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A B S T R A C T   

Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally 
accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one- 
dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving 
an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental 
results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of 
rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and 
concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium 
chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small 
geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth 
of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting 
results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.   
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1. One-dimensional systems and the real world 1 

1.1. Introduction 

One-dimensional systems have fascinated solid-state physicists for 
more than 60 years [1–9]. Theory predicts that one-dimensional (1D) 
electron systems feature unusual properties which set them apart from 
ordinary materials. Well-known examples are the Peierls instability 
[10], the Luttinger liquid theory of 1D conductors [11], and the absence 
of thermodynamic phase transitions [12,13]. 

The main motivation for studying one-dimensional systems of solids 
was originally their (apparent) simplicity compared to more realistic 
three-dimensional (3D) systems. Indeed, a very common mathematical 
approach is to reduce complex high-dimensional problems to indepen
dent one-dimensional problems using transformation and separation of 
variables. A textbook example is the solution of the Schrödinger equa
tion for the hydrogen atom using spherical coordinates. It has turned 
out, however, that 1D models of solids may have markedly different 
properties than their 3D counterparts. What could be seen as a drawback 
has actually spurred intensive research efforts in condensed matter 
physics over more than six decades to find materials exhibiting this 1D 
physics. 

These efforts have lead to the discovery of numerous materials that 
can be regarded in first approximation as being quasi-1D electron sys
tems over a finite energy and temperature scale. In this context, the 
adjective quasi is chosen to distinguish real-world structures from true 
1D objects. While the latter are mathematical idealizations, curves with 
no width and no interactions with the ambient space in which they are 
embedded, real-world examples always have a finite width and an 
arbitrary small but non-zero coupling with their environment. The 
atomic chains formed on various surfaces [8,14–16] are very promising 
realizations of quasi-1D systems and will be the main subject of this 
review. Other prominent quasi-1D materials are highly anisotropic 
crystalline solids such as Bechgaard salts [3,5,8,17] and π-conjugated 
polymers [2,9,18]. More recent realizations of quasi-1D electron sys
tems are carbon nanotubes [19] and quantum wires in semiconductor 
heterostructures [20,21]. Additionally, 1D physics can be observed in 
other condensed-matter systems such as in edge channels of quantum 
Hall fluids [22,23] and of quantum spin Hall insulators [24,25], as well 
as in ultracold atomic or molecular gases in optical lattices [26,27]. 
However, they are quite different both experimentally and theoretically 
from atomic wires on surfaces and they are not further discussed in the 
following. 

Many of the peculiar features predicted by the theory of 1D electron 
systems have been observed experimentally in quasi-1D materials. 
Mostly they are long-range-ordered symmetry-breaking phases induced 
by the perfect nesting of the 1D electron gas, e.g. Peierls insulators, 
charge-density waves (CDW), and spin-density waves (SDW) [1–5,9,17, 
28]. Other features have proven to be more elusive, for instance the 
dynamical separation of spin and charge excitations and the Luttinger 
liquid behavior of 1D conductors [6,28–30]. 

From a theoretical point of view, strictly 1D electron systems are very 
well understood. This knowledge is mostly based on minimal effective 
models [31] representing only the low-energy degrees of freedom and 
interactions that are relevant for the particular phenomenon to be 
described (e.g. a Peierls transition) [4–7,28,29,32–34]. Although these 
effective models do not provide us with a realistic description of any 
material, they are “simple” enough to be solved (analytically or 
numerically). Thus they allow us to investigate and understand the 
peculiar properties of 1D systems. The theoretical discussion in this 
chapter is almost entirely based on results obtained from effective 
models with some input from first-principles simulations and 
experiments. 

In real systems, however, even in the most anisotropic ones, 3D 
fluctuations and interactions play a significant role [1,4–7,33]. Conse
quently, the coupling to the 3D environment must be taken into account 
when theoretical predictions are used to interpret experiments. In the 
case of atomic wires on surfaces both the two-dimensional (2D) coupling 
between wires (interchain coupling) and the coupling between wires 
and substrate could play a substantial role [8,35]. For instance, thermal 
fluctuations prevent any long-range order at finite temperature in one 
dimension [13] and mean-field approximations break down. Couplings 
of 1D systems to their environment make possible the experimental 
observation of the ordered phases and transitions characterizing 1D 
physics at finite temperatures but they also reduce the anisotropy of 
these systems. Thus an important issue in the field of quasi-1D materials 
is the question as to whether these systems possess experimental and 
theoretical properties that are different from more ordinary (i.e. aniso
tropic 3D) materials when the coupling to the real world is taken into 
account. 

The first aim of this chapter is to introduce some basic theoretical 
concepts about 1D systems that are relevant for atomic wire systems. 
Thus we will review the theory of strictly 1D electron systems and our 
understanding of the 3D coupling in quasi-1D crystalline materials. The 
second goal is to discuss the question of the coupling of atomic wires to 
the real world. In particular, we will examine the effects of the 2D 
coupling between wires and the role of the substrate on the 1D physics in 
atomic wires on semiconducting surfaces. The focus is on two phe
nomena that are often invoked to explain experimental observations in 
atomic wires, namely Peierls-CDW transitions and the Luttinger liquid 
behavior of 1D conductors. We will summarize some results obtained in 
the last decade including a grand-canonical theory of the Peierls-like 
transition in Indium on the Si(111) surface, the stability of Luttinger 
liquids and electronic CDW on a 3D substrate, substrate-mediated in
teractions between wires, and a comparison of a 2D array of Luttinger 
liquids with an anisotropic 2D Fermi liquid with a view to gold chains on 
the Ge(100) surface. 

1.1.1. Outline 
The structure of this chapter is as follows. In the next section we will 

summarize some general information about quasi-1D materials and their 
theoretical description. Basic theoretical results about strictly 1D elec
tron systems are reviewed in the third section. Then we will discuss four 
topics in more detail. Section 1.4 is devoted to the effect of the inter
chain coupling. The role of the substrate is analyzed in sec. 1.5. Peierls- 
CDW transitions and quasi-1D metallic states in atomic wires are dis
cussed in sec. 1.6 and 1.7, respectively. First conclusions are presented 
in the last section. 

1.2. Quasi-one-dimensional systems: materials and theoretical approach 

This section summarizes some information about quasi-1D systems 
that is necessary to understand the theoretical discussion in the next 
sections. It includes a brief presentation of atomic wire systems as quasi- 
1D electron systems (section 1.2.1), an overview of some well- 
established quasi-1D crystalline materials (section 1.2.2), a discussion 
of dimensional confinement (section 1.2.3), and an overview of some 
models and methods used to study specific phenomena in low- 
dimensional solids (section 1.2.4). 

1.2.1. Atomic wires on surfaces 
Self-assembled atomic wires on the surface of semiconducting sub

strates appear to be an ideal realization of 1D electron systems [8,15, 
16]. They are the thinest possible solid-state structures and they can be 
studied experimentally with surface spectroscopy methods, such as 
angle-resolved photoemission spectroscopy (ARPES) and scanning 
tunneling spectroscopy (STS), as well as with imaging techniques such 
as scanning tunneling microscopy (STM). Advances in atomic-scale 
manipulation could also enable the creation of ad hoc artificial 1 Author mainly responsible for this section: E. Jeckelmann 
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low-dimensional atomic structures that realize selected quasi-1D phases 
of matter [36]. Thus atomic wire on surfaces provide us with unprece
dented opportunities to observe real quasi-1D electron systems. 

From a theoretical point of view, the degrees of freedom responsible 
for the low-energy electronic properties of atomic wires on semi
conducting substrates are confined spatially around the surface. Thus 
they build an effectively 2D electron system. Moreover, the adatoms 
build parallel wires on the surfaces. These anisotropic atomic structures 
typically result in electronic properties that differ markedly in the wire 
direction and in the perpendicular direction. The observed effects are 
usually ascribed to the internal degrees of freedom of the atomic wires or 
their immediate surrounding in the substrate. Thus atomic wires on 
surfaces can be regarded in first approximation as 2D arrays of (more or 
less weakly) coupled chains that are embedded in a 3D environment (the 
underlying substrate). Consequently, concepts from the physics of 1D 
electron systems are often invoked to explain some experimental ob
servations in these atomic wire systems but these interpretations remain 
often controversial. 

As a first example, there is a controversy about the dimensionality of 
the metallic state in the system made of gold chains on Ge(100) surfaces 
and the relevance of the Luttinger liquid theory to describe its low- 
energy properties [15,37–44]. Theoretically, the question is whether 
the Luttinger liquid behavior found in strictly 1D conductors survives in 
atomic wires on surfaces despite the interchain coupling and the 
coupling to the substrate, or whether the system is better described as an 
anisotropic Fermi liquid [28,30,45]. This issue is discussed in the 
following sections, in particular in sec. 1.7. Experimental properties of 
Au/Ge(100) are discussed in sec. 2.5. 

As a another example, the relevance and mechanism of the (second- 
order) Peierls-CDW transition are intensively debated for the structural 
and metal-insulator transition observed at 120 K in indium nanowires on 
the Si(111) surface [16,46–56]. There is clear evidence that the original 
Peierls theory does not apply to these systems. First, experimental evi
dence shows that the transition is first order. Second, the substrate may 
act as a charge reservoir for the wire subsystem and thus its band filling 
is not fixed. This raises questions about the occurrence of a Peierls 
instability, and, more generally, of the 2kF instability of the 1D electron 
gas due to the Fermi surface nesting. Last, the suppression of fluctuations 
by the 3D interchain coupling explains the occurrence of Peierls or CDW 
transitions at finite temperature in quasi-1D crystalline materials, but 
the weak 2D interchain coupling between atomic wires may not be 
enough to explain the observed critical temperature in In/Si(111). This 
issue is also discussed in the following sections, in particular in sec. 1.6. 
Experimental and first-principles simulation results for In/Si(111) are 
discussed in detail in sec. 2.3 and 3. 

One reason for these controversies is often the lack of a proper theory 
for the 1D physics to be found in atomic wire systems and, consequently, 
the unwarranted adoption of theoretical concepts and predictions for 
strictly 1D electron systems, which are summarized in section 1.3. The 
influence of the 3D world must be taken into account when experimental 
results are compared to theoretical predictions for quasi-1D electron 
systems. The above examples show that the influence of the substrate 
and the interaction between the wires cannot be disregarded a priori for 
atomic wire systems. 

Theoretical studies of atomic wire systems have been mostly based 
on the concepts and methods of surface physics so far [57]. Couplings 
between atomic wires and with the substrate are usually taken into ac
count in these studies. As for experimental results, however, when 
seemingly 1D features are found, their interpretation is often based on 
the theory for strictly 1D electron systems. In contrast, the theory of 1D 
systems is mostly based on effective models for the relevant degrees of 
freedom. It was successfully extended over several decades to explain 
the properties of numerous real quasi-1D materials in the 3D world, in 
particular strongly anisotropic crystals. Although intensive research on 
self-assembled atomic wires on surfaces started more than twenty years 
ago, the extension of this theoretical approach to atomic wire systems in 

the real world is still in its infancy. In sections 1.5 to 1.7 we will review 
some results obtained in the last decade. 

1.2.2. Quasi-1D crystalline materials 
Much of our knowledge about quasi-1D systems in the 3D world 

come from theoretical and experimental investigations of strongly 
anisotropic crystalline materials. Thus it is helpful to recapitulate some 
basic facts about these systems. The crystal anisotropy leads to a 
dynamical dimensional confinement of the electronic degrees of 
freedom and, consequently, to anisotropic electronic properties. Various 
phases and phenomena that characterize 1D electron systems have been 
observed in these materials but they also clearly demonstrate the role of 
the 3D environment, in particular the interchain coupling. 

The most prominent example of these quasi-1D bulk materials is the 
family of organic charge-transfer complexes known as Bechgaard and 
Fabre salts [3–5,8,17,58]. They are made of weakly-coupled linear 
stacks of an organic planar molecule, tetramethyl-tetrathiofulvalene 
(TMTTF) or tetramethyl-tetraselenafulvalene (TMTSF), with inorganic 
anions (X = PF6, ClO4, …). The strength of the 3D interchain coupling 
differs in the various salts and can also be varied using external pressure. 
Taken together the phase diagram of the materials (TMTTF)2X and 
(TMTSF)2X covers the dimensional crossover from quasi-1D to aniso
tropic 3D systems as illustrated in Fig. 1. Thus Bechgaard and Fabre salts 
are the paradigm for the effects of the 3D interchain coupling on 1D 
electron systems. They can be quasi-1D Mott or spin-Peierls insulators, 
commensurate or incommensurate antiferromagnetic SDW, or aniso
tropic 3D organic superconductors at low temperature. The Luttinger 
liquid behavior is observed in the metallic state at higher temperature. 
In particular, a power-law predicted for 1D correlated metals was 
observed in the optical conductivity of the (TMTSF)2X salts [6,59]. 

For instance, the (TMTTF)2PF6 compound is strongly anisotropic and 
corresponds to the left-hand side of the phase diagram in Fig. 1 [58]. At 
high temperature this material is a quasi-1D conductor that behaves like 
a Luttinger liquid. Below a critical temperature Tc = 250K this com
pound becomes a paramagnetic Mott insulator: the resistivity increases 
by several orders of magnitude while the spin susceptibility remains 
unchanged. This phase does not break any symmetry (see sec. 1.3.3). A 
symmetry-breaking charge ordering transition (electronic CDW) occurs 
at Tc = 70K (not shown in Fig. 1). Finally, the spin degrees of freedom 
undergo a transition to a spin-Peierls state with spin gap and lattice 
distortion (dimerization) below Tc = 19K (see sec. 1.3.2). 

Numerous phases and phenomena predicted by the theory of 1D 
electron systems have been found in other quasi-1D bulk materials. One 
important family of materials is formed by π-conjugated polymers, such 
as polyacetylene (CH)x, in thin films [2,8,9,18,60]. They are insulators 

Fig. 1. Sketch of the combined phase diagram of Bechgaard and Fabre salts: 
Paramagnetic Mott-Hubbard or CDW insulator (MI), commensurate antiferro
magnetic insulator (AF), spin-Peierls insulator (SP), incommensurate spin- 
density wave (SDW), superconductor (SC), Luttinger liquid (1D), quasi two- 
dimensional (2D) and normal (3D) Fermi liquid. The anisotropy diminishes 
from left to right due to applied pressure or substitution of inorganic anions. See 
Fig. 56 in Ref. [17], 8.14 in Ref. [6], or 4.31 in Ref. [58] for more details. 
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because electronic correlations and electron-phonon coupling work 
together to generate a Mott-Peierls gap. Some π-conjugated polymers 
undergo a transition from insulators to quasi-1D conductors upon 
doping. These doped polymers are unusual metals with a conductivity as 
high as copper at room temperature but with vanishing Pauli suscepti
bility. Some unusual properties can be explained by a fractionalization 
of low-energy excitations (i.e. the existence of charge and neutral soli
tons that are domain walls in the long-range Peierls-CDW order [61, 
62]), which is related to a hallmark of 1D electron systems, the 
dynamical separation of spin and charge excitations. The 
metal-insulator transition upon doping can be explained by a general
ization of the Peierls theory [63,64]. Luttinger liquid behavior has not 
been reported, however. One possible explanation is that dopant ions 
intercalated between polymer chains create bridges between them. Thus 
the doping induces a transition from an insulating quasi-1D system to an 
anisotropic 3D metallic system. 

Yet another important group is made of various quasi-1D bulk ma
terials that undergo Peierls-CDW transitions at finite temperature. As a 
first example, the charge transfer salt TTF-TCNQ is made of weakly- 
coupled linear stacks of two types of molecules, tetrathiafulvalene 
(TTF) and tetracyanoquinodimethane (TCNQ) [1,8]. It is a realization of 
an incommensurate Peierls insulator at low temperature and of a Lut
tinger liquid above the critical Peierls temperature Tc = 59K. The sep
aration of spinon and holon excitations was demonstrated by ARPES 
experiments [65,66]. The transition metal trichalcogenides (MX3), for 
instance NbSe3 and TaS3, are examples of incommensurate Peierls-CDW 
systems [1,4,8] with critical temperatures that are reduced by fluctua
tions from the values expected from mean-field theory (see section 1.4). 
They exhibit collective excitation modes (sliding CDW), which are pin
ned by defects and interchain couplings, and, consequently, nonlinear 
dynamical properties due to the depinning of sliding modes at strong 
electric fields [4,67]. Lastly, mixed-valence platinum complex com
pounds such as K2Pt(CN)4–Br0.3 ⋅ 3.2H2O (potassium-te
tracyanoplatinate, KCP), also called Krogmann salts, exhibit highly 
anisotropic electrical conductivity [1,4,8]. They are made of stacks of 
planar tetracyanoplatinate [Pt(CN)4]− anions and can be regarded as 3D 
arrays of weakly-coupled chains of platinum atoms. The 2kF instability 
of metals driving the Peierls-CDW transition, in particular a giant Kohn 
anomaly, was first observed in these materials. 

Strongly correlated copper oxide compounds constitute the last 
family of quasi-1D systems to be discussed here. The crystal structure of 
some transition metal oxides contains chains or ladders of Cu atoms 
surrounded by O atoms [8,68]. GeCuO3, SrCuO2, and Sr2CuO3 are ex
amples of spin chain systems while spin-ladders are realized in SrCu2O3 
(two-leg ladder) and Sr2Cu3O5 (three-leg ladder). These materials are 
Mott or charge transfer insulators with strongly anisotropic magnetic 
properties. Theoretical descriptions are based on generalizations of the 
Heisenberg model for quantum magnets when electron spins are the 
only degrees of freedom taken into account. Indeed, various theoretical 
predictions of 1D magnetism are realized in these materials [6,69,70]. 
For instance, a spin-Peierls transition has been observed in the 
spin-chain compound GeCuO3 at Tc = 14K with a quasi-long-range SDW 
order above Tc [71,72]. Additionally, the magnetic excitation spectra 
measured in SrCuO2 [73] and Sr2CuO3 [74] are well described by the 1D 
spin-1/2 antiferromagnetic Heisenberg model. However, measured 
critical temperatures Tc for the 3D antiferromagnetic ordering are orders 
of magnitude smaller than the intrachain spin exchange couplings J 
determined from excitation spectra (e.g. kBTc = 5K and J = 250 meV for 
Sr2CuO3 [74]). Thus these systems illustrate the suppression of the 1D 
antiferromagnetic order by fluctuations at the temperature scale of the 
intrachain coupling and the stabilization of the 3D antiferromagnetic 
long-range order at a lower temperature scale set by the 3D interchain 
coupling (see section 1.4). 

1.2.3. Dimensional confinement 
There are various definitions for systems of reduced dimensions in 

condensed matter physics. The most relevant concepts for the electronic 
properties of atomic wires on semiconducting substrates are the spatial 
and dynamical confinements. They are introduced below as they have 
different consequences for phase transitions as explained in sec. 1.4. 

1.2.3.1. Spatial confinement. The most intuitive of these definitions is 
the spatial confinement of some degrees of freedom [75]. A quasi-1D 
system can be realized in a solid that is much longer than wide such 
as isolated carbon nanotubes [19] and quantum wires in semiconductor 
heterostructures [20,21]. Consider a 3D solid in which all relevant de
grees of freedom (e.g., electrons, phonons, …) are spatially confined in 
two directions within a region of linear sizes Ly and Lz but at least one 
(electronic) degree of freedom can propagate over a distance Lx ≫ Ly,z in 
the third direction (wire direction). If we look at this system with a 
resolution λ fulfilling Ly,z ≪ λ ≪ Lx, we effectively observe a 1D geo
metric object. 

This geometry affects the electronic structure drastically. Consider 
an electron gas confined in this quasi-1D solid (i.e. a system of nonin
teracting electrons in an homogeneous background of positive charges). 
The eigenenergies of single-particle eigenstates are given by 

ϵ
(
kx, ny, nx

)
=

ℏ2

2m

[

k2
x +

(
πny

Ly

)2

+

(
πnz

Lz

)2
]

, (1)  

where m is the electron mass. The dispersion is continuous in the wire 
direction as a function of the wave number kx ∈ R but discrete in the 
perpendicular directions (with quantum numbers ny, nz ∈ N*). In a 
strictly 1D system (Ly,z/Lx → 0) the electronic spectrum reduces to a 
single 1D band 

ϵ(kx) =
ℏ2

2m
k2

x (2)  

(up to a constant), shown in Fig. 2. However, real systems such as carbon 
nanotubes and semiconductor quantum wires have a finite length to 
width ratio and thus the condition Ly,z/Lx → 0 is never fully satisfied. 
Moreover, they must be embedded in or deposited on a 3D substrate to 
be stable when Lx ≫ Ly,z. 

1.2.3.2. Dynamical confinement. Alternatively electrons can be confined 
dynamically (or energetically) in strongly anisotropic 3D crystalline 
solids. Such a solid extends in three dimensions but is so anisotropic that 
electrons are much more delocalized or mobile in one direction than in 
the other two directions. Thus they can be seen as a 3D array of 1D 

Fig. 2. Dispersions of single-particle eigenenergies in strictly 1D systems. 
Continuum model, Eq. (2), (blue dashed line), tight-binding model, Eq. (4), 
(black solid line), and Tomonaga-Luttinger model (see sec. 1.3.5) (red long 
dashed line). The dispersions are shifted and rescaled to have the same Fermi 
energy ϵF = 0 and Fermi points kF = π/(2a). (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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chains. They are numerous realizations of such quasi-1D systems as 
discussed in section 1.2.2. 

The basic electronic structure of theses materials is better understood 
using a tight-binding approach. In a tight-biding model for a (ortho
rhombic) lattice with constants a, b, and c the dispersion of single- 
electron states has the form 

ϵ
(

k
→)

= − 2txcos(kxa) − 2tycos
(
kyb
)
− 2tzcos(kzc) (3)  

with the wave vector k
→

=
(
kx,ky,kz

)
∈ R3. The hopping parameters tx, 

ty, and tz determine the bandwidth (or dispersion width) in each direc
tion. In a continuum model the anisotropic electronic structure would be 
described by an anisotropic effective mass tensor with effective masses 
mα ~ 1/tα for α = x, y, z. 

This dispersion of the electron gas is the starting point for the dis
cussion of electronic properties in quasi-1D crystalline materials. For a 
strongly anisotropic lattice the (intra-) chain hopping parameter |tx| is 
much larger than the interchain hopping parameters |ty|, |tz|, resulting 
in a much larger bandwidth or broader dispersion in the chain direction 
than in the perpendicular directions. For instance, the band structure of 
Bechgaard and Fabre salts is represented by the above tight-binding 
model with hopping parameters that may differ by an order of magni
tude, i.e. tx/ty ≈ 10 and ty/tz ≈ 10. Thus the system properties are 
strongly anisotropic if probed at a temperature T or an excitation energy 
E fulfilling |ty|, |tz|≪ kBT, E ≪|tx|. A strictly 1D electronic system is 
obtained for ty,z/tx → 0. The resulting electronic spectrum is dis
persionless in the directions perpendicular to the chains and can also be 
seen as a 1D band 

ϵ(kx) = − 2txcos(kxa) (4)  

localized in each chain (see Fig. 2) but one should keep in mind that the 
system is made of (infinitely) many equivalent parallel chains with this 
band structure. 

For a given anisotropic crystalline material the main question is 
whether it should be considered as an array of (more or less) indepen
dent 1D chains or as an anisotropic 3D system. For most materials it is 
not possible to give a clear answer to this question as the boundary 
between these two points of view is not sharp. In particular, the answer 
does not only depend on the crystal and electronic structure but also on 
the current system state (e.g., its temperature) and the measured prop
erties (e.g. excitation energy). This issue is discussed in detail in section 
1.4. 

1.2.3.3. Wires on surfaces. The low-energy electronic properties of 
atomic wires on semiconducting substrates are typically determined by a 
few electronic bands that are confined spatially close to the substrate 
surfaces. Thus we will assume that atomic wire systems are strictly 2D 
electronic systems, which corresponds to setting Lz/Lx,y → 0 in Eq. (1) or 
tz/tx,y → 0 in Eq. (3). Note that it does not matter whether the surface is 
flat or stepped, or wether the relevant electronic bands are built from 
adatom orbitals or from substrate surface bands. In our approach it is 
sufficient that the electronic wave functions are spatially confined in the 
direction perpendicular to the surface on a length scale Lz much smaller 
than their typical extension in (at least) one direction parallel to the 
surface. This assumption does not exclude that the wire bands could be 
strongly hybridized with surface bands. For instance, such an hybridi
zation is discussed for Luttinger liquids and electronic CDW in section 
1.5. 

The atomic wire systems that are possible realizations of quasi-1D 
electronic systems build clearly anisotropic atomic structures on the 
substrate surfaces and can be seen as 2D arrays of chains. In addition, 
some systems exhibit strongly anisotropic electronic properties, e.g. a 
much broader dispersion in the chain direction than in the perpendic
ular direction (parallel to the surface). Thus dynamical confinement is 
expected to play a role for the directions parallel to the surface. 

Assuming a strictly 2D tight-biding model for a rectangular lattice with 
constants a and b, the corresponding dispersion of single-electron Bloch 
states has the form 

ϵ
(

k
→)

= − 2txcos(kxa) − 2tycos
(
kyb
)

(5)  

with the wave vector k
→

=
(
kx, ky

)
∈ R2. This dispersion interpolates 

smoothly between strictly 1D electron gas with the dispersion (4), which 
is recovered for ty/tx → 0, and a 2D isotropic electron gas, which is 
obtained for ty = tx and a = b. Therefore, this dispersion will be the 
starting point for the discussion of electronic properties in atomic wires 
on surfaces. In summary, the relevant electronic degrees of freedom in 
atomic wires on semiconducting substrates are confined spatially at the 
surface and dynamically in the anisotropic 2D array of wires. 

1.2.4. Models and methods 
Textbook models of solids describe electrons in Bloch states moving 

in a crystalline atomic structure and coupled to adiabatically slow lattice 
vibrations, while interacting weakly with one another due to their 
Coulomb repulsion. These simplified models suffice to explain the 
common properties of normal metals, semiconductors, isolators and 
superconductors [76,77]. In addition magnetic insulators can be 
described with models including localized electron spins as the only 
relevant degrees of freedom. Many existing materials are not covered by 
these basic models, however. 

A difficulty for the theory of 1D solids is that common theoretical 
methods and approximations break down. For instance, mean-field ap
proximations often predict the existence of symmetry-breaking long- 
range-ordered phases that contradict the Mermin-Wagner theorem [13] 
or exact solutions of low-dimensional models. As a second example, 
perturbation expansions often diverge because of the instability of 1D 
systems. These issues are explained in detail in section 1.3. Conse
quently, the validity of theories relying on these methods is questionable 
in low dimensions, for instance, Landau’s theory of the Fermi liquid in 
metals [28,30,45]. Thus the theoretical description of quasi-1D mate
rials require concepts, models and methods taking into account strong 
correlations as well as (quantum and thermal) fluctuations, which goes 
beyond the content of most solid-state textbooks [6,7,28,30]. 

In principle, most properties of solids are determined by the quantum 
Hamiltonian for electrons and nuclei coupled by the Coulomb interac
tion. As this many-body problem is not tractable for more than a couple 
of atoms and nuclei, solid properties have to be calculated using various 
approximations. A widely used and very successful approach is the nu
merical computation of these properties from the full Hamiltonian using 
various numerical schemes (ab initio or first-principles methods), most 
often based on the density functional theory (DFT) [78,79]. 

A different approach is to reduce the full Hamiltonian problem to a 
more “simple” effective model or theory including the most relevant 
degrees of freedom and interactions for a selected question while 
neglecting the less relevant ones [31]. The goal of this approach is to 
understand some generic physical phenomena within the simplified 
model rather than to achieve a full description of a material. Various 
effective models and theories have become de facto standards for spe
cific aspects of the theory of quasi-1D electron systems. In this section 
some aspects of the two most important approaches are reviewed: lattice 
models and field-theoretical approaches. See Ref. [80] for a review of 
the connections between ab initio calculations and effective model 
studies. 

1.2.4.1. Lattice models. Effective lattice models are usually extensions 
of the tight-binding model. They can describe quasi-1D electron systems 
with a dynamical confinement, i.e. with an electronic structure similar 
to Eq. (3), but strictly 1D models are often investigated. A well-known 
example is the Su-Schrieffer-Heeger (SSH) model [61,62] introduced 
to describe the Peierls insulating state of π-conjugated polymers [2,9,18, 
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34]. Other well-known models were originally developed to study 
properties of 3D solids, but are also routinely investigated in other di
mensions. They include the Hubbard model [81] for locally interacting 
electrons, which describe correlated phases of matter such as Luttinger 
liquids, Mott insulators, and antiferromagnetic SDW [28], the Holstein 
molecular crystal model [82] and the Fröhlich model [83,84], which 
describe the role of the electron-phonon coupling in Peierls-CDW states, 
and the Heisenberg model [85] for localized spin systems, which plays 
an important role in the theory of quantum magnetism, including 1D 
magnetism and SDW [4,69,70]. Finally, the Ising model [12] is a car
dinal model in statistical mechanics, in particular for phase transitions in 
reduced dimensions [7]. 

A systematic method for deriving effective lattice models does not 
exist. In principle, these models can be deduced from first-principles 
Hamiltonians using cornerstones of solid-state physics such as the 
Born-Oppenheimer approximation, the frozen-core approximation, the 
tight-binding approximation, etc. Extensive justifications of the most 
important models can be found in the literature, e.g. the SSH model [34, 
60] and the Hubbard model [34,86]. In practice, effective models are 
often based on phenomenological considerations and handwaving ar
guments. Model parameters are usually inferred from experimental 
data. In some cases they can be determined from first-principles simu
lations, as done for the extended 1D (two-band) Hubbard model repre
senting metallic TTF-TCNQ [87] and for a generalization of the 1D SSH 
model for In/Si(111) [52]. 

As explained in the introduction, a major motivation for studying 
low-dimensional systems is that they are “simpler” than their 3D 
counterparts. In fact, several low-dimensional lattice models are exactly 
solvable. For instance, the properties of the 1D spin-1/2 Heisenberg 
model can be determined with the Bethe Ansatz [88] and this method 
has been extended to obtain the eigensystem of the 1D Hubbard model 
[89,90], the occurrence of Peierls-CDW ground states has been proven 
exactly for a generalization of the SSH model [91,92], and the ther
modynamics of Ising model is exactly solvable in one dimension [12] 
and on a square lattice [93]. These exact results provide us with some of 
the best paradigms for the unusual properties of low-dimensional 
systems. 

As most models are not exactly solvable, numerous approximate 
analytical and numerical methods have been used to study lattice 
models. In particular, two types of numerical methods have proven to be 
reliable and versatile tools for investigating effective lattice models for 
quasi-1D systems: classical and quantum Monte Carlo (QMC) simula
tions [94–96] and the density-matrix renormalization group (DMRG) 
[97–101]. Together they allow us to calculate almost any quantities of 
interest in finite-size 1D lattice models. When applied to quasi-1D 
electron models, QMC simulations are mostly limited by statistical er
rors, which are most significant close to phase transitions, while DMRG 
computations are limited by the system long-range entanglement, which 
grow rapidly when the system is not strictly 1D. Naturally, both methods 
can also be used in higher dimensions but the computational cost in
creases rapidly. Thus only relatively small systems can be simulated and 
finite-size effects often hinder the interpretation of the numerical data. 
In particular, no reliable method is available to treat large 
strongly-correlated 2D electron systems. Nevertheless, these numerical 
methods have been successfully adapted to study quantum lattice 
models representing atomic wires on surfaces. For instance, the DMRG 
method can be used to study the effects of the substrate and the inter
chain coupling on Luttinger liquids and electronic CDW, as discussed in 
sections 1.5 and 1.7. 

1.2.4.2. Field-theoretical approaches. Field theory is commonly used to 
investigate the low-energy long-wavelength limit (i.e., the continuum 
limit in real space) of 1D electron systems. In contrast to lattice models 
this approach does not suffer from finite-size effects but it is not appli
cable to the short-length physics (i.e., of the order of the lattice 

constants). Thus theoretical studies based on effective lattice models and 
field-theoretical approaches are often complementary. 

The most well-known example of quantum field theory in one 
dimension is the Luttinger-liquid theory for 1D conductors [11] based on 
the Tomonaga-Luttinger model [102,103]. A generalization (called 
g–ology) describes the generic low-energy long-wavelength physics of 
interacting electrons in one dimension including symmetry-breaking 
phases [33]. The derivation of quantum field-theoretical models (i.e. 
Tomonaga-Luttinger model and its extensions) from the weak-coupling 
limit of effective lattice models is explained in detail in many publica
tions [6,33,104]. It is very difficult to determine parameters for 
field-theoretical models from first-principles Hamiltonians. For 
instance, this has been done for the Luttinger liquid parameters 
describing single-channel quantum wires using quantum Monte Carlo 
simulations [105,106]. As for effective lattice models, reasonable 
parameter ranges for field-theoretical models are usually inferred from 
experimental data. 

Like for lattice models, 1D field-theoretical models are often 
“simpler” than their counterpart in higher dimensions. For instance, the 
Tomonaga-Luttinger model [102,103] is exactly solvable using bosoni
zation and provides us with the paradigm for the Luttinger liquid 
behavior of 1D metals [11]. Field-theoretical methods such as bosoni
zation and renormalization group are often used to analyze the 
low-energy properties of more general strongly-correlated 1D systems 
[6,33]. They provide us with accurate results for the phase diagram as 
well as information about the low-energy excitations. Most of the 
“universal” properties of 1D systems, such as the power law in the 
single-particle density of states of a Luttinger liquid, have been obtained 
using these approaches. For 1D systems with several potentially gapless 
modes (e.g., ladder and nanotube systems) and for systems in higher 
dimensions (e.g. coupled wire systems), bosonization and renormaliza
tion group become sophisticated and demanding techniques that usually 
requires additional approximations to obtain physical results [6,107]. 
Thus the predictions of these field-theoretical studies are less conclusive 
than in one dimension (Basic results are discussed in sections 1.3 and 
1.4.). 

Another type of field-theoretical approach is the Ginzburg-Landau 
theory of broken-symmetry phases found in quasi-1D materials [4,5, 
28,108,109]. Generalizations of the Ginzburg-Landau theory of super
conductivity [110,111] have been used to model a wide variety of 
physical systems [112]. They can be seen as simple applications of the 
more sophisticated statistical field theory [113–116]. In the context of 
quasi-1D materials this classical field theory allows us to study thermal 
and spatial fluctuations as well as the nonequilibrium dynamics in 
long-range ordered CDW and SDW phases in the continuum limit. In 
practice, generalized Ginzburg-Landau equations describe the 
long-wavelength variations of the order parameters. Model parameters 
can often be determined from mean-field solutions of the effective lattice 
models mentioned above. This approach provides theoretical in
terpretations for numerous experimental observations in the quasi-1D 
crystalline materials discussed previously. 

As with the other theoretical approaches discussed above, 1D ver
sions of the Ginzburg-Landau equations are simpler than their 3D 
counterparts and numerous analytical results have been obtained. 
Renormalization group [113–115,117] and numerical methods such as 
Monte Carlo simulations [118] are used for more complicated cases, e. 
g., to describe fluctuation effects quantitatively. For instance, the 
Ginzburg-Landau formalism can be used to investigate the effects of 
thermal fluctuations on Peierls-CDW transitions. As the time-evolution 
of order parameters can be described within the Ginzburg-Landau 
formalism, this approach has been extensively used to study collective 
excitations of electronic and phononic degrees of freedom as well as the 
electrodynamics of CDW and SDW in quasi-1D materials [4]. Basics of 
the nonequilibrium Ginzburg-Landau theory are introduced in sec. 
1.6.3. 
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1.3. Theory of strictly one-dimensional electron systems 

In this section we will review basic theoretical concepts and results 
about strictly 1D electron systems. This includes the instability of the 1D 
electron gas (section 1.3.1), various broken-symmetry phases occurring 
in 1D electron systems (section 1.3.2), a couple of non-metallic homo
geneous phases (section 1.3.3), the suppression of spontaneous sym
metry breaking by fluctuations (section 1.3.4), and the theory of 1D 
metals (section 1.3.5). 

A system is said to be strictly one-dimensional if its 3D environment 
is nonreactive. Thus the degrees of freedom of a strictly 1D system may 
be confined by an atomic structure, be under the influence of external 
fields such as an electromagnetic field, and be in equilibrium with a heat 
bath or particle reservoirs. However, the 3D world does not react to the 
states of the 1D degrees of freedom. In particular, interactions between 
wires or chains are not taken into account. This theoretical idealization 
paves the way toward understanding the special physics that is found in 
quasi-1D materials. 

1.3.1. 2kF instability of the 1D electron gas 
Consider an electron gas under the influence of a static but spatially 

oscillating electric field. If we neglect the Coulomb interaction between 
electrons and any coupling between electrons and lattice degrees of 
freedom, its linear response is characterized by the charge susceptibility 

χ
(

Q→,T
)
= −

2
N
∑

k
→

f
(

ϵ
(

k
→

+ Q→
))

− f
(

ϵ
(

k
→))

ϵ
(

k
→

+ Q→
)
− ϵ
(

k
→) (6)  

where Q→ is the wave vector of the electric field, f(ε) is the Fermi-Dirac 

distribution at temperature T, ϵ
(

k
→)

is the single-electron eigenenergy 

dispersion, the sum runs over all wave vectors k
→

in the first Brillouin 
zone, and N is the number of these vectors. 

In one dimension [1,3,4,6,58] we can show that this susceptibility 
diverges logarithmically at zero temperature for |Q| → 2kF 

χ(Q,T = 0) ∼ ln
⃒
⃒
⃒
⃒
Q + 2kF

Q − 2kF

⃒
⃒
⃒
⃒ (7)  

where kF = πn
2a is the Fermi wave number of the 1D electron gas. The 

electronic density n corresponds to the number of electrons per site in a 
1D tight-binding model. Moreover, one can show that the susceptibility 
diverges logarithmically at Q = ±2kF for T → 0 

χ(Q=2kF,T) ∼ ln
(

W
kBT

)

(8)  

where W is proportional to the 1D bandwidth, e.g. W = 4tx if one as
sumes the dispersion (4). 

Thus any small perturbation of the 1D electron gas by an electric field 
generates a large charge density distortion. This is a manifestation of the 
2kF instability of the 1D electron gas. This instability occurs for other 
observables such as the magnetic susceptibility and for integer multiples 
of 2kF. It is responsible for many of the unusual properties of 1D electron 
systems, which are discussed below, such as the occurrence of various 
non-metallic phases as well as the failure of perturbation expansions and 
the breakdown of the Fermi liquid theory. 

The 2kF instability is due to the perfect nesting of the Fermi “surface” 
in a 1D one-band electron gas. The analysis is more complicated if the 
system has more than one band with different Fermi wave numbers but 
an instability is always present. For instance, if the system has two bands 
with Fermi wave numbers kF and kʹ

F, there is perfect nesting for |Q| = |

kF ± kʹ
F |. Similarly, for a 2D system with weak interchain dispersions, e. 

g. |tx|≫|ty| in Eq. (5), the instability occurs for Q→ = ( ± 2kF ,π /b). 

1.3.2. Long-range ordered phases 
The 2kF instability leads to numerous competing phases in 1D elec

tron systems when the Coulomb interaction between electrons or the 
coupling between electrons and lattice degrees of freedom are taken into 
account [1,3,4,6,28,33,58]. Some of theses phases are characterized by 
the spontaneous appearance of a long-range order that breaks a sym
metry of the system Hamiltonian. We summarize in this section some 
basic results about prominent 1D long-range ordered phases, namely 
CDW and SDW, which are relevant for the quasi-1D crystalline materials 
or for atomic wires on surfaces. Some non-metallic phases without 
long-range order are presented in the next section. 

Our theoretical knowledge of the competing 1D phases is mostly 
based on the effective models and methods discussed in section 1.2.4. 
The possible long-range ordered phases are easily revealed using mean- 
field approximations although this approach does not allow us to 
determine the dominant phase and its properties reliably. This is due to 
the importance of thermal and quantum fluctuations in low-dimensional 
systems. In a strictly 1D theory, fluctuations completely destabilize long- 
range-ordered states for any temperature T > 0. In quasi-1D crystalline 
materials, however, the 3D interchain coupling may stabilize the long- 
range order at low temperatures. Here we discuss the unusual proper
ties of 1D long-range-ordered phases assuming that they are stable. The 
effects of fluctuations and the coupling to the 3D environment are dis
cussed in detail in later sections and will justify this approach. 

1.3.2.1. Charge density waves. The 1D electron gas is unstable against 
the formation of a charge density wave (CDW) [4,5,17,108]. 

ρ(x) = ρ0 + δρcos(Qx+φ) (9)  

with the wave number Q = 2kF (or integer multiples thereof), an 
amplitude δρ, and a phase φ. A long-range-ordered CDW is sketched in 
Fig. 3. Typically, the order parameter is written as a complex number 
Δ exp(iφ) with an amplitude Δ proportional to the charge modulation 
amplitude δρ. Spatial and temporal variations of the order parameter 
can be induced by thermal fluctuations in equilibrium or by external 
perturbations such as in transport and spectroscopy experiments. Fluc
tuations and dynamics are often described by variations of the ampli
tude Δ and the phase φ with position and time within the Ginzburg- 
Landau approach [4,108]. 

A CDW is said to be commensurate if the ratio between the wave 
number Q and the reciprocal lattice “vector” G is a rational number. In 
that case, the phase φ can take only a finite number of different values 
and the ground state degeneracy is finite. Consequently, the order 
parameter is discrete. Commensurate CDW are usually studied in lattice 
models with particular band fillings, e.g. for half filling 2kF = π/a = G/2. 
A CDW is incommensurate if G/Q is irrational or in any continuum 
model. In that case, φ can take any real value and the ground state is 
infinitely degenerate. Commensurate CDW are usually stronger than 

Fig. 3. Sketch of a 2kF-CDW in a half-filled lattice (top), an antiferromagnetic 
2kF-SDW in a half-filled lattice (middle), and a 4kF-CDW with 2kF-SDW in a 
quarter-filled lattice (bottom). Each circle represents one site while each arrow 
represents one electron (with up or down spin). 
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incommensurate ones. The first reason is that an incommensurate CDW 
often means breaking a continuous symmetry, which is suppressed by 
fluctuations in strictly 1D systems. The second reason is that commen
surate CDW often involve Umklapp scattering processes that enhance 
interaction effects (i.e., 2kF = G or 4kF = G in a half-filled or quarter- 
filled lattice model, respectively). For instance, the SSH model and its 
generalizations undergo a transition from a commensurate to an 
incommensurate Peierls-CDW ground state upon varying the electronic 
density away from half filling [18,63,64]. This weakening of the CDW is 
believed to play a role in the metal-insulator transition observed in 
polyacetylene. Undoped π-conjugated polymers are well-known exam
ples of commensurate CDW in real materials while incommensurate 
CDW are realized, among others, in the MX3 family of quasi-1D crys
talline materials. 

A CDW state may be driven by the electron-electron interaction [119, 
120]. We will call these states electronic CDW. (They are sometimes 
called charge ordering). This CDW type is found in the spinless fermion 
model [6], the extended Hubbard model [121], and the interacting 
electron gas (g-ology) [5,6,33]. A very strong electronic CDW can be 
seen as a 1D Wigner crystal [122,123]. CDW may also be driven by the 
electron-phonon interaction [1,4,5]. In that case the CDW is accompa
nied by a lattice distortion with the same wave number Q as the density 
modulation and thus a softening of the corresponding phonon mode (or 
at least a significant Kohn anomaly) [1,5]. If the wave number is Q =
2kF, this is completely equivalent to Peierls instability [10] and thus we 
will called this CDW type a Peierls-CDW. Peierls-CDW are found in the 
Holstein model [124,125] and the SSH model [18,34,91,92]. Note that 
the term CDW is sometimes reserved for ionic density modulations as 
found in the Holstein molecular crystal model [82] while the designa
tion bond order wave (BOW) is used for covalent bond density modu
lations as found in the SSH model [61,62]. 

In real materials both electron-electron and electron-phonon in
teractions play a significant role. Their combined effects can be studied 
with generalized 1D effective models (See ref. [126] for a recent study 
using ab initio simulations.). In particular, one finds that both mecha
nisms can cooperate to build a CDW state [63] or compete to build 
different ground states [127]. In the Peierls-Hubbard model one even 
observes that the interplay of theses interactions changes with the band 
filling, from cooperating at half filling to competing away from half 
filling [63,64]. 

Typically systems with a CDW ground state undergo a transition 
from the CDW phase (order parameter Δ ∕= 0) at low temperature to a 
uniform metallic phase at high temperature (Δ = 0). They exhibit un
usual excited-state properties in the low temperature phase although 
they have a gap in their single-electron excitation spectrum, which 
corresponds to the gap seen in STS or ARPES experiments. The gap width 
is proportional to the amplitude of the order parameter Δ. Thus it is a 
soft gap that varies with temperature and vanishes above the critical 
temperature for the CDW phase. The dispersion of single-particle exci
tations (electrons and holes) has the typical form 

ϵ(k) = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ2 + (ℏ vF k)2
√

(10)  

in the long-wavelength limit k → 0 with the Fermi velocity in the 
metallic phase vF. 

However, the low-energy physics of CDW states is determined by 
collective excitations combining many electrons (and the lattice degrees 
of freedom for Peierls-CDW) rather than single-electron excitations. In 
commensurate CDW the low-energy excitations can be visualized as 
mobile domain walls in the charge ordering where the phase φ jumps 
between two allowed discrete values. This domain walls are known as 
solitons in the theory of π-conjugated polymers [18,34,61,62]. These 
collective excitations can display the separation of elementary spin and 
charge excitations that characterized 1D metals, e.g. in the form of 
charged and neutral solitons in the SSH model and its generalizations. 
Incommensurate CDW states exhibit gapless collective sliding modes 

corresponding to a continuous change of their phase φ (phason) [1,4, 
108]. Their dispersion has the form of “sound” waves E(k) = ℏ u |k| with 
a velocity u. In principle, a sliding mode could transport charge without 
dissipation and this was proposed as a possible mechanism for 1D su
perconductivity [128]. In real CDW materials, however, sliding modes 
are pinned by the interchain coupling and disorder. Nevertheless they 
are responsible for non-linear effects in the charge dynamics of CDW 
“conductors” below the energy threshold set by the single-electron gap 
(e.g., the transport at finite electric field in the MX3 compound NbSe3) 
[1,4,8,67,108]. Finally, variations of the Peierls-CDW amplitude Δ also 
correspond to collective excitations, which are visible as vibrational 
modes in Raman spectroscopy [4,118,129,130]. 

The theory of 1D CDW is often invoked when discussing the prop
erties of atomic wires on surfaces. For instance, a Peierls-CDW has been 
proposed to explain the insulating state observed below 120 K in indium 
wires on the Si(111) surface [16,46,52]. The occurrence of topological 
solitons in this system has also been discussed [131–137] based on the 
SSH theory which was originally developed to explain the properties of 
conjugated polymers [18,34,61,62]. 

1.3.2.2. Spin density waves. The 1D electron gas is also unstable against 
the formation of spin density waves (SDW) [4,28]. The simplest SDW is 
given by 

S(x) = δScos(Qx+φ) (11)  

where S(x) is the magnetization (expectation value of the electron spin 
operator) along a given axis. Alternatively, as 1D SDW are typically 
antiferromagnetically ordered, S(x) can represent the staggered 
magnetization. A long-range-ordered antiferromagnetic SDW is 
sketched in Fig. 3. As the theory of SDW is very similar to the theory of 
CDW, only a couple of specific features are summarized here. 

Commensurate and incommensurate SDW-ordered states play an 
important role in quasi-1D crystalline materials, in particular in Bech
gaard and Fabre salts (see the phase diagram in Fig. 1), and their 
properties have been extensively investigated in that context [3–5,17, 
109]. In atomic wire systems, experiments have shown that a large 
spin-orbit coupling and strong electronic correlations lead to the for
mation of a spin-ordered phase in Pb wires grown on Si(557) surfaces 
[138,139], but it is not clear whether this material can be seen as a 
quasi-1D system. This material is discussed in sec. 2.4. 

The designation SDW is usually reserved for magnetic order driven 
by the electron-electron interaction or the resulting exchange interac
tion. In a system of localized electrons with gapped charge excitations 
but at least one gapless spin mode (e.g., a Mott or CDW insulator), a 
magnetoelastic coupling can lead to a magnetic ordered phase called a 
spin-Peierls phase [17,58]. This is analogous to the Peierls state but it 
involves the electron spin instead of its charge. This state is character
ized by a spin density modulation (typically a dimerization as pairs of 
nearest-neighbor spins build singlets) and it is accompanied by a lattice 
distortion as well as a soft phonon mode (or a Kohn anomaly). The 
spin-Peierls phase is probably the most convincing realization of 1D 
physics in real materials. For instance, the existence of this phase is 
clearly established in the most anisotropic molecular salts of the TMTTF 
family [58,140,141] (the lower left corner of the phase diagram in 
Fig. 1) and in the copper oxide compound GeCuO3 [71,72]. 

Finally, we note that CDW and SDW orders can coexist in electron 
systems, either as true long-range order or as quasi-long-range order [4, 
6,120]. A well-known theoretical example is the coexistence of CDW 
with Qc = 4kF and SDW with Qs = 2kF in quarter-filled lattice models 
[142,143], which is illustrated in Fig. 3. Moreover, this coexistence is 
invoked to explain experimental observations in some quasi-1D crys
talline materials [58]. Interestingly, unpaired electron spins can become 
spontaneously localized at silicon step edges and antiferromagnetically 
ordered according to first-principles simulations of gold chains on the Si 
(557) surface [144]. These charge and magnetization modulations can 
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be seen as the combination of a 4kF-CDW and an antiferromagnetic 
2kF-SDW. STM and STS experiments for Au/Si(553) have confirmed the 
CDW-like localization of charges at the step edges, but the magnetic 
order has not been observed directly yet [145,146]. This material is 
discussed in sec. 2.2. 

1.3.3. Disordered non-metallic phases 
The instability of the 1D electron gas can lead to the formation of 

non-metallic phases without long-range order or broken symmetry. Two 
important phases of this type are briefly discussed here: the Mott- 
Hubbard insulator and the Luther-Emery liquid. 

In a Mott insulator electrons are localized without breaking any 
symmetry by their mutual Coulomb repulsion in a partially filled band 
[86,147–149]. Thus all charge excitation modes are gapped with the 
dispersion of eq. (10). This so-called Mott gap exists at all temperatures 
and thus is a hard gap contrary to the soft gaps found in 1D CDW and 
SDW phases. A paramagnetic Mott insulator is found in the exactly 
solvable half-filled 1D Hubbard model with the non-interacting disper
sion of eq. (4) for any strength of the on-site Coulomb repulsion U >
0 because of Umklapp scattering [89,90]. Without Umklapp scattering 
(e.g. with long-range hopping terms) a Mott-Hubbard metal insulator 
occurs at finite coupling U equal to the bandwidth W [150]. Spin exci
tations remain gapless as in the isotropic 1D Heisenberg model [6,69, 
70]. Thus the spin degrees of freedom can be seen as a Luttinger liquid 
with a quasi-long-range antiferromagnetic order as explained below. 
This phase is usually called a Mott-Hubbard insulator. The concept of 
Mott insulators has been used to explain the properties of various 
quasi-1D crystalline materials such as Bechgaard salts [6], π-conjugated 
polymers [34], and copper oxide compounds [149]. A Mott insulator 
state has also been realized in ultracold Bose gases in 1D optical lattices 
[26,27]. 

The Luther-Emery phase of a 1D electron system is characterized by 
gapless charge excitations and gapped spin excitations with the disper
sion of eq. (10) [6,151]. It exhibits a quasi-long-range pairing order in 
the charge sector. For instance, it is realized in the 1D half-filled Hub
bard model with attractive interaction. A Luther-Emery phase has not 
been observed in any real materials but it is nonetheless important from 
a theoretical point of view. First, it competes directly with other phases 
such as Luttinger liquids and Peierls-CDW in strictly 1D electron-phonon 
models, e.g. in the Holstein model and its generalizations [152,153]. 
Thus it may be relevant when discussing the occurrence of Luttinger 
liquids and Peierls-CDW in quasi-1D crystalline materials and atomic 
wire systems. Second, the Luther-Emery state can be regarded as the 1D 
precursor for superconducting phases in higher dimensions. A super
conducting phase is a state with gapped spin excitations and at least one 
gapless charge excitation mode but also with a long-range off-diagonal 
pairing order corresponding to a broken U(1) gauge symmetry. Thus a 
true superconducting phase cannot exist in a 1D electron systems, even 
at zero temperature, as explained in the next section. Nevertheless, a few 
quasi-1D crystalline materials are known to become anisotropic super
conductors under pressure, in particular some Bechgaard salts [3,58] 
and cuprate ladder compounds [154]. This is understood as a crossover 
from 1D to higher dimensions as illustrated in the phase diagram in 
Fig. 1. Therefore, theorists search for Luther-Emery phases in 1D models 
of superconductors as a possible signature of superconductivity in the 
higher-dimensional counterparts, e.g. for the superconducting cuprates 
[155]. 

Finally, it should be kept in mind that many other principles of 3D 
solid-state physics that are not discussed here may require adaptation 
when apply to 1D electron systems. For instance, it is well known that 
spin and charge transport properties depend sensitively on disorder 
(impurities and lattice imperfections) in any dimension, but strictly 1D 
systems can become (Mott-)Anderson insulators in the presence of any 
weak disorder due to the so-called Anderson localization [156,157]. 

1.3.4. Absence of long-range order 
As discussed above, a purely 1D electron gas is unstable with respect 

to states with a 2kF modulation. Within mean-field approximations 
various phases with spontaneous symmetry-breaking long-range orders, 
such as CDW, SDW, spin-Peierls, or superconducting phases, can appear 
in the ground state and at low temperatures. However, mean-field ap
proximations break down in one dimension. Indeed, exact results and 
more reliable approximations show that mean-field phases are unstable 
with respect to thermal fluctuations in strictly 1D systems. 

Besides the system dimension, the nature (discrete or continuous) of 
a broken symmetry influences the phase stability at finite temperature. 
A symmetry can be continuous (e.g. a rotation symmetry) or discrete (e. 
g. a reflection symmetry). For instance, a SDW would break the 
continuous SU(2) symmetry in the 1D Hubbard model [81,90] while a 
Peierls-CDW/BOW only breaks discrete symmetries of the electron and 
lattice degrees of freedom in the SSH model [18,34,61,62]. 

The Mermin-Wagner theorem [13,158] is probably the best-known 
mathematically exact result in the theory of phase transitions in 
reduced dimensions. It forbids ordered phases that break continuous 
symmetries at finite temperature in less than three dimensions, by 
showing that they are destabilized by long-wavelength fluctuations. 
Strictly speaking Mermin and Wagner only showed that “at any nonzero 
temperature, a one- or two-dimensional isotropic spin-S Heisenberg model 
with finite-range exchange interaction can be neither ferromagnetic nor an
tiferromagnetic”. However, their method of proof, which is based on the 
Bogoliubov inequality, has been successfully applied to many models. 
Thus it is generally accepted that the lower critical dimension is 2 for 
ordered phases with broken continuous symmetries [113–116]. 

The Mermin-Wagner theorem does not apply to phases breaking only 
discrete symmetries. Nevertheless, it is generally accepted that long- 
range-ordered phases with broken discrete symmetries do not occur at 
finite temperature in strictly 1D systems with finite-range interactions. 
First, according to statistical field theory (treating thermal fluctuations 
within the framework of the Ginzburg-Landau theory) the lower critical 
dimension is 1 for spontaneously broken discrete symmetries 
[113–116]. Second, exact solutions of strictly 1D models do not reveal 
any ordered phases with discrete symmetry breaking for T > 0. For 
instance, the exact solution of the 1D Ising model is paramagnetic for all 
non-zero temperatures [12]. 

Therefore, thermal fluctuations prevent the existence of spontaneous 
long-range order at any finite temperature in one dimension in all 
realistic models. Magnetic moments do not align ferromagnetically, 
electrons do not superconduct, Bose-Einstein condensation does not 
occur, and liquids do not freeze in one dimension [7]. The peculiar 
phases that we discussed in sec. 1.2.2 and 1.3.2 do not exist in strictly 1D 
systems at T > 0. It is the coupling of 1D electron systems to the 3D 
environment that makes possible the experimental observation of 
symmetry-breaking Peierls, CDW or SDW phases in quasi-1D materials 
at finite temperature. This will be discussed in detail in later sections. 

Additionally, it should be noted that the Mermin-Wagner theorem 
and statistical field theory only disallow symmetry-breaking ordered 
phases in equilibrium in the thermodynamic limit. They do not neces
sarily exclude the existence of metastable symmetry-breaking orders in 
finite-size samples or over a finite time span. The relevant size and time 
scales can be macroscopically large for real physical systems [159]. For 
instance, in the 1D Ising model with ferromagnetic exchange coupling J 
> 0, correlations between two spins decrease exponentially with the 
distance. The correlation length ξ = 1/ln(coth(J/kBT)) diverges for T → 
0. Thus a segment of finite length L can appear to be ferromagnetically 
ordered when the temperature T is low enough, i.e. for L ≪ ξ ⇒ kBT ≪ 
2J/ln(2L). As an experimental example, 1D superconductivity can be 
observed in carbon nanotubes although the superconducting phase 
breaks the continuous electromagnetic gauge symmetry [160,161]. 
Thus one should always evaluate the relevant size and time scales to 
determine wether a symmetry-breaking order can be observed in 
finite-size regions of a material over the time scale of a given 
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experiment. 
As neither the electron gas nor long-range-ordered phases are stable, 

the question arises as to which kind of states occurs in strictly 1D 
models. Typically, the (mean-field predicted) long-range order is 
replaced by a quasi-long-range order. A state with a quasi-long-range 
order (or long-range fluctuations) exhibits a slow (power-law) decay 
of correlation functions at long distance and a divergent response 
function (susceptibility) for the operators characterizing the order. In 
strictly 1D systems this gapless state is usually a Luttinger liquid, which 
is discussed in the next section. For instance, the ground-state spin 
correlation function of the antiferromagnetic spin-1/2 Heisenberg chain 
has been determined using field-theoretical methods [162,163]. It be
haves for asymptotically large distance m as 

〈 S→n S→n+m〉 ∼
(− 1)m

m
ln(const. ⋅ m). (12)  

the slowest decaying correlation functions or the strongest diverging 
response function defines the so-called dominant correlations (or fluc
tuations). 

1.3.5. Theory of 1D metals 
Another essential feature of 1D physics is the breakdown of the Fermi 

liquid theory in 1D metals and the importance of the Luttinger liquid 
phenomenology for all 1D gapless excitation modes. Numerous in
troductions to the Luttinger theory have been published [28–30,32,104, 
164,165]. More detailed presentations can be found in Refs. [6,33,45, 
166]. 

1.3.5.1. Breakdown of the Fermi liquid theory. Landau’s theory of the 
Fermi liquid is a cornerstone for our understanding of ordinary (3D) 
metals [28,30,45,165]. It explains why many properties of the strongly 
interacting conduction electrons can be explained using models of 
weakly-interacting fermions. More precisely, the Fermi liquid theory 
assumes that the low-energy excitations of an interacting electron sys
tem can be mapped onto the low-energy excitations of a fermionic 
quasiparticle system with weak residual interactions. The residual in
teractions can be treated with perturbative methods such as the 
random-phase approximation (RPA). One finds that the low-energy 
excitation spectrum of 3D and 2D metals is dominated by a continuum 
of single-fermion excitations called Landau quasiparticles, in agreement 
with the initial assumptions. (Strictly speaking the Fermi liquid is un
stable at sufficiently low temperature but this is not relevant experi
mentally for ordinary metals [167].) Collective excitations of the charge 
and spin degrees of freedom (called plasmons and magnons, respec
tively) are also present. 

This approach breaks down in one dimension because scattering 
processes transferring finite momenta cause the Fermi liquid to be un
stable for any weak residual interactions [28,30,45,166]. (Similar 
scattering processes cause the 2kF instability of the electron gas.) For 
instance, the calculation of dynamical response functions within the 
RPA framework shows that for low energies and long wavelengths 
quasiparticles are unstable, which contradicts the initial assumptions of 
the Fermi liquid theory. Instead, plasmons and magnons are the stable 
elementary excitations. Note that they have dispersions E(k) ∝|k|, which 
turns out to be qualitatively correct (see below) even though the overall 
result is inconsistent with the initial assumption. 

1.3.5.2. Luttinger liquid theory. Forty years ago Haldane conjectured 
that gapless excitation modes in strictly 1D fermion systems always 
follow the phenomenology of the Tomonaga-Luttinger model (TLM) at 
low energy and named this “universality” class Luttinger liquids [11]. 
The TLM [102,103] describes a system of interacting fermionic charges 
in one dimension. (Spin degrees of freedom are neglected in this first 
step.) It is obtained through linearization of the fermion dispersion, Eq. 
(2) or (4), around its two Fermi points, ϵ(k) = ϵF ±ℏ vF(k ∓ kF), see Fig. 2. 

Moreover, the Coulomb interaction between charges is represented by a 
subset of the scattering processes only (forward/backward scattering). 

Thanks to these simplifications the TLM is exactly solvable because it 
can be mapped onto a system of noninteracting bosons using a field- 
theoretical technique called bosonization [168]. The excitation spec
trum is characterized by gapless collective bosonic excitations 
describing density waves of the original fermionic degrees of freedom. 
Their dispersion is linear 

E(k) = ℏu|k| (13)  

with a renormalized velocity u. This is completely similar to acoustic 
phonons, which are bosonic degrees of freedom representing the low- 
energy long-wavelength excitations of atom nuclei in a crystal (sound 
waves). For this reason the elementary excitations of a Luttinger liquid 
are also called “sound” waves. As the displacement of a single atom 
nucleus corresponds to a superposition of coherent and squeezed 
acoustic phonon states, a quasiparticle excitation corresponds to an 
(unstable) superposition of coherent and squeezed bosonic excitations in 
a Luttinger liquid. 

Besides the eigenenergy spectrum, static and dynamical correlation 
functions can also be calculated from the solution of the TLM. One finds 
that the physics of the Luttinger liquid is fully described by two pa
rameters: the renormalized velocity u > 0 and a Luttinger parameter 0 <
K < ∞. Well-known examples of Luttinger liquid properties are the 
power-law behavior of the density of states at the Fermi energy 

D(ϵ)∝|ϵ − ϵF|
α (14)  

with an exponent α = (K + K− 1 − 2)/2 [6,29,32] and the renormaliza
tion of the conductance quantization G = Kq2/h with the charge q car
ried by one fermionic particle [169–171]. The vanishing of the density 
of states at the Fermi energy reflects the instability of single-particle 
excitations in the interacting system (i.e. for K ∕= 1). Both features can 
be observed in the spinless fermion model [172,173]. 

The Tomonaga-Luttinger approach can be generalized to include 
several excitation modes, spin degrees of freedom, and more general 
interactions [33]. Although the generalized models are no longer exactly 
solvable by bosonization alone, field-theoretical methods, in particular 
renormalization group studies, confirm that their gapless modes are 
Luttinger liquids [6,33,166]. Note that the parameters u and K can be 
different for each excitation mode. 

Similarly, the Hamiltonians of strictly 1D lattice models for inter
acting fermions (see sec. 1.2.4) can be mapped onto these generalized TL 
models using the linearization of the fermion spectrum around the Fermi 
energy and the renormalization group. (Technically, the TLM is a fixed 
point of the renormalization flow for a large class of Hamiltonians.) 
Once the mapping is achieved, one obtains an asymptotically exact 
description of the low-energy long-wavelength gapless excitations of the 
original Hamiltonians. This description is said to be universal because it 
does not depend on the Hamiltonian details but only on the parameters u 
and K for each gapless mode. A priori, the linearization (and thus the 
mapping) is only valid for weak Coulomb interactions that only scatter 
fermions close to the Fermi points. However, field-theoretical calcula
tions and exact solutions of 1D models confirm that the Luttinger liquid 
phenomenology applies to gapless modes regardless of the interaction 
strength. Moreover, Haldane’s conjecture is supported by all known 
exact solutions of strictly 1D fermion models with gapless excitation 
modes such as the Hubbard chain away from half-filling [6,90]. 

Therefore, it is well accepted that the Luttinger liquid theory de
scribes the universal low-energy long-wavelength behavior of any gap
less excitation mode in a strictly 1D many-fermion system. As any 1D 
conductor must possess at least one gapless charge excitation mode, it is 
a Luttinger liquid according to Haldane’s conjecture. Experimental ob
servations of Luttinger liquid signatures have been reported for 
numerous quasi-1D conductors, in particular for the quasi-1D crystalline 
materials [17] (discussed in sec. 1.2.2) and in atomic wires on 
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semiconducting surfaces [15] such as Au/Ge(100) [37], Bi/InSb(001) 
[174] and Pt/Ge(001) [175]. 

Moreover, decades of research suggest that the Luttinger liquid 
phenomenology applies to all gapless excitation modes in strictly 1D 
quantum many-body systems. Thus the term Luttinger liquid is also used 
for systems with other degrees of freedom than fermions. For instance, 
the Luttinger liquid theory describes the low-energy gapless excitations 
in spin chains such as the Heisenberg model [6,69]. As a second 
example, the Luttinger phenomenology has been observed experimen
tally in 1D ultracold atomic Bose gases by probing density profiles and 
sound propagation [176]. 

1.3.5.3. Properties of electronic Luttinger liquids. A 1D metal must 
possess (at least) one gapless charge mode and one gapless spin mode. 
According to Haldane’s conjecture it is a multicomponent Luttinger 
liquid. Its bosonic elementary excitations are called holons and spinons. 
A holon is a charge excitation and can be regarded as an electronic CDW 
fluctuation. A spinon is a magnetic (spin) excitation and can be regarded 
as a SDW fluctuation. An (unstable) electronic quasiparticle excitation is 
built as a superposition of coherent states of holons and spinons. 

Assuming that the 1D metal has exactly one holon and one spinon 
excitation mode, its low-energy long-wavelength properties are deter
mined by four parameters only: a charge velocity uc, a charge Luttinger 
parameter Kc, a spin velocity us, and a spin Luttinger parameter Ks. (Note 
that the 1D electron gas corresponds to a Luttinger liquid with uc = us =

vF and Kc = Ks = 1.) This two-component Luttinger liquid exhibits 
properties that differ markedly from those of ordinary metals. As already 
discussed above for the TLM model, the density of states vanishes as a 
power law at the Fermi energy, see (14). However, the exponent is now 
α =

(
Kc +K− 1

c − 2
)
/4 for an interacting but spin rotation invariant sys

tem like the Hubbard model without magnetic field (⇒ Kc < 1 and Ks =

1) [6,177]. This vanishing of the density of states in a 1D conductor is in 
stark contrast with an ordinary metal, where the conductivity is pro
portional to the density of states at the Fermi energy. As mentioned 
above, the vanishing of the density of states reflects the instability of 
quasiparticle excitations in the interacting strictly-1D electron system. 
The conductance quantum is also slightly different, G = 2Kce2/h [171], 
where the factor 2 comes from the spin degrees of freedom. Only for a 
noninteracting wire (Kc = 1) the 1D electron gas result is recovered. 

Unfortunately, it is difficult to observe these features in numerical 
investigations of 1D lattice models such as the Hubbard model because 
they involve very small energy scales [178–181]. Experimentally, the 
vanishing of the density of states has been observed with photoemission 
spectroscopy or STS in various quasi-1D crystalline materials such as 
TTF-TCNQ [66], Bechgaard salts [182], and the purple bronze 
Li0.9Mo6O17 [183,184] as well as in carbon nanotubes [185] and in 
atomic wire systems [37,174]. In contrast, the renormalization of the 
conductance quantum does not occur in the standard experimental setup 
(a quantum wire between two ordinary metallic leads) [186–188]. 

Another significant difference between Fermi and Luttinger liquids is 

their spectral functions. The single-particle Green’s function G
(

k
→
,ω
)

of 

a Fermi liquid has poles for ℏω = E
(

k
→)

, where E
(

k
→)

is the excitation 

energy of the Landau quasiparticle with momentum ℏ k
→

. In a Luttinger 

liquid, however, G
(

k
→
,ω
)

has no poles but the spectral function 

A
(

k
→
,ω
)
= − 1

π Im G
(

k
→
,ω
)

exhibits a continuum with power-law sin

gularities (divergence or cusp) on the holon branches ℏω = uc|k| and the 
spinon branches ℏω = us|k| [177,189]. We speak of a dynamical sepa
ration of spin and charge when the elementary excitations split into 
independent spin and charge modes. This hallmark of 1D physics can be 
observed in lattice models for strictly 1D electron systems. For instance, 
Fig. 4 shows a spectral function of the 1D Hubbard model away from half 
filling calculated with the numerical DMRG method [190,191]. The 
distinct spinon and holon branches are clearly visible over finite energy 

and momentum ranges. In first approximation one can consider that 

ARPES experiments measure the spectral function A
(

k
→
,ω
)

. Indeed, one 

can observe the signature of spin-charge separation in the ARPES 
spectrum of quasi-1D materials such as TTF-TCNQ [65,66]. 

Finally, we note that the Luttinger liquid theory has been extended to 
describe numerous physical quantities (e.g., optical absorption, charge 
and spin dynamical structure factors, thermodynamic quantities) and to 
address impurity, boundary, and disorder effects [6,107]. 

1.3.6. Summary: 1D theory 
To conclude this overview of the physics in strictly 1D electron 

systems, we point out that three very different theoretical approaches 
predict that gapless excitation modes are collective excitations with 
linear dispersion in the low-energy long-wavelength limit, although the 
nature of the collective excitations is quite different in each case. These 
are (I) the phasons of incommensurate CDW and SDW in the Ginzburg- 
Landau theory (see sec. 1.3.2), (II) plasmons and magnons in the Fermi 
liquid theory, and (III) holons and spinons in the Luttinger liquid theory. 
Consequently, holons and spinons are often seen as the counterpart of 
plasmons and magnons [30] and are often pictured as CDW and SDW. 
This agreement reveals the “universal” nature of the physics in strictly 
1D systems, i.e., the low-energy long-wavelength properties do not 
depend qualitatively on the details of the models. 

Similarly, the spin-charge separation is often associated with Lut
tinger liquids, but actually it is a feature of 1D physics that can be 
observed in various phases. For instance, this fractionalization of 
elementary excitations is found in the doped SSH model and its gener
alizations in the form of charged and neutral solitons [18,34,61,62]. 
This type of spin-charge separation is observed experimentally in 
quasi-1D doped π-conjugated polymers. 

The theory of 1D quantum systems is a very broad and active 
research field. Obviously this short overview cannot cover all important 
aspects. In particular, finite-temperature transport [192] and 
non-equilibrium dynamics [193–195] are current hot topics that are not 
discussed here. 

1.4. Systems of coupled chains 

Obviously, even the most anisotropic quasi-1D materials are 3D 
electron systems in reality. From a theoretical point of view, a quasi-1D 
material can be seen as a system of linear chains, which (I) act upon one 
another directly and (II) interact with their 3D environment. 

Fig. 4. Spectral function A(k, E = ℏ ω) of the 1D Hubbard model with U = 4.9t 
and a density n = 0.59. The chemical potential μ = − 0.2399t is chosen so that 
the Fermi energy is E = ϵF = 0. The spinon and holon branches start from the 
Fermi points at kFa = nπ/2 ≈ 0.93 but below the Fermi energy they clearly split 
away as momentum is lowered. The spinon branch is the upper intense feature 
reaching E ≈ − 0.5t for k = 0 while the holon is the lower weaker feature 
reaching E ≈ − 1.5t for k = 0. 
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Interactions with the 3D environment (e.g. a heat bath or a substrate) 
will be addressed in the next section (1.5). In this section we discuss the 
role of the direct interchain coupling. A fundamental question is how 
this interchain coupling influences the 1D physics discussed in the 
previous section. First, the stabilization of long-range-ordered phases is 
discussed in sec. 1.4.1. Then the nature of strongly anisotropic metals is 
addressed in sec. 1.4.2. Finally, the concept of dimensional crossover is 
presented in sec. 1.4.3. 

Until recently, the best realizations of quasi-1D electronic systems 
have been the strongly anisotropic crystalline materials discussed in sec. 
1.2.2. They can be regarded as 3D arrays of weakly-interacting chains. 
Consequently, the role of the 3D interchain coupling has been exten
sively investigated and is well understood [1,4–7,33,34,45,58,107,149, 
166]. For these reasons, we will first summarize the most important 
results for 3D arrays of chains. Atomic wire systems on substrates are 
regarded as 2D arrays of chains, however (see sec. 1.2.3). Therefore, we 
will also point out some significant theoretical differences between both 
cases. 

Naturally, the most basic effect of the 3D interchain coupling in 
quasi-1D crystalline materials is the stabilization of their anisotropic 
atomic structure. Without this coupling these materials would not be 
solid. However, this problem is not considered here because the focus 
lies on electronic properties and related lattice distortions (Peierls 
transition, e.g.). 

Obviously, the direct interaction between chains should become 
weaker when the distance between chains becomes larger. Experimen
tally, the interchain distance can be modified by applying pressure as 
well as by substitution of atoms or molecules between the chains. This is 
how the anisotropy is varied in the phase diagram of the Bechgaard and 
Fabre salts in Fig. 1. From the theoretical point of view, the interchain 
coupling strength is a model parameter and we will assume that we can 
vary it at will. 

1.4.1. Ordered phases 

1.4.1.1. 3D arrays of chains. We are accustomed to the spontaneous 
appearance of symmetry-breaking order in the 3D world when the 
temperature is lowered. For instance, liquids condense to form solids 
below their crystallization points while in some solids magnetic mo
ments align to form permanent magnets below their Curie temperatures. 
Thus it not surprising that symmetry-breaking long-range-ordered 
phases are stable at sufficiently low temperatures in quasi-1D crystalline 
materials as well as in 3D models of coupled chains. Theoretically, as 
soon as there is an infinitesimal coupling between chains, long-range 
order is possible, 

Numerous theoretical studies have revealed the dual role of the 
interchain coupling [1,4,5,7,34,149]. On the one hand, it reduces 
thermal (and quantum) fluctuations and thus enables the appearance of 
long-range ordered phases at finite temperature. If this effect is domi
nant, a stronger interchain coupling increases the phase stability and 
thus the critical temperature above which the ordered phase becomes 
thermodynamically unstable. Typically, the critical temperature re
mains lower than the value predicted by mean-field theory or expected 
from the strength of the intrachain interactions. Transition metal tri
chalcogenides such as NbSe3 and TaS3 are examples of quasi-1D mate
rials with a Peierls-CDW phase at finite temperature thanks to the 
interchain coupling but with a critical temperature that is reduced by 
fluctuations from the mean-field prediction [1,4,8]. 

On the other hand, an increase of the interchain hopping [i.e., the 
ratio between ty, tz and tx in the tight-biding dispersion (3)] increases the 
total bandwidth and thus reduces the relative strength of the intrachain 
interactions responsible for the 1D symmetry-breaking phase. Moreover, 
it warps the Fermi surface and can destroy the perfect nesting respon
sible for the ordered phase. If these effects are dominant, a stronger 
interchain coupling can result in a lower critical temperature. Moreover, 

the reduced anisotropy can do away with the 1D nature of the long- 
range-ordered phase. However, the critical temperature can also in
crease with increasing interchain two-body interactions, such as the 
Coulomb repulsion between electrons in different chains or the ex
change coupling between spins in different chains. 

Thus the critical temperature can be non-monotonic as a function of 
the interchain coupling for a phase that is essentially an anisotropic 
ordering, such as a Peierls-CDW. For instance, the evolution of the 
Peierls critical temperature is summarized in Fig. 5 as a function of the 
interchain hopping in a 3D array of chains (See Fig. 35 in Ref. [149] for 
more details.). First, the critical temperature is zero in the strictly-1D 
limit (ty,z = 0), then it increases as fluctuations are reduced by the 
increasing interchain coupling. A further increase progressively destroys 
the 2kF nesting of the Fermi surface that is responsible for the Peierls 
instability and thus the critical temperature decreases. The critical 
temperature can also drop to zero if the Peierls instability vanishes for a 
too small anisotropy of the electron dispersion (3) [196]. In that case the 
system undergoes a quantum phase transition (i.e. at T = 0) from the 
Peierls insulating state to a metallic state at a critical value of ty,z. We 
note that the nature of the metallic phase above the critical Peierls 
temperature is also affected by the interchain coupling. This will be 
discussed in the following sections. 

Other types of long-range order, e.g. CDW and SDW, can occur in 
isotropic 3D systems as well as quasi-1D ones. If the nesting of the Fermi 
surface is preserved when the interchain coupling increases, only the 
reduction of thermal fluctuations occurs and the critical temperature can 
increase monotonically. In such a case, it may be difficult or even 
impossible to define a clear boundary between a quasi-1D CDW/SDW 
phase and an anisotropic 3D CDW/SDW phase as the interchain 
coupling increases from zero to the isotropic limit. 

In these examples we have assumed that only one type of long-range 
order can occur. In reality, various phases compete in real materials as 
well as in realistic models. This competition leads to a high sensitivity to 
external influences such as temperature and pressure. Consequently, a 
model consisting of a 3D array of chains typically undergoes one or more 
transitions between different ordered phases as the interchain coupling 
increases. Experimentally, this complexity is illustrated by the rich 
phase diagram of the Bechgaard and Fabre salts in Fig. 1. 

1.4.1.2. 2D arrays of chains. The physics of 2D arrays of chains is more 
complicated than the 3D case. As discussed in section 1.3.4, the nature of 
the spontaneously broken symmetry (discrete or continuous) plays a 
crucial role for the possible long-range ordered phases because the lower 
critical dimension is one for discrete symmetries but two for continuous 
ones. 

This prediction of statistical field theory [113–116] (or the 
Mermin-Wagner theorem [13,158]) is a consequence of 

Fig. 5. Sketch of the phase diagram for a 3D array of Peierls chains as a 
function of temperature T and interchain hopping |ty,z|. The scales are set by the 
mean-field temperature TMF at ty,z = 0 and the intrachain chain hopping tx. 
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long-wavelength fluctuations in the thermodynamic limit. Contrary to 
the dynamical confinement, a spatial confinement (see sec. 1.2.3) 
necessarily imposes a finite length cutoff (i.e. Ly or Lz). Thus 
long-wavelength fluctuations are not possible in the direction of 
confinement. It follows that atomic wires on a substrate constitute a 
strictly 2D system from the point of view of statistical field theory and 
the Mermin-Wagner theorem. 

Therefore, we can expect to observe long-range ordered phases that 
spontaneously break discrete symmetries in atomic wire systems at 
finite temperature. For instance, this includes a Peierls-CDW that dou
bles the lattice periodicity in the chain direction (and possibly in the 
interchain direction) as observed in indium wires on the Si(111) surface 
[16,46]. A second example is the quasi-1D CDW with a threefold peri
odicity predicted by first-principles simulations on the step edges of 
Au/Si(553) [144] and confirmed by STM and STS experiments [145, 
146]. 

By contrast, long-range ordered phases that spontaneously break 
continuous symmetries should not occur in atomic wire systems at finite 
temperature. This usually includes incommensurate CDW and SDW 
phases as well as magnetic ordering because of the electron spin SU(2) 
symmetry. But as spin-orbit interactions generally do not preserve the 
spin rotation symmetry [197], magnetic ordering is allowed in atomic 
wire systems with a strong spin-orbit coupling. For instance, a 
spin-ordered phase has been found experimentally in Pb/Si(557) [138, 
139], which is interpreted as a spin-orbit density wave (SODW) [198]. 

However, it should be kept in mind that the Mermin-Wagner theo
rem does not prohibit metastable 2D ordered phases at finite tempera
ture in finite size samples [159]. As discussed in sec. 1.3.4 the relevant 
size and time scales can be macroscopically large. Thus the experimental 
observation of a broken continuous symmetry in an atomic wire material 
would not necessarily contradict the theory. Finally, note that the 
Mermin-Wagner theorem does not apply to topological ordering of the 
Kosterlitz-Thouless type [199]. 

Unfortunately, there are few exactly solvable models describing the 
thermodynamics of long-range ordered phases in anisotropic 2D or 3D 
systems. An illustrative example is the 2D Ising model on a square lattice 
with ferromagnetic couplings Jx > 0 in the x-direction and Jy ≥ 0 in the 
y-direction [12]. For Jy < Jx it can be viewed as a 2D system of coupled 
chains in the x-direction with the interchain coupling Jy. This model is 
exactly solvable [93]. It undergoes a transition from a paramagnetic 
phase to a ferromagnetic phase when the temperature is lowered below 
a critical value Tc given by 

sinh(2Jx / kBTc)sinh
(
2Jy

/
kBTc

)
= 1. (15)  

the magnetization only breaks the discrete spin flip symmetry so that the 

Mermin-Wagner theorem does not apply. The average magnetization is 
shown in Fig. 6 as a function of temperature for several ratios Jy/Jx. We 
see that Tc is lower in the anisotropic case (Jy < Jx) than in the isotropic 
case (Jy = Jx). Only for a system of strictly independent 1D chains (Jy =

0) we recover the generic absence of long-range order discussed in sec. 
1.3.4. The critical temperature increases monotonically with Jy in that 
system because the interchain interaction only strengthens the overall 
ferromagnetic coupling and thus reduces thermal fluctuations. Finally, 
we note that the critical temperature is not an analytical function of Jy 
around Jy = 0. This precludes a perturbative expansion in the interchain 
coupling starting from the solution for the strictly 1D system. This non- 
analiticity as a function of the interchain coupling is a general issue with 
quasi-1D systems and reflects the singularity of strictly-1D models. 

Although the Ising model does not describe any real magnetic ma
terials accurately, its properties explain qualitatively experimental ob
servations in quasi-1D materials. For instance, the excitation spectrum 
of Sr2CuO3 is well described by the spin-1/2 antiferromagnetic Hei
senberg model [74]. However, the measured critical temperature for the 
antiferromagnetic ordering (kBTc = 5K) is orders of magnitude smaller 
than the intrachain spin exchange coupling (J = 250 meV). On the basis 
of the Ising model thermodynamics, we understand that fluctuations 
destroy the antiferromagnetic order at the temperature scale set by the 
intrachain coupling J but the long-range order is stabilized at the lower 
temperature scale Tc set by the 3D interchain coupling. 

1.4.2. Anisotropic metals 
An interesting question is the nature of metallic phases in quasi-1D 

electron systems. Consider a 3D array of chains with a tunable inter
chain coupling. If one starts from the Luttinger liquid phase in strictly- 
1D chains and progressively increases the interchain coupling, we 
recover a Fermi liquid at the latest when the system becomes isotropic. 
In particular, we can ask where is the boundary between coupled Lut
tinger liquids and an anisotropic Fermi liquid. Answering this question is 
a difficult theoretical problem that is far from being solved because we 
lack exact solutions for models describing a 2D or 3D array of interacting 
electron chains as well as reliable numerical or analytical methods to 
study such models. Thus this problem has prompted many studies using 
various approximations [6,29,33,45,107,149,166]. A common 
approach starts from the Luttinger liquid solutions for single chains and 
assumes that the interchain coupling is a weak perturbation. Another 
approach starts from the electron gas in anisotropic 3D systems and 
assumes that the electron-electron interaction is a weak perturbation. A 
third approach consists in studying systems made of a finite number of 
coupled chains and extrapolating the results to the limit of a bulk ma
terial (i.e., an infinite number of chains). We will summarize the main 
theoretical results in this section and discuss some consequences for 
experimental observations in sec. 1.4.3. 

The stability of coupled Luttinger liquids depends on the two types of 
interactions between chains. The first type describes the electron motion 
from a chain to another one (hopping or tunnelling), which is respon
sible for the ty and tz terms in the 3D dispersion (3). The second type is 
any two-body scattering process such as the Coulomb interaction be
tween electrons in different atomic chains. 

Most studies have reached the conclusion that an infinitesimally 
small interchain hopping is relevant and destroys the Luttinger liquid 
within a renormalization group approach [6,33,45,107,166,200–203]. 
Generally, Luttinger liquids in strictly-1D chains exhibit some 
quasi-long-range orders. As soon as the interchain hopping is finite, one 
of them becomes a stable long-range order with broken symmetry in a 
3D array of chains [33]. The thermodynamics of these phases have been 
discussed in the previous section 1.4.1. Thus one expects to observe the 
Luttinger liquid phase only at temperatures above the critical temper
ature of the ordered phase. This scenario is seen in the Peierls phase 
diagram in Fig. 5 for 0 < |ty,z/tx|≲ 0.2 as well as in the left part of the 
phase diagram of Bechgaard and Fabre salts in Fig. 1. If one assumes that 
the system remains metallic despite the interchain hopping, however, 

Fig. 6. Average absolute magnetization of the anisotropic 2D Ising model as a 
function of the temperature for various coupling anisotropies Jy/Jx. The fully 
polarized ferromagnetic phase corresponds to m = 1 and the paramagnetic 
phase to m = 0. 
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one finds that the asymptotically low-energy and low-temperature 
properties correspond to a Fermi liquid [6,58,107,149,203]. 

The effects of two-body interactions between chains are less plain 
than those of the interchain hopping. These interactions can also 
destabilize Luttinger liquids but in some cases low-energy excitations of 
coupled chains still obey the Luttinger liquid phenomenology [6,204, 
205]. If the Luttinger liquid is destabilized, two-body interchain in
teractions do not always stabilize a quasi-long-range order of the 
strictly-1D chain but often favor the appearance of a symmetry-breaking 
long-range ordering that can also occur in higher dimensions such as 
CDW and SDW [33]. 

The above discussion deals mostly with 3D arrays of coupled chains, 
which is relevant for quasi-1D crystalline materials. The possibility of 
non-Fermi liquids has been extensively investigated in 2D systems but 
mostly with a view to layered materials, in particular the metallic phase 
of the high-temperature superconducting cuprates [149,206,207]. Few 
studies have focused on the peculiarities that could be relevant for 
Luttinger liquids or other non-Fermi liquids in atomic wire systems. 
Therefore, theoretical predictions for metallic states in 2D arrays of 
chains are rare and not so clearcut as in 3D. We will address the question 
of anisotropic 2D metals in sec. 1.7. 

1.4.3. Dimensional crossover 
A key concept of solid-state physics in reduced dimensions is the 

dimensional crossover observed in thermodynamical quantities and 
dynamical response functions as a function of temperature or excitation 
energy [7,29,107,149]. Summarily, we speak of dimensional crossover 
when the (experimental) properties of quasi-1D materials display the 
usual characteristics of (anisotropic) 3D solids at low temperature and 
low excitation energy but the signatures of strictly-1D physics are found 
at higher temperature or excitation energy. The typical energy or tem
perature scale of this crossover depends on the nature and the strength of 
the interchain coupling. Naturally, a double dimensional crossover can 
also take place from 3D to 2D and then from 2D to 1D physics (or a single 
crossover from 3D to 2D in layered materials). Moreover, the crossover 
can occur as a function of other control parameters than temperature 
and excitation energy, such as pressure. 

The simplest example of a dimensional crossover is given by a system 
of noninteracting electrons in the quasi-1D tight-binding model with the 
dispersion of eq. (3) and hopping terms |ty,z|≪|tx|. The system response 
to an external perturbation of frequency ω at temperature T corresponds 
to an anisotropic 3D metal for kT, ℏω ≪|ty,z| but becomes similar to the 
response of a strictly 1D system for |ty,z|≪ kT, ℏω ≪|tx|. In particular, the 
system behaves as an anisotropic 3D conductor for kT ≪|ty,z| but as a 1D 
conductor for |ty,z|≪ kT ≪|tx| because the charge transport between 
chains becomes incoherent. Thus in this non-interacting model the bare 
interchain coupling |ty,z| sets the characteristic scale for the crossover 
between the 1D and 3D regime. 

For long-range-ordered phases, we can also understand the dimen
sional crossover in terms of length scales. At high enough temperatures, 
the correlation length is shorter than the distance between chains. Thus 
the chains are independent and exhibit quasi-long or short range order 
like strictly-1D systems. When the temperature is lowered, the correla
tion length becomes longer than the interchain distance and a phase 
transition to an anisotropic 3D ordered phase is allowed to take place. 
Theoretically, this behavior is seen in the exact solution of the aniso
tropic 2D Ising model discussed previously [93]. Experimentally, 
various dimensional crossovers are visible in the Bechgaard and Fabre 
salts [17,208], e.g. see Fig. 1. 

The above discussion of the dimensional crossover in a noninter
acting electron system remains qualitatively correct for interacting 
systems. A first significant difference is that not only the effective 
dimension is modified but also the physics is changed qualitatively. For 
instance, the properties of a metallic system can undergo a crossover 
from a Luttinger-liquid to a Fermi-liquid behavior. Such crossovers are 
shown in the phase diagram of Bechgaard and Fabre salts in Fig. 1 and in 

the Peierls phase diagram in Fig. 5. Another significant difference is that 
interactions strongly renormalize the energy and temperature scales at 
which the crossover takes place [6,29,166]. Usually, the scale becomes 
smaller when interactions become stronger. For instance, stronger 
Coulomb interactions reduce the scale over which a quasi-1D metal 
obeys the 3D Fermi liquid phenomenology. 

The dimensional crossover can be observed experimentally if the 
energy or temperature scale is within an accessible range. For instance, 
the crossover between Luttinger-liquid and Fermi-liquid behavior has 

been thoroughly studied for the spectral function A
(

k
→
,ω
)

[6,29,58, 

107,149,203]. In the physically relevant case of finite but small inter
chain hoppings the quasiparticle pole does not vanish and a narrow 
coherent peak with a featureless incoherent background is visible at low 
energy and temperature, as expected for a Fermi liquid. However, 

A
(

k
→
,ω
)

exhibits the signature of a Luttinger liquid at higher energy or 

temperature: a continuum with two peaks or cusps (power-law singu
larities) on the holon and spinon branches (and thus the separation of 
spin and charge excitations). 

Thus the dimensional crossover can be observed in ARPES experi
ments. For instance, the photoemission spectrum of a quasi-1D organic 
conductor with strong interchain coupling, (DMe-DCNQI)2Cu, exhibits 
such a behavior [209]. The spectrum displays features predicted by the 
Luttinger liquid theory at high excitation energy or at high temperature, 
while characteristics of a 3D Fermi liquid are observed at the Fermi 
energy at low temperatures. The crossover occurs around T ≈ 300K or 
ℏω ≈ 30 meV. 

Finally, a dimensional crossover could also play a role in the con
troversy about the dimensionality of the metallic state of Au/Ge(100) 
and the relevance of the Luttinger liquid theory to describe its low- 
energy properties [15,37–44]. However, as this material is a 2D array 
of coupled chains and the nature of the metallic state in such a 2D system 
is also controversial, we cannot draw a conclusion at this point. We will 
discuss this issue in sec. 1.7. 

1.4.4. Summary: Interchain coupling 
In summary, the direct interchain coupling plays a complex role in 

quasi-1D materials. First, a too strong coupling between 1D chains can 
obviously lead to higher dimensional physics. Second, a finite but weak 
interchain coupling stabilizes long-range ordering with a broken sym
metry at finite temperature and thus makes possible the experimental 
observation of these phases. Third, a finite but weak interchain coupling 
destabilizes Luttinger liquids in most cases. Nevertheless, Luttinger 
liquid phenomenology can still be observed at a high energy or tem
perature scale (if this scale remains in the experimentally accessible 
range). The same applies to the signature of 1D physics in long-range- 
ordered phases. 

An important advantage of strictly 1D systems is that their properties 
are often “universal”, i.e. they are qualitatively identical for large classes 
of models. In contrast, the combined effects of interchain coupling and 
fluctuations depend sensitively on the models. Consequently, one ex
pects that they also depend sensitively on the materials considered and it 
is much more difficult to make theoretical predictions about experi
ments. Thus one has to keep in mind the limited applicability of the 
theory of strictly-1D systems when discussing the properties of real 
materials and investigate how interchain interactions modify the prop
erties of quasi-1D systems. 

1.5. The role of the substrate 

Self-assembled atom chains on substrate surfaces seem to be an ideal 
realization of 1D electron systems. However, an important and unsolved 
theoretical issue is the influence of the substrate on the quasi-1D physics 
presented in previous sections. As discussed there, most of the theory for 
1D systems is based on effective models and theories including only a 
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few relevant degrees of freedom and interactions that are required to 
answer a specific question while neglecting the less relevant ones. 
However, this theoretical approach was rarely used to study the role of 
the substrate until 10 years ago. 

A few prior studies indicated that the coupling between wires and 
substrate could play a substantial role although they were often incon
clusive. For instance, an early theoretical model for an atomic wire on a 
surface is made of two chains: one chain represents the wire, which is 
coupled to another chain representing the surface. This approach was 
used to show that a Peierls insulating state may become unstable when 
coupled to a substrate depending on the interaction strength [8] and that 
some aspects of the Luttinger liquid behavior survive the coupling to a 
surface but the question whether the system is a Luttinger liquid or a 
Fermi liquid could not be answered [210]. Additionally, the 
Peierls-CDW in wires was studied in the presence of surface phonons 
using scaling theory [211] while another investigation showed that the 
conductance depends strongly on the electronic states in the substrate 
when electron flows through a quantum wire in the presence of leakage 
to the substrate [212]. Moreover, the role of the substrate was studied in 
the context of quasi-1D magnetism in atomic spin chains on semi
conducting, metallic or superconducting surfaces [35]. 

Therefore, during the last decade we have purposefully investigated 
how the substrate affects 1D systems using the theoretical approach 
described in sec. 1.2.4. In this section we will first summarize some 
theoretical expectations and questions about the substrate influence 
(sec. 1.5.1). Then we will review our approach and results for 1D 
correlated electron systems on a substrate, such as Luttinger liquids (sec. 
1.5.2). Finally, we will discuss a simple example showing how a 
substrate-mediated coupling can stabilize a quasi-1D long-range ordered 
phase at finite temperature (sec. 1.5.3). 

1.5.1. General considerations 
Here we discuss qualitatively some general theoretical expectations 

and questions about the role of the substrate in atomic wire systems and 
its influence on the physics predicted by the theory of quasi-1D systems 
in sec. 1.3 and 1.4. 

1.5.1.1. Structural stability. Naturally, the most basic effect of the sub
strate is to maintain a stable ordered atomic structure with parallel 
atomic wires on its surface. Without the substrate the atomic wires 
would be disordered or even unstable. From a purely theoretical point of 
view, a strictly 2D array of wires without substrate breaks the contin
uous translation symmetry and thus this ordering is prohibited by the 
Mermin-Wagner theorem at any temperature greater than zero [13, 
158]. This is similar to the role of the interchain coupling in stabilizing 
quasi-1D crystalline materials (see sec. 1.4) and will not be discussed 
further. 

1.5.1.2. Charge reservoir. The substrate can act as a charge reservoir for 
the atomic wires deposited on its surface. For instance, electrons flowing 
through a quantum wire can leak to a metallic substrate [212]. How
ever, even a semiconducting or insulating substrate can act as a charge 
reservoir for atomic wires on its surface because changing the average 
number of charges in the 2D wire system corresponds to an infinitesimal 
fluctuation of the average charge or polarization in the 3D substrate. 
Thus the theory of 1D systems, which is largely based on the canonical 
ensemble with a fixed number of electrons, must be generalized to the 
grand-canonical ensemble with a chemical potential set by the substrate. 
We do not expect theoretical results to be significantly modified for 
metallic systems and insulators with a hard gap (e.g. Mott insulators). 
However, we have found drastic consequences for phases with a soft gap 
(e.g. CDW and SDW) because a band edge can cross the chemical po
tential as the gap varies with the temperature. The grand-canonical 
theory of the Peierls-CDW phase and its role for the In/Si(111) mate
rial are discussed in more detail in sec. 1.6. 

1.5.1.3. Heat reservoir. Just as infinitesimal charge fluctuations in the 
substrate can modify the electronic density in the wires, infinitesimal 
energy fluctuations can modify the average energy of the wire subsys
tem. Nevertheless, we can see the substrate as a heat bath for the 2D wire 
subsystem in first approximation. Thus the substrate just fixes the wire 
subsystem temperature. This is not different from the usual theory for 1D 
systems, which often assumes a fixed temperature set by some external 
heat bath. 

1.5.1.4. Renormalization of interaction parameters. Clearly, the presence 
of the substrate can modify the strength and the range of interactions 
within and between atomic wires. An obvious example is the screening 
of the interchain Coulomb interaction by the electronic degrees of 
freedom in the substrate. Within our theoretical approach these effects 
can usually be interpreted as a renormalization of the model parameters. 
For instance, we will see in sec 1.5.2 that the renormalization of nearest- 
neighbor repulsion and hopping shifts the phase transition between a 
Luttinger liquid and an electronic CDW. 

1.5.1.5. Interchain coupling. We have seen in sec. 1.4 that the interchain 
coupling plays a decisive role in real quasi-1D materials. In particular, 
the interchain coupling is required to stabilize long-range ordered 
phases with broken symmetries and critical temperatures depend 
sensitively on its strength. Various CDW phases and magnetic orders 
have been observed in atomic wire materials such as In/Si(111) [16,46], 
Au/Si(553) [145,146], or Pb/Si(557) [138,139]. A priori, the direct 
interchain coupling appears to be too weak to explain the observed 
critical temperatures because of the distance between wires. Thus a very 
important question is whether the substrate can generate an indirect 
interchain coupling or significantly amplify an existing one. We will 
discuss two examples to show that substrate-mediated interchain cou
plings can destabilize a Luttinger liquid (sec. 1.5.2) but can stabilize a 
long-range ordered quasi-1D phases at finite temperature (sec. 1.5.3). 

1.5.1.6. Substrate field. As their low-energy degrees of freedom are 
confined spatially close to the surface, atomic wire materials can be seen 
in first approximation as strictly 2D systems. However, the atoms 
forming the substrate surface generate a periodic potential that is felt as 
an external field by the electronic degrees of freedom in the wires. 
Theoretically, this spatially varying field can influence the thermody
namics of the 2D wire system in opposing ways. 

On the one hand, we expect that the various phases found in strictly 
1D systems will be modified by the interplay of the surface lattice 
periodicity with the Fermi surface nesting wavevector, which is set by 
the band filling of the 1D subsystem (i.e., the 2kF instability). Experi
mentally, the periodicity of CDW phases observed in atomic wire ma
terials seems to be determined by the substrate rather than the electronic 
band filling [16]. This raises questions about the role of the 2kF insta
bility in the formation of long-range ordered phases in these materials. 
Note that recent DFT calculations have shown that the CDW instability 
can be suppressed by the substrate in a quasi- 2D material [monolayer 
1H–TaS2 on Au(111)] [213]. 

On the other hand, the periodic surface potential can also pin CDW 
and SDW spatial fluctuations (e.g., phasons or domain walls). Similarly 
to the confinement of fluctuations by the interchain coupling (discussed 
in sec. 1.4.1), this pinning reduces thermal and quantum fluctuations 
and thus could stabilize long-range ordered phase in the ground state 
and at finite temperature. For instance, the example discussed below in 
sec. 1.5.3 can be interpreted as the suppression of fluctuations in the 
antiferromagnetic wires by the magnetic field of the surface. Moreover, 
in a strictly 2D system no long-range ordered phase can exist at finite 
temperature if it spontaneously breaks a continuous symmetry accord
ing to statistical field theory and the Mermin-Wagner theorem [13,158]. 
However, if the surface field breaks this symmetry, the long-range or
dered phase becomes stable at finite temperature. 
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In summary, the thermodynamics of atomic wires on a surface could 
be quite different from the theoretical predictions for strictly 2D systems 
because of the surface potential acting on the wire degrees of freedom as 
an external field. Therefore, this issue should be investigated in the 
future to understand the stability of quasi-1D phases in atomic wire 
materials. 

1.5.1.7. Dimensional crossover. A practical issue is to identify the 
signature of 1D physics in experiments for atomic wires on substrates. As 
discussed in sec. 1.4.3, the dimensional crossover is a key concept in our 
understanding of the experimentally observable 1D physics in quasi-1D 
crystalline materials. However, the influence of a substrate on the 
dimensional crossover is not well known. Actually, we have found an 
“inverse” dimensional crossover from 1D to higher dimensional physics 
with increasing excitation energies in simple models of correlated wires 
on semiconducting substrates as explained in sec. 1.5.2. Therefore, 
further investigations are required to determine the observable 1D 
physics in atomic wire materials. 

1.5.2. Correlated wires 
An important question is the effect of the substrate on the correlated 

phases predicted by the theory of strictly 1D electron systems, e.g. 
Luttinger liquids, electronic CDW, or Mott insulators. As there are no 
well-established models describing correlated atomic wires on sub
strates in the scientific literature yet, we have first explored the mode
lization of these systems. Additionally, we have developed a practical 
procedure for studying the effects of electronic correlations in these 
models using well-established methods for 1D systems. This approach 
has allowed us to obtain clear results about the stability of some 1D 
correlated states. These results are reviewed here. 

1.5.2.1. Asymmetric two-leg ladders. Previous studies of the substrate 
impact on atomic wires introduced asymmetric ladder models with one 
chain representing the wire and one making up the substrate [8,210]. 
However, this approach was not pursued systematically. Therefore, we 
have first investigated an asymmetric Hubbard ladder with two ineq
uivalent legs, a Hubbard chain and a tight-binding chain, coupled by an 
interchain hopping t⊥ [214,215]. Ground-state properties, gaps, and 
spectral functions, have been determined using analytical approxima
tions, the numerical DMRG method, and QMC simulations. We have 
found that the physics of this asymmetric ladder is very rich and includes 
various 1D phases. In particular, it exhibits a Luttinger liquid phase with 
a spatial separation of elementary spin and charge excitations [215]. 
The results also confirm that 1D correlated systems are extremely sen
sitive to their environment and that their properties can be drastically 
modified by varying the strength of the (wire-substrate) hybridization 
t⊥. Thus the study of asymmetric ladders is a useful approach for 
exploring the physics of 1D systems coupled to an environment. How
ever, it is not realistic to represent a substrate by a single chain because 
the wire interaction can dominate the full system. Instead, the substrate 
should include many more degrees of freedom than the wire. This can be 
realized with wider ladders made of several legs as discussed below. 

1.5.2.2. Mapping to narrow ladder models. To define basic quantum 
lattice models for correlated wires deposited on a substrate, we have 
combined models that are routinely used to study strictly 1D correlated 
electrons (see sec. 1.2.4) with a 3D tight-binding model representing the 
non-interacting substrate [216]. The 1D model sites correspond to 
atomic orbitals of the wire and are represented by gray balls in Fig. 7(a). 
The bands of the substrate have dispersions of the form (3) with tx = ty =

tz = ts. A two-band tight-binding model is used to represent a gapped (i. 
e., insulating or semiconducting) substrate while a single band suffices 
for a metallic substrate. Wires and substrates are coupled by a hopping 
term tws. 

As investigations of the full interacting 3D wire-substrate system are 

extremely difficult, the modeling by 1D ladder-like models seems to be a 
more feasible approach. Thus we have developed a systematic procedure 
to construct such models from the basic 3D wire-substrate models [216]. 
Our method generalizes the idea used to map multi-orbital, multi-site 
quantum impurity problems onto ladder systems [217,218], which is a 
generalization of Wilson’s method for solving the Kondo problem [219]. 
In a second step [220] we have generalized the procedure to map 
multiple wires onto a system of coupled ladders (one ladder per wire). 
The mapping of the 3D wire-substrate system onto a ladder-like system 
is illustrated in Fig. 7(b) for a single wire. The first leg of the ladder 
represents the atomic wire while successive legs represent cylindrical 
shells of the substrate with increasing diameter around the atomic wire. 

In principle, this mapping is exact but, in general, the number of legs 
is infinite. If the substrate is gapped, however, the influence of outer 
shells on the wire decreases fast with increasing leg index. Thus we can 
obtain an approximate ladder representation of finite width [216,220]. 
If the number of ladder legs is small enough, the model can be investi
gated with well-established methods for 1D correlated systems such as 
DMRG and field-theoretical methods. If we consider a single wire and 
use only one leg to represent the substrate, we recover the asymmetric 
ladder models discussed above [8,210,214,215]. 

We have first tested this approximation of 3D wire-substrate systems 
by narrow effective ladders on noninteracting wires as we can separately 
solve the full 3D problem in that case [216,220]. We have found that the 
approximation is valid for a gapped substrate but not for a metallic one. 
Thus we will discuss only our findings for gapped substrates in the 
remainder. Moreover, one has to use the same number of legs to 
represent the substrate conduction and valence bands. Consequently, 
the total number of legs must be odd to represent a system made of a 
single wire on a gapped substrate and the minimal width is three legs. 

We have successfully applied this method to various systems repre
senting interacting wires. Our results are discussed below. They shed 
some light on the effects of a gapped substrate on correlated 1D systems, 
in particular on the fate of Luttinger liquids. In addition, they demon
strate that the mapping of 3D wire-substrate systems onto effective 
narrow ladder models enables a systematic study of correlated phases in 
atomic wires deposited on semiconducting substrates. 

1.5.2.3. Hubbard chain. First, we have considered the case of a single 
Hubbard chain coupled to the substrate [221]. The 1D Hubbard model is 
exactly solvable without the substrate (i.e., for tws = 0): it exhibits a Mott 
insulating phase at half filling but an electronic Luttinger liquid away 
from half filling [89,90]. We have determined ground-state properties, 
gaps, and spectral functions of the coupled wire-substrate system using 
DMRG and QMC simulations. We have found that both phases subsist for 
a wide range of parameters when the chain is coupled to the substrate. 
Low-energy excitations are localized on or around the chain in these 

Fig. 7. Illustration of the mapping for a single wire on a metallic (i.e. one-band) 
substrate. (a) Sketch of the atomic wire (gray balls) with three numbered shells 
in the substrate. (b) Ladder representation of the same system with the left-most 
leg corresponding to the atomic wire and the other legs representing shells one 
to three. For a gapped (i.e. two-band) substrate there would be two legs 
per shell. 
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quasi-1D phases. Moreover, we have found that charge and spin veloc
ities are different and thus a clear signature of 1D physics, spin-charge 
separation, is confirmed. 

However, the nature of the excitation changes for high enough en
ergy. They become quasi-particles (electrons and holes) delocalized in 
the substrate. Thus we observe an “inverse” dimensional crossover from 
1D physics at low energy to 3D physics at higher energy. Moreover, 
quantum phase transitions occur from the 1D correlated phases (Mott 
insulator or Luttinger liquid) to uncorrelated phases (band insulator or 
metal, respectively) upon increasing the local Hubbard interaction U 
between electrons or decreasing the wire-substrate hybridization tws. In 
the uncorrelated phases low-energy excitations are quasi-particles 
delocalized in the substrate like the high-energy excitations in the 1D 
phases. Both the transitions and the dimensional crossover occur when 
the intrawire interaction energies become comparable to the substrate 
band gap. 

Interestingly, a very strong wire-substrate coupling has no detri
mental effect on the 1D physics. In that regime, the wire orbitals and the 
surrounding substrate shells become strongly hybridized and form a 1D 
subsystem that is only weakly hybridized with the rest of the substrate. 
In a real material, this implies that the quasi-1D electronic subsystem 
would not be localized in the wires only but mostly in the substrate 
region close to the wires. 

1.5.2.4. Spinless fermion chain. Due to the high computational cost of 
DMRG for electronic ladder systems, we are not always able to study the 
properties of electronic Luttinger liquids with sufficient accuracy. 
However, the effects of the substrate on the Luttinger liquid phenome
nology is an important issue for atomic wire materials. Indeed, experi
mental observations of Luttinger liquid signatures have been reported 
for various materials [15] such as Au/Ge(100) [37], Bi/InSb(001) 
[174], or Pt/Ge(001) [175]. Hence, we have turned to the spinless 
fermion model, which is another well-established but simpler model for 
1D correlated systems, in particular for Luttinger liquids and CDW [6]. 
Using spinless fermions as degrees of freedom essentially amounts to 
focusing on the charge excitations and neglecting spin excitations. 

We have first considered the case of a single spinless fermion chain 
with nearest-neighbor repulsion V and intrachain hopping tw [222]. 
Without coupling to the 3D substrate this model is exactly solvable using 
the Bethe ansatz method and its properties are well known [6,223,224]. 
In particular, it exhibits a quantum phase transition from a Luttinger 
liquid phase for V ≤ 2tw to an “electronic” CDW phase for V > 2tw at half 
filling. Using DMRG we have computed properties of the ground state 
(including CDW order parameters and correlation functions) and the 
lowest excitations. DMRG allows us to compute broader ladder systems 
for spinless fermions than for electronic models and we have simulated 
ladders with up to 15 legs. 

Three ground-state phases are observed: a one-component Luttinger 
liquid at weak couplings V < Vc, a quasi-1D CDW insulator at interme
diate couplings V > Vc, and a band insulator at large couplings V. The 
critical nearest-neighbor interaction Vc increases with the wire-substrate 
coupling tws and is larger than the value 2tw for a strictly 1D chain. The 
reason is that the substrate causes a renormalization of the interaction V 
to a smaller effective value while the intrachain hopping tw is renor
malized to a stronger value. Thus a strong wire-substrate hybridization 
tws stabilizes the Luttinger liquid in that model too. In the first two 
phases, low-energy excitations are localized on or close to the wire for a 
wide range of model parameters and exhibit the usual features of Lut
tinger liquids or quasi-1D CDW insulators. As for the Hubbard chain, we 
observe a quantum phase transition to a 3D band insulator phase as well 
as a dimensional crossover from 1D to 3D low-energy excitations when 
the intrawire interaction energies become comparable to the substrate 
band gap. 

1.5.2.5. Coupled chains. As discussed in sec. 1.4 interchain hopping 

destabilizes Luttinger liquids. If the distance between atomic wires is 
relatively large, the direct interchain hopping could be negligible. 
However, wire orbitals are indirectly coupled through their hybridiza
tion with the substrate bands, which can generate an indirect hopping 
process between wires. Thus in the absence of a direct wire-wire hop
ping the substrate-mediated indirect coupling could have a decisive 
influence on the atomic wire properties. For spinless fermions the 
instability of the Luttinger liquid phase is already observable in a system 
of two coupled chains (without substrate). This system was thoroughly 
investigated a few decades ago using field theoretical methods [6, 
225–227]. At half filling it becomes a CDW insulator for arbitrarily weak 
nearest-neighbor repulsion V and interchain hopping. This sensitivity 
provides us with a simple approach for testing whether the 
substrate-mediated coupling between wires is detrimental to Luttinger 
liquids. 

We have investigated a system made of two spinless fermion chains 
without any direct interchain coupling but on a gapped substrate using 
the mapping to narrow ladders [220]. The main result is the 
non-universal influence of the substrate on the two-chain system. We 
have found in some cases that the substrate can mediate an effective 
coupling that destabilizes the Luttinger liquid phase in favor of the CDW 
insulating phase for any V > 0 as in a system of two directly coupled 
chains. In other cases, however, the two chains remain effectively 
uncoupled even for strong wire-substrate hybridizations tws, leading to 
two independent Luttinger liquids at weak nearest-neighbor repulsion V. 
More precisely, the substrate-mediated coupling depends on the relative 
positions of both chains on the substrate bipartite lattice. Therefore, it 
may be difficult to determine under which conditions the physics of 
correlated 1D phases such as Luttinger liquids can be realized in atomic 
wires on semiconducting substrates because they seem to depend on the 
model particulars. 

1.5.2.6. Summary. In summary, all our results show that 1D correlated 
phases can survive the coupling to a substrate. Explicitly, we have found 
Luttinger liquids, “electronic” CDW, and Mott insulators in models 
describing interacting wires on gapped substrates. Their low-energy 
excitations are localized along the wires and exhibit characteristics of 
1D electron systems such as the dynamical separation of spin and charge 
excitations. Therefore, our results confirm that quasi-1D correlated 
phases could occur in the low-energy properties of atomic wires 
deposited on semiconducting substrates. However, they also show that 
the existence and properties of these quasi-1D correlated phases depend 
significantly on the model parameters and details of the coupling to the 
substrate. Thus we cannot draw generic conclusions about the properties 
of quasi-1D phases in real materials. Nevertheless, we have found two 
counterintuitive features in all studied correlated wire-substrate models. 
First, strong wire-substrate hybridization is not detrimental to 1D 
physics but strong interactions in the wires may cause a transition to a 
3D phase. Second, 1D phases exhibit an “inverse” dimensional crossover 
from 1D low-energy excitations to 3D high-energy excitations. 

1.5.3. Surface-mediated quasi-1D long-range order 
The above discussion shows that a substrate-mediated coupling can 

play a significant role in the ground-state and excited state properties of 
atomic wire models. Another important question is whether such a 
coupling can stabilize a strongly anisotropic symmetry-breaking long- 
range order when the direct coupling is a priori too weak to allow for the 
observation of quasi-1D ordered phases in atomic wire systems at finite 
temperature. 

To demonstrate this effect we have devised and studied a simple 
generalization of the Ising model [12]. Our model is a bi-layer Ising 
model on a square lattice with couplings between nearest-neighbor spins 
sx,y,z = ±1. Within one layer (z = 1) the spins interact ferromagnetically 
in both x and y directions with the exchange coupling strength Js > 0. 
This layer represents the substrate surface. The other layer (z = 2) 

H. Pfnür et al.                                                                                                                                                                                                                                   



Surface Science Reports 79 (2024) 100629

18

represents the atomic wires. Here the spins are coupled antiferromag
netically in the x-directions with an exchange constant Jw > 0 to mimic 
the intrachain interactions but do not interact directly in the y-direction 
(i.e, there is no direct interchain interaction). The layers are coupled 
ferromagnetically with an exchange constant Jws ≥ 0 that represents the 
wire-substrate coupling. The energy of a spin configuration s = {sx,y,z; x 
= 1, …, Lx, y = 1, …, Ly, z = 1, 2} is given by 

E(s) = − Js

∑

x,y

(
sx,y,1sx,y+1,1 + sx,y,1sx+1,y,1

)

+Jw

∑

x,y
sx,y,2sx+1,y,2 − Jws

∑

x,y
sx,y,1sx,y,2.

(16)  

Note that quasi-1D magnetism can be realized in atomic spin chains on 
semiconducting, metallic or superconducting surfaces [35]. The role of 
the substrate and the effect of strong coupling between spin chains and 
the substrate electron bath were investigated previously in that context. 

The bi-layer Ising model cannot be solved exactly in the general case 
but interesting conclusions can be drawn in limiting cases. First, the 
system is exactly solvable when both layers become decoupled (Jws → 0). 
The substrate layer is just the isotropic 2D ferromagnetic Ising model, 
which undergoes a transition from a long-range ordered ferromagnetic 
phase to a disordered paramagnetic phase at a finite critical temperature 
given by (15) with Jx = Jy = Js [93], as discussed in sec. 1.4.1. The 
substrate magnetization m is shown as a function of temperature in 
Fig. 8 for this case. The wire layer is made of Ly independent 1D anti
ferromagnetic Ising chains, which are disordered for any temperature T 
> 0. Thus there is no quasi-1D order at finite temperatures and the 
staggered magnetization is mAF = 0. Second, the system is exactly 
solvable in the strong-coupling limit Jws → ∞ because each spin pair sx,y, 

1 and sx,y,2 must be ferromagnetically ordered and thus can be treated as 
a single spin. Therefore, the model of eq. (16) reduces to an anisotropic 
2D Ising model with couplings Jx = Js − Jws and Jy = Js. For Jws > Js and 
low temperatures the system is antiferromagnetically ordered in the 
x-direction (and ferromagnetically ordered in the y-direction). It un
dergoes a transition to a disordered paramagnetic phase above a critical 
temperature given by eq. (15) with |Js − Jws| substituted for Jx. The wire 
staggered magnetization mAF is shown in Fig. 8 as a function of tem
perature for the case Jw > 2Js(⇔|Jx| > Jy). Thus the quasi-1D antifer
romagnetic order favored by the wires is stabilized by the coupling with 
the substrate. Thirdly, one can easily determine the ground-state phase 
diagram. The quasi-1D antiferromagnetic ordered phase occurs for Js <

Jw, Jws/2 at T = 0 and thus it is not an artefact of the strong-coupling 
limit Jws → ∞. Finally, the intermediate regime 0 < Jws < ∞ at finite 
temperature has also been investigated using analytical (e.g. chain 
mean-field [228]) and numerical (e.g. Monte Carlo [94]) methods. 

Preliminary results agree with the scenario deduced from the limit cases. 
In conclusion, in the bi-layer Ising model the substrate favors a 2D 

ferromagnetic order at low temperatures. The wires favor a 1D antifer
romagnetic order, which is unstable at any finite temperature in the 
absence of the wire-substrate coupling but is stabilized at low temper
atures as a quasi-1D order when this coupling is strong enough. There
fore, this model demonstrates the idea of a surface-mediated 
stabilization of a quasi-1D long-range order. This mechanism could 
explain the observation of various symmetry-breaking long-range or
dered phases in atomic wires on semiconducting surfaces at relatively 
large temperature although the direct coupling is probably weak in these 
2D systems of well-separated wires. Moreover, we note that a strong 
coupling between wires and substrate is favorable to the observation of 
quasi-1D physical properties as found for the correlated wires discussed 
above. 

1.5.4. Summary: influence of substrate 
The role of the substrate is clearly important but far from being 

understood. Some features of 1D physics survive the coupling to the 
substrate and can even be strengthen by it e.g. Luttinger liquid behavior 
and quasi-1D symmetry-breaking long-range ordering as discussed 
above. Assuming a weak wire-substrate coupling is not necessary as 
quasi-1D properties can be preserved even when this coupling is very 
strong. 

An important observation is that theoretical results for wire- 
substrate systems depend on details of the models considered, as for 
coupled chain systems. Thus quasi-1D systems that are embedded in the 
3D environment do not seem to exhibit “universal” features contrary to 
the theoretical predictions for strictly 1D systems. Consequently, we also 
expect experimental results for atomic wires on surfaces to vary signif
icantly for different materials. Therefore, material-specific studies are 
required to predict the experimental signature of 1D physics in the 
presence of a substrate. We will present two such studies in the next two 
sections about the relevance of the Peierls physics for In/Si(111) and of 
the Luttinger liquid phenomenology for Au/Ge(100). 

1.6. Grand-canonical Peierls theory 

The Peierls theory [1,4,5,10,17,28,34] is often invoked to explain 
features of atomic wires deposited on surfaces. A well-known example is 
the low-temperature phase and the transition observed in indium wires 
on the Si(111) surface. The interpretation of the experimental obser
vations is still intensively debated, however [16,46–56]. Experiments 
and first-principles simulations for this material are presented in detail 
in sec. 2.3 and 3. 

Indium wires on Si(111) surfaces build a 2D array of weakly-coupled 
chains. A chain is made of 4 parallel strands of indium atoms. In the high 
temperature “uniform” phase a unit cell contains 4x1 atoms. A metal- 
insulator transition and a structural transition occurs at a temperature 
T ≈ 120 K. The commensurate structural transition changes the unit cell 
from 4x1 at high temperature to 8x2 (or 4x2) at low temperature. 

There is a well-established theoretical framework to describe quasi- 
1D Peierls-CDW systems at a fixed electronic density [1,4,5,10,17,28, 
34]. The simplest theory for a commensurate Peierls-CDW is based on a 
static mean-field approximation without interchain coupling, thus 
neglecting spatial and thermal fluctuations. It explains how a 
metal-insulator transition occurs from the degenerate insulating CDW 
state at low temperature to a metallic state with uniform density at high 
temperature. Simultaneously, a structural transition takes place from 
the distorted lattice (i.e. with a larger unit cell) to the uniform lattice (i. 
e. with a smaller unit cell). This Peierls transition is continuous and the 
distortion amplitude or the electronic gap can be used as an order 
parameter. 

Thus it seems that a simple multi-band, multi-mode generalization of 
the canonical Peierls theory [4] could describe the In/Si(111) system. 
However, experimental evidence shows that the transition is first order 

Fig. 8. Magnetization as a function of temperature in the bi-layer Ising model 
for wires on a substrate: substrate magnetization m (solid red line) for Jws =

0 and staggered magnetization mAF in the wires (blue dashed line) for Jws → ∞ 
and Jw > 2Js. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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[47,48,50,53,55]. First-principles simulations offer further evidence for 
a first-order transition [54]. At least the uniform metallic state seems to 
remain metastable below the critical temperature. 

Therefore, we have generalized the Peierls theory to take into ac
count the peculiarities of atomic wires on surfaces. To this end we have 
pursued two complementary approaches based on the SSH lattice model 
and the Ginzburg-Landau theory, respectively. The key idea is that the 
substrate acts as a charge reservoir and thus the phase transition must be 
described in the grand-canonical ensemble. This insight has allowed us 
to explain the first-order Peierls-like transition observed in In/Si(111) 
theoretically. 

1.6.1. SSH model for In/Si(111) 
In a first step, we have constructed an effective quasi-1D model for 

indium wires [52] in the spirit of the Su-Schrieffer-Heeger (SSH) model 
[18,34,61,62]. This lattice model described originally a Peierls-CDW 
system with one electronic band and a variation of the distance be
tween atoms coupled to a CDW on the bonds between these atoms (i.e. a 
BOW). We have generalized it to describe all relevant electronic and 
lattice degrees of freedom in In/Si(111) using the atomic and electronic 
structure predicted by first-principles calculations [16]. 

This model has allowed us to demonstrate that the low-temperature 
phase of In/Si(111) is a Peierls-CDW insulator with two lattice distortion 
modes made of the shear and rotary eigenmodes [52]. The doubling of 
the unit cell in the wire direction can be interpreted as the dimerization 
of three weakly-coupled chains, two outer linear chains and one central 
zigzag chain, as shown in Fig. 9. We have compared variations of the 
lattice distortion and electronic band structure predicted by our model 
with first-principles calculations to determine the appropriate model 
parameters for In/Si(111). 

In a second step, we have investigated the thermodynamics of this 
generalized SSH model in the grand canonical ensemble using a mean- 
field approximation. We have found that the transition between the 
low and high temperature phases can be interpreted as a grand canonical 
Peierls transition: i.e., the substrate acts as a charge reservoir for the 
indium wire subsystem and sets the chemical potential μ. The grand- 
canonical Peierls physics is much richer than the canonical one. In 
particular, a thermodynamically metastable uniform state can coexist 
with a stable doubly-degenerate dimerized state for a narrow range of 
the chemical potential, but over a wide temperature range below the 
critical temperature. The existence of this phase agrees qualitatively 
with the energetics of the phase transition in In/Si(111) calculated from 
first principles [48]. A significant difference with the usual (i.e., 

canonical) Peierls theory is that the phase transition can become first 
order, in agreement with the interpretation of experiments and 
first-principles calculations for this material [47,48,50,53–55]. This 
model also explains naturally the sensitivity of the transition to doping 
[229–231]. 

1.6.2. Generic theory 
The generalized SSH model discussed above is intractable for 

analytical methods and thus has been studied mostly numerically 
because it includes several electronic bands and lattice deformation 
modes to reproduce the specific atomic and electronic structure of In/Si 
(111). The original SSH model (like other basic models for Peierls-CDW 
systems) includes one site per unit cell of the uniform lattice (i.e., one 
electronic band) and one lattice distortion mode [18,34,61,62]. This 
simplicity allowed researchers to derive the generic canonical Peierls 
theory analytically decades ago. 

Therefore, we have derived a generic one-band one-mode 1D SSH 
model from the generalized SSH model for In/Si(111) [52,232]. This 
amounts to assuming that the two outer and the single inner strands of 
indium atoms build separate 1D electron systems, which are coupled to 
one (shear or rotary) lattice deformation mode only. The appropriate 
model parameters for In/Si(111) are simply given by the generalized 
SSH model in first approximation. We have systematically investigated 
the simpler SSH model in the grand-canonical ensemble using mostly 
analytical methods in order to obtain generic results for period-doubling 
commensurate Peierls-CDW (i.e., for dimerization, see Fig. 10) [232]. 
Our study reveals a rich mean-field phase diagram, which is shown in 
Fig. 11 for parameters representing In/Si(111). In particular, the 
high-temperature uniform metallic state can remain thermodynamically 
metastable below the critical temperature for the dimerized state. Thus 
the structural Peierls phase transition between regions with metastable 
uniform and dimerized states can be first order as a function of tem
perature for a fixed chemical potential. Moreover, a first-order meta
l-insulator transition can occur at a lower temperature than the 
continuous structural transition. 

Various aspects neglected in this simple model should be investi
gated in the future, but we are confident that our main findings will 
remain relevant. First, as discussed in sec. 1.4 the coupling between 
wires is necessary to stabilize long-range-ordered phases like a Peierls- 
CDW at finite temperature, but this effect is well understood. The 
extension of the 1D SSH model to a 2D array of wires is straightforward, 
and we have actually used it to obtain parameters for the generalized 
SSH model from first-principles simulations [52] as well as for simula
tions of the non-equilibrium dynamics (see below). However, the direct 
coupling between wires is very weak. Our estimate is 10− 3 eV for the 
direct hopping terms between nearest-neighbor wires in the generalized 
SSH model. This weak direct coupling cannot explain the experimental 
critical temperature T ≈ 102 K. Therefore, it is likely that an effective 
coupling mediated by the substrate plays an important role in the sta
bilization of the dimerized structure in In/Si, as discussed in sec. 1.5. 
Second, the substrate could act as a static external field driving a CDW 
and a lattice distortion in the wires with a particular wave vector set by 
the surface periodicity rather than the Fermi nesting 2kF as discussed in 
sec. 1.5.1. Finally, the dimerized states of the 1D SSH model are 

Fig. 9. Uniform (top) and dimerized (bottom) lattice of the generalized SSH 
model for one indium wire. Circles represent the indium atoms. Their positions 
are given by first-principles calculations. The line widths are proportional to the 
bond density. Red bonds define the inner zigzag chain while blue bonds 
correspond to the two outer linear chains. Solid circles outline one hexamer in 
the dimerized lattice. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 10. Uniform lattice (top) and the two dimerized lattices (middle and 
bottom) of a generic 1D SSH model. Disks represent the sites (atoms) while the 
different line widths represent the bond strength (bond density or hop
ping term). 
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probably unstable with respect to the formation of domain walls be
tween dimerized regions with different phases (i.e. the two possible 
dimerized lattices in Fig. 10) [18,34,61–64]. Topological solitons and 
solitonic excitations have been reported for the In/Si(111) material 
[131–137]. However, the substrate periodic potential is probably un
favorable to the formations of domain walls and incommensurate dis
tortions. Therefore, the substrate should be taken into account beyond 
its role as a charge reservoir to improve the present Peierls theory for 
atomic wire materials. For instance, substrate effects could be studied in 
the future using the method discussed in sec. 1.5.2 for correlated wires. 

Nevertheless, we have derived a generic grand-canonical Peierls 
theory using a mean-field solution of the 1D SSH model. This theory 
allows us to explain the occurrence of first-order Peierls transitions as 
found experimentally in In/Si(111). It also allows us to determine pa
rameters for the Ginzburg-Landau theory. 

1.6.3. Ginzburg-Landau theory 
The presence of the metastable uniform phase should be visible in 

some experiments. Two examples are the phonon spectrum measured in 
Raman spectroscopy [233] and photoexcited phase transitions [234] 
(see also sec. 3). To study these properties we have to calculate the time 
evolution of (grand-canonical) Peierls systems out of equilibrium. 

1.6.3.1. SSH dynamics. The nonequilibrium dynamics of Peierls in
sulators can be calculated within the SSH theory using the adiabatic 
approximation for the electronic degrees of freedom and a semiclassical 
approximation for atom displacements. This approach was already used 
in the original SSH works to simulate solitons in polyacetylene [61,62]. 
We have applied this approach to 2D arrays of SSH chains coupled by an 
interchain hopping assuming that electrons remain in a (grand-
canonical) thermodynamical equilibrium for each instantaneous atomic 
configuration. Although the model is too complicated for an (even 
approximate) analytical solution, its dynamics can be investigated 
numerically. We have found that it is dominated by long-lived meta
stable domain walls between finite-length segments of the three con
figurations illustrated in Fig. 10. Consequently, extremely long 
simulation times are necessary to obtain accurate numerical results and 
we have not been able yet to gain information that could be compared to 
experiments. 

1.6.3.2. Ginzburg-Landau dynamics. Thus we have turned to a simpler 
theoretical approach to study the nonequilibrium dynamics of grand- 
canonical Peierls-CDW systems. The Ginzburg-Landau theory [110, 
111] is a well-established approach to study thermal fluctuations and 
nonequilibrium dynamics of the order parameter in systems undergoing 
a continuous phase transitions with a spontaneous symmetric breaking 
described by an order parameter [112]. It has been extensively applied 
to explain the properties of Peierls-CDW [4,5,28,108], in particular for 
the continuous Peierls transition occurring in the canonical ensemble. If 
one focuses on the vibration spectrum or the structural phase transition, 
it is convenient to use the amplitude of the lattice distortion q as the 
order parameter. This order parameter is a real because phase modes are 
locked (or gapped) for commensurate Peierls-CDW. Within the adiabatic 
approximation, this quantity is proportional to other common order 
parameters, e.g. the amplitude of the CDW δρ in Equ. (9) or the 
single-particle gap 2Δ, see Equ. (10). 

The 1D dynamical Ginzburg-Landau equation is 

m
∂2q
∂t2 = − κ

∂2q
∂x2 −

∂V
∂q

− γ
∂q
∂t

(17)  

for the spatial and temporal variations of the order parameter q(x, t), 
where m can be interpreted as the effective mass of the amplitude mode, 
κ as the stiffness for spatial variations of the amplitude, and γ as a friction 
coefficient. In the Ginzburg-Landau theory for continuous phase tran
sitions, V(q) is the Landau free energy, which is usually approximated by 

V(q) = aq2 + bq4 (18)  

with a temperature-dependent coefficient a = α ⋅ (T − Tc), (α > 0) and a 
constant coefficient b > 0. Fig. 12 shows the two typical shapes of the 
Landau free energy for the dimerized and uniform phases of a Peierls- 
CDW system. In principle, all parameters but the friction coefficient 
can be derived from microscopic models for Peierls-CDW systems, such 
as the SSH model discussed above. Alternatively, they can be deter
mined from first-principles or experimental data for a specific material. 
The Ginzburg-Landau approach can also be applied to 2D or 3D arrays of 
chains [228,235,236] and several lattice distortion modes [4] as 
required for a more realistic description of In/Si(111). 

An external harmonic perturbation g sin(ωt) cos(kx) can be added to 
the Ginzburg-Landau equation (17) to generate collective excitations 
involving both the lattice distortion and the electronic charge distribu
tion. The linear response function S(ω, k) (for g → 0) is obtained through 

Fig. 11. Grand-canonical phase diagram (μ, T) of the 1D SSH model in the 
mean-field approximation. The four phases are: uniform phase (U), dimerized 
Peierls-CDW phase (D), phase with one stable uniform state and two metastable 
dimerized states (UD), and phase with two stable dimerized Peierls-CDW states 
and one metastable uniform state (DU). The solid line indicates the usual 
continuous Peierls phase transition while the dashed line indicates the first- 
order transition between the UD and DU phases. Metastable states exist 
below the dotted lines. The green dot-dashed line indicates the position of the 
first-order metal-insulator transition within the dimerized phase. The energy 
unit is set by the intrachain hopping tx. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 12. Typical shapes of the Landau grand-canonical potential (19) as a 
function of the order parameter q for the four phases in Fig. 11. The green dash- 
dotted curve corresponds to the uniform phase (U), the blue dashed curve to the 
dimerized Peierls-CDW phase (D), the black long-dashed curve to the phase 
with two stable dimerized Peierls-CDW states and one metastable uniform state 
(DU), and the red solid curve to the phase with one stable uniform state and two 
metastable dimerized states (UD). (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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the Fourier transform of the resulting trajectory q(x, t) at long times t. 
Moreover, one can use the Langevin dynamics [237] to simulate thermal 
fluctuations. For this purpose a memoryless random force 

̅̅̅̅̅̅̅̅̅̅̅̅̅
2γkBT

√
R(t)

is added to the equation of motion (17), where R(t) is a normalized 
random variable. This allows one to study dynamical structure factors 
for collective excitations as a function of temperature and nonequilib
rium phase transitions [238]. Alternatively, finite-temperature proper
ties can also be calculated using statistical ensemble averages [239]. For 
instance, the dynamical structure factor was calculated using Monte 
Carlo simulations [118]. 

One can simulate photoexcitation experiments using excitation pul
ses or metastable initial conditions with the Ginzburg-Landau equation 
(17). In particular, this method can be used to mimic the photoinduced 
structural transition found in In/Si(111) [48,240–245]. For ultrafast 
spectroscopy experiments, however, it is questionable whether the 
electronic charge density follows the lattice motion adiabatically. It may 
be necessary to allow for retardation effects and thus to treat the elec
tron CDW ρ(x, t) and the lattice distortion q(x, t) as two separate (but 
coupled) fields in a generalization of the Ginzburg-Landau theory [246]. 
For instance, this separation of electronic and lattice fluctuations has 
been recently used to discuss femtosecond time-resolved spectroscopy 
experiments in a quasi-1D blue bronze [247,248]. 

1.6.3.3. Grand-canonical theory. We have generalized this nonequilib
rium Ginzburg-Landau theory to the grand-canonical first-order Peierls 
transition. The Landau free energy (18) is replaced by an expansion of 
the grand-canonical potential in power of |q| 

V(q) = aq2 + b|q|3 + cq4 + d|q|5 + fq6 (19)  

in the Ginzburg-Landau equation (17). The typical potential shapes are 
sketched in Fig. 12 for the four phases found in the grand-canonical 
phase diagram. The parameters a, b, c, d and f depend on the tempera
ture T and the chemical potential μ but they can be derived from the 
grand-canonical potential of the SSH model [52,232], at least numeri
cally, and thus indirectly from first-principles calculations or experi
mental data. Similar generalizations of the Landau free energy were 
used to study the interplay of commensurate and incommensurate CDW 
within the Ginzburg-Landau theory [249,250]. 

Nevertheless, dynamical structure factors and relaxation dynamics 
are largely unknown for the regime corresponding to the grand- 
canonical Peierls theory. Thus we have solved the dynamical 
Ginzburg-Landau equations numerically under various conditions (e.g., 
with and without thermal or spatial fluctuations). We have found that 
physically interesting quantities, e.g. the linear response function S(ω, 
k), depend not only on these precise conditions but also on minute 
changes of model parameters or initial conditions. In particular, the 
linear response function fluctuates widely with the external perturba
tion frequency ω. From a mathematical point of view these dynamical 
systems exhibit spatiotemporal chaos [112] for various parameter re
gimes. From a physical point of view, this erratic behavior (as well the 
SSH dynamics discussed above) reveals that the present approach is not 
able to describe the nonequilibrium dynamics of Peierls-CDW in atomic 
wire systems. In contrast to the real materials, it seems to lack a 
mechanism stabilizing the 2D Peierls-CDW order with respect to thermal 
and spatial fluctuations. This could be the pinning of domain walls by 
the periodic substrate potential discussed in sec. 1.5.1. Therefore, we 
have obtained few relevant results for the nonequilibrium dynamics so 
far. Below we discuss only results for the Raman spectrum of collective 
amplitude oscillations that can be obtained assuming that thermal and 
spatial fluctuations are negligible. 

1.6.3.4. Amplitude oscillation mode. Raman spectroscopy is a powerful 
experimental method for determining vibration eigenmodes of low- 
dimensional self-organized surface structures [233]. The Peierls theory 
predicts the existence of Raman-active collective excitations (electronic 

CDW and lattice vibrations), which correspond to amplitude oscillations 
of the order parameter q around its equilibrium configuration [4,18,28, 
34,118,129,130]. They have been observed experimentally in various 
quasi-1D bulk material, e.g. blue bronze [251] and polyacetylene [252]. 
For continuous transitions, the canonical Peierls theory predicts a soft
ening of the eigenfrequency Ω for the Peierls wave number Q = 2kF close 
to the critical temperature Tc (Kohn anomaly). If we neglect thermal and 
spatial fluctuations in the Ginzburg-Landau theory, we recover the 
well-known mean-field result for the frequency associated to amplitude 
oscillations 

Ω(T) ∼
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|T − Tc|

√
(20)  

for T → Tc. In the dimerized phase (i.e., for T → 0) the softening is given 
by Ω2 = 2λω2

0 where λ(≪ 1) is the electron-phonon coupling constant 
and ω0 is the bare phonon frequency (i.e. without the electronic CDW) 
[18,34,232,253]. 

We have studied the behavior of these amplitude oscillations through 
the first-order transition in the grand-canonical Peierls theory. Fig. 13 
shows the frequency Ω as a function of temperature. We see that the 
oscillation frequency in the thermodynamically stable dimerized states 
diminishes progressively as the temperature rises. At the critical tem
perature it jumps to the lower oscillation frequency around the ther
modynamically stable uniform state, then it varies non-monotonically 
but smoothly as the temperature increases further. This discontinuous 
behavior is in strong contrast to the complete softening (20) through a 
continuous transition in the canonical Peierls theory. In Fig. 13 we also 
see that oscillation frequencies in the metastable configurations extend 
smoothly the curves obtained for the stable states. Note that amplitude 
oscillations have the wave number Q = 2kF = π/a but they appear at Q =
0 in experiments in the dimerized phase because of the Brillouin zone 
folding. 

Raman scattering experiments for In/Si(111) [52,53], in particular 
the temperature dependence of the Raman resonance frequencies, agree 
qualitatively with these theoretical predictions and thus confirm that the 
transition observed in In/Si(111) can be seen as a first-order grand-
canonical Peierls transition. The Peierls amplitude modes, which are 
essentially the shear and rotary modes, appear at the Γ point below Tc 
and show a significant but incomplete softening close to the transition 

Fig. 13. Eigenfrequency Ω for amplitude oscillations of the order parameter in 
the dimerized state (red) and in the uniform state (blue) as a function of tem
perature. The left vertical lines indicates the critical temperatures for the first- 
order Peierls transition while the right vertical line indicates the temperature 
above which the dimerized state vanishes. The solid lines show the frequency in 
the thermodynamically stable states with a jump at the first order transition. 
The dashed lines show the frequency for the metastable states. The frequency Ω 
is given in units of the bare phonon frequency ω0 and the temperature is given 
in units of the intrachain hopping tx, see Ref. [232] for details. (For interpre
tation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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between the 4 × 1 and 8 × 2 phases. To explain the temperature 
dependence of the line shapes observed in the Raman spectrum (position 
and width of resonances), we probably would have to take into account 
thermal and spatial fluctuations [4,118,254] as well as non-adiabatic 
effects [247,248]. 

1.6.4. Summary: Peierls theory 
In summary, we have shown that the low-temperature phase and 

transition observed in In/Si(111) can be explained by a simple model of 
Peierls-CDW insulators in the grand-canonical ensemble. We think that 
the ongoing controversy about the nature of the low-temperature 
physics in In/Si(111) can be solved by interpreting experiments and 
first-principles simulations within a grand-canonical Peierls theory. 
More generally, the present work suggests that the substrate-induced 
chemical potential is a key mechanism for understanding the proper
ties of quasi-1D physics in atomic wires on surfaces. 

1.7. Dimensionality of metallic atomic wires 

As explained in sec. 1.3.5 the low-energy long-wavelength properties 
of strictly 1D metallic systems obey the universal Luttinger liquid phe
nomenology. Experimental signatures of Luttinger liquid have been 
observed in various atomic wires on semiconducting surfaces such as 
Au/Ge(100) [37], Bi/InSb(001) [174], and Pt/Ge(001) [175]. We have 
seen in sec. 1.5 that Luttinger liquids can survive the coupling to a 
gapped substrate. Although the interchain coupling is generally detri
mental to a Luttinger liquid, we have argued in sec. 1.4 that charac
teristic Luttinger liquid features may be observed in quasi-1D systems 
due to a dimensional crossover. However, a question remains as to 
whether metallic phases found experimentally in atomic wire systems 
can be seen as 2D arrays of weakly-coupled Luttinger liquid chains or 
whether strongly anisotropic 2D Fermi liquids provide better theoretical 
descriptions. 

For instance, the nature and dimensionality of the metallic state in 
gold wires on Ge(100) surfaces is controversial. On the one hand, Au/Ge 
(100) exhibits highly anisotropic properties and the power-law behavior 
of the density of states at the Fermi energy (14) that is predicted by the 
Luttinger liquid theory [37–40]. On the other hand, Au/Ge(100) ex
hibits an anisotropic 2D metallic dispersion at the Fermi energy, which 
seems to rule out a quasi-1D electronic system [41–44]. 

To shed some light on this issue we have investigated the low-energy 
collective charge excitations in 2D correlated models representing 
strongly anisotropic lattices or weakly coupled chains using well- 
established theoretical approaches [205,255]. These excitation modes 
are called plasmons in the theory of ordinary metals and can be 
described in the framework of the Fermi liquid theory in reduced di
mensions. Their counterparts are called holons in the Luttinger liquid 
theory of correlated strictly 1D systems, see sec. 1.3.5. It is often 

assumed that the long-wavelength dispersion of plasmons E
(

k
→)

reveals 

metallic states with reduced dimensions because E
(

k
→)

∝
⃒̅̅̅̅̅̅̅̅
⃒
⃒ k
→⃒⃒
⃒

√

in an 

isotropic 2D metal [256] but E(k) ∝|k| in a 1D metal [30] for k, | k
→
|→0. 

However, theoretical results are less clear for anisotropic systems or 
systems made of coupled chains [202–204,257–260]. Experimentally, 
low-dimensional plasmons have been observed in various atomic wire 
systems, such as Au/Si(557) [259], In/Si(111) [261,262], Pb/Si(557) 
[263], Ag/Si(557) [264], Au/Si(553) [265,266], and Au/Ge(100) 
[255], as well as in ultrathin metallic silicide wires [267]. See also sec. 
2.5. 

First, we have used the random phase approximation to study a 
lattice model with the anisotropic 2D single-particle dispersion (5) and a 
general isotropic interaction between electrons [28,30]. This approach 
reproduces the usual results for plasmons in 1D Fermi liquids (ty/tx = 0) 
and in isotropic 2D Fermi liquids (tx = ty) in the case of an unscreened 
Coulomb interaction. Second, we have used field theory to study a 

system of coupled Luttinger liquid chains with the intrachain dispersion 
(13) plus low-momentum-transfer processes (forward scattering) of a 
general long-range and isotropic interaction between electrons [6,204]. 
As interchain hopping is omitted, the Luttinger liquid phase is stable and 
the model can be solved using a simple bosonization method. Some 
resulting holon dispersions are shown in Fig. 14. We see that this 
approach is able to reproduce the peculiar plasmon dispersion measured 
in the Au/Ge(100) material with electron energy loss spectroscopy 
[255], albeit with an ad hoc Gaussian interaction potential and Luttinger 
liquid parameters that are incompatible with photoemission experi
ments [38,44]. This Gaussian interaction potential results in a dimen
sional crossover in the holon excitation spectrum from a 2D dispersion 
for low energy and long wavelength to a 1D dispersion for high energy 
and short wavelength. Additionally, we have studied strongly correlated 
spinless fermion ladders coupled by short-range interactions using the 
exact Bethe Ansatz solution in a special case and the numerical DMRG 
method for the general case (see sec. 1.2.4). 

We have found no qualitative difference between the theoretical 
predictions for the dispersion of collective charge excitations (plasmons 
and holons) at long wavelengths in strongly anisotropic 2D Fermi liquids 
and quasi-1D Luttinger liquids [205], as already reported for strictly 1D 

systems [268]. With both approaches the dispersion E
(

k
→)

is anisotropic 

and its behavior for k
→

→0 depends mostly on the screening of the 
Coulomb interaction between charge carriers. The dispersion can have a 
significant bandwidth in both the chain direction and the interchain 
direction even when the system is a strongly anisotropic (i.e., quasi-1D) 
conductor. Thus a 2D holon dispersion could be visible in the spectral 
function (and thus in ARPES experiments), similarly to the 1D case 
discussed in sec. 1.3.5, while the system also exhibits some Luttinger 
liquid properties, such as the power-law behavior (14) of the density of 
states at the Fermi energy (visible in STS experiments). 

In summary, we are not able to distinguish between a strongly 
anisotropic 2D Fermi liquid and a system of weakly-coupled Luttinger 
liquid chains. Moreover, the dispersion of plasmons or holons at long 
wavelengths does not reveal the system dimension. Obviously, these 
theoretical findings are based on approximate methods and simplified 
models. In particular, this study neglects other aspects that are known to 
be important for atomic wire systems, such as the interchain hopping 
(see sec. 1.4.2), the substrate coupling (sec. 1.5.2), and the role of the 

Fig. 14. Upper edge of holon dispersions in 2D arrays of Luttinger liquids as a 
function of the wave vector norm. The red dashed and green long-dashed curves 
correspond to a screened Coulomb potential and a phenomenological Gaussian 
potential, respectively. The blue dash-dotted curve is the intrachain dispersion 
of uncoupled Luttinger liquids (13). The solid black curve represents a fit to 
experimental data for plasmons in Au/Ge(100) [255]. In all cases model pa
rameters are chosen so as to fit this “experimental curve”. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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substrate as a charge reservoir (sec. 1.6). Nevertheless, these findings 
offer a simple explanation for the controversy about the dimensionality 
of Au/Ge(100). Metallic phases of atomic wire materials could exhibit 
signatures of both anisotropic 2D Fermi liquids and quasi-1D Luttinger 
liquids depending on the experimental conditions. This may be the 
counterpart of the dimensional crossover found in quasi-1D crystalline 
materials and discussed in sec. 1.4.3. 

1.8. Summary phenomenological theory 

At first sight, atomic wires deposited on semiconducting surfaces 
seem to be the ultimate realization of 1D electron systems. In reality, 
they build 2D arrays of coupled chains and they are inherently 3D sys
tems due to the presence of the substrate. Thus theory must take into 
account the coupling of atomic wires to their environment to explain the 
existence of quasi-1D electron systems and to identify their experimental 
signatures. 

In this chapter we have reviewed our theoretical understanding of 
strictly 1D physics and quasi-1D physics, which is based on effective 
theories for the relevant low-energy degrees of freedom. This approach 
reveals that the coupling of atomic wires to their environment (coupling 
between wires and wire-substrate coupling) does modify their theoret
ical properties. Nevertheless, the peculiar physics of strictly 1D electron 
systems (e.g., Peierls transition or Luttinger liquid phenomenology) can 
survive this coupling and be experimentally observable in atomic wire 
materials. 

An important observation is that theoretical results for quasi-1D 
systems depend on details of the effective models considered. Conse
quently, we do not expect atomic wires on surfaces to exhibit “universal” 
features, contrary to (hypothetical) strictly 1D systems. Thus material- 
specific theoretical studies are required to describe quasi-1D physics 
in atomic wire systems, even when one uses a theoretical approach 
based on effective low-energy models. Here we have discussed two ex
amples: the Peierls theory for indium wires on the Si(111) surface and 
the Luttinger liquid theory with a view to gold wires on the Ge(100) 
surface. 

In conclusion, atomic wire materials offer unprecedented opportu
nities to observe and control real quasi-1D electron systems. This calls 
for a major effort to understand these materials theoretically and to 
advance our knowledge of 1D physics in the real world. 

2. The role of spin and charge in quasi-1D experimental systems: 
order, entanglement, conductivity, phase transitions 

2.1. Introductory remarks 

In this section we turn to experimental realizations of 1D or quasi-1D 
systems. From the large variety of possibilities such as quantum wires, 
nanowires, nanorods, or nanotubes [144,269,270], we have chosen the 
class of atomic wires with a height of just one atomic or molecular unit, 
adsorbed on insulating single crystalline substrates of silicon and 
germanium. These wires can be generated as perfectly ordered arrays of 
single, double or multiple strands of atoms with high precision. They 
thus offer an attractive approach towards quasi-1D physics. 

Necessarily, as explained in the previous section, quasi-1D objects 
need stabilization by interaction with their 2D and 3D environment in 
order to be experimentally accessible. Indeed, stabilization of such 
quasi-1D systems by interaction with an (insulating) substrate is one of 
the most common strategies pursued in the recent past [144,146,271, 
272]. As also shown in the previous section, these interactions in higher 
dimensions may both stabilize, but in most cases modify or even destroy 
typical phenomena of 1D physics such as Peierls transitions, charge and 
spin density waves [205]. On the other hand, unexpected new phe
nomena may appear due to electronic correlations between adsorbed 1D 
chains and substrate, such as spin-orbit density waves [139] or enforced 
geometric long range order induced by a randomly distributed adsorbate 

[273]. 
Therefore, it is the aim of this experimental section, not only to 

identify typical 1D phenomena that have survived despite of 3D in
teractions, but also to get more insight into such interactions on the 
atomic scale by close collaboration between experiment and theoretical 
simulation, thereby also explaining part of the new and unexpected 
phenomena that are associated with these interactions in higher 
dimension. The knowledge of these mechanisms opens perspectives to
wards precise manipulation of the properties of such objects, but no 
“universality” can be claimed (see also sec. 1.4). Thus these systems may 
offer attractive perspectives towards technological applications in 
nanoscale devices (e.g., as building blocks for nanoscale electronics). 

Regarding the electronic properties, this section deals with quasi-1D 
wires in which the wire states interact with substrate states that are 
decoupled from the bulk [274]. In other words, 1D electronic states of 
the chain system hybridize with surface electronic states that are located 
in the energy gap of the substrate band structure [274,275]. 

The most prominent class of these systems consists of metallic stripes 
or chains formed by self-organization on flat [46,276] or regularly 
stepped Si crystal surfaces [16,277,278]. On the latter, submonolayers 
of Pb [279] and Ag [264] mostly fill the whole mini-terrace, whereas Au 
forms self-organized single or double-atomic chains. These ordered ar
rays of atomic chains on the Si mini-terraces of varying width provide a 
widely variable playground to study various quantum phenomena 
[280]. The entanglement of hybrid bands of the Si surface and Au chain 
states, e.g., lead to adsorbate-induced non-local changes of charge dis
tribution, with corresponding consequences to electrical conduction and 
its temperature dependence [281,282]. On the contrary, the interaction 
of rare earth metals with Si surfaces is so strong that they form surface 
silicides. Nevertheless, the uni-directional match of unit cells leads to 
extremely anisotropic growth. Thus wires of varying width are formed 
depending on metal concentration and growth conditions. 

This section we will give an overview of recent experimental and 
simulational results on such atomic wire systems, starting with Au 
atomic wires on stepped Si(hhk) surfaces. This class of systems is an 
illustration how non-local hybridization between adsorbate and surface 
states leads to electronic correlation, giving rise to quasi-1D modifica
tions of the Si step edges that dominate the electronic properties close to 
the Fermi level. Latest results on the paradigmatic system In/Si(111) are 
discussed in section 2.3 with emphasis on the vibrational properties of 
this system. In fact, these results are crucial for an understanding of the 
dynamics and phase transition in this system described in section 3. The 
Pb/Si(557) system, discussed in section 2.4, is characteristic for strong 
electronic interactions of fairly long range leading both to reversible and 
irreversible phase transitions as a function of temperature. While the 
latter are manifested by refacetting of this surface, reversible anisotropic 
quasi-1D conductance, crucially depending on small changes in Pb 
concentrations, and formation of a spin-orbit density wave normal to the 
wire direction are observed. Plasmons in these quasi-1D systems, dis
cussed in section 2.5, turn out to be strongly modified compared with 
pure 1D systems, and turn out to be sensitive to the unoccupied part of 
the quasi-1D bandstructure close to the Fermi level, which opens pos
sibilities for a new kind of spectroscopy. Finally we turn to the properties 
of rare-earth silicide wires in section 2.6, in which we consider not only 
the geometrical, electronic and conductive properties, but also describe 
attempts to embed these wires completely into an Si environment. 

2.2. Si(hhk)-Au: spin ordering vs. charge ordering2 

There is a large family of Au-stabilized Si surfaces miscut from (111) 
toward or away from the [001] direction [16,283], collectively known 
as Si(hhk)-Au, see Fig. 15. 

2 Authors mainly responsible for this section: W.G. Schmidt, S. Sanna, M. 
Horn-von Hoegen, H. Pfnür 
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They are all characterized by an alternation of terraces and steps and 
a small set of recurring structural motifs, as pointed out by Aulbach and 
co-workers [284]: The step edge is always a single-honeycomb graphitic 
strip of silicon. The terrace width varies according to the Miller indices 
(hhk). A chain of gold atoms, either one or two atoms wide, is incor
porated on each terrace. In case of sufficiently wide terraces, a row of 
silicon adatoms is also present. These building blocks provide a fasci
nating playground to explore and induce spin and charge ordering 
phenomena in low-dimensional systems. Already in 1999, the Si 
(557)-Au surface was proposed to host a real-world example of 
spin-charge separation in a Luttinger liquid [285]. While the proposed 
spinon-holon splitting has later been ruled out by the observation of two 
separate Fermi level crossings [286], the Si(557)-Au surface is also 
discussed as a model system for the Rashba-type splitting of quasi 
one-dimensional electronic states due to spin-orbit coupling [287]. 
Pronounced Rashba-like spin textures have also been calculated for Si 
(335)-Au [288] and were in fact detected for Si(553)-Au [289,290]. 
Moreover, superstructures at the Si step edges have been explained in 
terms of antiferromagnetic spin order at supposedly singly occupied Si 
dangling bonds in case of Si(553)-Au [144,291]. In addition, structural 
transitions are observed as a function of STM current and temperature 
[146,292,293]. In contrast to Si(553)-Au, where spin polarization of the 
Si step edge dangling bonds had been proposed, spin order at Si(775)-Au 
is predicted to occur in the Si rest atom dangling bonds [294]. Obvi
ously, as shown by the examples discussed above, the Si(hhk)-Au surface 
is indeed a source of an inspiring multitude of surface ordering phe
nomena. On the one hand, this is related to the fact that the interchain 
coupling and the band filling can be adjusted systematically by varying 
the step spacing via the tilt angle from Si(111) [283]. On the other hand, 
a further degree of freedom is added by the Au chain itself, which acts as 
an electron reservoir [295]. Additionally, defects and dopants such as O 
and H severely affect the spin and charge order at the surface, as 
explored, e.g. for Si(775)-Au [284], Si(557)-Au [296], and Si(553)-Au 
[295]. 

One member of the family of Si(hhk)-Au surfaces has found partic
ular attention: The Si(553)-Au provoked much interest in the scientific 
community by the suggestion that it is an example for the existence of 
intrinsic magnetism at a silicon surface due to nano-structuring [144]. 
While the integration of single-spin magneto-electronics into standard 
silicon technology is crucial for technologies involving spin-based 
computation and storage, typically magnetic transition metals with a 
large atomic magnetic moment or rare earths are used to induce mag
netic order in non-magnetic materials. Therefore the prediction of spin 
chains [144] or spin liquids [280] in Si(553)-Au seemed interesting from 
a technological point of view. Moreover, they are also scientifically 
interesting, since quantum fluctuations should prevent any magnetic 
ordering in strictly one- or two-dimensional systems [13]. 

The Si(553)-Au surface is formed by Si(111) terraces separated by 
single atomic steps and is stabilized by 0.48 monolayers (ML) of Au. Its 
main geometrical building blocks, i.e., the double Au chain running in 
the middle of the terrace and the Si honeycomb chain at the step edge, cf. 

Fig. 16, have been established by scanning tunneling microscopy (STM) 
[146,280,283,297–302], X-ray diffraction [303], low-energy electron 
diffraction (LEED) [280,298], and density-functional theory (DFT) [144, 
280,283,301,304,305]. 

Au chain dimerization lowers the surface energy [305] and gives rise 
to a × 2 periodicity parallel to the steps, see Fig. 16 (a). A further energy 
reduction is realized by the formation of an antiferromagnetic spin chain 
by spin-polarized electrons that singly occupy every third Si dangling 
bond (dangling bond) along the Si step edge [144]. This corresponds to 
the formation of a SDW as explained in the previous chapter and sche
matically represented in Fig. 3. Fig. 16(b) shows this spin-chain (SC) 
model. It accounts naturally for the × 2 and × 3 periodicities found by 
LEED [280] as well as by STM [146,298,299,302], as shown in Fig. 17. 
The primitive (1 × 1) unit cell of the (553) substrate is indicated in the 
diffraction pattern of Fig. 17 and reflects the terrace width of 14.8 Å and 

the atomic distance in the 
[
11

̄
0
]

direction, i.e., along the steps, of a0 =

3.84 Å in real space.The × 2 periodicity of the dimerized Au double 
chain manifests itself in the streak-like intensity exactly between the 

chains of integer order spots along the 
[
112

̄ ]
direction. The streaks, if 

unmodulated, reflect the complete lack of correlation of the dimeriza
tion of Au chains on adjacent terraces. The × 3 periodicity originating 
from the Si dangling bond chains at the step edge is apparent in the chain 
of slightly elongated spots at 1/3 and 2/3 position between the chains of 

Fig. 15. Schematic view of the silicon lattice indicating the orientation of some relevant miscuts discussed in the following. Adapted from ref. [283].  

Fig. 16. Structure models of Si(553)-Au: (a) model proposed by Krawiec (K) 
[305], (b) spin-chain (SC) structure due to Erwin and Himpsel [144], and (c) 
rehybridized (R) surface proposed here. Yellow and (dark) gray balls indicate 
Au and (honeycomb chain) Si atoms. The structurally and electronically salient 
step-edge Si×3 atoms characteristic for the SC and R surfaces are red. Arrows 
indicate spin polarization. Adapted from Ref. [306]. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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integer order spots. From the positions of 1/3 spots along the 
[
331

̄
0
]

direction a centered correlation of the × 3 periodicity of partially filled 
dangling bonds was concluded, as sketched in Fig. 16(c). It is important 
to note that no traces of LEED intensity were observed at 1/6 or 5/6 
positions between the chains of integer order spots as evident from the 
LEED line profile in Fig. 17 and thus excluding a × 6 periodicity along 
the Si step edges: the structural elements of the × 3 periodicity of the Si 
step edge atoms and of the × 2 periodicity of the Au rows act as inde
pendent scatterers during diffraction, i.e. they are not correlated. Also in 
STM the × 3 periodicity is the dominant feature as shown in Fig. 17 
where at positive bias voltage the empty states of the Si step edge 
dangling bond chain are imaged. 

This structure model just described also nicely explains the metallic 
Au bands observed by ARPES [271,283,289,298,307]. However, there is 
so far no experimental evidence for the appearance of spin chains at Si 
(553)-Au, e.g., by spin-polarized STM, nor for the existence of 
half-occupied Si dangling bonds. Surfaces of covalent materials typically 
undergo relaxation or reconstruction, which allow the broken bonds to 
be either eliminated, emptied, or doubly occupied with spin-paired 
electrons [57,308–314]. This prompted Braun et al. [306] to question 
the formation of spin chains at Si(553)-Au. They performed 
density-functional theory (DFT) calculations within the 

generalized-gradient approximation (GGA) using the PBE [315] as well 
the PBEsol functional [316] to explore the Si(553)-Au surface ener
getics. In addition, local-density approximation (LDA) calculations 
[317] as well as hybrid DFT calculations were performed to explore the 
potential energy surface. In particular, a surface energy lowering due to 
sp3 → sp2 + p rehybridization of every third Si edge atom, and subse
quent charge transfer from the Si p orbital to the Au chain was probed. 
This mechanism appeared plausible, because the Au chain acts as an 
electron reservoir that readily provides and accepts charge [295]. 
Moreover, a similar re-hybrization gives rise to asymmetric dimers at the 
Si(001) surface [310]. We remark that as the Au chain acts as an electron 
reservoir, the phase transition must be described in the grand-canonical 
ensemble, as discussed in section 1.6. 

In order to probe that mechanism for Si(553)-Au, Braun et al. [306] 
started from the Krawiec (K) structure (cf. Fig. 16 (a)) and gradually 
lowered the vertical height of every third Si edge atom (Si×3). The en
ergy profile of this reaction path along with the corresponding surface 
magnetization is shown in Fig. 18. The lowering of Si×3 reduces the 
surface energy and increases the surface magnetization, which assumes 
its maximum when the Si×3 atoms are about 0.3 Å below the neigh
boring step-edge atoms. In this configuration, a charge redistribution 
along the Si step edge takes place: The Si×3 dangling bond carries about 
one electron and the neighboring step-edge atom dangling bonds are 
fully occupied. The surface is stabilized by an antiferromagnetic spin 
order along the chain of Si×3 dangling bond electrons. The resulting 
structure, shown in Fig. 16 (b), corresponds to the spin-chain model 
proposed by Erwin and Himpsel [144]. 

According to the calculations in Ref. [306] it is a local, but not the 
global minimum on the potential-energy surface (cf. Fig. 18 and 
Table 1). The latter is reached upon passing an energy barrier of about 5 
meV and is characterized by Si×3 atoms about 0.8 Å below the neigh
boring step-edge atoms. In this configuration, they assume a planar, 
sp2-like bonding configuration with respect to their Si neighbors, cf. 
Fig. 16 (c). As a result, a dangling bond wire forms, where two filled Si 
dangling bonds at the step edge alternate with single empty dangling 
bonds, see Fig. 19. 

The formation of this rehybridized structure is thus accompanied by 
a surface charge transfer. About 1.6 electrons per 1 × 6 surface cell are 
shifted from the Si step edge to the Au chain. This corresponds to the 
magnetization calculated for the SC model, i.e, it is equivalent to the 
spin polarized charge in the Si×3 dangling bonds. The charge redistri
bution is visualized in Fig. 20 (a), where the electron density difference 
between the SC and the R model is shown. The electron transfer from the 
Si×3 dangling bonds to the Au dimers is clearly seen. The additional 
charge at the Au chain strengthens its dimerization, which increases 
from 5 % to 14 %. The finding that an increase in Au chain dimerization 

Fig. 17. (a) LEED pattern of the Si(553)-Au surface taken at 150 eV and T = 80 
K. Half way between the rows of sharp integer order spots streaks are found 
originating from dimer Au rows along the terraces. Located at 1/3 and 2/3 
positions slightly elongated spots from the tripled periodicity of the Si step edge 
atoms indicate a clear long-range ordering. (b) The integrated line profile taken 
along the [110] direction does not show any intensity at positions for × 6 
periodicity (dashed arrows). (c) STM image of the Si(553)-Au surface at 77 K 
depicting the empty states. The tunneling bias was chosen U = +0.5 V to 
highlight the × 3 periodicity of the Si step edge atoms with partially filled 
dangling bonds. Zoom #1 shows a well ordered area with the (1 × 3) unit cell. 
Zoom #2 depicts two ordered (1 × 3) domains separated by a linear 
domain wall. 

Fig. 18. Calculated (DFT-PBEsol) surface energy (solid line) and surface 
magnetization (dashed line) per 1× 6 surface unit cell vs the reaction coordi
nate given by the Si×3 vertical position. Its respective position for the Krawiec 
(K), spin-chain (SC) and rehybridized model (R) is indicated. Adapted 
from Ref. [306]. 

H. Pfnür et al.                                                                                                                                                                                                                                   



Surface Science Reports 79 (2024) 100629

26

takes place upon electron uptake is in agreement with earlier results by 
Hogan et al. [295]. 

The spin-spin exchange constant along the chains has been estimated 
to be about 15 meV [280], i.e., roughly two orders of magnitude smaller 
than the Si hybridization energy. Therefore it might at first seem obvious 
that the energy gain due to rehybrization and emptying the Si×3 p or
bitals outweighs the stabilization due to the antiferromagnetic spin 
order. However, the energy balance is as well affected by the charge 
transfer and strain accompanying the rehybrization. In fact, the energy 
difference between the R and the SC model (cf. Table 1) is small and 
depends on the treatment of the electron exchange and correlation ef
fects: PBEsol and HSE calculations predict a lower surface energy for the 
spin-paired compared to the spin-chain surface. The PBE calculations, in 

contrast, failed to identify a local energy minimum for the R model. PBE 
calculations based on frozen PBEsol geometries yield a higher surface 
energy for the R than for the SC structure. On the other hand, LDA 
calculations predict the rehybridization to lower the surface energy, but 
fail to provide an antiferromagnetically ordered state. In summary, the 
total-energy calculations in Ref. [306] suggest the rehybridization of the 
surface, but they are not fully conclusive. Obviously, the energy land
scape is rather flat. In order to arrive at a conclusive picture, the 
calculated electronic properties of the SC and R model should be 
compared with the available experimental data. 

The different electron distributions of the SC and R models leads to 
somewhat different surface band structures, as shown in Fig. 21. The SC 
model is characterized by spin-polarized states at the singly occupied 
Si×3 dangling bonds that form two very flat bands about 0.1 eV below 
and 0.2 eV above the Si valence-band maximum (VBM). These bands are 
pushed away from the VBM upon rehybrization, accompanying the 
electron transfer from the Si×3 dangling bonds towards the Au chain. At 
the same time, the strongly dispersive, partially occupied Au bands shift 
down in energy and are now below the empty Si dangling bond band 
throughout the Brillouin zone. 

Although the calculated Au bands seem to match the experimental 
data slightly better in case of the rehybridized compared to the spin- 
chain structure, their modification is not sufficiently strong to allow 
for discriminating between the models. This holds also with respect to 
the non-dispersing unoccupied state 0.62 eV above the Fermi level 
observed by two-photon photoemission [319]. Given the DFT band gap 
underestimation, this state is well explained by the Si dangling bond 
states predicted for both the R and the SC geometry. The situation is 
different in case of the prominent flat band assigned to the single elec
trons at the Si×3 atoms, calculated for the SC model. This band, about 
0.1 eV below the VBM, has not been identified clearly experimentally. 
The disappearance of this state for the R model supports the spin-paired 
structure. 

Additional support for the spin-paired structure is provided by the 
comparison between the high-resolution low-temperature STM data 
[302] and the simulations in Ref. [306], as shown in Fig. 22. Both 
models clearly account for the × 2 and × 3 periodicities observed 
experimentally for voltages of 0.7 V. These periodicities are due to the 
Au chain dimerization and the Si×3 atoms that stand out structurally and 
electronically. For biases close to the Fermi level, at 0.2 V, however, the 
measurements show a × 6 periodic structure reminiscent of ”bones” 
linked by bright ”joints” (see labels in Fig. 22). Aulbach et al. [302] 
suggested these features to be related to the parity breaking of the Si step 
edge due the Au dimers. This interpretation is corroborated by the cal
culations, as shown schematically in Fig. 20 (b): The charge accumula
tion in the Au dimers affects the electron localization at the Si step-edge 
atoms in their vicinity. This effect increases with increasing dimeriza
tion. Therefore it should be more pronounced and better visible for the R 
than for the SC model. This is in fact what can be clearly seen in the 
simulated STM images. The experiment at intermediate voltages corre
sponds roughly to a superposition of the low and high tunneling bias 
appearance: The bones and joints are still visible, while the Si×3 atoms 
start to become prominent, but with different intensities (”darker” and 
”brighter spots” in Fig. 22). This intensity variation is again excellently 
reproduced by the simulations based on the diamagnetic surface, but not 
accounted for by the spin-chain model. This shows that the ideal Si 
(553)-Au surface – considered as a prototypical example for intrinsic 
magnetism at silicon surfaces – is in fact diamagnetic, at least in the zero 
temperature ground-state: DFT calculations [306] demonstrate that a 
structure, where all Si dangling bonds either host spin-paired electrons 
or are empty, is more favorable and in better agreement with experiment 
than antiferromagnetically ordered spin chains, at least at 0 K. 

Does this now mean that intrinsic surface magnetism can be gener
ally ruled out for Si(hhk)-Au? Perhaps not. An enhanced spin-spin 
interaction resulting from smaller dangling bond distances as well as a 
reduced Au coverage – both realized, e.g., at Si(557)-Au – may shift the 

Table 1 
Surface formation energies (in meV per 1 × 6 unit cell) with respect to the 
Krawiec model calculated in Ref. [306] for the spin-chain (SC) and the rehy
bridized surface (R), using different XC functionals. The energies* refer to cal
culations for the respective PBEsol structures.    

LDA    PBE  PBEsol  HSE 

SC    − 36  − 2*  − 26  − 419* 
R  − 114    +191*  − 137  − 457*  

Fig. 19. Filled and empty dangling bonds in the ground state (2,2,0) configu
ration of the 1 × 6 reconstructed Si(553)-Au surface are shown (only at one step 
edge) in red and blue, respectively. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 20. (a) Difference between the charge densities calculated for the spin- 
chain (SC) and the rehybridized (R) surface. The relative electron accumula
tion/depletion at the R surface is shown in red/blue. (b) Schematic model for 
the parity breaking of the Si step edge due the Au dimers, see text and Fig. 22. 
Adapted from Ref. [306]. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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energy balance in favor of intrinsic magnetism. In fact, PBEsol calcula
tions for Si(557)-Au [306] indicate a slightly reduced – from 68 to 43 
meV per rehybridized Si surface atom – energy gain upon rehybrization 
compared to Si(553)-Au. At the same time, the energy gain due to spin 

polarization is increased considerably from 13 to 56 meV per surface 
spin. Thus, at least within DFT-PBEsol, the spin-chain structure proposed 
by Erwin and Himpsel is stable for Si(557)-Au, in contrast to Si 
(553)-Auand to Si335) [288]. Spin-chain structures are also predicted 
by zero-temperature calculations for Si(775)-Au [294]. However, in the 
latter case they are supposed to involve the Si rest atom dangling bonds 
rather than the Si step-edge atoms. In both cases, the experimental proof 
for spin ordering is still pending. Nanostructure engineering, e.g., Si 
adsorbate induced electron doping [284,294,320], may be another 
possibility to induce and modify intrinsic magnetism at Si(hhk)-Au. 

2.2.1. Temperature effects 
Much attention has been paid to phase transitions in Si(hhk)-Au 

[16]. In case of Si(557)-Au, a metal-insulator transition occurs at 270 
K [321]. It has originally been interpreted within the classical Peierls 
picture [321,322]. Molecular dynamics calculations by Riikonen and 
Sanchez-Portal [323] showed, however, that the increase of the vibra
tional amplitudes of the Si step edge atoms at higher temperatures lead 
to metallic configurations that may as well explain the measured 
metal-insulator transition. 

An even more intriguing example for complex phase transitions at Si 
(hhk)-Au is provided by the Si(553)-Au surface [298,299]. This is due to 
the shallow potential energy surface of Si(553)-Au, see Table 1, which in 
conjunction with the existence of evenly placed Si empty dangling bonds 
and the charge reservoir provided by the Au chain, makes this system 
very susceptible to thermal excitations. Indeed first conductivity ex
periments found that rising temperature leads to a sudden conductivity 
increase along the step edge at around 65 K (more details and an 
extension of these measurements will be described in sec. 2.2.4). A 
further temperature increase quenches first the × 3, i.e., the Si step edge 
related, and subsequently the × 2, i.e., the Au chain related periodicity 

Fig. 21. Si(553)-Au surface band structures: The bands calculated (PBEsol) for the rehybridized (R) and the spin-chain (SC) model with 1 × 6 periodicity are shown 
in a) and c), respectively. In b) and d) the respective bands are unfolded (following the procedure proposed in Ref. [318]) into the Brillouin zone with primitive 1 × 1 
lattice periodicity and compared with the ARPES data from Ref. [283]. The spectral weight is indicated by the symbol size. The color scale indicates the localization 
at Si step-edge (red) and Au atoms (yellow). Adapted from Ref. [306]. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 22. Comparison of simulated (PBEsol) STM images for the Si(553)-Au 
surface with experiment. The simulations performed in Ref. [306] for the 
rehybridized (R) and the spin-chain model (SC) are shown above and below the 
data measured in Ref. [302]. Adapted from Ref. [306]. 
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of the surface [281]. 
This increase in surface conductivity has been attributed to an Au → 

Si dangling bond charge transfer [281]. Such a charge redistribution 
characterizes the spin chain (or spin-liquid in two dimensions) structure 
suggested by Erwin et al. [144,280] for Si(553)-Au: It has a (2,2,1) 
electron configuration, i.e., two fully occupied dangling bonds alternate 
with one singly occupied dangling bond along the step edge. The 
occupation of the formerly empty Si p orbital causes a sp2 + p → sp3 

rehybridization and moves the respective Si atom out of the planar sp2 

configuration [306]. This is clearly an activated process, see Fig. 18. 
Along the reaction path a metastable structure appears that locally 

corresponds to the (2,2,1) structure [144]. The energy barrier hindering 
such a local (2,2,0) → (2,2,1) transformation amounts to 58 meV, far 
above the thermal energy at 65 K, i.e, about 6 meV. The energy barrier 
may be reduced at finite temperatures due to entropy effects [276]. 
According to Braun et al. [282], entropy effects indeed ease the (2,2,0) 
→ (2,2,1) transition, as indicated in Fig. 23. The effect is not sufficiently 
large, however, to explain a transition close to 65 K. Alternatively, a 
concerted movement involving a variety of atoms might cause the sp2 +

p → sp3 rehybridization and the accompanying charge transfer. In order 
to probe that scenario, ab initio molecular dynamics (AIMD) calculations 
were performed in Ref. [282]. The time evolution (after equilibration) of 
the Si step edge atom vertical positions is shown in Fig. 24. Here it is 
discriminated between three configurations: sp2 hybridized Si with an 
empty p orbital dangling bond, partially sp3 hybridized Si hosting a 
single electron in its dangling bond, and completely sp3 hybridized Si 
with fully occupied dangling bond. The 1 × 6 surface unit cell consid
ered in the calculations is nearly entirely characterized by (2,2,0) 
structures at 50 K. In fact, there are only two very short occurrences of 
singly occupied Si dangling bonds. These occurrences get more frequent 
and last longer at 100 K. Also an emptying of originally doubly occupied 
dangling bonds is observed at this temperature. Still, the (2,2,0) 
configuration is the most dominant structural motif at 100 K. However, 
strong vertical vibrations of the Si step edge atoms occur. These vibra
tions get more pronounced for higher temperatures and quench the 
dominance of the (2,2,0) structure. Increasing disorder is observed and 
singly occupied dangling bonds occur frequently for temperatures in 
excess of 200 K. The AIMD results clearly show an order-disorder type 
phase transition. 

How likely is a local transition to such an electron-doped (2,2,1) 
configuration? In order to answer this question, Braun et al. [282] used 
DFT-PBEsol to calculate the total energy along a reaction path where – 

within the 1 × 6 surface unit cell – a single Si atom with an originally 
empty dangling bond is raised from the flat sp2 coordination to the sp3 

configuration, see Fig. 23. Here the Au chain dimerization was fixed at 
its average value at 100 K. The movement of the Si edge atom is 
accompanied by an Au → Si dangling bond charge transfer, opposite to 
the lateral charge transfer observed upon lowering an originally sp3 

hybridizid Si step edge atom, see Fig. 20. 
The distribution function of the Si edge atom vertical positions in 

Fig. 25(a) provides additional details. At 50 K the distribution is 
bimodal, with cluster points for completely filled and empty Si dangling 
bonds. A third, very weak accumulation point in between appears for T 
> 50 K. It corresponds to the occupation of the local energy minimum of 
the reaction path shown in Fig. 23, i.e., singly occupied dangling bonds. 
For higher temperatures, the distribution gets broader and the Si vertical 
positions scatter broadly. This shows that the description of the phase 
transition in terms of solitons and anti-solitons [324], i.e., binary oc
cupancy shifts along the dangling bond wire, simplifies the actual sur
face dynamics. 

Why does the order-disorder transition start at far lower tempera
tures than expected from the rehybridization barrier (black line in 
Fig. 23)? The answer is related to the electron chemical potential of the 
Au chain. A strongly dimerized chain has a stronger electron affinity 
than a weakly or undimerized chain [295]. Therefore, a reduced 
dimerization favors the Au → Si charge transfer required for the rehy
bridization. In Fig. 23 it can be seen that a reduction of the dimerization 
from 12.8 % (average value at 100 K) to 10.0 % reduces the sp2 + p → sp3 

transition barrier (blue line) as strongly as doping the 1 × 6 unit cell 
with 0.4 electrons (red line). While the average dimerization is larger 
than 10.0 % even at 400 K, already for temperatures above 50 K Au 
chain segments with 10.0 % dimerization occur temporarily, cf. distri
bution in Fig. 25(b). With increasing temperature, even lower dimer
ization values occur and reduce locally the energy barrier for the Si sp2 

+ p → sp3 rehybridization. Due to the nonlinear dependence of the re
action rate on the energy barrier, the rehybridization probability de
pends not only on the average dimerization, but on its entire distribution 
function. The probability for the occurrence of self-doped (2,2,1) 
structures derived from the temperature-dependent dimerization dis
tribution under the assumption of thermodynamic equilibrium between 
(2,2,0) and (2,2,1) surface domains is shown in Fig. 25(c). Its rise for 
temperatures above 50 K is – even quantitatively – consistent with the 
AIMD findings discussed above and explains the disorder along the Si 
step edge already at moderate temperatures. 

2.2.2. Experimental evidence: Raman and LEED 
Are these computational findings in agreement with the actual sur

face dynamics and with DC electron transport? The temperature- 
dependence surface Raman data [282], described in this section, helps 
to answer this question, as well as the dc transport data that follow in 
sec. 2.2.4: In Raman two signatures that are particularly strongly 
affected by temperature are shown in Fig. 26(a): There is a 
low-frequency phonon mode at around 41 cm− 1 that softens consider
ably with rising temperature. A phonon mode at around 415 cm− 1 ap
pears slightly below 100 K and strongly gains intensity with rising 
temperature. Both signatures show a continuous rather than an abrupt 
change in energy or intensity, respectively. This supports the interpre
tation of the AIMD results in terms of an order-disorder transition. 

Frozen-phonon calculations for Si(553)-Au surfaces [282] provide a 
microscopic interpretation of the Raman data. The calculations show the 
existence of a Au chain dimerization mode at 41 cm− 1 for the (2,2,0) 
ground state, see Fig. 26(d). Its thermal frequency shift – obtained by 
projecting the AIMD atomic velocities on the phonon eigenvector – is in 
close agreement with the low-energy Raman signature described above, 
see Fig. 26(c). The phonon-mode softening with rising temperature 
roughly parallels the reduction of the dimer strength, i.e., is caused by 
the reduction of the average Au–Au bond strength. Due to its very low 
frequency, the Au chain mode is occupied already a low temperature. It 

Fig. 23. Calculated potential energy surface from the (2,2,0) ground state to 
the self-doped (2,2,1) configuration for the AIMD calculated average dimer
ization at 100 K (12.8 %, black), a reduced dimerization (10 %, blue) and a 0.4 
electron doped 1 × 6 supercell (red). The dimerization is defined as d = |a − b|/ 
a, where a and b are the Si lattice constant and Au–Au bond length in chain 
direction, respectively. The reduction of the total energy difference between 
(2,2,0) and (2,2,1) structures due to vibrational free-energy corrections at 100 K 
is indicated. Adapted from ref. [282]. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 
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reduces temporarily the Au chain dimerization and thus lowers – as 
discussed above – the sp2 + p → sp3 activation energy. 

Frozen-phonon calculations for the (2,2,1) surface predict a trans
versal shear mode along the Si honeycomb chain with a frequency of 
415 cm− 1, see Fig. 26(b). Its frequency coincides with that of the high- 
temperature mode seen by Raman spectroscopy. This mode is replaced 
by localized Si vibrations for the (2,2,0) structure, due to the stronger 
variation of the force constants along a step edge where sp3 and sp2 

hybridized Si atoms alternate. This explains, why the measured mode 
disappears upon cooling the sample below 100 K. 

The calculated surface geometries are furthermore consistent with 
the evolution of the LEED intensity as function of temperature, see 
Fig. 27. Here the × 3 and × 2 LEED intensities measured in Ref. [281] 
are compared with the squared structure factors including Debye-Waller 
effects obtained from AIMD. Both the measured data and the calcula
tions show a gradual loss of order starting below 100 K, which first af
fects the × 3 signatures and subsequently the × 2 features, in agreement 
with earlier STM observations [298,299]. The quenching of the × 3 
signals is well reproduced by the calculated order-disorder transition at 
the Si step edge, whereas the measured disappearance of the × 2 in
tensities clearly precedes the calculated Au chain order-disorder tran
sition. This is, however, to be expected: While the AIMD calculations 
find a broadening of the dimerization distribution, cf. Fig. 25(b), they 
cannot correctly account for disorder arising from dimerization phase 
shifts. The relatively small 1 × 6 unit cell leads to an overestimation of 
the defect/antidefect interaction that blueshifts the calculated critical 
temperature. Since the Au atoms are directly bonded, this effect is more 
relevant for the Au chain than for indirectly interacting step edge Si. 
Hafke et al. performed a spot profile analysis of the (1 × 3) spots for 
further insight into the order-disorder transition. The change from an 
ordered to an disordered state is obvious from the LEED patterns taken 
at 60 K and 180 K, see Fig. 28. The (1 × 3) spots – clearly visible in 
Fig. 28(a) at 60 K – are completely smeared out 180 K as shown in Fig. 28 

Fig. 24. Projection of the AIMD calculated Si step edge atom vertical positions on the heights corresponding to Si with empty (q < 0.5e, blue), singly occupied (0.5e 
≤ q ≤ 1.5e, orange) and doubly occupied (q > 1.5e, gray) dangling bonds. Adapted from Ref. [282]. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 25. (a) Distribution of the Si step edge atom vertical positions for various 
temperatures. Equilibrium positions of Si with empty (0), singly (1) and doubly 
(2) occupied dangling bonds are indicated. (b) Temperature dependent distri
bution of Au chain dimerization. Color coding as left. (c) Probability of (2,2,1) 
ordered surface domains derived from the dimerization distributions shown in 
(b), see text. Adapted from Ref. [282]. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 26. (a) Temperature dependent Raman spectra, focusing on a Raman 
mode located at the step edge at 415 cm− 1 depicted in (b) and one located at 
the Au chain at 41 cm− 1 depicted in (d). The measured frequency shift of the 41 
cm− 1 mode is compared in (c) with the calculated shift and the relative change 
in dimerization. Adapted from Ref. [282]. Fig. 27. Temperature-dependent × 3 and × 2 LEED spot intensities from 

Ref. [281] vs. average structure factors including Debye-Waller effects obtained 
from the AIMD geometries. Adapted from Ref. [282]. 
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(b). Line profiles along and perpendicular to the chain of (1 × 3) spots 
are shown as function of temperature in the insets of Fig. 28(c + d). The 
profiles are described by a Lorentzian or a sum of Lorentzians reflecting 
the geometric length distribution of the ordered (1 × 3) domains. The 
FWHM for both directions increase with temperature. The interwire 
coupling between adjacent dangling bond chains is lifted much faster 
than the intrawire coupling. The emergence of disorder along the × 3 
periodicity of the dangling bond chains exhibit a clear onset at 100 K. 

Hafke et al. constructed an exactly solvable three state Potts model 
describing the dynamics of coupled wires and the resulting steady-state 
FWHM of the × 3 spots as a function of temperature: 

H =
∑

i

[
− bδui ,ui+1 − aδui ,c

]
(21) 

Here δi,j denotes the Kronecker delta. A single unoccupied dangling 
bond can take three positions within each unit cell i: left, center, and 
right, ui = {l; c; r}. The first term, with parameter b, describes the energy 
needed to displace neighboring unoccupied dangling bonds relative to 
each other: specifically, the energy needed to create a soliton-antisoliton 
pair within one wire is 2b. The second term, with parameter a, favors the 

occupation of the central position and arises from the coupling of the 
wire to neighboring wires (for further details see Ref. [324]). The model 
fits best to our experimental data for a = 2.1 meV and b = 21 meV. These 
fitted values are also consistent with DFT results: a should be equal to 
the calculated energy difference per unoccupied dangling bond, 2.1 
meV, between (2,2,1) configurations in staggered and centered align
ments, and b corresponds to half of the formation energy E0 = 30 meV of 
an elementary excitation, which can be viewed as a soliton-antisoliton 
bound pair. The resulting FWHM, convoluted with a Gaussian instru
mental response function, describes the experimental results, see black 
solid curve in Fig. 28(d). 

The DFT calculations and Raman measurements in Ref. [282] 
together with the LEED results in Ref. [324] thus provide a consistent 
description of the experimentally observed two-stage Si(553)-Au surface 
phase transition up to temperatures of 180 K. In addition, they reveal a 
novel mechanism for the self-doping of dangling bond nanostructures: 
Thermally excited vibrations of the Au charge reservoir lead to transient 
changes of its electron affinity and thus facilitate electron doping at low 
temperatures. This mechanism can be expected to be relevant beyond 
the family of gold-stabilized Si surfaces, and to be conveniently tuned by 
modifying the species of the charge reservoir, the metal coverage, and 
the dangling bond density. 

2.2.3. Vibrational properties 
A thorough characterization of the surface-localized phonon modes 

of the Si(553)-Au system, above and below the phase transition tem
perature, has been performed combining Raman measurements and DFT 
calculations [326]. As shown in the following, the comparison between 
theory and experiment enables the assignment of measured spectral 
features to the calculated eigenmodes. Thus, the combined experimental 
and theoretical analysis of the vibrational properties turns out to be 
quite useful for a distinction between the different structure models. It is 
found that the calculated Raman spectra of the double Au strand [ [305] 
and the sp2 + p rehybridized [306] models are compatible with the high 
temperature (HT) and low temperature (LT) measured spectra, 
respectively. 

Fig. 29 shows the measured Raman spectrum of the Si(553)-Au 
surface (after subtraction of a clean Si(553) surface spectrum) for two 
different scattering geometries, i.e. z(yy)-z (parallel polarization) and z 
(yx)-z (crossed polarization). According to the Raman polarization se
lection rules the two scattering geometries yield fundamentally different 
spectra: in z(yy)-z A’modes are symmetry allowed (conserving the 
mirror plane symmetry of the surface structure) while in z(yx)-z A’′- 
modes are allowed (breaking the mirror plane symmetry of the surface 
structure) [325,326]. 

The experimental Raman frequencies as obtained from fitting using 
Voigt profiles (indicated by red lines) are listed in Tables 2 and 3 
together with calculated surface eigenmode frequencies (see Table 4). 

The vibrational properties of the Si(553)-Au system at 300 K and the 
according Raman spectra are computed with the structural model pro
posed by Krawiec [305]. Although the Si(553)-Au surface at 300 K was 
shown to fluctuate thermally between the double chain [305], rehy
bridized, and spin-chain phases, the system at RT is for the vast majority 
of the time in the double chain configuration [282], which is therefore 
employed to describe the high temperature phase of the Si(553)-Au 
surface. Accordingly, the calculated phonon spectra, shown in Fig. 30, 
closely reproduce the measured spectra. Generally, both the frequency 
and the relative intensity of the spectral features are in satisfactory 
agreement with the experiment, although the most intense vibrational 
signatures in the (yx) crossed configuration are somewhat red shifted 
within PBEsol in comparison with the experiment. 

The comparison between measured and calculated spectra allows to 
assign the calculated phonon eigenmodes to measured Raman peaks on 
the basis of phonon energy, phonon symmetry, and Raman scattering 
intensity. The result of this procedure is shown in Tables 2 and 3 
Displacement patterns of the corresponding eigenmodes can be found in 

Fig. 28. LEED patterns of Si(553)-Au at an electron energy of 150 eV and 
temperatures (a) 60 K and (b) 180 K. The × 2 streaks between the rows of sharp 
integer-order spots arise from dimerized Au double rows on the (111)-oriented 
terraces. (c) FWHM of the × 3 diffraction spots (red data points) as a function of 

temperature in the 
[
3
̄

3
̄

10
]

direction and same in the 
[
1
̄

1
̄

0
]

direction (d). 

Insets in (c),(d): Line profiles for both directions at various temperatures 
(shifted vertically for better visibility). Adapted from Ref. [324]. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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Refs. [325,326]. The displacement patterns are in agreement with the 
measured Raman selection rules, i.e. symmetry properties of calculated 
and experimentally observed modes are taken into account as well. A 
detailed discussion of the individual eigenmodes is given in Refs. [325, 
326]. 

The Si(553)-Au system is supposed to undergo an order-disorder type 
structural transition starting below 100 K [282]. According to the pre
sent knowledge of the system, the double Au strand model of (5 × 2) 
periodicity [305] describes the high-symmetry RT phase, while the 
(centered) spin-chain [144,280] and rehybridized [306] models of (5 ×
6) periodicity have been proposed for the description of the lower 
symmetric LT phase. Between RT and LT the morphology of the step 
edge of the Si terraces fluctuates among the configurations of the 
different phases, establishing an interplay (via charge transfer) with the 
Au chain that continuously enhances the chain dimerization from RT to 
LT [282]. 

The structural differences of the surface models must be mirrored in 

Fig. 29. Raman spectra of the Si(553)-Au surface, measured at 300 K (after subtraction of a clean Si(553) surface spectrum) for two different scattering geometries, i. 
e. z(yy)-z (parallel polarization) and z(yx)-z (crossed polarization). According to the Raman polarization selection rules the two scattering geometries yield 
fundamentally different spectra: in z(yy)-z A’-modes are symmetry allowed (conserving the mirror plane symmetry of the surface structure) while in z(yx)-z A’′- 
modes are allowed (breaking the mirror plane symmetry of the surface structure) [325,326]. The spectra were fitted using Voigt profiles with the Gauss FWHM fixed 
to the spectrometer resolution of 1.3 cm− 1 and variable Lorentz FWHM. The inset shows a comparison of the measured Raman intensity with the PBEsol calculated 
phonon DOS of bulk Si. 

Table 2 
Raman frequencies (in cm− 1) measured at 300 K and calculated (0 K frozen 
phonon calculations performed with the double chain model) for the z(yy)-z 
configuration. PBEsol calculated frequencies are listed (Theo.), along with the 
highest and lowest frequency calculated with other XC-functionals. Char. and 
Loc. indicate whether the phonon has Au or Si character, and the surface 
localization of the atomic displacement vectors, respectively. Modes with 
calculated Raman efficiency below 1 % of the main peak are not listed.  

Exp.  Theo.  Theo. Min-Max  Char.  Loc. 

37.5 
48.3 ±
0.1   

{  47.7–52.9 
52.7–59.8   

Au + Si 
Au   

93 % 
91 %  

60.1 ± 0.1  64.9  64.9–66.5  Au + Si  68 % 
68.4 ± 0.3  69.8  66.1–72.9  Au  92 % 
85.5 ± 0.1  84.2  84.1–86.2  Au + Si  88 % 
100.8 ± 0.2  109.4  109.4–113.1  Si  74 % 
121.3 ± 0.4  122.0  122.0–129.4  Si  55 % 
134.1 ± 1.4  131.9  131.8–141.1  Si  50 % 
147.4 ± 0.7  140.2  140.2–144.0  Si  47 % 
158.4 ± 4.7  165.1  165.1–167.5  Si  55 % 
172.6 ± 1.9  169.8  169.7–171.3  Si  51 % 

392.2 ± 0.1  386.2  379.8–388.3  Si  40 % 
413.2 ± 0.1  411.5  410.1–415.7  Si  50 %  

Table 3 
Raman frequencies (in cm− 1) measured at 300 K and calculated (0 K frozen 
phonon calculations performed with the double chain model) for the z(yx)-z 
configuration. PBEsol calculated frequencies are listed (Theo.), along with the 
highest and lowest frequency calculated with other XC-functionals. Char. and 
Loc. indicate whether the phonon has Au or Si character, and the surface 
localization of the atomic displacement vectors, respectively. Modes with 
calculated Raman efficiency below 1 % of the main peak are not listed [325, 
326].  

Exp.  Theo.  Theo. Min- 
Max  

Char.  Loc. 

43.3 ± 0.9  44.2  44.2–46.1  Au  58 % 
49.7 ± 0.4  52.7  52.7–59.8  Au  91 % 
61.6 ± 0.5  62.4  61.7–64.6  Au  91 % 
73.9 ± 1.1  65.4  65.4–67.6  Si  47 % 
87.4 ± 0.9  79.7  79.7–86.2  Si  57 % 
94.0 ± 0.2  {  82.1–86.1  Au  77 % 

84.4–94.9  Au  77 % 
101.7 ±

0.2  
96.8  96.2–98.8  Au  72 % 

113.5 ±
0.5  

111.4  111.4–115.3  Si  52 %  

Table 4 
Measured frequencies at 300 and 30K in the z(yy)-z scattering geometry. The 
uncertainty in frequency is obtained from the Voigt line fit (with 90 % confi
dence) and the error from the spectral calibration with laser plasma lines.    

Exp. 300K  Exp. 30K  Diff. 

low range  37.5 ± 0.4  40.5 ± 0.2  3.0   
48.3 ± 0.2  47.8 ± 0.4  − 0.5   
60.7 ± 0.3  61.2 ± 0.2  0.4   
68.4 ± 0.4  –     
–  82.7 ± 1.4     
85.5 ± 0.3  88.0 ± 0.4  2.5   
–  99.1 ± 1.5     
100.8 ± 0.2  105.5 ± 0.4  4.7 

high range  392.2 ± 1  396.2 ± 1  4.0   

413.2 ± 1  –    
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their vibrational properties. Modes associated with the Au chain are 
expected to change their eigenfrequency upon cooling from RT to LT, 
while modes localized at the Si step edge cannot exist in the same form in 
the different phases. As the RT and LT structural models differ in the 
dimerization of the Au chain and in the local structure of the Si step 
edge, the frequency ranges in which the vibrations related to the Au 
chain and to the Si step edge occur are crucial for the investigation of the 
temperature effects. 

The LT Raman spectra of Si(553)-Au are shown in Fig. 31, along with 
the RT Raman spectra for comparison. The experimental frequencies of 
the relevant modes are summarized in Table 4. The modes at 68.4 and 
413.2 cm− 1 (assigned to distortions of the Au chain and of the step edge) 

are only observed at RT, while modes at 82.7 and 99.1 cm− 1 are 
exclusive to LT. 

To understand the changes in the measured spectra, the vibrational 
properties of the Si(553)-Au system at LT have been calculated with all 
structural models that have been proposed in the literature for the 
description of this phase, namely the spin-chain (SC) [144] and centered 
spin-chain model (CSC) [280], as well as the rehybridized model (R) 
[306]. Unfortunately, the calculation of the Raman scattering efficiency 
for the LT structural models is an exceptionally demanding task, due to 
the system size. However, the knowledge of the calculated Raman fre
quencies and displacement patterns can still be used to interpret the 
experimental data. 

There are three categories of phonons expected among the calculated 
modes: (i) modes which are common to the RT and LT phases, (ii) modes 
that occur both in the RT and in the LT phase, however with a different 
frequency, and (iii) modes that exist either only in the RT or only in the 
LT structure. Most of the modes calculated with the RT model can be 
identified in all three candidate models within a few cm− 1. However, 
several important exceptions are found in the experimental spectra, 
corresponding to the LT-RT structure differences. 

The first particular mode is the Au dimerization mode shown in 
Fig. 32 (a), which exists in both the RT and LT structure, yet at different 
frequencies. This mode is predicted at 18.8 ± 5 cm− 1 with the RT model, 

Table 5 
Raman frequencies of selected modes discussed in the text calculated within 
PBEsol according to different structural models.  

Exp.  R  SC  CSC 

40.5 ±
0.2  

42.0  8.7  16.7 

82.7 ±
1.4  

77.3  69.4  70.7 

99.1 ±
1.5  

91.0  65.0  64.8  

Fig. 30. Raman spectra of the Si(553)-Au surface calculated within DFT-PBEsol for the (yy) and (yx) polarization with the structural model by Krawiec [305].  

Fig. 31. Raman spectra of the Si(553)-Au surface after subtraction of the bulk scattering, measured at 300 K and 30 K in parallel polarization. The measured Raman 
spectra were fitted using Voigt profiles with Gauss FWHM fixed to the spectrometer resolution of 1.3 cm− 1 and variable Lorentz FWHM. Blue arrows mark features 
with strong temperature dependence, while dotted black lines join features observed at both temperatures. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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and is thus not experimentally accessible. However, it becomes much 
harder (42.0 cm− 1) within the rehybridized model, which features a 
more pronounced dimerization. As this mode shortens the Au–Au bond 
length, it requires more energy for a strongly dimerized Au chain. In the 
experimental spectrum, a noticeable peak shift from 37.5 to 40.5 cm− 1 is 
observed in this energy region between 300 K and 30 K along with a 
strong increase of the Raman intensity. Yet, this is surprising, as the peak 
at 37.5 cm− 1 [vertical translation of the Au chain [325,326]] is not 
expected to be much affected by temperature. Indeed theory predicts a 
small shift of about 1.5 cm− 1 in the opposite direction for this mode. This 
suggests that the peak observed at LT at 40.5 cm− 1 is the overlap of a 
weakly temperature dependent mode at 37.5 cm− 1 and the strongly 
temperature dependent dimerization mode at about 42 cm− 1 [325,326]. 

The second particular mode with strong frequency shift is the mode 
calculated at 69.8 cm− 1 shown in Fig. 32(b). Similarly to the dimer
ization mode, this mode shortens the Au–Au bond length and becomes 
much harder by about 8 cm− 1 for the rehybridized model. This mode is 
associated to the low-intensity Raman peak at 68.4 cm− 1 at high tem
peratures, which seems to disappear at 30 K. Comparison with theory 
suggests that this mode shifts at higher frequencies and can be assigned 
the mode at about 82.7 cm− 1 which is not observed in the RT Raman 
spectrum [325,326]. 

A third particular mode refers to the feature at 99.1 cm− 1 in the 
measured LT Raman spectra, which we associate to the displacement 
pattern calculated with the rehybridized model and displayed in Fig. 32 
(c). At LT, this mode is visible in the parallel polarization Raman spec
trum via charge density fluctuation scattering, according to its symme
try. This mode is not existent in the RT structure, but closely related to 
the chain translation modes predicted at 65.4 cm− 1 and at 79.7 cm− 1 at 
RT, which are visible via deformation potential scattering in the crossed 
polarization Raman spectrum. This mode is a translation of the HT 
chain, which strongly hindered by the LT modification of the step edge 
pinning the outer atoms and therefore making this mode much harder 
[325,326]. 

A fourth particular mode appearing at 413 cm− 1 only in the RT 
Raman spectra is associated to the theoretically predicted step edge 
mode at 411.5 cm− 1 [see Fig. 32 (d)]. Due to the different symmetry of 

the Si step edge in the structural models associated to the LT and RT 
phases, this lattice vibration has no low temperature counterpart. In the 
rehybridized model, this mode is decomposed into local vibrations of the 
step edge, as previously pointed out by Braun et al. [282]. 

Overall, the rehybridized model can well explain the observed 
temperature shifts. On the contrary, in the spin-chain model [144,280] 
the dimerization is not as pronounced as in the rehybridized model 
[306] and therefore the frequency shifts with respect to the high tem
perature model cannot be reproduced. For example, the dimerization 
mode [see Fig. 32 (a), and Table 5] is predicted by DFT-PBEsol at 8.7 and 
16.7 cm− 1, for the spin-chain and centered spin-chain models, respec
tively. This value is far from the value of 42.0 cm− 1 calculated with the 
rehybridized model and assigned to the peak measured at 40.5 cm− 1. 
Similarly, the mode that couples the Au dimers [see Fig. 32 (b)] calcu
lated at 68.9 cm− 1 for the RT structure, does not significantly shift at LT 
in the SC and CSC model (69.4 and 70.7 cm− 1, respectively) and cannot 
explain the behavior of spectral feature measured at 82.7 cm− 1. Thus, 
the comparison of the calculated vibrational properties with the 
measured spectra yields a strong argument for the rehybridized model 
for the description of the low-temperature phase. 

2.2.4. Electron transport 
In this section, we turn to experimental studies of the electronic DC 

transport in atomic wire systems, concentrating on Si(553)-Au. By 
measuring dc conductance we probe the scattering properties of elec
trons globally close to the Fermi level in an energetic range given by the 
Fermi distribution and kT. Depending on contact distance electron 
transport phenomena can be tested on a mesoscopic to macroscopic 
scales [138,327–330]. 

Four-tip STM-based transport experiments have previously been 
performed on Si(553)-Au and Si(557)-Au [331]. It was shown there that 
the wire system is conducting. Several 1D transport channels contribute 
to the conductivity of Si(hhk)-Au, which could be modified by adatoms 
like oxygen. Interestingly, as also confirmed by plasmon spectroscopy 
experiments on Si(557)-Au [332], e.g., metallicity is preserved under all 
oxidation conditions that are experimentally accessible in UHV. These 
experiments demonstrate together with hydrogen adsorption experi
ments on Si(553)-H [296] that changes in conductance are not mainly 
due to a local adsorption-induced distortion. Rather, non-local changes 
like the modification of band structure, e.g. by H adsorbed at the Si step 
edges, yields a better description of the modification of the transport 
properties. They indicate the existence of strong electronic correlations 
that comprise a whole mini-terrace. 

Extending earlier measurements on the clean Si(553)-Au system with 
the four-tip STM [281], a detailed view on the temperature dependence 
of the strongly anisotropic dc conductance in the Si(553)-Au system 
[333] reveals even more closely the fascinating interplay between the 
increasing hybridization between spin polarized Au and Si edge states. 
Indeed, our conductance results are fully in line with the theoretical 
scenarios outlined above in the first part of sec. 2.2. In other words, the 
main contribution to conductance stems from the Si dangling bond 
states at the step edge, which due to temperature dependent partial 
filling become conducting, first as a transient between the two insulating 
phases described by the models of Braun [282] and Erwin [144], but 
finally opening a permanent new 1D conduction channel at high tem
peratures. Thus all three models turn out to be relevant as thermal ex
citations at various stages, unifying and corroborating the picture 
already developed so far. 

The conductance along the wires as a function of temperature, after 
subtraction of the conductance perpendicular to the wires, which was 
taken as isotropic background, is shown in Fig. 33 for an Au concen
tration of 0.48 ML. Two pronounced maxima of conductance are seen at 
155 K and at 250 K, respectively. 

In qualitative agreement with our earlier study [281], a small re
sidual, presumably metallic, conductance (≃ 10− 7 S) remains, as shown 
in the inset of Fig. 33. This conductance curve changes little when the Au 

Fig. 32. Schematic representation of the displacement pattern of the dimer
ization modes (a) and (b), of the honeycomb translation mode (c) and the step 
edge mode (d). The displacement patterns are calculated within DFT-PBEsol 
according to the rehybridized model [306] of the LT phase. 
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concentration deviates by (±0.02 ML) from the optimal concentration, i. 
e. it is robust against Au vacancies or surplus atoms. More details can be 
found in ref. [333]. 

The conductance maximum originally found around 90 K appears 
now at 155 K, which is in agreement with ref. [275], while the second 
maximum was previously not seen at all. This difference to earlier 
measurements is most likely related to the absence of a significant 
isotropic background conductance in the data shown here up to 200 K. 
Such a background may be caused by a sub-surface concentration of C 
atoms, acting as an 2D-isotropic p-type space charge layer with a strong 
temperature dependence already below 100 K [334]. Contrary to this 
earlier situation, the isotropic background is dominated by Au doping 
during sample preparation, since temperature dependent analysis of this 
background quantitatively yields the activation energy for Au in
terstitials in Si [333]. 

The two distinct conductance maxima represent a rather unusual and 
puzzling behavior that need further detailed explanation. Interestingly, 
they are not directly linked to the phase transitions described above in 
sec. 2.2.1, as deduced from experiments of the temperature dependence 
of LEED, and further explained in ref. [333]. E.g. the 2D-1D transition 
for × 3 order, identified in Ref. [324], clearly happens far below 100 K. 
Also a contribution by the generation of mobile fractionally charged 1D 
solitons at the step edge that sets in at around 95 K [324,335] will be 
small due to their small mobilities. While they clearly disturb × 3 1D 
long range order, they can thermally only be generated as 
soliton/anti-soliton pairs with opposite signs of charges. 

As shown in the following, the two conductance maxima can indeed 
be understood within the framework already developed and described 
above as transitions between the R, SC, and CSC models. They take place 
over a wide temperature range. For this reason, the stability range of the 
different phases represented by these models are only rough estimates. 
Based on the AIMD results, the phase transition from the R phase to the 
spin liquid is completed at 150 K, at which the spin liquid has the highest 
probability. At this temperature, the second phase transition with local 
configurations described by the CSC model sets in, which we consider to 
be complete at 250 K. As already mentioned, the structural changes 
between these phases only affect dimerization of the Au chains and small 
variations of positional heights of Si step edge atoms (see Fig. 16), but 
these minor structural differences have a large impact on the electronic 
band structure, especially close to the Fermi level, as illustrated below. 

Fig. 34 shows the projected DOS of the Si step edge at various tem
peratures close to the Fermi level. The topmost panel corresponds to the 
pure R model, in which no step edge state crosses the Fermi energy, since 
in the (2,2,0) configuration the dangling bonds are either fully occupied 
and below the Fermi energy, or fully empty and above the Fermi energy. 
Correspondingly, the step edge related DOS at the Fermi energy 

vanishes, while the peaks related to the occupied and empty states can 
be seen at the left and at the right end of the panel, respectively. Thus the 
conductivity of the system is exclusively due to the metallic Au chain. A 
real space representation of the squared wavefunctions in an interval of 
0.1 eV around the Fermy energy (see Fig. 35) shows that the states which 
are important for conduction are indeed localized at the Au chain. They 
form a 1D conduction channel. 

The higher probability for spin-liquid configurations to appear as a 
function of increasing temperature has direct consequences to conduc
tance. Please note that the full occupation of a (2,2,1) state represents a 

Fig. 33. Conductance along the wires at an Au concentration of 0.48 ML as a 
function of temperature after subtraction of the conductance perpendicular to 
them. Inset: magnification of low-temperature range. 

Fig. 34. Projected density of states of the Si step edge in the Fermi level region 
for different temperatures. At 50 K (top panel), the DOS is that of the rehy
bridized (R) model [282], while at 150 K (bottom panel) it corresponds to the 
spin chain (SC) model [144]. The panels in between represent intermediate 
configurations. The Fermi energy is marked by a red line. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 35. Squared wavefunctions associated to electronic states within an in
terval of 0.1 eV around the Fermi energy calculated with the R model [306]. As 
only Au-related states cross the Fermi energy, a single conduction channel 
localized at the Au chain is formed. The surface unit cell is highlighted, the Si 
step-edge atoms with empty orbitals located below the other step-edge atoms 
are marked by red circles. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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configuration in which the spin-polarized electronic states of each spin 
channel are either fully occupied or fully empty. Therefore, this state is 
insulating again (see bottom panel of Fig. 34). The conductivity of a 
system in this state is again solely due to the Au related states, which are 
not strongly affected by the R-to-SC transition. 

However, the modification of the step edge occupation from (2,2,0) 
to (2,2,1) is coupled with a shift of one of the previously empty states to 
lower energies, from above to below the Fermi energy (for details, see 
next section). This transition is well represented in Fig. 34, in which the 
DOS of the unoccupied step edge states splits for increasing tempera
tures. One part remains roughly at the original position, while the other 
part moves below the Fermi energy. In the simulation, a step-edge state 
crosses the Fermi energy at a temperature of about 110 K, causing a 
transient enhancement of the DOS at the Fermi level. This crossing is 
expected to generate a resonance-like feature in the conductance, in 
agreement with the experimental observation of a sharp conductance 
peak, which in experiment is close to 155 K. Once the step-edge state 
passes the Fermi energy, the conductance decreases again, in agreement 
with the experimental observation. 

As AIMD also shows [282], the second conductance maximum at 
around 250 K is related to a second phase transition from the (already 
disordered [324]) spin chains to a system well described by the Krawiec 
(CSC) model. Also in this case the phase transition is a continuous pro
cess with marginal modifications of the atomic structure, but a large 
impact on the electronic structure, as shown in Fig. 36. During this 
second transition, the increasing hybridization between Au and step 
edge states causes the original band gap of the spin chain system to 
shrink. Similar to the first transition, mainly the unoccupied states 
change shape and shift during this transition. Thus again, the previously 
unoccupied states become more and more filled at temperatures above 
200 K. When this transition of the structure described by the CSC model 
is fully established, the step-edge states are localized at the Fermi energy 
(see last panel of Fig. 36), increasing the DOS of the states which are 
relevant for the electronic conduction. Importantly, in this way a truly 
new conduction channel, spatially separated from the one at the Au 
chain is formed, as shown in Fig. 37. Correspondingly, a broad and high 
conductance maximum is predicted and also measured. Due to its nature 
as a high temperature phase, it is also robust against small changes of Au 
concentrations, in agreement with experiment. At even higher 

temperatures, the step-edge oscillates with a higher amplitude [282], 
thus reducing conduction in this channel, as observed. 

Summarizing, the already established atomistic models turn out to 
represent thermally excited states of the Si(553)-Au system at different 
temperatures with the configuration of the R model as the lowest energy 
state. The transitions between them are not only compatible with the 
measured DC conductance, but can also explain the origin and form of 
the different features including sensitivity to defects.This study not only 
shows that all three models suggested for this chain system Si(553)-Au 
are relevant and valid, but at different temperatures, it also highlights 
the role of the Au chains in this system. While the Au chains provide 
some metallic conductivity and modify the electronic surface states 
strongly, the main part of conductance stems in fact from charge transfer 
to partially occupied Si step edge states. This is the - somewhat coun
terintuitive - result of correlations between Au and Si states. 

2.2.5. Transition from 2D to 1D 
As already outlined in chapter 1, one-dimensional wires are inher

ently unstable, but can be stabilized by interaction with their higher 
dimensional environment. Thus, strictly speaking, a pure one- 
dimensional description of the systems discussed here is not appro
priate. Lateral charge transfer between the Au chain and the Si step edge 
dangling bond wire, for example, is instrumental for the surface phase 
transition of Si(553)-Au, as discussed above [282] and shown in Fig. 38. 
The failure of a strict one-dimensional description of the highly aniso
tropic Si(553)-Au surface has also been demonstrated by the measured 
plasmon dispersion relations [266]. 

In general, excitations are expected to wash out the effect of the 
surface anisotropy and hence to suppress the indications of one- 
dimensional behavior. Interestingly, the Si(553)-Au shows the oppo
site: Thermal excitation induces a crossover from the lateral, i.e., two- 
dimensional coupling between neighboring dangling wires to a more 
one-dimensional behavior. As discussed above, the ground-state struc
ture Si(553)-Au is characterized by Si dangling-bond wires, where two 
filled dangling bonds alternate with one empty dangling bond [306]. 
The dangling-bond structure in different rows are in registry. As shown 
by SPA-LEED and STM, the lateral interactions lead to a centered 
arrangement of p(1 × 3) unit cells [280]. For temperatures above around 
100 K, however, the × 3 diffraction spots broaden, due to increasing 
disorder in the arrangement of the dangling bond wires. Hafke at al. 
[324] attribute this disorder to occupation changes in the dangling bond 

Fig. 36. Projected density of states of the Si step edge in the Fermi level region 
for different temperatures. At 150 K (top panel), the DOS is that of the SC model 
[144], while at 250 K (bottom panel) it corresponds to the CSC model [305]. 
The panels in between represent intermediate configurations. The Fermi energy 
is marked by a red line. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 37. Squared wavefunctions associated to electronic states within an in
terval of 0.1 eV around the Fermi energy calculated with the CSC model [305]. 
As Au related and Si step-edge states cross the Fermi energy, two spatially 
separated conduction channels are formed, localized at the Au chain and at the 
Si step-edge, respectively. The surface unit cell is highlighted. 
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wires, which interchange the positions of filled and empty dangling 
bonds, see Fig. 39. This elementary excitation can be viewed as a 
soliton-antisoliton bound pair. The formation of soliton defects leads 
with increasing temperature to a growing fraction of dangling bond 
wires that undergo registry shifts with respect to each other and hence 
the two-dimensional low temperature state begins to behave like a 
collection of uncoupled one-dimensional wires. 

Experimentally, this transition from 2D to 1D behavior has been 
determined by Hafke et al. through a change of the shape of the spot 
profile in LEED as shown in the insets of Fig. 40. At temperatures above 
≈ 120 K, the × 3 diffraction spots are well described by a standard 
Lorentzian, indicative for 1D behavior. At temperatures below ≈ 90 K, 
the 2D character of the diffraction is more pronounced and hence the 
spot profiles are described by a Lorentzian to the power 3/2 [44]. 

A well-defined transition from an exponent ν = 1.5 to ν = 1.0 be
tween T− = 93 K and T+ = 128 K is shown in Fig. 40. The transition sets 
in at the temperature for which the FWHM along the steps begins to 
increase (see Fig. 27. Fitting the spot profiles without allowing ν to vary 
leads to significantly worse fits (insets to Fig. 40). The transition is 
completed at T+, where the FWHM κ⊥ across the wires exceeds the size 
of the surface Brillouin zone as seen in Fig. 27, reflecting the complete 
loss of long-range order perpendicular to the wires. 

Very recently, those solitons were directly proven by STM and it 
could be shown that their motion is activated above 100 K [335]. 
Indeed, various mobile defects could be identified in Ref. [335] and 
were attributed to fractional topological solitons, which possibly pro
vide a new platform of robustly-protected informatics potentially with 
extraordinary functionalities. Thus, while the Si(553)-Au surface is 

Fig. 38. Si(553)-Au surface band structures calculated along the reaction path from local (2,2,0) (q = 0.0) to (2,2,1) (q = 1.0) configurations. To ease the inter
pretation, the bands are unfolded into the 1 × 1 Brillouin zone (see inset) following Medeiros et al. [318]. Yellow and red colors denote electron localization at Au 
and Si step edge atoms, respectively. Adapted from ref. [282]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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clearly a two-dimensional object, it still gives rise to fascinating 
one-dimensional phenomena. 

2.3. Indium on Si(111): phonons, structure and their relation to phase 
transitions3 

The system In on Si(111) was not only historically one of the first 
systems, in which the spontaneous break of symmetry induced by 
adsorption of submonolayers of In lead to quasi-1D structures, it also 
turned out to exhibit particularly rich physics in low dimensions. The 
adsorption of indium on Si(111) in the submonolayer range is known to 
result in various ordered surface reconstructions, as found for a variety 
of metals on silicon and germanium surfaces [336,337]. 

One of these adsorbate phases is the In/Si(111) (4 × 1) structure 
formed by a full monolayer of indium, mimicking the geometry of a 
π-bonded chain-structure of Si(111) (2 × 1) with the outermost Si plane 
being replaced by In atoms [338,339]. The discovery of a 
metal-insulator-phase transition into a (8 × 2) reconstruction by cooling 
below 130K, as reported by Yeom and coworkers in 1999 [46], led to an 

enormous scientific interest in this particular structure with regard to 
the nature of a Peierls transition in quasi-one-dimensional structures. So 
far, In/Si(111) (4 × 1) is the only 1D- or quasi-1D-surface structure 
which exhibits a Peierls transition. These observations, in conjunction 
with the fact that In/Si(111) forms an atomically sharp interface, has 
motivated numerous experimental as well as theoretical works in order 
to elucidate the nature and microscopic mechanisms of the phase tran
sition. As a matter of fact In/Si(111) represents a unique realization of a 
1D Peierls structure, which is accessible with reasonable experimental 
and theoretical effort. In particular, the investigation of the inter
twinement between lattice vibrational properties (surface phonons) and 
electronic structure have finally led to a consistent and very detailed 
understanding of the structure and the phase transition in this proto
typical system. 

It is now commonly accepted that the (8 × 2) reconstruction 
observed at low temperature represents the ground state structure, while 
the (4 × 1) phase observed at room temperature is a metastable structure 
with slightly different atomic coordinates of the surface atoms. Upon 
cooling the system undergoes a reversible transition from the metallic 
high temperature state to the insulating ground state [340–342] at Tc =

130 K [50,343,344] which is accompanied with the opening of a band 
gap of Egap = 0.2 eV [48,244,343] and the formation of a charge density 
wave (CDW). Fig. 41 shows the atomic structure of both the (4 × 1) and 
(8 × 2) reconstructions. The formation of the charge density wave along 
the In chain direction leads to period doubling, accompanied with a 
small displacement of atomic coordinates in the respective unit cells that 
causes the mentioned energy barrier in between [345]. Wippermann 
et al. [276] showed that the balance between the lower total energy of 
the stable (8 × 2) structure and the larger entropy of the metastable (4 ×
1) structure drives the phase transition. Moreover, two phonon soft 
shear and rotational phonon modes of the (4 × 1) and (8 × 2) structures 
were identified which transform the respective atomic positions by su
perposition of the phonon displacements [53,276]. Within a 

Fig. 39. Schematic model of creation and separation of a soliton-antisoliton 
pair. Charge is transferred from a filled dangling bond to an empty dangling 
bond, generating a hop of the empty dangling bond to a neighboring site and 
creating a soliton-antisoliton pair. If this pair separates then a phase-shifted 
domain with × 3 periodicity is formed. Adapted from ref. [324]. 

Fig. 40. Change of shape of spot profile. Plotted is the exponent of the Lor
entzian describing the spot profile of the 1 × 3 spot as function of temperature. 
Left inset: at low T = 60 K the spot profile is described by an exponent ν = 1.5 
indicative for two dimensional order. Right inset: at high temperatures T = 128 
K the spot profile is described by an exponent ν = 1.0 indicative for one 
dimensional order. Adapted from ref. [324]. 

Fig. 41. Atomic structure (top view) of the room temperature (4 × 1) (a) and 
low temperature (8 × 2) phase (b) of In/Si(111), respectively. The surface unit 
cells and the respective mirror plane/glide planes in the unit cells are indicated. 
The (4 × 1) structure has in addition a C2 rotational symmetry (not shown). (c) 
shows the corresponding surface Brillouin zones of the (4 × 1) (red) and (8 × 2) 
(blue) periodicities. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 3 Author mainly responsible for this section: Norbert Esser 
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thermodynamical approach the phase transition was described as a 
grand canonical Peierls transition [52]. In the grand canonical ensemble 
the Si substrate is acting as a charge reservoir in contact with the surface 
structure. It explains the Peierls-transition in the quasi-1D-structure and 
also its dependence on charge transfer by e.g. doping of the Si substrate 
[51,346] or adsorbates [229,230]. 

The strong correlation between electron and lattice degrees of 
freedom is indicated by phonon softening and the formation of coupled 
charge density - phonon modes, called amplitudon modes, in the (8 × 2) 
phase, which is the correlated phase at low temperature [52]. This 
strong electron-lattice coupling arises for two particular phonon modes 
which transform between the structures by a linear combination of the 
respective phonon displacement vectors. As shown below, these two 
modes refer to amplitudon modes in the correlated ground state. It was 
shown that the two amplitudon modes arise from a shear phonon 
distortion accompanied with a charge accumulation in the inner indium 
rows and a rotary phonon distortion accompanied with charge accu
mulation in the outer indium rows. In the following we will focus on the 
microscopic understanding of the phonon modes and their role in the 
phase transition. 

In recent years, a number of concerted experimental and theoretical 
studies of the lattice dynamical, electronic and thermodynamical 
properties of the structure has led to a very detailed understanding of the 
underlying mechanisms [52,53,233]. By Raman spectroscopy and 
ab-initio calculations of the surface structure and phonons a fully 
consistent picture of the surface vibrational modes of both phases was 
finally achieved [53,233,276,347]. Surface vibrational modes, i.e. 
characteristic fingerprints of both structures, were identified by Raman 
spectroscopy in a spectral range from 10 cm− 1–500 cm− 1 and subse
quently related to microscopic eigenmodes from frozen phonon calcu
lations. For the assignment, both eigenfrequencies and symmetry 
properties of the modes were considered. In particular, the low fre
quency eigenmodes in the spectral range up to 70 cm− 1 were shown to 
involve atomic displacements within the outermost In–Si layer and thus 
strongly depend on the surface structure. 

Fig. 42 shows Raman spectra of the low-frequency range in parallel 
and crossed polarization configuration. According to the C2v- and Cs 
symmetry of the In/Si(111) (4 × 1) and (8 × 2) structures, respectively, 
A′ denote the symmetry-conserving modes which appear under parallel 
polarization conditions, while A′′ denote symmetry-breaking modes 
showing up under crossed polarization conditions [53,233]. Conse
quently, both types of phonon modes can be experimentally distin
guished via their Raman polarization selection rules. 

In Fig. 43 eigenvectors of the modes of the (4 × 1) and (8 × 2) 
structures corresponding to the major Raman lines are shown. Modes of 
the (4 × 1) are indicated by numbers 2, 5, and 6 as discussed in Refs. [53, 
233]. The A′′ mode 2 corresponds to a shear displacement along the In 
rows, breaking the mirror plane symmetry. Please note that the Raman 
peak 2 is associated with mode 2 at the Brillouin zone center, while the 
displacement pattern shown in Fig. 43 refers to the according mode at 
the Y point of the Brillouin zone. At the Brillouin zone center the 
respective mode shows an in-phase shear displacement of adjacent in
dium double chains. The A′ mode 5 corresponds to a vertical displace
ment of In atoms and A′ mode 6 to a shear displacement perpendicular to 
the In rows, both conserving the mirror plane symmetry. 

Upon transition to the (8 × 2) structure, additional modes show up in 
the Raman spectra, see Fig. 42. Additional modes are indeed expected to 
arise from backfolding from the (4 × 1) zone boundaries. In addition to 
the backfolding, the structural arrangement within the unit cell is 
slightly different for the (4 × 1) and (8 × 2) structures. Thus, the ei
genvectors and eigenfrequencies of the modes may change due to the 
structural rearrangement within the unit cells. 

The relation of the (8 × 2) and (4 × 1)-modes has been discussed by 
Speiser et al. [53,233] in detail and will be briefly summarized here. 
Fig. 43 shows the eigenvectors of five eigenmodes of the (8 × 2) struc
ture at the Brillouin zone center, together with their respective 

counterparts in the (4 × 1) structure. The A′ shear and rotary modes I 
and IV of the (8 × 2) structure refer to those two modes which strongly 
couple with the electronic system. The (4 × 1) counterparts of the 
strongly coupled modes I and IV refer to modes at the zone boundary, at 

Y
̄ 

and X
̄ 

points, in the (4 × 1) structure. A′′ mode 2 in the (4 × 1) 
structure is the shear mode at Γ, while the according mode at the Y-point 
is the counterpart of the strongly coupled shear mode I. The shear mode 
2 at Γ corresponds to the A′′ mode II in the (8 × 2) structure (not shown 
here, displacements according to mode I but with inverted directions in 
adjacent In chains). The modes showing vertical displacements, i.e. A′ 
modes VII and IX, and the shear perpendicular A′ mode XIII, on the 
contrary are not strongly coupled to the electronic system and have 
phononic character. 

Summarizing, the modes I and IV in the correlated ground state 
phase, refer to amplitudon modes of the correlated phase and show the 
atomic displacements within the In rows associated with the respective 
charge density excitations [52,233]. The associated modes of the (4 × 1) 
structure are zone boundary phonons and correspondingly not visible in 
Raman spectra due to the momentum conservation rule. 

Raman spectra for different temperatures across the phase transition 
are shown in Fig. 44, together with an evaluation of phonon frequencies 
as a function of temperature. The five low frequency Raman lines 
observed in the spectral range refer to the eigenmodes I, IV, VII, IX and 

Fig. 42. Raman spectra of the (4 × 1) (a) and (8 × 2) (b) structures for parallel 

(z(xx)z
̄
) and crossed (z(yx)z

̄
) polarization configurations, corresponding to A′ 

and A′′-modes, respectively. The assignment of Raman peaks to phonon eigen
modes is indicated by Greek (for (4 × 1)) and Roman numbers (for (8 × 2)). The 
assignment is adapted from Refs. [53,233]. The eigenvectors of the labeled 
modes are shown in Fig. 43. 
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XIII shown in Fig. 43. Approaching the phase transition temperature of 
130K, the shear and rotary modes I and IV at 20 cm− 1 and 28 cm− 1 show 
a remarkably strong phonon softening of more than 10 % of their 
respective frequency at 45K (the lowest temperature achieved in the 
experiment), and vanish with the phase transition in the Raman spec
trum. The vertical modes VII and IX, however, do not show any indi
cation of phonon softening, since they are not strongly coupled with the 
electron system of the quasi-1D In-nanowires. The mode at 55 cm− 1 

lowers by less than 1 % up to Tc, while the mode at 42 cm− 1 remains 
constant in frequency and even shows a very slight hardening. Never
theless, mode VII vanishes from the spectrum since the corresponding 

mode of the (4 × 1) structure is located at the X
̄

-point of the Brillouin 
zone. 

Indeed, the Peierls theory predicts amplitudon modes to be Raman 
active excitations of the correlated phase [109]. The amplitudon modes 
of the correlated phase refer to a charge density modulation accompa
nied by a lattice distortion with periodicity of 2a0 of the uncorrelated 
phase [109,254,348,349]. The amplitudons show a strong softening 
according to ω2(T) ∝|T − Tc| when approaching the phase transition 
temperature Tc. Above Tc, in the uncorrelated phase, the excitations 
refer to phonon modes at the zone boundary, due to the change in 
periodicity accompanied with the Peierls transition. The according zone 
boundary modes of the uncorrelated phase show also a strong phonon 
softening when approaching Tc, called Kohn anomaly. 

A microscopic picture of the phase change in terms of electronic band 
structures and bond strengths has been derived from ab-initio calcula
tions as well as calculations within the crystal orbital Hamiltonian 
scheme [52,233,345]. The shear distortion is found to open a bandgap at 
the zone center while the rotary mode distortion does the same close to 

X
̄

-point of the (4x1) Brillouin zone (see Fig. 45). The shear mode 
distortion yields a modification of electronic charge mainly between the 
inner In-atom rows, while rotary mode distortion yields an accumula
tion of charge between pairs of In-atoms of the outer chains. Both effects 
are indicative of bond strengths changing continuously with the 
displacement, according to the re-structuring from zig-zag-chains in the 

uncorrelated phase to hexagons in the correlated phase (see Fig. 45). The 
structural transition is accompanied with an energy barrier of approxi
mately 100 meV per (8 × 2) unit cell. 

The predicted behavior of the amplitudon modes of the correlated 
phase is exactly reflected in the temperature dependent Raman spectra 
discussed above and becomes microscopically perceptible by the ab- 
initio calculations of lattice and electronic excitations. While the shear 
and rotary modes in the correlated phase refer to the atomic displace
ments associated with charge density fluctuations in the surface, also 
termed charge density waves (CDW), they refer to zone boundary pho
nons in the uncorrelated phase. The Kohn anomaly, on the other hand, 
cannot be observed with Raman scattering since Raman is restricted to 
zone center modes due to momentum conservation in well-ordered 
structures. 

Thus, a full microscopic understanding of structural, bonding, 
vibrational and electronic properties of both correlated and uncorre
lated phases is achieved. In section 3, the structural and electronic dy
namics of the phase transition are discussed. 

2.4. Si(557)-Pb: strongly interacting nanowires4 

The spin degree of freedom of electrons attracted much attention 

Fig. 43. Displacement patterns of corresponding phonon eigenmodes of the Si 
(111)-In (4 × 1) (left hand side) and (8 × 2) structures (right hand side). The 
displacement patterns are shown in a common (8 × 2) unit mesh to allow for an 
easy comparison for the (4 × 1) and (8 × 2) surface modes. The labelling by 
Greek and Roman numbers for (4 × 1) and (8 × 2) structures refers to the 
Raman modes shown in Fig. 42. Symmetry and related Brillouin zone points are 
denoted as well for each mode. The assignment is adapted from Refs. [53,233]. 

Fig. 44. Phase transition in vibrational spectra: (a) Raman spectra for different 
temperatures across the phase transition, (b) frequency of modes I (20 cm− 1), IV 
(28 cm− 1), VII (42 cm− 1) and IX (55 cm− 1) as a function of temperature. Modes 
I and II are the strongly coupled amplitudon modes, IV and VII are phonon 
modes. Modes I, IV and IX refer to zone boundary phonon modes in the (4 ×
1) structure. 

4 Authors mainly responsible for this section: Christoph Tegenkamp and Uwe 
Bovensiepen 
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over the last years. The electron spin plays a central role in the spin Hall 
effect [350,351], topological insulators [352], Rashba-type surface or 
interface states [353,354], and spintronic device structures [355]. 
Typically the propagation of electrons is treated as a single particle 
problem. This simple concept fails, however, when electronic correla
tion effects in low dimensional systems become important and spin- and 
orbit-effects are entangled like in hard-magnets [356], j = 1/2 
Mott-insulators [357], or in new emergent topological superconductors 
[358,359]. So far, for the formation of 1D atomic chains induced by 
adsorption of the high-Z elements Au and Pb, spin-orbit signatures in 
spectroscopy and transport were found, which we highlight in the 
following. 

Compared to many adsorbates on Si-surfaces, Pb does not alloy with 
the substrate and forms various surfaces phases on Si(111) [360,361] 
with intriguing properties. As an example, 2D superconductivity was 
found [362]. Pb structures with coverages close to the physical mono
layer (ML) grown on vicinal silicon substrates attracted much interest 
during the last decades as they host peculiar spin properties. For 
instance, Pb/Si(553) was reported to arrange in a well-ordered nanowire 
array, which electronically has a purely 1D character with metallic 
surface states showing a giant Rashba-type spin-orbit splitting 
[363–365]. Similar effects were observed for the partially embedded 
zigzag Pb chains on Si(113), which exhibit substantially spin-orbit-split 
one-dimensional electron bands [366]. This enhanced spin-orbit 
coupling is due to the strong 2D anisotropy and not present in 

isotropic 2D phases [367]. 
The Pb/Si(557) system presented here exhibits a peculiar inherent 

instability. Growth of Pb structures leads to a local refacetting of the 
surface. Depending on the exact Pb coverage in the range of 1.2 and 1.6 
ML, various facets are formed, e.g. (112), (335), or (223) [279,368]. The 
deviation from the overall (557) orientation is compensated by wider 
(111) terraces, or non-periodic step bunches. In the case of the particular 
Pb coverage of 1.3 ML, the surface undergoes a refacetting to a facet 
with (223) orientation. The (111) mini-terraces of this phase reveal a 
width of 4 2

3 aSi = 1.55 nm corresponding to a spot splitting in diffrac
tion of Δky = 21.3 % SBZ (Surface Brillouin Zone) observed with 
SPALEED [279]. Moreover, the terraces host densely packed Pb atoms 
revealing a reconstruction close to 

( ̅̅̅
3

√
×

̅̅̅
3

√ )
with four Pb atoms per 

unit cell [369]. Despite the existence of several STM images published in 
literature, see, e.g., refs. [139,368,369], high resolution images 
revealing details of the atomic positions were obtained only recently 
[370]. 

Interestingly, the system reversibly switches between 1D and 2D 
conductance as a function of temperature [371]. Below a critical tem
perature, Tc, of ≈78 K, a 1D metallic state with high a conductance along 
the Pb wires is present, while the anisotropic ensemble is insulating in 
the direction perpendicular to the wires. Above Tc, the system reveals 
anisotropic 2D conductance [369,372] (see sec. 2.4.4). This 
one-directional metal-insulator transition is explained by the formation 
of a spin-orbit density wave (SODW), due to a delicate interplay between 
spin-orbit coupling (SOC) and electronic correlation of the system [198], 
as outlined in section 2.4.5. 

The formation of Pb wires on Si(557) is a delicate process in two 
aspects. Usually, 2 ML of Pb was evaporated first at a substrate tem
perature of 605 K. Thereafter, the substrate temperature was lowered to 
575 K and an additional 1.5 ML Pb was deposited. During the first step, 
the Pb atoms do not stick to the surface at the elevated temperature, but 
induce the refacetting to a singly stepped surface, which is then stabi
lized by Pb adsorption on the (111)-mini terraces throughout the second 
stage of the recipe [279,327]. The resulting total coverage is approxi
mately 1.3 ML. The Pb evaporator was carefully calibrated, e.g., using 
the α- and β −

̅̅̅
3

√
×

̅̅̅
3

√
phases of Pb on Si(111). 

2.4.1. Atomic structure of densely-packed Pb nanowires 

Due to the miscut of 9.5◦ off [111] towards the 
[
112

̄ ]
direction, the 

clean Si(557) reveals, besides the integer spots and the (7 × 7) recon
struction of the Si(111) surface, further characteristic signatures: the 
spots are split along the mirror plane of the uniaxial surface. The cor
relation effects of the steps are seen best for the (1 × 1) spots, whereas 
the 7th-order spots of the reconstruction are only streaky indicating a 
weaker correlation. Although the (7 × 7) reconstruction is isotropic, the 
Si(557) surface is not equally stepped, i.e. the (557) surface, with a 
nominal terrace width of 52

3 a0 (a0 = 3.32 Å, row distance), consists of 
(111) and (112) facets. 

The situation changes completely when Pb is adsorbed on Si(557): 

The spot splitting along the 
[
112

̄ ]
direction increases dramatically, i.e. 

only four spots appear between (00) and (10). This splitting along the 
[
112

̄ ]
direction of ky = 21.3 % SBZ, indicated by the blue arrows in 

Fig. 46(a), corresponds to an equally stepped surface with a step dis

tance of d =

((

4 2
3a0

)2
+ (0.314 nm)

2

)1/2 

= 1.58 nm, i.e. a (223) facet 

structure with a miscut angle of 11.5◦. The (7 × 7) reconstruction is not 
visible any longer. Instead a new superstructure at the 

̅̅̅
3

√
-spots appears, 

i.e., these spots are split by ≈ 10 % SBZ along the 
[
1
̄

1
̄

0
]

direction 

(along the terraces, green circle). This splitting corresponds to a s = 10- 
fold periodicity along the Pb-chain direction and is nicely seen in STM 

Fig. 45. DFT-LDA electronic band structure of In/Si(111) in the (4 × 1) phase, 
after a shear distortion, and after a rotary distortion. Gaps open at Γ between 

two red bands and close to X
̄ 

between four blue bands. (b) and (c) show the 
respective changes in charge density associated with the displacements. in (c), 
left panel, the bond strengths as determined by an analysis within the crystal 
orbital Hamiltonian population scheme (COHP) are shown. The thickness of 
lines represents the bond strength. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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(panel b). The mini-terraces of the (223) facets have sufficient width to 
allow formation of ordered 

̅̅̅
3

√
-units, indicated by the yellow diamond 

on Fig. 46(b). 
The coverage dependence of the Pb reconstruction and its modula

tion along the terraces reveal strong similarities with the Devil’s stair
case phases reported on Pb/Si(111) [373]. These so-called linear (m, 
n)-phases, a combination of m 

̅̅̅
7

√
×

̅̅̅
3

√
and n 

̅̅̅
3

√
×

̅̅̅
3

√
units, appear in 

our case only as a single domain structure and the 10-fold periodic 
structure is denoted as a (1,5) phase. As already mentioned, the 

̅̅̅
3

√
×

̅̅̅
3

√
phase consists here of four Pb atoms (one on the centered H3 and 

three on off-centered T1 sites), i.e. the coverage of the non-split structure 
is 43 ML. Accordingly, the 

( ̅̅̅
7

√
×

̅̅̅
3

√ )
cell contains six Pb atoms (one on 

H3, five on off-centered T1) per five Si atoms. With these two units, a 
coverage of 1.31 ML results for the (1,5) phase, strictly yielding a 
10-fold periodicity along the terraces. Based on a contrast enhanced 
STM image of a (223) terrace, a slightly optimized atomistic model is 
proposed and shown in Fig. 46(c). Compared to the (5,1)-phase 
revealing strictly a 10-fold periodicity, the new model is rather based if a 
compressed 

̅̅̅
3

√
×

̅̅̅
3

√
unit cells giving rise to a 11-fold periodicity. 

However, as shown by our former LEED experiments [279], the splitting 
is not exactly 10 % SBZ and sensitively depends on minutes amounts of 
excess coverage. To remain consistent with previous work, we therefore 

refer to the modulation as a quasi-10-fold periodic structure in the 
following. For this structural model, the underlying silicon lattice was 
calibrated by means of a nearby larger (111) terrace hosting the SIC 
phase. The Pb atoms on top are arranged as tetramers that form a 
compressed 

( ̅̅̅
3

√
×

̅̅̅
3

√ )
reconstruction to fit the observed pattern. 

Although the central atom of the tetramers remains hidden as in the case 
of Pb/Si(111) [367], it is a suitable approach as the 

( ̅̅̅
3

√
×

̅̅̅
3

√ )

diffraction spot is split due to varying modulation lengths [279]. At the 
1.31 ML coverages, the step edges were assumed to be still uncovered by 
Pb so that the dimerized Si bonds remain present at step edges giving rise 
to the half-order diffraction lines in Fig. 46(a) (yellow arrow) [279]. 
Indeed, a periodicity of roughly 2aSi is observed by STM at the step 
edges, but it seems to be modulated in the same fashion as the 

̅̅̅
3

√

reconstruction. Therefore, the dimerization feature in diffraction is 
rather due to two rows of Pb atoms with reduced density compared with 
the terrace (see Fig. 46(c)). In any case, the Pb-induced formation for 
extended (223) facet areas with a higher step density compared to the 
initial (557) surface orientation already points towards an electronic 
stabilization of this phase (see also section 2.4.4). 

This stabilization of the structure is supported by decoration exper
iments with excess Pb coverage giving rise to atomic chain ordering with 
ultra-long periods [374]. Instead of a random step decoration, period
icities up to six (223)-terrace widths (28 atomic Si rows, 93 Å) were 

found. Diffraction profiles taken along the 
[
112

̄ ]
direction show for Pb 

excess coverage besides the (223) spots additional satellite spots, which 
are characteristic for the additional chain ordering (cf. green arrows in 
Fig. 47). These depend inversely on excess Pb concentration and end at a 

Fig. 46. a) SPALEED pattern (99 eV) with 1.31 ML Pb on Si(557) forming a 
(223) facet structure (blue arrows). b) STM (+1 V, 80 K) revealing the interwire 
spacing of d = 1.58 nm of a (223) facet structure (scale bar, 2 nm). The period 
of 5.8 Å =

̅̅̅
3

√
× aSi correlates with formation of a Pb-

̅̅̅
3

√
×

̅̅̅
3

√
R30◦ recon

struction (size of unit cell indicated by yellow trapeze). The superimposed 
modulation s results in spot splitting in a) (green circle) of around 10 % SBZ 
[139]. c) Contrast enhanced LT-STM image (+0.5 V, 0.3 nA, 10 K) of a Pb 
nanowire and top view of a new atomistic model of this dense Pb-

̅̅̅
3

√
phase. It 

consists of tetramers marked by red and three adjacent green circles. Blue 
circles denote Pb atoms arranged in two rows along the step edge. The Si lattice 
is shown by gray-colored circles [370]. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 47. a) Line scans taken along the 
[
112

̄ ]
direction for Pb coverages be

tween 1.31 and 1.41 ML. The curves are shifted for better visibility. b) Phase 
diagram of Pb/Si(557) for various Pb coverages. The (223) phase is stable 
within 0.1 ML of excess coverage [374]. c) STM image of Pb nanowire with a 
local excess coverage of 0.2 ML Pb (orange circles), leading to a tilting of some 
of the tetramers [370]. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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concentration of 1.52 ML when all terraces are decorated with a line 
density equal to the Si density at steps. Within 0.1 ML excess coverage 
the Pb-induced (223) facet structure is stable, as shown by the diagram 
in Fig. 47(b). Based on the contrast-enhanced STM image, shown in 
panel c), we suggest a model how the excess Pb is incorporated. Due to 
the excess coverage, also the modulation length along the wires become 
larger, in agreement with high resolution SPALEED investigations 
[279]. 

2.4.2. Interaction of electrons with phonons in Pb films and with steps of the 
Si substrate 

Interactions of electrons with deviations of the crystal periodicity 
results in e-ph coupling and scattering of electrons at superstructures or 
defects. Both aspects were investigated experimentally here in low 
dimensional Pb structures grown on single crystal Si surfaces. The e-ph 
coupling was analyzed for epitaxial monolayer films on Si(111) by a 
photoelectron emission spectroscopy linewidth analysis as a function of 
temperature [375]. The electronic scattering with quasi-one dimen
sional superstructures became accessible at vicinal Si(557) surfaces on 
which Pb nanowire arrays were prepared as described above, see 
Figs. 48–52, in femtosecond time-resolved two-photon PES [376]. 

Fig. 48 shows in the top panel the laser PE spectrum obtained with 
photon energies of 6 eV. The main spectral feature observed is the 
electronic quantum well state which originates from confinement of the 
Pb 6pz electrons to the 2D film at a thickness of 5 ML [377,378]. From 
the comparison of the two spectra shown for temperatures of 31 K and 
120 K one can conclude on thermally induced broadening due to e-ph 

coupling. As discussed in Ref. [379] the analysis of the temperature 
dependent linewidth provides direct access to the e-ph induced mass 
enhancement and the e-ph coupling constant λ. Our temperature 
dependent linewidth analysis showed a linear increase in linewidth with 
temperature above 60 K up to 175 K. At higher temperature the wetting 
Pb films become unstable. Fig. 48 reports the obtained values for λ in the 
bottom panel for 5, 7, and 12 ML thick films. These experimental find
ings are compared to calculations of λ by DFT including spin orbit 
interaction. The red data points refer to two sets of results for mo
mentum averaged values of λ for the case of free standing films and an 
atomic structure fixed according to the structure of the substrate. Both 
clearly overestimate the experimentally found value. We obtain better 
agreement with the experimental result for the calculation of mo
mentum selective λ. The open black circles assume the fixed structure 
and contributions from the Γ region in the Brillouin zone probed in 
experiment. The respective reduction in λ is a consequence of the re
striction to the 6pz bands. The 6 pxy bands will also contribute to e-ph 
coupling but are not tested in the present experiment since they are 
further out in the Brillouin zone in regions that do not contribute to the 
spectral line analyzed here. The remaining discrepancy between 
experimental and theoretical coupling constant is attributed to struc
tural effects of the Si substrate that were not included in the fixed 
structure assumed for free standing films here [378]. We expect that a 
future calculation for larger unit cells which include the Si substrate 
explicitly will improve the agreement. 

We now turn to the experiments discussing the interaction with the 
steps in the Pb/Si(557) nanowire arrays. Time-resolved two-photon 
photoelectron emission spectroscopy is carried out as described in Refs. 

Fig. 48. Top: Laser-excited PE spectrum in normal emission geometry for a 5 
ML thick lead film on Si(111) for two different temperatures as indicated. The 
filled area represents the highest occupied quantum well state contribution to 
the spectrum with the linewidth G of a Lorentzian line, the dashed line repre
sents the considered background including the Fermi–Dirac distribution func
tion. The solid line is a fit to the measured spectrum which consists of a sum of 
the background and the Lorentzian line. Bottom: Electron–phonon coupling 
parameter λ(EF) averaged over electron momentum at the Fermi energy as a 
function of Pb film thickness. All theoretical data were obtained with spin–orbit 
interaction included. 

Fig. 49. (a) Sketch of the experimental geometry. Pump and probe femto
second laser pulses used for the 2PPE process were p-polarized parallel to the 
step edges of Si(557). PE spectra were recorded by a position-sensitive time-of- 
flight spectrometer [380] that records PE events along kx and ky simulta
neously. (b) Momentum-averaged 2PPE intensity as a function of pump-probe 
delay t in a false-color representation. Positive delay times refer to the situa
tion in which the intermediate states are populated by the UV pulse (hν1 = 3.8 
eV) and probed by the VIS pulse (hν2 = 1.9 eV). The right panel shows the 
momentum averaged 2PPE spectrum recorded at Δt = 0. (c) Population decay 
rates for state A, see panel (b), as a function of step-perpendicular in-plane 
momentum ky. Error bars along the momentum axis indicate the integration 
windows used for data analysis. The dashed line is a guide to the eye. The inset 
sketches ”step-down” and”step-up” processes with respect to the macroscopic 
sample surface. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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[381,382]. As illustrated by Fig. 49(a) a unique time-of-flight spec
trometer with a position sensitive anode was used [380], which facili
tated parallel detection of momentum dependent and time-resolved 
two-photon PE spectra perpendicular and along the steps of Si(557). 
Fig. 49(b) shows typical experimental results as a function of time- and 

energy in case of momentum averaging. Above the Fermi energy three 
spectral features A, B, C are identified. Features A and B are well defined, 
unoccupied interface states that are assigned to electronic bands of the 
interface calculated by density functional theory [376]. Feature C is a 
spectrally broad continuum that most likely involves momentum 
dependent scattering at lower energy. The momentum averaged analysis 
of the time-dependent spectra shown in Fig. 49(b) resulted in combi
nation with a rate model description in a determination of lifetimes τA =

24(3) fs, τB = 35(3) fs, and τC = 65(3) fs. The momentum dependent 
analysis revealed two interesting results, see Syed et al. [376] for details. 
(i) Intraband scattering in the band of state A: Here a high energy 
electron at large k scatters via interaction with an electron below the 
Fermi energy to smaller k within the band. In a direction perpendicular 
to the step edges along ky we identified the symmetry break induced by 
the presence of the steps in these intraband scattering rates. The 
experimental results are shown in Fig. 49(c) as lifetimes (right axis) or 
decay rates (left axis) for positive and negative ky, i.e. step-up and 
step-down, respectively. We observe that the decay rate is about 20 % 
larger (and the lifetime correspondingly shorter) for the step up direc
tion than for the step down direction. This observation provides 
microscopic information on the scattering potential at the steps. In 
comparison with related work on the step induced scattering in image 
potential states on vicinal Cu(001) surfaces [383] the observed changes 
in the scattering rates up and down the steps are much larger in the case 
of the stepped metal-semiconductor interfaces studied here. This 

Fig. 50. a) Constant energy map (CEM) taken at EF-0.1 eV of 1.3 ML Pb on Si 
(557). The intensity distribution is well described by a set of ellipses centered at 

the Γ
̄ 

points of the (111) terraces and at centers shifted by the reciprocal lattice 
vector g = 2π/d, where d is the interchain distance. The area marked by the 

black square is shown in c). b) Energy dispersion along the 
[
112

̄ ]
(y) direction 

showing the nesting at EF. c) Schematic drawing of the nesting points overlaid 
on the CEM taken at EF-30 meV. d) Sequence of momentum distribution curves 

(MDCs) along kx (
[
1
̄

1
̄

0
]

-direction) and ky = 2.25 1/Å at various energies 

around EF. The ARPES experiments were performed at T = 40 K and a photon 
energy of hν = 160 eV [327]. 

Fig. 51. a) STM dI/dV spectra for 1.3 ML Pb on Si(557) taken below (blue) and 
above (red) Tc. The spectra are shifted vertically for clarity, the horizontal black 
lines mark the origin for each curve. The low temperature spectrum is fitted by 
the Dynes function, shown in black. b) Spatially resolved (averaged) spectra 
across the ribbons. The gap size is gradually reduced towards the outward edge 
of the Pb nanoribbon. The inset shows the Pb nanowire like in Fig. 46c) [370]. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 52. a) Conductance for 1.31 ML Pb on Si(557) as a function of temperature 
and the crystallographic direction. G‖ and G⊥ refer to the conductance 

measured along the 
[
1
̄

1
̄

0
]

and 
[
112

̄ ]
directions, respectively. The inset shows 

a modified van der Pauw geometry, which allows for symemtrization of the 
current with respect to the step structure [371]. b) Temperature dependence of 
conductance G⊥ across the wires for various Pb coverages between 1.3 and 
1.5 ML on almost perfect (223) facet structures on a linear scale (left) and as 
semilog plot versus 1/T (right). The inset shows the effective activation energies 
ΔE for electronic transport derived from these data and that obtained from 
ARPES (black circle, shown in Fig. 50) [329]. 
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highlights the stronger and more localized dipolar scattering potential at 
these interfaces. This finding is very plausible, since the chemical 
bonding of Pb–Si at the interface involves local bonds and charge 
transfer contrary to a metal-vacuum surface where Bloch electron den
sity variations determine the step dipole responsible for scattering at the 
steps. 

2.4.3. Fermi nesting in a quasi 2D system 
The overall 2D character is supported by ARPES measurements and 

obvious from the constant energy map (CEM), shown in Fig. 50(a)) 
[327]. The intensity distribution in k-space 0.1 eV below EF can be 

reconstructed by ellipses around the Γ
̄ 

points of the (111) terraces and, 

in addition, by shifted replicas along the 
[
112

̄ ]
direction. The ellipses 

resemble those of a free electron gas system that is modified by the 
anisotropy of the system in its metallic state, and by the periodic step 
structure. Metallicity is also seen by plasmon spectroscopy (see 
sec. 2.5.7) and surface transport (see sec. 2.2.4). 

This simple picture, however, does not contain the full truth for two 
reasons. First, the periodic step array results in a shift vector of the el
lipses, g, which corresponds exactly to the reciprocal lattice vector g =

2π
d = 0.40 ± 0.01 Å− 1, where d = 1.58 nm is the interchain distance. 
Such repeated structures also have been found for a variety of vicinal 
metallic surfaces [384,385]. From the energy distribution curve shown 
in panel b) the interrelation between the (223) facet and the filling factor 
of the Pb-induced electronic states becomes obvious: Complete filling of 
the topmost band is demonstrated by the coincidence of the reciprocal 
lattice vector g with 2 kF at EF and gives rise to Fermi nesting. 

Second, when going close to the Fermi level, deviations from the 
elliptic form towards more straight sections become visible, which are in 
fact necessary in order to get efficient Fermi nesting. This renormali
zation of the Fermi surface due to nesting is illustrated in Fig. 50(c), 
which shows the section of Fig. 50(a) marked by a square. In this part of 
the phase space Umklapp scattering by + g and − g becomes most pro
nounced. In order to facilitate interpretation, a SBZ grid based on the 
interchain distance d and the modulation s along the wires is super
imposed. In the central part of this figure, the two nearly straight sec
tions are separated by exactly the reciprocal lattice vector g, and the 
ARPES intensity is fully concentrated at the zone boundary in the ky 
direction, i.e., the Fermi surface is nested. In terms of transport, this 
causes an insulating behavior in this direction, as we will show below. In 
kx-direction, this intensity can be grouped into two contributions, 
marked by red and green dots. While the intensity at the red dots appears 
at the zone boundary in both directions, the intensity marked green 
corresponds to intensity modulations with a period of f = 2π/s = 0.16 
Å− 1, and is located close to the zone centers. This quasi-tenfold peri
odicity along the chains marks the crossing of a (repeated) doublet of 
split bands with the Fermi level at these points, as seen in Fig. 50(b)). As 
obvious from the MDCs shown in Fig. 50(d), only the bands marked by 
the green dots in Fig. 50(c) have a finite intensity at EF, i.e., only these 
bands cross the Fermi level and are the only ones that can contribute to 

electron transport in the 
[
1
̄

1
̄

0
]

direction. From this analysis we can 

also estimate a 1D band gap of approximately 20 meV, in agreement 
with transport and STS measurements (see below) [370,371]. This 
electronic gap protects the (223) facet structure and makes it immune to 
some extent against Pb excess coverage, as discussed in context of 
Fig. 47(a)). The intensity close to the open circles marked in panel c), on 
the other hand, is the result of an intersection of three ellipses, i.e., it is 
not affected by structural details of Pb ordering. Therefore, it is not of 
relevance here. 

The importance of electronic correlation in this system is corrobo
rated by recent STM measurements [370]. As shown in Fig. 51(a), below 
Tc the density of states at EF vanishes coming along with the opening of a 
gap. This change of DOS comes along with a metal-insulator transition, 

which we discuss in detail in sec. 2.4.4. At low temperatures, we see the 
formation of a BCS-like gap structure. This phase was analyzed in detail 
using the Dynes function [386,387], including the gap energy 2Δ as well 
as an additional broadening with a linewidth due to inelastic 
electron-electron scattering. This function is appropriate for modeling 
STS spectra of electronically correlated materials, e.g., superconductors 
but also for Mott states, e.g., Sn/Si(111) [388] and or a spin-orbit Mott 
insulator Sr2IrO4 [389]. As the comparison with the ARPES and trans
port data will show (see below), the Dynes function can also be used to 
quantify the spin orbit density wave in our case. For the Pb nanowire 
without excess coverage on the (223) facet we obtain 2Δ = 31.8 ± 0.5 
mV, which is in the same order as the gap size of around 20 meV 
deduced from the ARPES measurements shown in Fig. 50(d) [327]. 
Using the transition temperature of Tc = 78 K, measured with DC surface 
transport and SPALEED [371,390], the ratio 2Δ/kBTc is ≈ 4.7, which is 
very close to the BCS ratios of 4.4 and 4.3 obtained for superconducting 
Pb monolayer films on Si(111) and Pb bulk, respectively [362]. As 
obvious from Fig. 51(b), the electron gap is completely formed in the 
center of the ribbons and is reduced at its edge. We will address this edge 
feature, when we discuss the magnetotransport experiments in 
sec. 2.4.5. 

In accordance with the ARPES and transport finding, our STS signal 
is compatible with the signatures of a not fundamental band gap. The 
local spectroscopy probes the conductance across the surface and sam
ples the electronic states within a certain momentum range mainly 
around the Γ point. In agreement with ARPES measurements, the 
spectral weight in this region of the phase space at EF is very low. 
Apparently, the most intense features found at (kx, ky) ≈ (0.14 Å− 1, 2.25 
Å− 1) (cf. Fig. 50) are not effectively contributing to the tunneling 
process. 

In addition, STS experiments on Pb-nanowires with an excess 
coverage were also performed (not shown) [370]. Compared to the case 
shown above, the electronic gap on the wire excess coverage is still 
visible, but vanishes completely when approaching the step edge, where 
additional Pb is present. Here, the local density of states exhibits an 
additional state close to EF, which does not exist in nanowires without 
extra Pb coverage. At the step edge of the lower terrace, this state gets 
even more pronounced with its tail crossing EF. It rather resembles the 
asymmetric line shape of a Fano resonance [370,391]. Apparently, there 
is increased scattering in the presence of excess Pb coverage. The elec
trons along the delocalized channel scatter resonantly with the localized 
states induced by the excess Pb, which marks the crossover to a 2D 
behavior, as, e.g., seen in DC transport and plasmon spectroscopy (cf. 
sec. 2.5.7) [263,372]. 

2.4.4. Quasi-Peierls transition into 1D 
The Pb/Si(557) system was also investigated by surface transport 

[371]. For this purpose, an extended four-contact geometry with eight 
pre-deposited macroscopic TiSi2 contacts, approximately 50 nm thick, 
was used. They are separated pairwise by slits machined into the sam
ples, as shown in the inset of Fig. 52(a)). By switching between equiv
alent sets of contacts, the conductance was measured sequentially 
parallel and perpendicular to the steps. The separation between equiv
alent contacts was approximately 10 mm. In all measurements contri
butions of the clean Si substrate were subtracted. 

The DC conductance measured parallel and perpendicular to the 
steps at 1.31 ML is shown in Fig. 52(a). This curve is reversible and 
dominated by an abrupt change at a temperature of 78 K separating a 
high temperature region with small conductance anisotropy from the 
low-T region, where 1D metallic transport along the wire direction is 
seen. This 1D metal-insulator transition is in line with the change of the 
density of states at EF probed by STS and discussed in context of Fig. 51 
(a). In view of the nesting conditions discussed in the previous section 
(sec. 2.4.3), this 1D transport is a result of the gap opening along the 
[
112

̄ ]
direction, i.e. of Fermi nesting, as seen in Fig. 50(b). Moreover, 
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due to the modulation along the wires, band backfolding results in states 

crossing EF close to the Γ
̄ 

points. Thus the mesoscopic Fermi wavelength 
makes the propagating electrons rather robust against scattering at 
atomic defects, so that metallic behavior is found along the wires even in 
a macroscopic experiment. 

Before we explain the 1D/2D transition, we want to point out that 
this transition depends strongly on the initial coverage, and on details of 
the preparation method. Both the exact concentration of a physical Pb 
monolayer and the transition into a long-range ordered (223)-facet 
structure are required in order to see the transition in transport [230, 
329,371]. Moreover, we performed also transport measurements with 
Pb concentrations in excess of 1.31 ML. The effect of the formation of 
periodic chain ordering, i.e. terrace modification due to the excess 
coverage, can be monitored also by surface transport, as shown in 
Fig. 52(b). Starting from 1.31 ML of Pb with the small gap of around 20 
meV [327], the 1.32 ML curve still shows the abrupt transition, which 
apparently has disappeared for 0.06 ML Pb excess coverage. At the same 
time, the original insulating state below 78 K becomes gradually more 
conducting as the coverage is increased with a clear signature of acti
vated transport. The quantitative evaluation of the temperature 
dependence of conductance (right part of this figure and inset) indeed 
reveals a continuously decreasing effective activation barrier for elec
tronic transport, which results in purely metallic behavior at a Pb con
centration of 1.50 ML. Thus, interpreting these activation energies ΔE as 
the gradual decrease in the band gap, these findings from transport 
nicely fit into the nesting model presented above. Once 1.5 ML is 
deposited, all steps are completely decorated, and fully metallicity is 
reached, as expected [279]. 

The 1D/2D transition seen in transport is induced by a refacetting 
transition. Adsorption of 1.3 ML Pb on Si(557) results in the formation of 
a long-range ordered (223) facet structure, as impressively shown by the 
(k‖, k⊥)-plot for electron energies ranging between 80 and 230 eV in 
Fig. 53(a). We have analyzed the rods as a function of temperature 

around the (1
̄

0)-spot. Fig. 53(b) shows exemplarily two line scans along 

the 
[
112

̄ ]
direction in reciprocal space for temperatures below (75 K) 

and above (80 K) Tc. Below Tc, the part of the profiles shown there is well 
described by three diffraction peaks (blue curves, denoted by 1 and 2 

and (1
̄

0) spot). The electron energy of 96 eV is close to an out-of-phase 
scattering condition for the first-order spot with respect to a step height 
of 3.14 Å between (111) terraces, as can be seen by the almost sym

metric relative positions of the step train peaks with respect to the (1
̄

0) 

peak. This small (1
̄

0) peak, serving as calibration point here, exists due 
to small inhomogeneities on the surface or due to pinned steps yielding 

larger and uncorrelated (111) terraces (less than 10 %). Above Tc, the 
diffraction peaks of the step train shift, but are also split and/or 
broadened (cf. Fig. 53(b). Peak 2 shifts closer to the Bragg peak so that 
splitting into two peaks can be observed. The splitting is around 3 % 
SBZ. On the other hand, a splitting of peak 1 cannot be resolved due to 
broadening. The detailed analysis revealed a transition from the (223) 
facets to an average (17,17,25) orientation [390]. These shifts, splitting 
(Δky), and broadenings (FWHM) are reversible and the results as a 
function of temperature are shown in panel c). The discontinuity at Tc is 
evident. 

The critical temperature of this so-called refacetting transition fits 
very nicely to the Tc measured in transport (cf. Fig. 52(a)). No local 
expansions of lattice constant are involved in this phase transition and 
all atoms remain on their crystalline sites. It is thus a order-order phase 
transition, in which only the average inclination of the facets on the 
surface changes at Tc. Apparently, at this temperature the excitation of 
electrons across the 20 meV gap is obviously coupled with the destabi
lization of the (223) facet in favor of the (17,17,25) facet with a lower 
step density. This small change in periodicity leads to a breakdown of 

the Fermi nesting (2kF = g) condition along the 
[
112

̄ ]
direction and a 

transition from 1D to 2D conductance. It directly demonstrates the 
strong coupling between electronic and vibrational degrees of freedom 
and fits into the (generalized) model of a Peierls transition. 

2.4.5. Correlation of spin and charge: formation of a spin-orbit density 
wave 

In order to address the role of electron spin in this system, magne
totransport measurements were performed. The superconducting split 
coil magnet used here reaches magnetic fields of ±4 T, which were 
directed perpendicular to the sample surface. The samples were moun
ted on a cryostat at allowed temperatures between 9 and 300 K at the 
sample. Further details, also about the evaluation of the transport data, 
can be found in Refs. [393,394]. 

Magnetotransport for Pb multi- and monolayer structures on Si(111) 
reveal a decrease of the conductance with increasing magnetic field, a 
hallmark for weak antilocalization (WAL). The elastic and spin-orbit 
scattering times, τ0 and τSO, respectively, are in the range between 
10− 13-10− 15 s [395,396]. The peculiar DC-transport behavior below 80 
K of the perfectly ordered Pb-chain structure after deposition of 1.3 ML 
was already discussed in context of Fig. 52(a). A special signature at this 
Pb concentration is also seen in magnetotransport measurements and 
shown in Fig. 54(a). While in the perpendicular direction WAL is seen, as 
for all other Pb concentrations between 1.2 and 1.5 ML the magneto
conductance for the parallel direction is reversed to weak localization 
(WL). This anomaly disappears for coverages at and above 1.5 ML, 
where all mini-(111) terraces of the (223) facet have incorporated the 

Fig. 53. a) (k‖, k⊥)-plot along the 
[
112

̄ ]
direction showing the regular step train of a (223) facet after adsorption of 1.3 ML Pb on Si(557) for electron energies 

between 80 and 230 eV. The measurements are taken at T = 40 K. The dashed square around S = 5 marks the range in k-space for the line scans shown in panel b). 

There, two exemplary line scans at fixed k⊥ close to the (1
̄

0) spot below and above Tc are shown. c) Variation of the spot splitting Δky and the FWHM, as defined in 
b), as a function of temperature. In both cases, the discontinuity at Tc is clearly visible [390]. 

H. Pfnür et al.                                                                                                                                                                                                                                   



Surface Science Reports 79 (2024) 100629

46

maximum amount of excess coverage (see model in Fig. 47(c)), and WAL 
was found for both directions. 

From the Hikami analysis we derive a spin-orbit scattering time, 
which around the Pb concentration of 1.3 ML is larger by 3 orders of 
magnitude than outside this coverage range. The results of τSO for both 
directions are shown in Fig. 54(b)). Contrary to the behavior of τ0, spin- 
orbit scattering seems to be sensitive predominantly in the direction 
along the wires. The elastic scattering times are independent of Pb 
coverage and the ratio τ0,‖/τ0,⊥ = 4 is in good agreement with the 
anisotropy in conductance above Tc, i.e., the elastic scattering rates are 
essentially controlled by the steps. 

As a first rational of these findings in magnetoconductance, we recall 
that for the 1D quasi-Peierls transition at 78 K the split-off states are 

mainly responsible for the transport along the wires. Moreover, if these 
bands are spin polarized, it is obvious that scattering of electrons close to 
the Fermi level from +k to -k requires spin Umklapp. This results in an 
effective suppression of spin-orbit scattering under these conditions. 
Spatially resolved STS experiments revealed, that the gap vanishes when 
the spectra a taken close to the step edge of the Pb nanoribbon (cf. 
Fig. 51(b)). However, whether the transport channels are related to 
topologically protected edge states, e.g. like in epitaxial sidewall zigzag 
graphene nanoribbons [397], remains unclear at moment and demands 
further investigations. 

In order to capture the spin degree of freedom spectroscopically, 
spin- and angle resolved PE experiments were performed [138]. As a 
consequence of the broken inversion symmetry, SOC leads inevitably to 
spin-polarized states in these low-dimensional systems at surfaces [398]. 
The experiments were performed with p-polarized light (mostly hν = 24 
eV) at 60 K at the Swiss Light Source. 

In contrast to the measurements with spin integration at hν = 160 eV 
(shown in Fig. 50), the MDCs shown in Fig. 55 a) along the 
[
112

̄ ]
direction, measured with a lower photon energy and with a Mott 

detector, reveal a characteristic substructure that is shifted by around 
0.2 Å− 1 with respect to the dominant replica structure. Nearly perfect 
modeling of the intensity distribution is possible by pseudo-Voigt peaks 
separated by half the reciprocal lattice vector g. The corresponding spin 
asymmetries measured with the Mott detectors and weighted with the 
system-specific Sherman function are shown in Fig. 55(b)) for (Px, Py, 
Pz). Thereby, a spin polarization of around 40 % was measured for the 
component perpendicular to the direction of the momentum, i.e., along 

the 
[
1
̄

1
̄

0
]

direction for Px, while the y and z components do not show a 

clear polarization signal. The (Rashba) splitting Δk0 = 0.2 Å− 1 found 

along the 
[
112

̄ ]
direction is extremely large and, interestingly, half the 

size of the reciprocal lattice vector g; i.e., it takes its maximum possible 
value. For comparison, the Rashba-splitting measured for the isotropic 
2D phase is Δk0 = 0.04 Å− 1 [367]. 

It was shown that inherent spin splitting such as Rashba-type SOC 
yields Fermi surfaces (FS) with nesting between opposite helical states 
causing a so-called spin–orbit density wave (SODW) state, which cannot 
be characterized by independent local order parameters. This new 
emergent phase of matter arises without breaking time-reversal sym
metry above a critical value for the Coulomb potential U. Its order 
parameter, i.e. the energy gap Δ, is determined by the energy scales of 
both the SOC strength l and the interaction U [198]. In essence, the finite 
gap Δ protects the SODW from spin dephasing against external pertur
bations like magnetic fields, thermal excitation and doping by excess 
coverage. In case that the interaction energy is large compared to SOC, 
however, the SODW can be overturned at the expense of a spin density 
wave. Experimentally, a SODW can be identified by the difference be
tween charge and spin order, the nesting of spin-polarized states and the 
concomitant opening of a gap, and the depolarization of the spin order 
as a function of Coulomb screening due to the dephasing of spin states. 

Whether this concept holds can be tested by looking at excitations of 
the ground state represented by the spin order at the critical Pb con
centration of 1.31 ML. Regardless of the protection of the SODW phase, 
the spin polarization of the surface bands should be affected by the 
excess coverage since the spin dephasing time is proportional to the size 
of the electronic gap [198]. Fig. 56(a) shows the Sx-polarization curves 

obtained along the 
[
112

̄ ]
direction, revealing a pronounced spin po

larization along the wires. Up to an excess coverage of 0.1 ML the po
larization curves reveal a harmonic but damped oscillatory behavior. 
The period of 0.2 Å− 1 as well as the almost symmetric amplitudes, are 
giving rise to a vanishing net polarization within the Brillouin zone, 
indicating the presence of time-reversal symmetry. This observation 
excludes the possibility of a spin density wave and further favors the 

Fig. 54. a) Magnetoconductance ΔG of 1.3 ML Pb on Si(557) measured at 50 K 
along (squares) and perpendicular (circles) to the step direction. The magne
totransport measured along the steps switches from positive to a negative MR. 
The solid lines represent results from a Hikami analysis. b) Spin-orbit scattering 
time τSO derived from the Hikami analysis of magnetoconductance curves for 
different Pb coverages [392]. In contrast, the elastic scattering times τ0 (not 
shown) reveal no dependence on Pb concentration. The dashed lines are guides 
to the eye. 

Fig. 55. a) Momentum distribution curve measured at EF-100 meV with the 

Mott detectors for 1.3 ML Pb on Si(557) across the Pb wires (
[
112

̄ ]
direction) 

[138]. The reciprocal lattice vector g, shown in Fig. 50, is plotted for one 
spin-component. (b) Spin polarizations measured with the Mott detectors for 
each spatial component. The pronounced polarization along the 
[
112

̄ ]
direction for the x component is indicated by ⊗ and ⊙ in panel a). 
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SODW scenario [198]. 
The spin depolarization can be further quantified. As shown in 

Fig. 56(b), the Sx component decreases exponentially and can be 
described by Sx(δΘ) = 0.56 ⋅ exp(− qδΘ) + const., with q = 27.8. We want 
to emphasize that the gradual decrease of the band gap Δ deduced 
independently from DC-transport measurements (cf. inset of Fig. 52(b)) 
reveals an almost identical q value. Based on these findings and the fact 
that within first order the spin lifetime τs is given by the spin–orbit 
scattering time τSO in a strongly spin–orbit-coupled system, the spin 
dynamics can be described by a kinetic equation [399]: δSk

δt + Sk× Ωk =

<Sk>− Sk
η + P where Sk is the spin polarization vector, P is any external spin 

source, and η is the scattering time. Ωk is the effective Larmor frequency 
defined in our case by Ωk = (ΩRkx/kF, 0, ΩSODW), where ΩR = 2αRkF/ℏ, 
and ΩSODW = 2Δ/ℏ are the frequencies corresponding to Rashba-type 
SOC and SODW, respectively. In our case, P = 0, and the initial condi
tion for the spin is Sk(0)x (the other components of the spin polarization 
are negligibly small), so we can solve this equation analytically in the 
limit of ΩR < ΩSODW at the Fermi momentum, and get Sx(t) = Sx(0) ⋅ exp 

(− t/τso), where the spin dephasing time is τso =
(
1 /Ω2

Rη
)
(

1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + Ω2
SODWη2

√ )

+ const. Inserting the exponential dependence of the 

SODW gap on the excess coverage and keeping all other parameters 
constant, we get a good fit of the spin dephasing time τso to the exper
imental value for a reasonable parameter set of SODW gap Δ = 20 meV, 
η = 1 × 10− 12 s and ΩR = 2.6 × 1012 Hz which is small compared to 
ΩSODW up to δΘ = 0.1 ML. Using the value of αR = 1.9 eV Å as the Rashba 
parameter found in our previous study [138], this refers to an extremely 

small Fermi-wave vector component along the wires 
(

kF,x ≈ 10− 4 A
̊ − 1)

. 

This in turn explains the insensitivity of the propagating electrons along 
the wires against atomic sized defects [139,371]. 

2.4.6. Conclusions 
Ensembles of Pb nanowires on vicinal Si substrates are an interesting, 

albeit complicated, system for studying the interaction of (atomic) 
structures and electronic properties. The formation of the (223) facet 
structure on a Si(557) surface highlights this interplay in a striking 
manner. Due to Fermi nesting below 80K perpendicular to the chains, 
the system becomes one-dimensional and therefore seems to be immune 
to the typical instabilities in 1D systems, as introduced in sec. 1.3.1 and 
found for the In/Si and Au/Si systems (sec. 2.2, 2.3 and chapter 3). The 
Pb system is further characterized by its high spin-orbit interaction and 
we showed that the insulating behavior is caused by a new quantum 
state, a so-called spin orbit density wave (SODW). In contrast to the 
submonolayer chain systems, such as Au/Si (cf. sec. 2.2), and the silicide 
wires (cf. sec. 2.6), Pb on Si surfaces forms true on-surface structures. 
This fact allows to study doping effects, e.g., by additional adsorbates 
with high precision, to (de)tune the SODW phase in terms of further 
reconstructions and stability and to monitor the inequality of the edges 
of the nanowires on the mini-terraces. Further studies to quantify elec
tron correlation effects in these nanowires will be continued in the 
future. For instance, measurements of the Kondo resonance due to 
manganese phtalocyanine (MnPc) molecules physisorbed on the Pb 
chain systems show strong differences compared to experiments done on 
the 2D Pb phase. 

Fig. 56. a) Spin polarization along the wires measured along the 
[
112

̄ ]
direction for different amounts of excess coverage. The spectra are shifted for better vis

ibility. b) Peak-to-peak maximum values of all three polarization vectors as a function of excess coverage. The (solid) line is deduced from theory. The dashed lines 
are guide to the eyes. The error bars are deduced from least mean square fits to the spin-polarized ARPES data. c) Spin–orbit scattering times as a function of excess 
coverage deduced from magnetotransport measurements (cf. Fig. 54) [392]. The dashed line is a fit according SODW theory for τSO,x along the wires. For reference 
also the scattering time τSO,y for direction across the wires is shown. Inset: log scale. 
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2.5. Collective excitations in quasi-1D systems: wire plasmons5 

The long-range Coulomb interaction between valence electrons re
sults in collective plasma oscillations [400,401]. Plasmons exist in all 
dimensions [402]. Plasmons in low-dimensional systems are character
ized by a dispersion that starts at zero excitation energy in the long 
wavelength limit [256,403] and by group velocities that are typically 
only of the order of 1 % of the speed of light [259,404]. As a conse
quence, very short wavelengths of only a few nanometers can be 
reached, much shorter than those obtained for surface plasmon polar
itons, e.g. in graphene [405,406]. Excitation and energy transfer into 
these modes, on the other hand, is only possible in the near field of 
appropriate antennas, if electromagnetic radiation is the source of 
excitation [407], or by charged particles like electrons, which scatter by 
an impact scattering mechanism [408]. Because of their short wave
lengths, they are interesting candidates for energy transfer and local 
energy transport on the nanoscale, since extreme localization compared 
with standard surface plasmon modes should be possible. Quasi-1D 
systems add directionality to these properties and are particularly 
attractive in this context. 

Linear dispersion, necessary for undistorted signal transfer, can be 
achieved in low-D systems by coupling a 2D electron gas with other 2D 
or 3D electron gases [409], as seen, e.g., for acoustic surface plasmons 
(ASP) of Shockley type surface states on surfaces of noble metals 
[410–415], or for graphene on metallic surfaces [416,417]. The 
dispersion of the 1D electron gas is already close to linear [418] for an 
unshielded wire, and therefore particularly attractive. Investigations of 
metallic arrays of quasi-1D wires, exhibiting quasi-linear 1D dispersion, 
are still scarce. Examples of the recent past are studies of metallic and of 
silicide chains on flat and stepped Si substrates [259,263,267,402,419] 
with intrinsic metallicity. 

The 1D properties are not only visible by a combined view at ge
ometry and occupied electronic states, they manifest themselves also in 
electronic excitations, which in the limit of pure 1D behavior with its 
strong electronic correlations cannot be discriminated from collective 
plasmonic excitations [6]. As we will show below, although the identi
fication of purely 1D dispersion is easily possible [259,263,264,267, 
402], the quantitative properties deviate significantly from simple 
theoretical models, and explicitly depend on the coupling to the envi
ronment. If the wires in arrays are essentially decoupled from each 
other, the strong confinement perpendicular to the chains leads to 
generation of electronic subbands. As a consequence, the simultaneous 
excitation of subbands, plasmons and intersubband plasmons are 
observed [259,267,420]. In fact, various forms of interwire coupling 
[263,421] lead in part to crossover to 2D in the quantitative dispersion 
properties. 

For these reasons, this section will mainly concentrate on the con
sequences of this crossover, evident already from the plasmonic 
dispersion along the wires. In most systems only this dispersion can be 
observed. As a counterexample, the system Si(557)-Pb shows 2D 
dispersion in a limited range of energies above 0.5 eV, for Pb concen
trations in which SODWs (see sec. 2.4) still keep the system in its insu
lating state perpendicular to the steps at low temperature. 

We will start out, after a short experimental section, with the system 
Si(557)-Ag, which exhibits the typical properties of a 2D electron gas 
confined to thin, electronically independent Ag monolayer stripes on 
small (111)-oriented terraces that are separated by (112)-oriented 
minifacets. The special mechanism leading to metallicity of these stripes 
will be discussed. Furthermore, as a contribution to the discussion of 
Luttinger liquids (LL), we demonstrate the incompatibility of the plas
monic dispersion with the theory of LL. 

One of the central issues of our investigations during the last years 
was the use of plasmon excitations and their dispersion in conjunction 

with quantitative DFT simulations as a spectroscopic tool for the unoc
cupied electronic band structure in the vicinity of the Fermi level in these 
quasi-1D systems. Emphasis was put on Au wires on Si(hhk) surfaces. 
Finally, we will address the Si(557)-Pb system already mentioned. 

2.5.1. Experimental aspects 
All experiments were carried out in ultra-high vacuum at base 

pressures around 1 × 10− 10 mbar. Since plasmons in low dimensions 
cannot be excited by light directly, because of momentum conversation, 
the experiments described here were carried out mostly by HREELS. A 
combination of a HREEL spectrometer as electron source with a LEED 
system was used. It provides simultaneously high energy and mo
mentum (k‖) resolution [422,423]. Typical operating parameters were 

20 meV energy resolution at a k‖ resolution of 1.3× 10− 2 A
̊ − 1

. 
A reliable determination of loss peak positions required quantitative 

fitting of the loss spectra. This was done by combining an exponential 
Drude tail, describing the metallic continuum of losses, with an instru
ment function for the elastic peak and exponentially modified Gaussians 
for the loss peak. Details can be found, e.g., in the appendix of ref. [330]. 

The evaporation of metals was carried out with crucibles. The metal 
flux was controlled by a quartz microbalance located at the evaporator. 
This micobalance was calibrated with another one located at sample 
position, supplemented by calculated estimates. Furthermore, LEED, 
partly STM, and plasmon frequencies at fixed k‖ values were used to 
absolutely calibrate the metal concentration. While the various pro
cedures allowed an overall precision of about 5 % of the absolute value, 
the Au concentration could be fixed within 1 % using the abrupt changes 
of plasmon frequency in Si(553)-Au [424] when the optimum concen
tration for formation of Au wires in the HCW phase (see below) was 
exceeded. 

2.5.2. A strongly confined 2D electron gas: the Si(557)-Ag monolayer 
The Si(557)-Ag system consists of (111)-oriented mini-terraces that 

are separated by three monatomic steps with (113) orientation (see 
Fig. 57 [264]). This morphology turned out to be stable after adsorption 
of Ag at room temperature and annealing up to 600◦ C. Close to 
monolayer coverage, Ag forms a 

( ̅̅̅
3

√
×

̅̅̅
3

√ )
R30◦ structure, which was 

thought to be metallic, similar to that on the flat Si(111) surface [423]. 
Indeed a low-energy plasmon was found in this system close to this 

coverage, as shown in Fig. 58, which turned out not to be sensitive to the 
exact concentration exceeding 1 ML. A dispersing loss was found only 
along the Ag strips, while in the direction perpendicular to them two 
non-dispersing losses exist. The dispersing loss was identified with the 
low-energy quasi-1D plasmon, while the non-dispersing losses were 
identified with inter-subband plasmon excitations. In other words, the 
plasmons that exist on the strips of (111)-terraces seem to be well 
separated from each other by the (113) facets acting as spacers so that no 
dispersion perpendicular to the step edges was seen. However, the 
plasmons are confined on conducting strips of only 3.6 nm width, which 

Fig. 57. Schematic of a monolayer of Ag (yellow balls) adsorbed on the Si(557) 
surface, consisting of flat (111) mini-terraces and strongly stepped (113) mini- 
facets. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 5 Author mainly responsible for this section: Herbert Pfnür 
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is the reason for dispersion only along the strips. In 
[
112

̄ ]
direction this 

width sets boundary conditions for a series of excitations that can be 
combined with the plasmon excitation resulting in the formation of 
inter-subband plasmon excitations. The corresponding model, devel
oped by Inaoka [420], is corroborated by fits (lines in Fig. 58). Our 
experiment allows identification of the zeroth mode that goes to energy 
zero at k‖ → 0, the first mode with a finite energy of 470 meV in this 
limit, and a small further loss at 1170 meV that is compatible with a 
second excited mode. Further details are described in ref. [264]. 

However, these results turned out not to contain the full truth, as 
shown in later experiments: In order to obtain metallicity, a surplus of 
Ag atoms is needed that is most likely adsorbed at the step edges of the 
(113)-facets. The bare monolayer Ag strips are not metallic. Metallicity 
is only achieved by extrinsic self-doping due to charge donation from the 
edge atoms to the terraces. 

This scenario becomes evident from annealing experiments, in which 
only a tiny amount of Ag is desorbed at 600◦ C so that the LEED image, 
fully developed and with a negligible loss of superstructure intensity, is 
essentially unchanged. Nevertheless, this procedure results in complete 
disappearance of plasmonic losses, as demonstrated in Fig. 59. 

This process is fully reversible [425]: After the plasmon loss has 
disappeared by the procedure just described, it is sufficient to add tiny 
amounts of Ag at room temperature (less than 1 % of a monolayer) to 
make the plasmon loss reappear (see Fig. 60). The systematic increase of 
this amount directly permits verification of the functional dependence of 
the plasmon excitation energy on (added) electron density, assuming a 
constant amount of charge per Ag atom to be transferred to the Ag 
monolayer at these small Ag concentrations. Thus the electron density, 
n, is proportional to the surplus Ag concentration. As shown in the left 
part of Fig. 60, the expected 

̅̅̅
n

√
dependence was found, which proves 

Fig. 58. a) Plasmonic losses at various angles of observation, converted into k‖
values, as indicated. b) same, but perpendicular to the step direction. c) Plas
mon dispersion determined by the peak positions in a). Lines: calculated 
dispersion for lowest band and first subband excitation. Inset: Scheme of sub
band excitations. 

Fig. 59. Annealing experiments to 600 ◦C leading to shifts and complete 
disappearance of plasmonic losses, while the LEED pattern, shown in the inset, 
remains unchanged. Blue: initial spectum, green: after first annealing cycle, 
orange: after second cycle. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 60. Self-doping with Ag atoms on the semi-metallic Ag monolayer on Si 
(557). Top: Dependence of plasmon excitation energy on the post-adsorbed Ag 
concentration at two values of k‖. The data have been normalized to the exci
tation energy at saturation for the respective k‖. Bottom: Model of self-doping 
by Ag adsorption at the step edges. a), b) charge donation to the terrace due 
to energetic differences of the topmost Ag level. c) Geometric model. 
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the universality of this rule irrespective of dimension. 
These findings lead us to the model of self-doping shown in the lower 

part of Fig. 60. In this model, we assume that due to a smaller binding 
energy of Ag on the step edges compared to Ag in the monolayer on the 
flat terrace there is also an energetic difference for the topmost occupied 
Ag level between steps and flat terrace. In order to reach a common 
Fermi level, partial charge transfer from the step edge atoms to the 
terrace is necessary. This charge transfer was estimated to be 1/3 e− per 
Ag step edge atom. This model has also been tested by simulations as 
well as by a variation of the terraces width, which is possible due to the 
instability of the regular step array to Ag adsorption at high temperature 
(500 ◦C in this case). It allows controlled widening of the terrace width, 
which results in a reduction of the maximum doping concentration, as 
expected for doping from Ag at the step edges [330]. 

Thus a lateral self-doping mechanism on the nanometer scale is 
acting in this system due the geometric and electronic inhomogeneity 
introduced by the sequence of (111) and (113) minifacets. Although 
dispersion exists only along the Ag strips, these properties are more 
consistent with a strongly confined 2D system than with a quasi-1D 
system, as also suggested by ARPES results for this system [426]. 

2.5.3. Low-energy plasmon excitations in Ge(001)-Au 
The Ge(001)-Au system is another prototype system of self-organized 

atomic chains on insulating or semiconducting surfaces [136,144,240, 
427,428] that may be able to exhibit quasi-one dimensional properties 
while being embedded in a two- or three-dimensional environment. On 
the other hand, it is also exemplary for the difficulties of analyzing such 
systems. E.g., the many structural investigations of the Au covered Ge 
(001) surface, mainly with LEED [429] and STM [43,428,430–437] did 
not allow to uniquely model the structure of this system. While the 
so-called giant missing row model was able to reproduce some of the 
experimental properties [438], there are quite different suggestions for 
the optimal Au concentration leading to the observed c(8 × 2) structure 
ranging from fractions of a monolayer (ML) [43,432–434] to about one 
ML or even higher coverages [41,42,429]. Considerations of the Gibbs 
free energy in recent modelling [439] show that stabilization of struc
tures is temperature dependent with the consequence that the highly 
corrugated structures of the giant missing-row models [433] with 

concentrations above one ML are significantly more stable at and above 
room temperature than the dimer-row [430,438,440] or bridged 
dimer-row models [433]. While this finding may explain some of the 
ambiguities in the results obtained in the past, it also shows that this 
system is prone of formation of metastable structures that have not been 
explored in detail yet. 

Also the electronic structure of this system has been a controversial 
issue. PES and STM data were originally interpreted as being fully 
compatible with quasi-1D electronic properties [37,39,428,432,436] in 
form of a LL with strong electron-electron interaction [102,103]. How
ever, other studies carried out with similar methods indicated [41–44, 
433] that this system is indeed highly anisotropic, but the Fermi surface 
is still 2D. 

Here we present the results obtained with HREELS for the plasmonic 
losses, which favor the latter interpretation. More details can be found in 
ref. [255]. Great care was given to get optimal ordering of the 
Au-covered Ge surface. It was prepared at room temperature and 
annealed at 500 ◦C. After optimization an average terrace width of 350 Å 
was achieved, and the optimum Au concentration was determined to be 
1 ML [429]. Any excess coverage exceeding 1 ML results in growth of 
small Au-clusters on the surface [437] that are not visible in LEED, and 
do not lead to low-energy plasmons (see below). At smaller coverages 
island formation was found so that there is no coverage dependence of 
the plasmon dispersion (within quite large error bars) between 0.5 and 
2 ML. The procedures of measurement and data evaluation were the 
same as described in section 2.5.1 and will not be repeated here. 

The main results are shown in Fig. 61. The extremely weak plasmon 
loss signal causes relatively large uncertainties compared with the Ag 
system on Si described above, as obvious from the scatter of the data. For 
large k‖ > 0.1 Å− 1 the measured dispersion is close to the electron-hole 
excitation continuum derived with a nearly-free electron gas model with 
the parameters obtained from photoemission [44]. For the levelling-off 
at k‖< 0.08 Å− 1 a finite-size effect can most likely be excluded, given the 
large terrace widths in this system. In the analysis of these data both a 
modified LL model, as the extreme case of a 1D scenario, and a quasi-free 
laterally confined 2D electron gas model was tested. Details can be found 
in ref [255]. 

As it turned out, the LL model is not compatible with our data for 
several reasons.  

a) The Fermi velocity determined from the best fit within this model is 
about twice as large as that determined in PES along the wires.  

b) The modified electronic screening that had to be used in order to 
describe the overall shape of the dispersion curve is extremely long 
range (40 Å), i.e. it is much larger than the interchain distance be
tween wires. Thus 2D-coupling between the wires becomes 
inevitable.  

c) Also the limiting slope for k‖ → 0 is incompatible with the electron- 
electron interaction derived from STS [37]. 

This incompatibility with the LL model can have two origins: First, 
the 2D and 3D interactions are so relevant that they turn the system into 
a highly anisotropic 2D system, as suggested by STM and latest PES data 
[40,441], which in the limit of strong confinement is equivalent to a 
coupled array of wires. Second, since there are no energy scales known 
for the validity of the LL model, our plasmonic excitation energies may 
be too high for its applicability. In view of the most recent experimental 
results, this is the less likely possibility. Therefore, a quasi-1D quasi-free 
electron gas model with coupling between wires seems to be more 
appropriate, but, as it turns out, this model is also not without problems 
in the present system either. 

The latter approach has been successfully applied to systems like Si 
(557)-Au [259]. Closed expressions for plasmon dispersion including 
its dependence on a confining potential, have been derived, as explained 
in detail below, that can be directly used [260]. Here we just present 
briefly the main results [255]. 

Fig. 61. Plasmon dispersion (open symbols) extracted from loss measurements 
and comparison with a model of a confined 2D electron gas. No dependence on 
Au coverage was found, as indicated by the different symbols. The shaded area 
shows the electron-hole excitation continuum (SPE). Simulated dispersion re
lations are indicated by colored lines: Plasmon dispersion of a single wire 
(dashed red) and an array of wires (solid red), both with a width of w = 5 Å, as 
well as for an array of wires with w = 20 Å (dotted purple). Long dashes: Wire 
array with w = 20 Å, same effective mass as before, but twice the electron 
density. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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As shown by the lines in Fig. 61, the data are well described by this 
model for k‖ > 0.09 Å, using the electron density and effective mass 
along the wire direction derived from PES [44]. Significant deviations, 
however, were found for smaller k‖-values. While there is a clear ten
dency in the calculated curves to get closer to the experimental values by 
not only considering wire interactions, but also by making this inter
action stronger, approximate agreement was only achieved by doubling 
the effective electron density. Alternatively, a single wire confined in a 
square well potentional of 15 Å width generates a very similar curve to 
that plotted with long dashes in Fig. 61 [255]. 

This ambiguity illustrates the necessity both to go beyond the nearly- 
free electron gas model, but, even more important, to be able to establish 
an accepted geometrical model for this system so that calculcated band 
structures can be compared with experimental results on a more quan
titative level. This approach is pursued in the following section. 

2.5.4. Plasmon spectroscopy: sensing the unoccupied band structure in 
quasi-1D systems 

Our approach to quasi-1D plasmonic properties starts from a 2D 
quasi-free electron gas that is confined to a wire of finite width by an 
appropriate potential. This description has the advantage of demon
strating the close relationship between band structure, single particle 
and collective plasmonic excitations. Within this model, following 
ref. [260], the plasmon dispersion for a single isolated wire can be 
expressed as a function of the upper and lower boundary of the 
electron-hole continuum of excitations, ω+ and ω− , respectively. For a 
nearly-free electron gas, the values of ω+ and ω− can be explicitely given 

as ω± = ℏ
(

k2
‖ /2±k‖kF

)
/m⋆. The plasmon dispersion is then given as 

ωp(k‖) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
+eA(k‖) − ω2

−

eA(k‖) − 1

√

(22)  

with A(k) = h2/(2π) ⋅ k/(m⋆gsV(k)[1 − G(k)]). V(k) is the Fourier 
transform of the confining potential, G(k) the local field correction 
factor due to electronic correlations, and gs the spin degeneracy (1 or 2). 
This formula, which is not limited to a NFEG, shows the intimate rela
tionship between the continuum of e-h excitations and the plasmon 
dispersion. The latter turns out to be always located above the e-h 
continuum, and merges into ω+ in the large k limit. 

This model yields to lowest order in k‖ a dispersion linear in k‖, 
contrary to a 2D nearly-free electron gas. As one sees from eq. 22, the 
dispersion depends not only on electron density (via kF) and effective 
masses, but also explicitly on the form of the confining potential, and on 
electronic correlations. It can easily be expanded to arrays of wires by 
appropriate modification of V(k). While for simple forms of the 
confining potentials, e.g. square well or harmonic potential, analytic 
expressions can be given, this is not possible for the coupling between 
wires, but an approximate description of coupling, valid in the limit of 
small k‖ [442–444], exists. Fortunately, as shown in Ref. [260], the 
sensivitivity to the form of confining potentials and coupling between 
wires is not strong and slight modifications of the plasmon dispersion 
curve are seen mostly at small k‖. 

A unique comparison and test of validity is possible for quasi-1D 
band structures with single crossings of the Fermi level. In general, the 
band structures close to the Fermi level have a unique curvature. If, e.g. 
the curvature is positive, the lower edge of single particle excitations, 
ω− , is that from the occupied states to the Fermi level, while the upper 
edge, ω+ is given by the excitations from the Fermi level into the un
occupied states within the same band. 

Since A(k) rises very quickly as a function of k in all physical sce
narios considered so far [260], A(k) ≫ 1 is typically already fulfilled at 
k‖ > 0.03 Å− 1, i.e. ωp follows very closely ω+ for larger k‖ values. Thus 
measured plasmon dispersions can be directly compared with calculated 
unoccupied band structures and serve as a spectroscopic tool. This 
property with be exploited in the following in context with Au atomic 

wires on vicinal Si(hhk) surfaces. We first demonstrate the informational 
content before we show the most characteristic examples of the many 
tests performed in the recent past. 

As a starting point, we compare calculated band structures for the 
systems Si(557)-Au and Si(335)-Au with the dispersion of ω+ deter
mined from the experimental plasmon dispersion curves. The calcula
tions were performed within density functional theory using the GGA 
correlation functional. Details are described in ref. [332]. Both systems 
feature one single atomic Au chain per terrace. Due to the hybridization 
of the Si honeycomb step edge – and the adatom chain for the Si(557)-Au 
system – with the electronic states of the Au chain, a series of small band 
gaps appears, particularly in the unoccupied part of the band structure. 
In both systems, only a single band is crossing the Fermi level, which 
makes the analysis as simple as possible. 

For the determination of ω+ from eq. 22 also ω− is needed, which 
was taken from the calculated band structures, as indicated by the 
dashed red line in Fig. 62(a)) and a parabolic fit. The influence of this 
particular choice of ω− is tested by taking into account the negative 
curvature of the partially filled topmost band in its unoccupied part. This 
leads to small differences in the determination of ω+ below k‖ = 0.05 
Å− 1, as indicated by circles and triangles in Fig. 62(a)) (please note that 
for the plasmons k‖ = 0 corresponds to the value at the Fermi level), and 
shows that the particular choice of ω− is not crucial for the application of 
this method. 

As confinement we assume a Gaussian distribution of the electrons in 
the system with a FWHM of 3.3 Å, corresponding to a single atomic wire. 
This width corresponds to a parabolic confinement with ground state 
width of 1.4 Å or, approximately, to a square-well confinement of 6.6 Å. 
These parameters determine A(k‖). As tested, the results depend very 
little on the exact wire width. Even changes of the form of the confining 
potential to a square potential yields a correction that amounts to a 
maximum change of slope of 10 % at most at small k‖. More details are 
described in ref. [332]. 

In both systems shown here, the calculated band structure agrees 
well for the strongly dispersing bands 0.4 eV above EF, but the small 
bandgaps are effectively integrated out by this type of plasmon spec
troscopy. While instrumental broadening can be ruled out as the major 
source of broadening, the small interaction times and the increasing 
localization in order to transfer the necessary momentum by the 
impinging electron may play a role. There can, of course, also be true 
physical effects of integration, since every electron-hole pair with the 
right energy and k‖ can be excited by the plasmon, thus effectively filling 
the gap. Furthermore, it is conceivable that a plasmon as a collective 
excitation cannot be formed by strongly localized electrons or by elec
tronic hybrids that localize electrons. In other words, such a hybridi
zation may be “ignored” by plasmonic excitations, i.e., only the 
projection of a wave function on the nonhybridized delocalized contri
butions is responsible for plasmonic excitations. A definite answer to 
these questions must be subject to further investigations. 

Fig. 62. Comparison of calculated band structures (gray lines) with ω+ deter
mined from the experimental plasmon dispersion for Si(557)-Au (a) and Si 
(335)-Au (b). 
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Nevertheless, within these limitations, which are not very dissimilar 
to methods for the occupied band structure such as PE, valuable new 
information about the unoccupied band structure can be obtained by 
this method, as will be demonstrated further below. The plasmon 
dispersion (and that of ω+) seems to be strongly determined by matching 
group velocities between plasmon ω+ and the unoccupied band struc
ture. This means that flat bands contribute little to the plasmon excita
tion. Large band gaps, on the other hand, which limit the e-h-continuum, 
are also visible as limits of plasmon frequency (see below). 

2.5.4.1. Application of plasmon spectroscopy: optimal Au concentration in 
Si(111)-Au(5 × 2). The submonolayer of Au on Si(111) forms a (5 × 2) 
structure over a fairly wide range of coverage, which has been investi
gated by several authors in the past [445–448]. In fact, it can be 
considered as a prototype system for an adsorbate-induced spontaneous 
symmetry break by formation of quasi-1D atomic chains that are 
metallic. Surprisingly, the geometric structure of these chains is still 
under debate. 

From a comparison of STM data and quantitative DFT calculations 
[449] an optimal concentration of 6 Au atoms per (5 × 2) unit cell was 
suggested, which corresponds to 0.6 ML. In this so-called EBH model 
[450] the (5 × 2) structure consists of a single and a dimerized 
double-atomic Au chain, separated by a Si honeycomb chain (HC). Ac
cording to the calculations, this structure is further stabilized by Si 
atoms adsorbed on the Au chain system. The existence of these Si ada
toms as well as that of the Si-HC chain was corroborated by optical 
reflection anisotropy and by DFT [451]. This model was also corrobo
rated by high-energy electron diffraction data [452]. In contrast, Kwon 
and Kang proposed a model (KK model) with an optimal Au concen
tration of 0.7 ML, i.e., one Au atom more per unit cell than in the EBH 
model [453]. With this model a metal-insulator transition, induced by 
adding additional Au to the optimal concentration, could successfully be 
modeled [454]. Nevertheless, the optimal concentration suggested by 
this model is not only at variance with the EBL model, but also with the 
findings by Kautz et al. using low energy electron microscopy in com
bination with medium and high energy ion scattering, which fixes this 
value to 0.65 ± 0.01 ML [455]. 

Here we show that indeed plasmon spectroscopy, testing the unoc
cupied band structure, is able to discriminate between the suggested 
models just mentioned. This is done by comparing the calculated un
occupied band structure close to the Fermi level [450,453] with ω+

derived from the plasmon dispersion [456] using the procedure just 
described (see Fig. 63). An almost quantitative agreement is obtained 
between our data and the undoped model of a Au-induced (5 × 1) 

structure of Erwin et al. [450] with a Au concentration of 0.6 ML. Only 
the experimental slope is slightly higher than in theory. According to 
Ref. [450] Si adatoms on the Au dimer chain lower the total energy 
further. While ordered structures of Si adatoms would lead to multiple 
openings of band gaps [450] that are not compatible with our data, the 
adlayer consists of single atoms or small clusters, as demonstrated in 
further studies [457,458]. Thus metallicity is retained in agreement with 
our findings. 

Within the KK model, large band gaps are always present, which does 
not fit to our data (see Fig. 63). As seen in this figure, also the slope of the 
dispersion of the unoccupied band structure close to EF is far off the 
experimental data points, this model is clearly not able to describe our 
experimental findings. 

Concluding, this example demonstrates once more that the low-lying 
collective electronic excitations can be directly used as a spectroscopy to 
obtain information about the unoccupied band structure close to the 
Fermi level. This part of the band structure turned out to be much more 
sensitive to differences between various structural models proposed for 
this system than spectroscopies of the occupied bands such as ARPES. 
Thus we were able to corroborate the validity of the EBH model that 
suggests a saturation coverage of 0.60 ML of Au, in agreement with our 
own coverage calibration and with our LEED investigations. 

2.5.5. Electronic coupling of quasi-1D Au-wires on Si(hhk) surfaces to 
higher dimensions 

Already from the preceding sections it became obvious that even 
quasi-1D gold chains on substrates like Ge or Si are coupled to these 
substrates by hybridization mainly with surface states. On the one hand, 
these interactions stabilize the wires, but lead to strong modification of 
quasi-1D properties. On the other hand, new phenomena, e.g. the 
enforced strengthening of order by surplus Au atoms in Si(553)-Au 
[424], appear that are explainable only by the delocalized and partly 
even non-local interactions between electronic states of the adsorbate 
and the substrate. 

We have systematically investigated these properties mainly on 
vicinal Si surfaces [265,266,296,332,421,424,460], but will concentrate 
in the following on the prototype system Si(553)-Au [144]. It contains a 
double strand of Au chains and exists in two flavors: Upon adsorption of 
0.48 ML of Au, a double-chain is formed on each terrace, called the high 
coverage phase (HCW). This phase has been studied extensively, and the 
reader is referred to section 2.2. At a Au concentration of 0.19, a second 
ordered phase (LCW) appears, which can be considered as a 1D version 
of a strained-layer superlattice structure [459] and in which a double Au 
chain exists only on every second terrace. Although this system allows to 

Fig. 63. Comparison of calculated electronic band structures (lines) with 
experiment (blue circles). The left panel shows the comparison with the EBH 
model for the case of an undoped (5 × 1) structure, the right one that with the 
KK model. The circles mark ω+ determined from the plasmon dispersion. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 64. Plasmon dispersion of the Si(553)-Au HCW and LCW phases. RT, LT: 
measurements at room-temperature (T = 293 K, RT) and at T < 120 K ○, ◇, □: 
HCW phase. △: LCW phase. The e-h continuum is derived from ARPES mea
surements [272,459] within the NFEG model. 
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separate the Au chains of the Au/Si(553) system and thus possibly study 
the inter-chain coupling strength, we focus in this section on the 
coupling of the Au chains with the substrate. Therefore, the electronic 
band structure was calculated for both phases within DFT, putting 
emphasis on the unoccupied part, and compared with the experimental 
plasmon dispersion. 

One important question to solve was the obvious discrepancy be
tween PES data and theoretical calculations of the band structures in the 
past. Although the PES data for the systems under investigation here 
[272,283] suggest that the Au-induced bands are mostly free-electron 
like, atomistic calculations using the geometries extrapolated from 
STM consistently show [272,288] that this interpretation is incorrect. In 
both systems, there is strong hybridization of the Au-induced band(s) 
with the Si surface state that originates from the Si honeycomb chain 
(for more details, see ref. [266]. As a consequence, band gaps of about 
0.1 eV open, which partly have been observed in some experimental 
studies [307]. One of these gaps is located right at the Fermi level, 
preventing one of the Au-induced bands to cross it [272]. Therefore, a 
single band actually crosses the Fermi level close to the edge of the 
Brillouin zone for both phases of Si(553)-Au. This band has a strongly 
nonparabolic dispersion. Although the LCW structure features an addi
tional terrace, the Au-induced bands are very similar in photoemission. 
This resemblance makes the two systems a perfect couple for the 
investigation of properties that are strongly dependent on the interwire 
distance, such as plasmons. 

The relevance of hybridizations between Au and Si states becomes 
clear by analyzing plasmon dispersion of the Au-induced metallicity by 
EELS. The measured plasmon dispersion is plotted for both Si(553)-Au 
systems in Fig. 64. Indeed, only one plasmon dispersion curve was 
found in both systems, compatible with a single crossing of the Fermi 
level. Interestingly, as shown by the solid lines, which represent a fit 
with an empirical model [421], based on the NFEG in the small k‖ limit 
[442–444] the system can be reasonably well described by a confined 
NFEG model of coupled wires. However, although this model gives a 
satisfactory fit to the measured data, this description cannot be correct: 
For reasons of stability, the plasmon dispersion must be above the e-h 
continuum and converges to the upper boundary of the single particle 
excitation spectrum at large k‖, as already explained above. Here, 

however, as seen in Fig. 64, the plasmon dispersion fully crosses the e-h 
continuum derived with the same parameters used for the plasmonic fit. 
At the highest measured k‖ values, the plasmon dispersion curve is even 
below the e-h continuum. This behavior is not unique to this system, but 
was observed for Au chain on other vicinal Si surfaces as well [332]. 

A way out of this dilemma is to compare plasmon dispersion with the 
calculated band structure by use of eq. 22, following the lines sketched 
in the previous section. The result for ω+ is shown in Fig. 65 as blue 
circles together with the electronic bands calculated by DFT-PBE (in 
gray). Since there is only one crossing of partially occupied bands with 
the Fermi level for the HCW phase, ω+ is identical to the excitation from 
the Fermi level to the first Au-induced unoccupied band. Therefore, ω+

can be directly compared to the calculated unoccupied band structure. 
The match, assuming pairing Δd/d of the Au atoms within the Au strands 
of 0.005, is nearly quantitative. The strong curvature at small k‖ is a 
clear indication of interwire interactions and thus of the wire coupling 
with higher dimensions. As expected, and clearly visible from the results 
of the band structure calculation in the occupied part below the Fermi 
level, the hybridization of Au-induced bands with the surface state 
originating from the Si honeycomb chain close to the step edge strongly 
reduces the value of ω− . Putting all this together, we obtained values for 
ω+(k‖) from the measured plasmon dispersion, which fit the calculated 
unoccupied band structure in the range up to about 0.75 eV. 

Not surprisingly, the comparison of plasmon dispersion with calcu
lated band structures reveals some structural sensitivity. As an example, 
the curvature and flattening of ω+ at large k‖ indicate the appearance of 
a band gap at about 0.70 eV, which is also seen in STS [146]. The 
dispersive electronic bands originating from the Au states are charac
terized by the previously discussed anticrossing interaction, resulting in 
the occurrence of an electronic band gap of about 0.1 eV around k‖ = 0.3 
Å− 1, which is sensitive to the degree of dimerization of the Au atoms 
within the Au chains. Indeed, as shown in ref. [266], there is a linear 
relationship between dimerization and the size of this bandgap. 

The same procedure can now be applied to the Si(553)-Au LCW 
phase. The main changes between HCW and LCW appear in the unoc
cupied band structure, as the reduced slope in Fig. 64 compared with the 
HCW phase suggests. Generally, the calculated bands exhibit a slightly 
smaller overall slope, and the band crossing at EF is significantly more 
curved in the unoccupied section. It levels off at a smaller energy, thus 
reducing the dispersion of this band as a whole. For this reason, the 
originally postulated “spill-out” effect due to unoccupied adjacent ter
races [459] can now be pinned down to a shift of EF coupled with slight 
modifications of the electronic interaction with the ionic potentials. As a 
result, small changes in the band structure, mainly in the unoccupied 
part, become obvious, resulting in a reduction of the plasmon frequency, 
as observed. 

These examples show that a pure 1D description is not adequate, 
although these systems are among the narrowest possible quasi-1D ob
jects that can be realized. Hybridization between the electronic Si sur
face state and Au-induced states results in a breakdown of the NFEG 
model. Because the coupling with higher dimensions through the sub
strate is relevant, HCW and LCW are more appropriately described as 
extremely anisotropic 2D objects. On the other hand, the very satisfac
tory agreement between atomistic calculations and plasmon spectros
copy validates the calculated band structure, in particular the 
unoccupied part. Furthermore, it shows that plasmon spectroscopy 
contains important information about the excitation spectrum of an 
electronic system that is not easily accessible otherwise. 

2.5.6. Modification of plasmons by adsorption and environment 
Due to the polarization effects, plasmon frequencies are known to be 

modified when the plasmonic structure is embedded into an environ
ment [256,461], leading in general to a reduction of plasmon fre
quencies compared to a hypothetical free-standing system. 

This is, however, by far not the only effect in quasi-1D structures. 
Here we concentrate on the effect of simple adsorbates like atomic 

Fig. 65. DFT band structure (gray lines) calculated without SO interaction for 
the Si(553)-Au HCW phase. The blue circles show the positions of ω+ calculated 
from the plasmon dispersion with the procedure described in the text. Left 
panel: DFT-PBE calculations. Right panel: DFT-HSE06 calculations. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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hydrogen and oxygen on Au atomic wires on vicinal Si surfaces, but 
again also on adsorption of surplus Au atoms. Their interaction, as we 
showed recently [296,424], goes far beyond simple doping as in the Si 
(557)-Ag system discussed above and influences dimerization of Au 
atoms, their energetics, and thus long-range order. 

2.5.6.1. Chemical modifications. Before we discuss this topic, we 
address the effect of chemical modification of band structures by ad
sorbates as well as their role as additional scattering centers, which lead 
to the formation of plasmon standing waves, but also, again in combi
nation with changes in band structure, to plasmon localization. In this 
context, the Si(557)-Au system is one of the most interesting and most 
reactive since, according to the well-established geometrical structural 

model [283,288], there is a single atomic chain of Au, but in addition a 
Si adatom chain on each terrace, which can be oxidized. 

In Fig. 66 the modification of the plasmon dispersion as a function of 
oxygen exposure is shown. As seen from Fig. 66, oxydation with expo
sures up to 10 L, that are expected to almost saturate the monolayer, the 
plasmon does not disappear, the plasmon loss energy at small k‖ even 
increases. In other words, metallicity is not lost by oxidation, in agree
ment with surface conductance measurements, in which conductance 
was only reduced by about 20 % in this range of exposures [331]. 
Compared with the pristine dispersion curve, the position of the 
dispersion even changes non-monotonically as a function of exposure. 
This result can be understood for small k‖ by a comparison with infrared 
absorption data measured for the Si(553)-Au system [462] that shows 
very similar effects at small k‖, though slightly less pronounced. The 
whole dispersion is compared with quantitative DFT simulations putting 
oxygen atoms as 1D rows on various adsorption sites, as indicated in the 
inset of Fig. 66. 

The simulated results for the band structures of the Si(557)-Au after 
oxidation of the chains of adatoms, the honeycomb (HC) chain and Si 
atoms close to the Au atoms (for details, see ref. [296]) are shown in 
Fig. 67 in an extended zone scheme, with a restriction to those bands 
with clear contributions from the Au chain, adatoms, and the HC chain. 
In (a) the complete adatom row has been oxidized. As expected, modi
fications of the bands associated with the adatoms and the restatoms 
were observed due to the admixture of oxygen orbitals, but changes to 
the band with preferential Au character are surprisingly small, as 
obvious by the comparison with the bands of the pure Si(557)-Au sys
tem, which are shown as thin dotted lines in this figure. A single band 
still crosses the Fermi level, and the Fermi wavevector slightly changes 
from 0.35 Å− 1 to 0.37 Å− 1. These changes get stronger with increasing 
oxygen concentration, as seen in panel (b). Although the configuration 
of (c) is energetically not very favorable, i.e. these sites will only be filled 
after those of (a) and (b), it was used to test the effect of oxidation of Si 
atoms in the immediate vicinity of the Au chain. As seen in Fig. 67(c), 
even under these conditions the system remains metallic, even though 
the whole band structure is strongly modified. These results match well 
with the experimental findings. 

When looking at the plasmons, also the small changes of plasmon 
dispersion can be understood in detail, using the procedures for the 
determination of ω+ and ω− described above. The expected plasmon 

Fig. 66. Modification of plasmon dispersion of Si(557)-Au (diamonds) by 
various exposures of oxygen, as indicated. Solid lines are guides to the eye with 
the assumption that the curves have to start at E = 0 in the long wavelength 
limit. Inset: Calculated plasmon dispersion using the band structures shown in 
Fig. 67 for oxygen adsorption at the sites indicated. 

Fig. 67. Band structures calculated in an extended zone scheme along Γ
̄

Y (Y
̄ 

at 0.82 Å− 1) for the indicated oxygen adsorption sites. For details of geometrical 
models, see Ref. [296]. The black dashed lines below EF (energy zero) correspond to the assumed ω− . Above EF ω+ is plotted (dashed-dotted, green) that was 
calculated from the experimental plasmon dispersion and ω− . The black dashed line in (a) indicates the analogous result for the clean system. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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dispersions are plotted in Fig. 67 as dashed-dotted lines, neglecting 
again the small bandgaps. The results in more detail are shown as inset 
in Fig. 66, which agree qualitatively well with the experimental data. 
From the results of the simulation we can even learn that the oxidation 
seems to start with the HC chain, followed by the adatoms. 

In conclusion, although strong modifications of the band structure by 
oxidation are found, metallicity turns out to be quite robust. On the 
other hand this system is an example of strongly delocalized interactions 
over several atomic distances so that the electronic bands of the Au 
atoms, including the Fermi surface, are modified both on the clean and 
on the oxidized Si surface. 

An extreme example in this context, going far beyond doping of 
charge by an adorbate [463], is the charge redistribution over the whole 
terrace induced by adsorption of atomic hydrogen on Si(557)-Au [460]. 
In this system, we observed band gap opening in the measured plasmon 
dispersion at large momenta that limits the plasmonic excitation to an 
energy of 0.43 eV in presence of H. DFT shows that Si surface bands 
strongly hybridize with those of Au so that H adsorption on the ener
getically most favorable sites at the Si step edge and the restatom chain 
causes a significant shift of bands but also strongly changes the character 
of hybridization. Together with H-induced changes in band order, the 
result is band gap opening and reduced overlap of wave functions. These 
mechanisms were identified as the main reasons for plasmon localiza
tion that act independent of disorder (see below). Interestingly, 
although the whole electronic system is modified by H adsorption, there 
is no direct interaction between H and the Au chains. 

2.5.6.2. Plasmon standing waves, disorder, localization. Let us now turn 
our focus to small k‖. Infrared absorption is known to be sensitive only to 
infrared active modes in the limit k‖ → 0 [464]. Since low-D plasmons 
have zero excitation energy in this limit, these plasmons are not ex
pected to be detectable by IR spectroscopy. However, because of finite 
wire lengths, the wires serve as antennas as a whole, and the plasmon 
resonance becomes optically detectable due mixing in of a dipolar 
contribution to the excitation [465,466]. It is thus a very valuable tool, 
complementing HREELS, that is also important to discriminate between 
finite size effects of wire lengths and possible adsorbate-induced band 
gap openings. With both HREELS and IR we see a minimum energy loss 
(or absorption) peak already for the pristine Si(553)-HCW system 
around 100 meV that systematically shifts to higher energy with an 
increasing amount of adsorbed oxygen [462]. If we identify the energy 
of the IR absorption minima with the energy of the ground state of a 
plasmon standing wave on wires with an average length l, this wave
length cannot be exceeded at a given oxygen concentration so that no 
dispersion is possible for smaller k‖. With this assumption in mind, we 

took the energies of the IR absorption minima and determined their 
corresponding minimum k‖ values as the intersection of a nondispersing 
state of this energy with the actual dispersion of the pristine surface. 

In Fig. 68, the average wire lengths, as obtained from the maximum 
wavelengths determined by the procedure just described, are compared 
with those obained from the inverse halfwidths of the LEED profiles of 
the × 2 streaks present in these systems. As expected, both strongly 
decrease as a function of oxygen exposure from the initial value of about 
31 nm, obtained from IR. From these results it is obvious that random 
adsorption of oxygen introduces new scattering centers. Although 
oxidation directly at the Au chains in unfavorable [296], oxidation at the 
HC Si chain still has a significant influence also on plasmon scattering by 
defects, so that the effective wire length for plasmons decreases. 

A very similar trend is seen when taking the inverse FWHMs of the ×

2 streaks along the 
[
112

̄
1
]

direction in LEED (see Fig. 68(a))). The 

reduction of the correlation lengths of × 2-order along the wires as a 
function of oxygen exposure is even more pronounced than that in IR 
and starts at a significantly smaller value, indicating different sensitiv
ities of IR and LEED to various types of disorder introduced by oxygen 
atoms. These different sensitivities to defects can at least be qualitatively 
understood. Plasmons generally have wavelengths much larger than the 
lattice constant and exhibit a pronounced wavelength dependence [416] 
that makes the scattering probability at defects of atomic size small at 
long wavelengths. On the contrary, stacking faults in the dimerization of 
the Au chains, e.g., clearly cause phase changes in LEED and thus limit 
the correlation length in LEED, whereas they are expected to represent 
weak scatterers for the plasmons with long wavelengths. Kinks in the Au 
chains, on the other hand, caused by roughness of step edges or slight 
azimuthal misalignment of the sample, should also scatter plasmons 
more efficiently. Therefore, we always expect a higher sensivitity to 
structural defects in LEED than with plasmons. 

The formation of plasmonic standing waves induced by defects is a 
common phenomenon in all these systems. As an extreme case, it can 
lead to plasmon localization, as observed for the Si(775)-Au system 
[424]. 

2.5.7. Dimensional crossover: Si(557)-Pb 
As discussed above in sec. 2.4, the Si(557)-Pb system is the prototype 

system for temperature switchable 1D-2D metallicity [371], but also for 
highly correlated electrons leading to SODWs [139]. The critical con
centration for pure 1D electrical conductance at low temperature is 1.31 
ML of Pb relative to the Si(111) surface concentration. 

For this critical Pb concentration of 1.31 ML a clear dispersing loss 
along the terrace edges was observed (shown in Fig. 69(a)), and no such 
loss was found in perpendicular direction - evidence for a 1D dispersion 
at this coverage. No temperature dependence could be observed 
comparing measurement at room temperature with those during ℓHe 

Fig. 68. (a) Correlation lengths of × 2 streaks in LEED, determined as inverse 
FWHMs, as a function of oxygen exposure in Si(553)-Au. (b) Maximum plasmon 
wavelengths, divided by 2, determined from the energetic positions of the ab
sorption minima and the plasmon dispersion (for details, see text). 

Fig. 69. a) Comparison of the dispersion for 1.31 ML Pb on Si(557) parallel to 
the steps (red balls) with that obtained for the same coverage of Pb on Si(111). 
b) Dispersion in both directions with 1.40 ML of Pb. The dashed line corre
sponds to the result at 1.31 ML. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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cooling. 
As seen from Fig. 69(a), the measured data points can be naturally 

extrapolated to zero momentum and zero energy. The dispersion can 
quantitatively be described by a model of a confined 2D electron gas 
with local field corrections and correlations [420] using a single, four 
atoms wide metallic strip that is confined in a parabolic potential. More 
details can be found in ref. [263]. There is a clear qualitative difference 
between these quasi-1D data and the 2D system of Si(111)-Pb that is also 
shown in this figure. Furthermore, the almost linear dispersion of Pb/Si 
(557) was taken as the typical signature for a quasi-1D system [443]. 

Contrary to the Ag/Si(557) system described above, however, no 
indications for quantum well confinement were detected. Already the 
missing temperature dependence of the 1D plasmonic dispersion is an 
indication that the physical mechanism for decoupling the plasmonic 
excitation on the various terraces cannot be related to Fermi nesting and 
opening of the 1D band gap alone. A large contribution to effective 
decoupling may, however, originate from the high resistance between 
steps [370]. 

However, as it turns out, the quasi-linear dispersion is no unique 
signature for a 1D property [461]: Increasing the Pb coverage, e.g. to 1.4 
ML, leads to appearance of a plasmonic loss also in the direction 
perpendicular to the steps (see Fig. 69(b)). At this Pb concentration, 
about half of the Si step edges originally not covered by Pb are decorated 
with Pb chains [370,374]. While these added chains increase coupling 
between different terraces, also the effective band gap is reduced [329]. 
These changes in coupling between terraces may explain the appearance 
of propagating plasmons at energies much higher than the measured 
gap. Nevertheless, the small anisotropy of about 10 % between di
rections parallel and perpendicular to the steps is quite puzzling, as well 
as the non-detectability of a loss signal for wavelengths above 15 nm, 
which corresponds to 10 times the terrace width. 

In both directions there is still a quasi-linear dispersion. For geo
metric reasons, this coupling must still be strongly anisotropic. It may 
also linearize the dispersion, in a quite analogous manner as the 
coupling of 2D layers [409] or of surface state plasmons with bulk 
electrons [414]. Thus we have here a clear crossover behavior from 1D 
to 2D induced by a very small change of surface concentration of Pb. At 
this moment there is no clear understanding yet of the underlying 
physical mechanism for the crossover nor is there a quantitative theory 
for the plasmonic excitations in these anisotropic low-D systems. 

2.5.8. Conclusions 
This section has demonstrated that the study of plasmonic excita

tions is a quite versatile and valuable tool in order to characterize quasi- 
1D systems on insulating substrates. The identification of quasi-1D 
behavior, however, turned out not to be straight forward. 

While the Si(557)-Ag system seems to consist of an array of well 
decoupled individual Ag strips on each mini-terrace, there is no sign of 
the typical 1D instabilities described in sec. 1.3. Instead, the substrate 
seems to provide a 3D confining potential in this case so that the 
description by a strongly confined 2D electron gas fits the data well. This 
confining potential may be the reason that no signs of quasi-1D behavior 
show up, in agreement with scenarios described in sec. 1.7. The data of 
Ge(100)-Au and their comparison with theory point in a similar direc
tion so that it is very difficult to discriminate between 2D and quasi-1D 
behavior, as already discussed in sec. 1.7. 

Furthermore, all systems studied here suffer from limitations by 
substrate imperfections. These generally lead to limited lengths of the 
quasi-1D objects and to typical finite size effects, so that the behavior for 
k‖ → 0 can only be extrapolated. At the same time, these finite size ef
fects limit the accessible range of low-energy plasmonic excitations to 
finite values that may already be too large for the observation of, e.g., 
Luttinger liquid behavior. 

Nevertheless, the study of plasmon dispersion turned out to be 
directly sensitive to the interactions in 2D and 3D. By comparing plas
mon dispersions with theoretical unoccupied band structures close to 

the Fermi level, calculated with ab-initio methods, these dispersion 
curves were shown to be useful as a new spectroscopic tool. This method 
was tested on a variety of Si(hhk)-Au systems and revealed strong 
coupling between electronic Au and Si surface states including strong 
electronic correlations involving both spin and charge (see section 
2.2.4). 

A particularly intriguing system in this context is the Si(557)-Pb 
system, which shows a clear crossover in dispersion from 1D to aniso
tropic 2D induced by a small increase of Pb concentration that most 
likely also changes coupling between terraces even for excitation en
ergies much higher than those relevant for electrical conductance and 
the formation of SODWs (see sec. 2.4). At this point there is no theo
retical description yet. 

2.6. Strongly interacting systems and embedding: rare earth silicides6 

In the previous sections, the properties of atomic wires were pre
sented, which are mainly characterized by metal induced surface re
constructions, governed by the intensive interaction of the deposited 
metal atoms with the semiconductor surfaces. In the present section, we 
will mainly discuss the properties of nanowire structures, which are 
based on existing bulk compounds — the rare earth silicide nanowires. 
These 1D structures have been intensively studied in the last two de
cades, in particular on Si(001) surfaces [467–489], but also on other 
orientations of the silicon substrate [479,486,490–500]. 

Rare earth silicide nanostructures on silicon surfaces are usually 
prepared by deposition of the rare earth metal and simultaneous or 
subsequent annealing at temperatures of 500–750 ◦C. In this way, a solid 
state reaction accompanied by atomic diffusion processes leads to the 
formation of a silicide. Because of the silicon surplus from the substrate, 
usually the most silicon-rich silicides are formed, which are the hexag
onal or tetragonal disilicides RESi2− x (RE stands for a trivalent rare 
earth). 

Fig. 70. (a) STM data of the TbSi2 monolayer on Si(111) with an atomically 
resolved image in the inset, (b) the corresponding Fermi surface observed by 
ARPES at hν = 100 eV, and (c,d) the related structure model (c) in top view and 
(d) in side view. From Refs. [499,506]. 

6 Author mainly responsible for this section: Mario Dähne 
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2.6.1. Planar rare earth silicide films on Si(111) 
On a planar Si(111) surface, wide 2D films of the hexagonal silicide 

can be formed in this way [501–507]. In Fig. 70, STM and ARPES results 
of such a monolayer-high TbSi2 film are shown together with the cor
responding structure model. As revealed from atomically resolved STM 
data [e. g. in the inset of Fig. 70(a)], the film has a quasi-hexagonal 
structure with a 1 × 1 periodicity, composed of a hexagonal terbium 
layer underneath a silicon bilayer with a threefold symmetry because of 
its buckling [Fig. 70(c and d)]. The electronic band structure with its 
Fermi surface, shown in Fig. 70(b)–is characterized by a metallic 

behavior with elliptical electron pockets at the M
̄ 

points [499]. 

Furthermore, a star-like hole pocket is located at the Γ
̄ 

point [506,507], 
which is, however, not visible at the photon energy used here because of 
photoemission matrix element effects. 

In the case of thicker, more bulk-like films, a strain induced defect 
structure develops, which leads to a Tb3Si5 stoichiometry with a 

̅̅̅
3

√
×

̅̅̅
3

√
periodicity [506,507]. Other trivalent rare earth metals such as 

dysprosium or erbium form very similar structures with almost identical 
electronic properties, a behavior that is related to the chemical simi
larity of the rare earths [501–505,507]. 

These hexagonal silicide structures will play a major role in the 
following presentation of rare earth silicide nanowires on differently 
oriented silicon surfaces. 

2.6.2. Rare earth silicide nanowires on Si(001) 
When rare earth metals are deposited on Si(001), accompanied or 

followed by thermal activation, mainly two low-D structure types are 
formed, the so-called wetting layer and the nanowires, as shown 
exemplarily in Fig. 71(a) and (b), respectively. Now these two structure 
types will be presented in detail. 

2.6.2.1. The wetting layer. The first structure, observed at sub
monolayer rare earth coverages on Si(001) and/or rather low formation 
temperatures, is a wetting layer, which finally shows a 2 × 7 periodicity. 
As shown in Fig. 71(a) for the case of terbium, it is characterized by a 
periodic arrangement of long structures appearing like wires. However, 
since this structure is formed by submonolayer coverages and covers the 
entire surface, it should rather be considered as a rare earth induced 
surface reconstruction, in analogy to the ones from gold, indium, or 
silver that were discussed in sections 2.2, 2.3, and 2.5. 

Before the formation of this continuous wetting layer, an arrange
ment of 2 × 4 building blocks develops, and the typical LEED pattern of 
this preliminary structure is shown in Fig. 72(a). With increasing 
coverage, these building blocks form the continuous film with 2 × 7 
periodicity and a characteristic LEED pattern is observed [Fig. 72(b)]. 
The successive development from the 2 × 4 to the 2 × 7 structure when 
increasing the rare earth coverage was observed for the case of 
dysprosium using a series of LEED patterns, and the corresponding 
sequence of line scans between the 1 × 1 main LEED reflexes is shown in 
Fig. 72(c) [508]. 

Despite of several studies addressing these wetting layer structures, 
conclusive structure models could not be developed up to now [486]. 

2.6.2.2. Formation of the nanowires. The second structure formed on Si 

Fig. 71. STM images of (a) the terbium induced wetting layer on Si(001) and 
(b) the terbium silicide nanowires on Si(001). The magnifications in the insets 
show (a) the 2× 7 periodicity of the wetting layer and (b) the 1 × 2 periodicity 
of the nanowire top surface, as marked by the red unit cells. Adapted from 
Ref. [486]. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 

Fig. 72. (a,b) Selected LEED patterns and (c) a sequence of line scans for the 
development of the dysprosium induced wetting layer on Si(001) with 
increasing dysprosium coverage taken at Ekin = 52 eV, showing the transition 
from 2 × 4 building blocks to the ordered 2 × 7 structure. Adapted 
from Ref. [508]. 
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(001), shown in Fig. 71(b) for the case of terbium, is an arrangement of 
much wider and in particular also higher nanowires. They are aligned in 
〈110〉 directions, can reach lengths up to 1 μm, are only a few nm wide, 
and have typical heights around 0.5 nm. Moreover, they tend to form 
nanowire bundles in particular at higher rare earth coverages, with 
characteristic grooves between the nanowires. At monoatomic surface 
steps, the direction of the nanowires turns by 90◦, which is due to the 
corresponding change of the dangling bond directions of the Si(001)2 ×
1 substrate, so that two domain types with different nanowire orienta
tions develop. As shown in the inset of Fig. 71(b), the surface structure of 
the nanowires is characterized by parallel lines in nanowire direction 
with a corrugation, which is compatible with a 1 × 2 periodicity. Again, 
very similar structures were found for other trivalent rare earth metals 
[467–471,475]. 

Comparative LEED experiments on planar Si(001) surfaces with 
dysprosium induced nanowire bundles were performed after a dyspro
sium deposition of less than 2 ML at 500–600 ◦C [484]. Fig. 73(a) shows 
the LEED pattern of such a two-domain sample. It is characterized by 
streaks between the fundamental diffraction spots caused by diffraction 
from nanowire bundles due to their shape with large aspect ratios. 

From literature it is well known that dysprosium induced nanowires 
can show 1 × 1, 1 × 2, or 2 × 2 reconstructions [470,472]. In the present 
case, the 2 × 2 reconstruction can practically be excluded due to an only 
negligible intensity of the related diffraction spots [see arrow in Fig. 73 
(a)]. 

The line scan along the streaks of the LEED pattern in Fig. 73(b) (red 
line) demonstrates that the streaks are not structureless but show some 
fine structure. This has been analyzed using binary models to calculate 
the diffraction pattern and to model the distribution of nanowire bun
dles on the Si(001) surface [484]. The main fit parameters were the 
widths of both nanowires and nanowire bundles as well as the spacing 
between nanowire bundles. Best agreement between the experiment and 
the calculated fine structure [blue line in Fig. 73(b)] was obtained using 
a categorical distribution of nanowire widths (average width of 4.4 a, 
where a = 0.384 nm is the Si(001) surface lattice constant), a geometric 
distribution of nanowires per bundle (in average seven nanowires per 
bundle), and an average spacing between bundles of 37 a. In addition, 
this analysis shows that the nanowires predominantly have a 1 × 1 
structure, while no significant indications for a 1 × 2 periodicity were 
found [green line in Fig. 73(b) for a pure × 2 periodicity]. However, this 
discrepancy to the STM results [inset of Fig. 71(b)] may be assigned to 
the dominating × 1 periodicity within the nanowire bulk as mainly 
probed by LEED, while the × 2 periodicity only occurs at the nanowire 

surface dominating the appearance in STM images. 
The properties of these rare earth silicide nanowires on Si(001) will 

now be discussed in detail, and it will be shown that they consist of the 
above-mentioned hexagonal disilicide and are characterized by a 1D 
metallicity. 

Since the first observation of these nanowires more than two decades 
ago [467], structure models were developed, which were mostly based 
on strain considerations and on the appearance in STM images. Since the 
hexagonal RE3Si5 bulk crystal, which is the most frequent form of 
RESi2− x with an ordered assembly of silicon defects, is almost 
lattice-matched to the Si(001) substrate with its a-axis, while its c-axis 
has a mismatch of around 7 %, it was widely assumed that the nanowire 
direction corresponds to the a-axis of this silicide, allowing an almost 
strain-free and therewith practically unlimited extension in this direc
tion. The c-axis, in contrast, was assumed to be oriented along the 
substrate surface but perpendicular to the nanowires, and the resulting 
strain would then limit the growth in this direction. In this way, the 
nanowire formation was attributed to anisotropic strain. And the 
appearance of the nanowire surface in STM images with the 1 × 2 
periodicity could be well described by a dimerization of the uppermost 
silicon atoms. Also the bundle formation could be explained by misfit 
dislocations formed due to the anisotropic strain. 

However, this model was based on the lattice parameters of the 
defected RE3Si5 layers, but did not take into account that the STM im
ages of the nanowires usually did not show any indication of such de
fects. Recently the internal structure of the nanowires could be 
determined using high-resolution transmission electron microscopy 
(HRTEM) after nanowire capping and it could be demonstrated that the 
actual nanowire structure is different [487,489], as will be discussed in 
the following. 

2.6.2.3. Capping of the nanowires. An important aspect of these rare 
earth silicide nanowires on Si(001) is that their structure may be pre
served upon capping with amorphous silicon [482,487,489], in this way 

Fig. 73. (a) LEED pattern from a planar Si(001) surface with dysprosium sili
cide nanowire bundles taken at Ekin = 81 eV. Only negligible diffraction spots 
due to a 2 × 2 reconstruction of the nanowires are visible (see arrow). (b) Line 

scan of streaks (red line) between the 
(

1
̄

0
)

and (10) fundamental diffraction 

spots of (a), exhibiting a fine structure. The experimental data are compared to 
calculated fine structures with 1 × 2 and 1 × 1 periodicities presented by green 
and blue lines, respectively. Best agreement is obtained assuming nanowires 
with a 1 × 1 periodicity. For comparison, the violet line shows the calculated 
fine structure for Gamma distributed widths of nanowires, being far from 
satisfactory. Adapted from Ref. [484]. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 74. STM images of terbium silicide nanowires on Si(001) (a) before and 
(b) after capping with 5 nm amorphous silicon at room temperature. Adapted 
from Ref. [487]. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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protecting them against ambient conditions. This behavior is related to 
the fact that the nanowire interior consists of a stable bulk silicide – in 
contrast e. g. to the gold, indium, or silver induced atomic wires, which 
are rather very thin metal induced surface reconstructions and will 
probably show strong modifications or even complete destruction upon 
capping. Thus the rare earth silicide nanowires are also an interesting 
candidate for applications in devices. Moreover, the capped and in this 
way passivated nanowires can be studied by HRTEM, revealing their 
internal structure. 

In Fig. 74, STM images of terbium silicide nanowire bundles on Si 
(001) are shown (a) directly after growth and (b) after subsequent 
capping with a 5 nm thick film of amorphous silicon, deposited at room 
temperature. After capping, the surface is characterized by a rough 
texture, indicating a lack of crystalline ordering of the capping layer. 
However, the appearance of the image in Fig. 74(b) already suggests 
that the nanowire bundles are still present underneath the capping layer, 
since mesa-like structures are observed, which have very similar shapes 
and extensions as compared with the nanowire bundles in Fig. 74(a). 

This assumption is verified by the HRTEM images of the capped 
nanowires shown in Fig. 75. In Fig. 75(a), a cross-sectional view of a 
nanowire bundle is shown, while Fig. 75(b) shows a side view. It is 
obvious that the nanowires are still characterized by a crystalline 
structure. In the following, the atomic structure of the nanowires is 
studied in detail. 

2.6.2.4. Atomic structure of the nanowires. With the acquisition of so- 
called defocus series and the respective HRTEM image simulations, it 
could be shown that the large black spots in the images are related to the 
terbium atoms within the nanowires on Si(001) [487,489]. The terbium 
atoms are marked by yellow dots in the magnified sections at the 
respective bottoms of the images. Thus it is obvious that the nanowires 
consist of two layers of terbium atoms, which is consistent with the 
heights of around 0.5 nm observed in the STM images. Also the bundle 
formation can be observed in the cross-sectional image [Fig. 75(a)], with 
the grooves indicated by the red arrows. Moreover, the terbium atoms 
show a zigzag pattern in the cross-sectional view [Fig. 75(a)], which is 
consistent with a hexagonal arrangement viewed in c-direction. In 
contrast, the side view [Fig. 75(b)] shows an on-top arrangement of the 
terbium atoms, as expected from a view on the hexagonal silicide 
structure in a-direction. 

These results demonstrate that the nanowires indeed consist of the 
hexagonal disilicide with the c-axis along the substrate surface. More
over, the silicide c-axis is oriented parallel to the nanowires. This 
orientation of the silicide thus deviates by 90◦ from the one proposed in 
the previous assumptions. 

With this information, a structure model of the nanowires is 

Fig. 75. HRTEM images of terbium silicide nanowires on Si(001) capped with 
5 nm amorphous silicon at room temperature (a) in cross-sectional view, i. e. 
viewed along the nanowires, and (b) in side view. The regions defined by the 
white rectangles are magnified in the respective bottom images, where the 
terbium atoms are marked by yellow dots. From Ref. [487]. (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 76. Structure model of terbium silicide nanowires on Si(001) (a) in cross-sectional view and (b) in side view. Blue and yellow circles mark silicon and terbium 
atoms, respectively. From Ref. [487]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 77. Variation of the Landau potential for different erbium silicide nano
wire structures on Si(001) with the hexagonal c-axis (a) perpendicular to the 
nanowires and (b) parallel to the nanowires. The nanowires are labeled by their 
width in units of the Si(001) lattice constant a. Adapted from Ref. [488]. 
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developed, as shown in Fig. 76. Their interior is characterized by a 1 × 1 
periodicity, as derived from the LEED data (Fig. 73). The alternating 
formation of silicon dimers at the nanowire top surface leads to the 1 × 2 
periodicity, as observed in the STM images [inset of Fig. 71(b)]. 

These results on the nanowire structure can be related to a different 
mechanism for nanowire formation than previously assumed. Since no 
indications for the silicon vacancy defects of the hexagonal Tb3Si5 bulk 
silicide could be found in both STM and HRTEM images, the nanowires 
are formed by a hexagonal silicide with a TbSi2 stoichiometry. First of 
all, this results in different lattice constants as compared with Tb3Si5 
because of the missing defects, so that anisotropic strain may not be the 
main formation mechanism. Instead, kinetic effects may play a role, 
since an intense lateral atomic diffusion is required during the thermally 
activated nanowire formation process. In order to resolve this issue, 
theoretical calculations were performed. 

In a detailed theoretical investigation of a variety of possible erbium 
silicide nanowire structures [488], which are very similar to those 
formed with terbium, it could be demonstrated that the experimentally 
observed nanowires are metastable, while a 2D silicide film represents 
the energy minimum. This is shown in Fig. 77, where the variation of the 
Landau potential is displayed for different nanowire structures with (a) 
the previously assumed structure model and (b) the new model pre
sented here. The solid lines represent the results for the different 
nanowire widths and the dashed lines the ones for the 2D films. From a 
comparison of Fig. 77(a) and (b) it is also revealed that the orientation of 
the c-axis – along or perpendicular to the nanowires – does not influence 
the formation energy significantly. These results indicate a considerable 
role of kinetic effects on the formation of the nanowires. 

Finally it should be noted that also nanowires higher than two atomic 
layers were observed occasionally, in particular at higher rare earth 
coverages. The HRTEM data of such nanowires indicate that they consist 
of a tetragonal silicide [489]. However, for the majority of the nano
wires, which are two atomic layers high, this does not play any role, 
since the hexagonal and tetragonal silicide structures consist of the same 
two layers high building blocks [489]. 

2.6.2.5. Electronic properties of the nanowires. Generally, a fascinating 
property of the nanowires on Si(001) is their electronic structure, which 
may be purely 1D in the ideal case. It is thus of particular interest, if the 
present rare earth silicide nanowires have metallic behavior and if they 
are electrically insulated from their surroundings, since this could be an 
important property in device applications. 

For the analysis of the electronic properties of individual nanowires, 
STS experiments were performed [483], as shown in Fig. 78. A non-zero 
signal at zero voltage is observed in the spectra, corresponding to a finite 
density of states at the Fermi energy. This indicates that the nanowires 
are metallic. 

For such a 1D system, a strongly anisotropic band structure is ex
pected. A very versatile tool for a determination of the dispersion of the 
electronic states is ARPES, which, however, averages across a large 

surface area and thus does not allow an investigation of individual 
nanowires. Unfortunately, the present nanowires on the planar Si(001) 
surface form domains with nanowire orientations perpendicular to each 
other [see Fig. 71(b)]. In order to study the anisotropy of the band 
structure with ARPES, however, single domain samples are required. 

Such a sample with a single nanowire direction may be prepared 
using vicinal Si(001) wafers with a misorientation of a few degrees, since 
here a double-step surface structure is formed, so that the substrate 
dangling bonds of neighboring terraces have the same orientation, 
resulting in a single domain sample. As an example, Fig. 79 shows 
nanowires grown on a vicinal Si(001) surface with 4◦ misorientation. 
These nanowires are indeed characterized by a single orientation across 
the entire sample. Moreover, their overall appearance is very similar to 
the one on the planar Si(001) surface, indicating a similar atomic 
structure, as indeed confirmed in HRTEM experiments [482,489]. 

ARPES results for such a nanowire sample are shown in Fig. 80(a) 
[483]. In nanowire direction (labeled k‖), at least five dispersing bands 
are observed. Three of them (numbers 2, 4, and 5) cross the Fermi en
ergy, and two further bands (numbers 1 and 3) at least reach the Fermi 
energy. These observations demonstrate the metallicity of the nanowires 
and therewith also confirm the STS results presented above. However, 
these bands are not always visible in the ARPES experiments, but appear 
and disappear at different values of the in-plane wave vector component 
perpendicular to the nanowires (labeled k⊥), as revealed by the different 
plots in Fig. 80(a). This behavior may be related to photoemission ma
trix element effects. 

The derived dispersion curves are shown schematically in Fig. 80(b). 
A closer inspection of Fig. 80(a) reveals that the dispersion curves do not 
only show an intensity variation with the perpendicular wave vector 
component k⊥, but also slight energy variations. This behavior is also 
visible in the Fermi surface plot in Fig. 80(c), where undulations are 
observed instead of the straight lines expected for a purely 1D disper
sion. This observation could indicate a small electronic cross-talk of 
neighboring nanowires, e. g. directly between the nanowires within a 
bundle or even by electronic tunneling through the band gap of the 
substrate. In this case, the nanowires would not be completely insulated 
from each other, and their electronic structure would not be purely 1D. 
On the other hand, the observed variations could also be due to the fact 
that such samples generally contain nanowires and bundles with 
different widths [see e. g. Fig. 79], which are expected to vary also in 
their electronic dispersion curves. These curves could contribute pre
dominantly to the ARPES signal at certain emission angles due to 
photoemission matrix element effects, in this way also resulting in the 
impression of a k⊥-dependent energy variation. This issue, however, 
could not be resolved based on the present ARPES results. 

In theoretical band structure calculations, in contrast, it could be 
demonstrated that individual nanowires separated from each other by a 
few nm do not show noticeable electronic interactions at all [488]. Here, Fig. 78. STS spectrum of terbium silicide nanowire bundles on planar Si(001) 

taken at room temperature. From Ref. [483]. 

Fig. 79. STM image of unidirecional terbium silicide nanowires on a vicinal Si 
(001) surface. Adapted from Ref. [480]. 
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erbium silicide nanowires were separated by a hydrogenated and thus 
non-metallic silicon surface, which mimics the electronic properties of 
the non-metallic wetting layer of up-to-now unknown structure and 
prevents an electronic coupling of neighboring nanowires. The results 
are shown in Fig. 81(a and b) for the two different orientations of the 
hexagonal silicide within the nanowires. 

It is clearly observed that there is a multitude of bands, which show a 

strong dispersion in nanowire direction (Γ
̄
− Y

̄ 
or X

̄
− B

̄
), and many of 

them are crossing the Fermi energy. In contrast, no significant dispersion 

can be observed in the direction perpendicular to the nanowires (Γ
̄
− X

̄ 

or Y
̄
− B

̄
). This demonstrates that these nanowires are characterized by 

a purely 1D metallicity. 

However, at the nanowire flanks, a dimerization of silicon atoms 
occurred, resulting in a 2 × periodicity of the supercell used for the 
calculations. In order to derive the pure dispersion of the nanowires with 
their 1 × periodicity, the calculated band structures were unfolded, as 
shown in Fig. 81(c and d), so that the SBZ doubles in nanowire direction 
[see Fig. 81(e)]. 

Moreover, for a comparison with the experimental data, the Fermi 
energy had to be shifted slightly to higher energies in order to take into 
account a charge transfer to the nanowires from the surrounding wetting 
layer, which could not be considered in the calculations, where a 
hydrogen terminated silicon surface in between the nanowires was used 
instead. With this correction, the scheme of the experimentally observed 
dispersion curves close to the Fermi energy [Fig. 80(b)] is overlaid on 
the calculated curves, as shown in Fig. 81(c and d). A rather good 

Fig. 80. ARPES results of terbium silicide nanowires on a vicinal Si(001) surface taken at hν = 62 eV, with (a) a series of dispersion plots for different k⊥ values, (b) a 
schematic plot of the derived dispersion curves close to the Fermi energy in nanowire direction, and (c) a Fermi surface plot showing a possible slight dispersion 
perpendicular to the nanowires. The zone boundary in k‖ direction lies at 8.2 nm− 1 for the 1 × periodicity. Adapted from Ref. [483]. 

Fig. 81. (a,b) The calculated band structures of the erbium silicide nanowires on a Si(001) surface with the c-axis orientations (a) perpendicular and (b) along the 
nanowires. (c,d) The respective dispersion curves after unfolding to a 1 × periodicity, and (e) the corresponding SBZ (slightly distorted). The projected silicon bulk 
band structure is marked by the gray areas. In (c) and (d), the experimentally determined dispersion curves are overlaid, energy shifted to account for a charge 
transfer from the wetting layer. Adapted from Refs. [483,488]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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agreement is observed in both cases despite the multitude of theoretical 
curves, when considering that not all theoretically calculated bands are 
visible in ARPES experiments due to photoemission matrix element ef
fects and that the ARPES signal is further superposed by emissions from 
the surrounding wetting layer. Thus a decision on the c-axis orientation 
of the silicide in the nanowires is not appropriate on the basis of the 
comparison in Fig. 81(c and d) alone, while the HRTEM data (Fig. 75) 
clearly demonstrate that the c-axis is aligned along the nanowires. 

2.6.2.6. Electron transport properties of the nanowires. An important 
possible application of these metallic nanowires on Si(001) could be the 
use as nanoscale electrical connectors within silicon-based devices. In 
order to investigate the electrical conductivity of the nanowires in 
detail, multi-tip STM experiments were performed for terbium silicide 
nanowires with different widths and heights [481]. 

In Fig. 82, the procedure of this experiment is shown. The movement 
of the two tips used here is controlled by a scanning electron microscope 
(SEM). While the nanowire is initially almost invisible [Fig. 82(a)], the 
contact with the first tip (bottom left in the images) leads to a pro
nounced SEM contrast because of its biasing [Fig. 82(b)]. Then the 
second tip can be contacted in order to measure the resistance [Fig. 82 
(c)]. In this case, linear current-voltage characteristics were observed 
(not shown here), indicating an ohmic behavior and thus also an elec
trical conductivity of the metallic nanowire. In contrast, when contact
ing the substrate with the second tip, a diode-like characteristics with 
much smaller currents was observed, demonstrating that the nanowires 
are electrically well insulated from the substrate by Schottky barriers. 

However, such mechanic contacts lead to small defects at the 
nanowires, as indicated by the arrows in Fig. 82(f). Thus the length 
dependence of the resistance was measured by successively approaching 
the second tip towards the first one, as shown in Fig. 82(c–f), so that the 
formerly produced defects do not play any role. It turned out that the 
contact resistances from the tips to the investigated nanowire are so 
small that they can be neglected, justifying the use of the two-point 
resistance measurements instead of a four point setup. 

In Fig. 83, the length dependence is shown for a specific nanowire. 
The curve consists of two straight sections with different slopes, 
amounting to 26 kΩ/μm and 300 kΩ/μm, indicating that the property of 
the nanowire changes at a certain position. Indeed, the SEM image 
shows a variation of the nanowire width at the position where the slope 
changes – for thinner nanowires the length variation of their resistance is 
larger, as expected. 

Thus it is found [481] that the nanowire bundles are insulated from 
each other as well as from the substrate, and that they show a linear 
current-voltage characteristics as well as a linear variation of the resis
tance with the probed nanowire length. Moreover, the resistance de
creases with the cross-sectional area of the nanowires. However, the 
derived resistivity of the narrow and sub-nanometer high nanowires was 
found to be as high as 11 × 10− 6 Ωm, being much larger than the bulk 
resistivity of Tb3Si5 of 0.9 × 10− 6 Ωm, while the resistivities of the 
thicker and broader nanowire bundles approach the bulk value. This 
effect was attributed to carrier scattering by defects at the nanowire 
surfaces, which are e. g. visible in Fig. 71(b), 74(a) and 79 as additional 
material assemblies on top of the nanowires. These defects contribute 
more to carrier scattering at lower nanowire heights, leading to the 
observed higher resistivities. A similar scattering effect of nanowire 
boundaries on their resistivity was e. g. also assumed for CoSi2 nano
wires [509]. 

2.6.2.7. Optical anisotropy. RAS is a well-established tool for studying 
the surface induced optical anisotropy. In the case of anisotropic thin 
films on isotropic bulk substrates or simply its anisotropic surface re
constructions, the optical anisotropy is uniquely linked to the aniso
tropic layers, irrespective of the much larger penetration depth of light, 
making this optical technique very surface sensitive [510]. 

Vicinal Si(001) surfaces represent a prominent example of such 
substrates, where RAS has been extensively applied to study surface 
structures and adsorbate induced modifications. The combination of 
experiment with optical simulations and ab-initio calculations can be 
used to relate the spectral fingerprint with microscopic structure infor
mation [511,512]. In the case of low-D metallic structures, a Drude-like 
optical anisotropy term can also contribute due to the anisotropic con
ductivity [513]. 

The interface of terbium and dysprosium silicides with Si(001) 

Fig. 82. SEM image sequence of the contacting of a terbium silicide nanowire 
on Si(001) by two tips and measuring the length dependence of the resistance. 
From Ref. [481]. 

Fig. 83. Resistance variation with probed length of a terbium silicide nanowire 
on Si(001). The slope increases at a reduction of the nanowire width, as shown 
in the SEM image in the inset. From Ref. [481]. 
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satisfies the condition of structural anisotropy and thus yields charac
teristic spectroscopic fingerprints in the optical anisotropy. This has 
been shown in a study of these two nanowire systems on vicinal Si(001) 
using RAS for optical analysis in combination with structure determi
nation by STM [485]. 

Fig. 84 shows a set of RAS spectra of clean vicinal Si(001), the 2 × 7 
wetting layer, and the nanowires, obtained with increasing amounts of 
terbium. The STM images shown were recorded in-situ for each coverage 
to reveal the respective surface morphology. Characteristic for the set of 
spectra are (I) the bulk features of silicon (E1 and E2 band gaps at hν =
3.4 eV and 4.4 eV, respectively), induced by anisotropic strain imposed 
by the surface structure onto the bulk silicon, (II) surface electronic 
transitions (hν = 2.0 − 3.3 eV) related to surface states at the step edges 
and to silicon dimers on the clean surface, and (III) a Tb–Si bond related 
feature at hν = 3.8 eV (marked by red arrows). 

Based on these spectral features, the evolution from the clean surface 
over the wetting layer to the subsequent formation of the nanowires is 
traced. In the first step, i. e. the formation of the wetting layer, silicon 
bulk and surface related features are quenched due to the reaction of 
terbium with silicon, which breaks the dimer bonds. Thus the surface 
strain is lifted and the silicon dimer related features are replaced by 
Si–Tb related features from the building blocks of the 2 × 7 recon
structed wetting layer. The formation of the anisotropic terbium silicide 

nanowires upon further deposition restores the strain, due to the lattice 
misfit of the terbium silicide with the silicon bulk, and exposes small 
areas of silicon dimer terminated patches in between the nanowires. 
Thus, the total optical anisotropy is a superposition of the silicon bulk, 
silicon surface, and Tb–Si related features. 

In the case of dysprosium on Si(001) a very similar behavior was 
observed, which indicates the rather universal interface formation of the 
rare earth silicides on Si(001) [485]. The optical features related to the 
re-appearance of strain as well as to the bonds between rare earth and 
silicon atoms are characteristic for the growth mode and allow both a 
structure analysis and an optical in-situ control of the sample preparation 
or of the growth processes. Moreover, for terbium as well as dysprosium 
silicide nanowires a Drude-like increase of the baseline of the RAS 
spectra towards lower frequencies is observed, which is characteristic 
for the anisotropic metallic conductivity of the nanowires. 

2.6.3. Rare earth silicide nanowires on Si(hhk) surfaces 
Up to now, the rare earth silicide nanowires on the Si(001) surface 

were discussed, which are probably formed by kinetic effects during 
growth, while anisotropic strain may also play a role. A different strat
egy to obtain nanowires is the use of vicinal surfaces. As seen in Fig. 70, 
an almost strain-free hexagonal silicide monolayer forms on the Si(111) 
surface, which has metallic properties. When using certain vicinal Si 

Fig. 84. RAS spectra and corresponding STM images of the clean vicinal Si 
(001) surface as well as of the terbium induced wetting layer and the nano
wires. The interband critical energies of the silicon bulk band structure are 
indicated by E1 and E2. The red arrows mark the Tb–Si bond related feature. 
Adapted from Ref. [485]. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 85. (a–c) STM images and (d–f) corresponding Fermi surfaces derived by 
ARPES at hν = 100 eV of terbium silicide nanowires on vicinal Si(hhk) surfaces. 
(a,d) Si(557) with higher terbium coverage, (b,e) Si(557) with lower terbium 
coverage, and (c,f) Si(335) with lower terbium coverage. The hexagonal Bril
louin zone of the 2D TbSi2 monolayer on Si(111) is marked blue. Adapted from 
Ref. [499]. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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(111) surfaces instead, which are usually labeled Si(hhk), the formation 
of narrow stripes of the monolayer silicide may be expected on the 
narrow (111)-oriented terraces, with widths tunable by the misalign
ment angle of the substrate. 

Such a behavior is indeed observed for h < k, as shown in Fig. 85(a–c) 
for the case of terbium [491,492,498,499]. For the Si(557) surface, 
which is characterized by a misalignment angle of 9.5◦ relative to the Si 
(111) surface, silicide nanowires are observed, and their widths of a few 
nm may be adjusted by the amount of deposited terbium [Fig. 85(a and 
b)]. When using Si(335) surfaces with a higher misalignment angle of 
14.4◦, even narrower nanowires may be obtained [Fig. 85(c)]. And the 
surfaces of the nanowires are oriented in the [111] direction, as ex
pected for a growth of TbSi2 monolayer stripes on the (111) terraces 
[498,499]. 

2.6.3.1. Electronic properties. The corresponding electronic properties 
of the nanowires on Si(hhk) are shown in Fig. 85(d–f) [499]. On a first 
glance, the Fermi surfaces appear similar as the one of the silicide 
monolayer on Si(111) [Fig. 70(b)], supporting the above assumption of 
a similar structure. However, the shape of the elliptical electron pockets 
has changed, in particular for the case of the narrowest nanowires on the 
Si(335) surface [Fig. 85(f)]. Here, the two horizontal ellipses appear 
extended in the horizontal direction, i. e. perpendicular to the nano
wires. This visual result is supported by the comparison with the over
laid pink ellipse, which was derived from the respective horizontal 
ellipses of the 2D TbSi2 monolayer on the (111) surface [Fig. 70(b)]. And 
also the other four inclined ellipses are widened in the same horizontal 
direction, as illustrated by the comparison with the inclined pink ellipse 
from the TbSi2 monolayer on Si(111). 

Moreover, additional linear structures are observed in Fig. 85(f)–as 
marked by the red arrows. Such linear structures indicate a missing or 
negligible dispersion perpendicular to the nanowires and therewith a 
purely 1D behavior. 

In a first approach, the shape changes of the ellipses can be explained 
on the basis of Heisenberg’s uncertainty principle: During the ARPES 
experiment, the electron emission from a narrow nanowire occurs from 
a spatially confined region, so that diffraction effects occur, similar to 
the case of an optical single slit. From the typical width of the nanowires 
on the Si(335) surface of 2.5 nm, as revealed by STM [Fig. 85(c)], the 
main maximum of the single-slit pattern has a full width at half 
maximum of about 2.2 nm− 1, in nice agreement with the broadening 
and extension of the ellipses observed in Fig. 85(f). 

In detailed theoretical calculations, the atomic structure and in 
particular the electronic properties of these nanowires were investigated 
for the case of the Si(557) surface [499]. In order to separate the 

nanowires electronically, an about 2 nm wide terbium silicide mono
layer stripe was assumed only on every second Si(111) terrace, while the 
terraces in between were hydrogenated, removing the silicon surface 
states from the band gap. The resulting structure is shown in Fig. 86. It is 
formed by a stripe of a TbSi2 monolayer with terbium atoms underneath 
a buckled silicon bilayer, as also expected from the Si(111) case 
[Fig. 70c) and d)]. On its right side the stripe ends at a substrate surface 
step, and on its left side the last row of terbium atoms is caged by 
additional silicon atoms. 

The calculated electronic dispersion is shown in Fig. 87(a). Here, the 

X
̄ 

point corresponds to the Brillouin zone boundary in the direction of 

the nanowires (with the same wave vector component as the M
̄ 

point), 

Fig. 86. Calculated structure of about 2 nm wide terbium silicide nanowires on 
(111) terraces of the Si(557) surface, which alternate with hydrogenated (111) 
terraces. Yellow circles mark the terbium atoms. From Ref. [499]. (For inter
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 87. (a) Calculated dispersion curves of the terbium silicide nanowires on Si 
(557) and (b) corresponding slice of the ARPES data along the nanowires. 
Adapted from Ref. [499]. 

Fig. 88. (a) Calculated Fermi surface of the terbium silicide nanowires on Si 
(557) and (b) after unfolding onto the SBZ of the TbSi2 film. The narrow SBZ of 
the nanowires and the hexagonal one of the 2D silicide film are marked green. 
From Ref. [499]. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 89. The spatial localization of the electronic states from the linear struc
ture in the Fermi surfaces of the terbium silicide nanowires on Si(557) [red 
arrows in Figs. 85(f) and Fig. 88]. From Ref. [499]. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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while the Y
̄ 

point corresponds to the one in the perpendicular direction 
(see also Fig. 88). For comparison, a slice of the ARPES data along the 

nanowire direction up to the M
̄ 

point is shown in Fig. 87(b)–as indicated 
by the dashed red line in Fig. 85(f), where the linear structure is most 
pronounced. A purely 1D behavior is found in the calculated dispersion 
in Fig. 87(a), without any dispersion within the silicon bulk band gap 

perpendicular to the nanowires, i. e. in Γ
̄
− Y

̄ 
direction. Along the 

nanowires (Γ
̄
− X

̄ 
direction), in contrast, a strong dispersion of the 

bands is observed. In particular the band sections marked by the green 
arrows correspond to the ellipses in the Fermi surface data from the 
ARPES experiments [Fig. 85(f)]. Also the band marked by a red arrow in 
Fig. 87(a) is well represented by the ARPES data in Fig. 87(b), where the 
corresponding band, slightly scaled in energy, is marked by a dotted red 
line. 

Now the question is discussed why a rather 2D Fermi surface is 
observed in ARPES, while the calculated electronic band structure is 
purely 1D. In Fig. 88(a), the calculated Fermi surface is shown, which is 
indeed purely 1D, as expected from the calculated dispersion curves. 
However, in an ARPES experiment, the photoemission intensity is 
strongly influenced by the shapes of the wave functions in real space, 
which couple to the ones of the measured photoelectrons via the 
photoemission matrix element. In this way, mostly photoelectrons with 
the same parallel wave vector component are emitted, as has been 
demonstrated e. g. for the case of organic molecules on surfaces [514, 
515]. In order to take these effects into account, the calculated Fermi 
surface was unfolded from the narrower Brillouin zone of the nanowire 
supercell to the hexagonal one of a TbSi2 film, as shown in Fig. 88(b). In 
this way, a nice agreement is found between the calculated and the 
experimental Fermi surfaces [compare Fig. 88(b) with Fig. 85(f)]: The 
experimentally observed broadening of the ellipses is well reproduced 
by the calculations, and also the linear structures can be found, as 
indicated by the red arrows in Fig. 88. 

Finally the origin of these linear structures will be determined, which 
are predominantly found in the most narrow nanowires [Fig. 85(f)]. For 
this purpose, the isosurface of the probability density of the 

corresponding band at the Fermi energy (red arrows in Fig. 88) is dis
played in Fig. 89 by the red areas. This wave function is mainly localized 
at the left edge of the nanowires and can thus be related to 1D edge 
states. It is now obvious why these edge states are most pronounced in 
the ARPES data of the narrowest nanowires, since they have the largest 
relative weight in this case. 

2.6.3.2. Thicker nanowires. When the rare earth silicides are formed on 
Si(hhk) surfaces for higher rare earth coverages of several monolayers, 
the formation of similar nanowires as already discussed was observed on 
the Si(111) terraces by STM [491,492]. The ARPES data, however, 
indicate that these metallic nanowires consist of the defective RE3Si5 

multilayer silicide with a 
̅̅̅
3

√
×

̅̅̅
3

√
periodicity [491,492]. In this way, 

even higher rare earth silicide nanowires can be produced on Si(hhk) 
surfaces. 

2.6.4. Rare earth induced subsurface stripes on Si(111) 
A rare earth induced formation of 1D structures is even possible 

when using the rather isotropic planar Si(111) surface as a substrate. For 
multilayer rare earth coverages, the formation of a structure with a 
2
̅̅̅
3

√
×

̅̅̅
3

√
periodicity was found in combined LEED and STM experi

ments for dysprosium and terbium induced reconstructions [496]. Here, 
LEED showed a 2

̅̅̅
3

√
×

̅̅̅
3

√
reconstructed surface with three rotational 

domains and 
(

m− n
6 , m+2n

6

)

diffraction spots, as shown in Fig. 90(a). In 

addition, the formation of belt-like striped domains was proved by the 
splitting of certain superstructure spots, as revealed by the line scan 

through the 
(

1
2,

1
2

)

diffraction spot (where m = 3 and n = 0), as shown in 

Fig. 90(b). Surprisingly, STM studies showed contradictory results on 
first sight. Here, the surface layer showed a 

̅̅̅
3

√
×

̅̅̅
3

√
reconstruction 

[Fig. 90(c)]. However, two different coexisting 
̅̅̅
3

√
×

̅̅̅
3

√
structures with 

a hexagonal and a triangular arrangement of surface atoms were 
observed, as shown in Fig. 90(d) and (e), respectively. 

This apparent contradiction of LEED and STM studies was solved by 
DFT studies. From former studies on the 

̅̅̅
3

√
×

̅̅̅
3

√
reconstructed rare 

Fig. 90. (a) LEED pattern from the dysprosium induced 2
̅̅̅
3

√
×

̅̅̅
3

√
reconstruction on Si(111) taken at Ekin = 95 eV. Arrows mark a split 

(
1
2,

1
2

)

diffraction spot, and 

(b) shows a line scan through this spot. (c) STM image of the related terbium induced structure showing a 
̅̅̅
3

√
×

̅̅̅
3

√
reconstruction with domains of coexisting 

hexagonal (red hexagons) and triangular (green triangles) arrangements of surface silicon atoms. (d) Close up of the hexagonal arrangement of surface silicon atoms 
and (e) of the triangular arrangement. (f) Model of the complete structure consisting of a surface silicon bilayer with 1 × 1 periodicity, a first subsurface layer with a 
̅̅̅
3

√
×

̅̅̅
3

√
reconstruction, and a 2

̅̅̅
3

√
×

̅̅̅
3

√
reconstructed second subsurface silicon layer. The white dots mark silicon vacancies and the red dots those surface silicon 

atoms above silicon vacancies in the first subsurface layer. Adapted from Refs. [496,497]. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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earth silicide multilayer films it is well-known that its reconstruction is 
due to silicon vacancies of the planar subsurface silicon layers, while the 
surface still consists of a buckled bilayer of silicon atoms [506,507]. The 
apparent geometry of a triangular or a hexagonal arrangement of silicon 
atoms can be attributed to silicon vacancies formed underneath either 
the upper or the lower silicon atoms of the surface bilayer. 

The DFT results, taking into account the first and second subsurface 
silicon layers, clarified that the first silicon subsurface layer indeed has 
the well-known 

̅̅̅
3

√
×

̅̅̅
3

√
structure, while the second subsurface silicon 

layer has a 2
̅̅̅
3

√
×

̅̅̅
3

√
structure, as shown in Fig. 90(f). In addition, DFT 

showed the existence of two energetically almost degenerated structures 
with different arrangements of the silicon vacancies with respect to the 
buckled silicon surface layer. This explains the coexistence of two 
different 

̅̅̅
3

√
×

̅̅̅
3

√
appearances of the surface as observed by STM. 

Furthermore, the discrepancy between the STM and LEED results can be 
attributed to the much higher surface sensitivity of STM: Indeed, DFT- 
based calculated STM images performed for this model with a 

̅̅̅
3

√
×

̅̅̅
3

√
top layer structure and a 2

̅̅̅
3

√
×

̅̅̅
3

√
bottom layer structure showed 

no 2
̅̅̅
3

√
×

̅̅̅
3

√
signatures. In contrast to STM, LEED can detect also this 

lower 2
̅̅̅
3

√
×

̅̅̅
3

√
structure due to its much higher depth sensitivity of a 

few monolayers. 
In addition, the splitting of the superstructure diffraction spots of odd 

order was analyzed quantitatively [496,497]. In this way, the width of 
the belt-like striped domains could be determined to ≈ 8 nm, and the 
structure of the anti-phase domain boundaries between neighboring 
stripe domains could also be determined in detail. 

2.6.5. Rare earth induced atomic chains on Si(111) 
1D structures were also found for submonolayer rare earth coverages 

on Si(111). These structures are characterized by a 5 × 2 periodicity, 
and their atomic structure could be determined to be a combination of 
honeycomb and Seiwatz chains of silicon atoms, with the atomic rare 
earth chains located in between these silicon chains [495,507]. 
Furthermore, this 5 × 2 structure was found to be semiconducting [507]. 

Thus this chain structure rather represents an atomically thin rare earth 
induced reconstruction of the silicon surface, similar as the gold, indium, 
and silver induced nanowire structures presented in previous sections. 

2.6.6. Rare earth silicide nanowires on Si(110) 
Finally it should be noted that a formation of rare earth silicide 

nanowires can also occur on Si(110) substrates [490,493,494,500]. STM 
images of such nanowires prepared with terbium are presented in Fig. 91 
(a and b) [500]. They can show extremely high aspect ratios with 
lengths exceeding 500 nm and widths around 5 nm. Presumably they 
consist of hexagonal TbSi2 or Tb3Si5 because of the above-mentioned 
silicon surplus, and thus it is assumed that they grow endotaxially into 
the surface forming inclined interfaces parallel to the Si{111} planes of 
the substrate [500]. Because of the twofold symmetry of the Si(110) 
surface, the nanowires only grow in one direction, which in this case is 

the 
[
11

̄
0
]

direction. Such a unidirectional growth on a planar surface is 

remarkable, since it can even lead to rather homogeneous grating-like 
nanowire assemblies across the entire substrate [493]. 

These nanowires are also characterized by a quasi-1D electronic 
band structure [500], as revealed from the ARPES data shown in Fig. 91 
(c and d). In the dispersion plot along the nanowires [Fig. 91(c)], an 
electron-like band is clearly visible, which crosses the Fermi energy 
(marked by the red dashed line). And the corresponding constant energy 
surfaces clearly reveal the 1D character of the electronic dispersion by 
straight contours in the [001] direction, i. e. perpendicular to the 
nanowires, as shown exemplarily in Fig. 91(d) and marked by the red 
arrows. 

2.6.6.1. Conclusions. In this section, the structural and electronic 
properties of rare earth silicide nanowires, formed by self-assembly on 
differently oriented silicon surfaces, were presented. It turned out that 
the nanowires are structurally very close to bulk silicides. They are 
formed due to specifics in growth kinetics in combination with the 
unilateral stress in the silicide as well as in the substrate, and they are 
characterized by 1D physical properties. In particular, the nanowires are 
metallic with a mostly or even purely 1D electronic dispersion. It was 
further shown for the nanowires grown on Si(001) that they can be 
passivated against the ambient by capping with amorphous silicon, and 
also electric transport along these nanowires could be demonstrated. 

3. Dynamics of phase transitions after electronic excitation of 
quasi-1D systems7 

3.1. The Peierls system Si(111)-In (8 × 2) ↔ (4 × 1) 

Due to its unique and peculiar properties the indium atomic wire 
system is ideally suited for the study of structural and electronic dy
namics. This surface system exhibits an inherent Peierls instability 
manifesting itself in a 1st order phase transition between an insulating 
(8 × 2) ground state and a metallic (4 × 1) high temperature state. This 
structural transition can non-thermally be driven through an optical 
excitation and subsequently is trapped for nanoseconds in a supercooled 
metastable state. 

The indium atomic wire system is prepared by self-assembly under 
ultra high vacuum conditions [46,340,343,516–519]. In situ deposition 
of a monolayer (1 ML is equivalent to 7.83 × 1014 cm− 2) of indium 
atoms on Si(111) substrates at a sample temperature of 700–750 K 
creates the (4 × 1) In/Si(111) reconstruction. Removal of accumulated 
adsorbates originating from residual gas was possible through short 
flash annealing to 700–750 K providing a freshly prepared indium 
atomic wire system [48,50,240,244]. 

Fig. 91. (a,b) STM images of terbium silicide nanowires on Si(110). (c,d) 
ARPES data taken at hν = 102 eV with (c) a dispersion plot along the nanowires 
(the second derivative is shown to highlight faint structures) and (d) a constant 
energy surface at a binding energy of 0.7 eV. Adapted from Ref. [500]. 

7 Authors mainly responsible for this section: M. Horn-von Hoegen, W.G. 
Schmidt, S. Wippermann 
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The metallic high temperature phase of this atomic wire system is 
composed of two parallel zig-zag chains of indium atoms with a (4 × 1) 
unit cell [276,516] as is sketched in Fig. 92(a). The corresponding LEED 
pattern is shown in the right panel of Fig. 92(a) with its 3-fold symmetry 

arising from three rotational domains at the hexagonal (111) surface. 
As already mentioned in section 2.3, the system undergoes a tem

perature driven reversible transition from the metallic high temperature 
state to the insulating ground state [340–342] at Tc = 130 K [50,343, 
344], which is accompanied by the formation of a charge density wave 
(CDW) with the corresponding opening of a band gap of Egap = 0.2 eV 
[48,244,343]. In the ground state the zig-zag chains of indium atoms are 
broken and they rearrange into distorted hexagons [276,516], as 
sketched in Fig. 92(b). Upon this phase transition the maximum change 
of geometric position of the In atoms in the surface unit cell is less than 

0.1 A
̊ 

only [49]. This Peierls-like transition is characterized by sym
metry breaking in both directions, which is facilitated through soft shear 
and rotational phonon modes with frequencies of νshear = 0.54 THz and 

Fig. 93. (a) STM micrograph under constant current conditions taken at 100 K. 
Both (8 × 2) and (4 × 1) reconstructed indium wires can be seen. (b) The 
metallic (4 × 1) wires are composed of In atoms arranged in two parallel zig-zag 
chains. (c) Instead, in the insulating (8 × 2) wires the chains are broken up and 
distorted hexagons of In atoms form. (d) STS spectra for the (8 × 2) and (4 × 1) 
reconstructed wires. While the (4 × 1) exhibit metallic behavior (dashed red 
line), the (8 × 2) clearly shows opening of a bandgap of Egap = 0.16 eV (solid 
blue line). Data courtesy of H.W. Yeom and with permission from Ref. [343]. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 94. COHP analysis for the In–In bonds of the (8 × 2) and (4 × 1) surface 
phases. The calculated bond strength is gray coded. 

Fig. 92. (a) The metallic high temperature (4 × 1) state is composed of In atoms arranged in double zig-zag chains. The LEED pattern depicts the (4 × 1) recon
struction in three rotational domains. (b) The insulating (8 × 2) ground state exhibits a Peierls distortion with the formation of a CDW and opening of a band gap. The 
In atoms are rearranged in distorted hexagons. The (8 × 2) LEED pattern clearly shows the periodicity doubling along and perpendicular to the wires. The 8th order 
spots and second order streaks are indicative for the ground state structure. (c) RHEED intensity of the (8 × 2) spots (upper panel) and the (4 × 1) spots (lower panel) 
as function of temperature. Upon heating the intensity of the (8 × 2) spots drops to the background at Tc. Cooling with the same rate leads to the transition back to the 
(8 × 2) reconstruction. The intensity of the (4 × 1) spots rises upon heating at Tc, reflecting the change of atom positions in the unit cell. Temperature cycling exhibits 
a hysteresis of 11 K. (d) Potential energy surface obtained through DFT calculations as function of a generalized reaction coordinate Rgrc describing the transition 
between (4 × 1) and (8 × 2) phases. The blue and red dots indicate the (8 × 2) ground state and the metastable (4 × 1) state, respectively. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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νrot = 0.81 THz, respectively [52,276,520–522]. The surface periodicity 
doubles along and normal to the wires and the size of the unit cell in
creases to (8 × 2). This change becomes obvious in the LEED pattern in 
the right panel of Fig. 92(b) through the appearance of additional spots 
at 8th order positions between the 4th order spots. The appearance of 
second order streaks emerge from the broken correlation of the 2-fold 
periodicity in neighbored wires. The anisotropic nature of the indium 
atomic wire system becomes immediately apparent in STM. Fig. 93(a) 
displays a filled-state STM image from Ref. [343] from the indium wire 

surface at T = 135 K, i.e., at Tc. Extended and parallel wires both with (8 
× 2) and (4 × 1) reconstruction are present. Employing STS both at the 
(8 × 2) and (4 × 1) structure - as shown in Fig. 93(b) and (c) - reveals the 
opening of a bandgap of Egap = 0.16 eV for the low temperature (8 × 2) 
structure - see Fig. 93(d) - which is indicative for the formation of a 
charge density wave and the metal to insulator transition [343] (see 
Fig. 94). 

The equilibrium phase transition was recorded during a quasi- 
stationary rise of temperature from 70 K to 180 K where the sharp 
drop of intensity of the 8th order spots to zero [see upper panel of Fig. 92 
(c)] is indicative for the transition from the (8 × 2) ground state to the (4 
× 1) high temperature state. At the same time, the intensity of the 4th 
order spots sharply rises by a factor of two, indicating the structural 
transition (see lower panel of Fig. 92(c)). During slow temperature 
cycling a hysteresis of the high temperature (4 × 1) and low temperature 
(8 × 2) states is observed upon heating and cooling as shown in Fig. 92 
(c). The width of the hysteresis is independent of the cooling/heating 
rate dT/dt [50]. Such behavior is evidence of a first-order phase tran
sition, i.e., a non-continuous transition with both states separated by a 
small energy barrier. 

What is the origin of the small energy barrier? In order to answer this 
question, DFT-based crystal orbital Hamilton population (COHP) cal
culations were performed [345]. Thereby the band-structure energy is 
rewritten as a sum of orbital pair contributions. The energy dependent 
COHP [523] is given by 

COHP
μ T,→ν T→ʹ (E)= H

μ T→,ν T→ʹ
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→
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Fig. 95. COHP bonding analysis between nearest neighbors for the two ge
ometries. The darker a bond is drawn, the stronger it is. The black curve depicts 
the potential energy surface which exhibits two minima belonging to the (8 ×
2) phase and the (4 × 1) phase. The lower graph shows the bond strength 
evolution for selected bonds during the phase transition. 

Fig. 96. (a) BZ of the (4 × 1) (red) and (8 × 2) (blue) phases of In/Si(111). High-symmetry points are marked for the (4 × 1) phase. The dashed line marks the SBZ of 
Si(111). The green solid line shows the Γ − X line along which the majority of data was obtained. (b) Schematic real-space structure after ref. [242] in the (4 × 1) 
phase and the (8 × 2) phase revealing the structural motifs of the two phases. The respective unit cells are marked. (c) Electronic band structure calculated within the 
GW (orange) and LDA (gray) approximations in the (4 × 1) phase and (d) in the (8 × 2) phase. The dashed line in (c) is at the position that becomes the X(8×2) point in 
(d). (e) Symmetrized Fermi surface at 150 K overlaid with the DFT Fermi surface sheets of the (4 × 1) phase (orange). The (4 × 1) BZ is overlaid (red). Data 

reproduced from ref. [242]. (f) E vs kx cuts through the Fermi surface obtained at ky = 0.43 A
̊ − 1 

at 150 K revealing the three characteristic bands of the (4 × 1) phase. 

Calculated bands in the GW approximation along the Γ
̄

X
̄ 

line are overlaid. (g) The same cut as in (f) at 25 K in the (8 × 2) phase revealing the gapped electronic 
structure and asymmetric spectral weight. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

H. Pfnür et al.                                                                                                                                                                                                                                   



Surface Science Reports 79 (2024) 100629

69

where C
μ T→,j 

is the expansion coefficient of the jth band in terms of the 

atomic orbital μ at the atomic position T→. H
μ T→,ν T→

ʹ denotes the matrix 

elements of the Hamiltonian in atomic orbitals, ϵj

(
k
→)

is the eigenvalue 

corresponding to the jth electron state and fj
(

k
→)

its occupation number. 

The COHP(E) diagram allows for identifying bonding, nonbonding, and 
antibonding regions within a specified energy range. The energy integral 
of COHP(E) gives access to the contribution of an atom or a chemical 
bond to the distribution of one-particle energies and indicates the total 
bond strength. 

The COHP analysis provides the possibility to determine the strength 
of specific In–In bonds within the complicated nanowire structure and to 
track quantitatively the bond strength changes during the phase tran
sition. The strengths of the In–In bonds calculated for the (8 × 2) and (4 
× 1) surface phases of the In atomic wire system are shown in Fig. 94. It 
can be seen that the bonds in the (8 × 2) phase give indeed rise to 
hexagon-like structure motifs. The COHP analysis for the (4 × 1) phase 
confirms the typical model of two regular outer zig-zag chains. However, 
there are also strong bonds between the In atoms of the two neighboring 
zig-zag rows. Obviously, there are drastic differences in the bond 
strengths calculated for the (8 × 2) and (4 × 1) phases. This suggests that 
the Peierls transition between the two phases may be interpreted as well 
in terms of bond-breaking and bond-formation [54]. This explains 
naturally the energy barrier separating the (8 × 2) and (4 × 1) surface 
phases. 

This energy barrier, shown in the top panel of Fig. 95, results from a 
variety of bond breaking and bond formation processes at the surface: In 
the bottom panel of Fig. 95 the COHP calculated bond strengths of 
selected bonds is pursued along the generalized coordinate describing 
the (8 × 2)→ (4 × 1) phase transition. The bond strengths follow a 
monotonous behavior: In all cases it is observed that the bond strengths 
change smoothly rather than abruptly during the phase transition. There 
are bonds, most notably the ones indicated in green and orange between 
neighboring In–In zig-zag chains, that soften considerably during the 
phase transition. Other bonds, in particular the one indicated in blue 
between outer-row In atoms, gain strength upon the (8 × 2) phase for
mation. While the various individual bonds involved in the phase 
transition experience considerable bond strength changes, in one case 
even exceeding 2 eV, the overall energy difference between the two 
surface phases as well as the transition barrier are small. Obviously, 
bond breaking and bond formation processes compete, resulting in an 
overall subtle energy balance. This explains many of the peculiarities of 
the Si(111)-In Peierls system. 

Interestingly, the bonds indicated green and blue in Fig. 95 are 
exactly the bonds that couple most strongly to the shear and rotary 
phonon modes of the In/Si(111) surface [276], i.e., the two Peierls 
lattice modes. 

The Peierls-like structural transition is accompanied by a clear 
qualitative change of electronic structure. For the high temperature 
metallic phase in k-space there are three In bands with p-orbital char
acter that cross EF, labeled m1, m2, and m3 in Fig. 96(c), located in the Si 
bulk band gap [46,244]. Below Tc the system transforms into the gapped 
electronic structure of the low-temperature phase [Fig. 96(d)]. While the 
Peierls-like nature of the phase transition has long been debated [46,54, 
427,517,518,524], the proposed mechanism [525] is that during the 
phase transition the initially metallic m1 band at X moves above EF, 
transferring electrons to the m2, and m3 bands, which become unstable 
toward the formation of a Peierls gap (see Fig. 96). The observed soft
ening of the relevant phonon modes [526] further supported the 
Peierls-like mechanism driving the phase transition. 

Using ARPES, this phase transition was followed in k-space. The 
Fermi surface of Si(111)-In in the metallic (4 × 1) phase is shown in 
Fig. 96(c). The quasi one-dimensional nature of the system is evident 
from the warped Fermi surface sheets, which imply a certain degree of 

inter-wire coupling [527]. The measured data show excellent agreement 
with previous studies [46,518,528] and with the LDA-calculated Fermi 
surface. We have characterized the differences between the two ther
mally stabilized phases, which are shown in Fig. 96(d) and (e) for the 
high and low temperature phases, respectively. At 150 K, the charac
teristic bands m1, m2, and m3 of the (4 × 1) phase are clearly seen to 
disperse up to EF, in excellent agreement with our GW calculations. 
Upon cooling into the (8 × 2) phase, spectral weight is removed from EF 
as the system becomes gapped. In the m2/m3 region, the resulting band 
dispersion turns away from EF, with only weak spectral weight in the 
renormalized dispersion, as expected for charge-density wave systems 
[49]. The m1 region also shows a significant decrease of intensity at EF, 
although it is worth noting that a small amount of the original m1 band 
intensity still persists, even at lowest temperatures, in contrast to the 
prediction of theory. Such signatures suggest the presence of small 

Fig. 97. RHEED patterns for clarity shown in inverted intensity representation 
(bright spots are shown in dark, background in bright) at 30 K prior and after 
optical excitation through a fs laser pulse. (a) Pattern exhibiting (8 × 2) ground 
state. Spot profiles of a 4th order and an 8th order spot are shown in red and 
blue, respectively. (c) The pattern 6 ps after excitation has changed to (4 × 1). 
All (8 × 2) spots and second order streaks disappeared, as evident from the 
changes in spot profile, indicating the structural transition. (b) The difference 
pattern in false color representation exhibits systematic changes: all (4 × 1) 
spots gain intensity (red) while the (8 × 2) and second order streaks dis
appeared (blue). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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domains of (4 × 1) even at low temperatures [519,529–531], which may 
be pinned at defects or step edges [48]. 

3.2. Photo-induced phase transition 

This 1st order phase transition can also be triggered by optical 
excitation through intense laser pulses (1–10 mJ/cm2 on a femtosecond 
time scale of 20–200 fs). The sudden and massive optical excitation of 
the electron system transiently changes the potential energy surface for 
the atom positions in the lattice. This provokes accelerating forces on the 
atoms ultimately causing the structural transition. 

This photo-induced transition (PIPT) is demonstrated in Fig. 97 
where panel (a) depicts the RHEED pattern of the (8 × 2) ground state 
prior to optical excitation at negative pump-probe delays Δt < 0 at a 
temperature T0 = 30 K, i.e., well below Tc = 130 K. The pattern taken at 
Δt = 6 ps, i.e., after optical excitation through a fs-laser pulse with a 
fluence of Φ = 6.7 mJ/cm2, is shown in panel (c) and exhibits clear 
differences. The transient changes of spot intensity become more 
obvious in the difference pattern in panel (b) depicting intensity gains 
(red) and losses (blue) in a false color representation. All 8th order spots 
and second order streaks (indicative for the ground state) disappeared 
while 4th order spots (indicative for the high temperature state) gained 

intensity. The complete transition from the (8 × 2) ground state to the 
(4 × 1) excited state is also reflected by the clear changes in the two 
representative spot profiles shown for a (8 × 2) and (4 × 1) spot in blue 
and red, respectively. 

3.3. Supercooled excited state 

Surprisingly the excited (4 × 1) state is stable for ns and only slowly 
recovers the (8 × 2) ground state as shown in Fig. 100(f), where the 
intensity of a (4 × 1) spot is plotted for long pump-probe delays Δt. As 
we show later, the indium surface layer cools via heat transport on a 
τcool = 30 ps timescale to the substrate temperature of T0 = 30 K. We thus 
can safely exclude a slow thermal recovery of the (8 × 2) ground state. 

This long lived (4 × 1) state is explained through the nature of this 
phase transition: in general, a first-order transition exhibits a barrier 
between the two states hindering the immediate recovery of the ground 
state. This picture is corroborated through density functional calcula
tions of the potential energy surface (PES). Fig. 92(d) depicts this PES as 
function of a generalized reaction coordinate Rgrc obtained by super
imposing the soft shear and rotary phonon eigenvectors that transform 
between the (4 × 1) and the (8 × 2) phase [276,516]. We found the 
transition from the (4 × 1) phase to the (8 × 2) structure to be hampered 
by an energy barrier of Ebarrier = 40 meV (see Fig. 92). At temperatures 
below Tc this barrier hinders the immediate recovery to the (8 × 2) 
ground state: A long-lived metastable and supercooled excited phase is 
stabilized and trapped in a state far from equilibrium for few nanosec
onds [532]. 

In analogy to a supercooled liquid, one might even expect the 
freezing, i.e., the transition back to the (8 × 2) ground state, to be 
facilitated by condensation nuclei, possibly in form of adsorbates. 

To verify this assumption experimentally, we monitored the phase 
transition dynamics upon controlled adsorption of molecules from the 
residual gas. The transient intensity evolution of the (8 × 2) (black to 
green dots) and (4 × 1) spots (red to yellow dots) is plotted in Fig. 98(a) 
for various adsorption times tad. With increasing adsorbate coverage, we 
observed a strong decrease in the time constant, as depicted in Fig. 98 
(b). The shortest observed time constant was τ = 54 ps for an adsorption 
time of tad = 75 min. The solid line shows a fit to a 1/tad behavior. 
Obviously, the adsorption from the residual gas drastically shortens the 
recovery time of the (8 × 2) ground state by almost a factor of 10. 

Sticking to the analogy with a supercooled liquid, the insertion of 
seeds, i.e., condensation nuclei, initiates the freezing, which then 
propagates with constant velocity. Here, freezing means recovery of the 
(8 × 2) ground state. Because of the highly anisotropic nature of the 
indium-induced Si surface reconstruction this phase front propagates 
only one-dimensionally along the direction of the indium chains. 
Therefore, the velocity of the phase front v(8×2) within the one- 
dimensional In wire and the averaged distance lad between the 
condensation nuclei determine the time constant τ for the complete re
covery of the (8 × 2) ground state: τ = lad/(2 ⋅ v(8×2)); as sketched in 
Fig. 99. In addition, assuming a linear relation between adsorbate 
coverage θad and the time tad, the distance between the adsorbates in one 
row obeys lad∝ tad− 1 ; consequently, it holds τ∝ tad− 1 . This is indeed the 
experimental finding shown in Fig. 98(b). An estimate for the distance 
lad between adsorbates in one individual row can be obtained from the 
shift of critical temperature Tc as a function of the adsorbate density Θad. 
We observed ΔT =+40 K after adsorption for tad = 75 min. According to 
Lee and Shibasaki, such a change in Tc is induced by an adsorbate 
density of Θad = 6 × 1012 cm− 2 as determined by STM [344,533]. The 
distance lad between the adsorbates, together with the measured time 
constant τ, are sufficient to determine the lower limit of the phase front 
velocity v(8×2). The present experimental data result in a value of v(8×2) 
= 82 m/s [48]. This value rests on the assumption that all adsorbates 
irrespective of species and adsorption site act as condensation nuclei and 
initiate a phase transition. However, due to the complexity of the (8 × 2) 
surface reconstruction, not every adsorbate is likely to trigger a phase 

Fig. 98. Recovery of the (8 × 2) ground state. (a) The recovery of the (8 × 2) 
ground state strongly depends on adsorption from the residual gas. With 
increasing adsorbate density the recovery time constant τ changes from τ = 415 
ps for the first experiment after τad = 480 s (dark red data points) to τ = 54 ps 
after τad = 4800 s (light yellow data points). (b) Time constant τ for the re
covery of the (8 × 2) reconstruction as a function of adsorbate density. The 
solid line describes a 1/τad behavior. From the slope in the inset we derive a 
velocity of the propagating phase front of v(8×2) = 82 m/s. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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transition. In fact, it was found that some adsorbates stabilize the (4 × 1) 
phase [231,344,533]. 

The transition back to the (8 × 2) ground state may also be facilitated 
by condensation nuclei in form of the omnipresent steps on the Si(111) 
substrate [534]. With the knowledge of the mean terrace width between 
two atomic steps < Γ > = 350 nm and the time constant of recovery to 
the ground state τrec = 3 ns a speed of the 1D-recovery front of 112 m/s 
was determined experimentally [532], which agrees with the above 
determined value of v(8×2) = 82 m/s. 

To obtain microscopic insight into the recovery of the (8 × 2) ground 
state, we performed AIMD simulations [535] for the (4 × 1) surface 

phase at 20 K using a (8 × 12) slab with periodic boundary conditions. 
The simulations (a snapshot is shown in Fig. 99) confirm that the phase 
transition starts exclusively from condensation nuclei and propagates by 
changing the atomic structure of subsequent unit cells one after the 
other with an average velocity of v(8×2) = 85 m/s. The system recovers 
the ground state like a row of falling dominoes – one unit cell after the 
other falls back from (4 × 1) to (8 × 2). 

3.4. Initial dynamics at the quantum limit 

The initial dynamics of this optically driven structural transition was 

Fig. 99. Propagation of the phase front of the (8 × 2) ground state. (a,b) Adsorbates with a mean separation lad act as seeds (red dots). v(8×2) is the velocity of the 
propagating phase front. Low (a) and high (b) adsorbate densities are shown. (c) A snapshot from the AIMD simulations depicts the transition from the metastable (4 
× 1) phase to the (8 × 2) ground state. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 100. Time evolution of the diffraction intensities following the fs-photoexcitation as a function of pump–probe delay Δt. Solid lines are (exponential) fits to the 
data. (a) The transient intensity of an (8 × 2) spot at a laser fluence of Φ = 6.7 mJ/cm2 vanishes at a rate of τexc = 370 fs to the background level. (b) Transient 
intensity of the (00) spot reflecting the structural transition from (8 × 2) to (4 × 1) state at a rate of τexc = 350 fs. (c) Characteristic hexagon rotary and soft shear 
phonon modes facilitating the transition. (d,e) Intensity of a 4th order spot and the thermal diffuse background at a laser fluence of Φ = 6.7 mJ/cm2. The transient dip 
in the intensity of the 4th order spot ΔIDW (yellow shaded area) at Δt = 6 ps indicates surface heating by ΔT = 80 K, which coincides with the increase in background 
intensity. The 4th order spot intensity is described (solid red curve) by the superposition of the two dashed lines representing incoherent thermal motion (heating and 
subsequent cooling with time constants of 2.2 ps and 30 ps, respectively) and the structural transition with τexc = 350 fs. (f) metastable state for long timescales. The 
supercooled (4 × 1) state recovers slowly on a 3 ns timescale. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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followed in the time domain through the transient intensity changes of 
RHEED spots as function of pump-probe delay Δt as is shown in Fig. 100. 

Fig. 100(a) shows that the 8th order diffraction intensity (indicative 
for the ground state) is quenched in less than 1 ps. Owing to the much 
higher signal-to-noise ratio as compared to the 8th order spots, the dy
namics of the more intense (00) spot was analyzed which follows the 
same trend as the 8th order spots. The (00) spot decreases with a time 
constant of τtrans = 350 fs for a laser fluence of Φ = 6.7 mJ/cm2 as shown 
in Fig. 100(b), i.e., the structural transition is completed in only 700 fs. 
No oscillatory signatures of the optical phonons connected to the peri
odic lattice distortion are observed, in contrast to studies on other CDW 
materials [50,247,536,537]. 

This structural transition from the initial insulating (8 × 2) state to 
the final metallic (4 × 1) state is driven by transient changes of the 
ground state PES which is sketched in Fig. 101(a). Photo excitation of 
the electron system leads to a depopulation of those states at the top of 
the surface state conduction band which are responsible for the energy 
gain through the Peierls distortion as sketched in Fig. 101(b). This re
sults in a transient change of the energy landscape, as is sketched in 
Fig. 101(c) for Δt = 0.3 ps. Inevitably, the system undergoes a strongly 

accelerated displacive structural transition to the minimum of the 
transient energy landscape. The experimentally determined value of 
τexc = 350 fs is about 1/4 of the periods of the equilibrium rotational and 
shear modes, Trot = 1.2 ps and Tshear = 1.8 ps, respectively [522]. The 
transition from (8 × 2) state to the excited (4 × 1) state is completed 
after 0.7 ps. 

The temporal fine structure of one of the (4 × 1) diffraction spots 
(Fig. 100(d and e)) is determined by two opposing trends. First, the 
initial increase within less than 1 ps is due to the structure factor 
enhancement of the (4 × 1) phase reflecting the change of atomic po
sitions. Second, the subsequent decrease in intensity is explained by the 
Debye-Waller effect and results from the excitation of incoherent surface 
vibrations [538]. This leads to a transient minimum at 6 ps, which is 
confirmed by the rise of the thermal diffuse background and its temporal 
evolution (gray circles). We find time constants of 2.2 ps and 30 ps for 
heating and cooling of the indium atoms, respectively. This situation is 
sketched in Fig. 101(d + e) for Δt = 6 ps and Δt > 100 ps. 

From the stationary Debye-Waller behavior of the high temperature 
(4 × 1) phase and its extrapolation to lower temperatures we determined 
the maximum transient temperature Tmax = T0 + ΔTmax = 30 K + 80 K =
110 K at Δt = 6 ps which is well below Tc = 130 K. We therefore 
conclude that the structural transition occurs with τexc = 350 fs, well 
before the initial excitation has thermalized at 6 ps, and is not thermally 
driven. 

3.5. Dynamics of the electron system 

The displacive excitation scenario for the atoms motion during the 
driven PT relies on transiently changed PES and thus an electronic 
excitation that last long enough to complete the transition. This expec
tation was validated through time and angle resolved photo electron 
spectroscopy (tr-ARPES) at such low fluences Φ = 0.25 mJ/cm2 where 
the PT is not driven in order to avoid intermixture with structurally 
induced changes of the band structure [539]. Fig. 102(a) shows transient 
electron population dynamics in selected energy windows E-EF above 
the Fermi energy EF obtained at the BZ center. Upon laser excitation the 
photoemission intensity is increased, which reflects the excitation of the 
lowest conduction band states at Δt = 0. This is followed by population 
relaxation on time scales which increase for energies closer to EF, as 

plotted for emission at Γ
̄ 

and kF in Fig. 102(b) as red and blue symbols, 
respectively. At both electron momenta the lifetimes increase from a few 
fs at E-EF = 1.5 eV to more than 500 fs for E-EF = 0.2 eV. The 

Fig. 101. Basic sketch of transient changes of the potential energy surface (PES, upper row) and simplified band structure (lower row) as function of time delay Δt. 
(a) Ground state prior to excitation. (b) Photo excitation, generation of electron hole pairs, excitation of the electron system, transient change of PES. (c) Accelerated 
displacive structural transition, critically damped motion due to effective energy dissipation to manifold of surface phonon modes. (d) System is trapped in excited 
high temperature state, electron and lattice system are thermalized. (e) Ground state PES. System trapped in metastable, supercooled state. Energy barrier hinders 
immediate recovery of ground state for nanoseconds. 

Fig. 102. Transient electron population dynamics in selected energy windows 

E-EF above the Fermi energy EF, obtained in normal emission geometry (k ≃ Γ
̄

) 
for Φ = 0.25 mJ/cm2. The relaxation times were extracted by exponential fits to 

the trailing edges and are shown in (b) for k = Γ
̄ 

(red dots) and k = kF (blue 
dots). The areas for momentum integration and the high symmetry directions of 
Si(111) (4 × 1)-In are indicated in the inset of (b) depicting the first SBZ. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 103. Electronic and atomic structure during the PIPT. (a)to (d): trARPES data (Φ = 1.35 mJ/cm2) on a logarithmic color scale at selected delays at a base 
temperature of T = 25 K. Arrows highlight the positions of the features of interest, which are summarized in (e). (e) Dynamics of the features marked by arrows in (a) 
to (d). Red data points track the size of the band gap at the zone boundary over time, whereas the orange data mark the position of the band edge at the zone center 
with respect to the Fermi level. The blue data reveal the change of splitting between the two innermost bands marked in (d). Solid curves are the dynamics of the 
relevant spectral features from AIMD simulations, rescaled with respect to the GW band structure. (f) Evolution of the atomic structure (AIMD trajectories) through 
the PIPT, showing the mean squared displacement of the atomic positions from the (4 × 1) phase following excitation: 

∑
i∣Ri − Ri,4×2∣2. Trajectories for two initial 

excitation conditions are shown, including (blue) and not including (purple) the observed localized hole population; only the former drives the PIPT. During the PIPT, 
the relevant atomic modes evolve with an average speed of 0.1 pm fs− 1. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 104. (a) Fluence dependence of excitation time constant τexc of driven structural transition. Below Φ < 0.9 mJ/cm2 the (8 × 2) state is not driven into the excited 
(4 × 1) state. The ground state exhibits excitation of the CDW as sketched in (b). For the intermediate regime 0.9 mJ/cm2 

< Φ < 3 mJ/cm2 the accelerated displacive 
structural transition into the excited (4 × 1) state takes place. The slope of the transient PES increases, i.e., speeding up the transition as is sketched in (c). The 
transition speed saturates for Φ ≥ 3 mJ/cm2. The slope of the transient PES is maximum as sketched in (d) and (e). 
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photo-excited electrons thus survive long enough to drive the structural 
transition, which corroborates the microscopic picture developed above. 

Further details of the changes of the electronic band structure during 
the structural transition where revealed using tr-ARPES using an 
extreme ultraviolet probe at 22 eV [242]. With a 1.55 eV pump pulse at a 
sufficiently high incidence fluence Φ = 1.35 mJ/cm2 the indium system 
was safely driven into the excited (4 × 1) state, which corresponds to an 
excitation density in the surface In layer of around one electron per unit 
cell, implying a homogeneous excitation far from a dilute limit. 

Selected snapshots following excitation are shown in Fig. 103(a)–(d). 
At Δt = − 450 fs (Fig. 103(a)), the XUV pulse arrives before the pump 
pulse; hence, the band structure reflects the unperturbed (8 × 2) phase 
with only states below EF occupied. Shortly after excitation, at Δt = 50 fs 
(Fig. 103(b)), previously unoccupied states above EF become clearly 
visible. An evolution of electronic states occurs, most clearly observed 
for the states around Γ8×2 (Kx = 0.75 Å− 1), which shift down in energy 
between Δt = 50 and Δt = 250 fs (Fig. 103(c)). At Δt = 900 fs (Fig. 103 
(d)), the system has fully transformed into the (4 × 1) phase. The 
overlaid GW band structure for the two phases emphasizes the transition 
in electronic band structure from insulator to metal. 

The dynamics of selected spectral features illustrate the progress of 
the PIPT (Fig. 103(e)). The arrows in Fig. 103(a)–(d), mark the positions 
used to obtain the band positions presented in Fig. 103(e) as a function 
of time delay. The fastest dynamics are found at Γ8×2 (red arrow in 
Fig. 103(a)), where the band gap closes within 200 fs, thus defining the 
ultrafast insulator-to-metal transition. As a second step, the conduction 
band edge at the BZ center (orange arrow) is found to reach EF after 500 
fs also reflecting the insulator-to-metal transition. Finally, the structural 
transition, as measured by the splitting between bands m2 and m3 
(Fig. 103(d), blue arrows), is completed after ~700 fs. This third time 
scale is in excellent agreement with the structural transition time scale 
observed by time-resolved electron diffraction, which is completed after 
~700 fs with a time constant t = 350 fs [240]. It is notable that even 
before the structural transition is completed, two physically meaningful 
electronic transitions have occurred. 

3.5.1. Constrained density functional theory and ab-initio molecular 
dynamics 

The structural transition time constant τtrans depends on the laser 
fluence Φ, as shown in Fig. 104(a). The shortest time constant of τexc =

350 fs is observed for Φ ≥ 3 mJ/cm2 and the longest of τexc = 1.9 ps 
occurs for Φ ≤ 0.9 mJ/cm2. The transition is incomplete, that is, rem
nants of (8 × 2) diffraction spots and streaks are observed for Φ < 2 mJ/ 
cm2. 

In order to obtain insight into the coupling of the initial electronic 
excitation and the subsequent local nuclear motion, we employed DFT 
calculations and AIMD simulations. The modelling of the optically 
excited electronic configurations in constrained DFT focuses on the long- 

Fig. 105. Potential energy surfaces, electronic surface states, and molecular dynamics. (a) Calculated potential energy surfaces for the ground state (black) and 
various excited configurations along the (8 × 2)→ (4 × 1) minimum-energy path, i.e., along the generalized reaction coordinate Rgrc. The open circles and purple and 
red arrows indicate excitation of the (8 × 2) phase. (b) Calculated electronic bands of the Si(111) (8 × 2)–In surface. Here, kx and ax are the reciprocal- and real-space 
lattice vectors in the wire direction; Ebind is the electron binding energy relative to the valence band maximum in silicon. The electron occupation of the blue and red 
shaded surface bands (black lines) is vital for the phase transition. Gray shaded areas show projected silicon bulk bands. (c) Time evolution of the structural deviation 
from the (4 × 1) state, obtained from AIMD simulations within the adiabatic approximation, for two excited configurations. Here, X(t) and X(4 × 1) denote the atomic 
coordinates of the In atoms, during the molecular dynamics calculation and for the high-temperature phase, respectively. (d) Transient atomic velocities projected 
onto vibrational eigenmodes. As evident, the rotary and shear modes rapidly transfer their energy to other modes. (e) The transient intensity I(t)/I0 of the (00)-spot is 
well fitted by the behavior expected for critical damping (solid black line). (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 106. Time evolution of surface bond formation exemplarily calculated for 
an In–In bond. Both the shape of the orbital and the COHP calculated bond 
strength – indicated by the color scale – change during the (8 × 2) → (4 × 1) 
phase transition, as a virtual bond across the indium hexagon gets occupied due 
to optical excitation and transforms into a delocalized metallic state. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

H. Pfnür et al.                                                                                                                                                                                                                                   



Surface Science Reports 79 (2024) 100629

75

lived excitations of the uppermost valence and lowermost conduction 
states (for details we refer to Ref. [240]). We analyze the minimum 
energy path of the (8 × 2)→ (4 × 1) transition for the ground state and 
for various excited configurations as function of a generalized reaction 
coordinate Rgrc, see (Fig. 105(a). The energy gain upon the Peierls-like 
transition is due to the bandgap opening at the Fermi wavevector kF. 
Depopulation of occupied (shaded blue in Fig. 97(b)) and population of 
unoccupied states at the BZ boundary destabilizes the Peierls distorted 
structure and drives the system into the high symmetry state of (4 × 1). 
For sufficiently high excitation densities (for example, 0.5 electrons per 
(8 × 2) unit cell), the relative (8 × 2) and (4 × 1) energies are inverted; 
however, the energy barrier that separates the two structural configu
rations remains. In contrast, hole generation in zone-boundary valence 
states and population of unoccupied zone-center conduction states 
(shaded blue and red, respectively, in Fig. 105(b)) yields PESs with 
decreasing energy along the (8 × 2)→ (4 × 1) generalized nuclear co
ordinate as depicted in Fig. 105(a). Such PESs can be obtained only by 
generating electron–hole pairs, not by charging the system. 

AIMD simulations in the adiabatic approximation on these excited- 
state PESs verify the barrier-free (8 × 2)→ (4 × 1) transition as shown 
in Fig. 105(c). For an excitation of 0.5 electrons per unit cell, the tran
sition is completed in 800 fs. Increasing the excitation to 1.0 electrons 
per unit cell, results in a complete transformation of the surface within 
450 fs, as expected from the steeper PES shown in Fig. 105(a). Higher 
excitation densities essentially shift the PES without modifying its 
gradient. For decreasing excitation density, the PES flattens and a 
threshold for the transition is predicted: 0.4 electrons per unit cell is the 
weakest excitation that leads to the structural transition. 

The chemical rebonding processes that accompany this structural 
transition can be understood in space and time from the COHP analysis, 
see Ref. [242]. The formation of a delocalized metallic In–In bond along 
the nanowire direction upon the insulator-metal transition induced by 
an one electron excitation is exemplarily shown in Fig. 106. A gradual 
buildup of bond strength up to 2 eV is observed, encoded in the 
blue-to-red color scale applied to the orbitals. Combined with the orbital 
distribution, t → (4 × 1) phase transition, on the same time scale as the 
closing of the electronic gap. The metal-bond formation, i.e., the tran
sition from a localized molecular orbital (insulator) to a delocalized 
(metallic) state during the phase transition, parallels the band gap 
closure. 

The DFT calculations [240,242,345] thus provide a clear picture of 
the microscopic mechanism of the photo-induced phase transition: Upon 
excitation, holes are created in the bonding states at the BZ boundary. 
They correspond to In–In dimer bonds between the outer In chain atoms. 
Consequently, the dimer bonds characteristic for the hexagon structure 
weaken and break. At the same time, a sizable fraction of excited elec
trons populates the states at the Brillouin zone center that are formed by 
a bonding combination of In states from neighboring In chains. Popu
lation of these excited states leads to interatomic forces that transform 
the hexagons into zig-zag chains, resulting in the formation of a delo
calized metallic state, as shown in Fig. 106. The electron band related to 
these bonds is lowered in energy as the In atoms contributing to this 
bond approach each other, further populating those states and 
strengthening the bond. It finally crosses the Fermi energy, resulting in 
the metallic state of the (4 × 1) phase. 

These predictions are nicely confirmed by experiment where the 
excitation time constant has been analyzed as function of incident laser 
fluence as shown in Fig. 104(a). We observe a threshold fluence of 1 mJ/ 
cm2 below which the system shows some transient response but does not 
make it into the excited (4 × 1) state. The excitation of the characteristic 
shear and rotational phonon modes at 0.82 THz and 0.54 THz has been 
indirectly observed in a pump-pump-probe experiment addressing 
coherent control of the phase transition [245]. The resulting amplitudon 
mode is sketched in Fig. 104(b). For an incidence fluence larger than 1 
mJ/cm2 the potential energy surface of the (8 × 2) ground state is 
transiently lifted above the barrier between the two states as sketched in 

Fig. 104(c). The surface system undergoes an accelerated transition to 
the excited (4 × 1) state in a displacive excitation scenario. Naturally, 
with increasing laser fluence, i.e., increasing excitation density, the 
slope of the PES becomes steeper and steeper, resulting in a faster 
transition to the excited state, as predicted by theory. The transition time 
constant saturates for incident fluences of 3 mJ/cm2 or more as depicted 
in Fig. 104(d). This behavior nicely confirms the theoretical predictions 
where higher excitations densities only shift the PES without increasing 
its gradient as predicted by theory, see Fig. 105(a). 

The observed sharp transition from the initial (8 × 2) state to the 
final (4 × 1) state, without any sign of damped oscillatory behavior, is 
explained through fast mode conversion, dephasing and strong damping 
of the two characteristic rotary and shear phonon modes [240,540]. 
Fig. 105(d) shows that the initially excited rotary and shear modes 
rapidly transfer their energy to a manifold of modes at the surface of the 
Si substrate. The experimentally determined asymptotic value of τtrans =

350 ± 10 fs is about 1/4 of the periods of the equilibrium rotational and 
shear modes, Trot = 1.2 ps and Tshear = 1.8 ps [276], respectively. 
Consequently, the transition proceeds in the regime of critical damping 
and cannot be faster than in this limit. All of the surface indium atoms 
move in a spatially coherent manner: the system undergoes the struc
tural transition in the quantum limit: “Quantum limit is the 
non-statistical regime of rates in which the nuclear motion is directed 
and deterministic on the shortest scales of length (0.1–1 nm) and time 
(10− 13 to 10− 12 s)” [525]. 

Our results demonstrate that structural transitions at surfaces can be 
driven as fast as those in bulk materials in the non-thermal regime. The 
optically induced Si(111) (8 × 2)–In CDW melting relies on transient 
changes in the PES that arise from the population of very specific elec
tronic states. These directly couple to the two characteristic rotational 
and shear vibrational lattice modes that drive the structural transition. 
This melting mechanism is similar to the structural bottleneck mecha
nism in layered bulk materials [541], which is surprising because the 
surface system differs from bulk CDWs in one key aspect. Bulk CDWs are 
formed within layers or chains that only weakly couple to the environ
ment, and so the signatures of low-dimensional physics remain intact. In 
contrast, the surface CDW analyzed here is characterized by In–In and 
In–Si bonds that are stronger than In–In bulk bonds. Despite this strong 
interaction within the surface and between surface and substrate, the 
Peierls instability remains. The substrate serves as a skeleton that an
chors the indium atoms, but with sufficient freedom to adopt different 
lateral positions. The strong coupling between substrate and adsorbate 
facilitates the sub-picosecond structural response by dephasing and 
damping the characteristic phonons after the structural transition. The 
structural transition of CDW melting at the Si(111) (8 × 2)–In surface 
therefore proceeds in a non-thermal regime in a limit of critical damping 
of the atomic motion. The CDW interaction with the surface enables the 
transition timescale to be controlled via the coupling strength of surface 
atoms to the environment, and opens up possibilities for using femto
second switching to control and steer energy and matter [542]. 

4. Conclusions 

At this point it is perhaps worthwhile to have a look back on the 
experimental results described in chapters 2 and 3 in view of the 
introductory chapter 1, in which conditions for “survival” of 1D prop
erties in presence of 2D and 3D interactions were investigated. All 
experimental systems described above were found to be stabilized by 
interactions in two and partly three dimensions. A clear signature is the 
formation of ordered arrays of wires that even stabilized or improved the 
periodicity of substrate terraces, as found for the Si(hhk)-Au systems. 
Similarly, the spontaneous break of symmetry induced by indium 
monolayers on Si(111) and the formation of periodic wires on this sur
face is not possible without such interactions. An extreme case in this 
respect is the formation of silicide wires on flat and stepped Si(111) 
surfaces, described in section 2.6. Here the formation of crystalline 
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quasi-1D wires is due to a chemical reaction with Si atoms of the surface, 
coupled with the unidirectional match of lattice constants between wire 
and substrate. Because of this extremely strong interaction, these wires 
turn out to be so rigid that no phase transitions were observable within 
the accessible temperature range. Although the Fermi surface is 
extremely anisotropic, as also reflected by electrical DC conductance, 
there are no signs of Fermi nesting etc. so that the silicide wires remain 
within the picture of low-D strongly anisotropic 2D systems. 

This situation is somewhat modified when looking at the Si(hhk)-Au 
systems. The interactions of Au with the Si substrate are not as strong as 
for the silicides, but they stabilize the periodic terrace structure, as 
already mentioned. Most importantly, the wires grow by self- 
organization, i.e. by the combined interactions Si–Au and Au–Au, and 
form single atomic chains if h = k − 2, but double chains for h = k + 2 (h, 
k odd). Since the only difference is the local geometry of steps, this 
finding can be interpreted as signature of global 3D interactions in these 
systems, in agreement with findings of × 2 and × 3 order that is 
correlated across terraces at low temperature. The loss of correlation 
either between terraces or along the chains (step edges) leads to order- 
disorder phase transitions and to formation of spin liquids. Nevertheless, 
highly anisotropic properties were found not only in chain formation, 
but also in the 1D dispersion of electronic bands, of plasmon dispersion 
and of DC conductivity. However, in basically all these systems a fully 
satisfactory description was found within anisotropic 2D models, e.g. for 
plasmon dispersion (see sec. 2.5). 

A peculiarity of the strong anisotropy in these systems is the extreme 
sensitivity of electronic band structure to small geometric changes at Si 
step edges as well as in the dimerized Au chains. Dimerization and step 
edge structure turned out to be directly correlated by hybridization and 
charge transfer between Au chains and Si step edges. These properties 
were investigated in most detail in the double-chain system Si(553)-Au. 
Interestingly and very satisfyingly, the various suggested structural 
models differ so little in (free) energy that the various states, corre
sponding to different models, can be excited thermally. While spin 
turned out to be an essential ingredient, no net spin was detected for the 
ground state configuration, but the spin liquid phase (spins located at 
the Si step edges) can be considered as the first excited state before, close 
to room temperature, all pz orbitals the Si step edge are occupied at 
random. The strong changes of electronic band structure associated with 
these phase transitions result in characteristic vibrational shifts and/or 
appearance/disappearance of modes. They also lead to two maxima in 
DC conductance, but only the configuration close to room temperature 
turned out to be a stable conducting state (located at the Si step edge!), 
while the conductance maximum at lower temperature appears as 
transient between two insulating states. These finding underline the 
importance of long-range correlations in such highly anisotropic sys
tems. Although they consist of single or double chains of atomic wires, i. 
e. they represent the smallest possible 1D objects, they clearly behave as 
2D systems. 

Interestingly, and perhaps somewhat against intuition, quasi-1D 
phenomena were observed in Si(557)-Pb and Si(111)-In with much 
higher adsorbate concentrations close to one monolayer. Although in
teractions with the substrate and, indirectly, between adsorbed atoms 
are large, there are also large compensatory energetic effects when it 
comes to positional changes during phase transitions, as described in 
detail in sec. 3.1 for the In system. Therefore, only small thermal en
ergies are required for the (8 × 2) ↔ (4 × 1) phase transition in the Si 
(111)-In system to occur. For this reason such a phase transition 
should be considered as a collective behavior of adsorbate plus substrate, 
which in certain limits leads to quasi-1D behavior. Similar properties are 
expected for the Si(557)-Pb system, although they were not quantified 
within the studies presented here. These collective properties make 
universal predictability of 1D behavior very difficult. 

In this context, the Si(557)-Pb system is (so far) unique, since due to 
the Pb-induced instability of the (557) and refacetting to a (223) 
orientation the Pb layer creates its own nesting condition, i.e., 2kF is 

equal to the reciprocal lattice vector g normal to the steps of the (223) 
facet. Extending the original argument of Peierls [10], only for this 
orientation nesting leads to a reduction of energy in the electronic sys
tem and gap opening in the directon normal to the steps, if a particular 
concentration of Pb close to a monolayer is present. This nesting con
dition can be destroyed thermally. Above Tc only tiny, but characteristic 
changes of the facet orientation turn out to be sufficient, again gener
alizing the original idea of Peierls. 

Furthermore, due to strong spin-orbit interaction and a very large 
Rashba splitting that corresponds to exactly half of the value of g, instead 
of separate charge and spin density waves both get entangled to form a 
spin-orbit density wave, which is protected by the energy gap: It dis
appears when the gap energy goes to zero, i.e. when the second physical 
monolayer of Pb is formed. Parallel to the steps high metallic conduc
tance was found. We thus conclude that the combined 2D and 3D in
teractions in this system lead to a new type of instability, the formation 
of a spin-orbit density wave across the steps, while along the steps no 
sign of instability were found, i.e. the system remains conducting. 

The system closest to 1D physical models is the Si(111)-In system. 
From the studies over the last 25 year, including those discussed in detail 
above, we now understand many details of the (8 × 2) ↔ (4 × 1) phase 
transition with unprecedented precision, comprising structural, ener
getic, electronic and vibrational changes, as well as the electron and 
vibrational dynamics of this (first order) transition on the femto- to 
picosecond time scales. Mapping of the crucial degrees of freedom, 
including the role of the substrate, onto a phenomenological model, 
based on such detailed investigations, may be an important conceptual 
step towards a general understanding of the still partly puzzling 
complexity and richness of phenomena involved in such systems. 

Summarizing, atomic wires supported by surfaces offer a wealth of 
fascinating physical phenomena that are related to the coupling of 1D 
objects with the two and three dimensional environment that stabilizes 
them, but also strongly modifies their physical properties. Therefore, in 
retrospect, the initial hope that interactions in 2D and 3D may essen
tially just act as stabilizers for 1D physics turned out to be a bit too 
simplistic. 

From an experimental point of view, this class of systems is partic
ularly attractive since it allows very precise studies comprising all as
pects of geometrical, electronic and dynamic behavior including 
modifications by adatoms. This precision turned out to be crucial, since 
small variations of parameters, like material concentration in the wires, 
e.g., can modify physical properties fundamentally, underlining the 
importance of precise characterization. On the other hand, this allows 
tuning and manipulation of these properties in a wide range making 
them attractive objects for further studies and even for potential 
applications. 

In view of the large variability of phenomena seen in these systems 
that depend, as it seems, explicitly on material and environment there is 
still a long way to go to achieve a more or less comprehensive under
standing. Since this class of systems is electronically highly correlated, 
the understanding of these correlation phenomena at the borderline 
between 1D and 2D that were already a central issue of our studies 
outlined above, will be crucial. This class of systems is thus opening a 
wide field of fascinating aspects of correlation physics in strongly 
anisotropic low-dimensional, but not necessarily purely 1D systems. The 
latter may turn up as limiting cases, if correlations are sufficiently 
strong. 

One important aspect, so far only touched as a side aspect (see sec. 
2.6, ref. [466]), is the long term stabilization of the physical properties 
of such wires, also in view of potential applications. Since essentially all 
wires studied so far suffer from chemical modification under ambient 
conditions, they have to be embedded into protective materials, which 
by themselves change the physical properties of the wires for reasons 
outlined above. This topic is largely unexplored, but opens a wide field 
for interesting studies that combine fundamental physical aspects with 
more technologically oriented perspectives. 
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R. Claessen, Tomonaga–Luttinger liquid in the edge channels of a quantum spin 
Hall insulator, Nat. Phys. 16 (2020) 47–51. 

[25] J. Jia, E. Marcellina, A. Das, M.S. Lodge, B. Wang, D.-Q. Ho, R. Biswas, T.A. Pham, 
W. Tao, C.-Y. Huang, H. Lin, A. Bansil, S. Mukherjee, B. Weber, Tuning the many- 
body interactions in a helical Luttinger liquid, Nat. Commun. 13 (2022) 6046. 

[26] I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys. 1 (1) (2005) 
23–30. 
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[118] E. Tutǐs, S. Barǐsić, Dynamic structure factor of a one-dimensional Peierls system, 
Phys. Rev. B 43 (1991) 8431–8436. 
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K. Schönhammer, Luttinger liquids with boundaries: power-laws and energy 
scales, Eur. Phys. J. B 16 (4) (2000) 631–646. 

[179] S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwöck, K. Schönhammer, 
Renormalization-group analysis of the one-dimensional extended Hubbard model 
with a single impurity, Phys. Rev. B 73 (2006) 045125. 
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charge-density waves in a cuprate superconductor, Nat. Matters 12 (2013) 
387–391. 

[350] Y.K. Kato, R.C. Myers, A.C. Gossard, D.D. Awschalom, Observation of the spin 
Hall effect in semiconductors, Science 306 (5703) (2004) 1910. 

[351] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.- 
L. Qi, S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, 
Science 318 (5851) (2007) 766. 

[352] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, M.Z. Hasan, A topological 
Dirac insulator in a quantum spin Hall phase, Nature 452 (7190) (2008) 970–974. 

[353] J.C.R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J.P. Attané, J.M. De Teresa, 
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