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Abstract

This is an expository note explaining how the geometric notions of local connectedness and properness

are related to the Σ-type and Π-type constructors of dependent type theory.
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1 Introduction

This paper presents how the geometric notions of local connectedness and properness are related to the Σ-
types and Π-types constructors of dependent type theory. The purpose is to underline a common structure,
with the hope that the parallel will be beneficial to both fields. The style is mostly expository, the main
results are proved in external references.

Dependent type theory is based on the notion of family of types indexed by a type, and the basic
operations are the reindexing, the sums and the products of such families, which are assumed to always
exist. On the other hand, the geometer’s toolbox contains methods to study spaces by means of “bundles”,
that is using families of spaces indexed by the space of interest (vector bundles, sheaves. . . ). There also,
bundles can be pulled back along a morphism and sometimes pushed forward in two different ways (additively
or multiplicatively). The fact that the pushforwards are not always defined is the source of an interesting
feature. It distinguishes the classes of maps along which these pushforwards exists: locally connected and
proper morphisms.

∗This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-20-
1-0305 and by the US Army Research Office under MURI Grant W911NF-20-1-0082. The second author wishes to thank the
Max Planck Institute for Mathematics in Bonn for its hospitality and financial support during some stages of this project.
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In Section 2, we introduce an abstract notion of smooth and proper maps associated to any category C.
This is done in the setting of fibered/indexed categories over a base category B. The smooth (proper) maps
are the maps u ∶ X → Y in B along which the base change functor u∗ ∶ C(Y ) → C(X) admits a left adjoint
u! (a right adjoint u∗) compatible with reindexing/base change (aka the Beck–Chevalley conditions). Then
Section 3 details many examples in logic, category theory, topology, and geometry, where we show how our
abstract definitions connect to existing notions of smoothness and properness.

Acknowledgments The authors are happy to dedicate this paper to André Joyal on the occasion of his
80th birthday. The focus on examples is an hommage to André, who has drilled their importance into the
head of the first author.

The authors would like to thank Carlo Angiuli, Steve Awodey, Reid Barton, Denis-Charles Cisinski,
Jonas Frey, Louis Martini, Anders Mörtberg, Emily Riehl, Jon Sterling, Thomas Streicher, Andrew Swan,
and Sebastian Wolf for numerous discussions around this material. Special thanks to Denis-Charles Cisinski
for his comments on an earlier version, and to Jon Sterling for pointing out to us the example of dominances.

Conventions The paper is written in the context of ∞-categories [Lur09, Cis19], but we are simplifying
the terminology and simply say “category” for ∞-category and “1-categories” for the truncated notion. We
denote by Set (SET) the 1-category of small (large) sets, and by Cat (CAT) the (∞-)category of small (large)
(∞-)categories. The categories of functors from C to D is denoted [C,D]. The arrow category of a category
C is denoted C→.

2 Abstract setting

Let κ be a cardinal and Set
<κ be the category of sets of cardinality strictly smaller than κ. The elementary

operations on sets are the sums and product of families. For I an arbitrary set, an I-indexed family (I-family
for short) in Set

<κ is a functor I → Set
<κ, the sum and product of I-families are the left and right adjoint to

the constant family functor Set<κ → [I,Set<κ]. Given κ, one can ask for what sets I the sum and product of
I-families of κ-small sets are κ-small. Let σ be a cardinal such that for any cardinal ρ < κ we have σρ < κ.
Then Set

<κ admits sums indexed by objects in Set
<σ. Let Σ(κ) be the supremum of all such cardinals σ. We

shall call Σ(κ) the smooth bound of κ. The cardinal κ is regular if and only if κ = Σ(κ). Similarly, let π be
a cardinal such that for any cardinal ρ < κ we have ρπ < κ. Then Set

<κ admits products indexed by objects
in Set

<π . Let Π(κ) be the supremum of all such cardinals π. We shall call Π(κ) the proper bound of κ. The
cardinal κ is inaccessible if and only if κ = Π(κ) = Σ(κ).

More generally, we can replace the category Set
<κ by any category C and extract the classes of sets Σ(C)

and Π(C) indexing the sums and products which exist in C. We shall call Σ(C) the smooth calibration of
C and Π(C) the proper calibration of C.1

We are going to propose an abstract setting for the definition of smooth and proper calibrations and
illustrate it with many examples. The category C will be a fibration over some base category B with finite
limits, and the calibrations Σ(C) and Π(C) will be defined as subfibrations of the codomain fibration of B.

2.1 Calibrations and families

We fix a category B with finite limits. The codomain functor B→ → B is a cartesian fibration and we denote
by B ∶ Bop → CAT the corresponding functor (sending an object X to the slice category B/X). We shall
refer to B as the universe of B. Since B has a terminal object, the terminal functor 1 ∶ Bop → CAT, is a
subfunctor of the universe B. The corresponding fibration is the identity of B. Equivalently, it corresponds
to the subcodomain fibration B = B≃ ⊂ B→ spanned by the isomorphisms.2

1The names smooth and proper are taken from Grothendieck in Pursuing Stacks [Mal05] and the example of left fibrations
of categories. The name calibration is borrowed from Bénabou [Bén75], even if his notion is slightly different.

2We do not distinguish equivalent categories here.
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Definition 2.1.1. A calibration is a subuniverse U ⊂ B (i.e. a subfibration). The constant calibration is the
calibration 1 → B. A calibration is pointed if it contains the constant calibration (equivalently, if U ⊂ B

→

contains all isomorphisms). A calibration U ⊂ B is regular if it is pointed and the corresponding class of maps
in B is closed under composition.

A regular calibration defines a wide subcategory of B (since it contains all isomorphisms). In fact, regular
calibrations are in bijection with wide subcategories of B whose maps are closed under base change in B.

Definition 2.1.2. Let U ⊂ B
→ cod
ÐÐ→ B be a subfibration of the codomain fibration. From U and C, the

fibration FamU(C) of U-indexed families of objects in C is defined as the functor φ in the diagram

FamU(C) C

U B

B

φ

⌜
dom

cod

(where the square is fiber product). We denote by FamU(C) the associated functor. Its value at I in B is
the category of pairs (u ∶ U → I ∈ U,C ∈ C(U)) (with the obvious notion of morphism).

2.2 Sums and products

The family construction associated to the constant calibration is the identity: C = Fam1(C). If U is a pointed
calibration we get a canonical functor ∆U ∶ C = Fam1(C)→ FamU(C).

Definition 2.2.1. Let U be a pointed calibration. A category C has U-indexed sums (product) if the
canonical functor ∆U ∶ C → FamU(C) has a left (right) adjoint.

The following result is proved for 1-categories in [Str23]. The statement extends to ∞-categories as well.
So do a range of expected results from [Str23, Moe82] about fibrations with internal sums. This has been
developed by [BW23, Wei22a] in the type theory of synthetic ∞-categories Riehl–Shulman [RS17, Rie23a]
(internally to any ∞-topos, see [Shu19, Rie23b, Wei22b]).

Proposition 2.2.2 (Bénabou–Streicher). If U is a regular calibration, then FamU(C) is the free cocompletion
of C for sums indexed by objects in U. A pointed calibration U is regular if and only if U has U-indexed
sums.

Remark 2.2.3. The notion of regular calibration corresponds to the notion of a subuniverse closed under
Σ-types in dependent type theory.

2.3 Smooth and proper maps

Definition 2.3.1 (Smooth & proper maps). We fix a functor C ∶ Bop → CAT. A map u ∶ X → Y in B is
called left (right) Beck–Chevalley for C if for any cartesian square

Ȳ Y

X̄ X

v̄

ū ⌜ u

v

the maps u∗ and ū∗ have left (right) adjoints

C(Ȳ ) C(Y )

C(X̄) C(X)

v̄
∗

ū! ū∗ u! u∗

v
∗

3



and the corresponding mate natural transformation is invertible

ū!v̄
∗ ∼Ð→ v∗u! ( v∗u∗

∼
Ð→ ū∗v̄

∗ ) .

A map u ∶X → Y in B is called smooth (or stably left Beck–Chevalley) (proper, or stably right Beck–Chevalley)
if every base change of u is left (right) Beck–Chevalley. The relation of these operations with quantification
in logic is recalled in Table 2.

The classes of C-smooth and C-proper maps are closed under base change and define sub-fibrations of
the codomain fibration of B. Equivalently, they define regular calibrations Σ(C) ⊂ B ⊃ Π(C) of the universe
of B. The interest of the notions is in the following result.

Proposition 2.3.2. The smooth (proper) calibration of C is the largest calibration for which C admits sums
(products).

Proof. Unfolding the condition that ∆U ∶ C → FamU(C) has a left (right) adjoint, we find that the left adjoint
exists if and only if all maps in U are smooth (proper), see [Str23].

The characterization of the smooth and proper maps can be quite difficult in practice. In the setting
where the category C has a forgetful functor into the universe B (typically, when C classifies objects in B

with an extra structure, notably when C is a calibration) stricter notions of smooth and proper maps can
be defined which are easier to characterize in practice.

Definition 2.3.3 (Strict smoothness/properness). Let C ∶ Bop → CAT be equipped with a natural transfor-
mation U ∶ C ⊂ B to the universe of B. For f ∶ X → Y be a map in B, we have a commutative square

C(D) Cat/D

C(C) Cat/C .

f
∗

UD

f
∗

UC

We shall say that a smooth map is strictly smooth (or that a proper map is strictly proper) if the mate
f!UC → UDf! (the mate UDf∗ → f∗UC) is invertible. Essentially, this says that a map is strictly smooth if
f! can be computed by composition with f in B, and that it is strictly proper if f∗ can be computed by
exponentiation along f in B.

Remark 2.3.4. We shall see that such maps are sometimes easier to characterize in practice. For proper
maps, the definition implies that they are exponentiable maps (since the dependent product must exist for
the codomain fibration).

Lemma 2.3.5. If C ⊂ B is a regular calibration, then a C-smooth map is strict if and only if it is in C ⊂ B→.

Proof. A map u ∶ X → Y is strict if composition with u sends maps r ∶ X̄ → X in C to maps X̄ → Y in C.
Applied to r = idX , this implies that u is in C and that every strict smooth maps is in C. The converse is
true by regularity of C.

A modality on the category B is a (unique) factorization system (L,R) such that the factorization (or
equivalently the left class L) is stable under base change. In this situation, both classes L and R define
calibrations L ⊂ B ⊃ R and R is even a reflective calibration (with the reflection given by the factorization).

Lemma 2.3.6. If C = R ⊂ B is the subuniverse of the right class of a modality on B, then every map in B

is C-smooth.

Proof. For a map u ∶ X → Y in B, and r ∶ X̄ → X in R, the left adjoint u!(r) is given by the right map of
the (L,R)-factorization of the map composite map X̄ → X → Y . It satisfies the Beck–Chevalley condition
because the factorization is stable under base change. The last statement is Lemma 2.3.5.
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Lemmas 2.3.5 and 2.3.6 together provide examples where smooth and strictly smooth maps do not coin-
cide.

We consider now the case of a weak factorization system (L,R) on B. The class R is still closed under
base change and define a regular calibration R ⊂ B, but not the class L.

Lemma 2.3.7. If C = R ⊂ B if the regular calibration associated to the right class of a weak factorization
system (L,R) on B, then a C-proper map u is strict if and only if for any base change ū → u, the functor
ū∗ preserves the class L. In particular, if the factorization system (L,R) is a modality, then every proper
map is strict.

Proof. A proper map u is strict if for any base change ū → u, the functor ū∗ preserves the maps in R, but
this is equivalent to ū∗ preserving the class L. And when (L,R) is a modality, every ū∗ preserves the class
L.

Definition 2.3.8 (Acyclic and localic maps). A map u ∶ X → Y in B is called C-pre-acyclic if u∗ ∶ C(Y ) →
C(X) is an equivalence. A map u ∶ X → Y in B is called C-acyclic if every base change of u is C-pre-acyclic.
We denote by A(C) (Alpha) the codomain subfibration of C-acyclic maps. Acyclic maps are always both
smooth and proper. A map is called C-localic if it is right orthogonal to C-acyclic maps. We denote by Λ(C)
the codomain subfibration of C-localic maps.

The name ‘acyclic’ is motivated by the following result. The name ‘localic’ is motivated by an application
to topos theory (see third example of Section 3.3). In a ∞-topos E, an acyclic class is a class of maps
containing all isomorphisms, closed under composition and base change, and under colimits in the arrow
category of E [ABFJ22, Definition 3.2.8]. If (L,R) is a (unique) factorization system on E, the class L is
acyclic if and only if (L,R) is a modality.

Lemma 2.3.9. If B is an ∞-topos and if C ∶ Bop → CAT sends colimits to limits, then the class of C-acyclic
maps is an acyclic class.

Proof. It is easy to see from the definition that A(C) contains all isomorphisms, is closed under composition
and base change. It is also closed under small colimits in B

→ since the functor C send colimits to limits and
A(C) is the inverse image of the class CAT

≃
⊂ CAT

→ which is closed under limits.

When B is a topos and the C-acyclic and C-localic maps form a factorization system, they define a
modality on B.

3 Examples

3.1 Set theory and type theory

The examples are summarized in Table 1.

Any category C represents a functor B
op = Set

op → CAT, sending I to CI . In this setting, all conditions
on maps can be computed fiberwise. A set I is smooth (proper) if the coproduct ∐I ∶ C

I → C (product
functor ∏I ∶ C

I → C) exists. A map is smooth (proper) if its fibers are smooth (proper) sets. If C is the
terminal category, every set is smooth and proper. If C is the initial category, the smooth (proper) maps
are the surjections. A set I is acyclic if C → CI is an equivalence. If C is the terminal category, every set is
acyclic (and every map is acyclic). If C is the empty category, the acyclic sets are the non-empty sets (the
acyclic maps are surjections and the localic maps are the injections). If C is otherwise, the only acyclic sets
are the singletons (the acyclic maps are the bijections and every maps is localic).

The second example is the one detail in the introduction of Section 2. It is of the previous kind if and
only if κ is a regular cardinal.

If we consider now the example of the fibration of subsets (or of injections), every map u ∶ I → J is
smooth and proper. The functors u! and u∗ are the two direct images of subsets, classically related to

5



Table 1: Examples from set theory and type theory

B C Σ(C) Π(C) A(C) Λ(C)

Cat. of sets a category C
sets I for which
∐I exists in C

sets I for which
∏I exists in C

(see text)

Cat. of sets
maps with

κ-small fibers
(κ ≥ 2)

maps with
Σ-small fibers

for Σ =

sup{σ ∣ ρ < κ⇒
ρ.σ < κ}

maps with
Π-small fibers

for Π =

sup{π ∣ ρ < κ⇒
ρπ < κ}

bijections all maps

Cat. of sets
subsets
(κ = 2)

all maps all maps bijections all maps

B
hyperdoctrine
B

op → Poset
all maps all maps ? ?

B

π-clan
structure
D ⊂ B

strict smooth =
all maps in D

strict proper ⊃
all maps in D

? ?

A category E

with a
subobject
classifier Ω

dominance
O ⊂ Ω

smooth =
overt maps

strict smooth =
maps in O

proper =
proper maps

str. proper = ?
(see text)

A 1-topos E

Grothendieck
topology
Ωj ⊂ Ω

smooth =
all maps

strict smooth =
closed monos

proper =
“quasi-compact”

maps

maps inverted
by the

localization

relative
sheaves

S, the
∞-category

of
∞-groupoids

subcategory
S
<κ of

κ-small
∞-groupoids

strict : maps
with κ-small

fibers
(if κ regular)

strict : maps
with κ-small

fibers
(if κ inacc.)

? ?

An ∞-topos
E

subuniverse
Tn of

n-truncated
objects

the whole
universe (strict
smooth maps

are the
n-truncated

ones)

the whole
universe (all

maps are
strictly proper)

(n + 1)-conn.
maps

(n + 1)-trunc.
maps

An ∞-topos
E

subuniverse
R ⊂ E of

modal types
(for a

modality
(L,R) on E)

the whole
universe (strict
maps are those

in R)

?
décalage class
of L [ABFJ24]

right class of
the décalage
modality of
[ABFJ23]

An ∞-topos
E

subuniverse
F ⊂ E of
sheaves

assoc. to a
lex loc.

F = E[W−1]

the whole
universe (strict
maps are those

in F)

? maps in W maps in F

6



existential and universal quantifiers (u!A = {j ∣ ∃a ∈ A,a ∈ u−1(j)}, u∗A = {j ∣ ∀a ∈ A,a ∈ u−1(j)}). More
generally, the setting of sets and subsets could be replaced by a hyperdoctrine in the sense of Lawvere
[Law69, Law70, See83]. We recall the correspondence between logical quantifiers and the adjoints to base
change in Table 2.

Table 2: Quantifiers and direct images

Indexing
object

Families change of index left image right image

Predicate
logic

variables predicates substitution ∃ ∀

Dependent
type theory

contexts
dependent

types
substitution Σ Π

Category
theory:
fibration
C → B

object in
base

object in
fiber

base change u∗ u! u∗

Another example related to type theory is that of a category B with a π-clan structure in the sense
of Joyal [Joy17]. The clan structure distinguishes a class of maps in D ⊂ B closed under base change and
containing all isomorphisms, or equivalently a regular calibration D ⊂ B. This implies that strict smooth
maps are exaclty the maps in D. And the definition if the π-clan structure says exactly that every map in
D is strictly proper [Joy17, Definition 2.4.1].

If B is a cartesian closed 1-category with a subobject classifier (e.g. 1-topos), we consider the example
of a dominance, which is a regular calibration of monomorphisms classified by a subobject O ⊂ Ω of the
subobject classifier [Esc04b, Hyl91]. Intuitively, the object O classifies some subobjects meant to be “open”
in the sense of topology, and the exponential OA is the “space” of open subspaces. The smooth (proper)
maps define a notion of open (compact) maps in the sense of topology. The strictly smooth maps are those
classified by O (Lemma 2.3.5). The strictly proper maps are those maps for which the direct image can be
computed within the posets of all subobjects. Acyclic and localic maps are considered in the literature, but
only with the base change property along cartesian projections (and not arbitrary maps). They are called
O-equable maps and O-replete maps in op. cit..

When B is a 1-topos, any Grothendieck topology defines a dominance Ωj ⊂ Ω where Ωj is the classifier
of closed monos. In this case, all maps are smooth, the closed monos are the strictly smooth maps. The
acyclic maps are the maps inverted in the localization by the topology, and the localic maps are the relative
sheaves. A map A → 1 is proper if and only if A it is quasi-compact (every covering family has a covering
finite subfamily). General proper maps can be described by a relative version of the same condition.

The∞-category S of∞-groupoids is a higher categorical model for dependent type theory with univalence:
precisely, the small sub-universes correspond to univalent maps in S. It seems difficult to describe the smooth,
proper, acyclic and localic maps for an arbitrary subuniverse, but it is easier with strict smooth and proper
maps. We shall only consider the subuniverse of κ-small spaces. When κ is regular, the strict smooth maps
are the maps with κ-small fibers by Lemma 2.3.5. When κ is inaccessible, the strict proper maps are the
maps with κ-small fibers by Lemma 2.3.7. In particular, if κ is the inaccessible cardinal bounding the size
of small objects, all maps are smooth and proper. In this case, the acyclic maps are reduced to equivalences
and all maps are localic.

In the example of an ∞-topos E, we denote the universe by E.3 By definition of an ∞-topos, the functor

3The same example could be presented in the setting of 1-topoi, but the formalism of ∞-topoi is just easier.
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E ∶ Eop → CAT sends colimits of E to limits in CAT, and the interesting subuniverses are those satisfying a
similar condition (corresponding to local classes of maps [Lur09, Proposition 6.1.3.7]).

For n ≥ −2, we denote Cn and Tn the classes of n-connected and n-truncated maps. For example, the class
C−1 and T−1 are the classes of surjections and monomorphisms. Every maps can be factored uniquely into an
n-connected maps followed by an n-truncated maps, and this factorization is stable under base change. The
class Tn contained all isomorphisms, is closed under composition, and is local. It defines a regular calibration
Tn ⊂ E which is also a reflective subuniverse (where the reflection is given by the factorization). Every map
is smooth for T, and the strict smooth maps are those in T. Every map is strictly proper (hence proper) for
T because dependent products preserve the truncation level of objects. The Tn-acyclic maps and Tn-localic
maps can be characterized as the (n + 1)-connected maps and (n + 1)-truncated maps (see below).

More generally, we define a modality on E as a (unique) factorization system (L,R) on E such that both
classes are stable under base change. Then both classes L and R are local by [ABFJ20, Proposition 3.6.5]
and define "good" subuniverses L,R ⊂ E ∶ Eop → CAT. We shall consider the case C = R. Since the class R

is closed under composition and base change, Lemma 2.3.5 shows that the strict smooth maps are all maps
in R. But the subuniverse actually admits sums indexed by all maps in E. Given a map u ∶ X → Y in E and
a map r ∶ X̄ → X in R, the (L,R)-factorization of the composite map X̄ → X → Y gives maps X̄ → Ȳ in L

and r′ ∶ Ȳ → Y in R. The image of r by u! is the map Ȳ → Y . The Beck–Chevalley condition holds because
the factorization is stable under base change. A more conceptual way to see this is to say that R is in fact
a reflective subuniverse (where the reflection is given by the factorization) and therefore complete under all
sums existing in E.

In this example, it seems difficult to describe the proper maps without further assumption on R. However,
the acyclic maps are exactly the maps in the décalage of the class L [ABFJ24, 2.2.7] (they are also the
‘fiberwise R-equivalences’ of [ABFJ22, Def.3.3.1]). In particular, they form an acyclic class in E [ABFJ22,
Theorem 3.3.9]. In this context, acyclic and localic maps define a modality on E which is detailled in
[ABFJ23, Theorem 2.3.32].

Finally, any left-exact localization of ∞-topoi q∗ ∶ E→ E[W−1] provide a modality (W,F) on E, where W

is the class if maps inverted by q∗ and F is the class of “relative sheaves” [RSS19, ABFJ22]. Such a modality
is left-exact in the sense that the factorization of a map preserves finite limits (in the arrow category). In
fact, there is a bijection between left-exact localization and left-exact modalities. Let W ⊂ E ⊃ F be the
corresponding subuniverses. If E′ ∶ E[W−1]op → CAT is the universe of the ∞-topos E[W−1], one can show
that F = E′ ○ q∗ ∶ Eop → CAT. Since left-exact modalities are fixed by décalage [ABFJ24, Lemma 2.4.6 (1)],
the acyclic (localic) maps coincides with the class W (F).

3.2 Category theory

We consider now example from category theory. The study of fibrations of categories was the motivation
of Grothendieck to introduce his notion of smooth and proper functors. The examples are summarized in
Table 3.

The first example is that of the codomain fibration of a category with finite limits. There, every map is
smooth and the proper maps are exactly the exponentiable maps. Essentially by definition, all the projections
X × Y → X are proper if and only if the category B is cartesian closed, and all the maps are proper if and
only if the category B is locally cartesian closed. The acyclic maps are the isomorphisms and every map is
localic.

The second example is the particular case of the first one where B = Cat. It will be the base of all the other
examples. We denote by Cat the universe of Cat (which can be thought of either as the codomain fibration,
or as the slice functor C ↦ Cat/C). The category Cat is cartesian closed but not locally cartesian closed.
The exponentiable functors are the Conduché fibrations (see [AF20, Lemma 1.11] for a higher categorical
account). The acyclic maps are the equivalences of categories and every functor is localic.

The following examples will study various kinds of “fibrations” condition on functors. This will lead to
consider functors C ∶ Catop → CAT with a natural forgetful morphism C → Cat into the universe of Cat (or
equivalently a morphism between the corresponding fibrations over Cat).

8



Table 3: Examples from category theory

B C Σ(C) Π(C)

A lex category
the codomain

fibration
all maps exponentiable maps

Cat. of
categories

all functors all functors Conduché fib.

Cat. of
categories

left fibrations
smooth = ?

strictly smooth =
left fib.

proper = ?
strictly proper =

Lurie-proper functor
(= Grothendieck-smooth)

Cat. of
categories

right fibrations
smooth = ?

strictly smooth =
right fib.

proper = ?
strictly proper =

Lurie-smooth functors
(= Grothendieck-proper)

Cat. of
categories

cocartesian
fibrations

smooth = ?
strictly smooth =

cocart. fib.

proper = ?
strictly proper = Cond.
+ u∗ pres. ff left adj.

Cat. of
categories

cartesian fibrations
smooth = ? strictly
smooth = cart. fib.

proper = ? strictly
proper = Cond. + u∗

pres. ff right adj.

Let us start with the the functor LFib ∶ Catop → CAT sending a category C to its category LFib(C) = [C,S]
of left fibrations. This functor is essentially representable by the category S (up to a size issue). The
Grothendieck construction provides a natural transformation LFib(C)→ Cat/C and we can talk about strict
notions. Recall that the left fibrations are the right class of a (unique) factorization system on Cat, where
the left class is that of initial functors. The characterization of smooth and proper maps is open. The
previous factorization system is not stable under base change and we cannot apply Lemma 2.3.6. But the
strict smooth maps are exactly the left fibrations themselves. The class of proper functors contains right
fibrations And we can use Lemma 2.3.7 to characterize the strict proper maps as the exponentiable functors
u ∶ C → D such that for any base change ū → u, the pullback along ū preserves the class of initial functors.
This is exactly the notion of proper functor of [Lur09, dual of Definition 4.1.2.9] and the notion of smooth
functor of Grothendieck in Pursuing Stacks (and also in [Joy08, 21.1] and [Cis19, dual of Definition 4.4.1]).4

In particular, right fibrations are strict proper functors for LFib. In the dual situation of right fibrations, the
notion of smooth and proper are reversed.

Finally, we can look at the example of cocartesian (and cartesian) fibrations. The functor of interest is
C ↦ CcFib(C) = [C,Cat]. Up to size issues, it is represented by Cat itself. The class of cocartesian fibrations
is almost the right class of a weak factorization system on Cat (in 1-categories, it is the right class of an
algebraic factorization system [BG14]). The corresponding left class is the class of fully faithful left adjoint
functor. Any functor f ∶ C → D admits a factorization C → f ↓ D → D into a fully faithful left adjoint

functor followed by a cocartesian fibration (where f ↓ D if the fiber product of C → D
dom
←ÐÐ D→). Again,

the smooth and proper maps are difficult to find. The strict smooth maps are the cocartesian fibrations
themselves. The previous factorization is enough to apply Lemma 2.3.7 to characterize the strictly proper

4The reversal of names is due to a preference for covariant or contravariant functors in the definitions. Grothendieck’s
convention uses presheaves, we have preferred to use covariant functors.
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maps as the exponentiable functors u ∶ C →D such that u∗ preserves fully faithful left adjoint functors. This
class includes that of cartesian fibrations. In the dual situation of right fibrations, the notion of smooth and
proper are reversed.

In all the “fibration” examples, the acyclic maps are the equivalences and every functor is localic. A
functor u ∶ C → D induces an equivalence u∗ ∶ SD → S

C if and only if it is a Morita equivalence. The
acyclic maps are Morita equivalences which are stable under base change. This implies that they must be
(essentially) surjective functors. Since a Morita equivalence is always a fully faithful, this implies that this
is an actual equivalence.

3.3 Topology and geometry

We now consider examples where the base category B is a category of topological objects. We are going to
see a tight connection between direct images functors, logical quantifiers, and classical topological conditions.

The examples are summarized in Table 4.

Table 4: Examples from topology and geometry

B C Σ(C) Π(C) A(C) Λ(C)

Cat. of
locales

all maps all maps
exponentiable

maps
homeo-

morphisms
all maps

Cat. of
locales

open immersions
(rep. by

Sierpiński space)

open maps
(strict: open
immersions)

proper maps
(strict: locally
compact and

proper)

homeo-
morphisms

all maps

Cat. of
1-topoi

open immersions
(rep. by

Sierpiński topos)

open maps
[Joh02]

proper maps
[MV00] (strict:
exponentiable

+ proper)

hyper-
connected
morphisms

localic
morphisms

Cat. of
1-topoi

étale maps (rep.
by object
classifier)

locally
connected maps

[Joh02]

tidy maps
[MV00]

equivalences all morphisms

Cat. of
∞-topoi

étale maps (rep.
by object
classifier)

locally
contractible

maps [MW23a]

proper maps
[MW23b]

equivalences all morphisms

Cat. of
∞-topoi

n-tr. étale maps
(rep. by

n-truncated
object classifier)

locally
n-connected
maps (by

methods similar
to [MW23a])

n-proper maps
(by methods
similar to
[MW23b])

hyper-
(n + 1)-con-

nected
morphisms

(n + 1)-localic
morphisms

Cat. of
schemes

torsion sheaves

smooth map ⊃
smooth

morphisms
[FK88,

Thm 7.3]

proper map ⊃
proper

morphisms
[FK88,

Thm 6.1]

? ?
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In the first example, B = Locale is the category of locales5 with the codomain fibration. Every map is
smooth, and the proper maps are the exponentiable ones. The exponentiable locales are the locally compact
ones (i.e. the locales such that Op (X) is a continuous lattice) [Joh82, Theorem 4.11]. Acyclic maps are the
isomorphisms, and every map is localic.

The next example is that of the functor Locale
op → CAT sending a locale X to its frame Op (X) of open

domains. This functor is represented by the Sierpiński space. Let us say that a map is an open immersion
if it is isomorphism to the inclusion of an open. The fibration corresponding to Op (−) is the subfibration of
the codomain fibration of Locale spanned by open immersions. This shows that the notion of strict smooth
and proper maps makes sense.

The smooth morphisms are almost by definition the open morphisms of topology (this can be shown
directly, or deduced from the similar result for topoi [Joh02, Lemma C.3.1.10], see also [Esc04a]). By
Lemma 2.3.5 the strict smooth maps are the open immersions that are also open, but that is the case of
every open immersion. The proper morphisms are the proper morphisms of topology (i.e. the universally
closed morphisms, this can be seen directly by considering left adjoints on the posets Op (X)op, or deduced
from topos theory [Joh02, Lemma C.3.2.81], see also [Esc04a, Esc20]). The characterization of strict proper
maps is open. An open immersion is proper if and only if it is isomorphic to the inclusion of a clopen. The
computation of acyclic and localic maps is straighforward.

In the third example, B is the category of 1-topoi and geometric morphisms [Joh02, AJ21]. If we look at
the codomain fibration, the only non-trivial class of maps is that of exponentiable maps [JJ82].

Another important fibration is the one of open sub-1-topoi (or open immersions), sending a 1-topos X to
the poset of subterminal objects in its category of sheaves Sh(X) (its dual 1-logos in the sense of [AJ21]).
This fibration is represented by the Sierpiński topos (dual to the 1-logos Set→). The identification of smooth
maps as open morphisms of 1-topoi is done in [Joh02, Theorem C.3.1.28], and that of proper maps as proper
morphisms of 1-topoi is done in [MV00, Corollary I.5.9] and in [Joh02, Theorem C.3.1.28]. Both references use
a “weak” version of Beck–Chevalley conditions (where the mate transformation is only monic) for arbitrary
sheaves. But restricted to subterminal objects this condition recovers the one from Definition 2.3.1 and
this can be shown to be equivalent to the weak condition (see [Joh02, Proposition A.4.1.17] and [MV00,
Proposition 3.2]).

Open immersions can be composed and define a regular calibration on Topos. Then, Lemma 2.3.5 shows
that the strict smooth maps are exactly the open immersion of 1-topoi. The characterization of strict
proper maps is open. An open immersion of 1-topoi is proper if it is also the inclusion of a closed sub-1-
topoi (corresponding to a decidable subterminal object). Interestingly, in this example the notion of acyclic
and localic maps recover the hyperconnected and localic morphisms of topoi (this is in fact the example
motivating the name ‘localic’). The proof is straightforward for hyperconnected maps, and the fact that the
right orthogonal to hyperconnected morphisms are the localic morphisms is [Joh02, Lemma A.4.6.4].

The next example is the case of the fibration of étale maps over the category of 1-topoi, sending a 1-topos
X to its category of sheaves of sets (its 1-logos) Sh(X). This fibration is representable by the “object classifier”
or the “topos line” (that we shall denote A, its logos of sheaves is [finset,Set]) and the existence of sums and
product for the étale fibration can be interpreted as sums and product and product structure on this object.
In this case, the smooth maps are the locally connected morphisms of 1-topoi [Joh02, Corollary C.3.3.16],
and the proper maps are the tidy morphisms of 1-topoi, see [MV00, Corollary III.4.9] or [Joh02, Corollary
C.3.4.11]. The strict smooth maps are all the étale morphisms. The characterization of strict proper maps
is open. In this setting, the acyclic maps are the equivalences and every map is localic.

Interestingly, not every étale map is proper: the intersection of the two classes is the class of finite maps.
This means that the “topos line” does not have arbitrary products indexed by itself, but only finite products.
This might be surprising since category of sheaves are locally cartesian closed, but dependent products are
not preserved by geometric morphisms, only finite products are.

The generalization of the previous results to ∞-topoi is quite rich! For the case of the codomain fibration,
exponentiable ∞-topoi have been characterized in [Lur17, Theorem 21.1.6.12] and [AL19].

5Using locales instead of topological spaces simplify the computations. Similar considerations are true for sober spaces.
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The case of the fibration of étale morphisms has been studied recently by Martini and Wolf. If B = Topos∞
is the category of ∞-topoi and C(X) = Sh∞(X) is the category of higher sheaves (the ∞-logos dual to X),
then the smooth maps are the locally contractible morphisms of ∞-topoi [MW23a], and the proper maps
are the proper morphisms of ∞-topoi [Lur09, MW23b]. The acyclic maps are equivalences and every map is
localic.

It is interesting to restrict the fibration of higher sheaves (aka higher etale morphisms) to n-truncated
sheaves only (the case n = −1 recovers the fibration of open immersion). In this case, it is easy to adapt
the results of Martini and Wolf to characterize the smooth maps as some locally n-connected morphisms of
∞-topoi6 and the proper maps are the n-proper morphisms of ∞-topoi7 The strict smooth maps are the
n-truncated étale morphisms of topoi. The corresponding acyclic and localic maps define notions of hyper-
(n + 1)-connected morphisms and (n + 1)-localic morphisms, and every geometric morphism should factors
into a hyper-(n + 1)-connected morphism followed by a (n + 1)-localic morphism. Moreover, an ∞-topos X

should be n-localic in the sense of [Lur09, Definition 6.4.5.8] if and only if the morphism X → 1 is n-localic
in the previous sense.

Étale maps define a regular calibration of the universe of Topos∞ and notion of strict smooth and proper
maps can be defined. By Lemma 2.3.5, the strict smooth maps are exactly the etale maps. The strict proper
maps are exponentiable maps u whose direct image u∗ preserves etale maps. their characterization is open.

The last example of Table 4 is in algebraic geometry, where the base category is the category Sch of
(noetherian) schemes, and the functor Sch

op → CAT is the one sending a scheme X to its category of torsion
sheaves [FK88]. The characterization of smooth and proper maps in general is open, but [FK88, Theorems
6.1 & 7.3] show that smooth morphisms of schemes are smooth maps, and that proper morphisms of schemes
are proper maps. This setting is the one that inspired Grothendieck to name his notions of smooth and
proper functors [Mal05]. The characterization of acyclic and localic maps is an open question.
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