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Abstract 

The hippocampus forms concepts by integrating multi-feature relations into a unified 

representation. A common yet unconfirmed assumption is that such cognitive maps afford 

interpolations to never-experienced states. We approach this question as a category-learning 

problem in which prototypes are omitted from training but guide category-based decisions in a 

subsequent feature-inference task. Consistent with behavior, missing inferred stimulus features 

were represented at prototypical values in neocortex. This cortical completion effect correlated 

with hippocampal responses, which in turn reflected the distance between imagined prototypes 

and experienced exemplars. This was paralleled by a learning-dependent grid-like representation 

of the underlying conceptual space in entorhinal cortex. Our results suggest that abstracted 

prototypes correspond to interpolated central states in a cognitive map that guide cortical pattern 

completion during category-based decisions. 
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Introduction 

Human cognition fundamentally relies on a vast network of interconnected concepts that 

structure our experiences by facilitating the classification and differentiation of objects and 

events based on their shared and unique features. Prominent theories of concept learning posit 

that objects and events are represented in multidimensional psychological spaces (Gärdenfors, 

2004; Nosofsky, 1984; Reed, 1972; Shepard, 1987). In these spaces, each experience can be 

portrayed as a coordinate with a particular combination of features, whereby categories 

correspond to regions. Which properties of psychological spaces are integral to concept 

representations during classification or inference has been debated for decades. A significant 

distinction concerns the extent to which idiosyncratic or abstract features are represented. 

Whereas exemplar theories propose the encoding of unique, experienced feature combinations, 

i.e. coordinates within psychological space (Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 

1984), another account suggests the formation of abstract prototypes, that reflect the central 

tendency of experiences (Homa et al., 1973; Posner & Keele, 1968; Reed, 1972; Rosch & Mervis, 

1975). Mathematical models of both types of representations have gained empirical support at 

the behavioral level  (Nosofsky, 1988; Smith & Minda, 2000). Especially coherent categories whose 

members share many features (high family resemblance) are thought to favor the formation of 

prototypes as an adaptive way to extract essential information and average out idiosyncratic 

noise (Minda & Smith, 2001; Smith et al., 2016). It is conceivable that different representational 

formats may coexist and adapt to different task demands. Accordingly, previous fMRI studies 

revealed that behavioral model estimates of prototype and exemplar representations correlate 

with activation levels in different brain regions (Bowman et al., 2020; Bowman & Zeithamova, 

2018; Mack et al., 2013), whereby the hippocampal signal tracked model estimates of a prototype 

representation (Bowman & Zeithamova, 2018). Critically, while prototype representations are 

model assumptions derived from categorization behavior, it is unknown whether the brain actually 

represents the central tendency of experienced feature combinations. In fact, little is known about 

the neural representational basis of these estimates or the particular mechanisms by which the 

hippocampal formation might support prototype-based decisions. 

It has been suggested that the representational schemes of the hippocampal-entorhinal system 

may critically support the encoding and retrieval of conceptual knowledge (Morton & Preston, 

2021). Specifically, the system has been proposed to organize experiences and their relational 

properties into map-like representations (O’Keefe & Nadel, 1978; Tolman, 1948) based on an array 

of spatially-tuned cell types such as place (O’Keefe & Dostrovsky, 1971) and grid cells (Hafting et 

al., 2005), which encode positional and directional information (Bush et al., 2015; Moser et al., 

2015). Similar mechanisms have been observed in encoding relations in spatial and non-spatial 

tasks (Aronov et al., 2017; Constantinescu et al., 2016; Garvert et al., 2017; Nau et al., 2018; Park 
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et al., 2020; Tavares et al., 2015; Theves et al., 2019, 2020), suggesting domain-general 

representations (Behrens et al., 2018; Bellmund et al., 2018), considered beneficial for inference 

and generalization (Whittington et. al., 2020). Accordingly, these mechanisms seem to be 

influenced by behavioral relevance: for instance during concept learning, the hippocampus 

selectively encoded relations between exemplars along those feature dimensions that defined 

category membership (Theves et al., 2020). Importantly, while a commonly hypothesized feature 

of cognitive maps pertains to their metric function (Gärdenfors, 2004), allowing interpolations to 

non-experienced states, this property remains to be demonstrated for hippocampal processing.  

Here we ask whether prototype representations inferred from behavior, manifest neurally as 

central states in a cognitive map. To this end, we use a category learning task in which the 

prototypes (i.e., the centroid feature combination per category space) are omitted during training, 

but guide category-based decisions in a subsequent feature inference task. In sum, we find 

evidence for pattern completion into central states of a hippocampal-entorhinal concept 

representation that guide cortical instatement of prototypical features during category-based 

decisions. 
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Results 

Feature inference is anchored to category prototypes 

In the present concept learning experiment (see Fig. 1A for an overview of the procedure), 

participants learned to categorize cartoon stimuli into three categories based on the combination 

of their two features (see Fig.1A-D) and then performed a feature inference task (Fig. 1E) in the 

MRI scanner. The category prototypes, denoting the centroids of the categories, were not shown 

during categorization training. Participants performed the categorization task until they reached 

90% accuracy in the last two blocks or completed a maximum of 20 blocks. Participants’ 

responses indicate that they learned the category structure well: Categorization performance 

improved between the first and the last five blocks, both in terms of accuracy (t46 = 18.164, P < 

.0001) and response time (t46 = -5.600, P < .0001; see also Figure S1). On average, accuracy 

exceeded chance level (33 %) across the last five training blocks (M = 80.693 %, t46 = 41.578, P < 

.0001) and remained above chance in the final categorization test at the end of the experiment (M 

= 66.887 %, t46 = 28.228, P < .0001). 

In the subsequent feature inference task, participants were cued with a partial stimulus (including 

only one of the two features) and had to complete it by the missing second feature to generate a 

member of a given category. Specifically, they were instructed to imagine a potential category 

member with the cued feature and subsequently morph a probe stimulus, featuring a randomly 

sampled value of the previously omitted dimension, into the imagined one. We evaluated whether 

the completed feature was closer to the prototype or to the previously experienced cued exemplar 

by comparing the negative absolute distances to both locations (see Methods). We find that 

participants’ completion responses were closer to the prototype than to the cued exemplar (t46 = 

6.404, P < .0001; Fig. 2), suggesting that feature inference was guided by an abstracted 

representation. The prototype bias in the completion responses was additionally confirmed by a 

comparison of model-based proximity scores (t46 = 9.527, P < .0001). Here, prototypes were 

defined as the means of multivariate Gaussian distributions, and the likelihood of a given 

coordinate within that distribution was converted into a proximity score. The scores were 

compared with the proximity scores of a Bayesian version of the Generalized Context Model 

(Nosofsky, 1984), which estimates the similarity of a stimulus to a category by the weighted sum 

of distances to all exemplars.   
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Figure 1: Experimental design and 2D feature space concept learning task. A: Overview of experimental 
tasks and sessions. In session 1, 1D and 2D feature viewing tasks (see Fig. S2) were followed by 
categorization training. In session 2, participants performed a feature inference task, a 2D feature viewing 
task, and a categorization test. B: Stimuli varied in the roundness of their heads and the size of their 
stomachs. C & D: Stimuli (dots) belonged to one of two elliptical-shaped categories (yellow & purple; labelled 
‘Venak’ or ‘Bukol’) or to a residual category (gray). On each trial, participants assigned a stimulus to one of 
the three categories and received feedback. Training included only a subset of feature combinations, 
omitting the prototypes (stars). E: In the feature inference task, partial stimuli (e.g., consisting of the head) 
had to be completed by the occluded feature (e.g., the stomach) based on the category label. For illustration 
purposes, the stimulus size in figures D and E was increased, and the black background of the presentation 
screen changed to light gray. 
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Figure 2: Behavioral completion bias indicates prototype representation. A: Completion responses (Xs) in 
the inference task of one example participant, cued on the ‘head’ dimension (x-axis) and responded on the 
‘stomach’ dimension (y-axis). B: Proximity to the exemplar or prototype location is calculated as the 
negative absolute distance on the response dimension for each response and averaged per participant. 
Responses were closer to the prototype than to the cued exemplar (prototype bias). C: Proximity scores 
derived from Bayesian versions of prototype and exemplar models were based on the distance between 
predicted and participant’s completion responses. Model-based prototype proximity was higher than 
exemplar proximity. For B and C: Dots depict the proximity scores per participant for each condition; green 
lines with error bars correspond to means ± standard errors of the mean (SEM); distributions reflect 
probability density functions of data points. *** P < .001.  D: Correlation between the measures in B and C. 
Green dots depict participants with a gray linear regression line. *** P < .001 

 

Grid-like representation of conceptual space in entorhinal cortex 

First, we tested for a representation of the conceptual space by means of a grid-like representation 

in the entorhinal cortex. Grid cells in the entorhinal cortex fire at multiple locations of an 

environment in a regular hexagonal pattern (Hafting et al., 2005), with population dynamics 

providing a metric for space (Bush et al., 2015; Moser et al., 2015). FMRI proxies of grid-like activity 

in humans (i.e., directional modulation of the fMRI signal with 6-fold rotational symmetry) have 

been observed during transitions through physical and feature  spaces (Doeller et al., 2010; Bao 

et al., 2019; Constantinescu et al., 2016; Nau et al., 2018; Viganò et al., 2021). For the purpose of 
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our analysis, we treated stimulus successions in the 2D stimulus viewing blocks as trajectories of 

a given angle through conceptual space (Fig. 3A) and evaluated entorhinal pattern similarity 

between trajectory pairs as a function of their angular difference in 60°-space. Accordingly, our 

model representational dissimilarity matrix (RDM) predicts that the closer the angular difference 

between two trajectories is to multiples of 60°, the higher the similarity between the multivoxel-

patterns elicited by those trajectories (i.e., highest similarity would be expected for trajectories 

multiples of 60° apart, and lowest similarity for trajectories multiples of 60°+30° apart). We find a 

significant correlation of the model RDM with entorhinal pattern similarity in the post-

categorization stimulus viewing block (Fig. 3C bottom, R = .004, t46 = 2.034, P = .024). The effect 

was specific to a 6-fold rotational symmetry and was not present when 4-to-8-fold symmetries 

were used as controls (all P > .219, Fig 3C). As predicted, the effect was not present in the pre-

categorization viewing block (Fig. 3C top, R = .001, t46 = .581, P = .282) when participants had not 

yet explicitly considered the relation of both features for categorization, consistent with the notion 

that cognitive map formation might be fostered by task demands (Theves et al., 2020). Finally, the 

strength of the grid-like feature space representation correlated with the behavioral prototype bias 

(Spearman’s rho = .31, S = 11870, P < .032, two-sided; correlation specific to 6-fold symmetry; 

other P > .15).  
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Figure 3: Grid-like representation of the conceptual space in entorhinal cortex. A: Logic of the 
hexadirectional analysis: Stimulus successions in the pre- and post-categorization 2D feature viewing tasks 
were treated as trajectories through feature space with a specific angle. The model RDM reflects the angular 
difference between trial pairs in 60° space (6-fold rotational symmetry; only a subset of trials is displayed 
in the RDMs). B: The neural RDM reflects the pairwise Mahalanobis’ distances between trial-wise fMRI BOLD 
activity estimates in voxels of an entorhinal cortex ROI. C: Run-wise correlation values (Spearman’s rho) 
between the model and neural RDMs were averaged for each participant and tested against zero in one-
sample t-tests, for the pre- and post-categorization tasks and for control symmetries. Green dots refer to 
participant data points and black dots to the average correlation values +- SEM for each rotational 
symmetry. * P < .05. 

 

Pattern completion into prototypical features in visual cortex  

Having established a behavioral prototype bias in the task as well as a representation of the 

conceptual space in the hippocampal-entorhinal system, we moved on to assess how prototype-

based decisions are reflected in hippocampal processing. To evaluate whether feature inference 

was guided by neural exemplar or prototype representations, we applied a cross-task decoding 

approach in which we estimated the imagined feature value (e.g., the head) based on multi-voxel 

patterns in the imagination periods (empty screen) after the cue (e.g., the stomach) (Fig. 4A). We 

first trained and tested a support vector regression (SVR) algorithm to predict the values of the 

two single visual features on a given dimension based on visual cortex patterns during the 1D 

feature viewing task. A leave-one-run-out cross-validation procedure revealed significant above-

chance decoding performance on both feature dimensions (head: mean Pearson correlation: R = 

.837, t24 = 44.140, P < .0001; negative mean absolute error = -1.414, t24 = 20.043, P < .0001; 

stomach: R = .843, t21 = 38.380, P < .0001; negative mean absolute error = -1.331, t21 = 20.218, P < 

.0001; Fig. S3 and S4). The validated decoder was then applied to voxel patterns in the imagination 

periods in the completion task to output continuous values on the missing feature dimension. We 

find that the decoded values in the second imagination period of the completion task were 

significantly close to the prototype, and significantly closer to the prototype than to the nearest 

exemplar (neural prototype bias: prototype proximity > exemplar proximity; t46 = 2.108, P = .020; 

proximity to the prototype: t46 = 4.619, P < .0001; proximity to the cued exemplar: t46 = 3.402, P = 

.001). This neural prototype bias correlated with the behavioral prototype bias (Spearman’s rho = 

.32, S = 11716, P = .014). There was no effect in the first imagination period (all P > .39).  

Importantly, the cortical completion into the prototypical features correlated positively with the 

cue-evoked hippocampal signal (Spearman’s rho = .27, S = 12682, P = .035; Fig. 4D), corresponding 

to fMRI signatures of pattern completion during episodic recollection (Horner et al., 2015). The 

higher hippocampal activity was in the post-cue period, the stronger was the subsequent 

instatement of cortical prototype-features. Interestingly, compared to previous studies on pattern 

completion, these correspond to an abstraction rather than an experienced event.  
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Figure 4: Instatement of prototypical features in visual cortex and correlation with behavior and 
hippocampal activation. A: The representation of the missing feature in visual cortex during the completion 
task was assessed via a cross-task decoding approach using support vector regression. After being trained 
and validated on the independent 1D-feature stimulus viewing task (Fig. 1A), the decoder was applied to 
voxel patterns in the post-cue interstimulus interval periods of the completion task. B: Decoded values were 
closer to the prototype than to the cued exemplar across participants (neural prototype bias). Dots depict 
the proximity scores per participant for each condition, green lines with error bars correspond to means ± 
SEM; distributions reflect probability density functions of data points. C: The neural prototype bias (x-axis) 
correlated significantly with the behavioral prototype bias (y-axis, see behavioral results in Fig. 2B) across 
participants. D: The neural prototype bias (x-axis) correlated with the cue-evoked mean amplitude in the 
hippocampus (y-axis) across participants. C and D: Green dots depict participants with a linear regression 
line in gray. * P < .05 

 

Hippocampal activation reflects representation of prototype position in conceptual space  

The latter finding (Fig. 4D) might indicate that the hippocampus directs the retrieval of an unseen 

prototype representation, abstracted over experiences. Next, we assessed the representational 

content of the hippocampal signal that correlates with the cortical instatement of prototype 

features. To evaluate whether prototypes are incorporated into a cognitive map, we tested for a 

representation of the two-dimensional distance between prototype and surrounding exemplars. 

Specifically, we tested whether hippocampal adaptation during the probe stimuli scales with the 

two-dimensional distance of the probe stimulus to the prototype considered to be imagined in the 

preceding time window. Thus, we do not only evaluate the presence of a prototype representation, 
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but test a model in which the prototype’s relation to exemplars corresponds to their distance in 

the two-dimensional conceptual space.  

Indeed, we find a significant positive modulation of the BOLD response by prototype distance in 

the right hippocampus (cluster peak: t46 = 4.2, P = .016, [35, −21, −18]; subcluster peak: t46 = 3.44, 

P = .035, [33, −11, −24]; Figure 5B; Table S1 for an exploratory whole-brain analysis). There was no 

significant signal modulation by exemplar distance in the hippocampus. Furthermore, including 

both modulators in the same GLM yielded similar results, with clusters surviving only for 

prototype-distance modulation (cluster peak: t46 = 3.2, P = .019, [20, −11, −15] and t46 = 2.72, P = 

.038, [35, −21, −18]). 

 

Figure 5: Hippocampal adaptation scales with probe stimulus’ 2D-distance to the prototype. A: Probe 
stimuli during the inference task (depicted as numbers) vary in their distance (arrows) to the prototype 
location (stars). Representational predictions were tested via fMRI adaptation analysis: If hippocampal 
representations of imagined prototype and experienced probe stimuli correspond to central and 
surrounding locations in a representational space, and if such a prototype representation is accessed in the 
post-cue period, a subsequent probe stimulus close to the prototype (1) should elicit a lower response than 
a distant probe stimulus (3). B: Supra-threshold (PFWE < .05, TFCE; SVC) clusters in the right hippocampus 
that were modulated by the 2D distance to the prototype (displayed on the MNI template).  

 

Discussion 

We report fMRI evidence for a neural correspondence to the cognitive-computational notion of 

categorical prototype representations. We find that, congruent with the emergence of an 

entorhinal grid-like representation of the underlying feature space, the hippocampus represented 

the distances between abstracted prototypes and presented exemplars. During feature inference, 

the hippocampal signal covaried with the instatement of prototypical values of the missing feature 

in visual cortex. Taken together, our findings suggest that the hippocampus represents prototypes 

as central states in a representational space that may guide pattern completion into neocortical 

representations during category-based decisions.   

3

1

2 1

2

3

fMRI modulation

x = 33

SVC, Hipp.        
FWETFCE < .05

y = -17

A B

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.05.14.594185doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.14.594185
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

The present feature inference task allowed a continuous readout of representations from behavior 

and brain activity patterns and accordingly fine-grained comparisons of completion responses to 

different locations in feature space. Participants’ behavioral and neural responses were closer to 

the category prototype than to the cued exemplar. This prototype bias was also confirmed when 

comparing Bayesian versions of a prototype model and the Generalized Context Model (Nosofsky, 

1986) which considers all members of a given category. Previous research demonstrated that the 

emergence of prototype representations depends on several factors, including the size of the 

training set (Minda & Smith, 2001), its coherence (Bowman & Zeithamova, 2020, 2023), and the 

amount of training (Smith & Minda, 1998; Bowman et al., 2020). These factors might explain 

differences in representation estimates across studies (Bowman & Zeithamova, 2018; Mack et al., 

2013), and it is possible that exemplar biases could also emerge in the present task under different 

training conditions. However, the purpose of this study was to investigate the neural processes in 

a scenario in which behavior indicates prototype representations.  

Previous studies have documented the involvement of the medial temporal lobe in concept 

learning (Bowman & Zeithamova, 2018; Davis et al., 2012; Kim et al., 2018; Kumaran et al., 2009; 

Liu et al., 2023; Nomura et al., 2007; Nomura & Reber, 2012; Schlichting et al., 2021; Seger et al., 

2015; Zeithamova et al., 2008). Specifically, the hippocampus has been shown to encode relations 

between exemplars along category-defining feature dimensions (Theves et al., 2019, 2020), to 

readjust object representations to task-relevant features via attentional biases (Mack et al., 2016), 

and its activity amplitude covaried with prototype estimates during categorization (Bowman et al., 

2020; Bowman & Zeithamova, 2018). Our findings significantly extend previous research by 

providing evidence for a representational mechanism by which the hippocampal system might 

support prototype abstraction. In particular, we observed a correlation between the hippocampal 

signal and neocortical representations of the missing features, similar to fMRI studies on pattern 

completion during episodic recollection (e.g. Horner et al., 2015; Grande et al., 2019). In contrast 

to previous research that focused on partial cue-evoked reinstatement of experienced event 

representations, the present findings might reflect hippocampal pattern completion (for review, 

see Theves et al., 2024) into previously unseen feature combinations (the prototypes) that can be 

abstracted from experiences. Consistent with a potential pattern completion account, the 

representation of the missing prototype-proximal feature in visual cortex followed a hippocampal 

representation of the prototype location and reached significance in the second, not the first ISI. 

The hippocampal representation of the prototype location was evidenced by signal adaptations 

reflecting the distances between the prototype and surrounding exemplars in conceptual space. 

Hippocampal pattern completion can be influenced by attractor states that are formed by 

recurrent connections within CA3 of the hippocampus (McNaughton & Morris, 1987; Treves & 

Rolls, 1992). Patterns close to an attractor will settle into the attractor state. In this vein, neural 
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and behavioral completion biases could result from an integration of cued category members into 

attractors corresponding to the prototypical states.  

Concurrently, we observed a grid-like representation of the underlying feature space in the 

entorhinal cortex, which provides the major input to the hippocampus. Grid cell firing is assumed 

to reflect the latent structure of an environment (Stachenfeld et al., 2017; Whittington et al., 2020; 

Spens & Burgess, 2024), which can support vector-based navigation and structural generalization 

more broadly. A recent memory model (Spens & Burgess, 2024) further suggests that shared 

category features might initially be stored in entorhinal cortex as latent variables that are used for 

memory retrieval in the hippocampus. In the present study, the grid-like representation was 

present only after, not before, participants completed the categorization training. This is in line 

with a previous finding that suggests that the cognitive demand of integrating both feature 

dimensions, e.g. to assign category membership, fosters hippocampal concept representations 

(Theves et al., 2020). The strength of the entorhinal grid-like representation further correlated with 

participants’ behavioral prototype bias. Future investigations could explore entorhinal 

representations of less cohesive categories (e.g., with highly heterogeneous exemplars or 

including exceptions), that typically favor exemplar representations (Bowman & Zeithamova, 

2020, 2023; Minda & Smith, 2001). 

In sum, the present findings advance our understanding of the nature of concept representations 

by suggesting a neural mechanism underlying the behaviorally-inferred use of category 

prototypes. We show that prototype-guided behavior during category-based feature inference is 

accompanied by neural patterns that reflect central positions or interpolations with respect to the 

representation of other exemplars. On a more general level, this finding might relate hippocampal 

processing to a commonly assumed property of cognitive maps: The implicit representation of 

“what lies between” experienced states, which allows the interpolation to not directly experienced 

states. Such a property is pivotal to the idea that cognitive maps endow flexibility to cognitive 

operations, for instance in imagination, planning, or the formation of task-efficient representations 

like prototypes.  
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Materials & Methods 

Participants 

Fifty volunteers participated in the study. Participants indicated right-handedness, no present or 

previous neurological or psychiatric disease and normal or corrected-to-normal vision. One 

participant was excluded because fMRI data acquisition and the task were interrupted several 

times due to technical problems, leading to an incomplete dataset. Two participants were 

excluded, because we noticed inconsistencies in the stimulus timing during data collection and 

preprocessing. Thus 47 participants were included in the analyses (age: M = 27.4, SD = 4.34, range 

= 18-35; gender: male = 23, female = 24). All participants gave informed written consent prior to 

participation and were compensated for participation. The study was approved by the ethics 

committee at the Medical Faculty of the University of Leipzig. 

Experimental Procedure 

The experiment consisted of several tasks performed over the course of one day (see Figure 1A). 

In a behavioral session, participants learned to categorize visual stimuli based on the combination 

of two continuous features. Subsequently, they performed a feature inference task in the MRI 

scanner, in which partial category stimuli had to be completed by the missing feature. The concept 

learning and inference tasks were preceded and followed by stimulus viewing blocks in the MRI 

scanner. There was a 1-hour break between the category learning task and the inference task.  

Stimuli 

Cartoon figures were used as stimuli across all tasks. These figures varied along two continuous 

dimensions: the size of their stomach and the roundness of their head (Figure 1B). Stomach size 

was defined as the radius of the grey-filled circle inside the turquoise body, while roundness of the 

head was defined as the radial distance between two circles' inner and outer vertices, which 

together formed a head with ten spikes. Head and body were connected by a white fixation cross 

and the figures were presented against a black background. In the 1D feature viewing and the 

feature completion task, half of the display was covered by a dark gray rectangle. The stimuli were 

projected onto a screen via a mirror attached to the MRI head coil. Participants responded using 

either a computer keyboard outside the scanner or MRI-compatible button boxes inside the 

scanner. PsychoPy (version 2020.10.2) and custom Python (3.9.7) scripts controlled the 

generation and presentation of the stimuli. 

Experimental tasks 

Categorization task: Category learning proceeded in a feedback-based classification task. Stimuli 

belonged to one of two elliptical-shaped categories located above and below the diagonal in a 
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two-dimensional feature space, or to a residual category that served as their outer boundary (Fig. 

1C). The purpose of the third category was to avoid competition between representations of the 

category centroids and the most extreme values of the feature space (“caricatypes”). On each 

trial, participants had to assign a stimulus to one of the categories (labeled VENAK, BUKOL or 

NONE) based on the combination of its features (Fig. 1D). Responses (corresponding to “v”, “b”, 

“n” on the keyboard) were followed by 1 s of corrective feedback (”correct”, “false”, or “too slow” 

after 10 s of no response). Trials were separated by a fixation cross for 0.5 s. Only a subset of the 

possible feature-value combinations was presented during training, the category centroids 

(prototypes) were omitted. Four stimuli were drawn from each of the two elliptic categories and 

repeated four times, while sixteen stimuli were drawn from the residual category and repeated 

one, so that all categories occurred with equal probability.  After a training block in which 

participants chose between the two elliptic categories, they completed at least 5 blocks of 48 

trials each in which they chose between all three categories. After each block, they received 

feedback on their performance (percentage correct). Training continued until a maximum of 20 

blocks or 90 % accuracy across the last two blocks was reached.  

Feature completion task: In a subsequent completion task inside the MRI scanner, participants 

were cued with a partial stimulus that had to be completed by the missing feature to generate a 

member of a given category (Fig. 1E). Specifically, one of the features (head or stomach, 

counterbalanced across participants) was occluded by a gray rectangle, and the first letter of the 

category label (”V” or “B”) was presented in white above or below the stimulus, respectively. 

Participants were instructed to imagine a member of the given category with the cued feature. 

Cue presentation (3.5 s) was followed by a fixation cross (ISI 1: average 3 s, sampled from a 

truncated exponential distribution with min = 2 s, max = 8 s, mu = 3 s), and then by a probe stimulus 

(2 s) consisting of the cued feature and a randomly sampled feature from the previously occluded 

dimension. The probe was followed by a second fixation cross (ISI 2), before it reappeared and 

was morphed by the participant into the imagined 2D stimulus. Participants increased or 

decreased the feature values using two buttons (right index and middle finger; a total of 100 steps 

were possible) and confirmed their choice with a third button press (left index finger). They had 

four seconds to respond before the trial ended. Five different cues containing all values for each 

elliptic category were presented, each repeated five times in each of three runs. 

Feature viewing and reconstruction tasks: Participants performed two feature viewing tasks at the 

beginning of the experiment (1D stimuli, 2D stimuli) and one feature viewing task (2D stimuli) at 

the end of the experiment (Supplementary Figure S2). The blocks served to train feature decoders 

to be applied to the subsequent completion task and to investigate hexadirectional 

representations of the feature space as a function of category learning. In the 2D viewing task, 

participants were instructed to attend carefully to both features of the (complete) stimuli. Stimuli 
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were presented for 2 s and separated by a fixation cross (intertrial interval: sampled from a 

truncated exponential distribution with min = 2 s, max = 8 s, mu = 3 s). Fifty-two feature-value 

combinations were presented, entailing five repetitions per feature value per dimension. Each 2D 

stimulus was repeated once in each of 4 runs. To ensure that participants attended to the stimulus 

values, we included 22 % test trials in each run. Test trials were indicated by a purple fixation cross 

(1 s) in between the two to be compared stimuli. In test trials, the stimuli had changed in one of 

the features and had to be reconstructed (response buttons and timing equivalent to the feature 

completion task). Feedback (0.5 s) in form of a green number indicated the distance in steps 

between their provided and correct response. After each run, participants received performance 

feedback, indicated by the average distance between their responses and the true feature value. 

Test trials were pseudo-randomly distributed, with the same number of test trials in each bin of 

16 trials. The 1D stimulus viewing task was similar, except that one of the features 

(counterbalanced across participants) was occluded by a gray rectangle. Each of the 10 values 

from the presented dimension was shown 5 times in each of the 4 runs, together with 15 test trials 

(23 %).  

Categorization test: At the end of the experiment, participants performed a categorization test 

outside the scanner in which no feedback was provided and stimuli from the entire feature space 

were presented twice for a total of 200 trials. In a final task, participants were asked to generate 

the most typical member of each category by reconstructing both features with two sliders. They 

completed two trials for each elliptic category. 

Behavioral analysis 

We analyzed categorization training data by averaging categorization accuracy across blocks and 

participants. To examine learning effects on performance, we compared the first and last five 

blocks in a paired t-test. Categorization performance at the end of the training was compared to 

chance level in a one-sided, one-sample t-test. Data of the feature inference task was analyzed 

with respect to the proximity of participants’ completion responses to the prototype and exemplar 

coordinates. Proximity was defined as the negative absolute distance between two values on the 

response dimension. Specifically, trial-wise completion values were compared to the centroids of 

the respective cued category (proximity to prototype) and to the exemplar location corresponding 

to the cue (proximity to exemplar). Considering that the feature-inference task entailed explicit 

cues, we considered the cued-/nearest exemplar the most intuitive comparison to the prototype 

prediction. For the cue corresponding to the prototype value, the maximal proximity to the 

neighboring exemplars was chosen. Mean proximities to prototype and exemplar locations per 

participant were compared in a one-sided, paired t-test. Analyses were performed in Python 3.9.7 

using the Spyder developer environment (version 5.1.5) and in R 4.2.2 using the RStudio developer 

environment (version 2023.06.0). Custom Python scripts used the numpy, pandas, matplotlib, 
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seaborn and scipy packages. R scripts used the tidyverse and ggplot2 packages. Unless otherwise 

noted, we tested directed hypothesis in one-sided tests at alpha level of 5 %. 

Modeling concept representations 

For comparability to studies that compared prototype estimates to the weighted sum of distances 

to all exemplars, we confirmed the observed prototype bias using the following model-based 

proximity scores. Prototypes were defined as the means of multivariate gaussian distributions 

and the likelihood of a given coordinate within the distribution was converted to a proximity score. 

The exemplar model was a Bayesian version of the Generalized Context Model (GCM, Nosofsky, 

1984), which estimates the similarity of a stimulus to a category by the weighted sum of distances 

to all the individual training exemplars. We used the Bayesian statistical software RStan, a 

package for R that facilitates the estimation of Bayesian statistical models using Hamiltonian 

Monte Carlo (HMC). We defined the structure of the prototype and exemplar models in Stan's 

probabilistic programming language. This involved specifying prior distributions for each model 

parameter (e.g., the location of the prototypes in feature space, the generalization parameter; for 

specification of priors, see https://github.com/MirkoTh/hierarchical-categorization).  We fitted 

these models to the data using RStan's sampling function, which draws from the posterior 

distribution of the model parameters given the data. The convergence of the models was checked 

using the Rhat statistic, with values close to 1 indicating good convergence. Effective Sample 

Sizes (ESS) were evaluated to ensure that the Markov chains had explored the parameter space 

thoroughly. The posterior distributions of the model parameters were analyzed, and point 

estimates were extracted as the maximum a-posteriori estimates (MAP). Based on the individually 

fitted parameters, we computed for each cue the most likely completion response based on each 

model, and calculated the proximity to the participant’s responses. 

MRI data acquisition 

MRI data were recorded using a 32-channel head coil on a 3 Tesla Siemens Magnetom SkyraFit 

system (Siemens, Erlangen, Germany). FMRI scans were acquired in axial orientation using T2*-

weighted whole-brain gradient-echo echo planar imaging (GE-EPI) with multi-band acceleration, 

sensitive to blood-oxygen-level-dependent (BOLD) contrast (Feinberg et al., 2010; Moeller et al., 

2010). The fMRI sequence had the following parameters: TR = 1500 ms, TE = 22 ms, voxel size = 

2.5 mm isotropic, FOV = 204 mm, flip angle = 80°, partial Fourier factor = 6/8, bandwidth = 1794 

Hz/Px, 63 interleaved slices, distance factor = 10 %, phase encoding direction = A-P, multi-band 

acceleration factor = 3. Field maps using the opposite phase-encoded EPIs were recorded 

between the task runs (Parameters: TR = 8000 ms; TE = 50 ms; voxel size = 2.5 mm isotropic; field 

of view = 204 mm; flip angle = 90°; partial Fourier factor = 6/8; bandwidth = 1794 Hz/Px; multi-

band acceleration factor = 1; 63 slices interleaved; slice thickness = 2.5 mm; distance factor = 10 
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%) to correct for magnetic field inhomogeneities (see preprocessing below). At the end of the 

second scanning session, we acquired a T1-weighted MP2RAGE anatomical scan (TR = 5000 ms; 

TE = 2.9 ms; TI1 = 700 ms; TI2 = 2500 ms; voxel size = 1 mm isotropic; field of view = 256 mm; flip 

angle1 = 4°; flip angle2 = 5°; bandwidth = 240 Hz/Px; acceleration factor = 3; distance factor = 50 

%). Participants were presented with task stimuli on a screen, which was viewed through a mirror 

attached to the head coil. Behavioral responses were recorded using MRI-compatible button 

boxes. 

MRI preprocessing 

Results included in this manuscript come from preprocessing performed using fMRIPrep 21.0.1 

(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is based 

on Nipype 1.6.1 (K. Gorgolewski et al. (2011); K. J. Gorgolewski et al. (2018); RRID:SCR_002502). 

Preprocessing of B0 inhomogeneity mappings: A total of 2 fieldmaps were found available within 

the input BIDS structure. A B0-nonuniformity map (or fieldmap) was estimated based on two (or 

more) echo-planar imaging (EPI) references with topup (Andersson, Skare, and Ashburner (2003); 

FSL 6.0.5.1:57b01774). 

Anatomical data preprocessing: A total of 2 T1-weighted (T1w) images were found within the 

input BIDS dataset. All of them were corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 

2008, RRID:SCR_004757). The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs 

as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and 

gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, 

RRID:SCR_002823, Zhang, Brady, and Smith 2001). A T1w-reference map was computed after 

registration of 2 T1w images (after INU-correction) using mri_robust_template (FreeSurfer 

6.0.1, Reuter, Rosas, and Fischl 2010). Brain surfaces were reconstructed using recon-all 

(FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the brain mask estimated 

previously was refined with a custom variation of the method to reconcile ANTs-derived and 

FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, 

Klein et al. 2017). Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed through nonlinear registration with 

antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the 

T1w template. The following template was selected for spatial normalization: ICBM 152 Nonlinear 

Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym]. 
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Functional data preprocessing: For each of the 15 BOLD runs found per subject (across all tasks 

and sessions), the following preprocessing was performed. First, a reference volume and its skull-

stripped version were generated using a custom methodology of fMRIPrep. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six corresponding 

rotation and translation parameters) are estimated before any spatiotemporal filtering using 

mcflirt (FSL 6.0.5.1:57b01774, Jenkinson et al. 2002). The estimated fieldmap was then aligned 

with rigid-registration to the target EPI (echo-planar imaging) reference run. The field coefficients 

were mapped on to the reference EPI using the transform. BOLD runs were slice-time corrected 

to 0.705s (0.5 of slice acquisition range 0s-1.41s) using 3dTshift from AFNI (Cox and Hyde 

1997, RRID:SCR_005927). The BOLD reference was then co-registered to the T1w reference using 

bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 

2009). Co-registration was configured with six degrees of freedom. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS 

and three region-wise global signals. FD was computed using two formulations following Power 

(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square 

displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by Power et 

al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for component-

based noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after 

high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-

off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor 

components are then calculated from the top 2% variable voxels within the brain mask. For 

aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in 

anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding 

the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that 

likely contain a volume fraction of GM. This mask is obtained by dilating a GM mask extracted 

from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted from 

voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD space 

and binarized by thresholding at 0.99 (as in the original implementation). Components are also 

calculated separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained components’ time 

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 

combined, or temporal). The remaining components are dropped from consideration. The head-

motion estimates calculated in the correction step were also placed within the corresponding 

confounds file. The confound time series derived from head motion estimates and global signals 

were expanded with the inclusion of temporal derivatives and quadratic terms for each 
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(Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised 

DVARS were annotated as motion outliers. The BOLD time-series were resampled into standard 

space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference 

volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. 

The BOLD time-series were resampled onto the following surfaces (FreeSurfer reconstruction 

nomenclature): fsnative, fsaverage. All resamplings can be performed with a single interpolation 

step by composing all the pertinent transformations (i.e. head-motion transform matrices, 

susceptibility distortion correction when available, and co-registrations to anatomical and output 

spaces). Gridded (volumetric) resamplings were performed using antsApplyTransforms 

(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of other kernels 

(Lanczos 1964). Non-gridded (surface) resamplings were performed using mri_vol2surf 

(FreeSurfer). 

fMRI data analysis 

fMRI data was analyzed using Python 3.9.7 with the Spyder developer environment (version 5.1.5) 

and R 4.2.2 using the RStudio developer environment (version 2023.06.0). Custom Python scripts 

relied on the nilearn, nltools, sklearn, scipy, and rsatoolbox packages. R scripts used the tidyverse 

and ggplot2 packages. Correlations were computed using the Pearson correlation coefficient 

whenever both variables did not violate data normality according to the Shapiro-Wilk test. 

Otherwise, Spearman’s rank correlation coefficient (rho) was used as the correlation measure. 

Almost all our hypotheses on fMRI effects were clearly directed, i.e. based on previous literature. 

Thus, we used one-sided tests with an alpha level of 5%, unless otherwise noted.    

General information about first-level general linear models (GLMs): First-level GLMs were 

implemented using the FirstLevelModel class of the nilearn Python package and computed within 

a brain mask in participants’ native space. The mask was based on the anatomical brain mask in 

native space created during preprocessing with fMRIPrep and resampled to the resolution of the 

functional data. Task-related regressors in the GLMs were convolved with the Glover 

haemodynamic response function (HRF). Temporal autocorrelation was accounted for using an 

autoregressive AR(1) model. Nuissance regressors included 24 motion regressors (3 translations, 

3 rotations, their squares, their derivatives, and their squared derivatives), anatomical-component 

based noise correction components (aCompCor) regressors derived from fMRIPrep up to a sum 

of 15 % explanation of variance, 4 global signal regressors (including the square, derivative, and 

squared derivative), and discrete cosine-basis regressors estimated by fMRIPrep to account for 

low-frequency temporal drifts. 

Representational similarity analysis (RSA) of hexadirectional signal: To test for a grid-like 

representation of the feature space, we pursued a model-based RSA of the feature viewing task 
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data. This analysis approach provided an efficient alternative to an active sampling of trajectory 

angles via an additional task (cf., Bao et al. 2019; Bellmund et al. 2016; Vigano et al. 2021, 2023). 

For this purpose, we treated stimulus successions in the 2D feature viewing tasks as trajectories 

of a given angle in conceptual space and analyzed the pattern similarity between trajectories as a 

function of their angular difference in 60° space via representational similarity analysis (RSA, 

Kriegeskorte et al., 2008). (In the task, frequent catch trials asked participants to morph a stimulus 

into the preceding one, making a general consideration of the vector between successive stimuli 

conceivable). BOLD fMRI data from the 2D feature viewing task was modelled in single-trial GLMs 

per run. Following the least-squares-separate approach (Mumford et al., 2012), each GLM 

included an onset regressor for one of the 52 feature combinations, an onset regressor for the 

remaining stimuli and additional task event regressors (onset of test stimulus, probe, response, 

and feedback), resulting in 4 (runs) x 52 parameter estimate (PE) maps. PE images were masked 

with participant-specific bilateral masks of the entorhinal cortex created by FreeSurfer 

segmentations of the participants’ anatomical images during preprocessing with fMRIPrep 

(FreeSurfer labels 1006 & 2006). The masked images were z-scored across conditions within each 

run and their pairwise Mahalanobis’ distances computed to generate a neural representational 

dissimilarity matrix (RDM). The model RDM was based on the difference in trajectory angle 

between each pair of trials in 60° space. The similarity between neural and model RDMs was 

estimated via Spearman’s rho, averaged for each participant, and the resulting correlation values 

were tested against zero in a one-sided, one-sample t-test. The specificity of a 6-fold modulation 

of activity was evaluated via control analyses with RDMs based on 4-, 5-, 7- and 8-fold rotational 

symmetries. 

Feature decoding analysis: To evaluate whether completion responses are guided by exemplar or 

prototype representations, we applied a cross-task decoding approach, in which values of the 

missing feature in the inference task were predicted based on a decoder that was trained on the 

preceding 1D feature viewing task. We trained a linear support vector regression (SVR) algorithm 

to predict feature values based on multi-voxel patterns during the 1D feature viewing task. The 

GLM of the 1D feature viewing task included an onset regressor for each of the 10 feature values 

and onset regressors for test events (test stimulus, probe, response and feedback), resulting in 4 

(runs) x 10 different parameter estimate (PE) maps. The PE values served as training data for the 

decoder. For the test data, we modelled the feature completion task with a GLM that contained 

one regressor for each of the 10 cues (1D feature + category label) with onset and duration of the 

subsequent fixation cross and onset regressors for task events (the 2D probe, test onset and 

response onset), resulting in 3 (runs) x 10 (cues) PE maps. The PE maps were z-scored within 

each run and masked with participant-specific bilateral visual cortex masks created by FreeSurfer 

segmentations of the participants’ anatomical images during preprocessing with fMRIPrep. The 

mask included the pericalcarine cortex (FreeSurfer labels 1021 & 2021), cuneus (1005, 2005), 
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lingual cortex (1013, 2013) and lateral occipital cortex (1011, 2011). A linear SVR decoder (with 

parameters c = 1 and epsilon = 0.1) was trained and validated on stimulus values and the multi-

voxel features from the training GLM and then applied to predict stimulus values based on the 

multi-voxel features of the testing GLM. The proximity of the predicted values to either the cued 

exemplar or prototype was computed as negative absolute distance, akin to the behavioral 

analysis. Proximity values were compared to chance-level performance of the decoder by 

repeating the analysis 5000 times and randomly permuting the condition labels of the training 

data. The z-score of the actual proximity value within this permutation distribution was calculated 

for each subject. We tested prototype and exemplar proximity against zero in a one-sided, one-

sample t-test and their difference in a one-sided, paired two-sample t-test. We applied this analysis 

to both ISI periods. We initially validated the decoder performance on the training data in a leave-

one-run-out SVR analysis. Decoding performance was measured by the negative mean absolute 

error as well as by the Pearson correlation coefficient between the decoded values from each of 

the 4 runs and the true stimulus values. Participant’s averages of these measures were tested 

against a permutation derived chance level in a one-sided, one-sample t-test. The neural prototype 

bias was correlated with the behavioral prototype bias and the hippocampal signal during the 

post-cue period. For the latter, we averaged the PE maps of the post-cue imagination period from 

the feature completion task GLM across runs and across voxels within a hippocampal mask 

(FreeSurfer labels: 17 & 53). This resulted in a hippocampal signal value for each participant which 

was correlated with the individual neural prototype bias values. 

Adaptation analysis: We evaluated prototype representations during the feature inference task 

using fMRI adaptation analysis. Retrieval of the prototype after the cue would be reflected in lower 

responses to subsequent probe stimuli, the closer they are to the prototype location. The GLM 

included onset regressors for the cue stimuli, the probe stimulus, the morphing phase and the 

response. The probe stimulus regressor was accompanied by a parametrically modulated 

regressor (demeaned) denoting the Euclidean distance between the probe and the prototype 

location. For control analyses, we ran a GLM with a parametric regressor reflecting the distance 

to the cued exemplar, as well as a GLM including both parametric regressors. PE images were 

transformed to MNI standard space using ANTS (version 2.3.5), resampled to the resolution of 

the functional data, and spatially smoothed with a 7.5 mm full width at half maximum Gaussian 

filter (FWHM). For group-level statistics, we performed a mass-univariate nonparametric test 

(Freedman & Lane, 1983) with 5000 permutations using threshold-free cluster enhancement 

(TFCE) within a small volume correction (SVC) hippocampal mask (FreeSurfer labels 17 & 53) and 

corrected for multiple comparisons with a family-wise error rate (PFWE < .05). Labels of significant 

brain clusters were extracted via the Harvard-Oxford (Sub)Cortical Structural Atlas. 
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Figure S1. Results of the categorization training. A: Categorization stimuli (dots) were drawn from a two-
dimensional feature space that embedded two elliptical-shaped categories (yellow & purple) and a residual 
category (gray). B & C: There was no significant (n.s.) difference between the two elliptical-shaped 
categories in categorization errors (t46 = -1.020, P = .313) and response time (t46 = -1.002, P = .322). Colored 
dots depict participant data points and black dots with error bars reflect the means +- SEM. D & E: 
Categorization performance improved between the first and the last five blocks, as indicated by a lower 
percentage of categorization errors (t = -18.164, P < .0001) and faster response time (t = -5.600, P < .0001). 
Green dots depict participants’ data points, and bars with error bars reflect the mean +- SEM. *** P  < .001 
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1D feature viewing task 

 

 
 

2D feature viewing task 
 

 
 
Figure S2. Trial display in the feature viewing and reconstruction tasks. A: In the 1D viewing task, 
participants were instructed to attend to one feature (here the stomach) of the stimuli. The other feature 
was occluded by a gray rectangle throughout the task. Stimuli were presented for 1.5 s and separated by a 
fixation cross (jittered intertrial intervals, mean 3 s). In addition to regular viewing trials, test trials (23%) 
were included to ensure attention to the feature values. Test trials were indicated by a purple cue (1 s). 
Participants’ task was to change the feature value presented after the purple cue into the feature value 
presented before the purple cue (via two buttons to increase/decrease the value). After confirming their 
choice, participants received a green-colored number as feedback (0.5 s) that indicated the distance 
between their provided and the correct response. B: The 2D viewing task followed the same procedure, 
except that complete 2D stimuli were shown without occlusion. In test trials, one of the two features had to 
be changed (here stomach) in order to reconstruct the previous stimulus.  
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Figure S3. Training and validation of feature decoding. Related to Figure 4. A: A continuous decoder (linear 
support vector regression) was trained on multi-voxel patterns in visual cortex, reflecting run-wise GLM 
parameter estimates of different feature values. B: Decoding performance was evaluated in a leave-one-
run-out (4-fold) cross-validation on the training data (depicted are four predicted values per feature value 
for an example participant with the regression line (gray)). C: Decoding performance was assessed via the 
deviation (mean absolute error) between true and predicted values. The scores were above chance level 
(*** = P < .0001) and did not differ between both dimensions (n.s., two-sample t-test: t = .07, P = .945). D: 
The same pattern was observed in the Pearson correlation coefficients between predicted and true values 
(*** = P < .0001; difference between dimensions: t = .79, P = .431). Green dots in C and D depict participant 
data points per condition; the gray dot and error bars refer to the mean value +- SEM. E: A whole-brain 
analysis confirmed that feature-predictive voxels (R2 between predicted and true values) were constrained 
to visual cortex regions. Depicted are t-values from supra-threshold clusters on a glass brain (one-sided 
non-parametric permutation test with TFCE and PFWE < 0.05). 
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Cluster 

ID Atlas label X Y Z T value  Size     
 (voxel) 

1 Temporal fusiform cortex R 35 -38 -18  5.65 6258 

A    Temporal-occipital fusiform R 43 -55 -13 4.94  

B    Parahippocampal gyrus R 33 -23 -21 4.25  

C    Occipital fusiform cortex R 25 -65 -10 4.29  

2 Inferior temporal gyrus L -52 -60 -7 5.44 415 

3 Temporal-occipital fusiform cortex L -34 -50 -21 4.80 122 

4 Inferior temporal gyrus L -47 -50 -15 4.61 170 

5 Putamen R 20 4 -10 4.12 156 

6 Amygdala R 30 2 -18 4.17 41 
 
Table S1. Representation of probe stimuli’s 2D-distance to the prototype examined via fMRI adaptation 
(related to Figure 5). An exploratory whole-brain analysis of the GLM described in Figure 5B further revealed 
significant clusters in the regions listed above (PFWE < .05, TFCE; whole-brain corrected). Listed are atlas 
labels, MNI coordinates (X, Y, Z) and statistical T values of peak voxels from the clusters. Atlas labels are 
derived from the Harvard-Oxford (Sub)Cortical Structural Atlas. Sub-clusters are denoted by letters. 
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