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Ensemble music performance is a highly coordinated form of social behavior 
requiring not only precise motor actions but also synchronization of different 
neural processes both within and between the brains of ensemble players. In 
previous analyses, which were restricted to within-frequency coupling (WFC), 
we  showed that different frequencies participate in intra- and inter-brain 
coordination, exhibiting distinct network topology dynamics that underlie 
coordinated actions and interactions. However, many of the couplings both 
within and between brains are likely to operate across frequencies. Hence, to 
obtain a more complete picture of hyper-brain interaction when musicians play 
the guitar in a quartet, cross-frequency coupling (CFC) has to be considered 
as well. Furthermore, WFC and CFC can be  used to construct hyper-brain 
hyper-frequency networks (HB-HFNs) integrating all the information flows 
between different oscillation frequencies, providing important details about 
ensemble interaction in terms of network topology dynamics (NTD). Here, 
we reanalyzed EEG (electroencephalogram) data obtained from four guitarists 
playing together in quartet to explore changes in HB-HFN topology dynamics 
and their relation to acoustic signals of the music. Our findings demonstrate 
that low-frequency oscillations (e.g., delta, theta, and alpha) play an integrative 
or pacemaker role in such complex networks and that HFN topology dynamics 
are specifically related to the guitar quartet playing dynamics assessed by sound 
properties. Simulations by link removal showed that the HB-HFN is relatively 
robust against loss of connections, especially when the strongest connections 
are preserved and when the loss of connections only affects the brain of one 
guitarist. We conclude that HB-HFNs capture neural mechanisms that support 
interpersonally coordinated action and behavioral synchrony.
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Introduction

Music possesses an extraordinary ability to transcend boundaries, uniting people and 
creating harmonious connections. In the realm of music, quartet playing represents a sublime 
fusion of individual creativity and collective synergy. The magic unfolds when four skilled 
musicians, specifically guitarists, blend their unique styles and emotions, crafting melodies or 
sounds that resonate deeply with the human soul. Recent research indicates that synchronized 
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brain activity, especially inter- or hyper-brain synchronization, 
accompanies coordinated behavior and plays a crucial role in social or 
musical interaction (Lindenberger et al., 2009; Sänger et al., 2012, 
2013; Müller et  al., 2013, 2018b; Keller et  al., 2014; Müller and 
Lindenberger, 2019, 2022, 2023; Gugnowska et  al., 2022). This 
synchrony can occur at the same or at different frequencies and can 
be indicated by within- and cross-frequency coupling (WFC and CFC, 
respectively). Such coupling or synchronization (i.e., within and 
between brains and within and between frequencies), reflecting the 
common integrated state of interactors and supporting hyper-brain 
hyper-frequency network (HB-HFN) activity, is of paramount 
importance. Moreover, these different types of oscillatory and network 
interactions reveal a superior degree of complexity that is essential for 
superorganismic organization and functioning (cf. Delius and Müller, 
2023). The dynamics of the HB-HFN topology have a profound 
impact on the way we interact and respond to each other. However, 
the neural mechanisms responsible for facilitating coordinated actions 
between individuals and promoting social interaction remain elusive, 
especially when such interactions involve groups of more than two 
individuals, such as a guitar quartet or similar (Thompson and Varela, 
2001; Frith and Frith, 2007; Hari and Kujala, 2009; Müller et al., 2018b, 
2021; Müller, 2022).

The performance of even a simple piece of music demands precise 
control of timing to adhere to a hierarchical rhythmic structure. 
Additionally, musicians must skilfully control pitch to produce specific 
musical intervals based on frequency ratios. Music thus imposes 
unique demands on the nervous system, and an understanding of 
these demands can, in turn, provide insights into certain aspects of 
neural function (Zatorre et al., 2007). Furthermore, the expectations 
associated with rhythm and beat are an important component of 
temporal predictions in music. The ability to tune to an external 
auditory stimulus or a complex rhythm allows multiple individuals to 
synchronize their behavior in time by integrating the flow of 
information across different sensory modalities (Keller, 2008; Repp 
and Keller, 2008; Merker et al., 2009; Battich et al., 2020). All this 
necessitates an interaction of different frequencies and their 
integration in the entire network.

From our daily experiences, it is evident that social endeavors like 
music-making require learning and practice to become proficient and 
seamless. Through the process of learning, achieved by engaging in 
these social activities repeatedly, extraneous elements in interpersonal 
interactions are gradually refined, leading to enhanced fluidity in 
movement and improved motor skills. As highlighted by Müller 
(2022), there is an intrinsic relation between oscillatory activity, neural 
cell assemblies, and behavioral or cognitive entities. In the context of 
this relation, a hyper-brain cell assembly hypothesis has been 
suggested that states that cell assemblies can be  formed not only 
within but also between brains, following roughly the same ‘Hebbian’ 
rules as within brains. Such hyper-brain cell assemblies, connecting 
two or more brains and triggering the simultaneous activation (firing) 
of neural components within these brains or the shared hyper-brain 
cell assembly, represent superordinate systems that encompass and 
integrate oscillatory activity within and between brains. This collective 
hyper-brain unit, which can also have a multidimensional or 
multilayer dynamic organization based on WFC and CFC within and 
between brains, serves as the foundation for social and interactive 
behaviors (Müller, 2022). Comparable concepts have also been 
discussed previously (Shamay-Tsoory, 2022). In this work, the author 

introduces the notion of interbrain plasticity or learning through 
interaction, where “interbrain plasticity” serves as a metaphor 
symbolizing the ability of inter-brain networks (which also rely on 
intra-brain connections) to reconfigure their functional organization 
in response to learning facilitated by interaction. Interbrain plasticity 
refers to the ability of multiple brains to adapt to experiences, resulting 
in both short- and long-term changes in inter-brain connectivity. 
These connectivity or coupling changes can then influence the 
behavioral repertoire of the individuals involved in the interaction (see 
also Mayo and Shamay-Tsoory, 2024). For example, think about a 
sports team or ensemble practicing together. As they train and play 
together over time, their brains become more synchronized in 
coordinating movements and strategies. This enhanced inter-brain 
connectivity reflects the plasticity of their collective neural networks, 
enabling them to perform better as a team or ensemble.

Complex networks (e.g., HFNs or HB-HFNs) can be regarded as 
multiplex or multilayer networks that have a specific multidimensional 
or multilayer network organization (De Domenico et al., 2013, 2015, 
2016; Boccaletti et al., 2014; Kivelä et al., 2014; De Domenico, 2017; 
Pilosof et  al., 2017; de Arruda et  al., 2018). In this context, WFC 
represents communication within layers and CFC depicts 
communication between different layers (Brookes et al., 2016; Tewarie 
et al., 2016, 2021; De Domenico, 2017; Buldú and Porter, 2018; O’Neill 
et al., 2018; Tenney et al., 2021; Müller, 2022). Figure 1A exemplarily 
shows a complex two-layer four-brain network or HB-HFN of a guitar 
quartet. In a number of studies, it has been shown that multilayer 
networks can be represented as a supra-adjacency matrix, allowing 
conventional graph-theoretical approach (GTA) tools to be used to 
investigate their properties (Kivelä et  al., 2014; Müller and 
Lindenberger, 2014; Brookes et al., 2016; De Domenico et al., 2016; 
Müller et  al., 2016, 2019b; De Domenico, 2017; Müller, 2022). 
Figure 1B schematically illustrates two GTA measures, the clustering 
coefficient (CC) and characteristic path length (CPL), which we used 
in this work for network topology representation. In a concert study 
involving a quartet of guitarists and four audience members, the 
network topology dynamics (NTD) of the entire HB-HFN (quartet 
and audience) and the dynamical structure of guitar sounds showed 
specific guitar–guitar, brain–brain, and guitar–brain directional 
associations, indicating multilevel dynamics with upward and 
downward causation (Müller and Lindenberger, 2023).

The next important issue of interacting networks is their 
robustness, signifying the ability to maintain integrity and 
functionality of the network even after the removal of nodes or edges. 
This ability of the network is a prominent feature of most biological 
systems and social groups (Barabási and Pósfai, 2016; Liu et al., 2020; 
Bellingeri et  al., 2020a), and may be  useful for understanding 
interpersonal action coordination and the underlying hyper-brain 
networks. It has been reported that removing nodes according to 
weighted rank and also removing links in accordance with their 
weights produce the highest damage in real-world complex networks 
(Bellingeri and Cassi, 2018; Bellingeri et al., 2019, 2020a). Moreover, 
it has also been found that the robustness of the real-world complex 
networks against link removal is negatively correlated with link-
weight heterogeneity (i.e., when the weights were randomly assigned 
to the links) and that the removal of a small fraction of strong links 
can rapidly decrease the efficiency and total flow in these networks 
(Bellingeri et al., 2019). It has also been reported that the removal of 
a single node or link has only limited impact on a network’s integrity, 
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while the removal of several nodes or links can break a network into 
several isolated components or destroy the components of the network 
so that the network communication between remote nodes can no 
longer take place (Newman, 2003; Barabási and Pósfai, 2016). Most 
networks are robust against random vertex removal but considerably 
less robust to targeted removal of the highest-degree vertices 
(Newman, 2003).

In our previous analyses of data from a guitar quartet, which was 
restricted to WFC, we showed that different frequencies participate in 
intra- and interbrain coordination and exhibit different network 
topology dynamics that underlie coordinated actions and interactions 
(Müller et al., 2018b). However, many of the couplings both within 

and between brains are likely to operate across frequencies (Müller 
and Lindenberger, 2014; Müller et al., 2021; Müller, 2022). Hence, to 
obtain a more complete picture of hyper-brain interaction when 
guitarists play as a quartet, we considered both WFC and CFC that are 
used to construct a multilayer HB-HFNs integrating all the 
information flows within and between different frequencies oscillating 
at distinct cortical regions/brains and providing important details 
about ensemble interaction in terms of network topology dynamics 
(cf. Müller, 2022). Our hypothesis was that hyperbrain coupling 
strengths among the four guitarist brains would decrease with higher 
oscillation frequencies, thereby eliciting corresponding effects on the 
NTD. Furthermore, it has been shown that there is a specific coupling 

FIGURE 1

Schematic representation of HB-HFN and GTA. (A) Exemplary representation of a hyper-brain hyper-frequency multilayer network of a guitarist 
quartet. Four brains of the guitarist quartet within two layers with within- and between-layer connections are presented. The layers represent two 
different oscillation frequencies (f1 and f2), and connections within the layers indicate WFC, while connections between the layers indicate CFC. 
(B) Exemplary representation of two GTA measures: CC and CPL. On the left, CC for a target node (blue) is calculated as the ratio of one closed 
triangle to the three possible triangles, equaling 0.333. The three neighbors of the target node are presented in green. On the right, a shortest path 
length (SPL) is presented between the target node (blue) and another node (red) in the network, equaling 3. CPL is then calculated as the average of 
SPLs from the target node to all other nodes in the network, equaling 2. Note that for simplicity, a binary unweighted network was used in this 
representation. In the case of a directed weighted network, such as HB-HFN in our study, the direction and weights of links will play a role.

https://doi.org/10.3389/fnhum.2024.1416667
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Müller and Lindenberger 10.3389/fnhum.2024.1416667

Frontiers in Human Neuroscience 04 frontiersin.org

between musicians’ brains and musical instruments (Müller and 
Lindenberger, 2019, 2022, 2023). In this context, it is to be expected 
that guitar sounds not only correlate with, or predict each other, but 
that this correlation or prediction also concerns guitar–brain relations. 
To substantiate these relations (i.e., guitar–guitar, guitar–brain, and 
brain–brain), we  calculated Pearson’s product correlation and 
multivariate Granger causality (GC) for amplitude and frequency 
modulations of guitar sounds and corresponding HB-HFN topology 
changes within the two performed music pieces: Libertango and 
Comme un tango. In addition, we  investigated the behavior or 
robustness of the HB-HFN and the role of different types of network 
connections upon simulated gradual elimination of these connections 
in 15 5%-steps, both within the whole HB-HFN and within individual 
guitarists’ brains. We examined how this loss of connections or link 
removal changes network topology within the whole HB-HFN and 
the individual guitarists’ brains. Our expectation was that the behavior 
of the HB-HFN and the underlying NTD would remain relatively 
robust in response to the loss of connections, particularly if the loss 
only affected the brain of one guitarist.

Methods

Participants

A quartet of professional guitarists (Cuarteto Apasionado, Berlin) 
participated in the study (cf. Müller et al., 2018b). Participants’ mean 
age was 46.5 years (SD = 1.7). All participants (females) were right-
handed and had been playing the guitar professionally for more than 
35 years (mean = 37.8 years, SD = 1.3). The Ethics Committee of Max 
Planck Institute for Human Development approved the study, and it 
was performed in accordance with the ethical standards laid down in 
the 1964 Declaration of Helsinki. All participants volunteered for this 
experiment and gave their written informed consent prior to their 
inclusion in the study.

EEG data acquisition and preprocessing

EEG measurement took place while the quartet played two music 
pieces: Libertango (Astor Piazolla) and Comme un tango (Patrick 
Roux). These musical pieces were chosen with regard to different 
aspects of interpersonal action coordination such as different phases 
of musical performance, consonant playing, changes of tempo, phases 
with different musical complexity, etc. The guitarists were positioned 
in an arc formation (refer to Supplementary Video S1 for 
visualization). EEG was simultaneously recorded using four electrode 
caps with 28 Ag/AgCl EEG active electrodes each, placed according 
to the international 10–10 system, with the reference electrode at the 
right mastoid and the ground electrode at the AFz position. Vertical 
and horizontal electrooculogram (EOG) was recorded to control for 
eye blinks and eye movements. The sampling rate was 5,000 Hz. 
Recorded frequency bands ranged from 0.01 to 1,000 Hz. All 
amplifiers (BrainAmps MR and BrainAmps ExG from Brain Products, 
Gilching, Germany) were connected to the same computer through 
PCI interfaces and synchronized by using BrainVision recorder 
software. Through one microphone each, the sounds of the guitars 
were recorded on four ExG channels, simultaneously with the EEG 

recordings. In addition, video and sound were recorded using a video 
camera connected to EEG computer through FireWire socket and 
Video Recorder as a component of BrainVision software (Brain 
Products, Gilching, Germany), synchronized in this way with EEG 
data acquisition. Data were re-referenced offline to an average of the 
left and right mastoid separately for each participant. Eye movement 
correction was accomplished by independent component analysis 
(Vigário, 1997). Thereafter, artifacts from head and body movements 
were rejected by visual inspection. Spontaneous EEG activity was 
resampled at 1000 Hz and divided into 5-s epochs. Event markers were 
set by a professional musician and correspond to different musical 
situations. The list of the events and their short description for both 
music pieces is presented in Supplementary Table S1. There were 10 
and 14 segments in Libertango and Comme un tango, respectively, that 
were free of artifacts for all four guitarists. Further, to calculate the 
phase coupling, we used a moving time window approach with a 
window width of 500 ms and a time delay of 50 ms. A total of 91 time 
windows were captured using this moving time window approach.

Phase synchronization (coupling) measures

Our analyses were conducted in a data-driven, directed, and 
frequency-resolved manner. To investigate phase synchronization 
within and between the frequencies, we applied an analytic complex-
valued Morlet wavelet transform to compute the instantaneous phase 
in the frequency range from 2.5 to 60 Hz for nine different frequencies 
of interest (FOI): 2.5, 5, 10, 15, 20, 25, 30, 40, and 60 Hz. It is worth 
noting that both the choice of FOI and the parameter for the moving 
time window approach were selected to enable comparison with 
previous analyses. Furthermore, the FOI are in specific integer ratios 
to each other (e.g., 1:2, 1:3, 2:3, 1:4, 2:5, etc.) to ensure consistent 
analysis of CFC. The complex mother Morlet wavelet, also called 
Gabor wavelet, has a Gaussian shape around its central frequency f:

 
w t f e jt jft
,( ) = ( ) = −

− −( )+( )σ π
σ π2

1 4 2 3 2
2 2

1
/ / /

,
 

(1)

in which σ is the standard deviation of the Gaussian envelope of the 
mother wavelet. The wavelet coefficients were calculated with a time 
step of 5 leading to a time resolution of 5 ms and frequency 
resolution of 0.5 Hz. To identify the phase relations between any two 
channels within and between the frequencies, a generalized phase 
difference (ΔΦ) was used to calculation of within- and cross-
frequency coupling:

 
∆Φ t n t m tm n( ) = ( ) − ( )• •φ φ

 (2)

where m and n are integers, and ϕm,n are phases of two oscillators. In 
the case of WFC with ϕm = ϕn, the phase difference ΔΦ is calculated 
in the same way by setting m = n = 1. WFC and CFC within and 
between brains were determined using the adaptive Integrative 
Coupling Index (aICI) algorithm described in our previous study 
(Müller and Lindenberger, 2014), which allowed us to calculate this 
coupling index depending on the angle of phase differences 
determined in a given time window. In other words, aICI no longer 
reflect in-phase synchronization, where the angle of phase differences 
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is close to zero, but is suitable for the determination of phase coupling 
at any chosen or previously determined phase angles. For these 
purposes, the Phase Synchronization Index (PSI) was determined first. 
It is defined by Müller et al. (2013):

 
PSI f e jm n

j fk
m n

∆Φ
∆Φ

,
, ,( ) = = −( )

1
 

(3)

where ∆Φk  is the phase difference between the instantaneous phases 
of the two signals at the frequencies fm and fn across k data points in 
the segment. During calculation of the PSI, we not only determined 
the mean direction or the length of the vector but also the angle of this 
vector (θ∆Φ ) in the complex space:
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Given the estimates of the phase difference between two signals, it is 
possible to ascertain how long the phase difference remains stable in 
defined phase angle boundaries by counting the number of points that 
are phase-locked in a defined time window. So, we divided the range 
between θ − π/4 and θ + π/4 into two ranges and distinguished between 
positive and negative deviations from phase angle θ∆Φ . Within a time 
window of 500 ms, we  separately counted the number of phase 
difference points in the range between θ − π/4 and θ (negative 
deviations) and in the range between θ and θ + π/4 (positive 
deviations). Phase difference values beyond these ranges were 
considered as non-synchronization. Before counting, successive 
points in the defined range (between θ − π/4 and θ + π/4) with a time 
interval shorter than a period of the corresponding oscillation at the 
given frequency (Ti = 1/fi) were discarded from the analysis. This 
cleaning procedure effectively eliminated instances of accidental 
synchronization. On the basis of this counting, we obtained several 
synchronization indices: (1) the Positive Coupling Index, PCI, or the 
relative number of phase-locked points in the positive range (between 
θ and θ + π/4); (2) the Negative Coupling Index, NCI, or the relative 
number of phase-locked points in the negative range (between θ − π/4 
and θ); (3) the Absolute Coupling Index, ACI, or the relative number of 
phase-locked points in the positive and negative ranges (i.e., between 
θ − π/4 and θ + π/4); (4) the adaptive Integrative Coupling Index, aICI, 
calculated by the formula (Müller and Lindenberger, 2014):

 
aICI PCI ACI

ACI
PCI=

+
⋅

⋅
2  

(5)

The aICI is an integrative coupling index integrating the positive and 
negative shifts in phase difference of two signals and indicating the 
dominance of the positive shift in phase difference related to the 
common or absolute coupling. The aICI is equal to 1 when all points 
are phase-locked and positive; if all phase-locked points are negative 
or are out of range, the aICI will approach 0. Thus, the aICI measure 
ranges between 0 and 1 and is asymmetric (aICIAB ≠ aICIBA), indicating 
the relative extent of positive phase synchronization. Moreover, by 
using the framework of “The Virtual Brain” (TVB, www.
thevirtualbrain.org), simulation results in our previous study showed 
that all three measures (PSI, ACI, and ICI) capture the intended 
coupling properties (Müller et al., 2013). We restrict the description 

of our study results to the aICI measure, which is the most informative 
due to its directionality.

It should be noted that inter-brain synchronization measures (e.g., 
aICI) are robust to the detection of spurious phase synchronization 
between individuals, i.e., where no volume conduction is possible. 
Spurious phase synchrony at each individual level can occur because 
of the volume conduction problem (Tognoli and Kelso, 2009) but 
using only 28 electrodes per person with larger distances between the 
electrodes considerably reduces such influences, if any.

Network construction and 
graph-theoretical approach (GTA)

Using the aforementioned directed coupling index (aICI), 
we constructed a HB-HFN of the guitarist quartet during playing. This 
network comprises four brains with 28 electrodes each and 9 
oscillation frequencies, and correspondingly includes coupling (WFC 
and CFC) within and between brains. Figure  2A represents this 
HB-HFN in form of a supra-adjacency matrix, where conventional 
GTA tools can be  used to investigate the network properties. As 
already mentioned, this supra-adjacency matrix or the HB-HFN can 
be  considered as a multilayer network, where WFC represents 
connections within each layer and CFC represents connections 
between the layers (see Figure 2B for details). This network comprises 
1,008 nodes in total and more than 1 million edges if it is fully 
connected. For our analyses, we used thresholded networks with a 
connectivity threshold of 0.3, which was always higher than the 
significance level determined by the surrogate data procedure 
(p < 0.0001). At this threshold, the cost level of the networks (the ratio 
of the number of actual connections divided by the maximum possible 
number of connections in the network) was approximately 20%, 
corresponding to high sparsity of the resulting networks and allowing 
more accurate examination of the network topology. For the HB-HFN 
analyses, we used three well-known GTA measures capable to describe 
key network properties, including connectivity strength and the 
degree of the network segregation and integration.

Degrees and strengths
As aICI is a directed measure, we  obtained the node in- and 

out-degrees, in which the in-degree is the sum of all incoming 
connections of node i, k ai

in

j N
ji=

∈
∑ , and the out-degree is the sum of 

all outgoing connections, k ai
out

j N
ij=

∈
∑ . To calculate strengths, 

we  then replaced the sum of the links by the sum of the weights, 
k wi
w

j N
ij=

∈
∑ , and calculated in- and out-strength, respectively. Overall 

strengths (S) are given by the sum of in- and out-strength. For 
statistical evaluation, we determined strengths for each node in the 
whole HB-HFN of the guitar quartet and then calculated them for 
WFC and CFC as well as for the within- and between-brain 
connections separately.

Clustering coefficient and characteristic path 
length

If the nearest neighbors of a node are also directly connected to 
each other, they form a cluster. For an individual node, the CCi is 
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FIGURE 2

Representation of HB-HFN as a supra-adjacency matrix and a multilayer network. (A) HB-HFN supra-adjacency matrix. The supra-adjacency matrix 
(1,008 × 1,008) includes within-brain connectivity of the four guitarists (indicated in yellow) and between-brain connectivity (indicated in pink). The 
HB-HFN nodes comprise three components: guitarist’s brains (4), electrode sites (28), and oscillation frequency (9). As shown on the right, each 
guitarist’s brain (or a pair of brains for between-brain connectivity) consists of links between 28 electrodes within each of 9 frequencies (WFC) and 
between them (CFC). (B) HB-HFN multilayer network of the guitarist quartet. The within-layer communication (WFC on the left) and the between-layer 
communication (CFC on the right) are presented separately for visualization purposes. The 9 layers correspond to the 9 FOI. The predominance of 
low-frequency connections within and between the layers is evident here.
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defined as the proportion of the number of pairs of i’s neighbors that 
are connected to the total number of pairs of i’s neighbors (see 
Figure 1B for details). In the case of a weighted directed graph the 
CCiwd  and the mean CCwdare calculated as follows (Fagiolo, 2007):

 
( )( )

1

1
1 2

wd wd
i

i N
wd
i

out in out in
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being the number of weighted directed triangles around a node i. The 
clustering coefficient is a measure of segregation.

Another important measure is the CPL. In the case of an 
unweighted graph, the shortest path length or distance di,j between 
two nodes i and j is the minimal number of edges that have to 
be passed to go from i to j (see Figure 1B for details). This is also called 
the geodesic path between the nodes i and j. The CLP of a graph is the 
mean of the path lengths between all possible pairs of vertices (Watts 
and Strogatz, 1998):
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where CPLiwd  is the average shortest or characteristic path length from 
node i to all other nodes. In the case of a weighted and directed graph, 
the weight and direction of the links will be considered. CPL shows 
the degree of network integration, with a shorter CPL indicating 
higher network integration. Similar to strength, CC and CPL were 
calculated individually for each node, representing nodal measures 
(i.e., CCiwd  and CPLiwd ).

Relationships between the guitar sounds 
and the network topology measures

Further, we  investigated the relationships between the guitar 
sounds and the HB-HFN topology indices. For these purposes, 
we first calculated amplitude and frequency modulations of the guitar 
sounds by Mean Power Frequency (MPF) and Envelope (ENV) for 
each of the guitar signals captured by microphones. The MPF was 
calculated by using the short-time Fourier transform (STFT) 
spectrogram from the biomedical LabVIEW tool and the MATLAB 
envelope function integrated LabVIEW was used for the ENV 
calculation. MPF and ENV underwent processing using the moving 
window approach (averaging within 500-ms time windows shifted by 
a 50-ms time delay), mirroring the methodology employed for the 
calculation of connectivity and topology indices in EEG signal 
analysis. To explore the associations between guitar sounds (i.e., MPF 
and ENV) and NTD indicated by temporal changes in different 
topology measures, we calculated (1) Pearson’s product correlation 
(R), reflecting linear relationships between the signals, and (2) 
multivariate Granger causality (GC), indicating causal or directional 
associations between the signals. For this calculation, the guitar 

sound and NTD data across the 91 time windows and 10 (Libertango) 
or 14 (Comme un tango) music sequences were collapsed together, 
thus providing a cascade-shaped time series of 910 (91 × 10) or 1,274 
(91 × 14) data points for Libertango and Comme un Tango, 
respectively. For this analysis, the NTD indices were consistently 
averaged for each guitarist separately. In this way, we investigated the 
guitar–guitar, guitar–brain, and brain–brain relationships between 
guitarists (or even guitar-brain relationships within a guitarist).

Robustness of HB-HFNs by stepwise 
elimination of different types of edges

To assess the robustness of HB-HFNs and elucidate the role or 
significance of network connections, we systematically manipulated 
the loss of various connection types within the entire HB-HFN and 
within individual guitarists’ brains. Our investigation focused on 
understanding how the removal of connections impacted the network 
topology both across the entire HB-HFN and within individual 
guitarists’ brains. This process involved a gradual elimination of 
connections in 15 5%-steps, utilizing three distinct types of removal: 
elimination of the weakest, strongest, and random connections. 
Subsequently, we  computed the network topology at each 
manipulation step. For statistical evaluation, we determined the means 
and 95% confidence intervals (CIs) of the corresponding network 
topology indices at each step of the manipulation process. This 
comprehensive analysis sheds light on the robustness of HB-HFNs 
and provides insights into the dynamic role played by various types of 
connections in shaping the overall network topology.

Statistical analysis

The three nodal measures (S, CC, and CPL) were initially 
determined for each time window and subsequently averaged across 
them within each music sequence. As mentioned above, the network 
nodes are a composition of three components: guitarist’s brain, 
electrode site, and oscillation frequency. Individual electrodes were 
grouped into three electrode sites: F (frontal – Fp1, Fpz, Fp2, AF7, 
AF8, F7, F3, Fz, F4, F8), C (central – T7, C5, C3, Cz, C4, C6, T8), and 
P (parietal – P7, P3, Pz, P4, P8, PO7, POz, PO8, O1, Oz, and O2). For 
the statistical evaluation of HB-HFN properties, nodes were regarded 
as cases that vary on three between-subject factors: Guitarist (A, B, C, 
and D), Site (F, C, and P), and Frequency (f1, f2, f3, f4, f5, f6, f7, f8, and 
f9). The music sequences of Libertango (10 sequences) and Comme 
un tango (14 sequences) were treated as within-subject factors in 
mixed ANOVAs. Further, to investigate the within- and between-
brain (wB and bB, respectively) WFC and CFC, we summed up the 
couplings within these four groups of interest and collapsed the music 
sequences by averaging them for Libertango (MP1) and Comme un 
tango (MP2), respectively. We  then conducted separate mixed 
ANOVAs for WFC and CFC, incorporating three between-subject 
factors as before and two within-subject factors: Coupling (wB and 
bB) and Music Piece (MP1 and MP2). When necessary, Greenhouse–
Geisser epsilons were employed in all ANOVAs for nonsphericity 
correction. The Scheffé test was utilized for post-hoc testing of 
condition or network property differences. All statistical analyses were 
carried out using IBM SPSS Statistics 23.0 (SPSS Inc., Chicago, IL).
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Results

Figure 3A shows an HB-HFN in the form of a circle, with the 
nodes arranged clockwise, and illustrates the relationships 
between different guitarists, electrode sites, and frequencies. It can 
be seen that the four guitarists mainly communicate with each 
other using the low frequencies. The network topology metrics 
determined in HB-HFNs at different time windows were first 
averaged over the different time windows within the music 
sequences. Figure 3B illustrates the network topology dynamics 
indicated by S, CC, and CPL across the 1,008 nodes over the 24 
music sequences (left) and average values of the four guitarists 
across the music sequences of Libertango (10 sequences) and 
Comme un Tango (14 sequences). The Supplementary Video S2 
features a 5-s music sequence from Libertango, providing a real-
time display of connectivity changes in the HB-HFN throughout 
this duration.

Network structure and topology dynamics 
across music sequences

The nodal network topology indices (S, CC, and CPL) determined 
in the HB-HFN and averaged over the different time windows were 
analyzed using mixed ANOVAs with the three between-subject factors 
Guitarist (A, B, C, and D), Site (F, C, and P) and Frequency (9 
frequencies), which capture the HB-HFN structure, and one within-
subject factor Sequence (10, respectively 14). To assess the dynamics 
within the music sequences, we determined not only the mean values 
over the time windows, but also the standard deviations (SDs) and 
subjected them to the same mixed ANOVAs. All ANOVAs for both 
mean values and SDs revealed significant main effects and significant 
interactions for all network metrics (all Ps < 0.001; see 
Supplementary material for details). The main effects for the factors 
Guitarist, Site, and Frequency are presented in Figures  4A,B for 
Libertango and Comme un Tango, respectively. Significant differences 
in the topology indices between the four guitarists apparently indicate 
different roles of the guitarists in the common network. Interestingly, 
guitarist D showed higher strength and CC as well as the shortest CPL 
in both music pieces, indicating her high segregation and integration 
in the common HB-HFN. Significant differences in the topology 
indices between the electrode sites mostly indicate the predominance 
of centro-parietal sites in the HB-HFN. It can also be seen that the 
strengths of nodes in the common HB-HFN decrease with high 
frequency, while CC and especially CPL increase (CPL becomes 
longer). All the changes across the frequencies are highly significant 
and indicate different contributions of these frequencies to network 
topology and functioning. As shown in Figure 3, the network topology 
also changes across sequences, indicating that the network topology 
is nonstationary and contingent on musical situation. These changes 
also vary across the four guitarists, indicating that the guitarists 
significantly change their impact on the quartet play. Moreover, 
significant interactions among all the factors indicate that the observed 
changes in the network topology are not absolute but are influenced 
by each other and are in permanent interplay.

The main effect of the SD differences for the factors Guitarist, Site, 
and Frequency are presented in Figures  5A,B for Libertango and 
Comme un tango, respectively. It can be seen that the variability in the 

network topology determined by the SD differs among the four 
guitarists and also varies with the electrode sites, oscillation frequency, 
and music sequences in the two pieces of music (see 
Supplementary material for further details). Interestingly, despite the 
different changes in the network topology shown in Figure 4, the SD 
decreases with higher frequency for all topology metrics (see 
Figure 5).

WFC and CFC as well as intra- and inter-brain 
strengths

To investigate the coupling within and between layers in the 
multilayer HB-HFN, we  determined WFC and CFC within and 
between brains separately for each node and averaged these across 
time windows and music sequences for Libertango and Comme un 
tango, respectively. WFC and CFC strengths were subjected to two 
separate mixed ANOVAs with three between-subject factors Guitarist, 
Site, and Frequency and two within-subject factors Music Piece (MP1 
vs. MP2) and Coupling (within-brain vs. between-brain coupling). All 
main effects and most interactions were highly significant (all 
Ps < 0.001, with some exceptions). Results of these ANOVAs are 
presented in the Supplementary materials. As shown in Figure 6A, the 
WFC or coupling within the layers was much stronger within brains 
than between brains, while CFC (or coupling between the layers) was 
significantly higher between brains than within them. Figure 6B shows 
that the coupling within the layers (WFC) increases with higher 
frequency and the coupling between the layers (CFC) decreases. The 
increase in WFC is primarily due to the within-brain coupling, WFC 
between the brains increases only up to 10 Hz and then gradually 
decreases. As shown in Figure 6C, the four guitarists showed different 
coupling patterns with high WFC in guitarist D and high CFC in 
guitarist A for both MP1 and MP2, respectively. This indicates that the 
coupling within and between the layers differs among these guitarists, 
especially within their brains. The coupling is also different in the two 
music pieces, with overall higher WFC and also CFC in MP2 than in 
MP1. Moreover, as shown in Figure 6D, the guitarists differ also in 
WFC and CFC as well as in their within- and between-brain coupling 
with respect to the topological distribution or brain sites (see 
Supplementary materials for more details).

Network topology dynamics and its 
relationship to the guitar sounds

The previous analyses have shown that the network topology 
metrics exhibit a certain variability. Here we aim to examine whether 
this variability or underlying dynamics in network topology is related 
to the amplitude and frequency modulations of guitar sounds. For 
these purposes, we calculated two different characteristics of guitar 
sounds of the four guitarists (MPF and ENV) and related them to the 
HB-HFN topology metrics averaged for each guitarist’s brain. In these 
analyses, instead of the CPL, we used its inverse (1/CPL), to obtain the 
same direction of changes as other topology measures. These dynamics 
are exemplarily presented in Figure 7. To investigate the relationships 
between all these signals, we calculated for each of the pieces of music: 
(1) Pearson’s product correlation (R), reflecting linear relationships 
between the signals, and (2) multivariate Granger causality (GC), 
indicating causal or directional associations between the signals. 
Figure  8 shows the relationships between the guitar sound 
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characteristics (MPF and ENV) and the three HB-HFN measures (S, 
CC, and inverse CPL). It can be  seen that the linear relationship 
determined by the Pearson’s product correlation is relatively strong 

between the four musician’s guitar sounds and especially between NTD 
indices. The correlation between the guitar sounds and the NTD is 
moderate for MPF signals, especially during Libertango. The 

FIGURE 3

Circle HB-HFN structure of the guitar quartet and network topology dynamics. (A) Circle HB-HFN structure of the guitar quartet. The network nodes 
are arranged clockwise, starting from guitarist A (middle-right). Different frequencies (FOI) are represented by color. The predominance of low-
frequency connections is also evident here (cf. Figure 2B). (B) Network topology dynamics. On the left, S, CC, and CPL are presented across the 1,008 
nodes for 24 music sequences, indicated by color. On the right, the same GTA measures, averaged separately for the four guitarists’ brains (guitarist A 
in blue, guitarist B in red, guitarist C in green, and guitarist D in yellow), are depicted across the 24 music sequences: 1–10 for Libertango and 11–24 for 
Comme un tango.
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multivariate Granger causality also shows specific relationships 
between the guitar sounds and between the NTD indices but also 
between the sounds and NTD, particularly during Libertango. Most 
interestingly, the last relationships are mostly unidirectional and mostly 
go from guitar sounds to NTD indices. In other words, guitar sounds 
affect or influence the hyper-brain communication more strongly than 

vice versa. Figure 9 displays the relationships between the guitar sounds 
and the coupling within (WFC) and between (CFC) the HB-HFN 
layers. As to be seen, the four guitarists are more similar in terms of 
inter-layer or CFC communication as compared to the intra-layer or 
WFC communication. MPF shows stronger relationships with NTD, 
especially with respect to within-layer coupling or WFC and especially 

FIGURE 4

ANOVA results for mean values of the three GTA measure (S, CC, and CPL) for Libertango and Comme un tango, respectively. (A) ANONA results for 
Libertango. Main effects of the factors Guitarist (A, B, C, and D), Site (F, C, and P), and Frequency (f1-f9) are presented here. (B) ANONA results for 
Comme un tango. The same main effects as in (A) are presented here. The main effects of the factor Sequence for both music pieces can be obtained 
in Figure 3 presented for the four guitarists.
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during Libertango, also mostly directed from sounds to the HB-HFN 
coupling. Figure 10 illustrates the relationships between guitar sounds 
and the intra- and inter-brain couplings. As expected, the inter-brain 
couplings of the four guitarists are strongly related to each other in the 
case of a linear relationship (correlation) but practically disappear (with 

some exceptions) in the case of multivariate GC because of the absence 
of clear directional connections. Interestingly, there are relatively strong 
correlations between intra- and inter-brain coupling strength in each 
of the guitarists. In other words, high intra-brain strengths in a guitarist 
are strongly related to the connection strengths from this guitarist to 

FIGURE 5

ANOVA results for SD values of the three GTA measure (S, CC, and CPL) for Libertango and Comme un Tango, respectively. (A) ANOVA results for 
Libertango. Main effects of the factors Guitarist (A, B, C, and D), Site (F, C, and P), and Frequency (f1–f9) are presented here. (B) ANOVA results for 
Comme un tango. The same main effects as in (A) are presented here. The main effects of the factor Sequence for both music pieces can be found in 
the Supplementary materials.
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all others. In the case of multivariate GC, this relationship, if present, is 
mostly unidirectional and goes from inter-brain to intra-brain strength, 
and may involve not only the same, but also the other guitarists (see 
Figure 10 for details). There are several connections between guitar 
sounds and strengths (both intra- and inter-brain) mostly going from 
guitar to brain, especially during Libertango, but also from brain to 
guitar, especially during Comme un tango.

Robustness of HB-HFNs by stepwise 
elimination of different types of edges

To investigate the robustness of the HB-HFN and the role of 
network connections, we manipulated the loss of the different types 
of connections within the whole HB-HFN and within individual 
guitarists’ brains and examined how this loss of connections changes 
the network topology both within the whole HB-HFN and in 
individual guitarists’ brains. To do so, we  gradually eliminated 
connections in 15 5%-steps with three different types of loss, of the 
weakest, the strongest, and of random connections, and calculated the 
network topology each time. We compared these changes with the 
network topology without loss of connections. Figures 11A–C depict 
the respective manipulations for a 75% loss across the entire network 
and specifically for the in- and out-degree of guitarist A. Figures 11D,E 
illustrate the dynamics of both lost and retained strengths throughout 
the 15 elimination steps for the 9 FOI. The removal of the weakest 
connections involves both high and low-frequency connections or 
nodes, but the low-frequency connections with high strengths are 
consistently preserved throughout all 15 elimination steps. The 
removal of the strongest connections mainly impacts the 
low-frequency connections, and the preservation of these connections 
and their strength rapidly decreases across the 15 elimination steps. 
Interestingly, when the connections are removed randomly, the 
low-frequency connections are increasingly affected, and the 
preservation of these connections also decreases at a high rate, but 
they persist throughout all elimination steps.

All topology measures were averaged across the time windows 
within a music sequence and mean values (+/-CI) are presented in the 
diagrams for different types of connection loss compared to no loss. 
Figure 12A shows changes of CC (left) and CPL (right) in the whole 
HB-HFN when the loss of connections was also manipulated in the 
entire network. As expected, CC decreases and CPL increases or 
becomes longer as connection loss increases, especially when the 
strongest or random connections are lost. Importantly, CPL remains 
relatively robust when the weakest (and partly also random) 
connections are lost, while CC decreases significantly even when the 
weakest connections are lost. Figure  12B shows the changes in 
network topology in the entire HB-HFN when the loss of connections 
was simulated only in the brain of one guitarist (here guitarist A) with 
regard to the in-degree. Since the out-degree manipulation showed 
similar results in terms of network topology changes across the entire 
HB-HFN, it is not shown here. It can be seen that NTDs undergo 
similar changes as before, but the extent of these changes is much 
smaller. Most importantly, the topology mostly does not change 
significantly when the strongest connections of a guitarist are retained. 
Only when the strongest (or even random) connections are lost in one 
of the guitarists do the changes in the NTD become significant, 
especially in the CPL, which is apparently less robust than the CC, 

although the changes in the CC are also significant. In Figures 12C–F, 
the robustness within an individual brain (here guitarist A) is 
displayed when the loss of connections is manipulated in the same 
guitarist’s brain (Figures 12C,D) or in the other guitarist’s brain (here 
guitarist D; Figures  12E,F). When the loss of connections is 
manipulated in the same guitarist’s brain, CC does not change at all 
when the strongest connections remain, and it decreases non-linearly 
when the strongest or random connections are lost, regardless of 
whether the in-degree or the out-degree has been manipulated 
(Figures 12C,D). The CPL in this case becomes longer, especially when 
the in-degree is manipulated, and especially when the strongest 
connections are lost. If the strongest connections are retained, the 
functionality of the individual subnetwork is largely preserved. When 
the loss of connections in the brain of the other guitarist (here guitarist 
D) is manipulated, CC in the brain of guitarist A decreases for all types 
of manipulations (especially when the strongest connections are lost), 
regardless of whether the in-degree or the out-degree was manipulated 
(Figures 12E,F). The CPL in this case does not change significantly 
when the in-degree of guitarist D is manipulated, while it increases or 
becomes longer when the out-degree of guitarist D is manipulated or 
decreases, especially when the strongest connections are lost. Similar 
results of network topology changes in relation to guitarist D can 
be found in the Supplementary materials, which indicate invariance 
of topology changes with respect to different guitarists.

Discussion

The primary objective of this study was to investigate the 
multilayer hyper-brain network dynamics and architecture in a 
quartet of guitarists playing together, where the WFC indicates 
coupling within the layers and the CFC indicates coupling between 
them. The main findings are that: (a) the four guitarists significantly 
differ in their network topology dynamics, apparently indicating their 
different roles in the common hyper-brain network during play; (b) 
hyper-brain coupling strengths involving the four guitarist brains 
decrease with higher oscillation frequency, while CC and especially 
CPL increase with ascending frequency (CPL becomes longer); (c) the 
couplings within (WFC) and between (CFC) the layers as well as 
within and between brains differ with respect to the guitarists, 
oscillation frequency, brain sites, and the two music pieces, with 
generally higher WFC within the brains and higher CFC between the 
brains; (d) the variability of all NTD measures exponentially decreases 
with higher oscillation frequency, indicating high variability of 
low-frequency nodes in HB-HFN; (e) different NTD measures show 
linear and causal relationships with guitar sounds, varying in 
amplitude (ENV) and frequency (MPF) characteristics, with the guitar 
sounds having a stronger influence on the brain’s NTD than vice versa; 
(f) the HB-HFN behavior and underlying NTD are relatively robust 
against the loss of connections, especially when the strongest 
connections are preserved and especially when connection loss only 
affects the brain of one guitarist.

As suggested, significant differences in the topology indices 
among the four guitarists apparently indicates that the guitarists 
have different roles in the common HB-HFN, with guitarist D 
characterized by high segregation and high integration of coupling 
in the common HB-HFN. Furthermore, the differences between 
guitarists vary depending on the oscillation frequency and brain 
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FIGURE 6

ANOVA results for mean values of within- and between-brain connectivity measured by WFC and CFC, respectively. (A) ANOVA results for the main 
effect of Coupling. The main effect of the factor Coupling (within vs. between brains) for WFC (top) and CFC (bottom) is presented in box plots. 
(B) ANOVA results for the main effect of Frequency. The main effect of the factor Frequency for WFC (top) and CFC (bottom) is presented in box plots. 
Note that within-brain (left) and between-brain (right) couplings are shown in two separate box plots. (C) ANOVA results for the interaction Guitarist by 
Music Piece (MP1: Libertango; MP2: Comme un tango). The interaction of Guitarist by Music Piece for WFC (left) and CFC (right) is presented for 
within-brain and between-brain couplings in two separate diagrams. (D) ANOVA results for the interaction of Guitarist by Site. The interaction of 
Guitarist by Site for WFC (left) and CFC (right) is presented for within-brain and between-brain couplings in two separate diagrams.
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FIGURE 7

Temporal network topology changes and sound dynamics. (A) Examples of temporal changes in network topology within a music sequence, indicated 
by S, CC, and CPL. The temporal changes in the network topology are depicted separately for the four guitarists (guitarist A in blue, guitarist B in red, 
guitarist C in green, and guitarist D in yellow) across different time windows. (B) Examples of temporal changes in strengths within a music sequence, 
calculated separately for WFC and CFC, as well as for within- and between-brain coupling. The temporal changes in strengths are also depicted 
separately for the four guitarists across different time windows. (C) Examples of sound dynamics within a music sequence, indicated by MPF and ENV. 
Sound dynamics, as indicated by MPF (top) and ENV (bottom), are presented separately for the four guitar sounds (guitar A in blue, guitar B in red, 
guitar C in green, and guitar D in yellow) across different time windows.

regions, and most importantly, the network topology of guitarists 
differs in different music sequences and pieces of music, indicating 
that the network topology is nonstationary and contingent on 
musical situation. Moreover, these differences between guitarists 
also depend on the couplings type (WFC or CFC) and their 
properties (within or between the brains). The dependence of the 
guitarists’ network topology on the musical situation as well as on 
coupling properties has also been demonstrated in our previous 
work (Sänger et al., 2012, 2013; Müller et al., 2013, 2018b; Müller 
and Lindenberger, 2019).

Ensemble performance has been conceived as a microcosm of 
social interaction in which the ensemble functions as a dynamic 
system and the individual musicians as processing units (D’Ausilio 
et al., 2015). We show here that this microcosm has a multi-layered 
structure and the musicians act differently at different organizational 
levels in terms of their neural connections, which collectively form the 
entire network and its constituent parts. It can also be seen that the 
strengths of nodes in the common HB-HFN decrease with high 
frequency, while CC and especially CPL increase. All the changes 
across the frequencies forming different layers in multilayer networks 
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are highly significant and indicate different contributions of these 
frequencies to the network topology and functioning, with lower 
frequencies contributing to network integration (indicated by shorter 

CPL) and higher frequencies providing or causing network segregation 
(indicated by higher CC) (Müller et al., 2018b). Interestingly, there is 
a discrepancy regarding WFC with respect to changes of within- and 

FIGURE 8

Linear and directional relationships between guitar sounds (MPF and ENV) and NTD indices (S, CC, and 1/CPL) for Libertango and Comme un Tango, 
respectively. (A) Linear relationships indicated by Pearson’s product correlation. (B) Directional relationships indicated by multivariate Granger causality. 
The relationships are presented as matrices or heatmaps and circular connectivity maps. The different measures in the heatmaps and circular 
connectivity maps are highlighted by stripes or arcs of different colors: the pink stripe or arc indicates the four guitar sounds, determined by MPF or 
ENV (nodes 1–4), the green stripe or arc indicates the S in the four guitarists’ brains (nodes 5–8), the light brown stripe or arc indicates the CC in the 
four guitarists’ brains (nodes 9–12), and the light blue stripe or arc indicates the inverse CPL or 1/CPL in the four guitarists’ brains (nodes 13–16). The 
four guitars or guitarists in the connectivity maps are indicated by color. The linear relationships are symmetric and the directional relationships are 
asymmetric. The direction of the links is coded by color. Note that the links in the directional connectivity maps are either unidirectional or 
bidirectional.
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FIGURE 9

Linear and directional relationships between guitar sounds (MPF and ENV) and WFC and CFC strengths for Libertango and Comme un tango, 
respectively. (A) Linear relationships indicated by Pearson’s product correlation. (B) Directional relationships indicated by multivariate Granger causality. 
The relationships are presented as matrices or heatmaps and circular connectivity maps. The different measures in the heatmaps and circular 
connectivity maps are highlighted by stripes or arcs of different colors: the pink stripe or arc indicates the four guitar sounds, determined by MPF or 
ENV (nodes 1–4), the green stripe or arc indicates the WFC strengths in the four guitarists’ brains (nodes 5–8), and the light brown stripe or arc 
indicates the CFC strengths in the four guitarists’ brains (nodes 9–12). The four guitars or guitarists in the connectivity maps are indicated by color. The 
linear relationships are symmetric and the directional relationships are asymmetric. The direction of the links is coded by color. Note that the links in 
the directional connectivity maps are either unidirectional or bidirectional.

between-brain coupling with advancing frequency: while the WFC 
within brains increases with higher frequency, WFC between the 
brains increases only up to 10 Hz and then gradually decreases. Similar 
coupling patterns were also found previously (Müller et al., 2013, 

2018b). However, we show here that these patterns are characteristic 
only for the WFC, while CFC (both within and between brains) 
practically showed strong decrease with growing frequency. This 
indicates that CFC at low frequencies is of paramount importance 
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FIGURE 10

Linear and directional relationships between guitar sounds (MPF and ENV) and within- and between-brain strengths for Libertango and Comme un 
Tango, respectively. (A) Linear relationships indicated by Pearson’s product correlation. (B) Directional relationships indicated by multivariate Granger 
causality. The relationships are presented as matrices or heatmaps and circular connectivity maps. The different measures in the heatmaps and circular 
connectivity maps are highlighted by stripes or arcs of different colors: the purple stripe or arc indicates the four guitar sounds, determined by MPF or 
ENV (nodes 1–4), the green stripe or arc indicates the within-brain strengths (wB) in the four guitarists’ brains (nodes 5–8), and the light brown stripe or 
arc indicates the between-brain strengths (bB) in the four guitarists’ brains (nodes 9–12). The four guitars or guitarists in the connectivity maps are 
indicated by color: guitar/guitarist A in blue, guitar/guitarist B in red, guitar/guitarist C in green, and guitar/guitarist D in yellow. The linear relationships 
are symmetric and the directional relationships are asymmetric. The direction of the links is coded by color. Note that the links in the directional 
connectivity maps are either unidirectional or bidirectional.
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FIGURE 11

Removal of different types of links from the entire network or from one guitarist’s brain and changes in strengths of different frequencies as a function 
of this removal. (A) Removal of different types of links from the entire network. (B) Removal of different types of links or in-degree manipulation in 
guitarist A. (C) Removal of different types of links or out-degree manipulation in guitarist A. (D) Changes in loss of strengths at different frequency 
nodes as a function of link removal from the entire network. (E) Changes in retaining strengths at different frequency nodes as a function of link 
removal from the entire network.
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with respect to neuronal integration between different network 
structures and network layers. Similar results were found in a kissing 
study, where WFC and CFC were used for evaluation of the inter-
brain synchrony, with theta–alpha hyper-brain subnetworks playing 
an essential role in the between-brain binding, and with alpha-
frequency nodes serving a cleaving or pacemaker function in the 
HB-HFN (Müller and Lindenberger, 2014). Most interestingly, such a 
differentiation between WFC and CFC patterns (increasing WFC and 
decreasing CFC with advancing frequency) was also found in a 
superordinate physiological system with the respiratory, cardiac, and 
vocalizing subsystems in a choir in song, also including the motor 
subsystem of the choir conductor (Müller et  al., 2018a). It can 
therefore be assumed that such system behaviors (with increasing 
WFC and decreasing CFC in relation to increasing frequency) are 
characteristic of biological systems and of organismic, but also social 
organizations. This is apparently due to the fact that WFC typically 
emphasizes the local features of complex systems, which operate 
relatively quickly and utilize faster frequencies for this purpose. In 
contrast, CFC tends to focus on the integrative capabilities of the 
system, which are better suited to slower or lower frequencies. These 
coordination dynamics are assumed to function as a superordinate 
system, or superorganism, based on the principles of self-organization 
and circular causality with upward and downward causation, which 
are emergent properties of the system (Müller et al., 2018a, 2019a; 
Delius and Müller, 2023).

Examining the dynamics within the music sequences showed that 
the variability in the network topology determined by the SD differs 
in the four guitarists and also varies with the electrode sites, oscillation 
frequency, and music sequences in the two pieces of music. Most 
interestingly, the SD decreased with higher frequency for all topology 
measures. This suggests that the low-frequency nodes, which exhibit 
most variability, may have adaptive capabilities to adequately adjust 
the system or HB-HFN to the changes that occur during guitar 
playing. Recent literature suggests that brain signal variability (i.e., 
transient temporal fluctuations in brain signal) can capture complex 
interactions between neuronal structures and cell assemblies and 
provide important information about network dynamics and brain 
states as well as cognitive performance and mental activity (McIntosh 
et al., 2008, 2014; Deco et al., 2011; Garrett et al., 2011, 2015; Sleimen-
Malkoun et  al., 2015). It has also been shown that the network 
structure and connectivity dynamics are non-stationary and reveal 
rich dynamic patterns, characterized by rapid transitions switching 
between a few discrete functional connectivity states (Betzel et al., 
2012, 2016; Hansen et al., 2015; Shen et al., 2015). In addition, analysis 
of the temporal variability of HFN structure has revealed specific 
NTD, i.e., temporal changes of different GTA measures such as 
strength, CC, CPL, and local and global efficiency determined for 
HFNs in different time windows (Müller et  al., 2016, 2019b). 
Furthermore, the variability of these NTD metrics, as measured by the 
SD over time, was found to correlate positively with perceptual speed, 
suggesting that a more variable NTD increases performance on 
cognitive or at least perceptual speed functions and improves the 
adaptability of the system or individual (Müller et al., 2019b). Thus, 
the high variability or adaptability of low-frequency nodes in the 
HB-HFN is accompanied by the integrative properties of these nodes 
as indicated by the shorter CPL.

It has been suggested that the real-time exchange of information 
between musicians that the ensemble needs to maintain coordination 
and achieve its artistic goals is determined by the social dynamics and 

constraints related to the musical material and instruments (Keller, 
2014, 2023; Bishop, 2018; Bishop et al., 2021; Bishop and Keller, 2022). 
As mentioned above, the relationships between brains and instruments 
provide important evidence that inter-brain or hyper-brain synchrony 
has a specific relationship to the behavior of musicians (Müller and 
Lindenberger, 2023). Here we showed that different NTD measures 
exhibit linear and/or causal relationships with guitar sounds that vary 
in amplitude and frequency characteristics, with guitar sounds having 
a stronger influence on brain NTD than vice versa. These guitar-to-
brain connections were also found for intra- and inter-brain strengths, 
especially during Libertango, but there were also connections going 
from brain to guitar, especially during Comme un tango. We also 
showed that high intra-brain strengths in a guitarist are strongly 
related to the inter-brain connectivity strengths from this guitarist to 
all others. Moreover, this relationship, when examined by multivariate 
GC, is mostly unidirectional and reaches from inter-brain to intra-
brain strength, and may involve not only the same but also other 
guitarists. These influences from inter-brain to intra-brain strength 
presumably indicate that inter-brain synchrony can affect neural 
processes within the brains to achieve a stronger coordination of 
playing. In our previous study, we showed that these relationships 
between brains and instruments concern not only the guitarists’ but 
also the audience members’ brains during a concert (Müller and 
Lindenberger, 2023). In general, it can be concluded that the network 
topology of brains and the dynamical structure of guitar sounds are in 
permanent interplay and exhibit specific guitar–guitar, guitar–brain, 
and brain–brain bi- and unidirectional associations, indicating 
multilevel dynamics with upward and downward causation at all levels 
of dynamic organization.

We investigated the effect of edge or link removal in the entire 
HB-HFN or in its part concerning one guitarist’s brain and 
examined how this removal would change the network topology 
within the whole HB-HFN and in individual guitarists’ brains. 
We showed that the HB-HFN of the guitarist quartet is relatively 
robust against the loss of connections, especially when the 
strongest connections are preserved and especially when the loss 
of connections only affects one guitarist’s brain. When the edge 
removal or the loss of connections is manipulated in one guitarist’s 
brain, the topology measures (CC and CPL) change significantly 
only when the random and especially the strongest connections 
were lost, while the weakest connections mostly have no 
significant effect on the network topology. This indicates that the 
strongest connections play an essential role in the network 
topology and the loss of these connections may have detrimental 
consequences for topology and functioning. As mentioned above, 
network robustness is the ability of a network to maintain its 
integrity and functionality after the removal of nodes or edges, 
and is a prominent feature of most biological systems and social 
groups (Barabási and Pósfai, 2016; Liu et al., 2020; Bellingeri et al., 
2020b). The fact that removing nodes according to weighted rank 
produces the highest damage in real-world complex networks is 
well known (Bellingeri and Cassi, 2018; Bellingeri et al., 2019, 
2020a). Moreover, it has been found that the robustness of real-
world complex networks against link removal is negatively 
correlated with link weights heterogeneity and that a small 
fraction of strong links removal can rapidly decrease the efficiency 
and the total flow in these systems (Bellingeri et al., 2019). All this 
indicates that removal of the strongest connections affects the 
functionality of a network not only because they are so strong, but 

https://doi.org/10.3389/fnhum.2024.1416667
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Müller and Lindenberger 10.3389/fnhum.2024.1416667

Frontiers in Human Neuroscience 20 frontiersin.org

FIGURE 12

Robustness of the entire HB-HFN and of an individual guitarist’s brain indicated by changes in CC and CPL as a function of link removal of different 
types. (A) Robustness of the entire HB-HFN when the entire HB-HFN has been manipulated. (B) Robustness of the entire HB-HFN when links have 
been removed only in one guitarist’s brain (here guitarist A). (C) Robustness of one guitarist’s brain (here guitarist A) as a part of the HB-HFN when in-
degree in the same guitarist has been manipulated. (D) Robustness of the one guitarist’s brain (here guitarist A) as a part of the HB-HFN when out-
degree in the same guitarist has been manipulated. (E) Robustness of one guitarist’s brain (here guitarist A) as a part of the HB-HFN when in-degree in 

(Continued)
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mainly because the strongest connections are highly relevant in 
terms of network structure and its topology. In HB-HFN of the 
guitarist quartet, the low-frequency nodes have the strongest 
connections and play an important role in the functioning of the 
network, which is mainly integrated by these connections or 
nodes. If one would imagine a situation in which the quartet is 
disturbed in its functionality (e.g., by any technical disturbances 
or other external circumstances), these low-frequency connections 
between the quartet participants would probably be the first to 
be  disrupted, and the network could become disorganized or 
disintegrated. On the other hand, it has recently been shown that 
the coupling between the brains of pianists can increase during a 
disturbance, presumably as an adaptive compensatory effect of 
inter-brain synchronization (Lender et al., 2023). This indicates 
that our simulations of link removal are very important to 
understand how networks react, or can react, to such 
perturbations, but they are not sufficient to draw conclusions 
about living organisms or intact social groups and interactions, as 
different adaptive compensatory mechanisms can counteract the 
perturbations in such networks. Further studies are needed to 
better understand such processes and phenomena.

Limitations

The present study has limitations and leaves room for 
questions that should be  addressed in future research. First, 
we considered the whole HB-HFN as a supra-adjacency matrix 
and computed the GTA measures for each individual node with 
respect to the whole network. The individual layers and the 
connections between them were only captured using WFC (as 
coupling within the layers) and CFC (as coupling between the 
layers) strengths. However, the multilayer structure could 
be assessed in an even more differentiated way. To do so, the GTA 
tools must be adapted or other tools must be used to differentiate 
between the layers. Furthermore, we  only used three GTA 
measures (i.e., S, CC, and CPL). Other GTA measures could 
be helpful to capture other properties of these complex networks, 
such as assortativity, betweenness or closeness centrality, local and 
global efficiency, etc. Second, we analyzed the properties of the 
hyper-brain network within a single quartet. However, 
we  observed consistent patterns of HB-HFN connectivity and 
network organization across different music sequences in two 
distinct pieces of music. While this may enhance the 
generalizability of the results, further research in this direction is 
warranted. Third, robustness of a complex network is an 
important property that has not yet been investigated in relation 
to hyper-brain networks. It may be  useful to investigate such 
networks in a social interaction under perturbation conditions (cf. 
Lender et al., 2023) in order to verify and further develop the 
simulation assumptions. Furthermore, we  investigated the 

removal of links, but removal of nodes would broaden the 
perspective of robustness, allowing specific nodes and their role 
in the network to be investigated. Therefore, further sophisticated 
research is needed to shed light on the neural mechanisms of 
social interaction and interpersonal action coordination behavior.

Conclusion

Our results extend previous work on the reach of network 
interactions during interpersonal action coordination when 
playing the guitar in a quartet and highlight the way in which WFC 
and CFC, representing within- and between-layer communications 
in a complex multilayer HB-HFN, integrates different levels of 
network interaction with regard to its topology and functioning. 
We demonstrate linear and causal relationships between different 
characteristics of guitar sounds and GTA properties. We conclude 
that playing the guitar in a quartet is a dynamic process requiring 
tight interpersonal action coordination that is characterized by 
coupled brains and specific network topology dynamics, with high 
robustness of both network elements and underlying network 
structure. These findings align with studies investigating neural 
markers of interpersonal action coordination, particularly in the 
context of inter- or hyper-brain network activity (Sänger et al., 
2012; Müller et al., 2013, 2018b; Müller and Lindenberger, 2014, 
2019, 2023) and sensorimotor coupling in music and ensemble 
playing (Janata et al., 2012; Keller et al., 2014; van der Steen et al., 
2015; Gallotti et al., 2017; Jacoby et al., 2021; Laroche et al., 2022). 
It is assumed that these coordination dynamics function as a 
superordinate system, or superorganism, based on the principles 
of self-organization and circular causality, which are emergent 
properties of system behavior. Our methods provide a versatile 
toolkit for studying interpersonal action coordination across 
various social interactions and behaviors.
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another guitarist (here guitarist D) has been manipulated. (F) Robustness of the one guitarist’s brain (here guitarist A) as a part of the HB-HFN when 
out-degree in another guitarist (here guitarist D) has been manipulated. Changes in CC (left) and CPL (right) as a function of link removal across the 15 
5%-steps are presented in all diagrams for different types of link removal: loss of weakest, strongest, and random connections, in comparison to 
without removal.
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