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A STABILITY RESULT FOR RIEMANNIAN FOLIATIONS

STEPHANE GEUDENS AND FLORIAN ZEISER

Abstract. We show that a Riemannian foliation F on a compact manifold M is sta-
ble, provided that the cohomology group H1(F , NF) vanishes. Stability means that any
foliation on M close enough to F is conjugate to F by means of a diffeomorphism.
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Introduction

On a compact manifold M without boundary, a foliation F is called stable if any other
foliation sufficiently close to F in the C∞-topology is conjugate to F under a diffeomorphism
of M . Here the topology on the space of k-dimensional foliations is induced by the inclusion

Folk(M) →֒ Γ(Grk(M)) : F 7→ TF ,

where Grk(M) → M is the Grassmannian bundle of k-planes on M (see [11]). When
studying stability of a foliation F , the first step is to establish its infinitesimal counterpart.
This was done by Heitsch [16], who showed that a smooth path of foliations Ft with F0 = F
gives rise infinitesimally to a one-cocycle in the complex

(
Ω•(F , NF), d∇

)
of foliated forms

with values in the normal bundle NF . Its differential d∇ is induced by the Bott connection.
Moreover, if the path Ft is generated by applying an isotopy to F , then the corresponding
one-cocycle is exact. Hence, we call F infinitesimally stable if H1(F , NF) vanishes.

Question. When does infinitesimal stability imply stability?

This question is addressed by Hamilton in his unpublished work [15]. Using the Nash-
Moser inverse function theorem, he shows that stability is implied by a strong version of
infinitesimal stability, namely the existence of tame homotopy operators for the complex(
Ω•(F , NF), d∇

)
. His main result is that, on a compact manifold M , the latter condition is

satisfied by certain Hausdorff foliations, i.e. foliations whose leaf space M/F is Hausdorff.
The leaves of such a foliation are compact, and if M is connected then there exists a generic
leaf L0 such that all leaves in a saturated dense open subset are diffeomorphic to L0.

Global Reeb-Thurston Stability Theorem (Hamilton [15]). Let M be a compact, con-
nected manifold and F a Hausdorff foliation on M . If the generic leaf L0 of F satisfies
H1(L0) = 0, then F is stable.

1
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It is known that vanishing of H1(L0) is also necessary for stability of F . This follows
from the fact that a leaf without holonomy has a saturated neighborhood U such that F|U
looks like the foliation by fibers of L0 ×Dq → Dq, where Dq is a q-disk. Using a non-zero
element of H1(L0), one can construct an arbitrarily Ck-small perturbation of F|U which
can be glued with F outside of U . We refer to [17],[8] for more details.

Using very different techniques, Hamilton’s result was generalized by Epstein-Rosenberg
to the setting of Hausdorff Ck-foliations with compact leaves, on manifolds that are not
necessarily compact [12]. A result similar to the global Reeb-Thurston stability theorem,
but for smooth paths of foliations Ft deforming F rather than foliations F ′ close to F , was
obtained by Del Hoyo-Fernandes [8] using the theory of Lie groupoids and Lie algebroids.

This paper stems from an endeavour to extend Hamilton’s global Reeb-Thurston stability
theorem. Our main result is a positive answer to the question raised above, in the case of
Riemannian foliations. These are characterized by the existence of a bundle-like Riemannian
metric on M [20]. Equivalently, they are locally defined by a Riemannian submersion.

Main Theorem. Let M be a compact manifold and F a Riemannian foliation on M such
that H1(F , NF) = 0. Then F is stable.

The foliations appearing in Hamilton’s result satisfy the assumptions of our Main The-
orem. Note that on a compact manifold, Hausdorff foliations are exactly the Riemannian
foliations with all leaves compact, and the stability of such foliations is completely settled
by Hamilton’s theorem. Hence, in order to find new examples of stable foliations via our
Main Theorem, one should look for infinitesimally stable Riemannian foliations with at least
one non-compact leaf. We didn’t find such foliations, hence we ask:

Question. Let F be an infinitesimally stable Riemannian foliation on a compact manifold.
Is F necessarily Hausdorff?

The proof of our Main Theorem relies on Hamilton’s work [15]. In order to give an outline
of the proof, we first briefly recall Hamilton’s proof of the global Reeb-Thurston stability
theorem, which consists of two parts.

Part 1: A choice of Riemannian metric g on M allows us to identify NF with TF⊥, and
it induces an inner product on Ωk(F , TF⊥) given by

〈α⊗X,β ⊗ Y 〉g :=

∫

M
(α, β)gg(X,Y )dV olg.

Denote by ‖ · ‖g the associated norm, and let δ∇ be the formal adjoint of d∇ with respect
to 〈·, ·〉g . Hamilton first proves the following auxiliary result towards stability.

Stability Theorem (Hamilton [15]). Let (M,F) be a compact foliated manifold admitting
a bundle-like1 Riemannian metric g. If there exists a constant C > 0 such that

‖η‖g ≤ C (‖d∇η‖g + ‖δ∇η‖g) (1)

for all η ∈ Ω1(F , NF), then F is stable.

To obtain this result, Hamiltons shows that the existence of a bundle-like metric together
with the estimate (1) implies that the Laplacian ∆ := d∇δ∇ + δ∇d∇ is invertible. He then
defines tame homotopy operators for the complex (Ω•(F , NF), d∇) in degree one, by setting

H1 := δ∇ ◦∆−1, H2 := ∆−1 ◦ δ∇.

1Hamilton actually requires the existence of what he calls a holonomy invariant metric, see Def. 4.1. We
show in Prop. 4.5 that this is the same thing as a bundle-like metric.
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This means that we have a diagram of the form

Γ(NF)
d∇−−⇀↽−−
H1

Ω1(F , NF)
d∇−−⇀↽−−
H2

Ω2(F , NF)

with d∇ ◦H1 +H2 ◦ d∇ = Id, and that the Cn-norms of H1 and H2 satisfy

‖Hi(η)‖n ≤ Cn‖η‖n+r,

for some fixed r and constants Cn > 0. The existence of these operators allows Hamilton
to apply a Nash-Moser type algorithm, leading to the above Stability Theorem.

Part 2: The global Reeb-Thurston stability result follows by applying the above Stability
Theorem to Hausdorff foliations F . To do so, Hamilton makes crucial use of the fact that
there is a good local model for foliations of this type. Indeed, local Reeb stability implies
that every leaf has a saturated neighborhood in which the foliation looks like a quotient of
a fiber bundle by a free action of a finite group, the fiber being the generic leaf L0 of F [10].
First, this allows him to show that Hausdorff foliations are Riemannian, by constructing
bundle-like metrics locally and then gluing them by a partition of unity consisting of basic
functions. Second, the existence of such partitions of unity shows that one only needs to
prove the estimate (1) in a local model. There, it reduces to proving the same estimate for
ordinary de Rham forms on the generic leaf L0, and this is done by combining the classical
Hodge decomposition with the assumption that H1(L0) vanishes.

We now outline the proof of our Main Theorem. By Hamilton’s Stability Theorem, we
only need to show that infinitesimally stable Riemannian foliations satisfy (1). To do so, we
take advantage of the fact that a Hodge decomposition for Ω(F , NF) has been established
in [3] for Riemannian foliations F . This allows us to prove the estimate (1) working globally
on the manifold M , hence there is no need anymore for restricting to foliations that have a
good local model. Arguing by contradiction, if the estimate (1) didn’t hold, then one could
find a sequence (αn) in Ω1(F , NF) with the properties

‖d∇αn‖g −→ 0, ‖δ∇αn‖g −→ 0, ‖αn‖g = 1.

We then show that (αn) has a subsequence which converges to an element in the L2-closure
of the space of harmonic elements. By the Hodge decomposition [3] and the assumption
that H1(F , NF) vanishes, the limit must be zero. This is impossible since ‖αn‖g = 1.

The main technical difficulty lies in arguing why such a convergent subsequence exists.
The result [2, Thm. B] yields a subsequence with the desired properties, but for sequences
of ordinary de Rham forms instead of elements in Ω1(F , NF). We solve this issue by using
Molino’s structure theory for Riemannian foliations [19]. Molino showed that the foliation F

can be lifted to another Riemannian foliation F̂ on the transverse orthogonal frame bundle
π : M̂ → M . This way, we get an embedding π∗ : Ω1(F , NF) →֒ Ω1(F̂ , π∗NF). Since the
pullback bundle π∗NF is trivial as a T F̂-representation, this allows one to view an element
of Ω1(F , NF) as a list of foliated forms on F̂ . Consequently, after lifting the sequence (αn)

to M̂ under the embedding π∗, we are able to use a vector version of [2, Thm. B] in order
to pass to a convergent subsequence with the desired properties.

This paper is organized as follows. Section 1 contains the necessary background informa-
tion about Molino’s structure theory for Riemannian foliations. The aim of this section is to
set things up correctly for the above described embedding π∗ : Ω1(F , NF) →֒ Ω1(F̂ , π∗NF)
to have the right properties. In Section 2, we prove our Main Theorem by establishing the
estimate (1). In Section 3, we make some comments about the scope of our Main Theorem.
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In the Appendix we reconcile two terminologies, by showing that the “holonomy-invariant
metrics” defined by Hamilton in [15] agree with the modern notion of bundle-like metric.
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1. Auxiliary results involving Molino theory

In this section, we recall Molino’s structure theory of Riemannian foliations, and we prove
some auxiliary results which are needed to show that (1) holds under suitable conditions.
Molino showed that a Riemannian foliation F on M can be lifted to a simpler Riemannian
foliation F̂ on the transverse orthogonal frame bundle π : M̂ → M . Using the associated
embedding π∗ : Ω1(F , NF) →֒ Ω1(F̂ , π∗NF) will facilitate the proof of (1), since π∗NF is
trivial as a T F̂-representation. For this approach to work, we need to make sure that π∗

preserves norms. This requires the construction of a suitable bundle-like metric on M̂ .
The strategy of lifting to M̂ was used in [3] to derive the existence of a Hodge decompo-

sition for foliated forms with coefficients from the same result with trivial coefficients.

1.1. Structure theory of Riemannian foliations. We start by recalling some of Molino’s
results concerning Riemannian foliations. The material in this subsection can be found in
[19] and [18]; we will borrow notation and terminology mostly from the latter.

Definition 1.1. Given a foliated manifold (M,F), a Riemannian metric g on M is bundle-
like if for any open U ⊂ M and all vector fields Y,Z ∈ X(U) that are projectable and
orthogonal to the leaves, the function g(Y,Z) is basic on U . A foliation F on M is called
Riemannian if (M,F) admits a bundle-like metric.

This means that the foliation F is locally given by the fibers of a Riemannian submersion.
Examples of Riemannian foliations include simple foliations, suspensions of isometries and
foliations given by the orbits of a Lie group action by isometries.

Let M be a compact manifold with a Riemannian foliation F of codimension q. Fix a
bundle-like Riemannian metric g. Upon restricting g to TF⊥, we can consider the transverse

orthogonal frame bundle π : M̂ → M . A point e ∈ M̂x is an orthogonal isomorphism
e : (Rq, 〈·, ·〉std)

∼−→ (TxF
⊥, g|TxF⊥), and M̂ is a principal O(q)-bundle for the right action

R : M̂ ×O(q) → M̂, Rh(e) = e ◦ h. (2)

One can lift F to a foliation F̂ on M̂ , which can be described as follows. Two points e ∈ M̂x

and f ∈ M̂y lie in the same leaf of F̂ if x and y lie in the same leaf L of F , and there is a
path γ inside L connecting x and y such that the linear holonomy

dholγ : TxF
⊥ → TyF

⊥

takes e to f . Note here that the map dholγ is an isometry, because g is bundle-like. Equipped
with the foliation F̂ , the bundle M̂ becomes a transverse principal O(q)-bundle, i.e.

i) F̂ is preserved by the O(q)-action,
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ii) the projection π : M̂ → M maps each leaf L̂ of F̂ onto a leaf L of F , and the restriction
π : L̂ → L is a covering map which is a quotient of the holonomy cover of L.

The foliation F̂ is transversely parallelizable, i.e. there exist F̂-projectable vector fields
X1, . . . ,Xl ∈ X(M̂ ), where l = codim(F̂), whose classes X1, . . . ,Xl ∈ Γ(N F̂) form a frame
for N F̂ . In fact, F̂ has a natural transverse parallelism, as we now explain.

Let ω ∈ Ω1
(
M̂, o(q)

)
be the transverse Levi-Civita connection on M̂ . This is a connection

one-form that is F̂ -basic, i.e.

T F̂ ⊂ kerω and £Xω = 0 for all X ∈ Γ(T F̂).

Additionally, denote by θ ∈ Ω1
(
M̂,Rq

)
the transverse canonical form, which is defined by

θe(v) = e−1 (prTF⊥(dπ(v))) for e ∈ M̂x and v ∈ TeM̂.

Here prTF⊥ denotes the projection onto TF⊥. Like the connection form ω, also the canonical
form θ is F̂ -basic. It is clear that ker θe = (dπ)−1(TeF), and therefore

ωe ⊕ θe : TeM̂ → o(q)⊕ Rq

has TeF̂ as its kernel. Hence, if {ξ1, . . . , ξq(q−1)/2} is a basis of o(q) and {u1, . . . , uq} is the

standard basis of Rq, we obtain sections Yi, Zj ∈ Γ(N F̂) uniquely determined by

ω(Yi) = 0, θ(Yi) = ui and ω(Zj) = ξj, θ(Zj) = 0.

Moreover, the Yi, Zj are transverse fields, i.e. their representatives are F̂-projectable. Note
that Zj is exactly the class in Γ(N F̂) represented by the fundamental vector field corre-
sponding with ξj ∈ o(q). This way, one obtains the natural transverse parallelism

{Y 1, . . . , Y q, Z1, . . . , Zq(q−1)/2}.

1.2. A suitable bundle-like metric on M̂. We will now construct a bundle-like metric ĝ

on (M̂ , F̂) that is compatible with the metric g on (M,F), in such a way that the embedding
π∗ : Ω•(F , TF⊥) →֒ Ω•(F̂ , π∗TF⊥) is isometric for the inner products induced by g and ĝ.

Assume the setup from §1.1 and denote by H := kerω the horizontal distribution of the
transverse Levi-Civita connection. We will set ĝ on TM̂ = H ⊕ V to be an orthogonal sum

ĝ := glift ⊕ gV , (3)

where the summands glift and gV are defined as follows:

• Since dπ|He : He → Tπ(e)M is an isomorphism for all e ∈ M̂ , we can lift the bundle-
like metric g to a fiber metric glift on H.

• Pick an Ad-invariant inner product 〈·, ·〉 on o(q). The fiber metric gV is determined
by setting at every point e ∈ M̂ ,

gV (Zξ(e), Zη(e)) := 〈ξ, η〉.

Here Zξ, Zη denote the fundamental vector fields corresponding to ξ, η ∈ o(q).

The following is well-known; we include a proof for completeness.

Lemma 1.2. The Riemannian metric ĝ is O(q)-invariant and bundle-like for F̂ .
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Proof. Because the O(q)-action preserves H and V , we have to check that glift and gV are
O(q)-invariant. Invariance of glift is clear, and invariance of gV follows from the computation

gV (deRh(Zξ(e)), deRh(Zη(e))) = gV

(
ZAd

h−1 (ξ)(Rh(e)), ZAd
h−1 (η)(Rh(e))

)

= 〈Adh−1(ξ), Adh−1(η)〉

= 〈ξ, η〉

= gV (Zξ(e), Zη(e))

for e ∈ M̂, h ∈ O(q) and ξ, η ∈ o(q). Here we made use of the fact that 〈·, ·〉 is Ad-invariant.
To check that ĝ is bundle-like, we pick suitable representatives for the natural transverse

parallelism of (M̂, F̂), see §1.1. First, let Z1, . . . , Zq(q−1)/2 be the fundamental vector fields
corresponding to a basis {ξ1, . . . , ξq(q−1)/2} of o(q). Second, let Y1, . . . , Yq be the unique

F̂ -projectable vector fields in Γ(T F̂⊥) satisfying

ω(Yi) = 0 and θ(Yi) = ui.

This way, we get a frame {Y1, . . . , Yq, Z1, . . . , Zq(q−1)/2} for T F̂⊥ consisting of F̂-projectable

vector fields. Any F̂-projectable vector field orthogonal to F̂ is a combination of these vector
fields, with F̂ -basic functions as coefficients. Consequently, ĝ is bundle-like as soon as the
functions ĝ(Yi, Yj), ĝ(Yi, Zj) and ĝ(Zi, Zj) are F̂-basic. It is clear that ĝ(Yi, Zj) = 0 and
ĝ(Zi, Zj) = 〈ξi, ξj〉 are F̂ -basic. To check that ĝ(Yi, Yj) is F̂-basic, pick a point e ∈ M̂ . By
definition of the transverse canonical form θ, we know that

dπ(Yi(e)) = e
(
θ(Yi(e))

)
= e(ui) ∈ Tπ(e)F

⊥.

Because e : (Rq, 〈·, ·〉std)
∼−→ (Tπ(e)F

⊥, g|Tπ(e)F⊥) is an orthogonal isomorphism, we get

ĝ
(
Yi(e), Yj(e)

)
= g
(
dπ(Yi(e)), dπ(Yj(e))

)
= g
(
e(ui), e(uj)

)
= 〈ui, uj〉std = δij .

This shows that also ĝ(Yi, Yj) is F̂-basic, hence it follows that ĝ is bundle-like. �

The isomorphism of Riemannian vector bundles(
M̂ × o(q), 〈·, ·〉

)
∼

−→ (V, gV ) : (e, ξ) 7→ Zξ(e)

implies that all the fibers of π : M̂ → M have the same volume with respect to the metric
induced by ĝ. Upon rescaling the inner product 〈·, ·〉 by a constant, we can make sure that
the fibers have volume one. This will be important in the sequel.

Corollary 1.3. We can construct ĝ such that the fibers of π : M̂ → M have volume one.

We now turn our attention to the embedding

π∗ : Ω•(F , TF⊥) →֒ Ω•(F̂ , π∗TF⊥). (4)

Both sides carry an inner product induced by the metric g and ĝ. Explicitly,

〈α⊗X,β ⊗ Y 〉g :=

∫

M
(α, β)gg(X,Y )dV olg,

〈γ ⊗ π∗U, δ ⊗ π∗V 〉ĝ∗ :=

∫

M̂
(γ, δ)ĝπ

∗(g(U, V ))dV olĝ, (5)

for α⊗X,β ⊗ Y ∈ Ω•(F , TF⊥) and γ ⊗ π∗U, δ ⊗ π∗V ∈ Ω•(F̂ , π∗TF⊥). Here we denoted
by (·, ·)g and (·, ·)ĝ the fiber metrics on T ∗F and T ∗F̂ induced by g and ĝ. We now show
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that the map (4) is compatible with these inner products, provided that ĝ is constructed
according to (3) and Cor. 1.3.

Corollary 1.4. The inclusion

π∗ :
(
Ω•(F , TF⊥), 〈·, ·〉g

)
→֒
(
Ω•(F̂ , π∗TF⊥), 〈·, ·〉ĝ∗

)

is compatible with the inner products.

Proof. Note that in our setting, the projection π :
(
M̂ , ĝ

)
→ (M,g) is a surjective Riemann-

ian submersion by construction of ĝ. Indeed, we have

ker(dπ)⊥ = V ⊥ = H,

and the restriction of ĝ to H is the lift of g. Hence, using a geometric version of Fubini’s
theorem [21, Chapter II, Thm. 5.6] and the fact that the fibers of M̂ have volume one, we
obtain for α⊗X and β ⊗ Y in Ω•(F , TF⊥) that

〈
π∗α⊗ π∗X,π∗β ⊗ π∗Y

〉
ĝ∗

=

∫

M̂
(π∗α, π∗β)ĝπ

∗(g(X,Y ))dV olĝ

=

∫

M̂
π∗(α, β)gπ

∗(g(X,Y ))dV olĝ

=

∫

x∈M
(α, β)gg(X,Y )

(∫

π−1(x)
dV olĝ|

π−1(x)

)
dV olg

=

∫

M
(α, β)gg(X,Y )dV olg

= 〈α⊗X,β ⊗ Y 〉g.

�

Remark 1.5. An isometry between inner product spaces always extends to an isometry
between the completions. In particular, the pullback π∗ extends to an isometry of Hilbert
spaces between the L2-completions

π∗ :
(
L2Ω•(F , TF⊥), 〈·, ·〉g

)
→֒
(
L2Ω•(F̂ , π∗TF⊥), 〈·, ·〉ĝ∗

)
.

1.3. Triviality of the pullback bundle. We now show that the pullback bundle π∗TF⊥ is
trivial as a Riemannian vector bundle with flat T F̂-connection. Hence, using the embedding
(4) allows us to drop the TF⊥-coefficients of elements in Ω1(F , TF⊥). The triviality of
π∗TF⊥ is claimed (without proof) in [3, §4], where this result is used to obtain a Hodge
decomposition for foliated forms with coefficients from the case with trivial coefficients.

We proceed considering the vector bundle H ∩ T F̂⊥, which is isomorphic to π∗TF⊥ via

ϕ : H ∩ T F̂⊥ ∼
−→ π∗TF⊥ : (e, w) 7→ (e, dπ(w)). (6)

Both sides come with a flat T F̂-connection and a fiber metric, as we now explain.
First, the Bott connection ∇̂ on T F̂⊥ ∼= N F̂ induces a T F̂-connection on H ∩ T F̂⊥.

To see why, recall that the transverse Levi-Civita connection ω is F̂-basic, and therefore
[Γ(T F̂),Γ(H)] ⊂ Γ(H). This implies that, for X ∈ Γ(T F̂) and Y ∈ Γ(H ∩ T F̂⊥),

∇̂XY = prT F̂⊥ [X,Y ] ∈ Γ(H ∩ T F̂⊥).
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Also, the fiber metric glift on H restricts to H ∩ T F̂⊥. Second, the pullback π∗∇ of the
Bott connection ∇ on TF⊥ ∼= NF gives a T F̂-connection on π∗TF⊥. It is determined by
requiring that for v ∈ T F̂ and Y ∈ Γ(TF⊥),

(π∗∇)vπ
∗Y := ∇dπ(v)Y. (7)

Also, the Riemannian metric g restricts to TF⊥, and its pullback π∗g defines a fiber metric
on π∗TF⊥. It is determined by the requirement that for all Y1, Y2 ∈ Γ(TF⊥),

(π∗g)(π∗Y1, π
∗Y2) = π∗(g(Y1, Y2)).

Lemma 1.6. The vector bundle isomorphism (6) is in fact an isomorphism of Riemannian

vector bundles with T F̂-representations

ϕ :
(
H ∩ T F̂⊥, glift, ∇̂

)
→
(
π∗TF⊥, π∗g, π∗∇

)
.

Proof. We first check that ϕ is compatible with the T F̂-connections ∇̂ and π∗∇. Note
that Γ(H ∩ T F̂⊥) is generated by horizontal lifts Y lift of sections Y ∈ Γ(TF⊥), whereas
Γ(π∗TF⊥) is generated by pullbacks π∗Y of sections Y ∈ Γ(TF⊥). Moreover, the isomor-
phism ϕ takes Y lift to π∗Y for any Y ∈ Γ(TF⊥). Hence, by the Leibniz rule for connections,
we only need to check that

ϕ
(
∇̂vY

lift
)
= (π∗∇)vπ

∗Y for v ∈ TeF̂ , Y ∈ Γ(TF⊥).

We extend v to a local section X ∈ Γ(T F̂) that is projectable under π : M̂ → M . Then

∇̂vY
lift = pr

T F̂⊥

[
X,Y lift

]
(e),

and hence we obtain

ϕ
(
∇̂vY

lift
)
= dπ

(
pr

T F̂⊥

[
X,Y lift

]
(e)
)

= prTF⊥ [dπ(X), Y ](π(e))

= ∇dπ(v)Y

= (π∗∇)vπ
∗Y.

Similarly, to see that ϕ matches the fiber metrics glift and π∗g, we only need to check that

glift(Y lift
1 , Y lift

2 ) = (π∗g)(π∗Y1, π
∗Y2) for Y1, Y2 ∈ Γ(TF⊥).

This equality clearly holds, because both sides are equal to π∗(g(Y1, Y2)). �

Next, we show that
(
H ∩ T F̂⊥, glift, ∇̂

)
is trivial, as a Riemannian vector bundle with

T F̂ -representation. By Lemma 1.6, the same then holds for
(
π∗TF⊥, π∗g, π∗∇

)
.

Lemma 1.7. The vector bundle H ∩ T F̂⊥ has an orthonormal frame of flat sections.

Proof. We refer to §1.1, where we constructed the natural transverse parallelism for F̂ . In
particular, there are unique F̂-projectable vector fields Y1, . . . Yq ∈ Γ(T F̂⊥) satisfying

ω(Yi) = 0 and θ(Yi) = ui.

These constitute a frame {Y1, . . . Yq} for H ∩T F̂⊥ consisting of flat sections for ∇̂. The fact
that {Y1, . . . , Yq} is orthonormal for glift was already obtained in the proof of Lemma 1.2,
where we showed that

glift(Yi, Yj) = ĝ(Yi, Yj) = δij . �
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Corollary 1.8. Also
(
π∗TF⊥, π∗g, π∗∇

)
has an orthonormal frame of flat sections.

Fixing such a frame {Y1, . . . , Yq} for π∗TF⊥, we get an identification

Ω•(F̂ , π∗TF⊥)
∼
−→ Ω•(F̂)q :

∑

i

αi ⊗ Yi 7→ (α1, . . . , αq). (8)

Recall from (5) that we have an L2 inner product on Ω•(F̂ , π∗TF⊥). Let δπ∗∇ denote
the formal adjoint of the differential dπ∗∇ on Ω•(F̂ , π∗TF⊥). We also have the similarly
defined L2 inner product 〈·, ·〉ĝ on Ω•(F̂). Denote by δ

F̂
the formal adjoint of the foliated

de Rham differential d
F̂

. The following results are straightforward.

Corollary 1.9. Under the identification (8), we have that

i) the differential dπ∗∇ corresponds with d×q

F̂
.

ii) the induced inner product on Ω•(F̂)q is
〈
(α1, . . . , αq), (β1, . . . , βq)

〉
:=
∑

i

〈αi, βi〉ĝ,

iii) the induced codifferential on Ω•(F̂)q is given by δ×q

F̂
.

1.4. Properties of the pullback. The aim of this subsection is to show that the pullback
π∗ : Ω•(F , TF⊥) →֒ Ω•(F̂ , π∗TF⊥) intertwines differentials and codifferentials.

We remain in the setup of Cor. 1.9, i.e. δπ∗∇ denotes the formal adjoint of dπ∗∇ with
respect to the L2 inner product 〈·, ·〉ĝ∗ on Ω•(F̂ , π∗TF⊥) and δF̂ is the formal adjoint of dF̂ .
We also fix a frame {Y1, . . . , Yq} for π∗TF⊥ consisting of orthonormal flat sections, which
exists by Cor. 1.8. We first prove an auxiliary result.

Lemma 1.10. For any α⊗ Yi ∈ Ωk(F̂ , π∗TF⊥), we have

dπ∗∇(α⊗ Yi) =
(
dF̂α

)
⊗ Yi and δπ∗∇(α⊗ Yi) =

(
δF̂α

)
⊗ Yi. (9)

Proof. The first equality is just the Leibniz rule for foliated forms with coefficients in a
representation, along with the fact that dπ∗∇Yi = 0.

To prove the second identity, we only need to show that both sides have the same inner
product with an element of the form β ⊗ Yj ∈ Ωk−1(F̂ , π∗TF⊥). We compute

〈
δπ∗∇(α⊗ Yi), β ⊗ Yj

〉
ĝ∗

=
〈
α⊗ Yi, dπ∗∇(β ⊗ Yj)

〉
ĝ∗

=
〈
α⊗ Yi, (dF̂β)⊗ Yj

〉
ĝ∗

=
〈
α, dF̂β

〉
ĝ
δij

=
〈
δ
F̂
α, β

〉
ĝ
δij

=
〈
(δF̂α)⊗ Yi, β ⊗ Yj

〉
ĝ∗
,

where the second equality holds by the first identity in (9), and we used that {Y1, . . . , Yq}

is orthonormal for the fiber metric π∗g on π∗TF⊥. This finishes the proof. �

We now turn our attention to the map π∗ : Ω•(F , TF⊥) →֒ Ω•(F̂ , π∗TF⊥). We denote by
δ∇ the formal adjoint of the differential d∇ on Ω•(F , TF⊥) induced by the Bott connection.

Lemma 1.11. The inclusion π∗ : Ω•(F , TF⊥) →֒ Ω•(F̂ , π∗TF⊥) satisfies

π∗ ◦ d∇ = dπ∗∇ ◦ π∗ and π∗ ◦ δ∇ = δπ∗∇ ◦ π∗. (10)
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Proof. To prove the first identity in (10), take β ⊗ Z ∈ Ωk(F , TF⊥). By the Leibniz rule
for d∇ and dπ∗∇, we have the two equations

π∗(d∇(β ⊗ Z)) = π∗(dFβ)⊗ π∗Z + (−1)kπ∗β ∧ π∗(d∇Z),

dπ∗∇(π
∗β ⊗ π∗Z) = dF̂π

∗β ⊗ π∗Z + (−1)kπ∗β ∧ dπ∗∇π
∗Z.

Because π is a foliated map, we know that π∗ ◦ dF = dF̂ ◦ π∗, so it remains to show that

π∗(d∇Z) = dπ∗∇π
∗Z.

This equality follows immediately from (7), since for v ∈ T F̂ we have

(dπ∗∇π
∗Z)(v) = (π∗∇)vπ

∗Z = ∇dπ(v)Z = (d∇Z)(dπ(v)) = (π∗(d∇Z))(v).

To prove the second identity in (10), we note that for η ∈ Ωk(F , TF⊥) and ξ ∈ Ωk−1(F , TF⊥),
〈
δπ∗∇(π

∗η), π∗ξ
〉
ĝ∗

=
〈
π∗η, dπ∗∇(π

∗ξ)
〉
ĝ∗

=
〈
π∗η, π∗(d∇ξ)

〉
ĝ∗

=
〈
η, d∇ξ

〉
g

=
〈
δ∇η, ξ

〉
g

=
〈
π∗(δ∇η), π

∗ξ〉ĝ∗ .

Here we used the first identity in (10) and Cor. 1.4. This shows that the inner product of
δπ∗∇(π

∗η) − π∗(δ∇η) with any pullback section is zero. Hence, it is enough to show that
δπ∗∇(π

∗η)− π∗(δ∇η) is a pullback section itself, i.e. that for all η ∈ Ωk(F , TF⊥):

δπ∗∇(π
∗η) ∈ im

(
π∗ : Ωk−1(F , TF⊥) → Ωk−1(F̂ , π∗TF⊥)

)
. (11)

As π∗ is injective, this can be checked locally on M , i.e. it suffices to show that δπ∗∇(π
∗(η|U ))

belongs to im(π∗) for any open U ⊂ M . To do so, we use the following.

Claim: The pullback π∗ : Ω•(F) → Ω•(F̂) intertwines δF and δF̂ .

Working in an open U ⊂ M , fix a tangential orientation for F . Then also F̂ inherits a
tangential orientation on π−1(U). We get Hodge star operators ⋆F and ⋆F̂ . Because

dπ :
(
TeF̂ , ĝ

)
→
(
Tπ(e)F , g

)

is an orientation preserving isometry, its dual (dπ)∗ intertwines the Hodge stars ⋆F and ⋆
F̂

.
The pullback π∗ also intertwines d

F̂
and dF because π is a foliated map. Hence, using the

formula [3, eq. 17] for the leafwise coderivative, we obtain for β ∈ Ωk(F):

δF̂ (π
∗β) = (−1)pk+p+1 ⋆F̂ dF̂ ⋆F̂ (π∗β) = (−1)pk+p+1π∗(⋆FdF ⋆F β) = π∗(δFβ),

where we denoted p = dimF = dim F̂ . This proves the claim.

We now finish the proof of the lemma. Since TF⊥ has a local frame of projectable vector
fields, we may assume that η = β ⊗ Z, where Z ∈ Γ(TF⊥) is projectable. We can write

π∗Z =
∑

i

fiYi,
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where {Y1, . . . , Yq} is the fixed flat, orthonormal frame of π∗TF⊥. The first identity in (10)
along with d∇Z = 0 implies that dπ∗∇π

∗Z = 0. Since also dπ∗∇Yi = 0, it follows that
∑

i

d
F̂
fi ⊗ Yi = 0,

and since {Y1, . . . , Yq} is a frame for π∗TF⊥, this shows that the fi are F̂-basic. By Cor. 1.9,
we see that under the identification (8), δπ∗∇(π

∗η) corresponds to

δ×q

F̂

(
f1π

∗β, . . . , fqπ
∗β
)
=
(
f1δF̂ (π

∗β), . . . , fqδF̂ (π
∗β)
)
=
(
f1π

∗(δFβ), . . . , fqπ
∗(δFβ)

)
(12)

where the first equality holds because fi is F̂-basic, and the second equality holds by the
claim above. Transporting (12) back under the identification (8), we obtain that

δπ∗∇(π
∗η) =

∑

i

fiπ
∗(δFβ)⊗ Yi = π∗(δFβ)⊗ π∗Z = π∗(δFβ ⊗ Z).

This shows that the statement (11) holds, hence the proof is finished. �

1.5. Averaging on the transverse orthogonal frame bundle. As mentioned before,
we aim to prove the estimate (1) by pulling back elements of Ω•(F , TF⊥) to Ω•(F̂ , π∗TF⊥).
The last ingredient that we need is a way to return in the opposite direction. This will be
done by averaging elements of Ω•(F̂ , π∗TF⊥) with respect to the O(q)-action.

We find it more convenient to describe this operation on the complex Ω•(F̂ ,H ∩ T F̂⊥)
instead. This is equivalent by Lemma 1.6, since the map ϕ induces an isometry of complexes

ϕ :
(
Ω•(F̂ ,H ∩ T F̂⊥), 〈·, ·〉ĝH , d∇̂

)
→
(
Ω•(F̂ , π∗TF⊥), 〈·, ·〉ĝ∗ , dπ∗∇

)
, (13)

where 〈·, ·〉ĝ∗ was defined in (5) and 〈·, ·〉ĝH is defined by

〈α ⊗X,β ⊗ Y 〉ĝH =

∫

M̂
(α, β)ĝg

lift(X,Y )dV olĝ.

We now argue that there is a well-defined averaging operation on Ω•(F̂ ,H ∩ T F̂⊥). Note
that the given O(q)-action R : M̂ ×O(q) → M̂ satisfies the following:

• it preserves the foliation F̂ (see §1.1),
• it preserves H, being the kernel of the connection 1-form ω,
• it preserves the Riemannian metric ĝ (see §1.2).

It follows that the O(q)-action preserves H ∩ T F̂⊥, hence it induces an action

O(q)× Ω•(F̂ ,H ∩ T F̂⊥) → Ω•(F̂ ,H ∩ T F̂⊥) : (h, α ⊗X) 7→ R∗
h(α)⊗R∗

h(X).

Consequently, we get a well-defined averaging map

Av : Ω•(F̂ ,H ∩ T F̂⊥) → Ω•
inv(F̂ ,H ∩ T F̂⊥) : ξ 7→

∫

O(q)
(R∗

hξ)dh, (14)

where dh is the normalized bi-invariant Haar measure on O(q) and Ω•
inv(F̂ ,H ∩ T F̂⊥) is

the subspace of invariant forms, i.e.

Ωk
inv(F̂ ,H ∩ T F̂⊥) =

{
ξ ∈ Ωk(F̂ ,H ∩ T F̂⊥)| ∀h ∈ O(q) : R∗

hξ = ξ
}
.

Invariant forms descend to elements of Ω•(F , TF⊥), i.e. Ωk
inv(F̂ ,H∩T F̂⊥) = π∗Ωk(F , TF⊥).

Lemma 1.12. The O(q)-action on Ω•(F̂ ,H ∩ T F̂⊥) is orthogonal with respect to 〈·, ·〉ĝH .
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Proof. We first remark that O(q)-invariance of ĝ implies that also dV olĝ is O(q)-invariant
(see [21, II.5.(III)]). Hence, for h ∈ O(q) and α⊗X,β ⊗ Y ∈ Ωk(F̂ ,H ∩ T F̂⊥), we have

〈R∗
h(α⊗X), R∗

h(β ⊗ Y )〉ĝH =

∫

M̂
(R∗

hα,R
∗
hβ)ĝ glift(R∗

hX,R∗
hY )dV olĝ

=

∫

M̂
R∗

h(α, β)ĝ R∗
h

(
glift(X,Y )

)
dV olĝ

=

∫

M̂
(α, β)ĝ glift(X,Y )dV olĝ

= 〈α⊗X,β ⊗ Y 〉ĝH ,

using in turn the O(q)-invariance of ĝ, glift and dV olĝ. This proves the statement. �

Denote by d∇̂ the differential induced on Ω•(F̂ ,H ∩T F̂⊥) by the Bott connection ∇̂, and
its formal adjoint with respect to 〈·, ·〉ĝH by δ∇̂. Lemma 1.12 has the following consequence.

Lemma 1.13. The operators d∇̂ and δ∇̂ commute with the O(q)-action, i.e. for all h ∈ O(q):

d
∇̂
◦R∗

h = R∗
h ◦ d∇̂, and δ

∇̂
◦R∗

h = R∗
h ◦ δ∇̂.

Proof. To obtain the first identity, we argue as in the proof of Lemma 1.11. First note that
R∗

h commutes with the foliated differential d
F̂

, because Rh preserves F̂ . Hence, the Leibniz

rule for d
∇̂

reduces the proof to showing that for X ∈ Γ(H ∩ T F̂⊥), we have

d
∇̂
R∗

hX = R∗
hd∇̂X. (15)

To do so, we will pair both sides with an arbitrary element V ∈ Γ(T F̂). We get
(
R∗

hd∇̂X
)
(V ) = R∗

h

(
d
∇̂
X((Rh)∗V )

)

= R∗
h

(
∇̂(Rh)∗V X

)

= R∗
h

(
pr

T F̂⊥

[
(Rh)∗V,X

])

= pr
T F̂⊥

[
V,R∗

hX
]

= ∇̂VR
∗
hX

=
(
d∇̂R

∗
hX
)
(V )

using in the fourth equality that R∗
h preserves each summand in the direct sum T F̂ ⊕T F̂⊥.

This shows that the equality (15) holds, which finishes the proof of the first identity.
The second identity is now obtained from the computation

〈
(δ

∇̂
◦R∗

h)(α ⊗X), β ⊗ Y
〉
ĝH

=
〈
R∗

h(α ⊗X), d
∇̂
(β ⊗ Y )

〉
ĝH

=
〈
α⊗X, (R∗

h−1 ◦ d∇̂)(β ⊗ Y )
〉
ĝH

=
〈
α⊗X, (d∇̂ ◦R∗

h−1)(β ⊗ Y )
〉
ĝH

=
〈
δ
∇̂
(α⊗X), R∗

h−1(β ⊗ Y )
〉
ĝH

=
〈
(R∗

h ◦ δ∇̂)(α⊗X), β ⊗ Y
〉
ĝH

for α ⊗X ∈ Ωk(F̂ ,H ∩ T F̂⊥) and β ⊗ Y ∈ Ωk−1(F̂ ,H ∩ T F̂⊥). Here the second and last
equality rely on Lemma 1.12, and the third equality holds by the first part of the proof. �
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Note that d∇̂ and δ∇̂ commute with the Haar integral since they are differential operators
and derivatives commute with the Haar integral by the dominated convergence theorem.
Hence, Lemma 1.13 immediately implies the following.

Corollary 1.14. The averaging map (14) commutes with d
∇̂

and δ
∇̂
, i.e. we have

d∇̂ ◦Av = Av ◦ d∇̂, and δ∇̂ ◦ Av = Av ◦ δ∇̂.

At last, we show that the averaging map extends to the L2-completion.

Lemma 1.15. Averaging is a bounded linear operator on
(
Ωk(F̂ ,H ∩ T F̂⊥), ‖ · ‖ĝH

)
, since

‖Av(α ⊗X)‖ĝH ≤ ‖α⊗X‖ĝH .

Consequently, it extends to a bounded linear operator on the L2-completion

Av :
(
L2Ωk(F̂ ,H ∩ T F̂⊥), ‖ · ‖ĝH

)
→
(
L2Ωk(F̂ ,H ∩ T F̂⊥), ‖ · ‖ĝH

)
.

Proof. First note that for all ξ, η ∈ Ωk(F̂ ,H ∩ T F̂⊥) and h ∈ O(q), we have
∫

O(q)
〈R∗

hξ, η〉ĝHdh =

〈∫

O(q)
(R∗

hξ)dh, η

〉

ĝH

due to Fubini’s theorem. Using this, we get

〈
Av(α⊗X), Av(α ⊗X)

〉
ĝH

=

∫

O(q)

∫

O(q)

〈
R∗

h(α⊗X), R∗
k(α⊗X)

〉
ĝH

dhdk

≤

∫

O(q)

∫

O(q)

∥∥R∗
h(α⊗X)

∥∥
ĝH

∥∥R∗
k(α⊗X)

∥∥
ĝH

dhdk

= ‖α⊗X‖2ĝH ,

where we used the Cauchy-Schwarz inequality and Lemma 1.12. This proves the lemma. �

At last, we use the isomorphism (13) to transport the averaging map to Ω•(F̂ , π∗TF⊥).
We summarize here its main properties. The first two are consequences of Cor. 1.14 and
Lemma 1.15, whereas the last one holds because it is true for smooth sections.

Corollary 1.16. There is a well-defined averaging map Av on Ω•(F̂ , π∗TF⊥) satisfying:

(1) dπ∗∇ ◦Av = Av ◦ dπ∗∇ and δπ∗∇ ◦ Av = Av ◦ δπ∗∇,

(2) Av is bounded, hence it extends continuously to L2Ω•(F̂ , π∗TF⊥),
(3) for all η ∈ L2Ω•(F , TF⊥), we have

Av(π∗η) = π∗η.

2. Proof of the Main Theorem

This section is devoted to the proof of the Main Theorem stated in the introduction.
Note that by Hamilton’s Stability Theorem, it is enough to prove the following proposition.

Proposition 2.1. Let M be a compact manifold with a Riemannian foliation F and bundle-
like metric g. If H1(F , TF⊥) = 0, then there exists a constant C > 0 such that

‖α‖g ≤ C (‖d∇α‖g + ‖δ∇α‖g) , ∀α ∈ Ω1(F , TF⊥). (16)
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We briefly outline the proof. Assuming by contradiction that the estimate (16) does not
hold, we get a sequence (αn) in Ω1(F , TF⊥) with the properties

‖αn‖g = 1, ‖d∇αn‖g −→ 0, ‖δ∇αn‖g −→ 0.

We then construct a subsequence converging to an element in the L2-closure of the space of
harmonic elements. We reach a contradiction, combining the assumption that H1(F , TF⊥)
vanishes with the Hodge decomposition for Ω•(F , TF⊥). We first recall the latter.

Theorem 2.2 ([3, Cor. C]). Let (M,F , g) be a closed manifold with a Riemannian foliation
and a bundle-like metric. Define the Laplace operator ∆∇ := d∇δ∇+δ∇d∇ on Ω•(F , TF⊥).
We then have the leafwise Hodge decomposition

Ω•(F , TF⊥) = ker∆∇ ⊕ im∆∇ =
(
ker d∇ ∩ ker δ∇

)
⊕ im d∇ ⊕ im δ∇,

hence H(F , TF⊥) can be canonically identified with ker∆∇.

The statement involves the leafwise reduced cohomology H(F , TF⊥), which is defined as
H(F , TF⊥) = ker d∇/im d∇, where the closure is taken in the C∞-topology.

Remark 2.3. The result [3, Cor. C] is actually more general, as it holds for foliated forms with
values in an arbitrary Riemannian vector bundle V with flat Riemannian TF-connection.
The authors give a detailed proof for the case with trivial coefficients, and in [3, §4] they
sketch how lifting to the transverse orthogonal frame bundle reduces the proof of the general
case to the trivial case. Our Section 1 fills in the details of [3, §4], for the case V = TF⊥.

In order to pass to a convergent subsequence of (αn), we lift the sequence to the transverse
orthogonal frame bundle via the pullback π∗ : Ω•(F , TF⊥) →֒ Ω•(F̂ , π∗TF⊥). Doing so, it
becomes a sequence of vectors in Ω1(F̂), and this allows us to obtain the desired subsequence
by applying a variation of the technical convergence result [2, Thm. B].

2.1. A convergent subsequence. We first recall [2, Thm. B] and adapt it to our needs.
Let (M,F) be a compact manifold with a Riemannian foliation, and fix a bundle-like

metric g on M . Denote by 〈·, ·〉g the L2-inner product on Ω•(M), and by
(
L2Ω(M), 〈·, ·〉g

)

the Hilbert space of square-integrable differential forms. The splitting TM = TF ⊕ TF⊥

induces a decomposition

Ωk(M) =
⊕

u+v=k

Γ
(
∧u(TF⊥)∗ ⊗ ∧vT ∗F

)
, (17)

which in turn yields a bi-grading on Ω(M). The de Rham derivative d and its formal adjoint
δ split into bi-homogeneous components

d = d0,1 + d1,0 + d2,−1, δ = δ0,−1 + δ−1,0 + δ−2,1,

where the double index indicates the bi-degree of the component in question. Here δ−i,−j

is the formal adjoint of di,j. Denote by ∆0 the Laplacian in leafwise direction, and by H its
space of harmonic elements, i.e.

∆0 = d0,1δ0,−1 + δ0,−1d0,1, H = ker∆0.

We introduce operators dh and δh, defined by rescaling d and δ in the transverse direction:

dh := d0,1 + hd1,0 + h2d2,−1, δh := δ0,−1 + hδ−1,0 + h2δ−2,1, (18)

where h > 0 is a parameter. The corresponding Laplace and Dirac operators are given by

∆h := dhδh + δhdh, and Dh := dh + δh. (19)
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One can show that Dh is formally self-adjoint and D2
h = ∆h. We can now state a particular

case of [2, Thm. B]. The latter is more general than the statement we recall here, as it gives
a more detailed conclusion when the rate of convergence in (20) below is specified.

Theorem 2.4 ([2]). Let (M,F , g) be a closed manifold equipped with a Riemannian foliation
and a bundle-like metric. Assume (ωn) ⊂ Ωk(M) is a sequence satisfying ‖ωn‖g = 1 and

〈∆hn
ωn, ωn〉g −→ 0, for some hn ↓ 0. (20)

Then a subsequence of (ωn) strongly converges to an element ω ∈ H ⊂ L2Ωk(M).

We need a vector version of the above result. We equip (Ωk(M))q with the direct sum in-
ner product induced by 〈·, ·〉g , which we still denote by 〈·, ·〉g . Its completion is (L2Ωk(M))q.

Corollary 2.5. Let (M,F , g) be a closed manifold equipped with a Riemannian foliation
and a bundle-like metric. Assume (ωn) ⊂ (Ωk(M))q is a sequence satisfying ‖ωn‖g = 1 and

〈
∆×q

hn
ωn, ωn

〉
g
−→ 0, for some hn ↓ 0.

Then a subsequence of (ωn) strongly converges to an element ω ∈ H
q
⊂ (L2Ωk(M))q.

Proof. The proof is by induction on q. If q = 1, then the statement is exactly Theorem 2.4.
We show that if the statement holds for q− 1, then it holds for q. Let ωn = (ω1

n, . . . , ω
q
n) be

a sequence as in the statement. Since ‖ωn‖g = 1 for all n, there exists i ∈ {1, . . . , q} such
that, after passing to a subsequence,

‖ωi
n‖g ≥

1

q
.

Without loss of generality, we assume that i = q. Note that the condition
〈
∆×q

hn
ωn, ωn

〉
g
−→ 0

implies that for any j ∈ {1, . . . , q}, we have
〈
∆hn

ωj
n, ω

j
n

〉
g
−→ 0.

Theorem 2.4 implies that upon passing to a subsequence, ωq
n/‖ω

q
n‖g strongly converges to

an element ωq ∈ H ⊂ L2Ωk(M). Since the sequence ‖ωq
n‖g is bounded above by 1 and

below by 1/q, it has a subsequence which converges to some c ∈ [1q , 1]. Hence, after passing

to a subsequence, we obtain that ωq
n strongly converges to c ωq ∈ H ⊂ L2Ωk(M).

Now we look at ω̃n = (ω1
n, . . . , ω

q−1
n ) ∈

(
Ωk(M)

)q−1
. We distinguish between two cases.

(1) If there exists some 0 < d such that d ≤ ‖ω̃n‖g for all n, then ω̃n/‖ω̃n‖g satisfies the
statement for q − 1, and after passing to a subsequence, we get that ω̃n converges
strongly to some ω̃ ∈ H

q−1
⊂
(
L2Ωk(M)

)q−1
.

(2) Else, after passing to a subsequence, ω̃n converges to 0 ∈ H
q−1

⊂
(
L2Ωk(M)

)q−1
.

In both cases ω̃n converges to an element ω̃ ∈ H
q−1

⊂
(
L2Ωk(M)

)q−1, hence ωn converges
to (ω̃, c ωq) ∈ H

q
⊂
(
L2Ωk(M)

)q
. This finishes the proof. �
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2.2. The proof of Proposition 2.1. We argue by contradiction. If there exists no C > 0
such that (16) holds, then for each n ∈ N we can find αn ∈ Ω1(F , TF⊥) such that

‖αn‖g > n (‖d∇αn‖g + ‖δ∇αn‖g) .

Dividing αn by ‖αn‖g, we can assume that ‖αn‖g = 1. Consequently, (αn) satisfies

‖d∇αn‖g −→ 0, ‖δ∇αn‖g −→ 0, ‖αn‖g = 1. (21)

Step 1: Pass to a convergent subsequence of (αn).

First, we lift αn to the transverse orthogonal frame bundle M̂ via the isometric embedding

π∗ :
(
Ω1(F , TF⊥), 〈·, ·〉g

)
→֒
(
Ω1(F̂ , π∗TF⊥), 〈·, ·〉ĝ∗

)

from Cor. 1.4. Setting βn := π∗(αn), we obtain a sequence which by Lemma 1.11 satisfies

‖dπ∗∇βn‖ĝ∗ −→ 0, ‖δπ∗∇βn‖ĝ∗ −→ 0, ‖βn‖ĝ∗ = 1. (22)

Cor. 1.9 gives an identification between Ω1(F̂ , π∗TF⊥) and Ω1(F̂)q under which dπ∗∇ and
δπ∗∇ correspond with d×q

F̂
and δ×q

F̂
, and so that Ω1(F̂)q carries the direct sum inner product

induced by 〈·, ·〉ĝ . Hence, we can regard the βn as vectors (β1
n, . . . , β

q
n) ∈ Ω1(F̂)q satisfying

‖d×q

F̂
βn‖ĝ −→ 0, ‖δ×q

F̂
βn‖ĝ −→ 0, ‖βn‖ĝ = 1. (23)

Extending the βj
n by zero on T F̂⊥, we can view them as one-forms on M̂ .

We now want to pass to a convergent subsequence of (βn), using Cor. 2.5. Let (hn) be a
sequence of positive real numbers, left unspecified for now. We compute

〈
∆×q

hn
βn, βn

〉
ĝ
=

q∑

i=1

〈
∆hn

βi
n, β

i
n

〉
ĝ
=

q∑

i=1

∥∥Dhn
βi
n

∥∥2
ĝ
. (24)

Recalling the formulas (18),(19) and using the triangle inequality, (24) is bounded by
q∑

i=1

(∥∥(d0,1 + δ0,−1)β
i
n

∥∥
ĝ
+ hn

∥∥(d1,0 + δ−1,0)β
i
n

∥∥
ĝ
+ h2n

∥∥(d2,−1 + δ−2,1)β
i
n

∥∥
ĝ

)2
. (25)

Since d2,−1 and δ−2,1 are differential operators of order zero [1, Lemma 1.1], we have that
〈
(d2,−1 + δ−2,1)β

i
n, (d2,−1 + δ−2,1)β

i
n

〉
ĝ
≤ C〈βi

n, β
i
n〉ĝ ≤ C,

for some C > 0. In the last inequality, we used that ‖βi
n‖ĝ ≤ ‖βn‖ĝ = 1. We also recall that

∥∥(d0,1 + δ0,−1)β
i
n

∥∥
ĝ
−→ 0

by (23). Hence, to make sure that (25) goes to zero, it suffices to pick (hn) such that

hn −→ 0 and hn
∥∥(d1,0 + δ−1,0)β

i
n

∥∥
ĝ
−→ 0 for i = 1, . . . , q.

Setting for instance

hn :=
1

n(1 + maxi∈{1,...,q}
∥∥(d1,0 + δ−1,0)βi

n

∥∥
ĝ
)
,

these requirements are satisfied, and therefore we have
〈
∆×q

hn
βn, βn

〉
ĝ
−→ 0 and hn −→ 0.
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Hence, we can apply Cor. 2.5. Denoting H = ker∆0 and passing to a subsequence of (βn),
we obtain an element β ∈ H

q
⊂
(
L2Ω1(M̂)

)q
such that

βn −→ β in
((

L2Ω1(M̂)
)q
, ‖ · ‖ĝ

)
.

Next, we consider the leafwise Laplacian ∆×q

F̂
= d×q

F̂
δ×q

F̂
+ δ×q

F̂
d×q

F̂
on the space Ω1(F̂)q,

the completion of which is its closure
(
L2Ω1(F̂)

)q
in
(
L2Ω1(M̂ )

)q
. Since βn → β, it is clear

that β ∈
(
L2Ω1(F̂)

)q. We claim that actually

β ∈ ker∆×q

F̂
⊂
(
L2Ω1(F̂)

)q
. (26)

To see this, recall that both summands in T ∗M̂ = T ∗F̂ ⊕ (T F̂⊥)∗ are orthogonal with

respect to 〈·, ·〉ĝ . Hence, the restriction map r :
(
Ω1(M̂)q, ‖ · ‖ĝ

)
→
(
Ω1(F̂)q, ‖ · ‖ĝ

)
is

bounded, and therefore it extends to a bounded linear operator between the completions

r :
((

L2Ω1(M̂)
)q
, ‖ · ‖ĝ

)
→
((

L2Ω1(F̂)
)q
, ‖ · ‖ĝ

)

Now, because β ∈ H
q

there exists a sequence γn ∈ Hq such that γn → β, and hence

r(γn) −→ β in
((

L2Ω1(F̂)
)q
, ‖ · ‖ĝ

)
. (27)

The Laplacian ∆0 preserves bi-degrees and it agrees with ∆F̂ on Ω0,•(M̂ ) = Ω•(F̂), hence

r ◦∆×q
0 = ∆×q

F̂
◦ r : Ω1(M̂)q → Ω1(F̂)q.

Therefore, the fact that γn ∈ ker∆×q
0 implies that r(γn) ∈ ker∆×q

F̂
, hence β ∈ ker∆×q

F̂
.

Having now established (26), we transport the convergence statement βn → β back under
the isometric isomorphism Ω1(F̂)q ∼= Ω1(F̂ , π∗TF⊥) from Cor. 1.9, or rather its continuous
extension to the L2-completions. Setting ∆π∗∇ := dπ∗∇δπ∗∇ + δπ∗∇dπ∗∇, we obtain that

βn −→ β ∈ ker∆π∗∇ ⊂ L2Ω1(F̂ , π∗TF⊥). (28)

At last, recall that βn = π∗(αn), and that by Remark 1.5,

π∗ :
(
L2Ω1(F , TF⊥), 〈·, ·〉g

)
→֒
(
L2Ω1(F̂ , π∗TF⊥), 〈·, ·〉ĝ∗

)

is an isometric embedding of Hilbert spaces. In particular, its image is closed. Hence, there
exists some uniquely determined α ∈ L2Ω1(F , TF⊥) with β = π∗(α), and (28) implies

αn −→ α in L2Ω1(F , TF⊥). (29)

Step 2: Derive a contradiction using the Hodge decomposition.

We first claim that α ∈ ker∆∇ ⊂ L2Ω1(F , TF⊥). Note that since β = π∗(α) ∈ ker∆π∗∇

there exists a sequence of harmonic elements γn ∈ ker∆π∗∇ such that

γn −→ π∗(α) in L2Ω1(F̂ , π∗TF⊥).

Since Av is continuous and Av(π∗α) = π∗(α) (see Cor. 1.16 (2)& (3)), this implies that

Av(γn) −→ π∗(α) in L2Ω1(F̂ , π∗TF⊥). (30)

Because Av(γn) is O(q)-invariant, there are unique ηn ∈ Ω1(F , TF⊥) with

Av(γn) = π∗(ηn) (31)
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Therefore, the convergence (30) together with the fact that π∗ is an isometric implies that

ηn −→ α in L2Ω1(F , TF⊥). (32)

Next, since Av commutes with ∆π∗∇ by Cor. 1.16 (1) and γn ∈ ker∆π∗∇, we also have
Av(γn) ∈ ker∆π∗∇. Moreover, according to Lemma 1.11, we know that

π∗ ◦∆∇ = ∆π∗∇ ◦ π∗.

Hence, applying ∆π∗∇ to both sides in (31) and using that π∗ is injective, we get that

∆∇ηn = 0.

Hence, (32) implies that α ∈ ker∆∇ ⊂ L2Ω1(F , TF⊥), as claimed.

Finally, our assumption that H1(F , TF⊥) = 0 implies that also H
1
(F , TF⊥) = 0. Hence,

Thm. 2.2 ensures that ker∆∇ is trivial, and therefore α = 0. In conclusion, we constructed
a sequence (αn) in Ω1(F , TF⊥) which by (29) and (21) satisfies

αn −→ 0 and ‖αn‖g = 1.

This is impossible, hence our initial assumption is wrong. This shows that there does exist
a constant C > 0 so that the estimate (16) is satisfied, which finishes the proof. �

Remark 2.6. In the above proof, we actually only needed that H
1
(F , NF) = 0, and this

has a remarkable consequence. It shows that for a Riemannian foliation F on a compact
manifold M , the vanishing of H

1
(F , NF) is equivalent with the vanishing of H1(F , NF).

Indeed, one implication being obvious, assume that H
1
(F , NF) vanishes. Then the estimate

(16) is satisfied by the proof we just gave, and Hamilton’s Stability Theorem (stated in the
introduction) implies that H1(F , NF) vanishes.

Combining Prop. 2.1 with Hamilton’s Stability Theorem yields our Main Theorem.

Main Theorem. Let M be a compact manifold and F a Riemannian foliation on M such
that H1(F , NF) = 0. Then F is stable.

We didn’t manage to find examples for this result other than the Hausdorff foliations
appearing in the Global Reeb-Thurston stability theorem by Hamilton. In fact, there are
results indicating that such examples may not be easy to find:

Remark 2.7. Ghys [13] shows that any Riemannian foliation on a compact, simply connected
manifold admits an arbitrarily C0-close foliation by compact leaves. This result has been
generalized by Caramello Jr. and Töben [5] to Killing foliations on compact manifolds. It
is not clear to the authors whether these approximations can be done in the C∞-topology.
This would imply that stable Killing foliations are necessarily Hausdorff.

In the next section, we show that the Main Theorem cannot yield new examples of stable
foliations when F is one-dimensional and orientable, or when F has codimension 1 and is
co-orientable.

3. Remarks about the scope of the Main Theorem

In this section, we collect some final remarks concerning the scope of our Main Theorem.
We show that our result does not cover all known instances of stable foliations, by recalling
a class of stable non-Riemannian foliations. We also look at the special case in which F is
oriented of dimension 1, and the case in which F is co-oriented of codimension 1. We show
that in the former case the assumptions of our Main Theorem are never satisfied. In the
latter case the assumptions can be satisfied, but they force F to be Hausdorff.
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3.1. Stable non-Riemannian foliations. We display a class of non-Riemannian foliations
that were shown to be stable in [9], extending a result from [14]. The foliations in question
are constructed by suspending certain foliations on tori with an Anosov diffeomorphism.

Example 3.1. [9] We pick a matrix A ∈ SL(n,Z), where n ≥ 2, which is diagonalizable over
R with positive eigenvalues. Denote the eigenvalues by

µ1, . . . , µp, λ1, . . . , λq,

where p+ q = n. We view A as a diffeomorphism of the torus Tn. Pick independent linear
vector fields X1, . . . ,Xp, Y1, . . . , Yq ∈ X(Tn) such that2

{
A∗Xj = µjXj,

A∗Yk = λkYk.

The foliation Span{X1, . . . ,Xp} on Tn is invariant under A, hence the product foliation
Span{X1, . . . ,Xp, ∂t} on Tn × R descends to a foliation F on the mapping torus

TA :=
Tn × R

(θ, t) ∼ (A(θ), t+ 1)
. (33)

Assume moreover that the matrix A satisfies the following two conditions:

(1) The eigenvalues λk and the quotients λk/µj are different from 1.
(2) There is a basis of Rn given by eigenvectors v1, . . . , vp, w1, . . . , wq of A (corresponding

respectively to the eigenvalues µ1, . . . , µp, λ1, . . . , λq) with the property that for any
i = 1, . . . , p, the coordinates v1i , . . . , v

n
i of vi are linearly independent over Q.

Under these assumptions, also the eigenvalues µ1, . . . , µp are different from 1, and therefore
A is an Anosov diffeomorphism of Tn. If the eigenvalues of A are all different, then condition
(2) is satisfied exactly when the characteristic polynomial of A is irreducible over Q.

If (1) and (2) are satisfied, then the proof of [9, Thm. 2.2] gives tame homotopy operators
for the complex

(
Ω•(F , NF), d∇

)
. It follows that F is stable (using Nash-Moser).

Claim: The foliation F is not Riemannian.

Let {α1, . . . , αp, β1, . . . , βq} be the dual frame of {X1, . . . ,Xp, Y1, . . . , Yq}. Then
{
dt, µ−t

1 α1, . . . , µ
−t
p αp, λ

−t
1 β1, . . . , λ

−t
q βq

}
(34)

is a frame for T ∗TA; these are indeed one-forms on Tn×R invariant under the identification
in (33). If g would be a bundle-like metric on (TA,F), then the bilinear form gT given by

gT (Z1, Z2) := g
(
prTF⊥Z1,prTF⊥Z2

)
, ∀Z1, Z2 ∈ X(TA)

would be a transverse metric, i.e.

ker gT = TF , and £Zg
T = 0 for all Z ∈ Γ(TF). (35)

Expressing gT in the frame (34) gives an equation of the form

gT =
∑

i,j

fij(θ, t)λ
−t
i λ−t

j βi ⊗ βj ,

where fij satisfies
fij
(
A(θ), t+ 1

)
= f(θ, t). (36)

2Put differently, Xj (resp. Yk) is a vector field whose coefficients are constant, given by the components
of an eigenvector of A for the eigenvalue µj (resp. λk).
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We now assert that, if fij is not identically zero, then λiλj = 1. Since £∂tg
T vanishes by

assumption (35), we obtain the identity

fij
(
A(θ), t

)
λ−t
i λ−t

j = fij
(
A(θ), t+ 1

)
λ−t−1
i λ−t−1

j = fij(θ, t)λ
−t−1
i λ−t−1

j ,

where we also used (36). This equality implies that

λiλjfij
(
A(θ), t

)
= fij(θ, t). (37)

Now take a rational point θ := (θ1, . . . , θn) ∈ Qn/Zn. We claim that θ is periodic for A.
Indeed, θ = (p1/q, . . . , pn/q) for some 0 ≤ pj < q, and applying iterates of A yields

Am(θ) ∈
{
(q1/q, . . . , qn/q) : 0 ≤ qj < q

}
for any m ∈ N,

which is a finite set. So (37) implies that for (θ, t) ∈ Qn/Zn × R, there exists k ∈ N with

(λiλj)
kfij(θ, t) = fij(θ, t). (38)

If fij is not identically zero, then there exists (θ, t) ∈ Qn/Zn ×R with fij(θ, t) 6= 0. Hence,
(38) along with the fact that all eigenvalues are positive, yields that λiλj = 1.

Now, evaluating gT on the vector fields λt
1Y1, . . . , λ

t
qYq ∈ X(TA) gives

fii = gT
(
λt
iYi, λ

t
iYi

)
= g
(
prTF⊥(λt

iYi),prTF⊥(λt
iYi)

)
> 0.

Hence, the assertion just proved implies that λ2
i = 1, and since the eigenvalues are positive

this gives λi = 1. This contradicts the assumption (1) above, hence F is not Riemannian.

A simple example of the type described above is the following. Let A ∈ SL(2,Z) be
any hyperbolic matrix, i.e. without eigenvalues on the unit circle. This implies that the
eigenvalues are real, and by the rational root theorem they must be irrational. We assume
that they are positive, so they are given by

λ > 1 > λ−1 > 0.

Since λ, λ−1 ∈ R \ Q, the characteristic polynomial of A is irreducible over Q, and the
assumptions (1) and (2) of [9] are satisfied. Hence, picking a linear vector field X on T2

defined by an eigenvector of A, the associated suspension foliation F on TA is stable. This
stability result was first obtained in [14], by purely geometric arguments. A common choice
of matrix A is

A =

(
1 1
1 2

)
∈ SL(2,Z).

3.2. Dimension one. We consider the particular case of one-dimensional tangentially ori-
ented Riemannian foliations, i.e. Riemannian flows. Examples are suspensions of isometries.
We show that such foliations never satisfy the assumptions of our Main Theorem.

We will make use of the fact that there is a normal form for Riemannian flows on compact
manifolds due to Carrière [6, II.C Proposition 3]. We first recall this result. Let Mn+1 be
a compact manifold with a Riemannian flow F . Fix a leaf L and denote by L its closure.
There exists a saturated neighborhood V of L such that:

(1) V is diffeomorphic to S1 × Tk × Dn−k, through a diffeomorphism sending L to
S1 × Tk × {0}. Here Dn−k is the unit ball around the origin in Rn−k.

(2) The flow F restricted to V is conjugated to the flow obtained by suspension of a
diffeomorphism γ of Tk ×Dn−k of the form

γ(x, y) =
(
R(x), A(y)

)

where R is an irrational translation of Tk and A is a rotation of Rn−k.
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Proposition 3.2. Let Mn+1 be a compact manifold and F a Riemannian flow on M . Then

the reduced cohomology group H
1
(F , NF) is nonzero.

Proof. First consider the case in which all leaves of F are circles. If H
1
(F , NF) would

vanish, then F would be stable by our Main Theorem and Remark 2.6. However, it is
known that Hausdorff foliations whose generic leaf has nonzero first de Rham cohomology
group are not stable [17],[8]. Hence, H

1
(F , NF) must be nonzero.

In the rest of the proof, we assume that F has a non-closed leaf. Let F be generated by
the vector field X ∈ X(M). Since F is oriented, we can use the duality result [3, Cor. C]

which states that H
1
(F , NF) ∼= H

0
(F , N∗F). Now note that

H
0
(F , N∗F) = H0(F , N∗F) = {α ∈ Γ(N∗F) : £Xα = 0} = Ω1

bas(F),

hence it suffices to construct a non-zero basic one-form on (M,F). To do so, we use the
Carrière normal form recalled above. Fix a non-closed leaf L and consider the local model
around L, that is

V ∼= S1 × Tk ×Dn−k

with k > 0. It follows that the space of basic one-forms Ω1
bas(V ) can be identified with the

space Ω1
inv(T

k × Dn−k) consisting of γ-invariant one-forms on Tk × Dn−k. There exists a
non-zero γ-invariant one-form on Tk × Dn−k. For instance, let ϕ denote one of the angle
coordinates on Tk and consider dϕ ∈ Ω1(Tk ×Dn−k). This form is γ-invariant because dϕ
is invariant under translations of Tk. Hence, there exists a nonzero form α ∈ Ω1

bas(F|V ).
It remains to extend α as a basic one-form on (M,F). In case L = M , then V = M

hence there is nothing to prove. If L 6= M then we have an open cover {V,M \L} consisting
of saturated open subsets. We can take a partition of unity {ρ, σ} subordinate to this cover,
such that ρ and σ are basic functions [4, Lemma 2.2]. Then ρα ∈ Ω1

bas(F) is a non-zero
basic one-form defined on all of M . This finishes the proof. �

3.3. Codimension one. In this subsection, we consider compact connected manifolds M
equipped with a foliation F defined by a closed one-form θ ∈ Ω1(M). It is well-known that
either F is given by the fibers of a fibration over S1 or all leaves of F are dense [7, § 9.3],
depending on the group of periods

P (θ) =

{∫

σ
θ : [σ] ∈ H1(M)

}
.

Since P (θ) is a subgroup of (R,+), it is either discrete or dense. In the former case, F is
given by a fibration over S1, and in the latter case all leaves of F are dense.

Lemma 3.3. Let M be a compact, connected manifold and F a foliation on M defined by
a closed one-form θ ∈ Ω1(M). If H1(F) = 0, then F is given by a fibration over S1.

Proof. Assume by contradiction that the leaves of F are dense. Consider the short exact
sequence of complexes

0 −→ (Ω•
F (M), d) −→

(
Ω•(M), d

) r
−→

(
Ω•(F), dF

)
−→ 0,

where Ω•
F (M) consists of the forms which vanish when pulled back to the leaves of F . We

get a long exact sequence in cohomology

· · · −→ H1
F(M) −→ H1(M) −→ H1(F) −→ · · ·

Since H1(F) vanishes by assumption, we get that the map H1
F (M) → H1(M) is surjective.
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We claim that H1
F (M) = R[θ], which then implies that also H1(M) = R[θ]. To prove the

claim, note that any element α ∈ Ω1
F (M) is of the form α = fθ for some f ∈ C∞(M). If α

is moreover closed, then df ∧ θ = 0, hence f is leafwise constant. Since the leaves of F are
dense by assumption, f must be constant. This confirms that H1(M) = H1

F (M) = R[θ].
A theorem by Tischler [22] states that M is a fiber bundle over S1. Let us denote the

projection by π : M → S1, and the angle form on S1 by dϕ ∈ Ω1(S1). Since H1(M) = R[θ],
we know that [θ] = c[π∗dϕ] for some non-zero constant c ∈ R. But this implies that the
period group satisfies P (θ) = cP (π∗dϕ). Since P (π∗dϕ) is discrete, it follows that also P (θ)
is discrete. This is impossible since the leaves of F are assumed to be dense. �

As a consequence, we obtain that codimension one co-orientable Riemannian foliations
satisfying the assumptions of our Main Theorem are necessarily Hausdorff. Hence in this
situation, all instances of stable foliations obtained via our Main Theorem are already
covered by Hamilton’s global Reeb-Thurston stability result.

Corollary 3.4. Let M be a compact, connected manifold and F a co-orientable Riemannian
foliation of codimension one. If H1(F , NF) vanishes, then F is Hausdorff.

Proof. A codimension one co-orientable Riemannian foliation F has a closed defining one-
form θ ∈ Ω1(M) by [23, Thm. 7.3 (ii)]. A vector field Z ∈ X(M) satisfying θ(Z) = 1
trivializes NF as a TF-representation. Consequently, H1(F , NF) ∼= H1(F). Applying
Lemma 3.3 yields the conclusion. �

4. Appendix

In [15], Hamilton considers foliated manifolds (M,F) admitting what he calls a “holonomy
invariant metric”. We show that such a metric coincides with the classical notion of “bundle-
like metric” [20]. Hence, in modern language, Hamilton requires F to be Riemannian [19].

Definition 4.1 (Hamilton [15]). Given a foliated manifold (M,F), a Riemannian metric g
on M is holonomy invariant if for any open U ⊂ M and all basic functions f, h ∈ C∞

bas(U),
the function (df, dh)g is again basic.

In Def. 4.1 above, we consider g as a metric on the cotangent bundle T ∗M via

(α, β)g := g(α♯, β♯)

for all α, β ∈ Ω1(M). Here the vector field γ♯ corresponding with a one-form γ is defined
by requiring that g(γ♯,X) = γ(X) for all X ∈ X(M).

Remark 4.2. In a foliated chart (x1, . . . , xk, y1, . . . , yl) such that TF = Span{∂x1 , . . . , ∂xk
},

holonomy invariance just means that (dyi, dyj)g only depends on the y-coordinates.

Definition 4.3 ([20],[19]). Given a foliated manifold (M,F), a Riemannian metric g on M
is bundle-like if for any open U ⊂ M and all vector fields Y,Z ∈ X(U) that are projectable
and orthogonal to the leaves, the function g(Y,Z) is basic on U . A foliation F on M is
called Riemannian if (M,F) admits a bundle-like metric.

Remark 4.4. i) It is instructive to check what the bundle-like condition means in local co-
ordinates. Pick a foliated chart (x1, . . . , xk, y1, . . . , yl) such that TF = Span{∂x1 , . . . , ∂xk

}.
Decomposing ∂ya in the direct sum

TM = TF ⊕ TF⊥,
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there exist unique functions f i
a such that

Va := ∂ya −

k∑

i=1

f i
a∂xi

∈ Γ(TF⊥). (39)

Note that the vector fields Va are projectable. Consequently, the Riemannian metric g is
bundle-like exactly when g(Va, Vb) is basic for all a, b ∈ {1, . . . , l}.

ii) Put differently, a Riemannian metric g is bundle-like exactly when its restriction to
TF⊥ ∼= NF is parallel for the Bott connection, i.e.

X(g(Y,Z)) = g
(
prTF⊥ [X,Y ], Z

)
+ g
(
Y,prTF⊥ [X,Z]

)
(40)

for all X ∈ Γ(TF) and Y,Z ∈ Γ(TF⊥). Indeed, the condition (40) holds as soon as it holds
for all Y,Z in a local frame for TF⊥. Such a frame can be chosen to consist of projectable
vector fields (see part i) above), in which case the right hand side of (40) vanishes. It follows
that (40) holds exactly when g is bundle-like.

Both Def. 4.1 and Def. 4.3 require that g locally induces a Riemannian metric on the leaf
space M/F . We include a detailed proof showing that the definitions are indeed equivalent.

Proposition 4.5. Let (M,F) be a foliated manifold and g a Riemannian metric on M .
Then holonomy invariance of g is equivalent with g being bundle-like.

Proof. First assume that g is holonomy invariant. If (x1, . . . , xk, y1, . . . , yl) is a foliated chart
such that TF = Span{∂x1 , . . . , ∂xk

}, then clearly {dy♯1, . . . , dy
♯
l } is a local frame for TF⊥.

Moreover, dy♯i is projectable because g is holonomy invariant. To see this, we have to check
that for a locally defined basic function h, the function dy♯i (h) is again basic. We have

dy♯i (h) = dh(dy♯i ) = g
(
dh♯, dy♯i

)
= (dh, dyi)g,

and the latter is indeed basic since h, yi are basic and g is holonomy invariant. To check
that g is bundle-like, we take locally defined projectable vector fields Y,Z ∈ Γ(TF⊥), i.e.

Y =

l∑

i=1

fidy
♯
i and Z =

l∑

j=1

hjdy
♯
j.

Since Y,Z and dy♯1, . . . , dy
♯
l are projectable, the functions fi, hj are basic. Hence

g(Y,Z) =

l∑

i,j=1

fihjg
(
dy♯i , dy

♯
j

)
=

l∑

i,j=1

fihj(dyi, dyj)g

is basic, because g is holonomy invariant. This proves that g is bundle-like.
Conversely, assume that g is bundle-like. By Remark 4.4 ii), we then know that g satisfies

X(g(Y,Z)) = g
(
prTF⊥ [X,Y ], Z

)
+ g
(
Y,prTF⊥ [X,Z]

)
(41)

for X ∈ Γ(TF) and Y,Z ∈ Γ(TF⊥). To show that g is holonomy invariant, it suffices to
take a foliated chart (x1, . . . , xk, y1, . . . , yl) and check that dy♯i is projectable. Indeed, then

(dyi, dyj)g = g
(
dy♯i , dy

♯
j

)

would be basic since g is bundle-like. To see that dy♯i is projectable, we take a locally defined
X ∈ Γ(TF) and check that [X, dy♯i ] ∈ Γ(TF). The latter follows if we show that

g
(
[X, dy♯i ], Vj

)
= 0, (42)
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where V1, . . . , Vl are the vector fields defined in (39). Here we use that the Vj form a local
frame for TF⊥. Using that the Vj are also projectable, (42) follows from the computation

g
(
[X, dy♯i ], Vj

)
= g
(
prTF⊥ [X, dy♯i ], Vj

)
= X(g(dy♯i , Vj))− g

(
dy♯i ,prTF⊥ [X,Vj ]

)
= 0.

Here the first equality uses that Vj ∈ Γ(TF⊥), the second one uses (41) and the third one
follows from g(dy♯i , Vj) = δij and [X,Vj ] ∈ Γ(TF). Hence, g is holonomy invariant. �
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