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Abstract 34 

Neurofeedback (NF) training based on motor imagery is increasingly used in neurorehabilitation with 35 

the aim to improve motor functions. However, the neuroplastic changes underpinning these 36 

improvements are poorly understood. Here, we used mental ‘finger individuation’, i.e., the selective 37 

facilitation of single finger representations without producing overt movements, as a model to study 38 

neuroplasticity induced by NF. To enhance mental finger individuation, we used transcranial magnetic 39 

stimulation (TMS)-based NF training. During motor imagery of individual finger movements, healthy 40 

participants were provided visual feedback on the size of motor evoked potentials, reflecting their 41 

finger-specific corticospinal excitability. We found that TMS-NF improved the top-down activation of 42 

finger-specific representations. First, intracortical inhibitory circuits in the primary motor cortex were 43 

tuned after training such that inhibition was selectively reduced for the finger that was mentally 44 

activated. Second, motor imagery finger representations in sensorimotor areas assessed with functional 45 

MRI became more distinct after training. Together, our results indicate that the neural underpinnings of 46 

finger individuation, a well-known model system for neuroplasticity, can be modified using TMS-NF 47 

guided motor imagery training. These findings demonstrate that TMS-NF induces neuroplasticity in the 48 

sensorimotor system, highlighting the promise of TMS-NF on the recovery of fine motor function. 49 
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Introduction 50 

Neural representations of individual body parts are activated when we execute movements and receive 51 

sensory inputs1. By now, it has been well established that these sensorimotor representations can also 52 

be activated without overt movement or sensory inputs, for example by attempted movements of 53 

completely paralysed2,3 or amputated body parts4–6, by motor planning that precedes motor execution7, 54 

or by motor imagery8–10, i.e., the pure mental simulation of movements11. Such activation of 55 

sensorimotor representations without motor execution can be used to control brain-computer interfaces 56 

(BCIs). BCIs detect and analyse brain signals and translate them into control commands to operate an 57 

external device (e.g., a prosthetic arm) or to neurofeedback (NF) that provides information about the 58 

current state of brain activity (referred to as BCI-NF). Repeatedly pairing the induced brain activity 59 

with NF allows users to gain volitional control of their brain activity and is thought to induce use-60 

dependent neuroplasticity (for a review see12,13) which is the basis of restorative BCIs. Consequently, 61 

restorative BCIs are increasingly used in neurorehabilitation to aid motor recovery even in the absence 62 

of overt motor output, mostly following a stroke14–16, or spinal cord injury17. Such BCIs specifically aim 63 

to induce neuroplastic changes in sensorimotor pathways12,18. However, little is known about 64 

neuroplasticity induced by BCI-NF training beyond improvements in BCI-NF control itself13,19. Mixed 65 

results on the use of BCI-NF in stroke rehabilitation20 indicate that there is limited knowledge about the 66 

underlying neuroplastic changes of sensorimotor representations induced by a specific BCI-NF and how 67 

these neural changes might be reflected in improved motor performance following training. 68 

Motor imagery of individual fingers targets sensorimotor finger representations that are well 69 

characterised. As such, mental ‘finger individuation’, i.e., the selective facilitation of single finger 70 

muscles without producing overt movements, can be used as a model to study neuroplasticity induced 71 

by BCI-NF. Importantly, the hallmarks of individuated finger movements can be assessed non-72 

invasively using functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation 73 

(TMS). First, finger representations in the primary sensorimotor cortex (SM1) are somatotopically 74 

organised, providing a point-to-point correspondence of individual fingers to a specific area of the 75 

cortex21,22. Second, while these neural finger representations are largely overlapping, the individual 76 

activity patterns associated with individual fingers are separable in SM123,24. Third, selectively moving 77 

individual fingers relies on a fine-tuned facilitation of the sensorimotor representations of a specific 78 

finger while inhibiting the others25. Specifically, intracortical circuits that regulate inhibition and 79 

facilitation of motoneurons within the primary motor cortex (M1) are involved in selective control of 80 

finger muscles during both motor execution26,27 and motor imagery28–30.   81 

We previously developed a BCI-NF approach that enhances mental finger individuation 82 

through motor imagery31. In this BCI-NF training we use TMS to probe individual finger motor 83 

representations in M1 through motor imagery and provide visual feedback representing the TMS-84 

induced motor evoked potentials (MEPs) of individual finger muscles as a read-out of corticospinal 85 
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excitability. With this BCI-NF training, participants can learn to modulate their finger-specific 86 

corticospinal excitability31 (Fig. 1a).  87 

Here, we used this TMS-NF approach to guide motor imagery to induce neuroplasticity. First, 88 

we aimed to understand the effects of TMS-NF training on neurophysiological mechanisms and whether 89 

intracortical circuits contribute to enhanced mental finger individuation in TMS-NF. We therefore used 90 

paired-pulse TMS protocols to probe short-interval intracortical inhibition (SICI) and intracortical 91 

facilitation (ICF) of M1 finger representations before and after TMS-NF training. We expected that a 92 

release of intracortical inhibition and an increase of facilitation for the target finger of motor imagery 93 

would be observed from pre- to post-training.  94 

We then used fMRI and representational similarity analysis to examine whether improved 95 

finger individuation through TMS-NF training is related to more distinct, i.e., more separable, motor 96 

imagery finger representations after training. We further used a decoding analysis to investigate whether 97 

activity patterns elicited by imagined movements become more similar to those elicited by executed 98 

movements after TMS-NF training. Our main fMRI analysis focused on the SM1 hand cortex, as this 99 

brain region has been shown to exhibit high separability of finger representations23,32. We further 100 

explored changes in motor imagery finger representations in secondary motor areas, namely the ventral 101 

(PMv) and dorsal premotor cortex (PMd), and the supplementary motor area (SMA), as these areas 102 

have been implicated in motor imagery (for a review see33,34) and the encoding of imagined hand 103 

actions9,10.  104 

 105 

Results  106 

We investigated the neural underpinnings of learning through motor imagery-based NF training. 107 

Specifically, we used TMS-NF training to enhance mental ‘finger individuation’, i.e., the selective 108 

facilitation of single finger muscles without producing overt movements (as in Mihelj et al.31): We 109 

instructed 16 participants to kinaesthetically imagine selective movements of the right thumb, index, or 110 

little finger. During motor imagery, we applied a TMS pulse over the contralateral M1 and computed 111 

the peak-to-peak amplitude of the TMS-evoked MEPs in the three right hand finger muscles (i.e., 112 

abductor pollicis brevis (APB), first dorsal interosseus (FDI), and abductor digiti minimi (ADM)). We 113 

then provided visual feedback representing MEP amplitudes normalised to rest (Fig. 1a). We trained 114 

participants in four TMS-NF sessions taking place on separate days. Over the training sessions, we 115 

gradually increased task difficulty by transitioning from a blocked to an interleaved trial order. All 116 

participants were able to successfully modulate corticospinal excitability for individual finger muscles 117 

in these training sessions (Supplementary Fig. 1a). We measured motor imagery performance pre and 118 

post TMS-NF training to quantify improvements in mental finger individuation. We further assessed 119 

plasticity of intracortical circuits in M1 induced by TMS-NF training using paired-pulse TMS protocols 120 

pre- and post-training. Finally, we assessed plasticity of neural finger representations in sensorimotor 121 
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areas using fMRI pre- and post-training. A control group (n = 16) underwent identical pre and post 122 

measures as the NF group but did not undergo any TMS-NF training (Fig. 1b). 123 

 124 

 125 

 126 
Figure 1. TMS-NF setup and study design. a) TMS-NF set-up. Participants sat in front of a computer screen and 127 
were instructed to imagine performing selective finger movements of the right hand (a little finger trial is 128 
visualised in the figure) while we recorded electromyography (EMG) of their finger muscles in both hands, i.e., 129 
left and right Abductor Pollicis Brevis (APB), First Dorsal Interosseus (FDI), and Abductor Digiti Minimi (ADM). 130 
i) During motor imagery, we applied a TMS pulse with a round coil to elicit motor evoked potentials (MEPs) 131 
simultaneously in the three right hand finger muscles. ii) We calculated the peak-to-peak amplitude of the MEPs, 132 
normalised them to the baseline (based on preceding rest trials), and displayed the normalised MEPs in the form 133 
of three bars (one for each finger muscle) as visual feedback on a screen. The white lines indicate no change from 134 
baseline, i.e., a normalised MEP of 1. If the bar of the instructed target finger was both above the white line and 135 
higher than the bars of the other two non-target fingers, the trial was deemed successful (green bars). Otherwise, 136 
it was deemed unsuccessful (red bars, not depicted here). In a successful trial, participants could earn up to three 137 
stars, one for each finger: The normalised MEP of the target finger had to be > 1.5; that of a non-target finger < 138 
1. iii) Participants used the visual feedback to adapt their motor imagery strategies. b) Study design. The NF group 139 
(n = 16; blue) underwent four TMS-NF training sessions (TMS-NF 1-4) to train mental finger individuation. Task 140 
difficulty increased over sessions due to a transition from a blocked (i.e., one target finger per block) to an 141 
interleaved design (i.e., the target finger changed after each trial). The control group (n = 16; red) did not undergo 142 
any TMS-NF training. To measure the neural consequences of TMS-NF training, both groups underwent identical 143 
pre- and post-training TMS and fMRI sessions. During the first pre-training TMS session, we screened 144 
participants for their ability to perform kinaesthetic motor imagery using the Movement Imagery Questionnaire 145 
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(MIQ-RS). In the pre- and post-training TMS sessions, we assessed short-interval intracortical inhibition (SICI) 146 
and intracortical facilitation (ICF) using paired-pulse TMS protocols. We further tested motor imagery 147 
performance in feedback-free blocks that were identical to the TMS-NF training blocks that had an interleaved 148 
trial order, but with occluded feedback. For the NF group, feedback-free blocks were also assessed at the end of 149 
the fourth TMS-NF training session. A short retraining period of TMS-NF was added to the start of the post-150 
training TMS session for the NF group. In the pre- and post-training fMRI sessions, we measured brain activity 151 
during selective finger motor imagery and during the execution of a paced finger-tapping task.  152 
 153 

TMS-NF training improves mental finger individuation 154 

We first tested whether motor imagery performance changed after TMS-NF training. To do so, we 155 

assessed motor imagery performance pre- and post-training using a task identical to that used during 156 

TMS-NF training, but with occluded feedback. The trial order of these ‘feedback-free blocks’ was 157 

interleaved. We quantified motor imagery performance as the MEP target ratio, i.e., the ratio between 158 

the normalised MEP of the cued target finger muscle and the larger of the two non-target finger muscles 159 

normalised MEPs31. As such, an MEP target ratio greater than 1 indicates a finger-selective upregulation 160 

of corticospinal excitability. 161 

The NF group improved motor imagery performance from pre- to post-training (t(30.1) = -2.55, 162 

p = .02, Cohen’s d = 0.93, 95% CI for Cohen’s d: [ 0.17, 1.67]), whereas the control group did not (t(29.6) 163 

= 0.57, p = .58, Cohen’s d = 0.20, 95% CI for Cohen’s d: [-0.52, 0.93]; significant Session (pre-training, 164 

post-training) by Group (NF, control) interaction: F(1,30.89) = 4.69, p = .04, Cohen’s d = 0.78, 95% CI for 165 

Cohen’s d: [0.04, 1.50]; Fig. 2). In the pre-training session, there was no significant difference in motor 166 

imagery performance between the groups (U = 152, p = .38, rb = .02, 95% CI for rb: [-0.21, 0.53]; BF10 167 

= 0.42 indicating anecdotal evidence for the null hypothesis, i.e., no difference between the NF and the 168 

control group). During the TMS measurements, we strictly controlled for actual finger muscle activation 169 

(i.e., background EMG; bgEMG) by preventing a trial from proceeding if the bgEMG in any muscle 170 

exceeded 10 µV. Furthermore, we excluded all trials with bgEMG above 7 µV immediately before the 171 

TMS pulse in the offline analysis. Additionally, we controlled for potential effects of very subtle finger 172 

muscle activation by including the bgEMG target ratio as a covariate in the analysis reported above. 173 

Importantly, the bgEMG target ratio did not significantly contribute to the prediction of motor imagery 174 

performance (F(1,48.31) = 0.51, p = .48, Cohen’s d = 0.21, 95% CI for Cohen’s d: [-0.36, 0.77]).  175 

These findings confirm that training with TMS-NF improved finger-selective modulation of 176 

corticospinal excitability. Importantly, they also demonstrate that these improvements in mental finger 177 

individuation translated to later sessions where participants did not receive any NF. This is a crucial 178 

precondition to interpret the neural changes that were assessed in the absence of NF. 179 

 180 
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 181 
Figure 2. Motor imagery performance improves from pre to post TMS-NF training. a) MEP target ratio, i.e., the 182 
ratio between the normalised MEP (to the baseline at rest) of the target finger and the larger normalised MEP of 183 
the two non-target fingers. Values > 1 indicate a finger-selective modulation of corticospinal excitability. The data 184 
depicted corresponds to the feedback-free blocks acquired in the TMS pre- and post-training testing sessions for 185 
the NF and control groups. The MEP target ratio is a more conservative measure of finger-selective MEP 186 
modulation than comparing the MEPs of the target finger to the average of the non-target fingers as depicted in 187 
b). Therefore, statistical analysis was only performed on the MEP target ratio. b) Normalised MEPs of the target 188 
fingers (NF group = blue, control group = red) and the average normalised MEPs of the two non-target fingers 189 
(grey). This data is shown for visualisation merely. Squares depict data of individual participants. * p < .05; ns = 190 
non-significant.  191 

 192 

Intracortical inhibitory circuits are tuned following TMS-NF training 193 

To investigate neural changes induced by TMS-NF training, we first tested for changes in 194 

neurophysiological circuits. As these intracortical circuits within M1 are highly relevant in shaping 195 

motor representations for skilled finger movements, we aimed to investigate the potential effects of 196 

TMS-NF training on two different circuits. Specifically, we used paired-pulse TMS protocols pre- and 197 

post-training to assess: (i) short-interval intracortical inhibition (SICI), which measures postsynaptic 198 

GABAA-ergic inhibition within M135,36, and (ii) intracortical facilitation (ICF), which is thought to be 199 

dissociable from SICI circuits and to instead reflect glutamatergic facilitation26,37. We measured MEPs 200 

in the right index finger muscle (FDI) and assessed the two paired-pulse TMS protocols while 201 

participants imagined moving either the index finger or the thumb. This resulted in two motor imagery 202 

conditions where the index finger was either the target or a non-target finger. Here, we aimed to 203 

investigate if there was a release of SICI (and/or an increase of ICF) from pre- to post-training for a 204 

finger in the target condition relative to the non-target condition. 205 

To test whether intracortical inhibition changed after training we calculated the pre- to post-206 

training change in SICI. As such, positive scores indicate an increase in inhibition after TMS-NF 207 

training whereas negative scores indicate a decrease in inhibition after training. We then investigated 208 

whether these SICI change scores were different between the motor imagery conditions and between 209 
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groups. In the NF group, we found that the change of SICI after training significantly differed for the 210 

target compared to the non-target condition. In other words, we observed a decrease in intracortical 211 

inhibition in the index finger if participants imagined moving the index finger compared to when they 212 

imagined to move the thumb (t(30) = -2.39, p = 0.02, Cohen’s d = 0.85, 95% CI for Cohen’s d: [0.13, 213 

1.56]), as opposed to the control group (no difference between conditions: t(30) = 0.86, p = 0.39, Cohen’s 214 

d = 0.31, 95% CI for Cohen’s d: [-0.41, 1.02];  significant Motor imagery condition (target, non-target) 215 

by Group (NF, control) interaction (F(1,30) = 5.29, p = 0.03, Cohen’s d = 0.84, 95% CI for Cohen’s d: 216 

[0.09, 1.58]; Fig. 3). This finding suggests that a release of intracortical inhibition for the mentally 217 

activated target finger representation may have enhanced the upregulation of the target finger’s MEP 218 

during motor imagery after TMS-NF training. Simultaneously, increased inhibition of non-target finger 219 

representations may have additionally contributed to the selectivity of the MEP modulation. 220 

Analogous analyses were performed with ICF, but we did not find any significant effects of 221 

TMS-NF training (Supplementary Fig. 2).  222 

 223 

 224 
Figure 3. Intracortical inhibitory circuits are tuned after TMS-NF training. a) Pre- to post-training changes in 225 
short-interval intracortical inhibition (SICI). SICI was assessed with adaptive threshold hunting to determine the 226 
minimum testing stimulus intensity needed to elicit an MEP with an amplitude of at least 50% of the maximum 227 
MEP in 50% of trials. We measured SICI in the right index finger muscle during two motor imagery conditions: 228 
index as the target finger (motor imagery of index finger movements) vs index as an adjacent non-target finger 229 
(motor imagery of thumb movements). SICI is expressed as the % increase in the required testing stimulus 230 
intensity in the SICI protocol compared to a non-conditioned single pulse protocol during the same motor imagery 231 
condition. Positive scores indicate an increase in inhibition and negative scores indicate a decrease in inhibition 232 
after TMS-NF training. b) SICI for the pre- and post-training sessions separately. This data is shown for 233 
visualisation purposes only. Squares depict data of individual participants. * p < .05; ns = non-significant.  234 

 235 

Single-finger motor imagery activates a fronto-parietal network 236 

We first analysed univariate brain activity during motor imagery versus rest in the pre-training fMRI 237 

session. Our results confirmed that individual finger motor imagery (pre-training session, across all 238 
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fingers and groups) activated a fronto-parietal network that is typically observed during motor imagery 239 

(for a review see 33,34; Fig. 4a). We observed activity in contralateral PMd and PMv with activity 240 

stretching into the M1 hand area, the inferior and superior parietal lobules, and bilateral SMA (see 241 

Supplementary Table 1a for a full list of activated clusters). We then computed univariate pre- to post-242 

training changes in the activity levels during motor imagery. First, we tested whether these pre- to post-243 

training changes in activity levels differed for the NF and the control groups. A whole-brain analysis 244 

did not reveal any significant group differences (see Supplementary Table 1b for pre- to post-training 245 

comparisons separately for both groups). Second, we investigated group differences in any activity level 246 

changes that predicted performance changes. We found that the largest significant cluster was located 247 

in M1 and overlapped with our main ROI encompassing the SM1 hand area (see Supplementary Table 248 

1c for all significant clusters). For visualisation purposes and to ease interpretation, we then extracted 249 

the pre- to post-training change in activity levels under this M1 cluster per participant and correlated it 250 

with the corresponding MEP target ratio change (Fig. 4b). For the NF group, an increase in motor 251 

imagery performance was associated with a decrease in M1 activity (rPearson = -.75, p < .001, 95% CI: [-252 

0.91, -0.40]). For the control group, an increase in motor imagery performance was associated with an 253 

increase in M1 activity but this correlation did not reach significance (rSpearman = .48, p = .06, 95% CI: 254 

[-0.02, 0.79]).  255 

 256 

 257 
Figure 4. Motor imagery network and group differences of activity changes that predict performance changes. 258 
a) Whole-brain maps showing the overall activity during motor imagery (i.e., across all fingers and both groups) 259 
in the pre-training session. Single-finger motor imagery activated a fronto-parietal network and subcortical 260 
structures that are typical for motor imagery. b) Visualisation of the interaction effect in the M1 cluster 261 
demonstrating that the relationship between pre- to post-training changes in M1 activity and motor imagery 262 
performance changes differs between the NF and control groups. Changes in activity level (z-values) are 263 
depicted on the x-axis, with positive values showing an increase in activity from pre- to post-training. Changes 264 
in motor imagery performance are depicted on the y-axis, with positive values indicating an improvement from 265 
pre- to post-training. Squares depict data of individual participants, coloured lines show the best fit, and white 266 
dotted lines show the 95% confidence bands. 267 
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Neural finger representations activated by motor imagery become more distinct following TMS-NF 268 

training 269 

Next, we performed an in-depth investigation of plasticity of finger representations in SM1 and an 270 

exploratory analysis of plasticity of finger representations in secondary motor areas (Fig. 5a). We 271 

expected a co-involvement of M1 and the primary somatosensory cortex (S1) during motor imagery, 272 

with M1 being implicated in MEP modulation38,39 and S1 containing the imagined sensory 273 

consequences of imagined movements40,41. Specifically, we used multivariate pattern analysis (MVPA) 274 

to study changes in fine-grained finger representations induced by TMS-NF training. MVPA allows to 275 

investigate the intricate relationship between experimental conditions and activity patterns across 276 

voxels, which is particularly advantageous in the case of overlapping (finger) representations as in 277 

SM123,24,32. With representational similarity analysis (RSA) we examined the relationship between 278 

activity patterns elicited by imagined finger movements in an anatomically defined ROI, and then 279 

averaged the resulting inter-finger distances across finger pairs within each participant to estimate the 280 

average inter-finger separability (or finger representation strength). We expected that after TMS-NF 281 

training individuated finger motor imagery would elicit activity patterns in SM1 that contain increased 282 

information content to distinguish between fingers. If motor imagery finger representations would 283 

become more distinct across fingers, then the separability would increase. 284 

Inter-finger separability was greater than 0 in all ROIs for all measured time points and groups 285 

(all p(FDR) < .033), indicating that the activity patterns in SM1 and all tested secondary motor areas 286 

contained finger-specific information. We found that finger representations activated by motor imagery 287 

became more separable in SM1 following TMS-NF training for the NF group compared to the control 288 

group (significant Session by Group interaction; F(1,30) = 4.22, p = .049, Cohen’s d = 0.75, 95% CI for 289 

Cohen’s d: [0.00, 1.48]; Fig. 5b). However, post-hoc contrasts comparing the pre- to post-training 290 

sessions separately for the groups, did not yield significant differences (NF group: t(30) = -1.56, p = .13, 291 

Cohen’s d = 0.55, 95% CI for Cohen’s d: [-0.17, 1.28]; control group: t(30) = 1.34, p = .19, Cohen’s d = 292 

0.47, 95% CI for Cohen’s d: [-0.25, 1.20]).  In secondary motor areas, we found significant Session by 293 

Group interactions for SMA (F(1,30) = 10.56, p = .003, Cohen’s d = 1.19, 95% CI for Cohen’s d: [0.40, 294 

1.95]), and PMv (F(1,30) = 7.74, p = .009, Cohen’s d = 1.02, 95% CI for Cohen’s d: [0.25, 1.77]), but not 295 

for PMd (F(1,30) = 1.79, p = .19, Cohen’s d = 0.49, 95% CI for Cohen’s d: [-0.24, 1.21]). Separability in 296 

SMA (t(30) = -3.07, p = .005, Cohen’s d = 1.09, 95% CI for Cohen’s d: [0.35, 1.82]) and PMv (t(30) = -297 

4.48, p = .0001,  Cohen’s d = 1.58, 95% CI for Cohen’s d: [0.81, 2.36]) increased significantly from 298 

pre- to post-training for the NF group but not for the control group (SMA: t(30) = 1.53, p = .14, Cohen’s 299 

d = 0.54, 95% CI for Cohen’s d: [-0.18, 1.26]; PMv: t(30) = -0.54, p = .59, Cohen’s d = 0.19, 95% CI for 300 

Cohen’s d: [-0.52, 0.91]).  301 
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Activity patterns elicited during individual finger motor imagery do not become more similar to 302 

those observed during motor execution after TMS -NF training  303 

To investigate whether neural activity patterns elicited by individual finger motor imagery became more 304 

similar to those observed during motor execution following TMS-NF training, we performed a cross-305 

condition decoding analysis. Specifically, we trained a linear support vector machine to decode fingers 306 

during the motor execution task (i.e. paced individual finger tapping; Supplementary Fig. 3) and tested 307 

whether this decoder could be generalised to the motor imagery task, i.e., across another condition. If 308 

there is shared information in the activity patterns elicited by imagined and executed finger movements 309 

in a given ROI, then this would be reflected in a cross-condition classification accuracy above chance 310 

level. If the activity patterns elicited by motor imagery would become more similar to motor execution 311 

after TMS-NF training, then the cross-condition classification would increase from pre- to post-training. 312 

We found consistent classification accuracies greater than chance for all sessions and groups 313 

for the SM1 hand area but not for secondary motor areas (Fig. 5c). However, the cross-condition 314 

classification accuracy in the SM1 hand area did not significantly differ across sessions or groups (no 315 

significant main effects and no Group by Session interaction: F(1,30) = 0.43, p = .52, Cohen’s d = 0.24, 316 

95% CI for Cohen’s d: [-0.48, 0.96]). Bayesian tests provided moderate evidence for the null hypothesis, 317 

i.e., no change from pre- to post-training sessions for the NF group (BF10 = 0.26) and anecdotal evidence 318 

for the null hypothesis for the control group (BF10 = 0.50).  319 
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 320 
Figure 5. Finger representations activated by single-finger motor imagery become more separable following 321 
TMS-NF training, but do not become more similar to motor execution. a) Anatomically defined regions of interest 322 
(ROIs) used for multivariate pattern analysis. b) Finger separability, measured as the average inter-finger distance, 323 
of the representational structure of imagined finger movements in the SM1 hand, SMA, PMd and PMv ROIs for 324 
the NF and control groups. The distance is computed as the average cross-validated Mahalanobis (crossnobis) 325 
distance between activity patterns elicited by single-finger motor imagery of each finger pair. Asterisks on top of 326 
the bars indicate significant differences from 0 (FDR-corrected within each ROI and group). c) Cross-condition 327 
classification accuracy. A linear support vector machine was trained separately for each participant on all motor 328 
execution trials across both the pre- and post-training sessions to predict the motor imagery trials in the pre- and 329 
post-training sessions. The dotted line represents the empirical chance level (33.33%). Asterisks refer to the 330 
statistical difference of classification accuracy from the empirical chance level (FDR-corrected within each ROI 331 
and group). Squares depict data of individual participants.  **** p < .0001; *** p < .001; ** p < .01; * p < .05; # 332 
p < .10; ns = non-significant. 333 
 334 

2.5 Neural changes do not directly predict changes in motor imagery performance  335 

Finally, we explored whether the improved motor imagery performance in the NF group (i.e., pre- to 336 

post-training change in MEP target ratio) related to our main neural outcome measures (i.e., SICI % 337 
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changes in the target condition, separability changes in the SM1 hand area, and cross-condition 338 

classification accuracy changes in the SM1 hand area). A multiple linear regression revealed that the 339 

changes in the measured neural mechanisms paralleled an improvement in motor imagery performance 340 

in the NF group but did not directly predict the observed changes (multiple r2 = .12; separability: t = 341 

1.13, p = .28; cross-condition classification: t = -0.90, p = .39; SICI %: t = 0.18, p = .86). Similar results 342 

were found when including both groups in the analysis (i.e., NF and control groups; multiple r2 = .05; 343 

separability: t = 0.43, p = .67; cross-condition classification: t = 0.52, p = .61; SICI %: t = 0.71, p = 49). 344 

 345 

Discussion 346 

In this study, we investigated neuroplastic changes induced by mental finger individuation training that 347 

was guided by TMS-NF. Replicating our previous work31, we found that TMS-NF training enabled 348 

participants to selectively upregulate corticospinal excitability of a target finger while simultaneously 349 

downregulating corticospinal excitability of other finger representations. Our new findings demonstrate 350 

that this finger-specific training effect is mediated by tuning inhibitory circuits in M1: After TMS-NF 351 

training, GABAA-ergic inhibition was released if a finger was targeted, while inhibition was increased 352 

when the finger was not targeted. We further found that through TMS-NF training, activity patterns 353 

underpinning single-finger motor imagery became more distinct in SM1, SMA, and PMv. Together, 354 

our findings demonstrate that TMS-NF to guide motor imagery training induces neuroplastic changes 355 

that go beyond test-retest effects. 356 

Using neurophysiological assessments, we demonstrated that following TMS-NF training, the 357 

selective activation of an M1 finger representation through motor imagery was associated with a release 358 

of intracortical inhibition measured in this target finger muscle. Relative to that, when measuring in that 359 

same finger muscle during motor imagery of another finger, there was an increase in intracortical 360 

inhibition. Intracortical inhibition, assessed with SICI, is thought to be driven by inhibitory interneurons 361 

in M142 that are crucial for the fine-tuned activation and suppression of motor representations26,27. Our 362 

results align with a previous BCI-NF study that showed a decrease in intracortical inhibition for the 363 

agonist (or target) muscle compared to rest while it remained unaffected for an antagonist (or non-364 

target) muscle during motor imagery of wrist movements43. In line with this study43, we did not find 365 

changes in glutamatergic facilitatory circuits after TMS-training. Even after physical training, no clear 366 

training effects on ICF have been reported26. These studies and our results suggest that disinhibition 367 

(e.g., by a release of SICI) rather than facilitation might be essential for intracortical plastic changes26. 368 

During BCI-NF training, a release of SICI might not induce a general increase of corticospinal 369 

excitability but rather modulate the specific activation of adjacent sensorimotor representations43. This 370 

modulation is thought to be driven by tuning horizontal connections, similar to the corticospinal 371 

excitability changes that are observed during executed movements43. Our results corroborate this 372 

finding by showing similar modulatory effects of SICI during mental activation of neighbouring finger 373 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.16.594100doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594100
http://creativecommons.org/licenses/by-nc-nd/4.0/


   14 

muscle representations in a feedback-free scenario after TMS-NF training. These findings mirror 374 

changes in SICI during execution of individual finger movements and demonstrate that modulation of 375 

SICI might enhance the selectivity of finger muscle activation in M127. In our study, the modulatory 376 

effects on SICI during mental finger individuation suggest that tuning of intracortical inhibitory 377 

mechanisms may have ‘shaped’ motor imagery finger representations during TMS-NF training.  378 

The finding that the TMS-NF group learned to selectively activate single-finger representations 379 

is further supported by our fMRI results. Previous fMRI studies have shown that individual SM1 finger 380 

representations can be activated through top-down processes, i.e., without overt movements or sensory 381 

stimulation, such as through attempted3–5 and planned7 movements or observed touch44. Here, we add 382 

to that growing body of literature by demonstrating that motor imagery of individual fingers evoked 383 

separable activity patterns in SM1 across all participants in both fMRI sessions. Importantly, following 384 

TMS-NF training, these SM1 representations became more finger-specific (i.e., inter-finger distances 385 

increased from pre- to post-training) compared to the control group that did not undergo any TMS-NF 386 

training. To our knowledge, our study is the first to show fMRI changes in pure top-down activated 387 

SM1 finger representations following motor imagery based BCI-NF training. This could reflect a more 388 

selective activation of single finger representations following training due to less enslavement, i.e., less 389 

activation of non-target fingers. This may parallel effects found in motor execution, where more 390 

enslavement has been associated with more overlapping finger representations23,24. 391 

Most studies that investigated plasticity of SM1 finger representations used motor execution 392 

paradigms to elicit finger-specific activity patterns. These SM1 finger representations activated by 393 

executed movements have been shown to be relatively stable over time45 and training interventions46. 394 

Specifically, five weeks of training to perform specific finger movement sequences, finger movement 395 

representations did not change in S1 or M146. Even after life-long expert-learning32,47,48 or drastic 396 

changes in sensorimotor experiences3–5 finger movement representations generally remained stable or 397 

only underwent subtle changes. For example, S1 finger representations activated by phantom finger 398 

movements of amputees’ missing hand or tetraplegic patients’ paralysed hand showed similar finger 399 

somatotopy as healthy controls3–5,49. However, few studies have demonstrated changes in finger 400 

representations after long-term learning or certain interventions. It was shown that finger movement 401 

representations had increased overlap in professional compared to amateur musicians in M1 (but not 402 

S1)32. Additionally, gluing fingers together for 24h50 or blocking nerves in specific fingers for 403 

approximately 5h altered S1 finger movement representations51. The majority of studies however 404 

reported stable representations. In contrast, our findings show changes in motor imagery finger 405 

representations in SM1 following TMS-NF training. It is possible that top-down activated finger 406 

representations are more malleable compared to finger movement representations. In line with that, a 407 

study combined motor execution with mental strategies and showed that manipulated online fMRI-NF 408 

of finger representations can teach individuals to volitionally shift SM1 representations of some fingers 409 

during individuated finger movements52. 410 
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We found that without any training intervention (i.e., in the control group; test-retest effects) 411 

separability of finger representations was slightly decreased in the second testing sessions, although this 412 

difference did not reach significance. However, relative to this slight decrease, we observed an increase 413 

in separability for the NF group, resulting in a significant Session by Group interaction. The observed 414 

trend towards a slight decrease in separability without TMS-NF is in line with our previous study that 415 

combined TMS-NF during mental finger individuation with electroencephalography (EEG)31: Mihelj 416 

et al. included a control group which performed motor imagery but did not receive veridical feedback. 417 

Separability scores were calculated from EEG and revealed a slight decrease for the control group over 418 

training sessions, while there was an increase for the TMS-NF group31. 419 

We found that a decrease of M1 activity during motor imagery was associated with better motor 420 

imagery performance in the NF group, while increased separability of SM1 finger representations did 421 

not directly correlate with the performance changes. These results suggest that with better performance 422 

following TMS-NF training the activity level in M1 decreased while the information content to 423 

distinguish between fingers remained stable. This might reflect a more efficient, i.e., more targeted 424 

activation of finger representations. Previous research has shown that more accentuated sensory 425 

representations were accompanied with lower activity levels53. However, it is important to note that the 426 

lack of a significant correlation between SM1 finger representation separability and performance 427 

changes should be interpreted with caution. The lack of a significant correlation does not necessarily 428 

indicate that there is no relationship, it may instead be explained by a lack of statistical power54. 429 

At the whole brain level, executed and imagined movements have been shown to predominately 430 

activate the same network of areas33,34,55. Their neural representations are thought to share a low-to-431 

moderate degree of similarity10. In line with this, we demonstrated that a decoder trained on SM1 432 

activity patterns elicited by executed finger movements successfully generalised to imagined finger 433 

movements. However, we did not find that the resemblance of activity patterns elicited by imagined 434 

and executed finger movements differed between groups or changed due to training. This suggests that 435 

motor imagery finger representations did not become more similar to motor execution finger 436 

representations through training. Although the shared neural code of finger representations elicited by 437 

motor imagery and motor execution could still be detected in SM1, it is possible that task differences 438 

might have masked an increased resemblance of motor imagery and motor execution representations 439 

induced by TMS-NF training. We did not restrict participants to perform specific imagined movements 440 

but instead allowed them to find and develop their own motor imagery strategies during TMS-NF 441 

training. As a result, strategies used during motor imagery varied from, for example, button pressing, 442 

making circles with the cued finger, touching a surface, to finger abduction (see Supplementary Table 443 

2c for self-reported motor imagery strategies during the fMRI sessions). Movement execution by 444 

contrast consisted of a paced button press task. However, it is also possible that motor imagery and 445 

execution rely on different neural substrates within M1, with motor imagery being represented in 446 
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superficial rather than the deep layers, while motor execution was represented in both superficial and 447 

deep layers56. Our fMRI approach did not allow us to investigate such potential layer-specific effects.  448 

What processes may have driven the neuroplastic changes in SM1 induced by motor imagery 449 

combined with TMS-NF? We suggest that the observed effects on intracortical inhibition and 450 

separability of top-down finger representations may have been caused by an interplay of multiple 451 

processes19. First, use-dependent plasticity in SM1 has been frequently demonstrated for motor 452 

execution57,58 and motor imagery tasks59–61 and it is likely that this mechanism, possibly driven by long-453 

term potentiation (LTP)-like plasticity, has been triggered by repeated practice with TMS-NF62. Second, 454 

gaining control of BCI-NF via motor imagery may additionally reflect skill learning that involves a 455 

network beyond SM1. It is therefore possible that any changes in SM1 representations may emerge due 456 

to interconnections with various other, higher-order, brain areas, such as premotor and parietal 457 

association areas. Indeed, studies investigating effective connectivity during motor imagery suggest that 458 

SMA, PMv, and PMd are bidirectionally connected to each other and to SM163–65.  In line with this, we 459 

observed higher separability of motor imagery finger representations in SMA and PMv following TMS-460 

NF training. Previous work indicates that controlling BCI-NF via motor imagery is a skill that, once 461 

acquired, can be maintained over long periods without training66,67, further supporting that skill learning 462 

may be involved in BCI-NF training. Likely, an interplay of inter- and intrahemispherically68 connected 463 

areas in the sensorimotor network has contributed to the effects we found in SM1. Finally, studies have 464 

shown that it is possible to activate somatotopic S1 hand representations by merely directing attention 465 

to individual fingers69,70. It is therefore possible that through improving attentional processes, 466 

participants might have targeted motor imagery representations more selectively. Importantly, these 467 

possible mechanisms are not mutually exclusive, and it is likely that neuroplastic, skill learning 468 

dependent, and attentional processes contributed to the observed changes in SM1 finger representations 469 

following TMS-NF training. 470 

 The neural changes induced by TMS-NF training demonstrate the promise of TMS-NF for use 471 

in a clinical setting as a BCI-NF training to restore fine motor control. This is further supported by the 472 

high aptitude rate and the rapid learning reported in TMS-NF studies if participants receive informative 473 

feedback31,66,71–73. Additionally, we observed a translation of improved performance during the training 474 

to a feedback-free scenario after training. Once the motor imagery strategies were acquired, 14 out of 475 

16 participants were able to apply their strategies to reach an improved motor imagery performance 476 

without receiving NF. This finding is in line with our previous work using a simplified TMS-NF set-up 477 

in which participants were able to maintain performance in a feedback-free scenario even six months 478 

after training 48. Regaining hand functions has been reported as one of the most important therapy goals 479 

by tetraplegic and stroke patients74. TMS-NF might offer a rehabilitation strategy that can be employed 480 

already in the early stages after for example a stroke or a spinal cord injury when patients are not yet 481 

able to engage in physical training. The simplified TMS-NF setup has previously been tested in a 482 

clinical setting. In a feasibility study, subacute stroke patients (n = 7) who received TMS-NF learned 483 
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over four training sessions to increase corticospinal excitability in paretic muscles75. Larger trials with 484 

more participants and longer training periods to test for the effects of TMS-NF on functional motor 485 

recovery will give further insight into its clinical relevance. Importantly, our findings also open new 486 

avenues to investigate the extension of TMS-NF as a tool to shape top-down sensorimotor 487 

representations. Such training could improve control in other BCIs that rely on clearly separable neural 488 

activity patterns or be beneficial in neurological disorders associated with aberrant or disorganised 489 

sensorimotor representations. 490 

In summary, our results show that TMS-NF improved the top-down activation of finger-491 

specific motor representations by tuning intracortical inhibitory networks in M1 such that inhibition 492 

was selectively reduced for a finger that was mentally activated while it was increased for another 493 

finger. These neurophysiological findings were further corroborated by fMRI revealing that finger 494 

representation became more distinct after training consistent with a sharper, less overlapping 495 

recruitment of the neural populations representing a specific finger. Together, our results indicate that 496 

the neural underpinnings of finger individuation, a well-known model system for neuroplasticity, can 497 

be modified using motor imagery training that is guided by TMS-NF. With this proof-of-principle study 498 

we demonstrate that BCI-NF training can indeed promote neuroplasticity that may be relevant for motor 499 

recovery.  500 

 501 

Material and Methods 502 

Participants 503 

For this study, we recruited 46 participants. Inclusion criteria were: No use of medication acting on the 504 

central nervous system, no neurological and psychiatric disorders, right-handed according to the 505 

Edinburgh Handedness Inventory76, normal or corrected-to-normal vision, and no TMS77,78 and MRI 506 

contraindications. At the start of the study onset (i.e., at the beginning of the pre-training TMS session), 507 

we screened participants for their ability to perform kinaesthetic motor imagery using the kinaesthetic 508 

subscale of the Movement Imagery Questionnaire – Revised second version (MIQ-RS79,80). In this 509 

questionnaire, participants are instructed to perform and then kinaesthetically imagine movements and 510 

rate this mental task from 1 (very hard to feel) to 7 (very easy to feel). We asked participants with low 511 

scores, i.e., more than 1 SD below the mean score reported in Gregg et al.79, whether they were able to 512 

mentally simulate the kinaesthetic experience of movements. If participants negated, we excluded them 513 

from the study. 514 

We excluded a total of 14 participants after study enrolment due to: (i) reported difficulty to 515 

perform kinaesthetic motor imagery (2 participants), (ii) a high resting motor threshold (RMT) that was 516 

above 80% of the maximum stimulator output (MSO) and resulted in difficulties to find a suitable 517 

testing intensity (6 participants), (iii) reported discomfort during TMS or fMRI (3 participants), 518 

persistent background electromyography amplitude (bgEMG) that exceeded the online bgEMG control 519 
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( >10 µV) during the first TMS session (1 participant), (iv) excessive head motion in the first fMRI 520 

session, i.e., a mean displacement >1.1mm (corresponding to half a voxel size) in the majority of runs 521 

(1 participant), or (v) being unsure about MRI contraindications (1 participant). Testing was completed 522 

by 16 participants in the neurofeedback group (NF; age (mean ± SD): 25.1 ± 2.8 years; 8 females) and 523 

16 participants in the control group (age: 26.4 ± 2.7 years; 8 females), adhering to the sample size 524 

calculation that was made prior to study onset (using G*Power v3.1, based on the effect size reported 525 

in Mihelj et al.31). The participants who completed testing did not report any major side effects after the 526 

TMS sessions. All research procedures were approved by the Cantonal Ethics Committee Zurich 527 

(BASEC Nr. 2018-01078) and were conducted in accordance with the declaration of Helsinki. All 528 

participants provided written informed consent prior to study onset. 529 

 530 

Experimental procedure 531 

The NF group underwent four sessions of TMS-NF to train individuation of imagined finger 532 

movements. Additionally, we conducted pre- and post-training TMS and fMRI testing sessions to 533 

measure the neural consequences of TMS-NF (Fig. 1b). In the pre- and post-training TMS sessions we 534 

used paired-pulse TMS protocols to quantify effects of TMS-NF on inhibition and facilitation in the 535 

primary motor cortex (M1) during motor imagery. In the pre- and post-training fMRI sessions, we 536 

acquired brain activity during imagined and executed selective finger movements to investigate neural 537 

finger representations. During the pre- and post-training TMS sessions we additionally assessed motor 538 

imagery performance in feedback-free blocks, i.e., identical to TMS-NF, but with occluded feedback. 539 

We also assessed such feedback-free blocks at the end of the fourth (and last) TMS-NF session for the 540 

NF group. This allowed us to investigate the stability of motor imagery performance by comparing the 541 

measurement directly after TMS-NF training to the measurement in the post-training TMS session. 542 

Note that for the first three participants we assessed the feedback-free blocks at the start of the and the 543 

end of the fourth TMS-NF session rather than in the pre- and post-training TMS sessions. The control 544 

group did not receive any TMS-NF training but underwent identical pre- and post-training sessions as 545 

the NF group to control for test-retest effects. Importantly, we have already shown that a control group 546 

that received uninformative NF did not improve their ability to up- vs downregulate (finger-selective) 547 

modulation of MEPs31,66. For one participant of the NF group, we repeated the post-training TMS 548 

session due to technical issues.  549 

In the pre-training sessions, the NF and the control group received identical, standardized 550 

instructions to imagine selective movements with the cued finger and were provided example strategies 551 

based on Mihelj et al.31 and Ruddy et al.66  (see Supplementary Table 2a for verbatim instructions, and 552 

Supplementary Table 2b and 2c for self-reported strategies). For the post-training sessions, we 553 

instructed the NF group to apply the motor imagery strategies that they had acquired during the TMS-554 

NF training. 555 
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We kept the experimenter and time of the day for the testing and training sessions consistent 556 

within each participant. All sessions took place on separate days and the whole study was completed in 557 

an average of 21 days (NF group (mean ± SD): 19.5 ± 5.5; control group (mean ± SD): 21.7 ± 13.9). 558 

 559 

TMS and EMG setup 560 

During the TMS sessions participants sat in a comfortable chair with a headrest and placed their arms 561 

on a pillow on their lap. Surface EMG (Trigno Wireless, Delsys) was recorded from the left and right 562 

thumb (Abductor Pollicis Brevis; APB), index finger (First Dorsal Interosseus; FDI), and little finger 563 

(Abductor Digiti Minimi; ADM). EMG data were sampled at 1926 Hz (National Instruments, Austin, 564 

Texas), amplified, and stored on a PC for offline analysis. For TMS-NF, a round coil with a 90 mm 565 

loop diameter was connected to a Magstim 200 stimulator (Magstim, Whitland, UK) to deliver single-566 

pulse monophasic TMS. We used a round coil for TMS-NF to achieve a less focal stimulation. As such, 567 

we were able to elicit motor evoked potentials (MEPs) in all three measured finger muscles of the right 568 

hand in the same coil position as in the setup of Mihelj et al.31. For paired-pulse TMS protocols, a 70 569 

mm figure-of-eight coil was connected to two coupled Magstim stimulators. Here, we used a coil to 570 

allow for a more focal stimulation and optimally target the M1 representation of the right FDI. All 571 

stimuli were provided using custom MATLAB scripts (MATLAB 2020b, MathWorks) and 572 

Psychophysics Toolbox-381,82. 573 

 574 

TMS-based neurofeedback task 575 

We used similar procedures as in Mihelj et al.31 to train participants to selectively modulate their 576 

corticospinal excitability through motor imagery using TMS-NF. A TMS-NF trial started with a 577 

preparatory rest period of 1-2 s. During this time, the bgEMG of all measured finger muscles on the left 578 

and right hand was computed as the root mean square (rms) of the EMG signal within a sliding window 579 

of 100 ms. Participants saw six dots on the screen, representing the bgEMG of the individual muscles. 580 

The dots were green when the bgEMG was < 10 µV and turned red otherwise. Only when the bgEMG 581 

in all muscles was < 10 µV for a minimum of 1 s did the trial proceed to the motor imagery (or rest) 582 

period. During this period a visual cue appeared on the screen that instructed the participant to perform 583 

finger-selective motor imagery of the right hand (‘thumb’, ‘index’, or ‘little’) or to rest (‘rest’). The first 584 

ten trials in each block were rest trials, which we collected to determine a baseline for each finger 585 

muscle. The motor imagery (or rest) period of a trial lasted for a jittered period of 4-6 s to avoid 586 

anticipation effects for the TMS pulse83. If the bgEMG rms exceeded 10 µV in any muscle during this 587 

period, the TMS pulse was only sent once the bgEMG was below the threshold for the predefined motor 588 

imagery duration. The aim of the bgEMG control was to prevent participants from making subtle 589 

movements or muscle contractions as to ensure that any MEP modulation was caused solely by motor 590 

imagery. The bgEMG control only stopped in the last 0.5 s before the TMS pulse was applied. The dots 591 
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remained green during this period, regardless of the bgEMG values. After each TMS pulse, we 592 

computed the MEP peak-to-peak amplitudes of the three right-hand finger muscles. The feedback (or 593 

fixation cross for rest trials) was displayed 1 s after the TMS pulse and lasted 3 s. The normalised MEP 594 

amplitudes were computed by dividing the MEP amplitude of a finger muscle by the rest MEP 595 

amplitude of the same finger muscle. This rest MEP amplitude was based on nine rest trials of the 596 

corresponding block, disregarding the first rest trial. The visual feedback (Fig. 1a) consisted of the 597 

normalised MEPs that were displayed as three bars representing the thumb, index, and little finger 598 

MEPs, respectively. Three white lines represented the baseline MEPs of the three finger muscles. If the 599 

bar exceeded the white line, the normalised MEP of the cued target finger was > 1, i.e., the current MEP 600 

was higher than the baseline MEP, indicating facilitation. If the bar was below the white line, the current 601 

MEP was below the baseline MEP (normalised MEP < 1), indicating suppression. If the bar of the cued 602 

target finger was both above the white bar and higher than the bars of the other two (non-target) finger 603 

muscles, the trial was deemed successful, and the bars were displayed in green. If not, the trial was 604 

deemed unsuccessful, and the bars were displayed in red. In a successful trial, participants could 605 

additionally reach up to three stars, one for each finger. To reach a star for the cued finger, the 606 

normalised MEP had to be > 150% of the other two non-target fingers. For the non-target fingers, the 607 

normalised MEPs had to be < 1. 608 

 609 

TMS-based neurofeedback training sessions 610 

For the TMS-NF training sessions, we positioned the round coil over the vertex oriented to induce a 611 

posterior-anterior current flow in left M1. We first determined a stimulation intensity that elicited MEPs 612 

in all three finger muscles of the right hand. These MEPs should be in a range from which participants 613 

could up- and downregulate using motor imagery strategies, defined as 115% of the RMT of all three 614 

fingers. We therefore first measured the RMT of the three finger muscles, i.e., the minimum intensity 615 

needed to elicit MEPs of 50 µV amplitude with a probability of 0.584 in all three finger muscles 616 

simultaneously at rest, using adaptive threshold hunting. Adaptive threshold hunting is based on 617 

maximum likelihood parameter estimation by sequential testing (PEST85) and was shown to be a highly 618 

reliable method to estimate the RMT with the advantage of using fewer trials compared to other 619 

methods86,87. PEST uses a probabilistic method to estimate the minimum TMS test stimulus (TS) 620 

intensity needed to elicit MEPs of a defined amplitude, here 50 µV for the RMT, in 50% of trials. We 621 

used an automated PEST script, implemented in MATLAB88, that incorporates the PEST function from 622 

the MTAT2.0 programme89 as described in90. The peak-to-peak amplitude of the MEP of the targeted 623 

muscle is calculated online and passed to the algorithm following pulse delivery. PEST then 624 

recommends a TS intensity for the following trial, which is more likely to be the RMT, based on whether 625 

the MEP amplitude reached the defined amplitude or not. We used a microcontroller to adjust the TS 626 

intensity automatically after each trial, prior to delivery of the next TMS pulse. This procedure was 627 
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repeated for 20 trials to converge with sufficient confidence on an estimate of RMT86. As MEP 628 

amplitudes in the first trial are typically higher because of the novelty of the TMS sensation, we repeated 629 

the first trial, resulting in 21 trials for each block of adaptive threshold hunting.  630 

We targeted the right APB, FDI, and ADM simultaneously, and therefore, the lowest amplitude 631 

of these three MEPs was passed to the PEST algorithm after each TMS pulse. As such, the resulting 632 

RMT was oriented to the finger muscle with the highest RMT. To ensure that the MEPs were not 633 

influenced by bgEMG, a trial was repeated automatically if the rms amplitude exceeded 10 µV in any 634 

of the three right-hand finger muscles. The experimenter visually controlled for a reliable convergence 635 

of the TS, i.e., a probability of approximately 0.5 to elicit MEPs of the defined amplitude in the last 636 

trials and otherwise repeated the RMT measure. 637 

Following determination of RMT, we tested the estimated stimulation intensity for TMS-NF of 638 

115% RMT and adjusted the intensity and / or the coil position if it did not elicit MEPs in all three 639 

finger muscles in each trial or if it resulted in ceiling effects in any of the three finger muscles. We then 640 

provided six blocks of TMS-NF in each training session. Each block consisted of 10 rest trials and 24 641 

motor imagery trials, followed by a short break of 30 s between the blocks and a longer break after 642 

every second block. If the experimenter identified changes in corticospinal excitability based on MEP 643 

amplitudes during a session, the testing intensity was adjusted between blocks with longer breaks. 644 

During the first session, TMS-NF consisted of a blocked design, i.e., we cued a single finger for two 645 

consecutive blocks. This allowed participants to explore different motor imagery strategies. In the 646 

second session, we reduced the number of repetitions per finger to eight trials, and to four in the third 647 

session. The order of the blocks and cued fingers was pseudorandomised and balanced across 648 

participants. In the fourth session the trial order was completely interleaved and counterbalanced across 649 

cued fingers. An interleaved order of trials requires a change of the motor imagery strategies after each 650 

trial and, therefore, increases the difficulty. Studies have shown beneficial effects of such interleaved 651 

practice on delayed recall and long-term retention91. Mihelj et al.31 showed a high performance increase 652 

in a blocked trial order in TMS-NF. Thus, we designed a gradual change from a blocked to an 653 

interleaved order over sessions in this study. At the end of each session, participants noted down the 654 

strategies they had used for each of the fingers and rated each strategy on a scale from 1 (not successful 655 

at all) to 7 (very successful).  656 

For the NF group, the post-training TMS session started with a short retraining consisting of 657 

two blocks of TMS-NF with four repetitions per finger. 658 

For the feedback-free measures, we assessed two blocks that were identical to TMS-NF with 659 

an interleaved trial order, except that no visual feedback was provided. Instead, a white fixation cross 660 

appeared on the screen for the same duration (3s).  661 
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Offline EMG data processing 662 

Preprocessing of EMG data was performed using custom Python 3.7 scripts. EMG data from all six 663 

hand muscles were band-pass filtered (30-800 Hz) separately for the 5 – 105 ms of bgEMG before the 664 

TMS pulse was applied and for the 15 – 60 ms after the pulse that contained the MEP to avoid smearing 665 

of the MEP into the bgEMG. An additional 50 Hz notch filter was applied to the bgEMG data only. We 666 

calculated the rms of the bgEMG, the peak-to-peak MEP amplitude, and normalised the MEP and 667 

bgEMG of each motor imagery trial and finger muscle by the baseline of the rest trials in the 668 

corresponding TMS-NF block. We then split the dataset into training (NF 1 – 4) and feedback-free data. 669 

The training data is reported in the Supplementary Fig. 1a. Note that during TMS-NF, no online filters 670 

were applied. For all statistical analyses we used the feedback-free blocks from the pre- and post-671 

training TMS sessions. For the three participants in the NF group that did not perform the feedback-672 

free blocks in the post-training TMS session, we took the data from the feedback-free blocks in the 673 

fourth TMS-NF training session instead and showed that for the other 13 participants, motor imagery 674 

performance did not differ significantly in the fourth TMS-NF session vs post-training TMS-session 675 

(see Supplementary Fig. 1c).  676 

During offline analysis we excluded all trials in which the rms amplitude of any of the muscles 677 

exceeded 7 µV (2.8 % of total feedback-free trials). We further excluded trials with rms values that 678 

were 2.5 SD above or below the mean bgEMG of each muscle (10.55 % of total feedback-free trials). 679 

Using the remaining trials, we quantified motor imagery performance, following similar procedures as 680 

in Mihelj et al.31 We calculated the MEP target ratio as the ratio between the normalised MEP of the 681 

cued target finger muscle and the higher of the non-target MEPs. An MEP target ratio > 1 indicates a 682 

finger-selective upregulation of corticospinal excitability; a value of 1 reflects no modulation; and 683 

values < 1 would show a finger-selective downregulation of corticospinal excitability. We then 684 

averaged the resulting MEP target ratio across all trials per participant and per session. We additionally 685 

computed the bgEMG target ratio using the bgEMG instead of MEPs and added it as a covariate in the 686 

linear mixed-effects model to control for subtle selective muscle contractions (bgEMG rms < 7 µV) in 687 

the motor imagery period. 688 

 689 

Paired-pulse TMS measurements 690 

We used adaptive threshold hunting to assess short-interval intracortical inhibition (SICI), intracortical 691 

facilitation (ICF), and a single pulse (non-conditioned) protocol in the right FDI (i.e., index finger) 692 

while participants imagined moving either their index finger or while they imagined moving their 693 

thumb. This resulted in two motor imagery conditions where the index finger was either the target or a 694 

non-target finger. 695 

We positioned the figure-of-eight-coil over the hotspot of the right FDI, i.e., the coil location 696 

eliciting the highest and most consistent MEPs in the right FDI. The coil was held tangential to the scalp 697 

at a 45° angle to the mid-sagittal line to achieve a posterior-anterior direction of current flow in the 698 
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brain. This optimal coil location was registered in the neuronavigation software (Brainsight Frameless, 699 

Rogue Research Inc.). The position of the coil and the participant’s head were monitored in real-time 700 

using the Polaris Vicra Optical Tracking System (Northern Digital Inc.). First, we determined the RMT 701 

of the right FDI using adaptive threshold hunting (as described in TMS-based neurofeedback training 702 

sessions). Next, we measured the maximum MEP: We applied 10 pulses where the intensity of the first 703 

pulse was set to 50% of MSO, followed by three repetitions of 65%, 80%, and 95% of the MSO. The 704 

first trial was discarded because of the novelty of TMS sensation, and the maximum MEP was defined 705 

as the largest of the nine remaining MEPs without outliers. 706 

For SICI and ICF we set the conditioning stimulus (CS) intensity to 70% RMT. The inter-707 

stimulus interval (ISI) was set at 2 ms for SICI42,66 and 12 ms for ICF. In each block, we measured the 708 

TS during motor imagery which had a 50% probability of evoking an MEP of > 50% of the maximum 709 

MEP as target MEP. We tested one protocol per block, and two separate PEST protocols ran in an 710 

interleaved manner within a block to track the two TS of the motor imagery conditions (i.e., imagined 711 

index finger or imagined thumb movements) with 20 trials each. We determined the TS for both motor 712 

imagery conditions in the same block to control for changes in corticospinal excitability throughout the 713 

session. The cued finger (i.e., index or thumb) was repeated four times each. The structure of a trial was 714 

consistent with TMS-NF, except that a fixation cross and no feedback was presented for 2s after 715 

applying the TMS pulse(s). We applied a similar online bgEMG control as in TMS-NF, however, as we 716 

focused on motor imagery of the right index finger and thumb, the trial only paused when the bgEMG 717 

of the right APB or FDI exceeded 10 µV. For the other finger muscles, the dots representing the bgEMG 718 

turned yellow instead of red if bgEMG exceeded 10 µV and the trial proceeded normally. Participants 719 

were instructed to relax their muscles if a dot turned yellow but to primarily focus on motor imagery. 720 

If the bgEMG in the right APB or FDI exceeded 10 µV in the 5 – 105 ms before the CS (or TS in the 721 

single pulse protocol), the trial was repeated automatically. The order of stimulation protocols and 722 

which motor imagery condition was presented first in a block was balanced across participants but was 723 

kept consistent for the pre- and post-training sessions. The second assessed protocol was always the 724 

single pulse protocol. If the threshold of one of the two motor imagery conditions did not converge 725 

reliably, the block was repeated (see Supplementary Table 3 for number of repetitions per participant). 726 

 727 

Paired-pulse analysis 728 

With the threshold hunting protocols, we determined the minimum stimulation intensity required to 729 

elicit an MEP of 50% of the maximum MEP amplitude in 50% of trials. We expressed inhibition (and 730 

facilitation) as the % change in intensity in the SICI (or ICF) protocol compared to the single pulse 731 

protocol. For inhibition, positive values indicate that a higher intensity was needed to elicit MEP 732 

amplitudes of at least the target MEP in the SICI compared to the single pulse protocol. For facilitation, 733 
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positive values indicate that the ICF protocol resulted in a lower intensity than the single pulse protocol 734 

to elicited at least the target MEP amplitude. 735 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛	% =	
𝑇𝑆(𝑆𝐼𝐶𝐼) − 𝑇𝑆(𝑠𝑖𝑛𝑔𝑙𝑒	𝑝𝑢𝑙𝑠𝑒)

𝑇𝑆(𝑠𝑖𝑛𝑔𝑙𝑒	𝑝𝑢𝑙𝑠𝑒)
	𝑥	100 736 

 737 

𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑎𝑡𝑖𝑜𝑛	% =	
𝑇𝑆(𝐼𝐶𝐹) − 𝑇𝑆(𝑠𝑖𝑛𝑔𝑙𝑒	𝑝𝑢𝑙𝑠𝑒)

𝑇𝑆(𝑠𝑖𝑛𝑔𝑙𝑒	𝑝𝑢𝑙𝑠𝑒)
	𝑥	(−100) 738 

 739 

If a paired-pulse block was repeated, the plots of stimulation intensities and trials that showed 740 

positive and negative responses for each tested intensity were visually inspected by the experimenter 741 

and an independent, blinded researcher to decide which of the repetitions was used for further analysis: 742 

If possible, the thresholds for both motor imagery conditions (target vs non-target) were taken from the 743 

same block, unless the threshold of one motor imagery condition clearly converged better in another 744 

block. We then computed the pre- to post-training differences in inhibition, or facilitation, for the two 745 

motor imagery conditions.  746 

 747 

fMRI tasks 748 

We employed two paradigms in the pre- and post-training fMRI sessions to uncover neural changes 749 

after TMS-NF training. First, we assessed brain activity during imagined finger movements to analyse 750 

how finger-specific activity patterns change after TMS-NF training. To compare these activity patterns 751 

of imagined finger movements to those of executed movements, we additionally assessed motor 752 

execution in a paced finger-tapping task. Participants viewed a fixation cross centred on a screen 753 

through a mirror mounted to the head coil. For the motor imagery runs, participants were visually cued 754 

by the words ‘thumb’, ‘index’, ‘little’, or ‘rest’. Each motor imagery period was followed by a jittered 755 

rest period of 3 - 4 s during which a fixation cross was displayed instead of the task instruction. To 756 

ensure that participants did not execute any finger movements during this task, an experimenter visually 757 

controlled for finger movements inside the scanner room. If any movements were detected, we stopped 758 

the run, instructed the participant to refrain from executing finger movements, and repeated the run. We 759 

acquired four motor imagery runs using a blocked paradigm with block lengths of 7.5 s. In every run, 760 

each of the three fingers and rest were cued 12 times in a counterbalanced order, resulting in 48 trials 761 

per condition and session. Each motor imagery run lasted for 9 min 8 s. 762 

During the motor execution runs, the participants’ right index, ring, middle and little fingers 763 

were placed on the buttons of a four-button response box, with the thumb placed on the side of the box. 764 

Participants viewed a fixation cross. They were then visually cued by the words ‘thumb’, ‘index’, 765 

‘middle’, ‘ring’, ‘little’, or ‘rest’ appearing above the fixation cross to perform paced button presses 766 

with the corresponding finger (or to tap the side of the button box with the thumb) or to rest. The fixation 767 

cross blinked at 0.7 Hz to instruct the pace. In the rest condition, no fixation cross was displayed. We 768 
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acquired six motor execution runs using a blocked paradigm with block lengths of 7.5 s. No breaks 769 

were provided between trials. In every run, each of the five fingers and rest were presented five times 770 

in a counterbalanced order, resulting in 30 trials per condition and session. Each motor execution run 771 

lasted for 4 min 5 s. 772 

 773 

fMRI data acquisition 774 

We used a 3T Siemens Magnetom Prisma scanner with a 64-channel head-neck coil (Siemens 775 

Healthcare, Erlangen, Germany) to acquire fMRI data. For the anatomical T1-weighted images, we 776 

used a Magnetization Prepared Rapid Gradient Echo (MPRAGE) protocol with the following 777 

acquisition parameters: 160 sagittal slices, resolution = 1 x 1.1 x 1 mm3, field of view (FOV) = 240 x 778 

240 x 160 mm, repetition time (TR) = 2300 ms, echo time (TE) = 2.25 ms, flip angle = 8°. For the task-779 

fMRI data acquisition we used an echo-planar-imaging (EPI) sequence covering the whole brain and 780 

the cerebellum with the following acquisition parameters: 66 transversal slices, resolution = 2.2 mm3 781 

isotropic, FOV = 210 x 210 x 145 mm, TR = 846 ms, TE = 30 ms, flip angle = 56°, acceleration factor 782 

= 6, and echo spacing = 0.6 ms. We acquired 636 and 278 volumes for each of the motor imagery and 783 

motor execution runs, respectively. To measure B0 deviations we used a fieldmap with the same 784 

resolution and slice angle as the EPI sequence and the following acquisition parameters: TR = 649 ms, 785 

TE1 = 4.92ms, TE2 = 7.38 ms.  786 

 787 

fMRI data preprocessing and co-registration 788 

DICOM images were converted to nifti format using MRIcroGL v13.6 789 

(https://www.nitrc.org/projects/mricrogl). MRI analysis was conducted using tools from FSL v.5.0.7 790 

(http://fsl.fmrib. ox.ac.uk/fsl) unless stated otherwise. The following preprocessing steps were applied 791 

to the fMRI data using FSL’s Expert Analysis Tool (FEAT): motion correction using MCFLIRT92, brain 792 

extraction using the automated brain extraction tool (BET)93 , spatial smoothing using a 3 mm full-793 

width at half-maximum (FWHM) Gaussian kernel, and high-pass temporal filtering with a 100 s cut-794 

off. Non-brain tissue from the T1-weighted images of the pre- and post-training fMRI session was 795 

removed using BET and/or Advanced Normalization Tools (ANTs) v2.3.5 796 

(http://stnava.github.io/ANTs) to receive a binarized mask of the extracted brain. Image co-registration 797 

was performed in separate, visually inspected steps. For each participant, we created a mid-space, i.e., 798 

an average space, between the T1-weighted images and its binarized brain masks of the pre and the post 799 

sessions. We then used the mid-space brain mask to brain extract the mid-space T1-weighted image. 800 

By using this T1-weighted mid-space for co-registration we ensured that the extent of reorientation 801 

required in the registration from functional to structural data was equal in the pre- and post-training 802 

fMRI sessions. Functional data were then aligned to the brain extracted T1-weighted mid-space, 803 

initially using six degrees of freedom and the mutual information cost function, and then optimised 804 

using boundary-based registration (BBR)94. To correct for B0 distortions, a fieldmap was constructed 805 
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for B0 unwarping and added to the registration. For one participant, the fieldmap worsened co-806 

registration in the MRI pre session and was therefore not applied. Three participants were taken out of 807 

the scanner for a brief break during the MRI pre-training session and the fieldmaps were only applied 808 

to the functional runs that were acquired with the same head position as the fieldmap. Structural images 809 

were transformed to Montreal Neurological Institute (MNI-152) standard space by nonlinear 810 

registration (FNIRT) with twelve degrees of freedom. The resulting warp fields were then applied to 811 

the functional statistical images. 812 

Each functional run was assessed for excessive motion and excluded from further analyses if 813 

the absolute mean displacement was greater than half the voxel size (i.e., > 1.1 mm). This resulted in 814 

the exclusion of one motor execution fMRI run for two participants of the NF group.  815 

 816 

Univariate analysis 817 

To assess univariate task-related activity of motor imagery and execution, time-series statistical analysis 818 

was carried out per run using FMRIB’s Improved Linear Model (FILM) with local autocorrelation, as 819 

implemented in FEAT. We defined one regressor of interest for each individual finger and obtained 820 

activity estimates using a general linear model (GLM) based on the gamma hemodynamic response 821 

function (HRF) and the temporal derivatives. We added nuisance regressors for the six motion 822 

parameters (rotation and translation along the x, y, and z-axis), as well as white matter (WM) and 823 

cerebrospinal fluid (CSF) time series.  824 

For motor execution, we carefully inspected which finger participants used to press the button 825 

during each trial by examining the recorded button presses. When needed, we adjusted the finger 826 

movement regressors: If the button of a non-instructed finger was pressed during a motor execution 827 

trial, then we adjusted the regressors such that the trial was assigned to this non-instructed, moving, 828 

finger. If a button press indicated that the switch to the next cued finger was made with a delay, then 829 

we adjusted the corresponding block length and the movement onset of the next trial. 830 

For motor imagery, we defined contrasts for each finger > rest, and overall task-related activity 831 

by contrasting all finger conditions > rest. We then averaged across runs at the individual participant 832 

level using fixed effect analysis. To define the motor imagery network, we entered the overall activity 833 

> rest contrast of the pre-training fMRI session of all participants (across the NF and control groups) 834 

into a mixed-effects higher-level analysis, and thresholded it at Z > 3.1, pFWE < .05 at cluster level. Next,  835 

we aimed to test for activity changes from pre- to post-training and whether that differed between the 836 

groups. To do so, we defined pre > post and post > pre contrasts for the overall task-related activity at 837 

the individual participant level. We then used a mixed effect GLM to test for the group difference in a 838 

two-sample unpaired t-test. Additionally, to investigate group-specific effects in the pre- to post-training 839 

changes, we used mixed effect GLMs to compute one-sample t-tests on the pre > post and post > pre 840 

contrasts. Next, we investigated whether changes in the overall task-related activity were associated 841 

with changes in motor imagery performance (i.e., the MEP target ratio). To do so, we entered the pre- 842 
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to post-training contrasts and the demeaned MEP target ratio changes in a mixed effect GLM to test the 843 

interaction effect, i.e., whether group differences in the pre- to post-training contrast maps vary as a 844 

function of motor imagery performance changes.  845 

 846 

Definition of regions of interest 847 

We defined anatomical regions of interest (ROIs) based on the probabilistic Brodmann area (BA) 848 

parcellation using FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/)95–97. We reconstructed the 849 

cortical surface of each individual participant’s T1-weighted mid-space image. We created a primary 850 

sensorimotor hand area ROI using similar procedures as in Kikkert et al.3,98. We first transformed BAs 851 

1, 2, 3a, 3b, 4a, and 4p to volumetric space, merged them into an SM1 ROI, and filled any holes. Next, 852 

we non-linearly transformed axial slices spanning 2 cm medial/lateral to the anatomical hand knob on 853 

the 2 mm MNI standard brain (min-max MNI z-coordinates = 40 – 62)  to each participant’s native 854 

structural space. Lastly, we used this mask to restrict the SM1 ROI and extracted an SM1 hand area 855 

ROI.  856 

We further defined ROIs for dorsal and ventral premotor cortex (PMd and PMv), and 857 

supplementary motor area (SMA) by masking BA6 with the corresponding areas of the Human Motor 858 

Area Template (HMAT) atlas100 that were transformed into native space. For these masks, we then 859 

subtracted any overlap, as well as overlap with the SM1 hand area to avoid a voxel being assigned to 860 

multiple ROIs. Please see Supplementary Table 4 for the number of voxels of each ROI and participant. 861 

 862 

Representational similarity analysis (RSA) 863 

While univariate analysis shows clusters of enhanced activity during imagined or executed finger 864 

movements, multivariate pattern analysis (MVPA) allows to investigate the fine-grained finger-specific 865 

activity patterns. Here, we used representational similarity analysis (RSA) to test the inter-finger 866 

distances of voxel-wise activity patterns elicited by individual finger motor imagery. We aimed to see 867 

whether these imagined finger movement representations became more distinct after TMS-NF training. 868 

To do so, we used the RSA toolbox101 and MATLAB R2015a. We computed the distance between the 869 

activity patterns for each finger pair in the SM1 hand ROI, SMA, PMd, and PMv using the cross-870 

validated Mahalanobis distance, also called crossnobis distance101. Specifically, we extracted the voxel-871 

wise parameter estimates (betas) for motor imagery of each finger > rest per run and the model fit 872 

residuals under an ROI. These extracted betas were then pre-whitened using the model fit residuals. To 873 

calculate the crossnobis distance for each finger pair, we used the four motor imagery runs as 874 

independent cross-validation folds and averaged the resulting distances across the folds. If it is 875 

impossible to statistically differentiate between motor imagery conditions (i.e. when this parameter is 876 

not represented in the ROI), the expected value of the distance estimate would be 0. If it is possible to 877 

distinguish between activity patterns, this value will be larger than 0102. We estimated the strength of 878 

the finger representation or ‘finger separability’ in each ROI as the average distance of all finger pairs. 879 
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A separability larger than 0 indicates that there is neural information content in the ROI that can 880 

statistically differentiate between motor imagery of individual fingers.  881 

 882 

Cross-condition classification 883 

Next, we aimed to investigate whether neural activity patterns elicited by single-finger motor imagery 884 

became more similar to those observed during motor execution following TMS-NF training. To do so, 885 

we performed a cross-condition decoding analysis in the SM1 hand ROI, PMd, PMv, and SMA using 886 

the scikit-learn python library103 and nilearn104. We trained a classification algorithm to decode what 887 

finger was moved in each trial using the motor execution data. We then used this trained classifier to 888 

decode the motor imagery trials, i.e., which finger participants imagined moving. To create the training 889 

and test data, we computed single-trial parameter estimates using an HRF-based first-level GLM in 890 

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) using SPM’s default parameters. The design matrix 891 

consisted of individual regressors for each motor imagery and motor execution trial. This resulted in 48 892 

parameter estimates per finger, session, and participant for motor imagery, and 30 for motor execution. 893 

Note that for motor execution, only thumb, index, and little finger trials were included. Ring and middle 894 

finger trials were modelled as regressors of no interest, as they were not analysed further for the present 895 

study. We added the same nuisance regressors as described in the univariate analysis section. Next, we 896 

extracted the voxel-wise parameter estimates below the specified SM1 hand ROI, SMA, PMd, and PMv, 897 

separately for each of these ROIs, trial, and participant. To ensure that a classifier can reliably decode 898 

executed finger movements, we first conducted a leave-one-run-out cross-validation within the motor 899 

execution condition using all runs of the pre- and post-training fMRI sessions, separately for each 900 

participant. For that, we scaled the data of the training data in a fold (i.e., eleven out of twelve runs) 901 

runs with the StandardScaler from the scikit-learn python library and trained a Support Vector Machine 902 

(SVM) with a linear kernel and default parameters of C = 1 and l2 regularization. We then applied the 903 

StandardScaler fitted on the eleven training runs on the left-out run and predicted the trials of this left-904 

out run. We repeated this until each run once served as the left-out run. The classifier performance was 905 

based on the average classification accuracy from the cross-validation (Supplementary Fig. 3). To 906 

define the chance level, we generated a null distribution based on 1000 random permutations of the trial 907 

labels (i.e. ‘thumb’, ‘index’, ‘little’) for each participant. Then we computed an empirical p-value to 908 

evaluate the probability that the classification accuracy score was obtained by chance. For that, we 909 

divided the number of permutation-based classification accuracies that were greater than or equal to the 910 

true score +1, by the number of permutations + 1. To determine statistical significance at group level, 911 

we combined the empirical p-values of each participant for each ROI separately using Fisher’s 912 

method105. 913 

For the cross-condition classification, we scaled the beta estimates across all runs of both the 914 

pre- and post-training sessions for each participant, but separately for the motor execution and imagery 915 

trials. Next, we trained an SVM with linear kernel and default parameters on all motor execution trials 916 
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and tested it on all motor imagery trials, separately for the two sessions, to compare pre- to post-training 917 

decoding accuracy. To determine the empirical chance level, we shuffled the labels of the test set (i.e. 918 

motor imagery trials). We corrected the p-values for multiple comparisons within each group and ROI 919 

using the false discovery rate (FDR). 920 

 921 

Statistical analyses 922 

Statistical analyses were performed in R v.4.3.1 (R Core Team, Vienna, Austria) and JASP v. 0.18.3 923 

(JASP Team 2024, Netherlands). We used R packages lme4106 and lmertest107 to compute linear mixed-924 

effects models. We defined Group (NF, control), Session (pre-training, post-training), or Motor imagery 925 

condition (target, non-target) as fixed effects and participant as a random effect. For each linear mixed-926 

effects model, we evaluated the expected against observed residuals for normality and homoscedasticity 927 

using the R package DHARMA108 and did not find any violations. If the model revealed a significant 928 

interaction of the fixed effects, we computed post-hoc contrasts with the R package emmeans109. As we 929 

computed only one post-hoc contrast for each data set (i.e., each group), no correction for multiple 930 

comparisons was applied. For all other tests, we checked the data for violations against normality using 931 

the Shapiro-Wilk test. We then used standard classical parametric or non-parametric tests accordingly. 932 

We further used Bayesian tests (with default settings in JASP) to provide evidence for or against the 933 

null hypothesis and reported the Bayes factor BF10 following conventional cut-offs110. 934 

Outliers were defined as > 2.5 SD from the group average. For the MEP target ratio, one 935 

participant of the NF group was classified as an outlier based on the TMS pre-training session. 936 

Removing this participant did not impact the conclusions of our statistical analysis (Supplementary Fig. 937 

1b). 938 

We used the R package effectsize111, to compute Cohen’s d based on F- and t-values from linear 939 

mixed-effects models and post-hoc contrasts, or we computed the effect sizes in JASP. Note that for 940 

negative t-values, we report effect sizes based on the absolute value. For Mann-Whitney tests, we report 941 

the rank biserial instead of Cohen’s d as effect size.  942 
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