (7);
11 - Update the parameters of Gθ and the coefficient vector ξ using gradient descent;
12 if (k - patience) %periodicity == 0 then
13 - Update the sparsity mask g using Lasso or STRidge algorithm subject to the

solution ∂û(ti,xi)
∂ti

−Θ
(
û(ti, xi)

)
ξest = 0 and sparsity threshold δspr;

14 ▷ note that updating the sparsity mask is done independent from estimated
coefficients

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 10

Figure 1: A schematic diagram of GN-SINDy for PDE discovery. (a) sampling PDE dataset with
Q-DEIM algorithm to choose the most informative samples, (b) feeding the valuable sam-
ple pairs (ti, xi) computed by Q-DEIM into DNN and utilizing the output of the DNN as
the function approximator û to construct the dictionary Θ and to compute the ∂û

∂t via
automatic differentiation (c) estimating the coefficient vector ξ via stochastic gradient
descent subject to the loss function L and sparsity mask.

5. Simulation Results
In this section we employ GN-SINDy algorithm on several PDEs including, Burgers’ equation, Allen-
Cahn equation, and Korteweg-de Vries equation. We also compare the results of the GN-SINDy with
DeePyMoD [5] where samples are selected randomly for PDE discovery. The simulation examples have
different level of complexity and non-linearity. We emphasize that, within our framework, we do
not take into account the boundary conditions of the PDEs. This is because our primary objective is
not to solve these equations but rather to discover the governing equation. Each example undergoes
a two-part simulation process. In the first part, we apply Q-DEIM to the provided snapshot matrix
of a PDE to pinpoint the most informative samples. In the second part, we make use of most
informative samples to train our DNN and estimate the coefficient vector ξ.

Since we have no prior knowledge of the various hyperparameters required for GN-SINDy, we do
some trial and error to find the right configuration setup. The Q-DEIM algorithm, which filters out
informative samples from unimportant ones, is the main step in our procedure. A suitable trade-off
must be considered for the time division tdiv and the precision value ϵthr, since the cardinality of
the sample set can be varied by setting these parameters. We first fix the time division parameter
tdiv for each example and vary the precision value ϵthr to obtain the most informative samples
corresponding to each example. Then, we randomly select a part of these informative samples
to train the DNN structure for PDE descovery. It is worth highlighting that the cardinality of the
candidate informative samples used in the GN-SINDy algorithm is considered as the minimum
possible value needed to recover the PDE. We identify this minimum number by testing different
setups for Q-DEIM algorithm, sparse estimator, constraint, sparsity scheduler and DNN structure.
We show that using the Q-DEIM algorithm on the PDE snapshot matrix U provides us with valuable
insight to capture the local dynamics, so that even randomly selecting the fraction of resulting
subsamples will increase the success rate of discovering the governing equation compared to the
approaches that directly randomly sample the PDE snapshot matrix, such as DeePyMoD.

Data generation. The dataset in this article are taken from repositories reported in [4, 5]. Our
data preprocessing step only includes selecting the most informative samples by employing Q-DEIM al-
gorithm on the snapshot matrix of PDE dataset. Our procedure to select the samples has two stages:
(i) we employ Q-DEIM with the appropriate setting for the precision threshold ϵthr and the time
division tdiv, (ii) we choose randomly portion of the Q-DEIM samples for the training loop of the
GN-SINDy. For each PDE we also mention the original range of the space-time domain dataset.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 11

Architecture. Our method utilizes multi-layer perceptron networks equipped with periodic acti-
vation functions, particularly adopting the SIREN architecture introduced by [58]. This approach
facilitates the extraction of implicit representations from measurement data, allowing us to cus-
tomize the number of hidden layers and neurons for each specific example. We specify number of
hidden layers and associated number of neurons for each PDE inclusively.

Hardware. Our endeavor to uncover governing equations via neural network training and param-
eter estimation necessitated the utilization of cutting-edge computational resources. To this end,
we employed an Nvidia®RTX A4000 GPU, with its robust 16 GB of RAM, to handle the computa-
tionally demanding aspects of our research. For CPU-intensive tasks, such as data generation, we
harnessed the power of a 12th Gen Intel® Core™i5-12600K processor, equipped with a remarkable
32 GB of memory.

Training set-up. We use the Adam optimizer which is a popular optimization algorithm in deep
learning. The optimizer is configured with learning_rate = 10−3, signifying the step size for
updating the model’s parameters during training [59]. Notably, the beta values for the exponential
moving averages were set to 0.99, placing increased emphasis on past gradients in the optimization
process [59]. Additionally, the amsgrad variant was enabled, ensuring the stability of the optimizer’s
update rule for the moving average of squared gradients [59]. These hyperparameter choices were
made to enhance the convergence and performance of the neural network model, demonstrating
a thoughtful consideration of optimization strategies in the pursuit of improved computational
results. Specification of the dictionary Θ, the sparsity estimator to update the sparsity mask g,
and the constraint on the coefficient vector ξ for the PDE discovery together with their related
parameters will be given inclusively. Furthermore, number of time domain division (tdiv) to apply
Q-DEIM for each PDE dataset, precision value (ϵthr), and maximum number of iterations (max-iter)
will be mentioned separately for each example. Lastly, to ensure reproducibility in our experiments,
random number generators were seeded using specific values. The NumPy library was initialized
with the seed 42, and the PyTorch library with the seed 50 in all the simulation examples. This
deliberate seeding allows for the precise replication of random processes, facilitating the verification
and validation of our results by other researchers

5.1. Burgers’ equation
Burgers’ equation, named after the Dutch mathematician and physicist Jan Martinus Burgers, is
a fundamental PDE that arises in the study of fluid dynamics and nonlinear waves. Introduced in
1948, this equation represents a simplified model for one-dimensional, inviscid fluid flow with small
amplitude and shallow water conditions. Burgers’ equation combines elements of both the linear
advection equation and the nonlinear conservation law, making it a versatile tool in the analysis
of various physical phenomena. Burgers’ equation is often expressed as:

∂u

∂t
+ γu

∂u

∂x
+ ν

∂2u

∂x2
= 0, (8)

where u(x, t) represents the velocity field of the fluid at a spatial location x and time t and γ and
ν are constant with nominal values γ = −1 and ν = 0.1, respectively.

The physical interpretation of Burgers’ equation can be understood by considering the propa-
gation of a wave in a fluid. As the wave propagates, the fluid particles experience shearing forces
due to the presence of the wave. These shearing forces cause a change in the velocity of the fluid
particles, which is governed by Burgers’ equation.

It is worth to highlight that Burgers’ equation has been applied to model a wide range of phys-
ical phenomena, including: fluid flows, traffic flow, and population dynamics [60]. Moreover, it
exhibits several important properties that makes it a versatile tool for modeling physical phenom-
ena. In particular, the nonlinear term u∂u

∂x gives rise to the formation of shock waves, which are
characterized by sharp discontinuities in the velocity field. The presence of the diffusion term ∂2u

∂x2

imparts a dissipative nature to the equation. This means that the amplitude of the waves will decay
over time, reflecting the energy dissipation due to viscosity. The equation also exhibits dispersion,

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 12

meaning that the speed of the waves depends on their wavelength. This is a consequence of the
linear advection term u∂u

∂x . These properties make Burgers’ equation a powerful tool for analyzing
a wide range of physical phenomena, from fluid flows to traffic patterns to population dynamics.

Analysis To generate the dataset for our simulation we use the solution of Burgers’ equation1.
The spatial domain x ∈ [−8, 8] and the time domain t ∈ [0.5, 10] are considered each having
100 samples, therefore the associate snapshot matrix U ∈ R100×100. For the simulation setup of
GN-SINDy we consider a 4 layer DNN structure each layer having 64 neurons, a dictionary consist
of the combination of polynomial and derivative terms up to order 2, a sparsity scheduler with
periodicity = 100, patience = 500, a sparse estimator STRidge with the hyperparameters
maximum iteration 100 and sparsity threshold δspr = 0.05, a constraint STRidge with maximum
iteration max-iterSTR = 100 and tolerance tolSTR = 0.05. For both sparse estimator and constraint
the regularization weight set to λSTR = 0. Moreover, the maximum iteration of the training loop is
considered max-iter = 25000. With the mentioned settings our dictionary has the following terms

[1, u, uxx, u, uux,uuxx,u
2,u2ux,u

2uxx].

In a set of experiments, we consider to choose different values for the precision ϵthr of the
Q-DEIM algorithm with time division tdiv = 2 to see how it affects GN-SINDy performance. Set of
different values are ϵthr = {10−3, 10−4, 10−5, 10−6} which results 121, 180, 245 and 1313 samples
respectively. With a few times trial and error we discover the Burgers’ equation with 50 random
samples among total of 245 samples corresponding to ϵthr = 10−5. Applying the Q-DEIM algorithm
with the mentioned setup on the snapshot matrix reveals that the valuable parts of the Burgers’
equation lies on the interval x ∈ [0, 5]. In Figure 2 we show the result of Q-DEIM algorithm
corresponding to tdiv = 2 and ϵthr = 10−5.

To evaluate the GN-SINDy performance corresponding to each precision value ϵthr we choose 50
random samples among the samples that Q-DEIM provided, for the training of our DNN structure.
The results of the simulations is shown in the Table 1. This result proves the importance of
choosing right precision value ϵthr to select the most informative samples. Decreasing precision
value ϵthr forces Q-DEIM algorithm to choose more samples form the snapshot matrix that these
samples may not carry valuable information, therefore increases the failure rate of the GN-SINDy.
In addition, with the results of Table 1, we identify the proper setting for the Q-DEIM algorithm
hyperparameters which are ϵthr = 10−5 and tdiv = 2.

Table 1: GN-SINDy performance with different precision value ϵthr, fixed tdiv = 2 and fixed sample
size 50 for recovering Burgers’ equation

Precision value Estimated PDE

ϵthr = 10−3 ut + 0.0993uxx − 1.0037uuxx = 0
ϵthr = 10−4 ut + 0.1019uxx − 1.0236uuxx = 0
ϵthr = 10−5 ut + 0.0985uxx − 0.9857uuxx = 0
ϵthr = 10−6 ut + 0.0983uxx − 0.9969uuxx = 0

In a more advanced analysis, we contemplate exploring how the performance of the GN-SINDy al-
gorithm is influenced by varying sparse estimators and constraints. To do so, we maintain the
simulation setup as previously specified and evaluate diverse combinations of sparse estimators
and constraints, including STRidge, LASSO, and OLS. The sparsity threshold for sparse estimator of
both types STRidge and LASSO is set to δthr = 0.05. From the results reported in Table 2 we can
conclude that choosing STRidge as the sparsity estimator has a significant impact on recovering
right PDE model for Burgers’ equation. Moreover, these results show that choosing most informa-
tive samples has to be combined with the suitable choice of sparse estimator and constraint so that
GN-SINDy can recover the model correctly.

In the next phase of simulation, we consider to evaluate the performance of GN-SINDy under
variation of the DNN structure. In this regard we fixed the previous setup, i.e. precision value
1https://www.iist.ac.in/sites/default/files/people/IN08026/Burgers_equation_viscous.pdf

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

 https://www.iist.ac.in/sites/default/files/people/IN08026/Burgers_equation_viscous.pdf

F. Author, S. Author: Example short title 13

Figure 2: (left) Entire dataset ; (right) Greedy samples resulted by Q-DEIM algorithm for Burgers’
equation with tdiv = 2 and ϵthr = 10−5.

Table 2: GN-SINDy performance with different sparse estimator and different constraint under fixed
Q-DEIM setting ϵthr = 10−5, tdiv = 2 and fixed sample size 50 for recovering Burgers’
equation

Sparse estimator Constraint Estimated PDE

STRidge STRidge ut + 0.0985uxx − 0.9857uuxx = 0
LASSO STRidge ut + 0.1014uxx − 0.7531uux − 0.2754u2ux = 0

STRidge OLS ut + 0.1014uxx − 1.0018uux = 0
LASSO OLS ut + 0.1011uxx − 0.7481uux − 0.2798u2ux = 0

ϵthr = 10−5, tdiv = 2, selecting 50 samples from samples earned by Q-DEIM algorithm, sparse
estimator and constraint both of the type STRidge. Moreover, the number of hidden layers is
fixed to 4 and we vary the number of neurons in each layer based on a geometric sequence with a
common ratio of 2 with initial value 8 neurons. As reported in Table 3, the results show that all the
configurations have a good performance and the combination of STRidgeas the sparse estimator
and as the constraint is robust under alteration of DNN structure except for the case of 8 neurons
in each layer.

Table 3: GN-SINDy performance with different DNN structure, sparse estimator STRidge, constraint
STRidge, fixed precision value ϵthr = 10−5, fixed tdiv = 2 and fixed sample size 50 for
recovering Burgers’ equation

DNN structure Estimated PDE

[2, 8, 8, 8, 8, 1] ut − 0.1014uxx − 0.9054uux − 0.2230u2uxx = 0
[2, 16, 16, 16, 16, 1] ut + 0.1006uxx − 1.0086uuxx = 0
[2, 32, 32, 32, 32, 1] ut + 0.1004uxx − 1.0091uuxx = 0
[2, 64, 64, 64, 64, 1] ut + 0.0985uxx − 0.9857uuxx = 0

Finally, we compare the performance of GN-SINDy and DeePyMoD([5]). The same setup is assumed
for both algorithms, with the knowledge that DeePyMoD uses random sampling to choose samples
from snapshot matrix, sparse estimator of the type LASSO and constraint of the type OLS. In
Figure 3a, and Figure 3b the results of comparison between GN-SINDy and DeePyMoD are shown.
It is quite obvious how Q-DEIM algorithm assist GN-SINDy with 0.5%(50/10000) of the entire dataset
to successfully recover the right model. In particular, from Figure 3a (left) as the evolution of the
coefficient demonstrates the uxx term is identified earlier while uux has more fluctuations. Precise

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 14

value of the estimated coefficients for Burgers’ equation with sampling size 50 and different methods
are reported in Table 4. From this result we see that GN-SINDy outperforms DeePyMoD and can
recover the Burgers’ equation with acceptable precision.

Table 4: Comparing GN-SINDy and DeePyMoD for Burgers’ PDE discovery

Algorithm Estimated PDE

GN-SINDy ut + 0.0985uxx − 0.9857uux = 0
DeePyMoD[5] ut − 0.0287ux + 0.0971uxx − 0.6326uux − 1.0872u2ux = 0

(a) GN-SINDy performance: (right) Entire dataset; (middle) selection of 50 Greedy samples resulted by
Q-DEIM algorithm for Burgers’ equation with tdiv = 2 and ϵthr = 10−5; (left) estimated coefficients with
GN-SINDy through the iterations.

(b) DeePyMoD performance: (right) Entire dataset; (middle) selection of 50 random samples for Burgers’
equation; (left) estimated coefficients with DeePyMoD through the iterations.

Figure 3: Comparison of the GN-SINDy performance with DeePyMoD in Burgers’ equation model
discovery

5.2. Allen-Cahn equation
The Allen-Cahn equation stands as a cornerstone of phase transition modeling, capturing the
transformation of physical quantities, commonly referred to as order parameters, as a material
undergoes transitions from one phase to another. Its elegance encompasses phenomena such as
solidification, crystal growth, and the emergence of domain patterns in magnetic materials. The

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 15

Figure 4: (left) Entire dataset ; (right) Greedy samples resulted by Q-DEIM algorithm for Allen-
Cahn equation with tdiv = 3 and ϵthr = 10−7.

Allen-Cahn equation is typically expressed in one dimension as

∂u

∂t
+ γ1uxx + γ2(u− u3) = 0, (9)

where u represents the order parameter, quantifying the level of order in the system, with nominal
values γ1 = 0.0001 and γ2 = 5. For example in a binary alloy, u = 1 corresponds to a pure A-phase,
u = −1 corresponds to a pure B-phase, and 0 represents a mixture of A and B. The Allen-Cahn
equation extends its reach beyond phase transitions, finding applications in various domains, such
as magnetic Domain Formation [61], phase Separation in Binary Alloys [62], wetting of Surfaces
[63], and pattern Formation in Biological Systems[64].

Analysis For Allen-Cahn equation we use the dataset that is reported in [5]. The PDE is discretized
in 512 spatial points and 201 time instances, therefore the snapshot matrix U ∈ R512×201 which
demonstrates the curse of dimensionality regarding PDE discovery. The setup of GN-SINDy algo-
rithm for Allen-Cahn equation is as follows: a 4 layer DNN structure each having 64 neurons, a
sparsity scheduler with patience = 1000 and periodicity = 100, both sparsity estimator and
the constraint are of the type STRidge with max-iterSTR = 100 and tolerance tolSTR = 0.1, a dic-
tionary with polynomial and derivative terms up to order 3. The maximum iteration for training
loop is set to max-iter = 25000. We note that the dictionary terms are

[1, ux, uxx, uxxx, u, uux, uuxx, uuxxx, u
2, u2ux, u

2uxx, u
2uxxx, u

3, u3ux, u
3uxx, u

3uxxx].

To find out the minimum number of samples that is required to discover the Allen-Cahn
equation we investigate the impact of precision value ϵthr on the performance of GN-SINDy. In
this regard we consider to evaluate GN-SINDy with the following set of precision values ϵthr =
{10−5, 10−6, 10−7, 10−8}. Q-DEIM algorithm based on these precision values will result 147, 209,
262, and 386 informative samples, respectively. With a few times trial and error we discover
Allen-Cahn PDE with 120 samples out of total 262 samples corresponding to the precision value
ϵthr = 10−7. With this setting, these 262 valuable samples are shown in Figure 4. From this figure
we see how Q-DEIM algorithm selects informative samples to capture the local dynamics at each
part of the domain. Moreover, it shows the importance of the time domain division for the sample
selection of the Q-DEIM algorithm.

To see how the other GN-SINDy configurations perform under different precision values we choose
120 samples randomly out of 147, 209, and 386 and we evaluate the performance of the algorithm
again. The results are reported in Table 5 which demonstrates that ϵthr = 10−7 has a better
performance with respect to the other cases. Our purpose to do comparison for different precision
value ϵthr is to find the best setting among all the possible combinations for the PDE discovery.

In the more quantitative analysis, we evaluate the performance of GN-SINDy under different
choices of the sparse estimator and the constraint. For the Q-DEIM settings we consider ϵthr = 10−7,

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 16

Table 5: GN-SINDy performance with different precision value ϵthr, tdiv = 3 and fixed sample size
120 for recovering Allen-Cahn equation

Precision value Estimated PDE

ϵthr = 10−5 ut + 0.0000uxx + 4.8759u− 4.8517u3 = 0
ϵthr = 10−6 ut + 0.0000uxx + 4.9379u− 4.9026u3 = 0
ϵthr = 10−7 ut + 0.0000uxx + 4.9643u− 4.9328u3 = 0
ϵthr = 10−8 ut + 0.0000uxx + 4.8733u− 4.8171u3 = 0

tdiv = 3 and we randomly select 120 samples for the DNN training. In addition, the DNN structure is
considered fixed as mentioned earlier, i.e. a 4 layer DNNwith 64 neurons in each layer. In table 6 we
report the results of these simulations. Almost all the configurations have the same performance,
however the combination of LASSO as the sparse estimator and OLS as the constraint is slightly
better than the others while the combination of LASSO and STRidge has .

Table 6: GN-SINDy performance with different sparse estimator and different constraint under fixed
Q-DEIM setting ϵthr = 10−7, tdiv = 3 and fixed sample size 120 for recovering Allen-Cahn
equation

Sparse estimator Constraint Estimated PDE

STRidge STRidge ut + 0.0000uxx + 4.9643u− 4.9328u3 = 0
LASSO STRidge ut + 0.0000uxx + 4.8477u− 4.7882u3 = 0

STRidge OLS ut + 0.0000uxx + 4.9790u− 4.9709u3 = 0
LASSO OLS ut + 0.0000uxx + 5.0175u− 4.9724u3 = 0

We also consider to evaluate the GN-SINDy algorithm when we vary the structure of the DNN. To
do so, we fix the number of hidden layers to 4 and we vary the number of neurons in each layer
based on a geometric sequence with a common ration of 2 with initial value 8 neurons. The results
of this experiments are reported in Table 7 where we GN-SINDyis robust to the DNNalteration.

Table 7: GN-SINDy performance with different DNN structure, sparse estimator STRidge, constraint
STRidge, fixed precision value ϵthr = 10−7, fixed tdiv = 3 and fixed sample size 120 for
recovering Allen-Cahn equation

DNN structure Estimated PDE

[2, 8, 8, 8, 8, 1] ut + 0.0000uxx + 5.0275u− 4.9655u3 = 0
[2, 16, 16, 16, 16, 1] ut + 0.0000uxx + 4.9901u− 4.9428u3 = 0
[2, 32, 32, 32, 32, 1] ut + 0.0000uxx + 4.9925u− 4.9481u3 = 0
[2, 64, 64, 64, 64, 1] ut + 0.0000uxx + 4.9643u− 4.9328u3 = 0

Moreover, we consider to do a comparison between GN-SINDy and DeePyMoD ([5]) to see how they
perform in discovering the PDE model with the same sample size. The same setup is considered for
DeePyMoD with its default sparse estimator as LASSO and constraint of the type OLS. The results of
the simulations are presented in Table 8, that we see clearly GN-SINDy outperforms DeePyMoD to
recover the Allen-Cahn PDE with acceptable precision. It is worth to highlight that the coefficient
corresponding to the term uxx is considerably less than the coefficient corresponding to the terms u
and u3 in the ground truth equation, hence recovering such a small coefficient it is quite difficult for
the DNN. Moreover, in Figure 5a and Figure 5b the selected greedy samples for GN-SINDy, random
samples for DeePyMoD and evolution of different coefficients through the iteration are shown. The
impact of Q-DEIM algorithm in the success of recovering correct coefficients is quite clear. Vice

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 17

versa DeePyMoD has a weak performance due to the usage of randomly selected samples in the
training loop of the DNN structure.

Table 8: GN-SINDy performance with different precision value ϵthr, tdiv = 3 and fixed sample size
120 for recovering Allen-Cahn equation

Algorithm Estimated PDE

GN-SINDy ut + 0.0000uxx + 4.9643u− 4.9328u3 = 0
DeePyMoD[5] ut + 0.8913 + 14.6374ux − 3.2769uxx + 1.5190uxxx − 7.7121u+ 26.0523uux

−10.0496uuxx + 1.4176uuxxx − 43.0762u+ 26.6733u2 + 1.9071u2ux

−0.3155u2uxx − 32.1551u3 − 12.7150u3ux + 0.3304u3uxx − 0.8281u3uxxx = 0

5.3. Korteweg-de Vries (KdV) equation
The Korteweg-de Vries (KdV) equation is a nonlinear, dispersive partial differential equation that
plays a central role in mathematical physics and nonlinear science. It was first introduced in
1895 by Dutch physicists Diederik Korteweg and Gustav de Vries to describe the propagation of
shallow water waves. Since then, it has found applications in a wide range of physical systems,
including plasma physics, optics, and condensed matter physics. The KdV equation is remarkable
for its integrability, meaning that it can be solved exactly using various mathematical techniques.
This property has led to the discovery of solitons, which are stable, localized waves that propagate
without changing shape. Solitons have been observed in various physical systems, including shallow
water waves, optical fibers, and Bose-Einstein condensates. The KdV equation has also been used
to develop a deeper understanding of nonlinear dynamics. It has been shown that the KdV equation
can exhibit a variety of complex behaviors, such as chaos and self-organization. These behaviors
have relevance to a wide range of phenomena in physics, biology, and social sciences. The KdV
equation remains a cornerstone of mathematical physics and nonlinear science, providing a rich
and insightful framework for understanding nonlinear waves and their diverse applications [65]. It
can be written as a partial differential equation in the form:

∂u

∂t
+ c uux + α uxxx = 0, (10)

where c and α are constant variables with the nominal values −6 and −1, respectively.

Analysis The discretization of the KdV equation is outlined in [4], which involves 512 spatial
points and 201 temporal points within the original spatial range of x ∈ [−30, 30] and a time span of
t ∈ [0, 20]. The snapshot matrix U ∈ R512×201 illustrates the challenge of dimensionality in training
the DNN for PDE discovery. In the first set of experiment to identify the most promising configuration
of the GN-SINDy to recover the KdV equation, we fix the time division tdiv = 2, and the following
set of precision values are considered ϵthr = {5×10−5, 10−5, 10−6, 10−7}. Now we need to set the
GN-SINDy hyperparameters which include the following settings: to choose the polynomial order
and the derivative orders for dictionary, to opt the type of sparse estimator and the constraint,
and finally the setting corresponding to the DNN structure. A 4 layer DNN structure is considered
where each layer have 32 neurons, sparse estimator and constraint of the type STRidge with
max-iterSTR = 100 and tolerance tolSTR = 0.1, sparse scheduler with patience = 1000 and
periodicity = 50, a dictionary with polynomial terms up to order 2 and derivative terms up to
order 3. The maximum iteration of the DNN training loop is considered max-iter = 25000. The
Q-DEIM algorithm provides 5725, 14450, 18432 and 19801 samples corresponding to each precision
value. This set of filtered samples shows the difficulty of choosing proper number of informative
samples for PDE discovery. With the proposed settings for the order of polynomial as well as
derivative terms of the dictionary the associated columns are

[1, ux, uxx, uxxx, u, uux, uuxx, uuxxx, u2, u2ux, u2uxx, u2uxxx].

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 18

(a) (right) Entire dataset ; (middle) selection of 120 Greedy samples resulted by Q-DEIM algorithm for
Allen-Cahn equation with tdiv = 3 and ϵthr = 10−7; (left) estimated coefficients with GN-SINDy.

(b) (right) Entire dataset ; (middle) selection of 120 random samples for Allen-Cahn equation; (left)
estimated coefficients with DeePyMoD.

Figure 5: Comparison of the GN-SINDy performance with DeePyMoD in Allen-Cahn equation model
discovery

With the mentioned GN-SINDy settings and among these set of informative samples corresponding
to each precision value we randomly select portion of each dataset to identify the smallest possible
number that can successfully recover the KdV equation. After a few times trial and error we realize
to take 900 samples from total number of informative samples corresponding to ϵthr = 10−5 that
results correct KdV equation. Note that we only use 0.87% of the entire dataset approximately
which shows significant reduction in computational cost. The outcomes of this experiment is shown
in the Table 9, which demonstrate that choosing the precision value ϵthr = 10−5 has the better
performance with respect to the other choices. Moreover, these results prove the importance of
choosing right precision value ϵthr in the success rate of GN-SINDy algorithm. Indeed decreasing
ϵthr selects the samples that may not contribute significantly into the model discovery. Moreover,
Figure 6 shows the entire dataset and selected samples by Q-DEIM algorithm corresponding to
tdiv = 2 and ϵthr = 10−5.

In a more sophisticated analysis we consider to investigate the impact of sparse estimator and
constraint on the KdV model discovery. To do so, we utilize the knowledge that we already
acquired regarding the settings of the Q-DEIM algorithm to filter out the informative samples as
well as the minimum number of cardinality that is required to recover the model. These settings are
tdiv = 2, ϵthr = 10−5 and 900 randomly selected samples out of total 14450 informative samples. In
this regard different combinations of sparse estimator and constraint are considered. The results
of these experiments are reported in Table 10 where we see all of the combinations have good
performance.

To see how GN-SINDy performs under DNN structural variations we consider to do set of exper-
iments. The GN-SINDy hyperparameters are set as mentioned earlier with the only alteration in

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 19

Figure 6: (left) Entire dataset ; (right) Greedy samples resulted by Q-DEIM algorithm for KdV
equation with tdiv = 2 and ϵthr = 10−5.

Table 9: GN-SINDy performance with different precision value ϵthr, time division tdiv = 2 and fixed
sample size 900 for recovering KdV equation

Precision value Estimated PDE

ϵthr = 5× 10−5 ut − 5.9994uux − 0.9995uxxx = 0
ϵthr = 1× 10−5 ut − 5.9955uux − 0.9975uxxx = 0
ϵthr = 1× 10−6 ut − 5.9639uux − 0.9850uxxx = 0
ϵthr = 1× 10−7 ut − 5.9860uux − 0.9959uxxx = 0

Table 10: GN-SINDy performance with different sparse estimator and different constraint under
fixed Q-DEIM setting ϵthr = 10−5, tdiv = 2 and fixed sample size 900 for recovering KdV
equation

Sparse estimator Constraint Estimated PDE

STRidge STRidge ut − 5.9955uux − 0.9975uxxx = 0
LASSO STRidge ut − 5.9899uux − 0.9952uxxx = 0

STRidge OLS ut − 5.9579uux − 0.9827uxxx = 0
LASSO OLS ut − 5.9799uux − 0.9933uxxx = 0

the number of neurons in each layer. We vary the number of neurons in each layer based on a
geometric sequence with a common ratio of 2 with initial value 8 neurons. The results of these
experiments are reported in Table 11 where we see GN-SINDy can not recover the KdV when the
number of neurons in hidden layers are 8 and 16. This reveals the challenge of selecting right
DNN structure for PDE discovery.

Table 11: GN-SINDy performance with different DNN structure, fixed precision value ϵthr = 10−5,
fixed time division tdiv = 2, fixed sample size 900 for recovering KdV equation, sparse
estimator and constraint of type STRidge

DNN structure Estimated PDE

[2, 8, 8, 8, 8, 1] ut − 0.5534uxxx − 8.4820uux + 11.1437u2ux = 0
[2, 16, 16, 16, 16, 1] ut − 1.1290uxxx − 5.7801uux + 2.3874uuxxx − 4.7362u2uxxx = 0
[2, 32, 32, 32, 32, 1] ut − 5.9955uux − 0.9975uxxx = 0
[2, 64, 64, 64, 64, 1] ut − 5.9812uux − 0.9923uxxx = 0

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 20

Lastly we consider to compare the GN-SINDy performance with DeePyMoD([5]). The same DNN struc-
ture is considered for DeePyMoD with its default sparse estimator and constraint of the type
LASSO and OLS respectively. The results of this simulation is shown in the Table 12 where we
clearly see that GN-SINDy outperforms DeePyMoD and can recover the PDE with 900 greedy sam-
ples. It is worth to highlight that DeePyMoD selects the samples randomly to train its DNN structure.
In Figure 7a and Figure 7b the candidate samples that are used in the training loop of each al-
gorithm are shown in the middle graphs, while the left graphs depict the evolution of different
coefficients thorough the training loop iterations corresponding to each algorithm. In particular
from coefficient evolution of GN-SINDy algorithm we see that the coefficient corresponding to the
term uxxx has a faster convergence rate respect to the coefficient corresponding to the term uux.

Table 12: Comparing GN-SINDy and DeePyMoD for KdV PDE discovery

Algorithm Estimated PDE

GN-SINDy ut − 5.9955uux − 0.9975uxxx = 0
DeePyMoD[5] ut − 2.5393ux + 3.1320uxxx + 2.5640uux − 10.1184uuxxx

+21.4131u2ux + 16.6569u2uxxx = 0

(a) (right) Entire dataset ; (middle) selection of 900 Greedy samples resulted by Q-DEIM algorithm for KdV
equation with tdiv = 2 and ϵthr = 10−5; (left) estimated coefficients with GN-SINDy.

(b) (right) Entire dataset ; (middle) selection of 900 random samples for KdV equation; (left) estimated
coefficients with DeePyMoD.

Figure 7: Comparison of the GN-SINDy performance with DeePyMoD in KdV equation model dis-
covery

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 21

6. Conclusion
A greedy sampling approach has been considered in the framework of sparse identification of non
linear dynamical systems (SINDy) which takes advantage of deep neural network (DNN) and its
strength for the PDE model discovery. In particular, our proposed methodology is the extension
of DeePyMoD([5]) with the integration of greedy sampling approach as the data collection and new
sparse estimator and constraint functions in the training loops of the DNN. In this setting, dis-
crete empirical interpolation method (DEIM) has been employed to extract the most informative
samples of a snapshot matrix associated to a PDE. Due to the usage of greedy samples with the
combination of DNN and SINDy algorithm the proposed approach has been named GN-SINDy. Our
comprehensive study on Burgers’ equation, Allen-Cahn equation, and Korteweg-de Vries equation
revealed that usage of greedy samples and sequential threshold ridge regression (STRidge) sig-
nificantly increase the success rate of the model discovery algorithm. In the comparison phase,
GN-SINDy outperformed DeePyMoD in all the simulation settings and we could discover Burgers’
equation, Allen-Cahn equation, and Korteweg-de Vries equation with with 0.5%, 0.1%, and 0.874%
of the dataset respectively. After conducting a comprehensive analysis with various simulation set-
tings, we have uncovered a fundamental challenge associated with the discovery of PDE and the
selection of appropriate hyperparameters for data-driven approaches.

References
[1] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification of nonlinear dynamics

with control (SINDYc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016.

[2] A. Forootani, P. Goyal, and P. Benner, “A robust SINDy approach by combining neural
networks and an integral form,” arXiv preprint arXiv:2309.07193, 2023.

[3] P. Goyal and P. Benner, “Neural ordinary differential equations with irregular and noisy data,”
Roy. Soc. Open Sci., vol. 10, no. 7, p. 221475, 2023.

[4] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery of partial
differential equations,” Science Advances, vol. 3, no. 4, p. e1602614, 2017.

[5] G.-J. Both, S. Choudhury, P. Sens, and R. Kusters, “Deepmod: Deep learning for model
discovery in noisy data,” Journal of Computational Physics, vol. 428, p. 109985, 2021.

[6] S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, “Data-driven identification of parametric
partial differential equations,” SIAM Journal on Applied Dynamical Systems, vol. 18, no. 2,
pp. 643–660, 2019.

[7] D. N. Tanyu, J. Ning, T. Freudenberg, N. Heilenkötter, A. Rademacher, U. Iben, and P. Maass,
“Deep learning methods for partial differential equations and related parameter identification
problems,” Inverse Problems, vol. 39, no. 10, p. 103001, 2023.

[8] F. De Barros, W. Mills, and R. Cotta, “Integral transform solution of a two-dimensional
model for contaminant dispersion in rivers and channels with spatially variable coefficients,”
Environmental Modelling & Software, vol. 21, no. 5, pp. 699–709, 2006.

[9] M. Zeneli, A. Nikolopoulos, S. Karellas, and N. Nikolopoulos, “Numerical methods for solid-
liquid phase-change problems,” in Ultra-high Temperature Thermal Energy Storage, Transfer
and Conversion. Elsevier, 2021, pp. 165–199.

[10] B. Bai, H. Ci, H. Lei, and Y. Cui, “A local integral-generalized finite difference method with
mesh-meshless duality and its application,” Engineering Analysis with Boundary Elements,
vol. 139, pp. 14–31, 2022.

[11] J. Blechschmidt and O. G. Ernst, “Three ways to solve partial differential equations with
neural networks – a review,” GAMM-Mitteilungen, vol. 44, no. 2, p. e202100006, 2021.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 22

[12] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A deep learning library for solving
differential equations,” SIAM Review, vol. 63, no. 1, pp. 208–228, 2021.

[13] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.

[14] H. Schaeffer, “Learning partial differential equations via data discovery and sparse optimiza-
tion,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 473, no. 2197, p. 20160446, 2017.

[15] J. Berg and K. Nyström, “Data-driven discovery of pdes in complex datasets,” Journal of
Computational Physics, vol. 384, pp. 239–252, 2019.

[16] G.-J. Both, G. Tod, and R. Kusters, “Model discovery in the sparse sampling regime,” arXiv
preprint arXiv:2105.00400, 2021.

[17] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ra-
madhan, and A. Edelman, “Universal differential equations for scientific machine learning,”
arXiv preprint arXiv:2001.04385, 2020.

[18] Z. Chen, Y. Liu, and H. Sun, “Physics-informed learning of governing equations from scarce
data,” Nature communications, vol. 12, no. 1, p. 6136, 2021.

[19] S. Seo and Y. Liu, “Differentiable physics-informed graph networks,” arXiv preprint
arXiv:1902.02950, 2019.

[20] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho, “Lagrangian neural
networks,” arXiv preprint arXiv:2003.04630, 2020.

[21] R. Iten, T. Metger, H. Wilming, L. Del Rio, and R. Renner, “Discovering physical concepts
with neural networks,” Physical review letters, vol. 124, no. 1, p. 010508, 2020.

[22] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems,” Proc. Nat. Acad. Sci. U.S.A., vol. 113,
no. 15, pp. 3932–3937, 2016.

[23] J.-C. Loiseau and S. L. Brunton, “Constrained sparse Galerkin regression,” J. Fluid Mechanics,
vol. 838, pp. 42–67, 2018.

[24] A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton, “Physics-constrained, low-
dimensional models for magnetohydrodynamics: First-principles and data-driven approaches,”
Physical Review E, vol. 104, no. 1, p. 015206, 2021.

[25] S. Beetham and J. Capecelatro, “Formulating turbulence closures using sparse regression with
embedded form invariance,” Physical Review Fluids, vol. 5, no. 8, p. 084611, 2020.

[26] L. Zanna and T. Bolton, “Data-driven equation discovery of ocean mesoscale closures,” Geo-
physical Research Letters, vol. 47, no. 17, p. e2020GL088376, 2020.

[27] M. Sorokina, S. Sygletos, and S. Turitsyn, “Sparse identification for nonlinear optical commu-
nication systems: Sino method,” Optics express, vol. 24, no. 26, pp. 30 433–30 443, 2016.

[28] L. Boninsegna, F. Nüske, and C. Clementi, “Sparse learning of stochastic dynamical equa-
tions,” The Journal of chemical physics, vol. 148, no. 24, 2018.

[29] S. Thaler, L. Paehler, and N. A. Adams, “Sparse identification of truncation errors,” Journal
of Computational Physics, vol. 397, p. 108851, 2019.

[30] R. K. Niven, A. Mohammad-Djafari, L. Cordier, M. Abel, and M. Quade, “Bayesian identifica-
tion of dynamical systems,” Multidisciplinary Digital Publishing Institute Proceedings, vol. 33,
no. 1, p. 33, 2020.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 23

[31] D. A. Messenger and D. M. Bortz, “Weak sindy: Galerkin-based data-driven model selection,”
Multiscale Modeling & Simulation, vol. 19, no. 3, pp. 1474–1497, 2021.

[32] S. M. Hirsh, D. A. Barajas-Solano, and J. N. Kutz, “Sparsifying priors for bayesian uncertainty
quantification in model discovery,” Royal Society Open Science, vol. 9, no. 2, p. 211823, 2022.

[33] Y. Wang, H. Fang, J. Jin, G. Ma, X. He, X. Dai, Z. Yue, C. Cheng, H.-T. Zhang, D. Pu et al.,
“Data-driven discovery of stochastic differential equations,” Engineering, vol. 17, pp. 244–252,
2022.

[34] Z. Drmac and S. Gugercin, “A new selection operator for the discrete empirical interpola-
tion method—improved a priori error bound and extensions,” SIAM Journal on Scientific
Computing, vol. 38, no. 2, pp. A631–A648, 2016.

[35] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, “An empirical interpolation method:
application to efficient reduced-basis discretization of partial differential equations,” Comptes
Rendus Mathematique, vol. 339, no. 9, pp. 667–672, 2004.

[36] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer, 2009, vol. 2.

[37] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. Roy. Statist. Soc.: Series
B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[38] H. Vaddireddy, A. Rasheed, A. E. Staples, and O. San, “Feature engineering and symbolic
regression methods for detecting hidden physics from sparse sensor observation data,” Physics
of Fluids, vol. 32, no. 1, 2020.

[39] A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear optimization: Optimality conditions
and algorithms,” SIAM J. Optim., vol. 23, no. 3, pp. 1480–1509, 2013.

[40] Z. Yang, Z. Wang, H. Liu, Y. Eldar, and T. Zhang, “Sparse nonlinear regression: Parameter
estimation under nonconvexity,” in Intern. Conf. on Mach. Learn. PMLR, 2016, pp. 2472–
2481.

[41] L. Zhang and H. Schaeffer, “On the convergence of the SINDy algorithm,” Multiscale Model.
Simul., vol. 17, no. 3, pp. 948–972, 2019.

[42] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals,” Numerische Mathematik, vol. 2, pp. 84–90, 1960.

[43] W.-S. L. Tien-Tsin Wong and P.-A. Heng, “Sampling with hammersley and halton points,”
Journal of Graphics Tools, vol. 2, no. 2, pp. 9–24, 1997.

[44] I. M. Sobol, “On the distribution of points in a cube and the approximate evaluation of
integrals,” USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4, pp.
86–112, 1967.

[45] C. Wu, M. Zhu, Q. Tan, Y. Kartha, and L. Lu, “A comprehensive study of non-adaptive and
residual-based adaptive sampling for physics-informed neural networks,” Computer Methods
in Applied Mechanics and Engineering, vol. 403, p. 115671, 2023.

[46] Z. Zhang, X. Yang, and G. Lin, “POD-based constrained sensor placement and field recon-
struction from noisy wind measurements: A perturbation study,” Mathematics, vol. 4, no. 2,
p. 26, 2016.

[47] A. Moslemi, “Sparse representation learning using l1−2 compressed sensing and rank-revealing
qr factorization,” Engineering Applications of Artificial Intelligence, vol. 125, p. 106663, 2023.

[48] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Transactions on Signal
Processing, vol. 57, no. 2, pp. 451–462, 2008.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

F. Author, S. Author: Example short title 24

[49] J. Ranieri, A. Chebira, and M. Vetterli, “Near-optimal sensor placement for linear inverse
problems,” IEEE Transactions on signal processing, vol. 62, no. 5, pp. 1135–1146, 2014.

[50] S. Lau, R. Eichardt, L. Di Rienzo, and J. Haueisen, “Tabu search optimization of magnetic
sensor systems for magnetocardiography,” IEEE Transactions on Magnetics, vol. 44, no. 6,
pp. 1442–1445, 2008.

[51] Z. Wang, H.-X. Li, and C. Chen, “Reinforcement learning-based optimal sensor placement for
spatiotemporal modeling,” IEEE Transactions on Cybernetics, vol. 50, no. 6, pp. 2861–2871,
2019.

[52] S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via discrete empirical
interpolation,” SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 2737–2764, 2010.

[53] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, “Data-driven sparse sensor
placement for reconstruction: Demonstrating the benefits of exploiting known patterns,” IEEE
Control Systems Magazine, vol. 38, no. 3, pp. 63–86, 2018.

[54] K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition methods for a general
equation in fluid dynamics,” SIAM J. Numer. Anal., vol. 40, no. 2, pp. 492–515, 2002.

[55] M. Gavish and D. L. Donoho, “The optimal hard threshold for singular values is 4√
3
,” IEEE

Transactions on Information Theory, vol. 60, no. 8, pp. 5040–5053, 2014.

[56] S. Huang, W. Feng, C. Tang, and J. Lv, “Partial differential equations meet deep neural
networks: A survey,” arXiv preprint arXiv:2211.05567, 2022.

[57] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for generalized linear models
via coordinate descent,” Journal of Statistical Software, vol. 33, no. 1, p. 1, 2010.

[58] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein, “Implicit neural
representations with periodic activation functions,” in Proceedings of the 34th International
Conference on Neural Information Processing Systems, ser. NIPS’20. Red Hook, NY, USA:
Curran Associates Inc., 2020.

[59] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[60] P. Kachroo, K. M. Özbay, P. Kachroo, and K. M. Özbay, “Traffic flow theory,” Feedback
Control Theory for Dynamic Traffic Assignment, pp. 57–87, 2018.

[61] L. Shen and G.-W. Chern, “Cell dynamics simulations of coupled charge and magnetic phase
transformation in correlated oxides,” Physical Review E, vol. 103, no. 3, p. 032134, 2021.

[62] J. Cahn and A. Novick-Cohen, “Evolution equations for phase separation and ordering in
binary alloys,” Journal of statistical physics, vol. 76, pp. 877–909, 1994.

[63] H. Zhang, Y. Wu, F. Wang, and B. Nestler, “Effect of wall free energy formulation on the
wetting phenomenon: Conservative allen–cahn model,” The Journal of Chemical Physics, vol.
159, no. 16, 2023.

[64] H. Zhao, B. D. Storey, R. D. Braatz, and M. Z. Bazant, “Learning the physics of pattern
formation from images,” Physical review letters, vol. 124, no. 6, p. 060201, 2020.

[65] X.-J. Yang, J. Tenreiro Machado, D. Baleanu, and C. Cattani, “On exact traveling-wave
solutions for local fractional korteweg-de vries equation,” Chaos: An Interdisciplinary Journal
of Nonlinear Science, vol. 26, no. 8, 2016.

A. Appendix
GN-SINDy is implemented as a general framework in Python and is available as a git repository
https://gitlab.mpi-magdeburg.mpg.de/forootani/gnsindy or https://github.com/Ali-Forootani/
GN_SINDy.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-05-15

https://gitlab.mpi-magdeburg.mpg.de/forootani/gnsindy
https://github.com/Ali-Forootani/GN_SINDy
https://github.com/Ali-Forootani/GN_SINDy

	Introduction
	Contribution

	An Overview of SINDy for PDE identification
	Importance of the sampling methods for PDE discovery
	Notes on Q-DEIM algorithm
	Applying Q-DEIM algorithm on PDE dataset
	Importance of domain division

	GN-SINDy: Greedy Sampling Neural Network for Sparse Identification of PDEs
	Simulation Results
	Burgers' equation
	Allen-Cahn equation
	Korteweg-de Vries (KdV) equation

	Conclusion
	References
	Appendix

