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Abstract: Partial differential equation parameter estimation is a mathematical and
computational process used to estimate the unknown parameters in a partial differen-
tial equation model from observational data. This paper employs a greedy sampling
approach based on the Discrete Empirical Interpolation Method to identify the most
informative samples in a dataset associated with a partial differential equation to es-
timate its parameters. Greedy samples are used to train a physics-informed neural
network architecture which maps the nonlinear relation between spatio-temporal data
and the measured values. To prove the impact of greedy samples on the training of
the physics-informed neural network for parameter estimation of a partial differential
equation, their performance is compared with random samples taken from the given
dataset. Our simulation results show that for all considered partial differential equa-
tions, greedy samples outperform random samples, i.e., we can estimate parameters
with a significantly lower number of samples while simultaneously reducing the relative
estimation error. A Python package is also prepared to support different phases of
the proposed algorithm, including data prepossessing, greedy sampling, neural network
training, and comparison.

Keywords: Discrete Empirical Interpolation Method (DEIM), Physics Informed Neural
Network (PINN), Parameter Estimation

Mathematics subject classification: MSC1, MSC2, MSC3

Novelty statement: Within this study, we employ the discrete empirical interpola-
tion method (DEIM), specifically the QR-factorization-based variant known as Q-DEIM,
as a strategic sampling technique for mitigating the computational complexities and
time demands associated with parameter estimation for partial differential equations
(PDEs) using neural networks. Our methodology involves the judicious pre-selection
of spatio-temporal data, thereby constructing a reduced dataset for training a neural
network to estimate the coefficients of the underlying PDE governing the data. We
establish that our proposed Q-DEIM-based sampling approach not only reduces the
required training data for the neural network but also yields a commendable approx-
imation of PDE coefficients in fewer training iterations.
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1. Introduction
Partial differential equations (PDEs) are fundamental mathematical tools used to describe the be-
havior of physical systems in various scientific and engineering disciplines, such as fluid dynamics,
heat transfer, and quantum mechanics. Accurately identifying the underlying PDE governing a
given system is a crucial step in understanding its behavior and making predictions. Traditional
methods for identifying PDEs often rely on domain knowledge, mathematical derivations, and ex-
perimental data, which can be labor-intensive and may not be applicable in complex or poorly
understood systems.

In the literature, most attempts have been made to solve the PDEs analytically or numerically.
Analytical methods are based on finding a change of variable to transform the equation into
something soluble or on finding an integral form of the solution [1]. These methods are often used
for simple PDEs, but they can be difficult to apply to more complex equations. Numerical methods
approximate the solution of a PDE by discretizing the domain of the equation and solving a system
of algebraic equations, such as the finite difference method (FDM) [2] and the finite element method
(FEM) [3]. These methods are more general than their analytical counterparts, but they can be
computationally expensive.

Besides solving the PDEs with conventional methods, recent advances in machine learning tech-
niques have proved their potential to address PDE problems in scenarios with limited data. This
implies having access solely to the PDE problem data, rather than an extensive set of value pairs
for the independent and dependent variables [4]. Taking advantage of modern machine learning
software environments has provided automatic differentiation capabilities for functions realized
by deep neural networks (DNN) which is a mesh-free approach and can break the curse of dimen-
sionality of the conventional methods [5]. This approach was introduced in [6], where the term
physics-informed neural networks (PINNs) was coined.
PINNs combine the expressive power of neural networks with the physical knowledge of governing

equations. PINNs can be used to solve a wide variety of problems, including (i) Forward problems: to
solve nonlinear PDEs on arbitrary complex-geometry domains [7,8], including fractional differential
equations (FDEs) [9], and stochastic differential equations (SDEs [10–13], (ii) Inverse problems: to
retrieve the unknown parameters in the PDE [6,7], (iii) Control problems: designing control inputs
to achieve a desired state [14], and (iv) Optimization problems: finding the optimal solution to a
problem subject to constraints [15].

Unlike the previous literature that focused more on solving PDEs, in this work we consider solving
the inverse problem, that is, obtaining the underlying PDEs based solely on time series data. One of
the advantages of using PINN for inverse problem is that it requires minimum modifications of the
Deep Neural Network (DNN) architecture to recover the PDE coefficients and underlying governing
equations of the given time series dataset.

When it comes to the challenge of discovering the underlying PDE governing a given set of spatio-
temporal data, choosing an appropriate collocation/sampling strategy is crucial. As the amount
of data increases, there is a need for sampling strategies that require fewer collocation points to
recover the underlying dynamical system. Indeed, the location and distribution of these sampling
points are highly important to the performance of PINNs. In literature, a few simple residual point
sampling methods have mainly been employed, among them we can report non-adaptive uniform
sampling such as (i) equispaced uniform grid, (ii) uniform random sampling, (iii) Latin hyper-
cube sampling [6], (iv) Halton sequence [16], (v) Hammersley sequence [17], (vi) Sobol sequence
[18]; and adaptive non-uniform sampling such as residual-based adaptive distribution (RAD) and
residual-based adaptive refinement with distribution (RAR-D) [19]. Even though these methods
seem promising, they are highly problem-dependent and are usually tedious and time-consuming.
In particular, the case of adaptive sampling such as RAD or RAR-D requires re-sampling of the
dataset within the training loop of the Neural Network (NN), which adds significant computational
cost to the corresponding algorithm. For further details regarding non-adaptive and residual-based
adaptive sampling strategies and their comparisons in PINN training, we refer to the work reported
in [19].

In this paper, we make use of the discrete empirical interpolation method (DEIM) as a sam-
pling technique to reduce the computational complexity and time consumption of PDE parameter
estimation using neural networks. In a nutshell, our work consists of (a) pre-selecting a portion
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of the available spatio-temporal data for a PDE and (b) training a neural network using this re-
duced dataset in order to estimate the coefficients of the underlying PDE governing the data. We
demonstrate that our proposed sampling approach not only reduces the data needed to train the
neural network but also recovers a good approximation of the PDE coefficients in fewer iterations
of training.

The approach we use to perform the sampling, viz., DEIM was originally proposed in the con-
text of model order reduction to significantly reduce the computational complexity of the popular
POD method for constructing reduced-order models for time-dependent and/or parametrized nonlin-
ear PDEs [20]. It is worth highlighting that DEIM is a discrete variant of the empirical interpolation
method (EIM) for constructing an approximation of a non-affine parameterized function with a spa-
tial variable defined in a continuous bounded domain with associated error bound on the quality of
approximation [21]. In this paper, we particularly employ the QR-factorization-based DEIM proce-
dure, i.e., Q-DEIM, which has a better upper bound error with respect to the original DEIM algorithm
and has numerically robust high-performance procedures, already available in software packages
such as Python, LAPACK, ScaLAPACK, and MATLAB [22]. More specifically, we methodically investi-
gate the impact of the most informative samples acquired via Q-DEIM on PDE snapshot matrix for
estimating the parameters associated with the PDE. We also compare the result of Q-DEIM sam-
pling in PDE parameter estimation with the ones that we computed with the random sampling
approach. Our findings prove the significant impact of most informative samples on the training
of PINN architecture for the PDE parameter estimation. In our setting, the PINN architecture which
takes advantage of Q-DEIM is named greedy sampling based PINN (GS-PINN) while in contrast the
one that is fed with random samples will be called random sampling based PINN (RS-PINN). A
Python package is prepared to support different implementation phases of GS-PINN and its com-
parison with RS-PINN on estimating the PDE parameters corresponding to the Allen-Cahn equation,
Burgers’ equation and Korteweg-de Vries equation.

This article is organised as follows: In Section 2, an overview of PDE parameter estimation will be
discussed. We explain our greedy sampling approach and its usage for selecting most informative
samples from the dataset corresponding to PDEs in Section 3. In Section 4 we introduce the core
algorithm for the PDE parameter estimation. Section 5 is devoted to the simulation and comparison
of the GS-PINN with RS-PINN. The paper is concluded in Section 6.

2. An Overview of PDE parameter estimation
In this section, we provide a brief background regarding the PDE parameter estimation problem.
Our aim is not to provide an in-depth discussion of this concept but rather to present a brief
overview of the concepts narratively.

2.1. Recap on PDE parameters estimation
The estimation of parameters for PDEs holds significance in various domains, including geophysical
exploration and medical images [23]. This process is often framed as an optimization challenge
constrained by PDEs, typically addressed iteratively through gradient-based optimization techniques
[24]. Although significant progress has been made over the last two decades involving high-order
schemes for PDEs, automatic differentiation (AD), PDE-constrained optimization, and optimization
under uncertainty, parameter estimation in large-scale problem remains a significant challenge [25].

Consider a nonlinear PDE of the form

∂u

∂t
= fp(u,ux,uxx, . . . , x), (1)

where t ∈ [0, tmax] is the time variable, x ∈ [xmin, xmax] is the space variable, u(x, t) is the solution,
and fp is generally a non-linear function of the solution and its derivatives. Since the function fp(·)
depends on the parameter vector p ∈ Rk, the solution u(·) is also a function of p. Moreover, in
this work, we consider that the parameter vector p is a priori unknown, and we seek to estimate
it.

The main assumption behind our parameter estimation is that the function fp(·) is composed
of only a few terms with respect to a large space of possible contributing terms. For instance,
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consider the non-linear function appearing in the Allen-Cahn equation

fp = p1u+ p2u
3 + p3uxx, (2)

where p = [5, −5, 0.0001]⊤. Similarly, the non-linear function appearing in the Korteweg-de Vries
equation is,

fp = p1uux + p2uxxx, (3)

where p = [−6, −1]⊤.
The components of the parameter vector p can be computed via a least squares minimization

formulation. This procedure often requires measuring u at m different time points, and n spatial
locations. Consider that all these measurements are collected in a vector U ∈ Rn·m. Furthermore,
if we assume that the function fp(·) have k known linear, nonlinear, and partial derivatives terms,
then it is possible to compute the following matrix:

Θ(U) =
[
1, U, U2, . . . , Ux, UUx, . . .

]
, Θ ∈ Rnm×k, (4)

where each column of the matrix Θ contains all of the values of a particular term that constructs
the right-hand side of (1), across all of the n ·m space-time grid points where the data is collected.
For example, if we consider measurements at 200 spatial locations and 300 time points with f
comprising 5 terms, then Θ ∈ R200·300×5.

It is straightforward to compute the time derivative of U denoted by Ut, which is often imple-
mented numerically. Having Ut and other ingredients we can write the system of equation (1) in
the following form:

Ut = Θ(U)p, (5)

where p ∈ Rk is an unknown parameter vector that has to be computed by a proper algorithm
and its elements are coefficients corresponding to each term in the matrix Θ(·) that describe the
evolution of the dynamic system in time. The ith element of vector p is denoted by pi.

The last step is to compute the parameter vector p through a least squares optimization proce-
dure. A classical approach to solve (5) comprise solving a system of linear equations known as the
normal equations. This can be concretely expressed in the following fashion:

p = (Θ⊤Θ)−1Θ⊤Ut, (6)

which requires matrix inversion and multiplication of large size and it is not a good idea to explicitly
form the inverse of a matrix, especially when dealing with large or ill-conditioned matrices [26].
Therefore, in literature, authors often use regularized least squares (RLS) which is a family of
methods for solving the least squares problem while using regularization to further constrain the
resulting solution. Among RLS approaches, we can name LASSO [27, 28], ridge regression [29], and
elastic net [30]. Note that in this article we make use of QR factorization together with stochastic
gradient descent technique to solve (5). Indeed, using the stochastic gradient descent algorithm
which is a modification of the gradient descent method in the training loop of the DNN, will alleviate
the complexity of solution of least squares problem (6), since we just use a random small part of
our dataset instead of all of them. Hence, working on a portion of the dataset significantly reduces
the computational load. We will elaborate on these settings in the upcoming sections.

3. Greedy sampling method for PDE parameter estimation
Estimating the parameters of PDEs is essential for understanding and predicting real-world phenom-
ena, but it often poses significant challenges due to the inherent complexity and high dimensionality
of these equations. One of these challenges is choosing the appropriate number of samples from a
measured dataset which has an undisputed importance for the model recovery.

In many real applications such as phase-field modeling or fluid dynamics, the state variables
are often measured using sensors. The number of sensors is frequently constrained by physical or
economic limitations, and the strategic placement of these sensors is crucial for achieving precise
estimates. Regrettably, determining the ideal sensor locations to infer the PDE parameters is
inherently a combinatorial challenge, and existing approximation algorithms may not consistently
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produce effective solutions for all relevant cases. The topic of optimal sensor placement is a focus
of research interest even in fields such as control theory and signal processing [31]. Generally, five
types of sensor placement approaches have been reported in the literature: (i) methods based on
proper orthogonal decomposition (POD) [32] or compressed sensing [33], (ii) convex optimization
methods [34], (iii) greedy-based algorithms such as Frame-Sens [35], (iv) heuristic approaches such
as population-based search [36], and (v) machine learning techniques [37].

Even though these approaches have shown good performance in tackling the curse of dimen-
sionality by choosing the most informative l locations from the assumed n spatial ones, their
applicability for the case of PDE parameter estimation is limited due to lack of theoretical analysis
(e.g. heuristic methods), lack of simplicity in implementations (machine learning approaches), and
having conservative assumptions which might not be true in many cases (e.g. convex optimization
methods).

More specifically, we are interested in feeding our most informative samples taken from the
dataset into a DNN structure. It is worth highlighting that a DNN architecture has already shown
its performance compared to traditional methods for the case of PDE solution and PDE discovery in
[38]. Unlike the traditional PDE solvers that focus more on methods such as the FDM [2] and FEM [3],
the DNN based approaches (such as PINN) are meshfree and therefore highly flexible. Moreover,
DNN has proven to regress along both the spatial and temporal axis for a given sample set [31].
However, as the the number of training samples increase for a DNN, the longer it takes to train
the network. To alleviate this situation, it becomes crucial to choose a set of informative samples
for training the network, and later, to estimate the parameters of the PDE.

In this article, we make use of Q-DEIM as the sampling approach for a given dataset associated
with the PDEs. In this regard, we give a brief introduction about Q-DEIM by using its connection to a
popular model order reduction approach named POD. Consider the set of snapshots {u1, . . . , um} ∈
Rn and an associated snapshot matrix U = [u1, . . . , um] ∈ Rn×m that is constructed by measuring
the solution at m different time points and n different spatial locations of a PDE. In the conventional
POD, we construct an orthogonal basis that can represent the dominant characteristics of the space
of expected solutions that is defined as Range U , i.e., the span of the snapshots. We compute the
singular value decomposition (SVD) of the snapshot matrix U ,

U = ZΣY⊤, (7)

where Z ∈ Rn×n, Σ ∈ Rn×m, and Y ∈ Rm×m with Z⊤Z = In, Y⊤Y = Im, and Σ =
diag(σ1, σ2, · · · , σz) with σ1 ≥ σ2 ≥ · · · ≥ σz ≥ 0 and z = min{m,n}. The POD will select V
as the leading r left singular vectors of U corresponding to the r largest singular values. Using
Python-Numpy array notation, we denote this as V = Z[:, : r]. The basis selection via POD mini-
mizes V := minΦ∈Rn×r ∥U −ΦΦ⊤U∥2F , where ∥ · ∥F is the Frobenius norm, over all Φ ∈ Rn×r with
orthonormal columns. In this regard, we can say U = ZΣY⊤ ≈ ZrΣrY

⊤
r , where matrices Zr and

Y⊤
r contain the first r columns of Z and Y⊤, and Σr contains the first r × r block of Σ. More

details regarding POD can be found in [39].
Although the reduced-order model lies in the r-dimensional subspace, the conventional POD suf-

fers the issue of lifting to the original space. Hence, in the literature, they tackle this issue with
different approaches such as DEIM [20]. An interesting advantage of DEIM is its flexibility to extend
its results for the case of nonlinear function approximation beyond model order reduction. More-
over, the performance of the original DEIM algorithm has been improved by using QR-factorization
in two aspects: (i) less upper bound error, (ii) simplicity and robustness in implementation.
POD has been used widely to select measurements in the state space that are informative for

feature space reconstruction [40]. The method then has been called Q-DEIM. Indeed, we make use
of the Q-DEIM algorithm to select a set of most informative samples from a given snapshot matrix
U ∈ Rn×m of a PDE for PINN-based model discovery. Q-DEIM takes advantage of the pivoted QR
factorization and the SVD, making it a powerful sampling approach. In particular, we consider QR
factorization with column pivoting of Z⊤

r and Y⊤
r to identify the most informative samples for

the location and the time in the snapshot matrix U , respectively. The pivoting algorithm gives
an approximate greedy solution approach for feature selection which is named submatrix volume
maximization since matrix volume is defined as the absolute value of the determinant. QR column
pivoting increases the volume of the submatrix constructed from the pivoted columns by choosing
a new pivot column with maximal two-norm and then subtracting from every other column its
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orthogonal projection onto the pivot column. Note that QR-factorization has been implemented
and optimized in most scientific computing packages and libraries, such as MATLAB, and Python.
Further details about Q-DEIM, its theoretical analysis, and applications can be found in [20,40].

3.1. Applying Q-DEIM algorithm on PDE dataset
We apply the Q-DEIM algorithm on the snapshot matrix U to select the most informative samples
in the spatiotemporal grid. To achieve this, we first perform a SVD of the snapshot matrix U and
compute matrices Z, Σ, and Y⊤. The selection of r leading singular values can be done based on
an appropriate precision value ϵthr, which is related to the underlying dynamical system, and it
can be chosen heuristically. ϵthr is often referred to as the energy criterion in literature [41]. In
particular, the r leading singular values are chosen such that the following quantity is satisfied:

1−
∑r

j=1 σj∑z
k=1 σk

< ϵthr, r < z, (8)

Once the desired precision is achieved, we construct a reduced approximation of the snapshot
matrix U by using the first r columns of matrix Z, the first r singular values contained in the
diagonal matrix Σ, and the first r rows of Y⊤. Based on Python notation, we can represent
this as Zr = Z[:, : r], Σr = Σ[: r, : r], and Y⊤

r = Y⊤[: r, :]. To choose the important time and
space indices, we apply QR decomposition with column pivoting on the reduced order matrices
Y⊤

r and Z⊤
r , which contain the first r left and right singular vectors. We represent the chosen

indices corresponding to the most informative spatio-temporal points in the snapshot matrix U by
indx and indt. To simplify the notation, we denote the pairs of space-time points by (ti, xi), and
the solution associated to it by ui. Algorithm 1 summarizes the core part of the Q-DEIM sampling
approach which takes the snapshot matrix U , spatio-temporal domains x, t and the precision value
ϵthr as the inputs and returns sampled pairs (ti, xi) and corresponding measured value u(ti, xi).
We show by N the cardinality of the sampled dataset.

3.1.1. Exploiting locality in time

To capture the local dynamics of the dataset and select better points in the spatiotemporal domain,
we decompose the time domain into equal intervals and apply Q-DEIM on each sub-domain. We
show the number of divisions for the time domain by tdiv. In this setting, the subdomains do
not overlap with each other, therefore the total number of selected points is the union of selected
samples at each subdomain. For example, by using Python notation, if we divide the time domain
into three parts, the first part can be written as U [:, : m/3], the second part as U [:, m/3 : 2m/3], and
finally, the third part as U [:, 2m/3 :]. The reason behind this decomposition is to capture the local
dynamics of the PDE at each subdomain and sample the most informative portion of the snapshot
matrix. More specifically, the system’s behavior can vary across various domains, and certain
physical attributes may exhibit notable distinctions. For instance, issues related to abrupt features
such as shock waves may showcase these differences. On the other hand, by first dividing a sizable
domain into smaller sub-domains, and then applying Q-DEIM on each sub-domain independently,
helps avoid the requirement of complex neural network structures for the PDE parameter estimation.

4. Greedy Sampling based Physics Informed Neural Network
(GS-PINN) for PDE Parameter Estimation

One notable constraint associated with PINNs pertain to their extensive training costs, which can
hinder their performance, particularly when addressing real-world applications that necessitate
real-time execution of the PINN model. Consequently, it is vital to enhance the convergence speed
of such models without compromising their efficacy. In this section, we propose our algorithm which
blends Q-DEIM as the sampling approach, PINN as the function approximation, and QR-factorization
for the PDE parameter estimation. In this article, we assume that we a priori know the terms that
contribute to the PDE dynamics. However, we do not have any information about their portions that
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Algorithm 1: Sample selection based on a two-way Q-DEIM procedure
Data: U , {xk}nk=1, {tk}mk=1, ϵthr.
Result: indt, indx, domain sampled pairs (ti, xi) and u(ti, xi).

1 r = 1;
2 Z,Σ,Y⊤ ← SVD(U), ▷ computing SVD on snapshot matrix U ;

3 Find the lowest r, such that 1−
∑r

j=1 σj∑z
j=1 σj

≥ ϵthr;

4 Zr ← Z[:, : r], Y⊤
r ← Y⊤[: r, :], ▷ selecting r dominant left and right singular vectors;

5 indx ← QR(Z⊤
r , pivoting = True), ▷ storing pivots from pivoted QR factorization of Z⊤

r ;
6 indt ← QR(Yr, pivoting = True), ▷ storing pivots from pivoted QR factorization of Y⊤

r ;
7 xi ← from indx, ti ← from indt, u(ti, xi);

are shown as coefficients, and our goal is to estimate them. For instance, consider the Allen-Chan
equation with ∂u

∂t = p1u+p2u
3+p3uxx and associated unknown parameter vector p⊤ = [p1, p2, p3].

PINNs are primarily used for solving PDEs [6, 42]. Unlike traditional numerical methods that
discretize the domain and solve the equations on a grid, PINN treat the PDE as a constraint in
an optimization problem. The neural network is trained to minimize the discrepancy between
the predicted and actual values of the PDE, effectively learning the underlying physics [43]. An
attractive feature of PINNs is that it requires small modification for the case of PDE parameter
estimation [5].

Another notable capability of the PINN is its Automatic Differentiation (AD). To elaborate more
on this aspect, it is worth highlighting that numerical differentiation is generally performed by two
primary approaches: finite differences or by using a spline interpolation method on the dataset
followed by derivative calculation. Finite difference techniques work directly with the available
data to compute the derivative. Although finite differences are computationally efficient and easily
adaptable to higher dimensions, they are sensitive to noise and require closely spaced data points
for accurate results. A more precise and commonly adopted alternative involves the application of
spline interpolation for data differentiation. When employing splines for fitting, the data is approx-
imated through a piecewise polynomial with ensured continuity at the boundaries. In practical
terms, splines provide more accurate results. However, their scalability to higher dimensions, par-
ticularly when employing higher-order splines, is limited [31]. This limitation poses a challenge to
model discovery, as it necessitates these higher orders to account for derivatives within the feature
library. Using a fifth-order spline to approximate the data essentially translates to approximating
the third-order derivative with only a second-order polynomial, thereby restricting its utility in the
context of model discovery[44]. While higher-order splines are limited to interpolation in a single
dimension, PINN employs a neural network to interpolate along both the spatial and temporal axes.
This liberates us from the requirement of using on-grid sampling, and we take advantage of this
freedom by developing an alternative sampling technique. A combination of DNN with SINDy based
model discovery has been proposed in [38], and several other works extended its results for the
case of noisy and scarce dataset by using integration scheme in the training loop [45,46].

To setup our PINN formulation for the parameter estimation we first write the PDE system of
equations (1) in a residual format:

R(u) = −∂u

∂t
− fp(u,ux,uxx, . . . , x)

= −∂u

∂t
−Θ(u)p,

(9)

and proceed to approximate u(x, t) by a DNN. In this regard we define a neural network Gθ(t, x)
which has two inputs x and t, and one output û, i.e. û = Gθ(t, x). Moreover, we harness the
capabilities of DNN, in particular, automatic differentiation (AD) to compute time derivative ∂û

∂t
with respect to its input variables, i.e. space x, and time t. Having these ingredients we define the
following loss function:

L = µ1LMSE + µ2Lderi, µ1, µ2 ∈ (0, 1], (10)

where LMSE is the mean square error (MSE) of the output of the DNN Gθ (denoted by û) with respect
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to its input sampled domain pairs (ti, xi), and corresponding u(ti, xi). The positive constants
{µ1, µ2} determine the weight of different losses in the total loss function. It is given as

LMSE =
1

N

N∑
i=1

∥∥∥u(ti, xi)− û(ti, xi)
∥∥∥2
2
. (11)

LMSE forces the DNN to produce output in the vicinity of the measurements, and µ1 is its weight.
Lderi is the residual (9) and aims to compute the parameter vector p. It is computed as follows:

Lderi =
1

N

N∑
i=1

∥∥∥∂û(ti, xi)

∂ti
−Θ

(
û(ti, xi)

)
p̂
∥∥∥2
2
, (12)

where p̂ is replaced by computing the QR-factorization of the matrix Θ and its pseudo-inverse as
follows

QR = Θ(Û),

p̂ = R−1Q⊤Ût,
(13)

here Û and Ût are column vectors with components û(ti, xi) and ∂û(ti,xi)
∂ti

, respectively. It is worth
highlighting that the parameter vector p will be updated alongside the weights and biases of the
DNN, and the matrix Θ is calculated by (4). Algorithm 2 summarizes the procedure that has been
explained in this section.

Algorithm 2: Greedy Sampling based Physics Informed Neural Network (GS-PINN) for
PDE Parameter Estimation

Data: U , x, t, ϵthr for the Q-DEIM algorithm, matrix Θ, a neural network Gθ
(parameterized by θ), maximum iterations max-iter, and parameters {µ1, µ2}.

Result: Estimated parameter vector p, defining governing equations
1 (ti, xi), u(ti, xi)← Apply Q-DEIM(U) based on Algorithm 1 ▷ selecting most informative

samples ;
2 Initialize the DNN module parameters, and the parameter vector p;
3 k = 1;
4 while k < max-iter do
5 Feed the domain pairs (ti, xi) as an input to the DNN (Gθ) and predict output û(ti, xi) ;
6 Compute the derivative information ∂û(ti,xi)

∂ti
using automatic differentiation ;

7 Compute the cost function (10) ;
8 Update the parameters of DNN (θ) and the parameter vector p using gradient descent ;

5. Simulation Results
In this section we provide several simulation examples for the case of PDE parameter estimation
with our proposed GS-PINN PDE estimator. We also provide a comparison for the case where
the spatio-temporal dataset is randomly sampled. The simulation examples have different level of
complexity and non-linearity. To have a quantitative comparison and evaluate the performance
of GS-PINN versus random sampling, we consider the following relative error for each element of
parameter vector pi:

errorpi =

∣∣∣ptruthi − pesti

∣∣∣∣∣∣ptruthi

∣∣∣ (14)

where |·| denotes the absolute value; ptruthi and pesti are the true model coefficient and the estimated
coefficient, corresponding to the coefficient pi, respectively. The main point to define such criteria
is the fact that in some PDEs the scale of coefficients for different terms are not in the same range
(such as Allen-Cahn equation with ∂u

∂t = 0.0001uxx − 5u3 + 5u), therefore it is logical to quantify
the errors for each element of the parameter vector separately.
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Figure 1: A schematic diagram of GS-PINN for PDE parameter estimation. (a) sampling PDE dataset
with Q-DEIM algorithm, (b) feeding the pairs (ti, xi) time and space resulted from
Q-DEIM into DNN, (c) using the output of the DNN as the function approximator, construct
matrix U , (d) estimating the parameters of the DNN with stochastic gradient descent and
parameter vector p by considering the loss function L.

In this article we examine the parameter estimations for three PDEs: (i) the Allen-Cahn equation,
(ii) the Burgers’ equation, and (iii) the Korteweg-de Vries (KdV) equation. We recall that in our
setting we do not consider the boundary conditions of PDEs, since our goal is not solving them,
rather we desire to estimate their parameters. For each example, the simulation is divided into two
parts. In the first part, we employ Q-DEIM on the given snapshot matrix for a PDE to identify the
most informative samples. This step requires to have a trade off between the number of divisions
in time domain tdiv and precision value ϵthr, since we can manipulate the cardinality of our sample
set. Then we apply Algorithm 2 to estimate the parameters of the PDE. In the second part, we do
a comparison between Q-DEIM sampling and random sampling approach based on the same sample
size. To identify the minimum and maximum number of samples for the comparison, in case of the
Q-DEIM algorithm, the time domain division is considered to have integer values tdiv = 1, . . . , 4 and
we choose the precision value ϵthr to be equally spaced logarithmic values, spanning the range from
a minimum value to maximum value, e.g., 20 equally spaced logarithmic values, spanning the range
from 10−10 to 10−2. This approach is commonly used in scientific and computational applications,
such as when specifying tolerance levels for numerical calculations or for testing a range of values
in a logarithmic scale. Having the collection of samples and for each pair (tdiv, ϵthr) we apply
our GS-PINN Algorithm 2 for PDE parameter estimation. By doing so it reveals the effect of time
domain division tdiv, the precision value ϵthr and the sample size on the GS-PINN performance for
parameter estimation. To choose the sample size for the simulation of random sampling approach
we make use of sample range computed via Q-DEIM algorithm for pairs (tdiv, ϵthr) as explained
earlier for each PDE. In the sense that we select the minimum and the maximum value among
all sample sizes that we identified by Q-DEIM algorithm for pairs (tdiv, ϵthr) and we start from
the minimum sample size and we reach to the maximum value with 10 linearly spaced steps. For
each sample size we pick samples from PDE snapshot matrix randomly and we employ our PINN
setup. We plan to conduct simulations 5 times for each sample size without specifying a random
seed, resulting in a total of 55 experiments. For the sake of simplicity the PINN architecture which
make use of random sampling is named Random Sampling PINN (RS-PINN). The details of each
simulation example will be provided accordingly.

Data generation. We acquired our dataset associated to each PDE from the repository provided
by the works reported in [38,47]. Moreover, we perform a data-processing step before feeding them
to the Q-DEIM and DNN for both time t and the space x domains. In particular, we map the time
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domain t into the interval [0, 1] and the space domain x into the interval [−1, 1]. For each PDE we
also mention the original range of the space-time domain dataset.

Architecture. We utilize multi-layer perceptron networks with periodic activation functions, par-
ticularly embracing the SIREN architecture as introduced by [48]. This approach allows us to obtain
an implicit representation from measurement data, and we will customize the number of hidden
layers and neurons for each specific example. Our DNN architecture for all the examples have 3
hidden layers, each having 128 neurons.

Hardware. In our neural network training and parameter estimation efforts to uncover governing
equations, we employed an Nvidia®RTX A4000 GPU with 16 GB RAM. For CPU-intensive tasks
such as data generation, we harnessed the power of a 12th Gen Intel® Core™i5-12600K processor
equipped with 32 GB RAM.

Training set-up. We use the Adam optimizer with learning_rate = 10−5 to update the param-
eter vector p that is trained alongside the DNN parameters [49]. In particular we employ CyclicLR,
which is a learning rate scheduling technique commonly use in deep learning with the PyTorch
framework [50]. It allows for dynamic adjustments of the learning rate during training to poten-
tially improve the training process. The key parameters include base_lr = 0.1× learning_rate
and max_lr = 10× learning_rate, which define the lower and upper bounds of the learning rate
respectively, cycle_momentum to control cycling of momentum, and mode to specify the learning
rate cycling strategy. In our setting, it employs the exp_range mode, which means the learning
rate oscillates exponentially between the specified lower and upper bounds over a set number of
iterations as determined by step_size_up = 1000. This technique can be effective in training deep
neural networks by promoting faster convergence and potentially helping to escape local minima
during optimization. The positive constant parameters µ1,2 are considered to have equal value, i.e.
µ1,2 = 1. Number of time domain division (tdiv) to apply Q-DEIM for each PDE dataset, precision
value (ϵthr), and maximum number of iterations (max-iter) will be mentioned separately for each
example.

5.1. Allen-Cahn equation
The Allen-Cahn equation lies at the heart of modelling the transformation of a physical quantity,
often called the order parameter, as a material undergoes a transition from one phase to another.
This equation elegantly encapsulates phenomena such as solidification, crystal growth and the
emergence of domain patterns in magnetic materials. It belongs to the broader class of reaction-
diffusion equations, which relate diffusion processes to a double-well potential energy function.
Consequently, the equation encapsulates the inherent drive of the system to minimise its free energy,
leading to the formation of domains with distinctive properties. These domains are characterised
by smooth variations in the order parameter, with sharp transitions occurring at domain walls.
Their versatility extends to a wide range of applications, including the study of grain boundaries
in materials science, the modelling of phase separation in binary fluids, and the elucidation of the
intricacies of pattern formation in neural networks in neuroscience. The paramount importance
of understanding phase transitions and the intricate development of complex patterns in complex
patterns in physical systems underlines the invaluable role played by the Allen-Cahn equation [51].

Let us extract the Allen-Cahn equation by using Ginzburg-Landau free energy [52]

F =

∫
w

γ1
2

∣∣∇u∣∣2 + γ2
4
(u2 − 1) dx, (15)

where γ1 and γ2 are parameters. By computing L2 gradient flow, we obtain the Allen-Cahn
equation

∂u

∂t
+ γ1 ∆u+ γ2 (u− u3) = 0,

∂u

∂t
= −γ1 uxx − γ2 (u− u3).

(16)
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We employed GS-PINN for PDE parameter estimator on a dataset corresponding to Allen-Cahn
equation with periodic boundary conditions in one dimension with nominal parameters γ1 = 0.0001,
and γ2 = 5. In this example the original dataset is taken from the work reported in [52]. The space
domain x and time domain t were already mapped into the interval x ∈ [−1, 1] and t ∈ [0, 1]
and were discretized into n = 512 locations and m = 201 points, respectively. Therefore the
snapshot matrix U ∈ Rn×m has 102912 elements which represents the curse of dimensionality
of training the PINN architecture for the PDE parameter estimation. The snapshot matrix of the
original dataset is shown in the Figure 2 (left) which represents the process of phase separation
in time. To apply Q-DEIM algorithm we set the time domain division tdiv = 2, precision value
ϵthr = 10−8. In the Figure 2 (right) we see the most informative samples that are selected with
Q-DEIM algorithm. In total, 394 samples are selected to be utilized in PINN parameter estimation
with maximum number of iterations max-iter = 1500. The trajectory of the coefficients estimated
by GS-PINN are depicted in Figure 3. The parameter vector is p = [4.95,−4.95,−0.0003]⊤ which
based on (16) γ1 = −p3 and γ2 = −p1 = −p2. We observe that with having 0.383% of the entire
dataset (i.e. 394

102912 ≈ 0.00383 × 100 = 0.383%) we earned acceptable precision. We notice that
GS-PINN can not estimate the parameter γ1 properly since its value is considerably less than γ2 in
the nominal equation.

In the second scenario, i.e. comparing GS-PINN with RS-PINN, we choose 20 equally spaced
logarithmic values for precision ϵthr, spanning the range from 10−13 to 10−4 corresponding to
each time division tdiv = 1, 2, 3, 4. The minimum number of samples corresponds to the pair
(tdiv, ϵthr) = (3, 10−4) with 86 samples, while the maximum number of samples corresponds to
(tdiv, ϵthr) = (1, 10−13) with 1444 samples. The performance of GS-PINN for each pair (tdiv, ϵthr)
is shown in the figure Figure 4. The first notable problem that we recognize is that the GS-PINN does
not have a good estimation about coefficient corresponding to the term uxx, however GS-PINN is
able to recover the coefficients corresponding to the terms u as well as u3. As we can see tdiv = 1
has the worst performance with both highest relative error and highest sample range. In the sense
that for the fixed relative error tdiv = 1 almost requires more samples compare to the tdiv = 2, 3, 4.
This result reveals the necessity of finding the suitable value for tdiv to have a less relative error
in PDE parameter estimation with GS-PINN and therefore better performance. Moreover, we see
that for the case of tdiv = 3 and tdiv = 4 the sample range and error values are almost the same
and it is hard to distinguish which one performs better. This shows that with a fixed precision
value ϵthr increasing the time division tdiv has no sensible effect on the quality of the estimation
for Allen-Cahn PDE equation. It is worth to highlight that the minimum relative error corresponds
to the pair (tdiv, ϵthr) = (3, 1.833× 10−9) with 457 samples.

Having the sample range computed by GS-PINN we are ready to evaluate the performance of
RS-PINN to recover the PDE coefficients. The result of this comparison between GS-PINN and
RS-PINN is shown in the Figure 5. For the sake of simplicity in the plots related to the performance
of RS-PINN, we take the average value of the relative errors for a given fixed number of samples
associated to 5 experiments. Since the range of samples is related to the time division tdiv,
for GS-PINN we employ K-means clustering with k = 20, see Appendix A and [53], to find the
nearest cluster centroid corresponding to each pair sample size and relative error. This significantly
simplifies the evaluation of GS-PINN and RS-PINN under different configurations. These curves are
shown in the Figure 5 for both GS-PINN (dashed line) and RS-PINN (solid line). We see that
RS-PINN can not estimate the coefficient corresponding to the term uxx, however it has lower
relative error with respect to GS-PINN. This is due to the fact that the DNN is not capable to
reach a small precision value in the range 0.0001 which coefficient corresponding to the term uxx

is. Regarding the estimated values for the terms u and u3, we see that GS-PINN outperforms
RS-PINN in all the settings except in one case.

5.2. Burgers’ equation
Burgers’ equation captures the dynamics of a quantity, typically denoted as the velocity or den-
sity, within a medium characterized by convection and diffusion processes. It represents a crucial
intermediary between the simpler linear convection-diffusion equation and the more complex non-
linear conservation equations. The equation is characterized by its capacity to describe a multitude
of phenomena, including the formation of shocks, rarefaction waves, and the emergence of com-
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Figure 2: (left) Entire dataset; (right) Greedy samples by Q-DEIM algorithm for Allen-Cahn equa-
tion (Section 5.1)

Figure 3: Estimated coefficients by GS-PINN for Allen-Cahn equation (Section 5.1)

Figure 4: Performance of GS-PINN to estimate coefficients corresponding to Allen-Cahn PDE equa-
tion (Section 5.1) with different time divisions tdiv and precision values ϵthr

plex wave patterns. Within the realm of fluid dynamics, Burgers’ equation finds application in
modeling traffic flow, the dynamics of shock waves in compressible fluids, and the behavior of
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Figure 5: Comparing GS-PINN with RS-PINN to estimate coefficients corresponding to Allen-Cahn
PDE equation (Section 5.1) with different time divisions tdiv and precision values ϵthr

dispersive waves in shallow water. Furthermore, it has significance in other fields such as plasma
physics, acoustics, and the study of nonlinear optical systems [54]. The one-dimensional form of
the Burgers’ Equation is typically written as:

∂u

∂t
+ λ uux + ν uxx = 0. (17)

In order to study the Burgers’ equation, as described in [47], it is discretized over the domain
x ∈ [−8, 8] into n = 256 points and in a time interval t ∈ [0, 10] with m = 101 time steps.

Hence, the snapshot matrix U , with dimensions n × m, comprises a total of 25, 856 elements,
highlighting the challenge posed by the curse of dimensionality when training the PINN architecture
for PDE parameter estimation. The left side of Figure 6 displays the snapshot matrix of the original
dataset, illustrating the Burgers’ equation dynamic. To employ the Q-DEIM algorithm, we specify
a time domain division of tdiv = 5 and a precision threshold value of ϵthr = 10−6.

In Figure 6 on the right-hand side, we observe the selection of the most informative samples
accomplished using the Q-DEIM algorithm. A total of 359 samples have been chosen for utilization in
GS-PINN parameter estimation, with a maximum iteration set at max-iter = 1500. The evolution
of the coefficients estimated by the GS-PINN method is illustrated in Figure 7. The computed
parameter vector p after 1500 iteration is p⊤ = [−1.000, 0.0996] where based on (17) we have
λ = −p1 and ν = −p2. We see that with approximately 1.39% of the entire dataset we can recover
Burgers’ PDE parameters.

In Figure 8 the relative error corresponding to different pairs (tdiv, ϵthr) is shown. We select
20 equally spaced logarithmic values for precision ϵthr, spanning the range from 10−10 to 10−2

corresponding to each time division tdiv = 1, 2, 3, 4. The minimum number of samples corresponds
to the case of tdiv = 3 with associated sample size 50. We see that tdiv = 1 has the worst
performance in the interval with less number of samples, however it improves with more number
of samples and in some cases outperforms the others. Moreover, in the interval corresponding to
higher sample size manipulating tdiv has no sensible effect on the performance of GS-PINN ; this is
more evident for the relative error corresponding to the term uux in Figure 8. The lowest relative
error associated to the term uxx corresponds to the pair (tdiv, ϵthr) = (2, 2× 10−4), while for the
term uux lowest relative error corresponds to the pair (tdiv, ϵthr) = (4, 1.13× 10−05).

With the sample range calculated using GS-PINN, we are now prepared to assess how well
RS-PINN performs in the recovery of PDE coefficients. The outcome of this comparison between
GS-PINN and RS-PINN can be seen in Figure 9. To simplify the plots related to the performance of
RS-PINN, we take the average value of the relative errors across five experiments for a fixed number
of samples.

Like the previous example, as the sample range is linked to the time division parameter, denoted
as tdiv, we employ K-means clustering with k = 20, within the context of GS-PINN. This cluster-
ing technique is utilized to determine the nearest cluster centroid corresponding to each pair of
sample size and relative error. This approach greatly simplifies the assessment of GS-PINN and
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Figure 6: (left) Entire dataset ; (right) Greedy samples by Q-DEIM algorithm for Burger’s equation
(Section 5.2)

Figure 7: Estimated coefficients by GS-PINN for Burger’s equation (Section 5.2)

RS-PINN performance across various configurations. The resulting curves, illustrated in Figure 9,
represent GS-PINN with dashed lines and RS-PINN with solid lines. It is obvious that GS-PINN out-
performs RS-PINN almost in all the settings except for some cases that has RS-PINN has better
or comparable performance which corresponds to the higher sample sizes specifically associated to
the term uux.

5.3. Korteweg-de Vries (KdV) equation
The Korteweg-de Vries (KdV) equation is a fundamental partial differential equation in the field of
mathematical physics and nonlinear waves. The KdV equation is particularly significant because it
provides a mathematical description of certain types of nonlinear waves in various physical systems,
including shallow water waves, plasma physics, and optics. The KdV equation can be written as
a partial differential equation in the form:

∂u

∂t
+ c uux + α uxxx = 0, (18)

where c and α are constant variables. It is known for its ability to model waves that maintain
their shape while traveling through a dispersive medium, such as water with varying depths, and it
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Figure 8: Performance of GS-PINN to estimate coefficients corresponding to Burger’s PDE equation
(Section 5.2) with different time divisions tdiv and precision values ϵthr

Figure 9: Comparing GS-PINN with RS-PINN to estimate coefficients corresponding to Burger’s
PDE equation (Section 5.2) with different time divisions tdiv and precision values ϵthr

can describe both solitons (solitary wave solutions) and other types of nonlinear wave phenomena.
The discretization for the KdV equation, as described in [47], is performed at 512 space points
(n = 512) and 201 (m = 201) temporal points within the original spatial domain of x ∈ [−30, 30]
and a time range of t ∈ [0, 20], respectively. Having a snapshot matrix U ∈ R512×201 demonstrates
the curse of dimensionality in the training of the PINN for the PDE parameter estimation, therefore
we employ Q-DEIM algorithm to extract the most informative samples. To do so, we set the time
domain division tdiv = 2 and the precision value ϵthr = 10−3 whereby we earn 288 samples which
is approximately 0.28% of our entire dataset. The entire dataset (left) and selected samples (right)
by Q-DEIM are shown in Figure 10. Number of iteration for training is set at max-iter = 1000 and
we feed these samples into our GS-PINN architecture to recover the parameters of the underlying
PDE. The convergence of the coefficients to their true values corresponding to the terms uux and
uxxx is depicted in Figure 11. The computed parameter vector p⊤ = [−5.971, −0.973] which based
on (18) we have c = −p1 and α = −p2. We can see that with having 0.28% of the entire dataset
we reach to relative errors, error1 = 0.00478 and error1 = 0.0267 corresponding to the terms uux

and uxxx, respectively. This verifies the effectiveness of choosing most valuable and informative
samples in the training of PINN.

Figure 12 presents the relative error associated with various pairs of (tdiv, ϵthr). To achieve this,
we have chosen 20 equally spaced logarithmic values for precision ϵthr, covering the range from
10−10 to 10−2, and linked each of these values to time domain divisions tdiv = 1, 2, 3, 4. One
common observation by comparing curves corresponding to the pairs (tdiv, ϵthr) is that for the
fixed tdiv decreasing ϵthr has no significant impact on the number of samples that are chosen by
Q-DEIM and as well as corresponding relative errors. Moreover, we see that with approximately
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300 samples almost all tdivs have acceptable performance. The curve corresponding to tdiv = 3
with approximately 2500 samples gives the minimum relative error associated to the terms uux

and uxxx compared to the others. Interesting observation is that time domain division tdiv limit
the maximum number of samples chosen by Q-DEIM at lower values of ϵthr.

Having the sample range through GS-PINN, we are ready to evaluate the performance of RS-PINN in
recovering the PDE coefficients. The results of this comparative analysis between GS-PINN and
RS-PINN are depicted in Figure 13. To streamline the presentation of RS-PINN’s performance in
the plots, we calculate the average relative error across five experiments for a fixed number of
samples. Like the previous examples we utilize K-means clustering with a parameter of k = 20 to
identify the closest cluster centroid for each combination of sample size and relative error. As we
can see for the lower value of sample range both GS-PINN and RS-PINN do not have good perfor-
mance, however RS-PINN requires almost 4000 samples to reach almost the same relative errors
compared to GS-PINN in the sample range 200 − 400 which demonstrates the significant impact
of greedy sampling on PDEparameter estimation. In the higher sampling range both RS-PINN and
GS-PINN have almost the same performance.

Figure 10: (left) Entire dataset ; (right) Greedy samples by Q-DEIM algorithm for KdV equation
(Section 5.3)

Figure 11: Estimated coefficients by GS-PINN for KdV equation (Section 5.3)
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Figure 12: Performance of GS-PINN to estimate coefficients corresponding to KdV PDE equation
(Section 5.3) with different time divisions tdiv and precision values ϵthr

Figure 13: Comparing GS-PINN with RS-PINN to estimate coefficients corresponding to KdV
PDE equation (Section 5.3) with different time divisions tdiv and precision values ϵthr

6. Conclusion
In this paper we employed a greedy sampling approach, namely Q-DEIM, on the dataset resulted
from descretization of the PDEs to do parameter estimation using PINN. Q-DEIM selects the most
informative samples from a given snapshot matrix corresponding to a PDE. Through various simu-
lation examples we have shown that greedy sampling approach based on Q-DEIM algorithm signifi-
cantly outperforms common random sampling method for the PDE parameter estimation both in re-
quired training time for the PINN architecture as well as relative estimation error. Our investigation
revealed that by using time domain division of the snapshot matrix of a PDE and Q-DEIM algorithm
we can capture local dynamics, hence acquire more valuable samples which improves the quality of
parameter estimation via PINN. Leveraging Q-DEIM and PINN we have estimated the corresponding
parameters of three well known PDEs, (i) Allen-Cahn equation, (ii) Burgers’ equation, and (iii)
Korteweg-de Vries equation with 0.383%, 1.39%, and 0.28% of the dataset, respectively.
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A. Appendix
K-means clustering is a popular unsupervised machine learning algorithm used for partitioning a
dataset into k distinct, non-overlapping subsets (clusters). The goal of the algorithm is to group
similar data points together and assign them to clusters, with the number of clusters, k, specified
by the user.

The step-by-step explanation of how the k-means algorithm works: (i) Initialization: Randomly
select k data points from the dataset as the initial centroids. The centroids are the points that will
represent the center of each cluster. (ii) Assignment: assign each data point to the cluster whose
centroid is closest to it. This is typically done using a distance metric, such as Euclidean distance.
(iii) Update Centroids: recalculate the centroids of the clusters by taking the mean of all the data
points assigned to each cluster. (iv) Repetition: repeat steps (ii) and (iii) until convergence is
reached. Convergence occurs when the centroids no longer change significantly between iterations
or when a certain number of iterations is reached. (v) Output: The algorithm produces k clusters,
and each data point is assigned to one of these clusters.

The final result of the k-means clustering algorithm is a set of k cluster centroids and a label-
ing of each data point to its respective cluster. K-means clustering algorithm has been already
implemented in Machine Learning software packages 1.

To apply the K-means clustering algorithm on the results of the GS-PINN regarding pairs (tdiv, ϵthr)
we construct a matrix consist of 80 rows and 2 columns, i.e. tdiv = 1, 2, 3, 4 where each have
corresponding 20 relative error as mentioned in the draft. The first column is the number of sam-
ples for each pair (tdiv, ϵthr) and the second column corresponds to the associated relative error.
Employing K-means clustering algorithm with k = 20 will result 20 centroids each is a pair corre-
sponds to the number of samples and relative error value. The clustering is performed with 100
different initializations to enhance robustness.

It is worth to highlight that a Python package has been provided to support different implemen-
tation phase of this article which is available on https://github.com/Ali-Forootani/PINN_DEIM
or https://gitlab.mpi-magdeburg.mpg.de/forootani/pinn_deim.

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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