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IWASAWA INVARIANTS IN RESIDUALLY REDUCIBLE HIDA

FAMILIES

ROBERT POLLACK AND PRESTON WAKE

In memory of Joël Belläıche

Abstract. We study the variation of µ-invariants of modular forms in a cusp-
idal Hida family in the case that the family intersects an Eisenstein family. We
allow for intersections that occur because of “trivial zeros” (that is, because p

divides an Euler factor) as in Mazur’s Eisenstein ideal paper, and pay special
attention to the case of the 5-adic family passing through the elliptic curve
X0(11).

1. Introduction

1.1. Congruences from L-values. In [BP19], the first author and Belläıche stud-
ied the µ-invariants of Hida families of cuspidal eigenforms which admit congruences
with Eisenstein series. The congruences studied there were ones that arose from
p-divisibilities of L-values, in this case, Bernouli numbers. For instance, consider
the case of tame level N = 1 where p | Bk, the k-th Bernoulli number. In this sit-
uation, there is a cuspidal Hida family which has non-trivial intersections with an
Eisenstein Hida family with the intersections occuring at the p-adic weights which
are zeroes of the p-adic ζ-function (which is non-trivial as p | Bk).

Assuming certain Hecke algebras were Gorenstein, it was shown in [BP19] that
the µ-invariants in the cuspidal family blew up as one approached these intersection
points. Moreover, precise formulas were conjectured about the values of these µ-
invariants which in favorable situations (i.e. when the cuspidal Hida family was rank
1 over weight space) were given simply as the p-adic valuation of certain special
values of the p-adic ζ-function. When Up − 1 generates the Eisenstein ideal, these
conjectures were shown to hold for the branch of the Λ-function with trivial tame
character, and the λ-invariants in these families were shown to be identically zero.

1.2. Congruences from Euler factors. In this paper, we aim to treat the anal-
ogous situation where congruences arise because of divisibility of Euler factors. For
example, consider the case of N a prime such that N ≡ 1 (mod p). By Mazur’s
famous result [Maz77], as long as p > 3, there is always a cuspidal eigenform in
S2(Γ0(N)) congruent to the unique ordinary Eisenstein series of weight 2 and level
N . The most famous example of this congruence is when p = 5 and N = 11. In
this case, there is a unique such cuspidal eigenform and it is exactly the modular
form corresponding to the elliptic curve X0(11).

The ordinary p-stabilization of this form to level Np = 55 lives in a Hida family
that is rank 1 over weight space. However, there is a key difference in this situation
from the case treated in [BP19] where there was a unique Eisenstein family to
consider. In our situation, there are two Eisenstein families; namely, one where
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UN = 1 for all weights and one where UN = Nk−1. Since N ≡ 1 (mod p), these
two families are congruent modulo p. Moreover, the localization of the Hida Hecke
algebra which corresponds to these two families together with the cuspidal family
is not Gorenstein and the methods of [BP19] do not apply.

To avoid this problem, we employ a method already used in [Oht14] and [WWE21]
where we remove UN from our Hecke algebra and replace it with wN , the Atkin-
Lehner involution. While the UN -eigenvalues of the two Eisenstein families are
congruent, the wN -eigenvalues of these families are 1 and −1, and the congruence
is broken. (It is verified in Appendix A that Hida theory still works as expected
for these modified Hida Hecke algebras.)

We are interested in the Eisenstein family with wN -eigenvalue −1 as our cuspidal
family has wN -eigenvalue equal to −1. The localization of the modified Hecke
algebra corresponding to this Eisenstein family together with our cuspidal family
turns out to be Gorenstein and we are good shape to generalize the methods of
[BP19].

We state our results in the specific case of p = 5 and N = 11. To set up a
little bit of notation, let L+

p (k, s) denote the (plus) two-variable p-adic L-function
over Q∞, the cyclotomic Zp-extension, corresponding to the Hida family through
X0(11).

Theorem 1.1. Let N = 11, p = 5, and let k be an integer with k ≡ 2 (mod 4).
Let fk denote the unique ordinary eigenform in Sk(Γ0(Np)) whose residual repre-
sentation is 1⊕ ω, where ω is the mod-p cyclotomic character. Then

L+
p (k, s) = (Nk/2 − 1) · U(k, s)

where U(k, s) is a unit a power series in k and s. In particular, the Iwasawa
invariants of fk are given by

(1) µ(fk) = valp(ap(fk)− 1) = 1 + valp(k) and
(2) λ(fk) = 0.

Note that considering weight 2 in the above theorem yields a µ-invariant of 1.
This conclusion corresponds to the famous fact that µ(X0(11)) = 1 for p = 5
(see [Maz72, Section 10]). Further, the above theorem implies that as one moves
closer and closer to weight 0 in this Hida family, the µ-invariants blow up linearly.
Theorem 1.1 is a special case of Theorem 1.2 below.

1.3. The more general case. We now discuss the key ingredients that go into
Theorem 1.1 to unravel what is special about this case with (N, p) = (11, 5) and
weight 2, and what can be said in greater generality. To this end, we now let N
and p be prime numbers with N ≡ 1 (mod p), and let k0 be an even integer with
0 < k0 < p − 1. Let Tm denote the completion of the Hida Hecke algebra with
tame level N at the maximal ideal given by the residual representation ρ = 1⊕ωk0

and with Atkin–Lehner sign wN = −1; let T0
m denote the quotient of Tm that acts

faithfully on cuspforms. Let Im ⊆ Tm denote the Eisenstein ideal.
The following facts hold in the setting of Theorem 1.1, where p = 5, N = 11,

and k0 = 2:

(1) Tm and T0
m are Gorenstein

(2) Im is generated by Up − 1

(3) p ∤
Bk0

k0

(4) N ≡ 1 (mod p) but N 6≡ 1 (mod p2)
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(5) the rank of T0
m over the Iwasawa algebra Λ equals 1

We will now examine each of these facts in turn and how (if at all) they are used
in the proof of Theorem 1.1; then we will state the general version Theorem 1.2 of
the theorem. We first note that (2) implies (1) (see Lemma 2.10). In fact, (1) holds
whenever Im is principal.

Condition (2) is crucial to obtain as precise a result as in Theorem 1.1. However,
we make use of several recent results [Deo23, Wak23, WWE21] about the structure
of these Hecke algebras which provide a numerical criterion that is equivalent to
(2), as we now explain. Let logN : F×

N → Fp be a surjective homomorphism (noting
that p | (N − 1), this is a reduction modulo p of a choice of discrete logarithm).
Further, let ζ denote a primitive p-th root of unity in F×

N . As recalled in Section
5.4 below, the results of [Deo23, Wak23, WWE21] imply that if

p−1
∑

i=1

ik0−2 logN (1 − ζi) 6= 0 in Fp,

then Im is a principal ideal, and moreover, if further

p is not a p-th power modulo N,

then Up − 1 generates Im. Note that when k0 ≡ 2 (mod p − 1), the sum ap-

pearing in the first condition
∑p−1

i=1 i
k0−2 logN (1 − ζi) simplifies to logN (p), so the

first condition is equivalent to the second condition. In particular, in the case
(N, p, k0) = (11, 5, 2), the fact that 5 is not a 5-th power modulo 11 implies (2)
(and thus (1)) holds.

Moving on, condition (3) is necessary to ensure that only Euler-factor-type con-
gruences appear. If (3) fails, then there will be a mix of congruences from L-values
(as in [BP19]) and from Euler factors and the situation is more complicated. Al-
though it seems very interesting to understand this situation, it is outside the scope
of this paper.

Condition (4) is not a serious one. It is used to compute the valuation ofNk/2−1.
In general, we have

valp(N
k/2 − 1) = valp(N − 1) + valp(k).

Condition (5) is important in that without it one cannot simply speak of fk as
there is no longer a unique cuspidal eigenform in our Hida family in each weight.
Further, without this condition, the crossing points of the Eisenstein family and
the cuspidal family cannot be as finely controlled. Nonetheless, we still have a two-
variable p-adic L-function which simply equals Up − 1 up to a unit. Thus we can
obtain a formula for the µ-invariants in terms of the Up-eigenvalues of each form,
but we can only give a formula that only depends on k and N for the sum of the
µ-invariants of all the forms in weight k in our Hida family.

We note that the same results on the structure of Hecke algebras [Deo23, Wak23,
WWE21, WWE20] provide a numerical condition that forces condition (5) to hold.
Namely, T0

m has rank 1 over Λ if

N−1
∏

i=1

i(
∑i−1

j=1
jk0−1) is not a p-th power modulo N.

Further, if there is a single Galois conjugacy class of modular forms in our Hida
family in a given weight, then all of their Iwasawa invariants are the same and we
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can completely control the situation in this case. On the one hand, we know of no
numerical criterion to force there to be a single Galois conjugacy class in a fixed
weight. But on the other hand, examples where there are more than one conjugacy
class seem rare. When p = 5, there are 163 primes N less than 5000 for which
N ≡ 1 (mod 5). Of these, 48 have T0

m with rank greater than 1, but only 6 have
more than one Galois conjugacy class of forms in weight 2.

We now state our main result in more general terms. Some notation: Let L+
p (m)

denote the (plus) two-variable p-adic L-function attached to our Hida family and
write L+

p (m, ω
0) for its branch corresponding to Q∞, the cyclotomic Zp-extension—

that is, the branch with trivial tame character. For an eigenform g in our Hida
family, write ̟g for a uniformizer of the normalization of the ring generated by the
Hecke-eigenvalue of g.

Theorem 1.2. Assume that

(1) p ∤
Bk0

k0

,

(2)

p−1
∑

i=1

ik0−2 logN (1− ζi) 6= 0 in Fp, and

(3) p is not a p-th power modulo N .

Then L+
p (m, ω

0) has the simple form

L+
p (m, ω

0) = (Up − 1) · U

where U is a unit. In particular, for every form g in our Hida family,

µ(g) = ord̟g
(ap(g)− 1) and λ(g) = 0.

Further, for every integer k with k ≡ k0 (mod p− 1),
∑

g

µ(g) = valp(N − 1) + valp(k)

where the sum is over all Galois conjugacy classes of weight k forms in our Hida
family.

Theorem 1.2 is stated, and proven, in a more precise form in Theorem 5.20 below.

1.4. Normalizations. Like the results in [BP19], the above theorem can be thought
of as explaining µ-invariants through p-adic variation. For any individual form, a
positive µ-invariant can almost be thought of as an error in normalization. One
can simply change the complex period defining the p-adic L-function by a power of
p to simply force a µ-invariant to be 0. However, in the family one now sees the
µ-invariants as arising from valuations of special values of p-adic analytic functions.
In the setting of [BP19], in the rank 1 case, the relevant analytic function was the
p-adic ζ-function (which itself has µ-invariant 0). In this paper, the relevant func-
tion is simply 〈N〉1/2 − 1 where 〈N〉 is the element in Λ which specializes to Nk in
weight k. Note that 〈N〉1/2 − 1 also has µ-invariant 0.

With that said, one can wonder why these two-variable p-adic L-functions are di-
visible by these analytic functions that depends only on k and not on the cyclotomic
variable s. Indeed, the origin of this project was an attempt to reconcile the results
of [BP19] with results of the second author which said that these µ-invariants were
identically 0 along the family!
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The reconciliation of these results is that there are two natural normalizations
of the p-adic L-function and one leads to positive µ-invariants which blow up in the
family and the other leads to µ-invariants that are 0 everywhere. We now explain.

In the construction of the two-variable p-adic L-function, one considers a certain
explicit class in

L+p (m) ∈ X [[Z×
p ]] := lim

←−
n

H1(Y1(Np
r),Zp)

−,ord
m [[Z×

p ]]

built out of modular symbols where the upper “ord” denotes the ordinary projector
and m denotes the completion at the maximal ideal corresponding to our Hida
family (the change in sign in the notation is due to Poincaré duality: we think of
the negative-signed cohomology class L+p (m) as a functional on modular symbols
with positive sign §3). We refer to this class as the two-variable p-adic L-symbol.

Typically, when constructing p-adic L-functions, one extracts a function from
a symbol by choosing a basis for the space of symbols. In this case, that would
involve choosing a basis for the space X as a Tm-module. However, the space
X is not necessarily cyclic as a Tm-module; in fact, by Ohta’s Eichler–Shimura
isomorphism for Hida families [Oht99], it is known that X is a dualizing module
for Tm. Hence X is free of rank 1 over Tm if and only if Tm is a Gorenstein ring. In
fact, if Tm is Gorenstein, then there is a canonical generator {0,∞} ∈ X and there
is a unique Lp(m) ∈ Tm[[Z

×
p ]] such that

L+p (m) = L+
p (m) · {0,∞}.

The element L+
p (m) can be viewed as a two-variable p-adic L-function. Indeed, the

cyclotomic variable comes from the fact that L+
p (m) lives in a group algebra over

Z×
p while the weight variable is parametrized by Spec(Tm). If f is a classical form

in our Hida family and pf is the corresponding height 1 prime ideal of Tm, then
the image of L+

p (m) in Tm/pf [[Z
×
p ]] is the one-variable p-adic L-function of f .

As discussed in length in [BP19], the specializations of L+
p (m) to Eisenstein forms

in the family always vanish and this is the reason why the µ-invariants blow up in
the family. We write L+,mod

p (m) for the image of L+
p (m) in T0

m[[Z
×
p ]] and we refer to

L+,mod
p (m) as the two-variable p-adic L-function with the modular normalization.

Here “modular” is referring to the fact that this L-function first arose from a Hecke-
algebra on the full space of modular forms.

On the other hand there is another natural normalization. A closer examina-
tion of the definition of the p-adic L-symbol shows that it actually lives in the
cohomology of the compact modular curve:

L+p (m) ∈ X0[[Z×
p ]] := lim

←−
n

H1(X1(Np
r),Zp)

−,ord
m [[Z×

p ]].

If we instead assume that T0
m, the cuspidal Hecke algebra localized at m, is Goren-

stein, then we again have X0 is free of rank 1 over T0
m; however, in this case there

is no natural generator of this space. Nonetheless, pick a generator e of X0, and
write

L+p (m) = L+,cusp
p (m) · e

for a unique L+,cusp
p (m) ∈ T0

m[[Z
×
p ]]. We call this a two-variable p-adic L-function

with the cuspidal normalization as it was defined directly from the cuspidal Hecke
algebra. It is well-defined up to a unit in T0

m.
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When both Tm and T0
m are Gorenstein, then both definitions L+,mod

p (m) and

L+,cusp
p (m) make sense and one can ask how they are related. Following ideas

of Ohta [Oht05], we show that both Tm and T0
m are Gorenstein if and only if

the Eisenstein ideal Im is principal. Moreover, we show that L+,cusp
p (m) divides

L+,mod
p (m) and that the ratio is a generator of the Eisenstein ideal. Note that in

Theorem 1.2, Up − 1 generates the Eisenstein ideal and this is exactly the analytic
factor that causes the µ-invariants to grow in the family. In that theorem, the
modular normalization is used. If we instead used the cuspidal normalization, we
would lose that factor of Up − 1 and all of the µ-invariants would be 0.

1.5. Further questions. In this paper, we only consider that analytic side of Iwa-
sawa theory, in that we only consider p-adic L-functions. There is a parallel alge-
braic side, involving Selmer groups. This algebraic side is particularly interesting in
view of conjectures of Greenberg [Gre01] regarding algebraic µ-invariants of elliptic
curves. We are currently working to prove the algebraic analog of Theorem 1.2.

We also restrict our attention to the case where the tame level N is prime
and where p ∤ Bk0

. This restriction on the level is natural in view of our goal
to understand the context for the example of X0(11). However, this assumption
has the drawback of limiting the types of examples we can explore: for instance,
X0(11) is the only elliptic curve we know of for which Theorem 1.2 applies. Many
of the techniques developed in this paper are general and can be applied to other
situations as soon as the relevant results on the structure of Hecke algebras are
known. Some interesting situations to consider include:

• N is squarefree. (There are some results on the structure of Hecke algebras
proven in [WWE21].)
• N is the square of a prime. (This situation was considered in [LW22].)
• N is prime but p | Bk0

, so there are congruences of both “L-value” and
“Euler-factor” type.

In this greater generality, it will usually not be true that the Eisenstein ideal is
principal, so it is unlikely that one can hope for results as precise as Theorem
1.2. We make some conjectures (see Conjectures 4.8 and 5.22) regarding what is
happening with Iwasawa invariants in some cases where the Eisenstein ideal fails
to be principal. We hope that these conjectures can serve as a starting point for
investigating these more general situations.

1.6. Structure of paper. In Section 2, we begin with an axiomatic approach to
describing Hecke algebras, Eisenstein ideals, and p-adic L-functions when there
is a unique Eisenstein series parametrized by our Hecke algebra. This axiomatic
approach applies equally to the case where the congruences arise by p-divisibility of
L-values or of Euler factors and studies the two possible normalizations discussed in
§1.4. In Section 3, we review the construction of the two-variable p-adic L-symbol
L+p (m). In Section 4, we consider the setting of [BP19]. We reprove the main results
of [BP19] as an illustration of the axiomatics of Section 2 and also make conjectures
about what happens when the Eisenstein ideal is not principal. In Section 5, we
move to the case of trivial tame character and prime level. This section contains
our main results on analytic µ-invariants. Finally, in Appendix A, we verify that
Hida theory works equally well for Hecke algebras in which UN has been replaced
by wN .
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2. Axiomatics

In Section 4, we consider the same situation as [BP19], with a primitive tame
character, and in Section 5, we consider the non-primitive setting of Mazur’s Eisen-
stein ideal. The two situations have a lot of commonalities, and to emphasize this,
in this section, we consider a purely abstract situation which covers both of these
at once.

The main point is that the standard construction of the two-variable p-adic L-
function gives not a function but an element of a two-variable modular symbols
space. In both situations, the modular symbols space is known to be isomorphic
to the dualizing module of the cuspidal Hecke algebra. If this dualizing module is
isomorphic to the Hecke algebra (i.e. if the cuspidal Hecke algebra is Gorenstein),
then the symbol gives a function. The p-adic L-function can also be thought of
as an element of the larger dualizing module of the full Hecke algebra, and if that
Hecke algebra is Gorenstein, then the symbol again gives a function. If both Hecke
algebras are Gorenstein, this gives two different ways to produce a function from
the symbol, and the two functions are different by a normalizing factor.

Much of this discussion revolves around commutative algebra questions of whether
one or the other, or both, or these Hecke algebras is Gorenstein. In this section, we
discuss these commutative algebra issues in the abstract.

2.1. Set up. The first key property common to both of the situations we consider
is that, though there are congruences between cuspidal families and an Eisenstein
family, there are no congruences between different Eisenstein families. We axiom-
atize this as follows.

Definition 2.1. A single-Eisenstein Hecke algebra set up is the data of (O, A,R, E , r0)
where

• O is a complete discrete valuation ring with uniformizer ̟ and residue field
k,
• A is a flat, local O-algebra that is a complete commutative Noetherian local
complete intersection ring with maximal ideal mA,
• R is a commutative local A-algebra,
• E : R→ A is an A-algebra homomorphism, and



8 ROBERT POLLACK AND PRESTON WAKE

• r0 ∈ R is an element the annihilates ker(E)

satisfying the conditions

• R is a free A-module of finite rank d,
• R/AnnR(ker(E)) is a free A-module of rank d− 1,
• r0 generates AnnR(ker(E)) as an A-module, and
• E(r0) ∈ A is a not a zero divisor.

Given this set up, let I = ker(E), let R0 = R/AnnR(I), and let I0 ⊂ R0 be the
image of I in R0.

Remark 2.2. In applications, O will be Zp or a finite extension of Zp, A will be
a ring of diamond operators, R will be a localization of a Hecke algebra at an
Eisenstein maximal ideal, E will be the action of R on an A-family of Eisenstein
series, and r0 will be a Hecke operator with the property, for a modular form f , the
coefficient a1(r0f) of q in the q-expansion of r0f equals the residue of f at a cusp.
If E is the only family of Eisenstein series supported by R, then I is the Eisenstein
ideal and R0 is maximal the quotient of R that acts faithfully on cuspforms.

Let (O, A,R, E , r0) be a single-Eisenstein Hecke algebra set up. Note that the
map E induces an isomorphism R/I ∼= A, making A into an R-module. Moreover,
the map A → AnnR(I) given by 1 7→ r0 is an isomorphism of R-modules, so that
for all r ∈ R,

(2.3) r · r0 = E(r)r0.

Note also that the action of R on I factors through R0, so that if r ∈ R0 and y ∈ I,
then ry is a well-defined element of I.

The second key property is that the p-adic L-function is given as an element of
a module that is dual to the cuspidal Hecke algebra.

Definition 2.4. Let (O, A,R, E , r0) be a single-Eisenstein Hecke algebra set up.
Then an L-symbol set up is the data of a triple (X,φ, x,L) where

• X is a R-module,
• φ : X → A is an A-linear functional on X , with kernel X0 = ker(φ),
• x ∈ X is an element such that φ(x) = 1, and
• L ∈ ker(φ)⊗O O[[Z

×
p ]],

satisfying the condition that

• there is an isomorphism f : X
∼
−→ HomA(R,A) of R-modules sending X0

to HomA(R
0, A).

Note that, for all g ∈ HomA(R,A) and r ∈ R, the element (r − E(r))g is in
HomA(R

0, A) by (2.3). This implies that, for all y ∈ X , the element (r − E(r))y is
in X0, so that φ must be an isomorphism of R-modules:

φ(ry) = E(r)φ(y).

Recall that a local ring is called Gorenstein if it has a dualizing module that is
free of rank 1. For our purposes, the important facts to remember are that local
complete intersection rings are Gorenstein, and that if B → B′ is a finite flat local
ring homomorphism and M is a dualizing module for B, then HomB(B

′,M) is a
dualizing module for B′. In particular, in an L-symbol set up, X is a dualizing
module for R and X0 is a dualizing module for R0.
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2.2. Algebra around Gorensteinness. Let (O, A,R, E , r0) be a single-Eisenstein
Hecke algebra set up. The composite map

R
E
−→ A→ A/E(r0)A

factors through R0. Let A0 = A/E(r0)A and let E0 : R0 → A0 denote the induced

map. Since the two quotient maps R → R0 E0

−→ A0 and R
E
−→ A → A0 are equal,

there is a map to the fiber product:

R→ R0 ×A0 A.

Lemma 2.5. The map R→ R0×A0 A is an isomorphism of A-algebras. In partic-
ular, the natural maps R0/I0 → A0 and I → I0 are isomorphisms of R-modules.

Proof. Consider the commutative diagram of R-modules with exact rows

0 // Ar0 //

��

R //

E

��

R0 //

E0

��

0

0 // AE(r0) // A // A0 // 0.

The leftmost vertical arrow is an isomorphism: it is surjective by definition and
injective since E(r0) is assumed to be a non-zero-divisor. By the five-lemma, the
map ker(E) → ker(E0) is an isomorphism. This is enough to imply that the map
R → R0 ×A0 A is an isomorphism. Indeed, the kernel is easily seen to equal
ker(Ar0 → AE(r0)), which is zero. To see it is surjective, let (t0, a) ∈ R0 ×A0 A,
and choose a lift t ∈ R of t. Since E(t) ≡ E0(t0) ≡ a mod AE(r0), it follows that
E(t) − a ∈ AE(r0), so E(t) − a = a′E(r0) for some a′ ∈ A. Then t − a′r0 maps to
(t0, E(t− a′r0)) = (t0, a). �

Now let (X,φ, x,L) be an L-symbols set up. The following gives criteria for R
to be Gorenstein.

Lemma 2.6. The following are equivalent:

(1) R is Gorenstein,
(2) X is a free R-module of rank 1,
(3) X is cyclic as an R-module,
(4) X is generated by x as an R-module,
(5) The map I → X0 given by t 7→ t · x is an isomorphism of R-modules.

Proof. The equivalence of (1) and (2) is the definition of Gorenstein, and clearly
(2) implies (3). Assume (3), and let y ∈ X be a generator of X as an R-module.
Let r ∈ R be such that ry = x. Then

1 = φ(x) = φ(ry) = E(r)φ(y).

This implies E(r) ∈ A×, so, since R is local, r ∈ R×. Since x = ry, this implies (4).
Since X is a faithful R-module, (4) implies (2). Lastly, the equivalence of (4) and
(5) follows by applying the five-lemma to the commutative diagram

(2.7) 0 // I //

��

R
E

//

r 7→r·x

��

A // 0

0 // X0 // X
φ

// A // 0.

�
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It follows from the lemma that if R is Gorenstein, then I is a dualizing module
for R0. In particular, if R and R0 are both Gorenstein, then I is principal. We will
see that the converse is true as well. First, we require the following lemma on the
structure of R when I is principal.

Lemma 2.8. Assume that I is a principal ideal with a generator t ∈ I. Let
F (X) ∈ A[X ] be the characteristic polynomial of the A-linear endomorphism

R0 → R0, r 7→ tr.

Then there are A-algebra isomorphisms

A[X ]/(F (X))
∼
−→ R0, A[X ]/(XF (X))

∼
−→ R

given by X 7→ t. Moreover, F (X) is a distinguished polynomial with F (0)A =
E(r0)A.

Proof. Let φ denote the A-algebra homomorphism

A[X ]→ R, X 7→ t.

First note that φ is surjective. To see this, it suffices, by Nakayama’s lemma to
prove that φ ⊗A A/mA is surjective, so we may assume that A is a field. In that
case, R is a d-dimensional algebra over the field A with maximal ideal I, so Id = 0.
Fix r ∈ R and note that r − E(r) ∈ I, so there is r1 ∈ R such that r = E(r) + r1t.
Let r0 = R and inductively choose ri ∈ R such that

ri = E(ri) + ri+1t.

Then

r = E(r0) + E(r1)t+ · · ·+ E(rd−1)t
d−1,

so r is in the image of φ.
Composing φ with the surjection R ։ R0 yields a surjective map φ0 : A[X ] →

R0. Then φ0 factors through A[X ]/(F (X)) by the Cayley-Hamilton Theorem, and,
since F (X) is monic, A[X ]/(F (X)) is a free A-module of rank equal to the degree
of F (X). Since R0 is a free A-module of rank equal to deg(F ), this implies that
φ0 is an isomorphism. Since R0 is local, it follows that F (X) is distinguished. The
remaining parts follow from the isomorphism R ∼= R0 ×A0 A of Lemma 2.5. �

Example 2.9. Suppose that R0 = A. Then Lemma 2.5 implies that I0 = E(r0)A
and that I is generated by r0 − E(r0). Then there is an isomorphism

A[X ]/(X2 − E(r0)X)
∼
−→ R

given by X 7→ r0 − E(r0).

Lemma 2.10. The following are equivalent:

(1) I0 is a principal ideal.
(2) I is a principal ideal.
(3) I is a free R0-module of rank 1.
(4) Both R and R0 are local complete intersection rings.
(5) Both R and R0 are Gorenstein.
(6) There is t ∈ I such that t · x is a generator of X0 as a R0-module.

Furthermore, if all of these statements are true, then (6) is true for all generators
t of I and every such t is a generator.
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Proof. By Lemma 2.5, the map I → I0 is an isomorphism, so (1) implies (2). Since
I is a faithful R0-module, (2) implies (3), and clearly (3) implies (1).

Now assume (2). By Lemma 2.8, there are isomorphisms

R0/mAR
0 ∼= k[X ]/(Xd−1), R/mAR ∼= k[X ]/(Xd),

so R0/mAR
0 and R/mAR are visibly local complete intersection rings. Since A

is a local complete intersection and A → R0 and A → R are flat, this implies
(4) (see [Sta, Tag 09Q7]). Moreover, (4) implies (5) by general algebra (see [Sta,
Tag 0DW6]).

Now assume (5). Since R0 is Gorenstein, there is a generator x0 ∈ X0 of X0 as
an R0-module. By Lemma 2.6 (part (5)) implies that x0 is of the form x0 = tx for
some t ∈ I, proving (6).

Now assume (6). Then the leftmost vertical map in (2.7) is surjective. By the
snake lemma, the center vertical map is also surjective, and, since X is a faithful
R-module, this implies that the center vertical map (and hence all the vertical maps
by the 5 lemma) in (2.7) are isomorphisms. By (6), the composite map

R0 r 7→rt
−−−→ I

a 7→ax
−−−−→ X0

is surjective. Since the second map is an isomorphism, this implies that t generates
I, proving (2). �

2.3. Algebra around L-functions. Let (O, A,R, E , r0) be a single-Eisenstein
Hecke algebra set up and let (X,φ, x,L) be an L-symbol set up for it. In this sec-
tion, we define different elements of R[[Z×

p ]], under different Gorenstein hypotheses,
which we think of as normalizations of the L-function (as in Section 1.4) associated
to the L-symbol set up. When both R and R0 are Gorenstein, then there are two
distinct normalizations and we compare them.

Lemma 2.11. Suppose that R is Gorenstein. Then there is a unique L ∈ R[[Z×
p ]]

such that L = L · x. Moreover, L is in the subset I[[Z×
p ]] ⊂ R[[Z

×
p ]].

Proof. By Lemma 2.6, the map

R[[Z×
p ]]

r 7→rx
−−−−→ X ⊗O O[[Z

×
p ]]

is an isomorphism and it induces an isomorphism I[[Z×
p ]] → X0 ⊗O O[[Z×

p ]]. Then
L is the preimage of L under the second isomorphism. �

Definition 2.12. If R is Gorenstein, the element L ∈ R[[Z×
p ]] of Lemma 2.11 is

called the modular normalization of the p-adic L-function.

Lemma 2.13. Suppose that R0 is Gorenstein, so that X0 is a free R0-module of
rank 1. Then, for each generator e of X0, there is a unique L0

e ∈ R0[[Z×
p ]] such

that L = L0
e · e. Moreover, the class of L0

e in the quotient multiplicitive monoid
R0[[Z×

p ]]/(R
0)× is independent of the choice of generator e.

Proof. The first part is clear since X0 ⊗O O[[Z×
p ]] is a free R0[[Z×

p ]]-module with

generator e. If f is another generator for X0, then f = Ue for a unique U ∈ (R0)×,
and

L0
e · e = L = L0

f · f = L0
f · Ue

so L0
e = L0

f · U and the second part follows. �

https://stacks.math.columbia.edu/tag/09Q7
https://stacks.math.columbia.edu/tag/0DW6
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Definition 2.14. IfR0 is Gorenstein, let L0 denote the class of L0
e in R

0[[Z×
p ]]/(R

0)×

for some choice of e (Lemma 2.13 says that L0 is independent of the choice). The
class L0 is called the cuspidal normalization of the p-adic L-function.

If both R and R0 are Gorenstein, then there are two different normalizations L
and L0. By Lemma 2.10, both R and R0 are Gorenstein if and only if I is principal;
the following lemma essentially says that the two normalizations L and L0 differ
by a generator of I.

Lemma 2.15. Suppose that I is principal.

(1) There is a unique element L ∈ I[[Z×
p ]] such that L = L · x.

(2) For each generator t ∈ I, the element tx ∈ X0 is a generator for X0

as a R0-module, and there is a unique element L0
tx ∈ R0[[Z×

p ]] such that

L = L0
tx · tx.

(3) For each generator t ∈ I, there is an equality L = L0
tx · t of elements

of I[[Z×
p ]].

Proof.

(1) By Lemma 2.10, R is Gorenstein, so (1) follows from Lemma 2.11.
(2) By Lemma 2.10, tx ∈ X0 is a generator for X0 as a T 0-module, and (2)

follows from Lemma 2.13.
(3) By Lemmas 2.5 and 2.10, the map R → I given by 1 7→ t factors through

an isomorphism R0 ∼
−→ I. Since L ∈ I[[Z×

p ]], there is a unique element

Lt ∈ T 0[[Z×
p ]] such that L = Lt · t. Then, by (1), L = Lt · tx. On the other

hand, by (2), L0
tx is the unique element of T 0[[Z×

p ]] satisfying L = L0
tx · tx.

Hence Lt = L0
tx, and (3) follows.

�

Note that R[[Z×
p ]] (and similarly R0[[Z×

p ]]) is a semi-local ring with components

labeled by the characters of (Z/pZ)×; choosing a generator of 1+pZp, each compo-
nent is isomorphic to a power series ring R[[u]]. For j ∈ {0, . . . , p−2} and f ∈ R[[Z×

p ]],

let f(ωj) ∈ R[[u]] denote the image of f in the ωj-component. If c : R[[u]]→ R and
is a R-algebra homomorphism, we often write f(ωj , c) ∈ R instead of c(f(ωj)), and
think of this “as evaluation at c”.

Lemma 2.16. Suppose that I is principal and that there is a j ∈ {0, . . . , p−2} and
an R-algebra homomorphism c : R[[u]] ։ R such that L(ωj , c) ∈ I is a generator.
Let t = L(ωj, c) and let L0

tx ∈ R
0[[Z×

p ]] be as in Lemma 2.15(2). Then:

(1) L(ωj) = L(ωj, c) · L0
tx(ω

j), and
(2) L0

tx(ω
j) ∈ (R0[[u]])×.

In particular, L0(ωj) ∈ (R0[[u]])×/(R0)× and L(ωj) ≡ L(ωj, c) (mod (R0[[u]])×).

Proof. By Lemma 2.15 (3), there is an equality L(ωj) = L0
tx(ω

j)t., which proves
(1). Applying the homomorphism c yields

t = L(ωj, c) = c(L0
tx(ω

j))t.

Since I is a free R0-module, this implies that c(L0
tx(ω

j)) = 1 and hence that
L0
tx(ω

j) ∈ (R0[[u]])× as R0[[u]] is local. This proves (2). �
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2.4. Content and µ-invariant. These results about the relationships between the
modular and cuspidal normalizations have implications about their content and µ-
invariants. We first recall the definitions of these concepts.

Definition 2.17. Let B be a commutative ring B. The content of a power series
f =

∑

ai(f)u
i ∈ B[[u]] is the ideal contentB(f) ⊂ B generated by all the coefficients

ai(f); the series f has unit content if contentB(f) = B. Note that, for every b ∈ B,
there is an equality

(2.18) contentB(bf) = b · contentB(f),

and, in particular, that the content of f depends only on the image of f in B[[u]]/B×.
If B is local and f has unit content, then ai(f) ∈ R× for some i, and the λ-

invariant λ(f) ∈ Z is defined as the minimal i such that ai(f) ∈ R
×. Note that f

is a unit if and only if it has unit content and λ(f) = 0.
Finally, if B is a DVR with uniformizer ̟, then the µ-invariant µ(f) ∈ Z is

defined to the unique integer n such that contentR(f) = ̟nR. In this case, f has
unit content if and only if µ(f) = 0.

Note that the values of a power series function are in the content ideal. In other
words, if c : B[[u]] → B is B-algebra homomorphism, then c(f) ∈ contentB(f).
Indeed, c(f) =

∑

ai(f)c(u)
i and each ai(f) is in contentB(f).

Now let (O, A,R, E , r0) be a single-Eisenstein Hecke algebra set up and let
(X,φ, x,L) be an L-symbol set up for it.

Lemma 2.19. Assume that I is principal, fix j ∈ {0, . . . , p−1}, and let c : R[[u]]→ R
be an R-algebra homomorphism.

(1) L(ωj , c) ∈ contentR(L(ω
j)).

(2) There is an equality contentR(L(ω
j)) = contentR(L

0(ωj))I of ideals in R.
(3) If L(ωj, c) is a generator of I, then contentR(L(ω

j)) = I and L0(ωj) is a
unit.

Proof. (1) is the general fact that the values of a power series function are in the
content ideal. (2) and (3) follow from Lemmas 2.15 and 2.16, respectively. �

To discuss µ-invariants, we must work over a DVR. We now fix an O-algebra
homomorphism

w : A→ O,

which, in our applications, will correspond to fixing a weight. Let Rw = R⊗A,w O
and Iw be the image of I in Rw, and similarly for R0

w and I0w .
Assume that I is principal and fix j ∈ {0, . . . , p − 2}. Let t ∈ I be a generator

and let F (X) ∈ A[X ] be the characteristic polynomial of t, as in Lemma 2.8. Let
Fw(X) ∈ O[X ] denote the image of F (X) under w. Let Fw(X) =

∏r
i=1 Fw,i(X) be

the factorization of Fw(X) in O[X ] into irreducible polynomials, and let Ow,i be
the normalization of O[X ]/(Fw,i(X)), and let ̟w,i be a uniformizer in Ow,i and let
Xw,i be the image of X in Ow,i. Then, by Lemma 2.8, the normalization of R0

w is
isomorphic to

∏r
i=1Ow,i. For i = 1, . . . , r, let Lw,i(ω

j) ∈ Ow,i[[u]] be the image of
L(ωj) under the map

R[[u]]→ Rw[[u]]→ Ow,i[[u]].

Remark 2.20. In our applications, the irreducible factors Fw,i(X) correspond to the
cuspidal eigenforms of weight w that are congruent to the given Eisenstein series.
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The rings Ow,i are the valuation ring in their corresponding Hecke fields, and the
elements Lw,i(ω

j) are their p-adic L-functions.

Lemma 2.21. With the notation as in the previous paragraph, suppose there is a
surjective R-algebra homomorphism c : R[[u]]→ R such that L(ωj, c) = t.

(1) There is an equality

val̟(Fw(0)) =

r
∑

i=1

µ(Lw,i(ω
j)).

(2) Suppose that there is an integer M > 0 such that val̟(Fw(0)) > Mr. Then
there exists an i such that µ(Lw,i(ω

j)) > M .

Proof. By Lemma 2.16, there is an equality

L(ωj) = L(ωj, c)L0
tx(ω

j) = tL0
tx(ω

j)

and L0
tx(ω

j) ∈ R0[[u]]
×
. Since, for each i = 1, . . . , r, the map

R→ Rw → Ow,i

sends t to Xw,i, it follows that Lw,i(ω
j) = Xw,iUi for a unit Ui ∈ Ow,i[[u]]

×
. In

particular, the µ-invariant of Lw,i(ω
j) is the valuation of Xw,i:

µ(Lw,i(ω
j)) = val̟w,i

(Xw,i).

Since Ow,i is the normalization of O[X ]/(Fw,i(X)), the valuation of Xw,i is given
by

val̟w,i
(Xw,i) = val̟(Fw,i(0)).

Combining the last two equalities with the fact that Fw(0) =
∏

i Fw,i(0) gives

val̟(Fw(0)) =

r
∑

i=1

val̟(Fw,i(0)) =

r
∑

i=1

µ(Lw,i(ω
j)),

which proves (1). Part (2) is clear from (1). �

Example 2.22. Suppose that R0 = A. Then, by Example 2.9, F (X) = X+E(r0),
so Fw(X) = X −w(E(r0)) for every choice of w, and µ(Lw(ω

j)) = val̟(w(E(r0))).

3. Two-variable p-adic L-symbols

The singular cohomology groups

H1(Y1(Np
r),Zp) and H

1(X1(Np
r),Zp)

can be respectively identified with the homology groups

H1(Y1(Np
r), {cusps},Zp) and H1(X1(Np

r),Zp)

as in [Sha11, Proposition 3.5]. We will make this identification implicitly and write
{α, β}r for the cohomology class corresponding to the geodesic connecting α to β
for α and β in P1(Q). These groups can also be identified with étale (co)homology
groups, but one has to be careful about Galois actions, since Poincaré duality has
a one-Tate-twist in it—this is all discussed in [Sha11, Section 3.5].

Write H1(Y1(Np
r),Zp)

±,ord for the ordinary subspace of this cohomology group
with sign ± and set {α, β}±,ord

r to be the projection of {α, β}r to this subspace.
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Set H1
Λ(Y1(N)) := lim

←−
r

H1(Y1(Np
r),Zp)

ord and analogously define H1
Λ(X1(N)). We

can then write down the two-variable p-adic L-symbol explictly as follows:

L±p := lim
←−
r





∑

a∈(Z/prZ)×

U−r
p {∞, a/p

r}∓,ord
r ⊗ [a]





r

∈ H1
Λ(Y1(N))∓ ⊗ Zp[[Z

×
p ]].

(The sign change here is intentional: we want to consider Lp as a functional on
cohomology classes (i.e. a homology class), and the sign change appears because of
the one-twist mentioned above in Poincaré duality. With this convention, L±p is a
functional on cohomology classes of the same sign). By [Oht99, Proposition 4.3.4],
we have that {∞, a/pr}ordr is in H1(X1(Np

r),Zp)
ord and thus L±p actually lives in

H1
Λ(X1(N))∓ ⊗ Zp[[Z

×
p ]].

Lastly, let T denote the Hida Hecke algebra (to be defined more carefully in the
following section). Then H1

Λ(Y1(N))± is a T-module and for any maximal ideal
m ⊆ T, we have that H1

Λ(Y1(N))±m is a direct summand of H1
Λ(Y1(N))±. We write

L±p (m) for the projection of L±p to H1
Λ(Y1(N))±m[[Z

×
p ]].

4. The primitive case

In this section, we consider the case Eisenstein families with a primitive tame
character. In this case, congruences modulo p between Eisenstein series and cusp-
forms arise because p divides an L-value, as in [Rib76]. In the next section, we will
consider the case of trivial tame character and congruences that occur because p
divides an Euler-factor, as in [Maz77]. This primitive case is the same setting that
was considered in [BP19] and we obtain similar results. The main novelty is that we
highlight the role played by the two possible normalizations, modular and cuspidal,
which allows us to obtain results and conjectures when the Eisenstein ideal is not
assumed to be principal.

4.1. Setup. Let p ≥ 5 and let N be an integer with p ∤ Nϕ(N). Let H denote the
p-adic Hida Hecke algebra of tame level Γ1(N). It is an algebra over Zp[[(Z/NZ)××
Z×
p ]] generated by Tq for primes q ∤ Np and Uℓ for ℓ | Np. The Eisenstein ideal

I ⊂ H is the ideal generated by Tq − (1 + 〈q〉q−1) for q ∤ Np and by Uℓ − 1 for
ℓ | Np.

Let m ⊂ H be a (Good Eisen) maximal ideal, in the sense of [BP19, §3.1], and let

Tm be the completion ofH atm. This determines a character θm : (Z/NpZ)× → Q
×

p ,
as explained in loc. cit., and the (Good Eisen) condition implies that the tame part
θm|(Z/NZ)× of θm is primitive. Let Om be the valuation ring in the p-adic field
generated by the values of θm and let ̟ ∈ Om be a uniformizer. Let Λm = Om[[T ]];
it is a regular local flat Om-algebra, and Tm is a finite flat local Λm. By [BP19,
Lemma 3.1], there is a Λm-algebra homomorphism Eism : Tm → Λm with kernel
Im that satisfies AnnTm

(Im) ∼= Λm and is generated by the Hecke operator T0
determined by a1(T0f) = a0(f).

It is straightforward to see that (O, A,R, E , r0) = (Om,Λm,Tm,Eism, T0) is a
single-Eisenstein Hecke algebra set up in the sense of Definition 2.1. We note that
E(r0) = Eism(T0) is the constant term of the Eisenstein family, which in this case
is the Kubota-Leopoldt series Lp(ψ

−1
m , κ) ∈ Λm of [BP19, §3.8].

We seek now to form our L-symbol set up as in Definition 2.4. Let C1(Np
r)

denote the cusps of X1(Np
r); following [FK12, Section 1.3.2], cusps lying over the
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cusp 0 of X0(Np
r) will be called 0-cusps. Let Cr = ker(Zp[C1(Np

r)(C)]
Σ
→ Zp)

where Σ is the augmentation map. There is an exact sequence

(4.1) 0→ H1(X1(Np
r,Zp)→ H1(Y1(Np

r,Zp)
∂
−→ Cr → 0,

where ∂ is the boundary map at the cusps, which satisfies ∂({α, β}r) = α− β. By
[Oht03, Proposition (3.1.2)], the localized inverse limit Cm = (lim

←−r
(Cr))m is free of

rank one as a Λ-module, generated by the projection of the class of 0 −∞ to the
m-part. Taking inverse limit and localization of the sequences (4.1) then yields an
exact sequence

(4.2) 0→ H1
Λ(X1(N))m → H1

Λ(Y1(N))m
φ
−→ Λm → 0

where φ({0,∞}) = 1. This is the exact sequence of [Oht03, Theorem (1.5.5) (III)]
(see also [FK12, Section 6.2.5] for the description of φ as the boundary at 0-cusps).

Since {0,∞} ∈ H1
Λ(Y1(N))−m, taking minus-parts of (4.2) yields an exact se-

quence

(4.3) 0→ H1
Λ(X1(N))−m → H1

Λ(Y1(N))−m
φ
−→ Λm → 0.

Proposition 4.4. Taking (X,φ, x,L) = (H1
Λ(Y1(N))−m, φ, {0,∞},L

+
p (m)) gives an

L-symbol set up.

Proof. The exact sequence (4.3) implies that ker(φ) = H1
Λ(X1(N))−m. By [FK12,

§1.7.13 and Proposition 6.3.5], H1
Λ(Y1(N))−m is a dualizing module for Tm and

H1
Λ(X1(N))−m is a dualizing module for T0

m. Moreover, these isomorphism are com-
patible in the sense that the isomorphism H1

Λ(Y1(N))−m
∼= HomΛm

(Tm,Λm) sends
H1

Λ(X1(N))−m isomorphically to HomΛm
(T0

m,Λm) (see [Oht03, Diagram (3.5.3)]).
Since φ({0,∞}) = 1 and L+p (m) ∈ H1

Λ(X1(N))−m ⊗Zp
Zp[[Z

×
p ]], this completes the

verification. �

4.2. Results. Applying the results of §2 yields the following theorem.

Theorem 4.5.

(1) If Tm is Gorenstein, then there is a unique L+
p (m) ∈ Tm[[Z

×
p ]] such that

L+p (m) = L+
p (m) · {0,∞}. Moreover, content(L+

p (m)) ⊆ Im.

(2) Suppose that T0
m is Gorenstein, so that H1

Λ(X1(N))+m is free of rank 1
over T0

m. Then for every generator e of H1
Λ(X1(N))+m, there is a unique

L+
p (m)0e ∈ T0

m[[Z
×
p ]] such that L+p (m) = L+

p (m)0e · e.

(3) If Im is a principal ideal with generator t, then Tm and T0
m are Gorenstein

and H1
Λ(X1(N))+m is generated by t{0,∞}. Moreover, there is an equality

L+
p (m) = L+

p (m)0t{0,∞}t

in Im[[Z×
p ]].

Proof. Part (1) is Lemma 2.11. Part (2) is Lemma 2.13. Part (3) is Lemma 2.15. �

Remark 4.6. Part (3) is a mild refinement of [BP19, Theorem 3.14].

For an integer k ≥ 2, let k : Λm → Om be the weight-k specialization, so that
Tm ⊗Λm,k Om = Tm,k, the Hecke algebra acting on weight-k forms. The normal-
ization of Tm,k is Tm,k →

∏rk
i=1Ofk,i

, where {fk,i | i = 1, . . . rk} is a complete

list of Galois-orbits of modular eigenforms with coefficients in Qp that are residu-
ally Eisenstein, and Ofk,i

are the valuation rings in their respective p-adic Hecke
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eigenfields. Let ̟fk,i
∈ Ofk,i

be a uniformizer. Recall that the image of L+
p (m) in

Ofk,i
[[Z×

p ]] is L
+
p (fk,i), the one-variable p-adic L-function of fk,i.

We write L+
p (m, ω

j) for the projection of L+
p (m) to the ωj-component of Tm[[Z

×
p ]]

and likewise write L+
p (m, ω

j)0e for the projection of L+
p (m)0e to the ωj-component

of T0
m[[Z

×
p ]]. The following analyzes the ω0-components of these p-adic L-functions

and is a mild refinement of the results of [BP19, §3.7].

Theorem 4.7. Suppose that Up−1 generates Im and let e = (Up−1){0,∞}. Then

(1) L+
p (m, ω

0) = L+
p (m, ω

0)0e · (Up − 1) and L+
p (m, ω

0)0e ∈ (T0
m[[u]])

×.
(2) For every weight k and index i, the µ- and λ-invariants of fk,i are

µ(L+
p (fk,i, ω

0)) = val̟fk,i
(ap(fk,i)− 1) and λ(L+

p (fk,i, ω
0)) = 0.

(3) For every weight k, the sum of the µ-invariants is given by
rk
∑

i=1

µ(L+
p (fk,i, ω

0)) = val̟(Lp(ψ
−1
m , k)).

(4) For every integer M , there is a weight k and index i such that

µ(L+
p (fk,i, ω

0)) > M.

Proof. Let 1 : Λm → Om be evaluation at the trivial character. The argument of
[BP19, Theorem 3.15] shows that, if Tm is Gorenstein, then

L+
p (m,1) = L+

p (m, ω
0,1) = (Up − 1)v

for v ∈ (Tm)
×. Thus part (1) follows from Lemma 2.16 and immediately implies

(2), whereas part (3) follows from Lemma 2.21(1). Finally letM > 0 be an integer,
and choose an integer k close enough to a zero of Lp(ψ

−1
m , κ) that

val̟(Lp(ψ
−1
m , k))) > MrankΛ(T

0
m).

Since rankΛ(T
0
m) ≥ rk, part (4) follows from Lemma 2.21(2). �

4.3. Conjectures. We make the following conjecture.

Conjecture 4.8.

(1) Suppose that Tm is Gorenstein. For each j, there is an equality

contentΛm
(L+

p (m, ω
j)) = Im.

(2) Suppose that T0
m is Gorenstein and let e be a generator of H1

Λ(X1(N))−m as
a T0

m-module. Then, for each j, L+
p (m, ω

j)0e has unit content.

We wish to compare this conjecture with [BP19, Conjecture 3.16]. For a height-
one prime p ⊂ T0

m, let Op be the normalization of T0
m/p (which is a DVR) and let

̟p denote a uniformizer in Op. Let L
+
p (p)

0
e, L

+
p (p) ∈ Op[[Z

×
p ]] denote the images of

L+
p (m)0e and L+

p (m) (supposing they exist). If Im is generated by t, let tp denote
the image of t in Op.

Conjecture 4.9 (Belläıche-Pollack). Suppose that Im is generated by t. Then, for
every height-one prime p ⊂ T0

m, there is an equality µ(L+
p (p, ω

j)) = val̟p
(tp) for

each j.

Lemma 4.10. Suppose that H1
Λ(X1(N))−m is generated by an element e as a T0

m-
module. The following are equivalent:
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(1) L+
p (m, ω

j)0e has unit content.

(2) for some height-one prime p ⊂ T0
m, the µ-invariant µ(L

+
p (p, ω

j)0e) vanishes.

(3) for all height-one primes p ⊂ T0
m, the µ-invariant µ(L

+
p (p, ω

j)0e) vanishes.

Proof. Clear since T0
m is a local ring. �

Lemma 4.11. Suppose that Im is generated by t and let e = t{0,∞}. Then for
every height-one prime p ⊂ T0

m, there is an equality

µ(L+
p (p, ω

j)) = µ(L+
p (p, ω

j)0e) + val̟p
(tp).

In particular, µ(L+
p (p, ω

j)) ≥ val̟p
(tp), with equality if and only if µ(L+

p (p, ω
j)0e)

is zero.

Proof. Clear from Lemma 2.15. �

Proposition 4.12. Suppose that Im is principal and let j0 ∈ Z/(p − 1)Z. Then
the following are equivalent:

(1) Conjecture 4.8 (1) for j = j0.
(2) Conjecture 4.8 (2) for j = j0.
(3) Conjecture 4.9 for j = j0.

Moreover, if Up − 1 generates Im, then these conjectures are all true for j = 0.

Proof. Let t be a generator of Im and let e = t{0,∞}. Theorem 4.5(3) implies
L+
p (m, ω

j0) = t ·L+
p (m, ω

j0)0e, so by the multiplicative property (2.18) of content, it
follows that

contentΛm
(L+

p (m, ω
j0)) = t·contentΛm

(L+
p (m, ω

j0)0e) = Im ·contentΛm
(L+

p (m, ω
j0)0e).

This makes the equivalence of (1) and (2) clear.
Now assume (2), so that L+

p (m, ω
j0)0e has unit content, and let p ⊂ T0

m be a

height-one prime. Then µ(L+
p (p, ω

j0)0e) = 0 by Lemma 4.10. It then follows from

Lemma 4.11 that µ(L+
p (m, ω

j0)) = val̟p
(tp), proving (3).

Now assume (3), so that µ(L+
p (m, ω

j0)) = val̟p
(tp) for all p. Then µ(L

+
p (p, ω

j0)0e)

vanishes by Lemma 4.11, and so L+
p (m, ω

j0)0e has unit content by Lemma 4.10, prov-
ing (2).

For the last claim, if Up − 1 generates Im, then Theorem 4.7 implies that
L+
p (m, ω

0)0e is a unit and Conjecture 4.8 (2) is clear for j = 0. �

5. Mazur case

In this section, we consider the case of tame level Γ0(N) for a prime N . This
is, in some sense, the opposite of the previous section: whereas in Section 4 we
considered forms with primitive tame character, in this section we consider trivial
tame character. The main difference is that the constant term of the relevant
Eisenstein series are multiplied by an Euler factor at N and congruences can occur
because p divides that Euler factor. We focus on these kinds of congruences in the
most interesting case: when N ≡ 1 (mod p). This includes the case considered by
Mazur in his original article [Maz77] on the Eisenstein ideal, and so we refer to this
set up as the “Mazur case”. We make use of recent advances [WWE20, Wak23,
WWE21, Deo23, Lec18, Lec21] about the Gorenstein property for the relevant
Hecke algebras. This allows us to replace the Gorenstein assumptions in the results
of Section 4 with some numerical criteria.
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Another difference between this setup and the primitive case considered in Sec-
tion 4 is in the way we specify a unique Eisenstein family. In tame level Γ0(N),
the space of ordinary Eisenstein families has rank 2. A generic basis of the space is
given by UN -eigenforms: one where UN acts by 1 and one where UN acts by Nk−1.
Since N ≡ 1 (mod p), these two families are congruent and cannot be separated
by localizing a maximal ideal of the Hecke algebra. To resolve this issue, follow-
ing an idea of Ohta [Oht14] as in [WWE21], we replace the UN operator in the
Hecke algebra by the Atkin-Lehner involution wN . The two wN -eigenvector ordi-
nary Eisenstein families are not congruent, so there is a unique Eisenstein family
after localizing at a maximal ideal in this new Hecke algebra.

The following subsection summarizes the results of Appendix A where it is ver-
ified that Hida theory works as expected for these modified Hecke algebras. After
that, we verify that there is a unique ordinary Eisenstein family where wN acts by
−1 and we compute the constant term of its q-expansion. We explain how to use
Ohta’s results on Λ-adic Eichler-Shimura for tame level Γ1(N) to prove the same
results for tame level Γ0(N). We then establish various numerical criteria that
guarantee that our Hecke algebras are Gorenstein and further ones that guarantee
that Up − 1 generates the Eisenstein ideal. With these results in hand, we apply
the axiomatic setup of §2 to deduce our main analytic results.

5.1. Hida theory with Atkin-Lehner operators. Fix an even integer k0 with
0 < k0 < p − 1. For integers r ≥ 0, k ≥ 2 with k ≡ k0 mod p− 1, let Hk,Npr

denote subalgebra of EndZp
(Mk(Γ0(N)∩Γ1(p

r),Zp)) generated by operators Tq for
primes q ∤ Np, together with wN and Up. Let hk,Npr denote the image of Hk,Npr

in EndZp
(Sk(Γ0(N) ∩ Γ1(p

r),Zp)). Let Hord
k denote the inverse limit over r of the

ordinary part Hord
k,Npr of Hk,Npr , and similarly for hordk . The main result proven in

Appendix A is that these algebras satisfy the main theorems of Hida theory, just
as for the Hecke algebras with UN -operators:

• (independence of weight) Hord
k and hordk are independent of k (and depend

only on k0), and so can be denoted simply by Hord and hord,
• (freeness over Λ) the algebras Hord and hord are free Λ-modules of finite
rank,
• (duality) the pairing (f, T ) 7→ a1(Tf) is a perfect duality between Hord and
Λ-adic modular forms (and similarly for hord and cuspforms),
• (control) the natural maps Hord → Hord

k,Npr induce isomorphismsHord/ωr,k →

Hord
k,Npr for a particular ωr,k ∈ Λ (and similarly for hord).

5.2. Eisenstein series. Let m ⊆ Hord denote the maximal ideal corresponding to
the residual representation 1⊕ωk0−1 and which contains wN +1. Write Tm for the
completion of Hord at m and T0

m for the completion of hord at m. Then both Tm

and T0
m are modules over Λ = Zp[[T ]] the Iwasawa algebra.

Let Eord denote the family of Eisenstein series whose specialization to a weight
k ≡ k0 (mod p− 1) is Eord

k , the unique ordinary Eisenstein series of weight k and

level p whose constant term is −(1− pk−1)Bk

2k . We wish to promote this family to
an eigenfamily of level Np where wN acts by −1. To this end, note that it is easy to
compute the action of wN on Eord

k thought of as a form of level Np as this form is

old at N . Indeed, for any form f of level Np, we have wNf = N1−k/2 ·f
∣

∣

k

(

Na b
Np Nd

)
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where this matrix has determinant N and thus

wNE
ord
k (z) = N1−k/2 ·

(

Eord
k

∣

∣

k

(

Na b
Np Nd

))

(z)

= N1−k/2 ·
(

Eord
k

∣

∣

k

(

a b
p Nd

)

(N 0
0 1 )

)

(z)

= N1−k/2 ·
(

Eord
k

∣

∣

k
(N 0

0 1 )
)

(z)

= Nk/2 ·Eord
k (Nz).

With this formula in hand, an easy computation shows that E±k (q) := Eord
k (q)±

Nk/2Eord
k (qN ) is a wN -eigenform with eigenvalue ±1. In particular, there is a

unique Eisenstein series in Mk(Γ0(Np)) where wN acts with sign ±1. Further note
that the constant term of E±k (q) is given by −(1±Nk/2)(1 − pk−1)Bk

2k .
Let E− denote the family of Eisenstein series that in weight k ≡ k0 (mod p− 1)

specializes to E−k . Let Eis : Tm → Λ be the homomorphism corresponding to E−

and let Im denote the kernel of this map. As E− is the unique Eisenstein family
parametrized by Tm, the ideal AnnTm

(Im) is free of rank one as a Λ-module, is
generated by the Hecke operator T0 determined by a1(T0f) = a0(f), and T0

m =
Tm/T0Tm.

Taken together, all this implies that (O, A,R, E , r0) = (Zp,Λ,Tm,Eis, T0) is a
single-Eisenstein Hecke algebra set up. Further, the element ξ = Eis(T0) corre-
sponds to the constant term of E− which is ζp,k0

· (1 − 〈N〉1/2) where ζp,k0
∈ Λ is

the ωk0-branch of the p-adic ζ-function and 〈N〉 ∈ Λ is the element which specializes
to Nk in weight k.

5.3. Λ-adic Eichler-Shimura for tame level Γ0(N). Consider the Λ-adic étale
cohomology groups H1

Λ(Y0(N)) and H1
Λ(X0(N)) with tame level Γ0(N), defined as

H1
Λ(Y0(N)) = lim

←−
H1(Y (Γ0(N) ∩ Γ1(p

r)),Zp)
ord,(k0),

and similarly for X0(N), where the superscript (k0) means the ωk0 -eigenspace for
the diamond-operator action of (Z/pZ)×. In this section, we use Ohta’s results
on the structure of H1

Λ(Y1(N)) and H1
Λ(X1(N)) to deduce analogous results for

H1
Λ(Y0(N)) and H1

Λ(X0(N)). The main input is the following result about the
structure of H1

Λ(Y1(N)) as a Zp[∆]-module, where ∆ = Γ0(N)/Γ1(N) ∼= (Z/NZ)×

is the group of diamond operators of level N .

Lemma 5.1. The Λ-adic cohomology group H1
Λ(Y1(N)) is a projective Zp[∆]-

module, and the natural maps

H1
Λ(Y1(N))∆ → H1

Λ(Y0(N))→ H1
Λ(Y1(N))∆

are isomorphisms.

Proof. It is enough to prove the result at level Γ1(Np
r) for fixed r; taking in-

verse limits gives the result for Λ-adic cohomology. Let Y1 = Y1(Np
r) and Y0 =

Y (Γ0(N) ∩ Γ1(p
r)).

First note that H0(Y1,Zp)
ord is zero because Up acts by p on H0(Y1,Zp). Then

the following are evident:

(1) Y1 → Y0 is an étale covering with Galois group ∆,
(2) the cohomology Hi(Y1,Zp)

ord is only supported in degree i = 1, and
(3) H1(Y1,Zp)

ord is p-torsion-free.
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These three facts are enough to imply that H1(Y1,Zp)
ord is a projective Zp[∆]-

module, as follows. By the comparison isomorphism between étale and Betti co-
homology, it is enough to show that the singular cohomology is projective. Let
C•(Y1,Zp) be the complex of singular cochains on Y1; by (1), it is a bounded
complex of flat Zp[∆]-modules. Hecke operators act on C•(Y1,Zp), and, since the
ordinary projector is an idempotent, the complex C•(Y1,Zp)

ord is still a bounded
complex of flat Zp[∆]-modules and its cohomology groups areHi(Y1,Zp)

ord. Hence,
there is a perfect complex C• of Zp[∆]-modules and a quasi-isomorphism

C• ≃ C•(Y1,Zp)
ord

(see [Mum08, Lemma II.5.1, pg. 47]). By (2), this implies that H1(Y1,Zp)
ord has

finite projective dimension over Zp[∆], which, together with (3), implies that it is
projective (see [Bro94, Theorems 8.10 and 8.12, pg. 152], for instance, or use the
Auslander-Buchsbaum formula).

The composition of the two maps

H1(Y1,Zp)
ord
∆ → H1(Y0,Zp)

ord → (H1(Y1,Zp)
ord)∆

is equal to the map induced by multiplication by the norm element of Zp[∆] on
H1(Y1,Zp)

ord, which is an isomorphism since H1(Y1,Zp)
ord is Zp[∆]-projective.

The map H1(Y0,Zp)
ord → (H1(Y1,Zp)

ord)∆ is clearly injective, so this completes
the proof. �

This lemma allows us to to prove the following analog of Ohta’s Λ-adic Eichler-
Shimura isomorphisms.

Proposition 5.2. There are split-exact sequences of Tm-modules

0→ T0
m → H1

Λ(Y0(N))m → HomΛ(Tm,Λ)→ 0

0→ T0
m → H1

Λ(X0(N))m → HomΛ(T
0
m,Λ)→ 0.

Proof. Let Hord
1 be the p-adic Hida Hecke algebra of tame level Γ1(N) and let

hord1 be its cuspidal quotient. Let mΛ,1 and SΛ,1 be the spaces of Λ-adic modular
forms and cuspforms, respectively, of tame level Γ1(N), and let mΛ and SΛ be the
corresponding spaces of tame level Γ0(N).

Ohta’s Λ-adic Eichler-Shimura isomorphisms [Oht99, Oht00] imply that there
are exact sequences of Hord

1 -modules

0→ hord1 → H1
Λ(Y1(N))→ mΛ,1 → 0(5.3)

0→ hord1 → H1
Λ(X1(N))→ SΛ,1 → 0.(5.4)

These sequences are defined using the action of GQp
and since k0 6= 1 (because k0 is

even) the actions on the sub and quotient are distinguished, so the sequences split
as Hord

1 -modules (see [Oht03, Section 3.4] and [FK12, Section 6.3.12]); a fortiori,
they split as Zp[∆]-modules (since the diamond operators are in Hord

1 ). Lemma 5.1
and the splitting of (5.3) imply that hord1 and mΛ,1 are Zp[∆]-projective. Since the
dual of a projective Zp[∆]-module is projective, this implies that Hord

1 and SΛ,1 are
projective Zp[∆]-modules. Then the sequence (5.4) implies that H1

Λ(X1(N)) is also
Zp[∆]-projective. Just as in the proof of Lemma 5.1, this implies that the natural
map

H1
Λ(X0(N))→ H1

Λ(X1(N))∆
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is an isomorphism. Hence taking ∆-invariants of the split-exact sequences (5.3) and
(5.4) yields exact sequences

0→ (hord1 )∆ → H1
Λ(Y0(N))→ (mΛ,1)

∆ → 0(5.5)

0→ (hord1 )∆ → H1
Λ(X0(N))→ (SΛ,1)

∆ → 0.(5.6)

Now note that the natural maps mΛ → (mΛ,1)
∆ and SΛ → (SΛ,1)

∆ are isomor-
phisms because a modular form of level Γ1(N) that is invariant under the diamond
operators is also a form of level Γ0(N). This implies that the dual map

(5.7) HomΛ(SΛ,1,Λ)∆ → HomΛ(SΛ,Λ),

is an isomorphism. But, by duality (see Theorem A.3 and Theorem A.9), there
are isomorphisms HomΛ(SΛ,1,Λ) ∼= hord1 and HomΛ(SΛ,Λ) ∼= hord. Moreover, since
hord1 is Zp[∆]-free, the norm map induces an isomorphism

(hord1 )∆ ∼= (hord1 )∆.

Combining this isomorphism with the duality isomorphisms and (5.7) gives a string
of isomorphisms

(hord1 )∆ ∼= (hord1 )∆ ∼= HomΛ(SΛ,1,Λ)∆ ∼= HomΛ(SΛ,Λ) ∼= hord.

Hence (5.5) and (5.6) are isomorphic to

0→ hord → H1
Λ(Y0(N))→ mΛ → 0(5.8)

0→ hord → H1
Λ(X0(N))→ SΛ → 0.(5.9)

Localizing at m then completes the proof. �

Just as in Section 4.1, there is an exact sequence

0→ H1
Λ(X0(N))→ H1

Λ(Y0(N))
φ
−→ Λ→ 0.

where φ({0,∞}) = 1. Since {0,∞} ∈ H1
Λ(Y0(N))−, this implies that there is an

exact sequence

0→ H1
Λ(X0(N))− → H1

Λ(Y0(N))−
φ
−→ Λ→ 0.

Proposition 5.10. Taking (X,φ, x,L) = (H1
Λ(Y0(N))−, φ, {0,∞},L+p (m)) gives

an L-symbol set up.

Proof. Just as in the proof of Proposition 4.4, given Proposition 5.2. �

5.4. Gorenstein results and generators of the Eisenstein ideal. In this sec-
tion, we give some numerical criteria for when the Eisenstein ideal Im is principal
(and thus Tm and T0

m are Gorenstein), when Im is generated by Up − 1, and when
T0
m has rank 1 over Λ.
Let Ttame

m,k and Tm,k denote the respective Hecke algebras of Mk(Γ0(N))ord and

Mk(Γ0(Np))
ord and let T0,tame

m,k and T0
m,k denote the respective Hecke algebras of

Sk(Γ0(N))ord and Sk(Γ0(Np))
ord. Here all of these Hecke algebras are defined to

contain wN rather than UN .

Theorem 5.11. If k > 2, there are isomorphisms Tm,k
∼= Ttame

m,k and T0
m,k
∼=

T0,tame
m,k . For k = 2, the same conclusions hold when p is not a p-th power modulo

N .



IWASAWA INVARIANTS IN RESIDUALLY REDUCIBLE HIDA FAMILIES 23

Proof. This result is easy is k 6= 2. Indeed, an eigenform f of weight k which is

p-new has ap(f) = ±p
k−2

2 and thus is ordinary if and only if k = 2. In particular,
when k 6= 2, none of these ordinary Hecke algebras grow from level N to level Np.

The case of k = 2 is much deeper and follows from the results of the second author
and Wang-Erickson, namely [WWE21, Theorem 1.4.5 and Proposition A.3.1] and
rely on the hypothesis that p is not a p-th power modulo N . �

Returning to the setting of §5.2, we have Tm and T0
m are the localized Hida Hecke

algebras corresponding to the residual representation 1 ⊕ ωk0−1 and we now give
criteria for when these rings are Gorenstein. To this end, let g denote a generator
of F×

N and define logN : F×
N → Fp by logN (ga) = a (mod p). Note that this map is

well-defined as a is defined modulo N − 1 and p | N − 1. Further, fix ζp a p-th root
of unity in F×

N .

Theorem 5.12. Assume that both of the following two conditions hold:

(1) p ∤ Bk0
, and

(2)

p−1
∑

i=1

ik0−2 logN (1− ζip) 6= 0 in Fp.

Then Im is a principal ideal. In particular, Tm and T0
m are Gorenstein and Tm,k

and T0
m,k are Gorenstein for all k ≡ k0 (mod p− 1).

Proof. The results of [Deo23] imply that Im is principal (see, in particular, [Deo23,
Remark 5.7]). Once we know Im is principal, then Lemma 2.10 implies that Tm and
T0
m are Gorenstein and Theorem A.9 implies that Tm,k and T0

m,k are Gorenstein for

all k ≡ k0 (mod p− 1). �

Remark 5.13. We note that if k0 ≡ 2 (mod p− 1), then

p−1
∑

i=1

ik0−2 logN (1− ζip) =

p−1
∑

i=1

logN (1− ζip) = logN

(

p=1
∏

i=1

1− ζip

)

= logN (p).

In particular, when k0 ≡ 2 (mod p − 1), the hypotheses of Theorem 5.12 reduce
simply to asking that p is not a p-th power modulo N

We now give criteria for when Up − 1 generates the Eisenstein ideal.

Theorem 5.14. Assume the hypotheses of Theorem 5.12. Then p is not a p-th
power modulo N if and only if Up − 1 generates the Eisenstein ideal.

Proof. First note that Up− 1 generates the Eisenstein ideal Im of Tm if and only if
Up− 1 generates the Eisenstein ideal Im,k of Tm,k for one (equivalently any) k ≡ k0
(mod p− 1). Thus it suffices to work in Tm,k to establish the above theorem.

To this end, choose k ≡ k0 (mod p − 1) with k > 2. By Theorem 5.12, Im,k is
principal, and hence there is a surjective homomorphism Zp[x] → Tm,k sending x
to a generator of Im,k. This map induces an isomorphism Tm,k/pTm,k

∼= Fp[x]/(x
r)

for some r ≥ 1. On the other hand, [Wak23, Proposition 4.4.2] gives a surjective
homomorphism φ : Tm,k → Fp[ǫ]/(ǫ

2) such that

Tℓ 7→ 1 + ℓk0−1 + ǫ(ℓk0−1 − 1) logN (ℓ),

Up 7→ 1− ǫ logN (p).

Hence, an element t ∈ Im,k is a generator if and only if φ(t) 6= 0. It follows that
Up − 1 generates Im,k if only if p is not a p-th power modulo N . �
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Remark 5.15. We note that when k0 ≡ 2 (mod p − 1), all of the hypotheses of
Theorem 5.14 again reduce to simply assuming that p is not a p-th power modulo
N .

Lastly, we give a criteria for when T0
m has rank 1 over Λ.

Theorem 5.16. Assume the hypotheses of Theorem 5.14 and that

(5.17)

N−1
∏

i=1

i(
∑i−1

j=1
jk0−1)

is not a p-th power modulo N . Then T0
m has rank 1 over Λ.

Proof. By Theorem A.9, to compute the rank of T0
m over Λ, it suffices to compute

the rank of T0
m,k over Zp for any k ≡ k0 (mod p − 1). The theorem then follows

from [Deo23, Corollary B]. �

Remark 5.18. In [Lec18, pg. 36], it is verified that when k0 ≡ 2 (mod p − 1) the

quantity in (5.17) is a p-th power modulo N if and only if Merel’s number
∏

N−1

2

i=1 ii

is a p-th power modulo N .

5.5. Results. By Proposition 5.10, (H1
Λ(Y0(N))−, φ, {0,∞},L+p (m)) is an L-symbol

set up for the single-Eisenstein Hecke algebra set up (Zp,Λ,Tm, E−, T0). Applying
the results of Section 2 to this set up, we obtain a theorem which is essentially
identical to Theorem 4.5:

Theorem 5.19.

(1) If Tm is Gorenstein, then there is a unique L+
p (m) ∈ Tm[[Z

×
p ]] such that

L+p (m) = L+
p (m) · {0,∞}. Moreover, content(L+

p (m)) ⊆ Im.

(2) Suppose that T0
m is Gorenstein, so that H1

Λ(X0(N))+m is free of rank 1
over T0

m. Then, for every generator e of H1
Λ(X0(N))+m, there is a unique

L+
p (m)0e ∈ T0

m[[Z
×
p ]] such that L+p (m) = L+

p (m)0e · e.

(3) If Im is a principal ideal with generator t, then Tm and T0
m are Gorenstein

and H1
Λ(X0(N))+m is generated by t{0,∞}. Moreover, there is an equality

L+
p (m) = L+

p (m)0t{0,∞}t

in Im[[Z×
p ]].

Note that Theorem 5.12 gives criteria for when the hypothesis of part (3) holds.
We now move on to the case where Up − 1 generates the Eisenstein ideal. We use
notation analogous to that used in Section 4.2. In particular, for a fixed weight k,
the forms fk,1, . . . , fk,rk are a complete list of Galois-conjugacy-classes of eigenforms
for Tm,k and ̟fk,i

denotes a uniformizer in the p-adic Hecke field of fk,i.

Theorem 5.20. Let e = (Up − 1){0,∞}. Assume that all of the following three
conditions hold:

(a) p ∤ Bk0
,

(b)

p−1
∑

i=1

ik0−2 logN (1− ζip) 6= 0 in Fp, and

(c) p is not a p-th power modulo N .

Then the following four statements are all true:

(1) L+
p (m, ω

0) = L+
p (m, ω

0)0e · (Up − 1) and L+
p (m, ω

0)0e ∈ (T0
m[[u]])

×.
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(2) For every weight k and index i, the µ- and λ-invariants of fk,i are

µ(L+
p (fk,i, ω

0)) = val̟fk,i
(ap(fk,i)− 1) and λ(L+

p (fk,i, ω
0)) = 0.

(3) For every weight k, the sum of the µ-invariants is given by
rk
∑

i=1

µ(L+
p (fk,i, ω

0)) = valp(N − 1) + valp(k).

(4) For every integer M and every weight k such that valp(k) > MrankΛ(T
0
m),

there exists an index i such that

µ(L+
p (fk,i, ω

0)) > M.

If, in addition,
N−1
∏

i=1

i(
∑i−1

j=1
jk0−1) is not a p-th power,

then rankΛ T0
m = 1 and

µ(L+
p (fk, ω

0)) = valp(N − 1) + valp(k),

where fk is the unique form of weight k in the Hida family corresponding to the
isomorphism T0

m
∼= Λ.

Proof. By Theorem 5.14, the assumptions (a)-(c) imply that Up − 1 generates Im.
The proof of parts (1)-(4) works verbatim as in the proof of Theorem 4.7, except
that the role of the Kubota–Leopold series Lp(ψ

−1
m , κ) is played by E−(T0), which

equals ζp,k0
(κ)(1−Nκ/2). In particular, for every weight k,

val̟(E−(T0)|κ=k) = val̟(ζp,k0
(k)) + val̟(1 −Nk/2)

= val̟(N − 1) + val̟(k),

because val̟(ζp,k0
(k)) = 0 by (a). The last claim follows from Theorem 5.16

and (3). �

Remark 5.21. We note that the relative advantage of Theorem 5.20 over Theorem
4.7 is that all of the hypotheses are simple numerical criteria that can be verified
to be true in any given case.

5.6. Conjectures and evidence. The below is a re-statement of Conjecture 4.8
but now in the setting of this section.

Conjecture 5.22.

(1) Suppose that Tm is Gorenstein. For each j, there is an equality

content(L+
p (m, ω

j)) = Im.

(2) Suppose that T0
m is Gorenstein with H1

Λ(X1(N))+m generated by an element
e as a T0

m-module. Then L+
p (m, ω

j)0e has unit content.

If Im is principal then both Tm and T0
m are Gorenstein and the hypotheses of

both parts of the above conjecture are satisfied. When Up − 1 generates Im, then
the j = 0 case of this conjecture follows from Theorem 5.20.

We ran numerical tests of this conjecture analogous to what was done in [BP19,
Section 3.9]. Namely, for all primes N < 80, we ran through all primes p ≥ 5 such
that N ≡ 1 (mod p). For each such pair (N, p), we considered 2 ≤ k0 ≤ p − 3
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and when the corresponding T0
m had rank 1, we verified the above conjecture for

all values of j. The assumption of the rank 1 of T0
m is needed because the method

of computation involved iterating Up on overconvergent modular symbols which
converges when there is a unique form in the Hida family in each weight k. This
assumption on the rank of T0

m also implies that both T0
m and Tm are Gorenstein and

so Im is principal in this case. In all, we verified the conjecture (for all allowable
values of j) for 35 eigenforms.

Appendix A. Hida theory with tame Atkin-Lehner involutions

We consider a variant of the Hida Hecke algebra with operators wℓ at primes
ℓ dividing the tame level rather than Uℓ. Let N = pℓ1 . . . ℓr be squarefree, and
assume p > 3.

A.1. Review of Hida theory. In this section, we review Hida theory. All of
these results are well-known, see, for example, [Hid86a], [Hid86b], [Hid93, Chapter
7], [Wil88], [FK12, Section 1.5].

A.1.1. Classical modular forms. For r ≥ 0 let Γr denote the congruence subgroup
Γ0(N) ∩ Γ1(p

r). For a ring R, let Mk(Γr, R) and Sk(Γr, R) denote the spaces
of modular forms and cusp forms, respectively, of weight k and level Γr, with
coefficients in R. There is an injective q-expansion map

expandq :Mk(Γr, R)→ R[[q]]

which we denote by f 7→
∑

n an(f)q
n. For f ∈ Sk(Γr, R) we have a0(f) = 0. We

define

mk(Γr, R) = {f ∈Mk(Γr, Q(R)) : an(f) ∈ R for all n > 0}

where Q(R) is the localization S−1R where S is the set of non-zero-divisors of R.
There are Hecke operators Tn for (n,N) = 1 and Uℓ for ℓ | N as well as the

Atkin-Lehner involutions wℓ for ℓ | N and diamond operators 〈n〉 for (n,N) = 1.
These all act on mk(Γr, R) and preserve the submodules Mk(Γr, R) and Sk(Γr, R).
We let

H′
r,k ⊂ EndZp

(mk(Γr,Zp)), h′r,k ⊂ EndZp
(Sk(Γr,Zp))

be the Zp-subalgebras generated by the diamond operators and Tn for (n,N) = 1
as well as Uℓ for ℓ|N . These are commutative algebras, and the subject of Hida
theory.

We let

Hr,k ⊂ EndZp
(mk(Γr,Zp)), hr,k ⊂ EndZp

(Sk(Γr,Zp))

be the Zp-subalgebras generated by the diamond operators and Tn for (n,N) = 1

as well as Up and wℓ for ℓ|Np . These are commutative algebras, and are the main

focus in this paper.

Lemma A.1. Let M be mk(Γr,Zp) or Sk(Γr,Zp), and let H be H′
r,k or h′r,k,

respectively. Then M and H are free Zp-modules of finite rank and the pairing

M ×H → Zp

given by (f, T ) 7→ a1(Tf) is perfect.
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A.1.2. Cohomology. Let Y (Γr) be the modular curve with level Γr and let X(Γr)
be its compactification. For k ≥ 2, let Fk denote the twisted constant p-adic étale
sheaf on Y (Γr) associated to the representation Symk−2Std of GL2, and denote
by the same letter its pushforward to X(Γr). Consider the cohomology groups
H1(r, k), H1

c (r, k), H
1
P (r, k) defined as follows

H1(r, k) := H1(Y (Γr),Fk), H
1
c (r, k) := H1

c (Y (Γr),Fk), H
1
P (r, k) := H1(X(Γr),Fk).

By Eichler-Shimura theory, the algebras H′
r,k and Hr,k act on H1

† (r, k) for any

† ∈ {∅, c, P}, faithfully if † ∈ {∅, c}, and factoring exactly through h′r,k and hr,k,
respectively, if † = P .

Lemma A.2. For any k ≥ 2, any r′ ≥ r ≥ 0, and any † ∈ {∅, c, P}, the trace maps

H1
† (r

′, k)→ H1
† (r, k)

commute with the actions of Tℓ and 〈ℓ〉 for any ℓ ∤ N , Uℓ for any ℓ | N , and wℓ for
any ℓ || N .

Proof. For Tℓ and Uℓ, this is proven in [Oht93, Lemma 7.4.1], and essentially the
same proof works for wℓ. Indeed, just as in that proof, it is enough to that wℓ

commutes with the natural map

H1
† (r, k)→ H1

† (r
′, k)

for † ∈ {∅, c}. This commutivity is clear because on both spaces wℓ is given by the
same double coset operator. Explicitly, at any level M with ℓ||M , wℓ is the double
coset operator associated to any matrix Wℓ,M of the form

Wℓ,M =

(

ℓx y
Mz ℓw

)

such that det(Wℓ,M ) = ℓ (the operator is independent of the choice of Wℓ,M ). We
see that any choice of Wℓ,Npr′ is also a valid choice for Wℓ,Npr . �

A.1.3. Hida theory. For a Hr,k-module or H′
r,k-module M , let Mord denote the

largest direct summand on which Up acts invertibly. For k fixed, let

H′ord
k = lim←−

r≥0

H′ord
r,k , h

′ord
k = lim←−

r≥0

h′ordr,k

where the transition maps send Tq and Uℓ to the operator with the same name
(this is well-defined by Lemma A.2). These are algebras over the Iwasawa algebra
Λ = Zp[[Z

×
p ]], via the diamond operator action. For a = 1, . . . , p − 1, and any

Λ-module, M , let M (a) denote the direct summand where the torsion subgroup
of Z×

p acts by the a-th power of the Teichemuller character. Identify Λ(a) with

Zp[[1+pZp]], and, for any k ≡ a (mod p), let ωr,k = [1+p]p
r

− (1+p)(k−2)pr

∈ Λ(a).
Let

mord
k,Λ = lim

←−
r≥0

mk(Γr,Zp)
ord, Sord

k,Λ = lim
←−
r≥0

Sk(Γr,Zp)
ord

where the transition maps are the trace maps. These are faithful modules for H′ord
k

and h′ordk , respectively. The maps

mk(Γr,Zp)
ord → Qp[(Z/p

rZ)×][[q]]
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given by

f 7→
∑

a∈(Z/prZ)×

(expandq(〈a〉
−1U r

pwNpr (f))[a]

induce injective Λ-module homomorphisms

mord
k,Λ → Q(Λ) + qΛ[[q]], Sord

k,Λ → qΛ[[q]],

and we identify these modules with there images in Q(Λ)[[q]]. The following is
known as Hida’s control theorem.

Theorem A.3. The Λ-modules mord
k,Λ, S

ord
k,Λ,H

′ord
k and h′ordk are independent of the

integer k ≥ 2. We may and do drop the subscript k from the notation, and denote
these objects simply by mord

Λ , Sord
Λ ,H′ord and h′ord.

Let M be mord
Λ or Sord

Λ and let H be H′ord or h′ord, respectively. Let Mr,k and
Hr,k be the fixed weight and level versions. We have:

(1) M and H are free Λ-modules of finite rank.
(2) The pairing

M ×H → Λ,

given by (f, T ) 7→ a1(Tf), is perfect.
(3) For any k ≥ 2 and r ≥ 0, the natural maps

M/ωr,kM →Mr,k, H/ωr,kH → Hr,k

are isomorphisms.

A.2. Hida theory with Atkin-Lehner operators. In this section, we prove the
analog of the control theorem for the algebras Hord

r,k and hordr,k .

For an element ǫ = (ǫ1, . . . , ǫr) ∈ {±1}r and an Hr,k-module M , let M ǫ denote
the summand of M on which wℓi acts by ǫi for i = 1, . . . , r.

A.2.1. Atkin-Lehner theory, and reducing from level N to level N/p. We will fre-
quently make use of the following result, which is a variant of Atkin-Lehner theory
(c.f. [AL70, Theorem 1]) that allows for more-general coefficient rings. It was first
proven by Mazur [Maz77, Lemma II.5.9, pg. 83] in the case M > 5 is prime, and
in the general case by Ohta [Oht14, Corollary (2.1.4)].

Lemma A.4. Let M be an integer and let f ∈Mk(Γ0(M), R) with R a Z[1/2M ]-
algebra, and suppose that f is an eigenform for all wℓ with ℓ|M and that an(f) = 0
for all (n,M) = 1. Then f is constant.

Note that the lemma requires that the level be invertible in the coefficient ring.
We want to apply the lemma to rings R where p /∈ R×. The following result, which
essentially says that ordinary forms are old-at-p when the weight is at least 3, is
useful to remove p from the level. It was proven by Gouvêa [Gou92, Lemma 3] for
cusp forms, and the same proof works for modular forms (c.f. [Oht05, Proposition
1.3.2]).

Lemma A.5. Let M be any integer that is prime to p and let k > 2. Then the
map

Mk(Γ1(M),Zp)
ord →Mk(Γ1(M) ∩ Γ0(p),Zp)

ord

is an isomorphism.
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A.2.2. Duality. The key to the proof of the control theorem will be the following
duality result, which is the analog of Lemma A.1.

Proposition A.6. For any r ≥ 0 and k ≥ 2, consider the pairings

(−,−)r,k : mk(Γr,Zp)
ord × Hord

r,k → Zp, (−,−)0r,k : Sk(Γr,Zp)
ord × hordr,k → Zp

given by (f, T ) 7→ a1(Tf).

(1) For any r, k, the resulting maps

Hord
r,k → HomZp

(mk(Γr,Zp)
ord,Zp), hordr,k → HomZp

(Sk(Γr,Zp)
ord,Zp)

are injective.
(2) For r = 0 and any k > 2, the pairings are perfect.

For the proof of the proposition, we need a lemma comparing mk(Γ0,Zp)
ord,ǫ to

Mk(Γ0,Zp)
ord,ǫ.

Lemma A.7. For any ǫ ∈ {±1}r, there is an exact sequence

0→Mk(Γ0,Zp)
ord,ǫ → mk(Γ0,Zp)

ord,ǫ a0−→

(

1

pmk,ǫ
Zp

)

/Zp → 0

for some integer mk,ǫ ≥ 0. Moreover, if we define m′ as the maximal integer m
such that there exists h ∈ Mk(Γ0,Zp)

ord,ǫ with h ≡ 1 (mod pm) and a0(h) = 1,
then mk,ǫ = m′.

Proof. We have an exact sequence

0→Mk(Γ0,Zp)
ord,ǫ → mk(Γ0,Zp)

ord,ǫ a0−→ Qp/Zp.

Since mk(Γ0,Zp)
ord,ǫ is finitely generated, the image of the a0 map is a finite cyclic

p-group. We define mk,ǫ ≥ 0 so that the order of this group is pmk,ǫ , and we get
the desired exact sequence.

If h′ ∈ mk(Γ0,Zp)
ord,ǫ satisfies a0(h

′) = 1
pmk,ǫ , then h := pmk,ǫh′ ∈Mk(Γ0,Zp)

ord,ǫ

satisfies h ≡ 1 (mod pmk,ǫ) and a0(h) = 1, so mk,ǫ ≤ m′. Conversely, if h ≡ 1

(mod pm
′

) and a0(h) = 1, then h′ := p−m′

h ∈ mk(Γ0,Zp)
ord,ǫ and a0(h

′) = p−m′

so mk,ǫ ≥ m′. �

Remark A.8. It is known that mk,ǫ = 0 if (p− 1) ∤ k, but we shall not use this.

Proof of Proposition A.6. We give the proof only for the modular case, the cuspidal
case being similar but easier. We can decompose mk(Γ0,Zp)

ord and Hord
0,k into

eigenspaces for the Aktin-Lehner operators. It is enough to show that, for any
choice of ǫ, the induced pairing

(−,−)r,k : mk(Γr,Zp)
ord,ǫ × H

ord,ǫ
r,k → Zp,

has the desired properties.
We first show that the pairing is perfect withQp-coefficients, which will imply (1).

Suppose that f ∈Mk(Γr,Qp)
ord,ǫ satisfies (f, T )r,k = 0 for all T ∈ H

ord,ǫ
r,k [1/p]. This

implies that an(f) = 0 for all (n,N/p) = 1. By Lemma A.4, this implies that f is

constant, and hence 0. Conversely, suppose that T ∈ H
ord,ǫ
r,k [1/p] satisfies (f, T )r,k =

0 for all f ∈Mk(Γr,Qp)
ord,ǫ. Then for any g ∈Mk(Γr,Qp)

ord,ǫ, we have an(Tg) =
(Tng, T )r,k = 0 for all (n,N/p) = 1. The same lemma then implies that Tg = 0,

which implies that T = 0 since H
ord,ǫ
r,k [1/p] acts faithfully on Mk(Γr,Qp)

ord,ǫ.
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Now we consider (2). By the perfectness of the Qp-pairing, we have that

mk(Γ0,Zp)
ord,ǫ → HomZp

(Hord,ǫ
0,k ,Zp)

is injective. We have to show it is surjective. Let φ : Hord,ǫ
0,k → Zp. We see that

there is f ′ ∈ Mk(Γ0,Qp)
ord,ǫ such that φ(T ) = (T, f ′)k for all T ∈ H

ord,ǫ
0,k . This

implies that an(f
′) = φ(Tnf

′) ∈ Zp for all (n,N/p) = 1, where Tn := UprTn/pr if

pr||n. If f ′ ∈ mk(Γ0,Zp)
ord,ǫ, we are done, so assume for a contradiction that it is

not. Then there is a minimal r ≥ 1 such that f = prf ′ ∈ mk(Γ0,Zp)
ord,ǫ. By the

minimality of r, we must have an(f) ∈ Z×
p for some n > 0 (clearly this n must have

(n,N/p) > 1).
Assume that f ∈ Mk(Γ0,Zp)

ord,ǫ. By Lemma A.5, we may consider f ∈
Mk(Γ0(N/p),Zp)

ord,ǫ. Consider the image f̄ inMk(Γ0(N/p),Fp)
ord,ǫ. Since an(f

′) ∈
Zp for all (n,N) = 1 and since r ≥ 1, we have an(f̄) = 0 for all (n,N) = 1. As
N/p ∈ F×

p , Lemma A.4 applies and we get that f̄ is constant. This implies that
an(f) ≡ 0 (mod p) for all n > 0, a contradiction.

Finally, assume that f 6∈ Mk(Γ0,Zp)
ord,ǫ, so s := −valp(a0(f)) > 0. Then

g := a0(f)
−1f ∈ Mk(Γ0,Zp)

ord,ǫ satisfies a0(g) = 1. By Lemma A.5, we may
consider g ∈ Mk(Γ0(N/p),Zp)

ord,ǫ. Since an(f
′) ∈ Zp for all (n,N) = 1, we have

an(g) = 0 (mod pr+s) for all (n,N) = 1. As N/p ∈ (Z/pr+sZ)×, Lemma A.4
implies that g (mod pr+s) is the constant a0(g) = 1. By Lemma A.7, and since
r > 0, this implies that s < mk,ǫ.

Now fix h ∈Mk(Γ0,Zp)
ord,ǫ such that h ≡ 1 (mod pmk,ǫ) and such that a0(h) =

1. Since valp(a0(f)) = −s and s < mk,ǫ, we see that an(a0(f)h) ∈ pZp for all n > 0.
Then letting f ′′ = f − a0(f)h, we see that f ′′ ∈ Mk(Γ0(N/p),Zp)

ord,ǫ. Moreover,
we see that an(f

′′) = pran(f
′)− an(a0(f)h) ≡ 0 (mod p), for all (n,N/p) = 1. By

Lemma A.4 this implies that f ′′ (mod p) is constant. In particular, for all n > 0
we have

0 ≡ an(f
′′) ≡ an(f) (mod p),

a contradiction. �

A.2.3. Control theorem. For k fixed, let

Hord
k = lim

←−
r≥0

Hord
r,k , h

ord
k = lim

←−
r≥0

hordr,k

where the transition maps send Tq and wℓ to the operator with the same name
(this is well-defined by Lemma A.2). These are algebras over the Iwasawa algebra
Λ = Zp[[Z

×
p ]], via the diamond operator action. We can now prove the main theorem,

which is a control theorem for the algebras Hord
k and hordk .

Theorem A.9. The algebras Hord
k and hordk for various k are canonically identified

with each other. We can and do drop the subscript k from the notation and simply
refer to these algebras as Hord and hord. Moreover:

(1) There are canonical isomorphisms of Λ-modules Hord → H′ord and hord →
h′ord. In particular, Hord and hord are free Λ-modules of finite rank.

(2) The pairings

mord
Λ × Hord → Λ, Sord

Λ × hord → Λ,

given by (f, T ) 7→ a1(Tf), are perfect.
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(3) The natural maps

Hord/ωr,kH
ord → Hord

r,k , hord/ωr,kh
ord → hordr,k

are isomorphisms for all r ≥ 0 and k ≥ 2.
(4) The pairings (−,−)r,k and (−,−)0r,k of Proposition A.6 are perfect for all

r ≥ 0 and k ≥ 2.

Proof. We give the proofs only for modular case, the cuspidal cases being similar.
First, we see that Hord

k is the subalgebra of EndΛ(m
ord
k,Λ) generated by the operators

Tq, Up and wℓ. But by Theorem A.3, mord
k,Λ is independent of k. This shows that

these algebras are independent of k.
The map Hord → H′ord in (1) is given as the composite

Hord → HomΛ(m
ord
Λ ,Λ)

∼
−→ H′ord

where the first map is induced by the pairing in (2), and the second map is the
isomorphism of Theorem A.3 (2). Let X = coker(Hord → H′ord), which is a finitely
generated Λ-module.

Similarly, for any fixed k and r, we have a map Hord
r,k → H′ord

r,k defined as the
composite

Hord
r,k → HomZp

(mk(Γr,Zp)
ord,Zp)

∼
−→ H′ord

r,k ,

where the first map is given by (−,−)r,k and the second map is the isomorphism
given by Lemma A.1. This map is an isomorphism for every r and k if and only if
(4) holds.

We have a commutative diagram to compare these maps:

(A.10) Hord/ωr,kH
ord //

��
��

H′ord/ωr,kH
′ord

≀

��

Hord
r,k

�

�

// H′ord
r,k .

The leftmost vertical arrow is surjective because the operators Tq, Up and wℓ map
to the operators of the same name, the lower horizontal arrow is injective by Propo-
sition A.6(1), and the rightmost vertical arrow is an isomorphism by Theorem A.3
(3). For r = 0 and k > 2, Proposition A.6(2) implies that the lower horizontal
arrow is an isomorphism. This implies that the map

Hord/ω0,kH
ord → H′ord/ω0,kH

′ord

is surjective for all k > 2. In other words, we have X/ω0,kX = 0 for all k > 2.
The elements ω0,3, ω0,4, . . . , ω0,p+1 are in the p− 1 different maximal ideals of Λ, so
X = 0 by Nakayama’s lemma. This implies that Hord → H′ord is surjective.

Returning to the diagram (A.10) for arbitrary r ≥ 0 and k ≥ 2, we see that
the lower horizontal arrow is also surjective, proving (4). Since the map Hord →
H′ord is the inverse limit (for k fixed and r increasing) of these maps, it is also
an isomorphism proving (1). By the definition of the map Hord → H′ord, this also
proves (2). This shows that all the arrows except the leftmost vertical in (A.10)
are isomorphisms, so it is too, proving (3). �
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