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THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY

JUAN ESTEBAN RODRÍGUEZ CAMARGO

Abstract. Applying the new theory of analytic stacks of Clausen and Scholze we introduce a general notion
of derived Tate adic spaces. We use this formalism to define the analytic de Rham stack in rigid geometry,
extending the theory of ÙD-modules of Ardakov and Wadsley to the theory of analytic D-modules. We prove
some foundational results such as the existence of a six functor formalism and Poincaré duality for analytic
D-modules, generalizing previous work of Bode. Finally, we relate the theory of analytic D-modules to
previous work of the author with Rodrigues Jacinto on solid locally analytic representations of p-adic Lie
groups.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Overview of the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Derived Tate adic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Categorified locale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Tate adic spaces as categorified locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4. Some idempotent algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. Condensed Nil-radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6. Bounded affinoid rings and †-nil-radicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7. Adic spectrum and derived Tate adic spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Tate stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1. Recollections on abstract six functor formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2. Solid and Tate stacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3. Morphisms of finite presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4. The cotangent complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5. Solid étale and smooth maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6. Derived rigid geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7. Formally overconvergent étale and smooth maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4. Cartier duality for vector bundles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1. Vector bundles and torsors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2. Algebraic Cartier duality for vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3. Analytic Cartier duality for vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5. Algebraic and analytic de Rham stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1. The algebraic de Rham stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2. The analytic de Rham stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3. Poincaré duality for D-modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4. Analytic de Rham stack of rigid spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. Analytic de Rham stack and locally analytic representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1. Smooth †-groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2. p-adic Lie groups and analytic D-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
1

http://arxiv.org/abs/2401.07738v1
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1. Introduction

Motivation. The main objective of this paper is to geometrically construct a six functor formalism for
a suitable category of D-modules over rigid spaces. To further develop this idea let us first recall some
aspects of the classical theory of D-modules.

Let K be a field of characteristic 0 and X a smooth scheme over K. Classically, the category of D-
modules over X is constructed by first defining a ring of algebraic differential operators DX over X, and
then taking the category of DX-modules whose underlying OX-module is quasi-coherent. If X admits an
étale map to an affine space X → Ad

K , then DX can be explicitly constructed as the Weyl algebra

DX = OX [∂T1 , . . . , ∂Td
],

where Ad
K = SpecK[T1, . . . , Td], and the variables ∂Ti correspond to the partial derivations along the

coordinate Ti.
In [Sim96, ST97], Simpson has proposed a different perspective on the theory of D-modules by the employ

of stacks. Let X be a smooth variety over K, Simpson attaches a space Xalg
dR from commutative rings over

K to sets whose theory of quasi-coherent sheaves is naturally isomorphic to the theory of D-modules over
X. More concretely, let RingK be the category of commutative rings of finite type over K, then Simpson’s
de Rham stack is defined as the stack in the étale topology given by

Xalg
dR (R) = X(Rred),

where Rred is the reduction of the ring R. An advantage from this definition is that one can easily construct
categories of D-modules for any variety over K without the smooth assumption, namely the previous
formula for the de Rham stack extends to any stack over K. The study of D-modules via the de Rham
stack, and its application to geometric Langlands, can be found in the work of Gaitsgory and Rozenblyum
[GR14].

Specializing to p-adic geometry, let K be a non-archimedean extension of Qp and let X be a smooth
rigid space over K. In the works [AW18, AW19] Ardakov and Wadsley have developed the theory of
coadmissible ÙD-modules over rigid spaces. The departure point to define the category of coadmissible ÙD-
modules is again a sheaf ÙDX of "infinite order p-adic differential operators over X". To describe this sheaf,
let us suppose for simplicity that X = SpaA is affinoid and that we have an étale map f : X → Dd

K

to a polydisc Dd
K = SpaK〈T1, . . . , Td〉. Then, as for schemes, we first consider the algebra of algebraic

differential operators of X:
DX = A[∂T1 , . . . , ∂Td

].

The action of ∂Ti on A by derivations is continuous, so we can find N > 0 such that for all n ≥ N
the left sub-A◦-module A◦[pn∂T1 , . . . , p

n∂Td
] ⊂ DX is stable under multiplication. Thus, by taking p-adic

completions ÙD(n)
X := A〈pn∂T1 , . . . , p

n∂Td
〉, and taking limits along n → ∞, one constructs the algebra of

infinite order differential operators
ÙDX = lim

←−
n

ÙD(n)
X .

The algebra ÙDX is known as a Fréchet-Stein algebra and its construction is motivated from the algebra of
analytic distributions of p-adic Lie groups of Schneider-Teitelbaum [ST03]. In particular, there is a well
defined category of coadmissible ÙDX -modules given by the limit along pullbacks of the categories of finite
type ÙD(n)

X -modules. Categories of coadmissible ÙDX-modules have been extended using bornological vector
spaces, and a six functor formalism for ÙDX-modules has been constructed by Bode in [Bod21].

The theory of the analytic de Rham stack developed in this work is then a conciliation between the
geometric theory of D-modules of Simpson via the de Rham stack, and the theory of ÙDX-modules of
Ardakov and Wadsley. To justify the tools used to construct the analytic de Rham stack let us start with
an example. Let K be a field of characteristic 0, and let Ga = SpecK[T ] be an affine space over K seen as
an additive group. It follows from the definition of the algebraic de Rham stack that

G
alg
a,dR = Ga/“Ga

where “Ga is the formal completion at 0 ∈ Ga, acting by translations. It turns out that the Cartier dual of
the stack ∗/“Ga is just Ga, then, it is expected (and indeed the case) that modules over G

alg
a,dR are given by
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sheaves on Ga together with an operator ∂T (Cartier dual of ∗/”Ga), that is equivariant with respect to the
module structure on Ga via the additive action of “Ga on Ga (i.e. that ∂T acts by derivations).

Let us now take K/Qp a non-achimedean extension, and let Ga = D1
K = SpaK〈T 〉 be the open affinoid

disc seen as an additive group. We would like to define an analytic de Rham stack Ga,dR whose theory of
quasi-coherent sheaves is related to the theory of ÙD-modules. By construction, the sheaf ÙD of infinite order
p-adic differential operators has cotangent variables (i.e. the derivations ∂T ) that look like global sections
of an analytic affine space A

1,an
K . Moreover, the category of coadmissible ÙD-modules is a non-commutative

analogue of the category of coherent sheaves on a relative analytic affine space (eg. A
1,an
K ). Therefore, we

would like to define the analytic de Rham stack in such a way that

Ga,dR = Ga/G
†
a,

with G
†
a ⊂ Ga a subgroup acting by translations, and such that ∗/G†

a is the Cartier dual of A
1,an
K (in a

suitable sense). It is known that the continuous dual of O(A1,an
K ) is given, as a Hopf algebra, by the ring of

germs of functions at 0 ∈ Ga

K{T}† = lim−→
n

K〈
T

pn
〉.

Therefore, a reasonable candidate for G
†
a would be given by

G†
a = SpaK{T}†.

Here is where several foundational problems appear. First, we are obligated to work with topological
rings, and in order to have a good theory of analytic D-modules as quasi-coherent sheaves of a stack, we also
need to work with topological modules. This problem is solved thanks to the theory of analytic geometry
and condensed mathematics of Clausen and Scholze [CS19, CS20, CS22]. Second, if we ever expect to built
up a six functor formalism of analytic D-modules from the theory of complete modules of analytic rings, we
need to construct categories of analytic stacks, and have a strong descent theory. Again, analytic geometry
comes to the rescue, this time making use of the abstract theory of six functor formalisms and D-stacks as
in [Man22b, Man22a] and [Sch23].

Once we have analytic stacks and complete modules at our disposal, we can make sense to objects such as
Ga/G

†
a, as well as to its category of complete modules. However, in order to make a good definition of the

analytic de Rham stack, we would need to mimic Simpson’s construction of the algebraic de Rham stack.
The key idea is that, while the space “Ga represents the nilradical of a discrete ring R (i.e. those elements
a such that an = 0 for some n), the space G

†
a represents a "†-nilradical" for a suitable category of analytic

rings R. In other words, G†
a represents elements a ∈ R "of spectral norm zero", i.e. such that |a| ≤ |pn| for

all n ≥ 0. Thus, our first step is to restrict the theory of analytic rings to a theory of "bounded affinoid
rings" R for which we can construct a †-nilradical Nil†(R). Another motivation for the introduction of
bounded affinoid rings arises from Tate algebras: we should only expect to construct an analytic de Rham
stack for rings that look like affinoid Tate algebras, namely, for rings admitting a pseudo-uniformizer in a
suitable sense.

After bounded affinoid rings are introduced, we study some fundamental geometric properties of them
in Sections 2 and 3: an analytic topology analogue to the analytic topology of adic spaces; a theory of
derived Tate adic spaces obtained by gluing bounded affinoid rings via rational localizations; the theory of
the cotangent complex of analytic rings; different notions of morphisms of finite presentation appearing in
non-archimedean analytic geometry; a deformation theoretic description of smooth maps of morphisms of
(solid) finite presentation of derived Tate adic spaces; Serre duality; a new deformation condition involving
†-nilradicals. This study on derived rigid geometry settles the basis for the theory of the analytic the Rham
stack.

Finally, once all the prerequisites in derived rigid geometry are done, we can start the study of the
analytic de Rham stack. Let X be a rigid space over Qp, and let Affb

Qp
be the (∞-)category of bounded

affinoid rings over Qp, then the analytic de Rham stack XdR will be defined as a suitable sheafification of
the prestack mapping A ∈ Affb

Qp
to

XdR(A) = X(A†−red),
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where A†−red := A/Nil†(A) is the "†-reduction of A". Our workhorse to prove properties on the analytic
de Rham stack, such as the existence of six functors, Poincaré duality, and the construction of the Hodge
filtration, will be a new theory of Cartier duality for analytic vector bundles over derived Tate adic spaces
in Section 4. The main theory of the analytic de Rham stack, in particular the construction of six functors
for analytic D-modules, is the content of Section 5. We finish the paper with a generalization of the analytic
de Rham stack of smooth morphisms in the equivariant setting in Section 6, obtaining a generalization of
equivariant ÙD-modules of Ardakov [Ard21], and of the theory of solid locally analytic representations of
p-adic Lie groups of [RJRC22, RJRC23].

Overview of the paper. The body of the paper is divided in two main parts. First, we develop the theory
of derived Tate adic spaces and Tate stacks in Sections 2 and 3. The second part consists on Sections 4, 5
and 6, where we study different incarnations of Cartier duality of vector bundles, we define the analytic de
Rham stack for Tate stacks over Qp, and finally we relate the theory of the analytic de Rham stack with
the theory of locally analytic representations of p-adic Lie groups.

§2 Derived Tate adic spaces. The theory of adic spaces of Huber [Hub94] have been the language for non-
archimedean analytic geometry in the last few decades, a weakness of this category are the restrictions
imposed in the definition of complete Huber pairs. The main goal of this section is the introduction of
the∞-category of bounded affinoid rings (Definition 2.6.10), generalizing the category of Tate Huber pairs,
over which we can do both analytic and derived algebraic geometry. Similarly as for Huber pairs, one can
construct a spectral space SpaA for any bounded affinoid ring A (Definition 2.7.3), generalizing the adic
spectrum of an Huber ring. Maps between bounded affinoid rings will give rise to spectral maps of the adic
spectra, and solid quasi-coherent modules will satisfy descent for the analytic topology. A bounded affinoid
ring has the feature that any function is bounded in the sense of the theorem down below. Moreover,
one can define condensed and †-nilradicals for these rings, consisting on ideals of uniformly nilpotent
or overconvergently close to zero elements respectively. The following summarizes the main results (cf.
Propositions 2.5.7, 2.6.9, 2.6.14, 2.7.8 and 2.7.14).

Theorem 1.0.1. Let R = Z((π)) be the Huber ring parametrizing pseudo-uniformizers in Tate Huber
pairs. There is a full subcategory AffRingbR ⊂ AnRingR of the ∞-category of analytic R-algebras, called
the category of bounded affinoid rings, containing fully faithfully the 1-category of Tate Huber pairs over
R. The category AffRingbR is stable under small colimits in AnRingR. Furthermore, let A ∈ AffRingbR, the
following hold

(1) There is an animated subring A+ ⊂ A(∗) such that an A-module is A-complete if and only if it is
Z[a]�-complete for all a ∈ A+.

(2) For any map Z[T ]→ A of analytic rings, there is some n ∈ N and an extension to the Tate algebra
R〈πnT 〉 → A. In other words, any element a ∈ A is bounded.

(3) The ring A has a condensed nil-radical Nil(A) whose S points (for S profinite) are given by maps
S → A which are uniformly nilpotent. Furthermore, the analytic ring structure on A is already
determined by the analytic ring structure of the quotient Ared := A/Nil(A), and Nil(Ared) = 0.

(4) The ring A has a †-nil-radical Nil†(A) whose S-points (for S profinite) are given by maps S → A
which are overconvergently close to zero. Furthermore, the analytic ring structure on A is already
determined by the analytic ring structure of the quotient A†−red := A/Nil†(A), and Nil†(A†−red) =
0.

(5) There is a spectral space SpaA endowed with an analytic topology with a basis given quasi-compact
rational subspaces, generalizing Huber’s construction of Spa(A,A+). Moreover, any map A →
B of bounded affinoid rings gives rise a spectral morphism SpaB → SpaA preserving rational
localizations.

(6) We have homeomorphisms of spectral spaces SpaA = SpaAred = SpaA†−red.
(7) The ∞-category Mod(A) of solid A-modules satisfies descent for the analytic topology of SpaA.

Having stated some basic properties for the category of bounded affinoid rings one can formally defined
the category of derived Tate adic space by gluing bounded affinoid rings along open covers (Definition
2.7.22).
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Definition 1.0.2. We let Affb
R denote be the opposite category of bounded affinoid rings, an object in Affb

R

is called a bounded affinoid space. Given A a bounded affinoid ring we let AnSpecA ∈ Affb
R be its analytic

spectrum. A derived Tate adic space is a sheaf on anima X : Affb,op
R → Ani for the analytic topology of

Affb
R, such that X admits an open analytic cover by bounded affinoid spaces. Given X a derived Tate adic

space we let |X| = lim−→AnSpecA→X
|X| denote its underlying topological space. We let AdicSpR denote the

∞-category of derived Tate adic spaces over R.

The previous definition of derived Tate adic spaces is an extension of Huber’s analytic adic spaces. The
choice of the analytic topology to glue bounded affinoid rings is an arbitrary choice that was taken to
compare with the classical theory. We will see in §3 that one can still do geometry in different kind of
Grothendieck topologies, as long as one has descent for the six functor formalism of quasi-coherent sheaves.

§3 Tate stacks. In this section we continue developing the theory of derived Tate adic spaces. In §3.1 we
recall some language in the theory of abstract six functor formalisms of [Man22b, Man22a] and [Sch23].
Then in §3.2, we use [Sch23, Theorem 4.20] to construct a very large six functor formalism on a category
of analytic D-stacks on bounded affinoid rings (Definitions 3.2.7 and 3.2.10). We define different notions of
morphisms of finite presentations in analytic rings in §3.3, study basic properties of cotangent complexes in
analytic rings in §3.4, and introduce the notion of solid smooth and étale maps of derived Tate adic spaces
in §3.5. We obtain an equivalent description of solid smooth and étale maps as formally smooth and étale
maps of solid finite presentation (Theorem 3.5.6 and Corollary 3.5.16).

Theorem 1.0.3. Let f : X → Y be a morphism of solid finite presentation of derived Tate adic spaces
over R = Z((π)). The following are equivalent:

(1) The map f is formally smooth (resp. étale).
(2) The map f is solid smooth (resp. étale), namely, locally in the analytic topology of X and Y the

map f is standard solid smooth (resp. standard solid étale).

We continue by studying some properties of the categories of modules of derived Tate adic spaces with
the goal of proving Serre duality (following an argument of Clausen and Scholze by deformation to the
normal cone). We have the following result (Theorem 3.6.15).

Theorem 1.0.4. Let f : X → Y be a morphism locally of solid finite presentation of derived Tate adic
spaces. The following hold:

(1) The map f admits !-functors in the six functor formalisms of solid quasi-coherent sheaves.
(2) If f is solid smooth (resp. étale) then f is cohomologically smooth (resp. cohomologically étale) for

the six functor formalism of quasi-coherent sheaves. Furthermore, there is a natural identification
f !1Y = Ωd

X/Y [d] where d is the relative dimension of f , and 1Y is the unit in the category of solid
quasi-coherent sheaves on Y (i.e. the structural sheaf).

Finally, we introduce a new deformation condition called †-formally smoothness and étaleness, related
with liftings along †-nilpotent ideals such as Nil†(A). Then, we prove the following lifting property for solid
smooth and solid étale maps (Proposition 3.7.5).

Proposition 1.0.5. Let f : X → Y be a solid smooth (resp étale) map of derived Tate adic spaces over R.
Then f is †-formally smooth (resp. étale) locally in the analytic topology of X and Y .

In the next sections we apply all the previous theory on derived rigid geometry to study Cartier duality
of vector bundles, and to construct a six functor formalism for analytic D-modules.

§4 Cartier duality for vector bundles. With the introduction of derived Tate adic spaces, new commutative
group objects appear in the nature making possible new incarnations of Cartier duality. In this section we
do not pretend to give a definition or an abstract set up for a Cartier duality theorem, instead we explore
new examples of Cartier duality arising from analytic subspaces of vector bundles. For technical reasons,
these Cartier duality isomorphisms are easier to describe if we restrict ourselves to analytic geometry over
Qp, for simplicity let us even restrict ourselves to derived Tate adic spaces over Qp. We start with the
definition of the analytic incarnations of vector bundles (Construction 4.3.9)
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Definition 1.0.6. Let X be a derived Tate adic space over Qp and F a vector bundle over X of rank d.
We let V(F )an be its geometric realization as an derived Tate adic space over X. Let ι : X → V(F )an be
the zero section, and let V(F )† denote the overconvergent neighbourhood of zero.

So, if X = AnSpecQp is a point, and E is free of rank 1, the space V(F )an is isomorphic to the affine
analytic line A

1,an
Qp

. Similarly, V(F )† is nothing but the space G
†
a,Qp

given by the analytic spectrum of the

algebra Qp{T}
† = lim−→n

Qp〈
T
pn 〉 of functions that overconverge at 0 ∈ A

1,an
Qp

. The following theorem describes
the theory of six functors for analytic vector bundles and their classifying stacks (Proposition 4.2.5 and
Theorem 4.3.13).

Theorem 1.0.7. Let X be a derived Tate adic space over Qp and let E be a vector bundle over X of rank
d.

(1) Let f : V(F )an → X, then f is cohomologically smooth and there are natural equivalences f !1X =

f∗
∧d

F∨[d] and f!f
!1X = Sym†

X(F ), where Sym†
X(F ) is the sheaf of functions of V(F∨)†.

(2) The map f : V(F )† → X satisfies f∗ = f!.
(3) Let g : X/V(F )an → X. Then g is cohomologically smooth with g!1X = g∗

∧d
F [−d], and there is

a natural equivalence g! ∼= g∗[−2d].
(4) Let g : X/V(F )† → X. Then g is cohomologically smooth with g!1X = g∗

∧d
F [d], and there is a

natural equivalence g! ∼= g∗.

The analytic Cartier duality theorem is the following statement (Theorems 4.2.7 and 4.3.13).

Theorem 1.0.8. Let X be a derived Tate adic space over Qp and let F be a vector bundle over X of rank
d.

(1) There is a bilinear morphism F : V(F )† × (X/V(F∨)an) → BGm such that F ∗(O(1)) is an
isomorphism V(F )†

∼
−→ X/V(F∨)an in the category of Fourier-Moukai kernels for the six func-

tor formalisms of solid quasi-coherent sheaves. Furthermore, the inverse of F ∗(O(1)) is given by
F ∗(O(−1)) ⊗

∧d
F∨[−d].

(2) There is a bilinear morphism G : V(F )an × (X/V(F∨)†) → BGm such that G∗(O(1)) is an
isomorphism V(F )an

∼
−→ X/V(F∨)† in the category of Fourier-Moukai kernels for the six func-

tor formalisms of solid quasi-coherent sheaves. Furthermore, the inverse of G∗(O(1)) is given by
G∗(O(−1)) ⊗

∧d
F∨[d].

Corollary 1.0.9. In the notation of Theorem 1.0.8, there are natural equivalences of stable ∞-categories
given by Fourier-Mukai transforms

FM1 : Mod�(V(F )†)
∼
−→ Mod�(X/V(F∨)an).

and
FM2 : Mod�(V(F )an)

∼
−→ Mod�(X/V(F∨)†).

We also review algebraic Cartier duality in Theorem 4.2.7, and show two other versions of analytic Cartier
duality in Theorems 4.3.8 and 4.3.20.

§5 Algebraic and analytic de Rham stacks. The first construction of the de Rham stack dates back to
Simpson in his papers [Sim96, ST97]. In this work we propose an analogue of this construction in analytic
geometry, more precisely in rigid analytic geometry over Qp. We begin by extending the construction of
the algebraic de Rham stack from algebraic geometry to condensed mathematics. Specialized to derived
Tate adic spaces we get the following (Definition 5.1.1).

Definition 1.0.10 (Algebraic de Rham stack). Let R = Z((π)) and let X be a derived Tate adic space
over R⊗Q. The algebraic de Rham prestack of X is the presheaf on Affb

R⊗Q given by

Xalg
dR (A) = lim−→

I→A

X(cone(I → A))

where I runs over all the uniformly nilpotent ideals of A. The de Rham stack of X is the sheafification
of the de Rham prestack in the D-topology, and we also denote it by Xalg

dR . Given a morphism X → Y of



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 7

derived Tate adic spaces, the relative algebraic de Rham stack Xalg
dR,Y is the pullback

Xalg
dR,Y Y

Xalg
dR Y alg

dR .

We call Mod�(X
alg
dR,Y ) the category of algebraic DX/Y -modules.

In analogy to the algebraic de Rham stack, and in view that there is a second kind of nil-radical in the
category of bounded affinoid rings (Theorem 1.0.1 (4)), we define the analytic de Rham stack as follows
(Definition 5.2.2).

Definition 1.0.11 (Analytic de Rham stack). Let X be a derived Tate adic space over Qp, the analytic
de Rham prestack is the presheaf on Affb

Qp
defined by

XdR(A) := X(A†−red).

The analytic de Rham stack is the D-sheafification of the analytic de Rham prestack, and we also denote
it by XdR. Let f : X → Y be a map of derived Tate adic spaces, we define the relative de Rham stack
XdR,Y to be the pullback

XdR,Y Y

XdR YdR.

We call Mod�(XdR,Y ) the category of analytic DX/Y -modules.

The main theorem on de Rham stacks is the following (see Corollaries 5.2.5 and 5.2.13, Propositions
5.1.2 and 5.2.3, and Theorems 5.1.12, 5.1.13, 5.2.10, 5.3.7 and 5.4.1).

Theorem 1.0.12. Let f : X → Y be a morphism of derived Tate adic spaces locally of solid finite pre-
sentation and write falg

dR : Xalg
dR → Y alg

dR and fdR : XdR → YdR for the associated maps at the level of
stacks.

(1) The formation of X 7→ XdR and X 7→ Xalg
dR commutes with colimits and finite limits at the level of

prestacks.
(2) The maps falg

dR and fdR admit !-functors.
(3) Suppose that X is a rigid space over a non-archimedean extension K/Qp, then the map h : X →

XdR,K is a D-cover. In particular, quasi-coherent sheaves on XdR,K descent along h.
(4) (Kashiwara equivalence) Let X → Y be a Zariski closed immersion of derived Tate adic spaces, and

let Y †/X be the overconvergent neighbourhood of X in Y . Then there is an equivalence of analytic
de Rham stacks XdR = Y

†/X
dR . In particular, analytic D-modules of Y supported on X are equivalent

to analytic D-modules of X.
(5) Suppose that f is solid smooth (resp. étale), then the maps falg

dR and fdR are cohomologically smooth
(resp. étale).

(6) Suppose that f is solid smooth, then we have natural equivalences falg,!
dR 1

Y alg
dR

= 1
Xalg

dR
and f !

dR1YdR
=

1XdR
[2d] where d is the relative dimension of f .

(7) Suppose that f is solid smooth and consider the map g : Xalg
dR,Y → XdR,Y , then g admits !-functors,

g∗ satisfies the projection formula, and there is a natural equivalence

1XdR,Y

∼
−→ g∗1Xalg

dR,Y
.

In particular, the pullback functor g∗ is fully faithful and induces an embedding of analytic DX/Y -
modules into algebraic DX/Y -modules.
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(8) Suppose that f is solid smooth, and denote falg
dR,Y : Xalg

dR,Y → Y and fdR,Y : XdR,Y → Y the natural
maps. Then there are natural equivalences of de Rham cohomology

DR(X/Y ) := falg
dR,Y,∗1Xalg

dR,Y
= fdR,Y,∗1XdR,Y

.

Furthermore, DR(X/Y ) can be naturally promoted to a filtered object given by the Hodge filtration,
with graded pieces

griDR(X/Y ) = Ωi
X/Y ,

extending the Hodge filtration for smooth maps of rigid spaces.

Remark 1.0.13. In order to prove Theorem 1.0.12 we need to consider a variation of the de Rham stacks
given by the filtered de Rham stacks Xalg

dR+ and XdR+ , see Definitions 5.1.1 and 5.2.2.

§6 Analytic de Rham stack and locally analytic representations. Finally we end with the relation between
the analytic de Rham stack, the theory of solid locally analytic representations of p-adic Lie groups and a
general notion of equivariant analytic D-module, generalizing definitions of [Ard21].

We first briefly discuss the relation with representation theory. Let G be a p-adic Lie group, and denote
by Gla and Gsm the analytic spaces defined by G endowed with the sheaf of locally analytic and locally
constant functions respectively. In [RJRC23] we proved that the category of solid locally analytic and
smooth representations are given by the category of solid quasi-coherent sheaves of the classifying stacks
∗/Gla and ∗/Gsm respectively. A first relation between p-adic Lie groups, representation theory and the de
Rham stacks is encoded in the following proposition (see Lemma 6.2.2).

Proposition 1.0.14. Let G be a p-adic Lie group. There is a natural equivalence

Gla
dR = Gsm.

In particular, we have an equivalence of classifying stacks

(∗/Gla)dR = ∗/Gsm.

Next, both solid locally analytic representations and analytic D-modules extend to a theory of equivariant
analytic D-modules. To motivate the definition let us make the following observation.

Remark 1.0.15. Let f : X → Y be a solid smooth map of derived Tate adic spaces. By Proposition 1.0.5
the map h : X → XdR,Y is an epimorphism of D-stacks. The Čech nerve of h is given by the analytic de
Rham groupoid, whose n-th is the overconvergent neighbourhood of the diagonal map ∆n+1

Y X → X×Y n+1,
namely, the analytic space (∆n+1

Y X)† whose functions are given by functions of X×Y n+1 that overconverge
the locally closed subspace |∆n+1

Y | ⊂ |X×Y n+1|. This provides an equivalence of D-stacks

XdR,Y := lim
−→

[n]∈∆op

(∆n+1
Y X)†

We extend the analytic de Rham groupoid to †-smooth groupoids in Definition 6.1.3. Roughly speaking,
these are groupoid objects that look like the overconvergent neighbourhoods of the zero sections of vector
bundles. Prototipical examples of †-smooth groupoids are constructed from Lie algebroids over rigid spaces
as explained in Example 6.1.8 (3). We recall the definition of a normal map in groupoids, and introduce
equivariant analytic D-modules in great generality (Definition 6.2.5).

Definition 1.0.16. Let X be a derived Tate adic space over Qp and G a p-adic Lie group acting locally
analytically on X. Let H† be a †-smooth group over X and let H† → Gla ×X be a map of groupoids with
given normal quotient Gla/Hla. We define the category of analytic equivariant D(Gla/H†)-modules to be
Mod(X/(Gla/H†)).

Equivariant D-modules over solid smooth maps have a good cohomological behaviour (Theorem 6.2.6):

Theorem 1.0.17. Let X → Y be a solid smooth morphism of derived Tate adic spaces over Qp of relative
dimension d, and let G be a p-adic Lie group of dimension g acting locally analytically on X over Y . Let
H† be a †-smooth group over X of relative dimension e, and let H† → Gla × X be a map of groupoids
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over X with given normal quotient Gla/H†. Then g : X/(Gla/H†) → Y is cohomologically smooth and its
underlying Gla-equivariant invertible sheaf is equivalent to

Ωd
X/Y [d]⊗

g∧
LieG[g] ⊗

e∧
ℓH†/X [−e].

Notations and conventions. Throughout this paper we freely use the language of higher category theory
and higher algebra of [Lur09] and [Lur17], the theory of condensed mathematics of [CS19, CS20, CS22],
and the theory of abstract six functor formalisms of [Man22b, Man22a] and [Sch23].

To avoid any confusion, (∞, 1)-categories will be called ∞-categories while classical categories will be
called 1-categories. We let Cat∞ denote the large ∞-category of ∞-categories, let Catcolim∞ be the subcate-
gory with objects given by∞-categories admitting small colimits and morphisms given by colimit preserving
functors, and let Catex∞ be the subcategory of stable ∞-categories with exact functors. We let PrL (resp.
PrR) be the ∞-category of presentable ∞-categories with colimit preserving functors (resp. accessible and
limit preserving functors). Combining adjectives, we let PrL,ex denote the∞-category of presentable stable
∞-categories.

Following Lurie, the previous categories have natural cartesian symmetric monoidal structures, we have
the following translation of commutative algebra objects with respect to the cartesian product:

• CAlg(Cat∞) is naturally equivalent to the ∞-category of symmetric monoidal ∞-categories Cat⊗∞.
• CAlg(Catcolim∞ ) is the ∞-category of colimit preserving symmetric monoidal ∞-categories, i,.e. ∞-

categories admitting small colimits, endowed with a symmetric monoidal structure that commutes
with colimits in each variable, and symmetric monoidal colimit preserving functors.
• CAlg(Catex∞) is the∞-category of stable symmetric monoidal∞-categories, i.e. stable∞-categories

with a symmetric monoidal structure which is exact in each variable, and symmetric monoidal exact
functors.
• CAlg(Catcolim,ex

∞ ) is the ∞-category of colimit preserving symmetric monoidal stable ∞-categories;
it is the full subcategory of CAlg(Catcolim∞ ) with objects having a underlying stable ∞-category.
• CAlg(PrL) is the ∞-category of presentably symmetric monoidal ∞-categories, i.e. presentable
∞-categories with a symmetric monoidal structure that commutes with colimits in each variable,
and symmetric monoidal colimit preserving functors.
• CAlg(PrL,ex) is the ∞-category of presentably symmetric monoidal stable ∞-categories, i.e. pre-

sentable stable ∞-categories with a symmetric monoidal structure that commutes with colimits in
each variable, and symmetric monoidal colimit preserving functors.

Given an arrow f : X → Y in a pointed ∞-category C, we let [X → Y ] and cofib[X → Y ] denote
the fiber and cofiber of f respectively. The notion of descendable algebra in a symmetric monoidal stable
∞-category will be used repeatedly along the document, we send to [Mat16] for its definition and main
properties.

We let Prof and Extdis be the sites of profinite and extremally disconnected sets with covers given by
finite jointly surjective maps. Given an∞-category C with finite products and small colimits, we let Cond(C)
be the condensification of C, see [CS20, §11.1] and [Man22b, Definition 2.1.1]. Let C be a 1-category that
admits small colimits and that is generated by small colimits under its compact projective objects Ccp, we
let Ani(C) be the animation of C, see [CS20, §11.4].

We shall write AnRing for the ∞-category of complete commutative analytic (animated) rings as in
[Man22b, Definition 2.3.10]; unless otherwise specified all analytic rings will be assume to be objects in
AnRing. Given A an analytic ring, we let A be its underlying condensed ring, and for S ∈ Extdis we let
A[S] be the free A-module generated by S, we also write AnRingA for the slice ∞-category of analytic
A-algebras. We denote by Mod≥0(A) the ∞-category of animated A-modules, and let Mod(A) be its
stabilization. Throughout this paper we use homotopical notation, so for a complex M the fundamental
group πi(M) is the same as the (−i)-th cohomology group H−i(M). We shall write Mod♥(A) for the heart
of Mod(A).

Given A an analytic ring, we shall write AniAlgA for the ∞-category of animated A-algebras, namely,
the category of condensed animated A-algebras that are A-complete. Given B an animated A-algebra, we
let BA/ denote the analytic ring obtained by restriction of analytic ring structure from A to B, see [Man22b,
Definition 2.3.13]. More generally, given B an E1-algebra in Mod(A), we let BA/ be the analytic ring with
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underlying condensed ring B, and whose category of left modules is given by Mod(BA/) = ModB(Mod(A)),
see Definition 2.1.1.

In this paper all analytic rings are complete, and we always consider colimits as complete analytic rings
unless otherwise specified. Let A be an analytic ring, we will write −⊗A− and HomA(−,−) for the tensor
product and the internal Hom space on Mod(A), omitting in this way further decorations regarding derived
functors. In case we want to consider a classical tensor or Hom space for objects sitting in degree 0, we will
write π0(− ⊗A −) and π0(HomA(−,−)) instead. For C a 1-category with all small colimits and generated
by compact projective objects, an object X in Ani(C) is called static if it belongs to the essential image
of C → Ani(C). We call an analytic ring A static if A is a static condensed animated ring, i.e. a usual
condensed ring sitting in degree 0.

Acknowledgements. This project has been the result of long conversations with Johannes Anschütz, Ko
Aoki, Arthur Cesar le Bras, Lue Pan, Joaquín Rodrigues Jacinto and Peter Scholze; very special thanks
to all of them. I am particularly grateful with Lucas Mann and Konrad Zou for their patience in several
discussions about higher category theory and abstract six functor formalisms. I hearty thank Grigory
Andreychev, Konstantin Ardakov, Dustin Clausen, Gabriel Dospinescu, Akhil Mathew, Riccardo Pengo,
Alberto Vezzani and Bogdan Zavyalov for very fruitful conversations. This paper is the culmination of the
passage of the author in the Max Planck Institute for Mathematics in Bonn during the year 2022-2023,
my heartfelt thanks to the institute for their hospitality and support that made this work possible. This
project has been partially done while the author was a Junior Fellow of the Simons Society of Fellows at
Columbia university.

2. Derived Tate adic spaces

Clausen and Scholze’s analytic geometry is a framework where classical algebraic, archimedean and
non-archimedean geometries can be treated as equals. Throughout this paper we will focus on the non-
archimedean side of the theory, namely the solid theory. By taking as inspiration classical (derived) algebraic
geometry (eg. [Lur04]), and Huber’s theory of (analytic) adic spaces [Hub96], we will introduce a category
of derived Tate adic spaces1.

As primary point, we need to introduce the categories of rings that serve as building blocks of our theories.
The first approximation will be modelled by analytic rings associated to generalized Huber pairs [Man22b,
Definition 2.12.8], called in this paper solid affinoid rings, see Definition 2.6.6. Roughly speaking, the data
of a solid affinoid ring is provided by a pair (A,A+), where A is a solid animated ring, and A+ ⊂ π0(A)(∗)
is a discrete subring that determines which variables of A are “solid”.

The next step towards non-archimedean analytic geometry requires some technical constructions. In one
hand, we want to differentiate algebraic varieties from rigid spaces. On the other hand, we want to define a
class of rings that mimics the relevant features of analytic complete Huber pairs (A,A+), endowed with a
fixed pseudo-uniformizer π. By [And21], the 1-category of complete Huber pairs embeds fully faithfully in
the category of analytic rings. Since (A,A+) admits a pseudo-uniformizer, the subring A0 of power bounded
elements is an open subring of A. We can determine the objects in A0 in the following way: consider the
map R := Z((π))→ A defined by the pseudo-uniformizer π. An element a ∈ A belongs to A0 if and only if
the map R[T ]→ A sending T 7→ a extends to R〈T 〉 → A, where R〈T 〉 is the Tate algebra of R. Using this
observation, we are able to define a class of bounded affinoid rings that provides the building blocks for our
non-archimedean geometry.

After the introduction of the category of bounded affinoid rings, we extend the construction of the adic
spectrum SpaA from Huber pairs to bounded affinoid rings, then, by gluing along rational covers, we define
the category of (analytic) derived adic spaces, which is a large generalization of the classical 1-category of
(analytic) adic spaces endowed with a fix pseudo-uniformizer.

2.1. Preliminaries. In this section we address some technical results and definitions that will be used
throughout the paper. The reader can skip it on a first reading and come back when the corresponding
statement is referenced.

1Following the conventions of Clausen-Scholze, we will replace the adjective analytic on Huber rings by the adjective Tate,
meaning that we work with Huber rings admitting a pseudo-uniformizer.
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2.1.1. Analytic E∞-rings. The definition of (complete) analytic ring and the main properties in [CS20,
Lecture XII] can be extended to connective E∞-condensed algebras instead of animated rings with minor
changes in the proofs. Moreover, using [CS19, Proposition 12.20] one can even extend the definition of
analytic ring to general E1 and E∞-algebras. In this paper we will essentially only use the animated
definition of analytic ring ([Man22b, Definition 2.3.10]). However, it is useful to have this slightly more
general notion in mind, for example, when constructing idempotent algebras in the category of complete
modules of analytic rings.

Definition 2.1.1. An analytic E1-ring A is the data of a condensed E1-ring A together with a full subcat-
egory Mod(A) ⊂ Mod(A) satisfying the following properties.

(1) Mod(A) is stable under small limits and colimits in Mod(A).
(2) For all S ∈ Extdis and M ∈ Mod(A) the object HomA(A[S],M) belongs to Mod(A).
(3) The inclusion Mod(A) ⊂ Mod(A) has a left adjoint A⊗A −.

We say that an analytic ring is complete if the natural map A → A[∗] is an equivalence. An analytic E∞-
ring is an analytic E1-ring whose underlying ring has a structure of E∞-ring. A morphism A → B of analytic
E1 (resp. E∞)-rings is a morphism of condensed rings such that the forgetful functor Mod(B) → Mod(A)
sends Mod(B) to Mod(A). We let let AnCRing denote the ∞-category of complete E∞-analytic rings.

Remark 2.1.2. Let A be an analytic E∞-ring, then Mod(A) is naturally a symmetric monoidal category.
Indeed, the same argument of [CS20, Proposition 12.4] shows that the kernel of A⊗A − is a tensor ideal.
Furthermore, by the proof of [Man22b, Proposition 2.3.8], we have a natural transformation of functors
Mod((−))⇒ Mod(−) given by the analytification functors.

The following lemma says that an analytic E∞-ring is completely determined by its category of complete
modules

Lemma 2.1.3. Let S be the sphere spectrum considered as a condensed spectrum, let Mod(S) be the sym-
metric monoidal ∞-category of condensed spectra and CAlg(Catcolim∞ )S/ the ∞-category of colimit preserv-
ing symmetric monoidal ∞-categories tensored over Mod(S). Then the functor Mod(−) : AnCRing →
CAlg(Catcolim∞ )S/ sending an analytic E∞-ring A to the symmetric monoidal ∞-category Mod(A) is a fully
faithful embedding.

Proof. Consider CAlg(Mod(S)) the ∞-category of E∞-condensed rings and let

Mod((−)) : CAlg(Mod(S))→ CAlg(Catcolim∞ )S/

be the functor sending a ring to its category of modules, by [Lur17, Corollary 4.8.5.21] this functor is fully
faithful. Furthermore, [Man22b, Proposition 2.3.8] provides a natural transformation Mod((−))⇒ Mod(−)

of functors AnCRing→ CAlg(Catcolim∞ )S/ given by the analytification functor A⊗A − : ModA → ModA.
Let A,B ∈ AnCRing, observe that any colimit preserving Mod(S)-tensored symmetric monoidal mor-

phism f∗ : Mod(A)→ Mod(B) is compatible with the natural morphisms

Mod(A) Mod(B)

EndMod(A)(A[∗])−Mod(Mod(S)) EndMod(B)(B[∗]) −Mod(Mod(S)),

f∗

but EndMod(A)(A[∗]) = A and EndMod(B)(B[∗]) = B since the analytic rings are complete. Then, we have
a natural commutative diagram

Mod(A) Mod(B)

Mod(A) Mod(B),

f∗

A⊗A−

B⊗A−

B⊗B−

which shows that f∗ is naturally equivalent to B⊗A− by definition of the analytic base change. Therefore,
by definition of the mapping space of analytic rings as a full subanima of the mapping space of the underlying
condensed rings, cf. [CS20, Lecture XII] or [Man22b, Definition 2.3.1 (d)], the mapping space from A to
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B in AnCRing is naturally equivalent to the mapping space from Mod(A) to Mod(B) in CAlg(Catcolim∞ )S/,
which finishes the proof. �

Remark 2.1.4. The previous lemma only applies for analytic E∞-rings and not for analytic animated rings.
The obstruction for the statement to hold for analytic animated rings is that the forgetful functor of
animated rings towards E∞-rings is not fully faithful. Nevertheless, the lemma holds for analytic animated
rings over Q. In general, the functor Mod(−) is always conservative.

2.1.2. Generalized Huber pairs. For future reference we define generalized Huber pairs, see [Man22b, Def-
inition 2.12.8]. Let Z� denote the analytic ring of solid integers, mapping a profinite set S = lim

←−i
Si ∈

Pro(FinSet) to the condensed abelian group Z�[S] = lim←−i
Z[Si]. More generally, for R a Z-algebra of finite

type we shall write R� for the analytic ring such that R�[S] = lim
←−i

R[Si], and for R a discrete ring we set
R�[S] = lim

−→A⊂R
A�[S] where A runs over all the finitely generated subrings of R, cf. [CS19, Examples 7.3].

Definition 2.1.5. A generalized Huber pair consists on a tuple (A,S) with A an animated Z�-algebra,
and S a set of elements S ⊂ π0(A)(∗), such that A is Z[Xs]-solid for all s ∈ S, with Z[Xs] → A a map
sending Xs 7→ s. We let (A,S)� denote the analytic ring AZ[Xs:s∈S]�/.

Remark 2.1.6. In the notation of Definition 2.1.5, the analytic ring structure of (A,S)� only depends on
the variables S, and not on the lifts Z[Xs]→ A, thanks to [CS20, Proposition 12.21].

2.2. Categorified locale. In the following section we recall the formalism of categorified locales of [CS22,
Lectures V-VII] and [Aok23]. The notion of categorified locale replaces the more classical definition of
locally ringed space; the building blocks of analytic geometry are analytic rings, and these provide the
data of a condensed ring and a category of complete modules. Thus, instead of gluing rings as in classical
algebraic geometry we need to glue the categories of modules, the language of categorified locales formalizes
this idea. Moreover, categorifies locales offer a clean understanding of open and closed immersions from a
six functor point of view, these notions will be repetitively used throughout the paper.

Let CAlg(Catcolim,ex
∞ ) be the ∞-category of colimit preserving symetric monoidal stable ∞-categories,

with morphisms denoted by pullback functors f∗ : C → D. In §3 we shall restrict ourselves to the framework
of presentably symmetric monoidal stable∞-categories CAlg(PrL,ex); as it is explain in [Aok23], this is not
an important restriction since we will eventually take categories of κ-small condensed sets for some cut-off
cardinal κ. Given C ∈ CAlg(Catcolim,ex

∞ ), we let S(C) denote the class of isomorphism classes of idempotent
algebras in C, that is, the class of isomorphism classes of objects A ∈ C endowed with a morphism from
the tensor unit 1→ A such that the arrow

A
1⊗id
−−−→ A⊗A

is an equivalence. We endow S(C) with a partial order as follows: A ≤ A′ if and only if there is an arrow
A′ → A commuting with the unit maps. By [Aok23, Theorem 3.13], if C is presentably symmetric monoidal,
the category of idempotent algebras is in fact essentially small, so S(C) defines a honest poset.

Proposition 2.2.1 ([CS22, Proposition 5.3]). The poset S(C) is a locale with closed subspaces Z ∈ S(C)
defined by the isomorphism classes of idempotent algebras A. More explicitly, the following hold:

(1) The “empty subset” corresponds to 0.
(2) The “whole space” corresponds to 1.
(3) The “intersection” Z ∩ Z ′ corresponds to A⊗A′.
(4) An “arbitrary intersection”

⋂
i Zi corresponds to lim−→i

Ai.
(5) The “union” Z ∪ Z ′ corresponds to the fiber B = [A

⊕
A′ → A ⊗ A′] together with the unit 1 → B

induced by the map 1
(1,−1)
−−−−→ A⊕A′.

Let Z ∈ S(C) correspond to A. The closed subspace Z has a natural category of modules supported on Z
defined by the symmetric monoidal ∞-category C(Z) := ModA(C) of A-modules in C. For Z ∈ S(C), the
category C(Z) is a tensor ideal of C stable under all limits and colimits. The frame S(C)op can be thought
as the open complements of the class of closed subspaces in S(C). Let U ∈ S(C)op be the open complement
of Z ∈ S(C), we can define an ∞-category of modules on U by taking the localization C(U) = C/C(Z).
One can explicitly define natural six functors associated to open and closed immersions.



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 13

Definition 2.2.2. Let Z ∈ S(C) be a closed subspace with associated idempotent algebra A and comple-
mentary open U . We define the following functors:

(1) The upper star functors ι∗Z : C → C(Z) and j∗U : C → C(U) given by ι∗ZM = A ⊗M and the
natural projection respectively.

(2) The lower star functors ιZ,∗ : C(Z) → C and jU,∗ : C(U) → C given by the forgetful functor and
jU,∗j

∗
UM = HomC([1→ A],M) for M ∈ C.

(3) The upper shriek functors ι!Z : C → C(Z) and j!U : C → C(U) given by ι!ZM = HomC(A,M) and
j!U = j∗U respectively.

(4) The lower shriek functors ιZ,! : C(Z) → C and jU,! : C(U) → C given by ιZ,! = ιZ,∗ and j!j
∗
UM =

[1→ A]⊗M for M ∈ C respectively.

An edge f∗ : C → D in CAlg(Catcolim,ex
∞ ) is said an open (resp. closed) immersion if it is equivalent to

an edge of the form j∗U : C → C(U) (resp. ι∗Z : C → C(Z)).

Remark 2.2.3. Let M ∈ C, by construction we have natural excision fiber sequences

j!j
∗M →M → ι∗ι

∗M

and
ι∗ι

!M →M → j∗j
∗M.

The following proposition tells us that the notions of open and closed immersions in CAlg(Catcolim,ex
∞ )

behave categorically as expected from a 6-functors point of view.

Proposition 2.2.4 ([CS22, Proposition 6.5]). Let f∗ : C → D in CAlg(Catcolim,ex
∞ ).

(1) f is a closed immersion if and only if f∗ has a fully faithful right adjoint f∗ which preserves colimits
and satisfies the projection formula

c⊗ f∗d
∼
−→ f∗(f

∗c⊗ d)

for c ∈ C and d ∈ D.
(2) f is an open immersion if and only if f∗ has a fully faithful left adjoint f! : D → C which satisfies

the projection formula
f!(f

∗c⊗ d)
∼
−→ c⊗ f!d

for c ∈ C and d ∈ D.

Finally, one has the following theorem saying that the functor mapping U ∈ S(C) to C(U) is a sheaf for
the natural topology of the locale.

Theorem 2.2.5 ([CS22, Theorem 6.7]). (1) There is a Grothendieck topology on CAlg(Catcolim,ex
∞ ) where

the sieve coverings over C are those which contain a set of open immersions whose corresponding
open subsets cover S(C).

(2) The identity functor (CAlg(Catcolim,ex
∞ )op)op → CAlg(Catcolim,ex

∞ ) is a sheaf with respect to this
Grothendieck topology.

(3) The poset of open (resp. closed) immersions satisfies descent with respect to this Grothendieck
topology.

With the previous preparations done we can define the ∞-category of categorified locale.

Definition 2.2.6 ([CS22, Definition 7.1] and [Aok23, Definition 4.2]). A categorified locale is a triple
(X,C, f) consisting on a locale X, a presentably symmetric monoidal stable∞-category C ∈ CAlg(Catcolim,ex

∞ ),
and a morphism of locales f : S(C)→ X. Morphisms of categorified locales F : (X,C, f) → (Y,C, g) con-
sist on morphisms on the topological spaces, F : X → Y and morphisms of presentably symmetric monoidal
categories f∗ : D → C commuting with the arrows f : S(C)→ X and g : S(D)→ Y .

Given C ∈ CAlg(Catcolim,ex
∞ ) we let CatLocC be the ∞-category of C-tensored categorified locales,

equivalently, the∞-category of categorified locales (X,C ′, f) with C ′ ∈ CAlg(Catcolim,ex
∞ )C/ and morphisms

given by C-linear morphisms of categorified locales.

We record the following lemma for future reference:
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Lemma 2.2.7. Let (X,C, f) be a categorified locale. The category of dualizable (resp. invertible) objects
on C = C(X) is a sheaf on X.

Proof. By Lemma [Man22a, Lemma 6.2], an object L ∈ C is dualizable if and only if the natural map
L ⊗ HomC(L, 1C) → HomC(L,L) is an equivalence. Moreover, it is invertible if in addition the natural
map 1C → HomC(L,L) is an equivalence. For U ⊂ X an open subspace, and objects N,M ∈ C, we have
a natural equivalence

j∗UHomC(N,M) = HomC(U)(j
∗
UN, j∗UM),

the lemma follows. �

2.3. Tate adic spaces as categorified locale. The goal of this section is to construct a categorified locale
for classical Tate Huber pairs using the main results of [And21], obtaining an analogue of the construction
of categorified locales for complex analytic spaces of [CS22]. In the following we only consider sheafy Tate
Huber rings (A,A+) that admit a pseudo-uniformizer π, we let Spa(A,A+) denote the adic spectrum of
equivalence classes of continuous multiplicative valuations |−|x : A→ Γ that satisfy |a|x ≤ 1 for all a ∈ A+,
cf. [Hub96]. Let us recall some basic properties of the adic spectrum: by [Hub93, Theorem 3.5], Spa(A,A+)
is a spectral space with a basis of quasi-compact open subsets given by rational localizations {|fi| ≤ |g| 6= 0 :
i = 1, . . . , d} for f1, . . . , fd, g ∈ A elements generating A. Furthermore, since {|fi| ≤ |g| 6= 0 : i = 1, . . . , d}
is quasi-compact, there is n ∈ N such that {|fi| ≤ |g| 6= 0 : i = 1, . . . , d} ⊂ {|πn| ≤ |g| 6= 0}, so that we can
always assume that some fi is a pseudo-uniformizer of A. We have the following lemma

Lemma 2.3.1. Let U ⊂ Spa(A,A+) be a rational subset, then U can be written as a composition of rational
localizations of the form {|g| ≤ 1} and {1 ≤ |g|}.

Proof. Let us write U = {|fi| ≤ |g| 6= 0 : i = 1, . . . , d}, with fd = πn. Then U is the composite of the
rational localizations {1 ≤ |π−ng|} and {|fi/g| ≤ 1}. �

In [And21, Theorem 4.1], Andreychev proved that the functor mapping a rational localization U ⊂
Spa(A,A+) to the category of solid modules Mod((O(U),O+(U))�) is in fact a sheaf on CAlg(Catcolim,ex

∞ )
(see Definition 2.1.5 for the notion of generalized Huber pair and the construction of (A,S)�). The next
proposition says that this functor can be upgraded to a categorified locale.

Proposition 2.3.2. Let (A,A+) be an Tate Huber pair and let X = Spa(A,A+)op be the poset of open
subspaces of Spa(A,A+). Consider the functor

ModX,�(−) : Spa(A,A
+)op → CAlg(Catcolim,ex

∞ )

sending a rational localization U to Mod((O(U),O+(U))�). Then for any open U ⊂ X the localization
functor

j∗U : Mod((A,A+)�)→ ModX,�(U)

is an open localization in the sense of Proposition 2.2.4 (2).

Proof. It suffices to prove the statement for rational localizations, by Lemma 2.3.1 we can even reduce to
rational localizations of the form {|g| ≤ 1} or U = {1 ≤ |g|} for g ∈ A. Then, by [And21, Proposition 4.11]
we have

(O(U),O+(U))� = (A,A+)�⊗(Z[T ],Z)� Z[T ]� and (O(U),O+(U))� = (A,A+)�⊗(Z[T ],Z)� (Z[T±1],Z[T−1])�

respectively, where T is mapped to g . Thus, it suffices to show that (Z[T ],Z)� → Z[T ]� and (Z[T ],Z)� →
(Z[T±1],Z[T−1])� define open localizations for their categories of modules. By the proof of [CS19, Theorem
8.1], the former localization is the complement of the idempotent (Z[T ],Z)�-algebra Z((T−1)) = Z[[T−1]][T ],
and the last is the complement of the idempotent algebra Z[[T ]], this ends the proof of the proposition. �

Definition 2.3.3. Let (A,A+) be an Tate Huber pair, we let Spa(A,A+)� denote the categorified locale
(Spa(A,A+),Mod((A,A+)�)) obtained by Proposition 2.3.2.

Corollary 2.3.4. The functor (A,A+) 7→ Spa(A,A+)� extends to a conservative functor from the 1-
category of analytic adic spaces to the ∞-category of categorified locales tensored over Mod(Z�). Moreover,
this functor is fully faithful when restricted to the full subcategory of analytic adic spaces over Q.
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Proof. Let X be an analytic adic space, and let U• be an hypercover of X by open affinoid subspaces.
By Proposition 2.3.2, we can construct the simplicial categorified locale (|U•|,ModU•,�), taking geometric
realizations we obtain a categorified locale (|X|,ModX,�), where |X| is the underlying space of X, ModX,�

is the ∞-category of solid quasi-coherent sheaves on X, and f : S(ModX,�) → |X| is the geometric
realization of the map S(ModU•,�) → U•. It is easy to verify that this construction is independent of
the hypercover, so that it gives rise a well defined functor from adic spaces to categorified locales. The
conservativity of the functor is clear by Remark 2.1.4 and Lemma 2.1.3. To prove the last statement
about the fully faithful inclusion for adic spaces over Q, one can reduce to Huber pairs (A,A+), where by
[And21, Proposition 3.34] and Lemma 2.1.3 it suffices to show that the morphism of categorified locales
S(Mod((A,A+)�)) → Spa(A,A+) is surjective, this will be proved independently in more generality in
Proposition 2.7.8 (3). �

2.4. Some idempotent algebras. We let Mod(Z) denote the ∞-derived category of condensed abelian
groups. Let Cond(AniRing) be the∞-category of condensed animated rings, the forgetful functor Cond(AniRing)→
Mod≥0(Z) has a left adjoint given by the symmetric group algebra Sym•M . Moreover, for each n ≥ 0 we
have a symmetric power functors SymnM that are computed as the sheafification of S 7→ Symn(M(S))
for S ∈ Extdis. Analogously, one has wedge products

∧nM = SymnM [1][−n] (which are given by the
sheafification of S 7→

∧nM(S)), and divided powers functors Γn(M) = Symn(M [2])[−2n].
For a free abelian group F , a concrete description of its n-th symmetric and divided power functor is

given by the (co-)invariants of the symmetric group Σn in its n-th fold tensor product respectively:

SymnF = (F⊗n)Σn and ΓnF = (F⊗n)Σn .

Thus, for S ∈ Extdis, we have explicit descriptions SymnZ[S] = Z[Sn]Σn = Z[Sn
Σn

] and ΓnZ[S] =

Z[Sn]Σn , where Sn
Σn

is the quotient space of Sn by the natural action of Σn. In particular, the symmetric
algebra of Z[S] is described as Sym•(Z[S]) = Z[N[S]] where N[S] =

⋃
cN[S]≤c with N[S]≤c = lim

←−i
N[Si]≤c,

and N[Si]≤c being the space of sequences
∑

s∈Si
ass with as ∈ N and

∑
s∈Si

as ≤ c, note that N[S]=c = Sc
Σc

.
We want to describe explicitly the solidification of the symmetric powers, wedge products and divided

power functors for the groups Z[S].

Lemma 2.4.1. Let S be an extremally disconnected set, we have natural exact sequences

0
∧n

Z[S] · · · Symn−1Z[S]⊗
∧1

Z[S] SymnZ[S] 0

0 ΓnZ[S] · · ·
∧n−1

Z[S]⊗ Γ1Z[S]
∧n

Z[S] 0.

Proof. By definition, Z[S] is the sheafification of the presheaf mapping T ∈ Extdis to the free abelian group
Z[S(T )]. For a finite free Z-module F we have obvious exact sequences

0
∧n F · · · Symn−1F ⊗

∧1 F SymnF 0

0 ΓnF · · ·
∧n−1 F ⊗ Γ1F

∧n F 0.

(2.1)

where SymiF ⊗
∧j F → Symi+1F ⊗

∧j−1 F maps (a1 ⊙ · · · ⊙ ai) ⊗ (b1 ∧ · · · ∧ bj) 7→
∑j

k=1(−1)
k−1(a1 ⊙

· · · ⊙ ai ⊙ bk)⊗ (b1 ∧ · · · “bk ∧ · · · ∧ bj), and the second sequence is obtained by taking duals to the first one
evaluated at F∨. Note that both constructions are natural and covariant for F , taking filtered colimits we
obtain the same exact sequences for an arbitrary free Z-module. Taking F = Z[S(T )] and sheafifications
we get exact sequences as stated in the lemma. �

Definition 2.4.2. For A an analytic ring and M ∈ Mod≥0(A), let Sym•
AM be the left adjoint of the forget-

ful functor AniAlgA → Mod≥0(A) from animated A-algebras towards connective A-modules. Equivalently,
we let Sym•

AM =
⊕

n∈N Symn
AM and Symn

AM = A ⊗A Symn
AM , where Symn

AM is the symmetric power
as condensed A-module, see [CS20, Proposition 12.26]. We denote the wedge and divided power functors
by
∧n

AM = (Symn
AM [1])[−n] and Γn

AM = (Symn
AM [2])[−2n]. Finally, for S an extremally disconnected

set we write A[N[S]] := Sym•
AA[S].
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Lemma 2.4.3. Let S be a profinite set and let I be an index set such that C(S,Z) ∼=
⊕

I Zei, so that
Z�[S] ∼=

∏
I Ze

∨
i . The following hold:

(1) Symn
Z�

Z�[S] = Z�[S
n
Σn

] ∼=
∏

α∈InΣn
Z(⊙i∈αe

∨
i ), where ⊙ is the symmetric tensor product.

(2)
∧n

Z�
Z�[S] ∼=

∏
J⊂I
|J |=n

Z(∧j∈Je
∨
j ), where we have fixed a total order for I in the wedge product.

(3) Γn
Z�

Z�[S] = Z�[S
n]Σn ∼=

∏
α∈InΣn

Z((⊙i∈αei))
∨, where (−)∨ is the dual basis.

(4) The sequences of Lemma 2.4.1 remain exact after solidification.

Proof. We can assume without loss of generality that S is extremally disconnected. The first equality in
part (1) follows from the explicit description of the symmetric power functor of the free condensed abelian
group generated by S, and the fact that Z�[T ] is the derived solidification of Z[T ] for any profinite set
T . Then, Lemma 2.4.1 and an inductive argument show that

∧n
Z�

Z�[S] and Γn
Z�

Z�[S] are compact Z�-
modules for all n ∈ N. A compact Z�-module is reflexive, namely, it is a retract of a finite complex of
compact projective modules Z�[T ] ∼=

∏
Z and

∏
Z is reflexive as solid Z�-module. Therefore, to compute∧n

Z�
Z�[S] and Γn

Z�
Z�[S] it suffices to compute their dual. But then, by taking duals of the sequences of

Lemma 2.4.1 with F = Z[S] one obtains the analogue sequences

0 ΓnC(S,Z) · · · Γ1C(S,Z)⊗
∧n−1C(S,Z)

∧nC(S,Z) 0

0
∧nC(S,Z) · · · Symn−1C(S,Z)⊗

∧1C(S,Z) SymnC(S,Z) 0.

By [CS19, Theorem 5.4] the Z-module Cont(S,Z) is a free abelian group, so that the previous sequences
are actually exact. This gives the isomorphism Cont(S,Z) ∼=

⊕
I Zei we fixed in the proposition, prov-

ing that SymnCont(S,Z) ∼=
⊕

α∈InΣn
Z(⊙i∈αei), ΓnC(S,Z) ∼=

⊕
α∈InΣn

Z(⊙i∈αe
∨
i )

∨ and
∧nCont(S,Z) ∼=⊕

J⊂I
|J |=n

Z(∧j∈Jej). Taking duals one deduces that the solidification of the exact sequences of Lemma 2.4.1

are still exact obtaining (4), and that the other explicit descriptions of (1)-(3) also hold. �

Corollary 2.4.4. Let S be a profinite set, then the trivial Z�[N[S]]-module Z has a long Koszul resolution

· · · → Z�[N[S]]⊗
2∧

Z�

Z�[S]→ Z�[N[S]]⊗
1∧

Z�

Z�[S]→ Z�[N[S]]→ Z→ 0. (2.2)

Dually, we have a long co-Koszul resolution

0→ Z→ Γ•
Z�

Z�[S]→ Γ•
Z�

Z�[S]⊗
1∧

Z�

Z�[S]→ Γ•
Z�

Z�[S]⊗
2∧

Z�

Z�[S]→ · · · . (2.3)

Proof. This follows from Lemma 2.4.3 by taking the direct sums of the exact sequences

0→
n∧

Z�

Z�[S]→ · · · → Symn−1
Z�

Z�[S]⊗
1∧

Z�

Z�[S]→ Symn
Z�

Z�[S]→ 0

and

0→ Γn
Z�

Z�[S]→ · · · →
n−1∧

Z�

Z�[S]⊗ Γ1
Z�

Z�[S]→
n∧

Z�

Z�[S]→ 0.

�

After the previous preparations we can introduce some large idempotent algebras. We let (R,R+) =
(Z((π)),Z[[π]]) and R� = (R,R+)�.

Definition 2.4.5. Let S be a profinite set, we define the following objects:
(1) Let I•S be the natural ideal decreasing filtration of Z[N[S]]. We define Z[N[S]]n := Z[N[S]]/InS . For
A an analytic ring we let I•S,A and A[N[S]]n be the base change of I•S and Z[N[S]]n to A.

(2) We let Z�[[N[S]]] := lim←−n
Z�[N[S]]n.
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(3) We let R+
�
〈N[S]〉 = lim←−n

(R+/πn)�[N[S]] and R�〈N[S]〉 = R+
�
〈N[S]〉[ 1π ].

(4) We let R�{N[S]}
† = lim
−→n→∞

R�〈N[
S
πn ]〉.

(5) More generally, for an analytic ring A over Z� (resp. over R+
�

or R�) we let A[[N[S]]], A〈N[S]〉 and
A{N[S]}† denote the base change of the constructions in (2)-(4) to A.

Warning 2.4.6. The ring A[[N[S]]] is not in general equal to the limit lim←−n
A[N[S]]n. This holds for

example if A = B� it the analytic ring of a finitely generated algebra over Z, or if A = R+ = Z[[π]] is a
power series ring.

Lemma 2.4.7. The following hold:
(1) The ring Z�[[N[S]]] is an idempotent Z�[N[S]]-algebra.
(2) The ring R+

�
〈N[S]〉 is an idempotent R+

�
[N[S]]-algebra.

(3) The rings R�〈N[S]〉 and R�{N[S]}
† are idempotent R�[N[S]]-algebras.

Moreover they have a natural structure of co-commutative Hopf algebras.

Proof. The ring Z�[N[S]] is naturally a co-commutative Hopf algebra since it correpresents the functor on
solid animated Z-algebras A 7→ A(S). Moreover, the co-multiplication map is induced from the map of
solid abelian groups

Z�[S]→ Z�[N[S
⊔

S]] : s 7→ s⊗ 1 + 1⊗ s,

in particular it preserves the I•S-filtration. Taking completions we see that Z�[[N[S]]] has a natural co-
commutative Hopf algebra structure. The Hopf algebra structure for the other algebras is constructed by
taking the base change from Z� to R� of the algebra Z�[N[S]], taking π-adic completions, inverting π and
taking colimits along R�[

S
πn ]→ R�[

S
πn+1 ].

Now we prove idempotency. Let B denote Z�[N[S]] or its R+
�

or R�-base change, and let C denote
Z�[[N[S]]], R

(+)
�
〈N[S]〉 or R{N[S]}†. Let A be Z, R+ or R depending on the situation. Then both B and C

are A-linear Hopf algebras, and by [RJRC23, Proposition 1.0.6], to prove idempotency it suffices to show
that C ⊗(B,A)� A = A. By Corollary 2.4.4 the map C ⊗(B,A)� A → A is represented by the long Koszul
complex

· · · → C ⊗A�

2∧

A�

A�[S]→ C ⊗A�

1∧

A�

A�[S]→ C → A→ 0.

In the case of (1) the previous sequence is exact since after taking graded pieces one recovers the long
Koszul resolution of Z�[N[S]]. In the situation (2), exactness follows by taking the π-adic completion of the
Koszul resolution of R+

�
[N[S]]→ R+. Finally, case (3) follows by inverting π in (2) and taking colimits. �

We address the following technical lemma that will be used recurrently in the next section.

Lemma 2.4.8. Let A� = Z[T1, . . . , Tn]� be a solid polynomial algebra in n-variables, and let B
(+)
�

=

A� ⊗Z�
R

(+)
�

be the associated solid Tate algebra over R
(+)
�

. Let S1, S2 and S3 be profinite sets.

(1) For any map S3 → B+
�
〈N[S1]〉 the natural morphism B+

�
[N[S3]] → B+

�
〈N[S1]〉 extends uniquely to

B+
�
〈N[S3]〉.

(2) Consider the B-algebra T = B�〈N[S1]〉 ⊗B�
B�{N[S2]}

† and let I2 = ker(B�{N[S2]}
† → B) be

the augmentation ideal of the second factor. For any map S3 → B�〈N[S1]〉 ⊗B�
I2 the natural

morphism of algebras B�[N[S3]]→ T extends uniquely to B�{N[S3]}
†.

(3) Let I = ker(A�[[N[S1]]] → A) be the augmentation ideal. Then for all map S3 → I , the natural
morphism of algebras A�[N[S3]]→ A�[[N[S1]]] extends uniquely to A�[[N[S3]]].

Proof. (1) This follows by taking π-adic completions.
(2) Let us denote Si,n = B+

�
〈N[ Si

πn ]〉 and let Ii,n be the augmentation ideal of Si,n. By construction
of the algebras we can find n big enough such that the image of S3 in T lands in S1,0 ⊗B+

�

I2,n.
This shows that for all m ≥ 0 the image of S3 in S1,0 ⊗B+

�

S2,n+m lands in πmS1,0 ⊗B+
�

S2,n+m.
Thus, dividing S3 by πm, by part (1) we get an arrow S3,m → S1,0 ⊗B+

�

S2,n+m. One gets (2) by
inverting π and taking colimits as m→∞.
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(3) This follows from the fact that the filtration I•S1
of A�[N[S1]] is multiplicative.

�

Corollary 2.4.9. The following hold
(1) The Hopf algebra Z�[[N[S]]] corepresents a module sheaf over the ring sheaf corepresented by Z[T ]�.
(2) The Hopf algebra R+

�
〈N[S]〉 corepresents an algebra sheaf over the ring sheaf corepresented by

R+〈T 〉� := R+
�
⊗Z�

Z[T ]�.
(3) The Hopf algebra R�{N[S]}

† corepresents a module sheaf over the ring sheaf corepresented by R〈T 〉�.

Proof. The algebra Z�[N[S]] corepresents an algebra over the sheaf corepresented by Z[T ], namely, for A
an analytic ring A(S) is always an A(∗)-algebra. Its module action is given by the map

Z�[N[S]]→ Z�[N[S]]⊗Z Z[T ] : s 7→ s⊗ t (2.4)

which satisfies the diagrams of a comodule over a co-ring. In particular, Z�[S] lands in the ideal generated
by the augmentation ideal of Z�[N[S]].

All the Hopf algebras on points (1)-(3) are idempotent over Z�[N[S]] or R+
�
[N[S]], also Z[T ]� is an

idempotent analytic ring over Z[T ]. Thus, in order to show that the algebras of (1)-(3) correpresent
algebras/modules over Z[T ]� or R+〈T 〉�, we only need to prove it for the π0 of the correpresented sheaves,
and assume without loss of generality that A is static.

Then, after taking base change of (2.4) by Z[T ]� or R+[T ]�, π-completions and colimits for points (2)
and (3), Lemma 2.4.8 implies that the comodule (resp. co-algebra) diagrams of Z�[N[S]] over Z[T ] can be
extended to the corresponding diagrams in each point (1)-(3). �

2.5. Condensed Nil-radical. To motivate forthcoming constructions let us discuss the concept of nilpo-
tency for condensed rings. Let A be a static condensed ring over Z, since A is a sheaf on rings, the most
natural definition of the nil-radical of A consists on the ideal I whose values at S are nil(A(S)). Equivalently,
we could define

nil(A)(S) = lim−→
n

HomCondRingZ(Z[T ]/T
n,Cont(S,A)).

This definition only asks for a function f : S → A to be uniformly point-wise nilpotent, i.e that there is n ≥ 0
such that f(s)n = 0 for all s ∈ S. However, we could also ask for a more uniform nilpotent condition, namely,
that there is some n > 0 such that for any familly of elements s1, . . . , sn ∈ S, the product f(s1) · · · f(sn)
vanishes. When S is just a point ∗, there is no difference between these two conditions. When S = {∗, ∗}
is two points, there is a difference on the n-nilpotent elements, namely, one is correpresented by the ring
Z[X,Y ]/(Xn, Y n) and the other by Z[X,Y ]/(X,Y )n, yet both cofiltered systems are cofinal. For a general
profinite set both possible definitions of nilpotent elements differ:

Example 2.5.1. Let S be a profinite set and let Z[N[S]] be the symmetric algebra of Z[S]. Let n ≥ 1,

consider the map Z[S]
Z[∆]
−−−→ Z[Sn

Σn
] ⊂ Z[N[S]] with ∆ : S → Sn

Σn
given by the diagonal map, and let

F : Z[N[S]] → Z[N[S]] be the induced map of algebras. Then, the static ring that co-represents elements
f ∈ A(S) with fn = 0 is the algebra

R = π0(Z[N[S]]⊗F,Z[N[S]] Z).

In particular, the k-th graded piece ofR for k ≥ n is non-zero and equal to the cokernel of Z[S]⊗Z[Sk−n
Σk−n

]
∆
−→

Z[Sk
Σk

]. On the other hand, the quotient

Z[N[S]]n := Z[N[S]]/InS

is the static ring that represents elements f ∈ A(S) with the property that the n-th fold map f⊗n : Sn
Σn
→

A(Sn
Σn

) is zero. In other words, it correpresents the maps f : S → A such that f(s1) · · · f(sn) = 0 for any
sequence si ∈ S.

The previous discussion motivates the following definition

Definition 2.5.2. Let A be a static condensed ring, we define the following presheaf on Extdis:

Nil′n(A)(S) := HomCondRingZ(Z[N[S]]n, A).
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We let Nil′(A) denote the ind-presheaf (Nil′n(A))n∈N on Extdis. For an animated condensed ring A we
define Nil′n(A) (resp. Nil′(A)) to be the full condensed sub-anima of A (resp. the constant ind-system of
sub-anima of A) whose connected components are Nil′n(π0(A)) (resp. Nil′(π0(A))).

An apparent disadvantage of the above definition is that the objects Nil′n(A)(S) are not sheaves, the
reason being that for S and S′ extremally disconnected sets, the natural map

Z[N[S]]n ⊗ Z[N[S′]]n → Z[N[S
⊔

S′]]n

is not an equivalence. However, in analogy to the inclusions (X,Y )2n ⊂ (Xn, Y n) ⊂ (X,Y )n for two
elements X and Y in a ring R, we have a factorization

Z[N[S
⊔

S′]]2n → Z[N[S]]n ⊗ Z[N[S′]]n → Z[N[S
⊔

S′]]n,

proving that the ind-system Nil′(A) is actually a sheaf. Furthermore, the formation of Nil′(A) is compatible
with analytic ring structures as follows:

Lemma 2.5.3. Let A be an analytic ring, then lim
−→n

Nil′n(A) is a complete A-module.

Proof. By [CS20, Proposition 12.4] it suffices to show that π0(lim−→n
Nil′n(A)) isA-complete, so we can assume

that A is static. Let us first see that lim
−→n

Nil′n(A) has a natural structure of A-module. For this, it suffices
to see that the pro-condensed sheaf S 7→ (Z[N[S]]n)n∈N is a condensed comodule for the condensed co-ring
S 7→ Z[N[S]]. This follows from the fact that for profinite sets S, S′ and S′′, and any map S → Z[S′× S′′],
we have a factorization

Z[N[S]]n → Z[N[S′]]⊗Z Z[N[S′′]]n,

as we have a natural map (S′ × S′′)nΣn
→ S

′,n
Σn
× Sn

Σn
. Moreover, the fact that lim−→n

Nil′n(A) is A-complete
follows by the same argument: any map S′ → A[S′ × S′′] induces a morphism

A[N[S]]n → A[N[S
′]]⊗A A[N[S

′′]]n.

Therefore, any map f : S → Nil′n(A) can be lifted to a map S → A[S′] for some extremally disconnected
S, so that we have a factorization S → A[N[S′]]n → A, then we can extend f to

A[N[S]]n → A[N[S
′]]n → A,

proving that lim−→n
Nil′n(A) is the image of maps

⊕
i π0(A[S])→ A, so A-complete. �

Definition 2.5.4. Let A be an analytic ring, the condensed nil-radical of A is the A-analytic ideal

Nil(A) = lim
−→
n

Nil′n(A).

Our next task is to show that the condensed nil-radical is corepresented by an explicit pro-system of
analytic rings, this requires a slight modification of Z[N[S]]n.

Definition 2.5.5. For S ∈ Extdis and n ≥ 0 we let Z[N[S]]Ln := Z[N[S]]⊗Z[N[Sn
Σn

]] Z.

Lemma 2.5.6. Let S ∈ Extdis, the pro condensed ring (Z[N[S]]Ln)n has a natural structure of additive Hopf
algebra such that the natural map Z[N[S]]→ (Z[N[S]]Ln)n is a morphism of Hopf algebras.

Proof. The Hopf algebra structure of Z[N[S]] is encoded in the cosimplicial ring (Z[N[
⊔k

i=1 S]])[k]∈∆ =

(
⊗k

i=1 Z[N[S]])[k]∈∆ obtained by the comultiplication map defined by s 7→ s⊗ 1 + 1⊗ s. Let us fix m ≥ 0

and consider the truncation (Z[N[
⊔k

i=1 S]])[k]∈∆≤m
. For a fix k and any l ≥ k we have inclusions

k⊕

i=1

Z[Sln
Σln ] ⊂ Symln(

k⊕

i=1

Z[S]) ⊂ Syml(

k⊕

i=1

Z[Sn
Σn ]). (2.5)

On the other hand, we have a (≤ m)-cosimplicial submodule (Symn(Z[
⊔k

i=1 S]))[k]≤∆≤m
⊂ (Z[N[

⊔k
i=1 S]])[k]≤∆≤m

,
it induces a morphism of (≤ m)-cosimplicial algebras

(
Sym•(Symn(Z[

k⊔

i=1

S]))

)

[k]∈∆≤m

→

(
Z[N[

k⊔

i=1

S]]

)

[k]≤∆m

,
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taking the push-out from the left term towards the constant (≤ m)-cosimplicial ring (Z)[k]∈∆≤m
one gets a

(≤ m)-cosimplicial ring (
Z[N[

k⊔

i=1

S]]Ln

)

[k]∈∆≤m

.

Taking the pro-ring as n→∞, by (2.5) one gets a (≤ m)-cosimplicial pro-ring
(

k⊗

i=1

(Z[N[S]]Ln)n∈N)

)

[k]∈∆≤m

.

Taking colimits as m→∞, we get a cosimplicial pro-ring
(

k⊗

i=1

(Z[N[S]]Ln)n∈N)

)

[k]∈∆

. (2.6)

By [Lur09, Proposition 6.1.2.6 (4)], the cosimplicial ring (2.6) pro-correpresents a group object in AnRingZ,
proving that it is in fact a Hopf algebra. By construction, it is clear that Z[N[S]] → (Z[N[S]]Ln)n∈N is a
morphism of Hopf algebras, proving the lemma. �

Proposition 2.5.7. Let S ∈ Extdis, the functor A 7→ Nil(A)(S) is correpresented by the pro-condensed
ring (Z[N[S]]Ln)n.

Proof. We follow the same argument of [GR23, Proposition 6.3.3]. Let ›Nil be the functor

›Nil(A)(S) := lim−→
n

MapAnRingZ
(Z[N[S]]Ln,A).

By Lemma 2.5.6,›Nil(A)(S) is naturally an animated Z-module and the natural map f :›Nil(A)(S)→ A(S)
is a morphism of animated Z-modules. It suffices to show that f is a fully faithful sub-anima with connected
components π0(Nil(A)(S)). The claim about π0 is clear since π0(Z[N[S]]

L
n) = Z[N[S]]n. It is left to show

that for all i ≥ 1 the map πi(›Nil(A)(S)) → πi(A(S)) is an isomorphism. Let us denote ›Niln(A)(S) :=
MapAnRingZ

(Z[N[S]]Ln,A)
By definition, we have a cartesian square of anima

›Niln(A)(S) A(S)

{0} A(Sn
Σn)

where the map A(S)→ A(Sn
Σn) is induced by the map Sn

Σn → Z[N[S]]. Thus, by taking 0 as marked point,
we have a long exact sequence of homotopy groups for i ≥ 1

πi+1(A(S
n
Σn))→ πi(›Niln(A)(S))→ πi(A(S))→ πi(A(S

n
Σn)).

For m ≥ 1 we have a commutative triangle

A(S) A(Sn
Σn)

A(Snm
Σnm)

induced by the map Snm
Σnm → Z[N[Sn

Σn ]]→ Z[N[S]]. This gives rise a natural map›Niln(A)(S)→›Nilnm(A)(S)
defining a map of fiber sequences

›Niln(A)(S) A(S) A(Sn
Σn)

›Nilnm(A)(S) A(S) A(Snm
Σnm).

id



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 21

This induces a morphism of long exact sequence of homotopy groups

πi+1(A(S
n
Σn)) πi(›Niln(A)(S)) πi(A(S)) πi(A(S

n
Σn))

πi+1(A(S
nm
Σnm)) πi(›Nilnm(A)(S)) πi(A(S)) πi(A(S

nm
Σnm)).

id
(2.7)

We claim that the map πi(A(S
n
Σn)) → πi(A(S

nm
Σnm)) is zero for any m ≥ 2. Indeed, it factors through the

map

A(Sn
Σn)

∆
−→

m⊕

k=1

A(Sn
Σn)→

m⊗

k=1

A(Sn
Σn)→ A(Snm

Σnm),

and the induced arrow
m⊕

k=1

πi(A(S
n
Σn))→ πi(

m⊗

k=1

A(Sn
Σn))

is zero for i ≥ 1. Taking colimits as m→∞ in (2.7) one finds that

πi(›Nil(A)(S)) ∼
−→ πi(A(S))

is an isomorphism, proving what we wanted. �

With the previous proposition proven, we can define a stronger notion of nilpotent ideal.

Definition 2.5.8. Let A → B be a morphism of analytic rings surjective on π0 with B static and endowed
with the induced analytic structure, let I = [A → B]. We say that I is n-uniformly nilpotent if for any
map S → I with S an extremally disconnected set, there is an extension

Z[N[S]]Ln → A.

We say that I is uniformly nilpotent if it is n-uniformly nilpotent for some n ≥ 1. Finally, we say that I is
locally uniformly nilpotent if for any map f : S → I there exists n such that f extends to Z[N[S]]Ln → A.

Remark 2.5.9. Note that any uniformly nilpotent ideal of an analytic ring is also a nilpotent ideal as
condensed ring. On the other hand, by definition, Nil(A) is a locally nilpotent ideal of A.

We finish this section by proving the invariance of solid structure under locally nilpotent ideals.

Proposition 2.5.10. Let A be a solid affinoid ring and let I → A be a locally uniformly nilpotent ideal.
Let B = A/I. Then a map Z[T ]→ A extends to Z[T ]� if and only if the composite Z[T ]→ B does so.

Proof. The map Z[T ] → A extends to Z[T ]� if and only if Z((T−1)) ⊗Z[T ] A = 0. By hypothesis we know
that Z((T−1))⊗Z[T ] B = 0, this implies that

(Z((T−1))⊗Z[T ] I)⊗A A = (Z((T−1))⊗Z[T ] A)[∗].

Therefore, (Z((T−1))⊗Z[T ] A)[∗] is a locally uniformly nilpotent ideal when considered as ideal over itself,
in particular the unit is nilpotent and so the ring must be zero proving what we wanted. �

2.6. Bounded affinoid rings and †-nil-radicals. Let (R,R+) = (Z((π)),Z[[π]]) and R� = (R,R+)�, we
denote by R(+)〈T1, . . . , Tn〉� := R

(+)
�
⊗Z�

Z[T1, . . . , Tn]� the solid Tate algebra over R(+) in n-variables. In
the previous section we constructed a nilpotent radical for arbitrary analytic rings. The first motivation
to introduce the category of bounded affinoid rings is the construction of a new nil-radical that will play
a fundamental role in the definition of the analytic de Rham stack. This new nil-radical will measure
elements a ∈ A that are “topologically zero”, namely, elements such that |a| ≤ |πn| for all n ∈ N. The
second motivation to define the bounded affinoid rings is to construct a category of rings that behaves as
Tate affinoid algebras in classical rigid geometry, namely, algebras A admitting some pseudo-uniformizer
π and some subring of “power bounded functions” A0 with A = A0[ 1π ], such that any a ∈ A0 satisfies the
norm inequality |a| ≤ 1 with respect to π in a suitable sense.

To make this idea precise we need some further definitions.
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Definition 2.6.1. (1) Let A ∈ AnRingZ�
be an analytic ring over Z�. The subring of +-bounded or

solid elements is the discrete animated ring given by the mapping space

A+ = MapAnRingZ
�

(Z[T ]�,A).

(2) Let A ∈ AniAlgZ�
be an animated algebra over Z�. We define the subgroup of topologically nilpotent

elements to be the condensed animated abelian group mapping an extremally disconnected set S
to the anima

A00(S) := MapAniAlgZ
�

(Z�[[N[S]]], A).

(3) Let A ∈ AniAlgR�
be an animated algebra over R�. We define its condensed subring of power

bounded elements to be the condensed animated ring with values at S ∈ Extdis given by

A0(S) = MapAniAlgR
�

(R�〈N[S]〉, A).

(4) Let A ∈ AniAlgR�
, the condensed R-subring of bounded elements is defined as Ab = A0[ 1π ].

(5) Finally, let A ∈ AniAlgR�
, the †-nil-radical ideal is the condensed Ab-ideal whose values at S ∈

Extdis are
Nil†(A)(S) = MapAniAlgR

�

(R�{N[S]}
†, A).

(6) For A ∈ AnRingZ�
we let A00, A0, Ab and Nil†(A) be as in (2)-(5) for its underlying ring A.

Remark 2.6.2. By definition, A+ ⊂ A(∗) is the full animated subring consisting on those connected com-
ponents a ∈ A(∗) for which the induced map of analytic rings Z[a] → A extends to Z[a]� → A. Indeed,
the co-ring structure of Z[T ]� naturally induces a ring structure on π0(A

+), and we endow A+ with an
animated ring structure thanks to the following cartesian diagram

A+ A(∗)

π0(A
+) π0(A)(∗).

Remark 2.6.3. The spaces A00, A0 and Nil†(A) are full condensed sub-anima of A. Indeed, they are con-
densed sheaves since for any of the algebras B(N[S]) as above we have B(N[S

⊔
S′]) = B(N[S])⊗B(N[S′]),

and they are full condensed subanima since the algebras B(N[S]) are idempotent over the corresponding
free algebra generated by S. Therefore, for A∗ representing any of the previous full condensed subanima of
A, we have a cartesian square of anima

A∗ A

π0(A
∗) π0(A).

In particular, to endow A∗ with a natural animated abelian group, module or ring structure compatible
with the map A∗ → A, it suffices to do so for π0(A

∗). Furthermore, Corollary 2.4.9 implies that these
objects are naturally A+-modules. Moreover, as R+

�
〈N[S]〉 is a co-ring algebra, A0 is also a full condensed

animated subring of A.

Remark 2.6.4. In Definition 2.6.1 we restricted ourselves to define the S-valued points of different condensed
objects attached to an animated solid ring A, for S extremally disconnected. Since Z�[S] is compact
projective for S an arbitrary profinite set, the description of S-valued points of the objects in Definition
2.6.1 also extends to S profinite.

As a first reality check we prove that the objects A0, A00 and A+ agree with the classical definitions for
complete Tate algebras

Lemma 2.6.5. Let (A,A+) be a complete Tate Huber pair with pseudo-uniformizer π and set A = (A,A+)�.
The condensed spaces A0 and A00 agree with the classical subspaces of A of power bounded and topologically
nilpotent elements. In addition, A+ = A+.
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Proof. By [And21, Proposition 3.34] one can recover the underlying discrete ring of A+ simply as A+. It
is left to identity the condensed subobjects A0 and A00 for general A. By definition, the underlying points
of A0 and A00 consist on all the elements a ∈ A for which the map R+[T ] → A extends to R+〈T 〉 and
R+[[T ]] respectively. Then, by definition A0(∗) is the subset of power-bounded elements, and A00(∗) is the
set of topologically nilpotent elements. Therefore, to prove the lemma it suffices to show that A0 and A00

are open subspaces of A, or equivalently, that A/A00 is discrete. Let A0 ⊂ A be a ring of definition of A, it
will suffices to show that πA0 ⊂ A00. Let S be a profinite set and let f : S → πA0 be a map of condensed
sets. Since πA0 is π-adically complete, the map f extends to a morphism of rings

R+
�
[[N[S]]]→ A0,

this proves that πA0 ⊂ A00, obtaining the claim. �

In order to prove further properties of the condensed subspaces constructed previously, we need to
introduce the category of solid rings that will serve as building blocks for the geometric theory treated in
this paper.

Definition 2.6.6. Let A be an analytic ring over Z�, we say that A is a solid affinoid ring if the natural
map (A, π0(A

+))� → A is an equivalence of analytic rings. We let AffRingZ�
⊂ AnRingZ�

denote the full
subcategory of solid affinoid rings. Given A a solid affinoid ring we let AffRingA denote the slice category
of solid affinoid A-algebras.

Example 2.6.7. (1) Let A be an animated discrete ring, by [And21, Proposition 3.34] and [CS20,
Proposition 12.19] solid affinoid ring structures on A are in bijection with integrally closed subrings
A+ ⊂ π0(A) via the map A+ 7→ (A,A+)�. If A+ = A we denote A� = (A,A)�.

(2) An example of an analytic ring over Z� that is not solid affinoid is the ring of ultra-solid rational
numbers Q�� (construction due to Clausen and Scholze). It has by compact projective generators
the Q-vector spaces

∏
I Q. In terms of locales, Q�� is the open complement of Z� associated to the

idempotent solid algebra Ẑ =
∏

p Zp, we left the proof of this fact for a future work.

Polynomials algebras are the compact projective generators in the ∞-category of discrete commutative
animated rings. Similarly, one can explicitly provide a class of compact projective generators for the ∞-
category of solid affinoid rings.

Proposition 2.6.8. The∞-category AffRingZ�
is stable under small colimits and finite products in AnRingZ�

.
Furthermore, it has a basis of compact projective generators given by the analytic rings Z[T1, . . . , Tn]�[N[S]],
where {Ti}

n
i=1 is a finite set of variables, and S is a profinite set. Moreover, these rings are compact pro-

jective in AnRingZ�
.

Proof. It is clear that the category AffRingZ�
is generated by the rings Z�[N[S]] and Z[T ]� under colimits,

namely, the rings Z�[N[S]] are generators of animated solid algebras and for any A ∈ AffRingZ�
we can

write
A = (A,Z)� ⊗Z[π0(A+)] Z[π0(A

+)]�.

In particular, AffRingZ�
is stable under small colimits in AnRingZ�

. Stability under finite products is clear
since for A and B solid affinoid rings, one has A

∏
B = (A× B,A+ × B+)�.

It is left to see that the rings Z[T ]�[N[S]] are compact projective in the ∞-category of solid affinoid
rings. Since the category of compact projective objecs is stable under finite coproducts, it suffices to show
that Z[T ]� and Z�[N[S]] are compact projective. The ring Z�[N[S]] is clearly compact projective since it
corepresents A 7→ A(S) = RHomZ�

(Z�[S],A), and Z�[S] is a compact projective solid abelian group. It is
left to show that Z[T ]� is compact projective in AnRingZ�

.
Let {Ai}i∈I be a sifted diagram of analytic Z�-algebras with colimit A. We want to prove that the

natural map
lim
−→
i

MapAnRingZ
�

(Z[T ]�,Ai)→ MapAnRingZ
�

(Z[T ]�,A) (2.8)

is an equivalence. First, note that both sides are full subanima of MapAnRingZ
�

(R[T ],A) = A(∗) as Z[T ]�

is an idempotent (Z[T ],Z)�-algebra, so it suffices to show that they have the same connected components.
Let f : Z[T ]� → A be a morphism of analytic rings, we want to show that f factors through some Ai. As
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Z[T ] is compact projective, we can find a lift fi : Z[T ]→ Ai to some i. The map fi extends to Z[T ]� if and
only if Z((T−1))⊗Z�

Ai = 0. By hypothesis Z((T−1))⊗(Z[T ],Z)� A = 0, and we have that

Z((T−1))⊗(Z[T ],Z)� A = lim
−→
i

Z((T−1))⊗(Z[T ],Z)� Ai.

Then, there is some i for which the unit of Z((T−1)) ⊗(Z[T ],Z)� Ai vanishes, implying that for any i → i′

one has Z((T−1)) ⊗(Z[T ],Z)� Ai′ = 0, this proves that fi′ extends to Z[T ]� → Ai′ and that (2.8) is an
equivalence. �

We go back to Definition 2.6.1, our next task is to show that the objects there constructed are complete
and have the corresponding algebraic structure.

Proposition 2.6.9. The following hold:

(1) Let A ∈ AffRingZ�
, then A00 is a solid A+

�
-module.

(2) Let A ∈ AffRingR+
�

, then A0 is an animated A+
�
-algebra.

(3) Let A ∈ AffRingR�
, then Ab is a solid A+

�
-algebras and Nil†(A) a solid A+

�
-module. Moreover,

Nil†(A) has a natural structure of Ab-module, defining a full subideal Nil†(A) ⊂ Ab.

Proof. By Remarks 2.6.2 and 2.6.3, to prove that the objects in the proposition are solid A+
�
-modules and

that have the claimed algebraic structures, we can take the 0-truncation. Therefore, we can assume without
loss of generality that A is static. Corollary 2.4.9 shows that any of the objects in (1)-(3) are A+-modules,
and that A0 ⊂ A is a subring. In particular, A+ → A0 → Ab are morphisms of (static) commutative
rings. To prove A+

�
-completeness, it suffices to do it for A00, A0 and Nil†(A), let A∗ denote one of these

condensed modules. We make the following conventions:

(1) We let B denote Z, R+ or R depending on the situation.
(2) We take I ⊂ A+ a finite set of variables, set BI = B ⊗Z�

Z[TI ]�, and let BI(N[S]) be the algebra
BI [[N[S]]], BI〈N[S]〉 or BI{N[S]}

† depending on the situation.

Let S be a profinite set and let S → A∗ ⊂ A be a map of condensed sets, by definition it extends uniquely
to a map BI(N[S])→ A, we claim that BI [S]→ A factors through A∗. Suppose this holds, then A∗ would
be the image of maps

⊕
S BI [S] → A, proving that A∗ is BI -complete, taking colimits along all I ⊂ A+,

one gets that A∗ is indeed A+
�
-complete. Let

⊔
i S

′
i → BI [S] be a surjection of condensed sets. Since BI [S]

is in the augmentation ideal of BI(N[S]), Lemma 2.4.8 implies that the map S′
i → BI(N[S]) extends to

BI(N[S
′
i]) → BI(N[S]). Taking the composition we get maps BI(N[S

′
i]) → A for all i ∈ I, that must send

S′
i to A∗ by definition. This shows that BI [S] is sent to A∗ proving the claim.
Finally, suppose that A is a solid affinoid ring over R�, we want to prove that Nil†(A) is naturally an

Ab-module. For this, by looking at the corresponding diagrams, it suffices to prove that for all profinite set
S and all n ∈ N, the diagonal map S → S × S induces a morphism of algebras

R{N[S]}† → R〈N[πnS]〉 ⊗R�
R{N[S]}†,

but this follows by Lemma 2.4.8. �

After the previous preparations we can define the desired category of bounded affinoid rings.

Definition 2.6.10. (1) An animated R�-algebra A is bounded if the natural map Ab → A is an equiv-
alence. We let AniAlgbR�

be the full subcategory of AniAlgR�
consisting on bounded animated

R�-algebras.
(2) Let A be a bounded R�-algebra, the cone A†−red of the map Nil†(A)→ A is called the †-reduction

of A. We say that A is †-reduced if A → A†−red is an equivalence. We let AniAlg†−red
R�

⊂ AniAlgR�

be the full subcategory consisting on †-reduced animated rings.
(3) A solid affinoid R�-algebra is bounded if its underlying condensed ring is bounded. We let AffRingbR�

⊂

AffRingR�
be the full subcategory of bounded affinoid R�-algebras. For A ∈ AffRingbR�

we let
AffRingbA be the slice category of bounded affinoid A-algebras.
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(4) Given A a bounded affinoid ring, we let A†−red := A†−red
A/ be its †-reduction, we say that A is

†-reduced if the previous map is an equivalence. We let AffRing†−red
R�

⊂ AffRingbR�
be the full

subcategory of †-reduced bounded affinoid rings.

The following notation will be used throughout the rest of the paper.

Definition 2.6.11. Let A be a solid affinoid ring, we let A[T ]� := A ⊗Z�
Z[T ]� be the solid polynomial

algebra over A. If A is a bounded R�-algebra, we write A〈T 〉� := A[T ]� and call it the solid Tate algebra
over A.

We end this section by proving some permanence properties of the category of bounded affinoid rings, in
particular that the †-reduction is an idempotent functor.

Lemma 2.6.12. Let A be an animated R�-algebra.
(1) A is bounded if and only if π0(A) is bounded.
(2) An animated R�-algebra is bounded if and only if there is a surjection

⊕
iR�[Si]→ A of animated

R�-modules (i.e. surjection on π0) with Si profinite, such that each R�[Si] → A extends to an
algebra morphism R�〈N[π

nSi]〉 → A for some n depending on i.

Proof. The first statement is clear since Ab is a full condensed subanima of A. For the second statement,
the hypothesis is clearly necessary, let us show that it is sufficient. Let A be a static algebra satisfying the
hypothesis of the lemma and let S → A be a map from a profinite set. By (1) we can assume that A is
static. We can lift S to a finite direct sum

⊕k
i=1R�[Si], after rescaling we can even assume that it lands in⊕k

i=1R
+
�
[Si] and that each map R+

�
[Si]→ A extends to R+

�
〈N[Si]〉. Since

k⊗

i=1

R+〈N[Si]〉 = R+〈N[
k⊔

i=1

Si]〉,

the natural map

R+
�
[S]→

k⊕

i=1

R+
�
[Si]→ R+

�
〈N[

k⊔

i=1

Si]〉

can be extended to R+
�
〈N[S]〉 → R+

�
〈N[
⊔k

i=1 Si]〉, and the map S → A extends to R�〈N[S]〉 → A proving
that A is bounded. �

Lemma 2.6.13. Let A be a π-adically complete animated R+
�
-algebra, then A[ 1π ] is a bounded subring.

Proof. Let S be profinite and f : S → A[ 1π ], after rescaling we can assume that f factors through a map
f : S → A. Then, since A is π-adically complete, we have an extension

R+〈N[S]〉 → A

and so a map R〈N[S]〉 → A[ 1π ], proving that A[ 1π ] is bounded as wanted. �

Proposition 2.6.14. The following hold
(1) The category of bounded animated R�-algebras AniAlgbR�

is stable under all small colimits in
AniAlgR�

.
(2) The category of bounded animated R�-algebras admits all limits. More precisely, let {Ai}i∈I be an

I-diagram in AniAlgbR�
, then its limit in AniAlgbR�

is given by the “restricted limit”
′

lim←−
I

Ai := (lim←−
i∈I

A0
i )[

1

π
].

(3) Let A be an animated R�-solid R[T1, . . . , Tn]-algebra whose underlying R�-algebra is bounded. Then
A⊗(R[T1,...,Tn],R+)� R〈T1, . . . Tn〉� is bounded.

(4) Let A → B be a morphism of bounded affinoid R�-algebras, let C be an animated A-algebra whose
underlying R�-algebra is bounded, then B ⊗A C is a bounded algebra.

(5) More generally, the category of bounded affinoid rings AffRingbR�
is stable under all colimits and

finite products in AnRingR�
.
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(6) Let A → B be a morphism of bounded affinoid rings and let C be a bounded affinoid A-algebra. Then
the natural map B ⊗A Nil†(C)→ B ⊗A C factors through Nil†(B ⊗A C).

Proof. (1) Let A be a bounded R�-algebra, B and C bounded A-algebras and D = B ⊗(A,R+)�
C.

The property of being a bounded algebra only depends on π0, so we can assume that A, B and
C are static and take D = π0(B ⊗(A,R+)�

C) the non-derived pushout. Let us take surjections⊕
iR�[Si]→ B and

⊕
j R�[S

′
j]→ C, then

⊕
i,j R�[Si×S′

j]→ D is a surjection. By hypothesis the
maps R�[Si]→ B and R�[S

′
j]→ C extend naturally to morphisms of algebras R�〈N[Si]〉 → B and

R�〈N[S
′
i]〉 → C respectively (after rescaling the maps). This implies that R�[Si×S′

j]→ D extends
to a morphism of algebras R�〈N[Si × S′

j]〉 → D which by Lemma 2.6.12 proves that D is bounded.
Next we prove stability under sifted colimits. Let {Ai}i be a sifted diagram of bounded animated
R�-algebras with colimit A, let S → A be a map from a profinite set, then S lifts to some S → Ai

and after rescaling it extends to R�〈N[S]〉 → Ai. Thus, S → A extends to R�〈N[S]〉 → A proving
that A is bounded.

(2) Let {Ai}i∈I be a diagram of bounded animated R�-algebras, and let B ∈ AniAlgbR�
. We need to

show that lim
←−

′
i
Ai is bounded and that the natural map

MapAniAlgR
�

(B,
′

lim
←−
i

A)→ lim
←−
i

MapAniAlgR
�

(B,A)

is an equivalence. To see that lim
←−

′
i
Ai is bounded, note that for any profinite set S, a map f : S →

lim
←−i

A0
i naturally extends to R+

�
〈N[S]〉 → lim

←−i
A0

i as so does any projection to Ai. On the other
hand, since B is bounded, there is a natural equivalence of mapping spaces

MapAniAlgR
�

(B,Ai) = MapAniAlg
R+
�

(B0, Ai) = MapAniAlg
R+
�

(B0, A0
i ), (2.9)

where the second equivalence follows from the fact that any map of animated R+-algebras B0 → Ai

factors through A0
i , and A0

i is a full subring of Ai. Taking limits along i we see that

lim
←−
i

MapAniAlgR
�

(B,Ai) = MapAniAlg
R+
�

(B0, lim
←−
i

A0
i ).

Note that lim
←−i

A0
i is a full condensed subanima of lim

←−i
Ai, namely, for finite limit it is an equivalence,

and cofiltered limits are left exact with respect to the natural t-structure. Then, to prove that (2.9)
is an equivalence, it suffices to show that (lim←−

′
i
Ai)

0 = lim←−i
A0

i . It is clear that lim←−i
A0

i ⊂ (lim←−
′
i
Ai)

0,
conversely, given S profinite and a map S → (lim←−

′
i
Ai)

0, we have an extension

R+
�
〈N[S]〉 → (

′
lim
←−
i

Ai)
0,

and by composing with projections, maps R+
�
〈N[S]〉 → A0

i , proving that we have a factorization

R+
�
〈N[S]〉 → lim←−

i

A0
i

as wanted.
(3) Let S be a profinite set and S → A, after rescaling we can assume that it lifts canonically to

R�〈N[S]〉 → A. Then, by Lemma 2.6.12 it suffices to prove that R〈T1, . . . , Ts〉�〈N[S]〉 is a bounded
algebra, but this follows from Lemma 2.6.13.

(4) This is a direct consequence of parts (1) and (3), namely, we have that

B ⊗A C = lim−→
I⊂B+

R〈TI〉� ⊗(R[TI ],R+)� (B ⊗AR
�
/
C),

where I runs over all the finite subsets. The tensor product is a bounded algebra by part (1), the
solidification is bounded by part (3) and the colimit is bounded by part (1) again.

(5) We need to prove that AffRingbR�
is stable under pushouts and sifted colimits. Let C ← A → B be

a diagram in AffRingbR�
, we want to prove that B⊗A C is still in Affb

R�
. Since A = (A,A+)� (resp.

for B and C), by construction of the pushout, we have B ⊗A C = (E ,B+ ⊗A+ C+)�, where E is the
completion of B⊗A C with respect to the variables in B+⊗A+ C+. By parts (1) and (3) one deduces
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that E is bounded, so that B ⊗A C is a bounded affinoid ring. Let {Ai}i∈I be a sifted diagram in
AffRingbR�

with colimit A. By Proposition 2.6.8 one has that A+ = lim−→i
A+

i , we find that

A = (A,A+)� = lim
−→
i

(Ai,A
+
i )�

proving that A is bounded affinoid. Finally, for stability under finite products, note that (A,A+)�×
(B,B+)� = (A× B,A+ × B+)�.

(6) Given a map D → D′ of bounded affinoid rings, we have an induced map Nil†(D)→ Nil†(D′) on the
†-nil radical. Then, by Proposition 2.6.9 (3) we can assume without loss of generality that A = A,
B = B and C = C have the induced analytic structure from R�. Since π0(B⊗ANil

†(C)) is a quotient
of π0(B ⊗R�

Nil†(C)) we can further assume that A = R, and that B and C are static. It suffices
to prove that the image of π0(B ⊗R�

Nil†(C)) in π0(B ⊗R�
C) lands in π0(Nil

†(B ⊗R�
C)). Let⊕

i∈I R�[Si] ։ B and
⊕

j∈J R�[Tj ] ։ Nil†(C) be surjections, by hypothesis we have extensions to
morphisms of algebras after rescaling R�〈N[Si]〉 → B and R�{N[Tj ]}

† → C. We then have induced
maps

R�〈N[Si]〉{N[Tj ]}
† → B ⊗R�

C

such that the image of
⊕

i,j R�[Si × Tj] in π0 is the image of π0(B ⊗R�
Nil†(C)). By Lemma

2.4.8 (2) we can extend the inclusion R�[Si × Tj ] → R�〈N[Si]〉{N[Tj ]}
† to a morphism of algebras

R�{N[Si × Tj]}
† → R�〈N[Si]〉{N[Tj ]}

†, proving that the map R�[Si × Tj ] → B ⊗R C extends to
R�{N[Si × Tj]}

†, in particular its image in π0(B ⊗R�
C) lands in π0(Nil

†(B ⊗R�
C)) as wanted.

�

Example 2.6.15. In Proposition 2.6.8 we provided a class of compact projective generators for solid affinoid
rings, we next describe the power series developements of their π-completions.

Let S be a profinite set with R�[S] ∼=
∏

i∈I Rsi and d ≥ 1, let us consider the algebra A = R+
�
〈T1, . . . , Td〉�〈N[S]〉.

First, by Lemma 2.4.3 we have that

R+
�
〈N[S]〉 =

⊕̂

n∈N

∏

α∈InΣn

R+
s
α.

By definition A = R+
�
〈N[S]〉 ⊗Z�

Z[T1, . . . , Td]�. This implies that for S′ another profinite set one has

A[S′] =
⊕̂

n∈N

∏

α∈InΣn

(R+〈T1, . . . , Td〉�[S
′])sα

=
⊕̂

n∈N

∏

α∈InΣn

⊕̂
β∈Nd

R+
�
[S′]T β

s
α.

In particular, we can write an element in A[∗] as a power series

f(T, s) =
∑

β∈Nd

α∈InΣn

cα,βT
β
s
α

such that for any reduction modulo πc, there is N >> 0 such that cα,β = 0 for |α| ≥ N , and for each α
there is Mα >> 0 such that cα,β = 0 for |β| ≥Mα.

By construction of AffRingbR�
, the rings R〈T 〉�〈N[S]〉 form a class of (non-compact!) generators. More-

over, since AffRingbR�
⊂ AffRingR�

is a full subcategory, being bounded is a property and not additional
data on solid affinoid R�-algebras.

In Proposition 2.5.10 we showed that the solid affinoid structure of an analytic ring was independent of
the condensed nil-radical. The next result will prove an analogue statement when restricted to the category
of bounded affinoid rings.

Proposition 2.6.16. (1) Let A be a bounded affinoid R�-algebra and f : R[T ] → A a morphism of
analytic R�-algebras. Then f extends to R〈T 〉� if and only if the induced map R[T ]→ A†,red extends
to R〈T 〉�.
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(2) Let A be a bounded affinoid R�-algebra and R[T ] → A a morphism of analytic R�-algebras. The
image of T is invertible if and only if its image in Ared−† is invertible.

(3) Let A be a bounded R-algebra, S a profinite set and S → A a map. Then S extends to R�〈N[S]〉 if
and only if the composite S → A†−red does so.

(4) Let A be a bounded R-algebra. Then (A†−red)†−red = A†−red.

Proof. By Lemma 2.6.12 (1) and [CS20, Proposition 12.21] we can assume that A and A are static rings.
(1) Let A be a bounded affinoid ring over R. We want to prove that a map f : R[T ] → A of analytic

rings extends to R〈T 〉� if and only if the composition R[T ] → A†−red does so. This condition is
clearly necessary, let us show that it is sufficient. Let n > 0 be such that f extends to B = R〈πnT 〉�
and let B∞ = R+〈πnT 〉[[T−1]][ 1π ]. Then f extends to R〈T 〉� if and only if B∞⊗B�

A = 0, and this
holds if and only if

(B∞ ⊗B�
A)[∗] = 0.

We have a fiber sequence of A-modules

(B∞ ⊗B�
Nil†(A))⊗A A → (B∞ ⊗B�

A)[∗]→ (B∞ ⊗B�
A†−red)[∗].

Suppose that B∞⊗B�
A†−red = 0, then (B∞⊗B�

Nil†(A))⊗AA = (B∞⊗B�
A)[∗]. The ring B∞ is

bounded by Lemma 2.6.13, and by Proposition 2.6.14 (6) the map B∞ ⊗B�
Nil†(A)→ B∞ ⊗B�

A
lands in the †-nil-radical of the tensor. This implies that the map R[T ]→ B∞⊗B�

A sending T 7→ 1

extends to R{T}† which shows that 1 = 0 as R{T}† ⊗R[T ],T 7→1 R = 0, proving what we wanted.
(2) Let R[T ]→ A be a morphism such that the composite R[T ]→ A→ A†−red sends T to an invertible

element. By hypothesis there is a′ ∈ A such that aa′− 1 ∈ Nil†(A), as T +1 is invertible in R{T}†,
we have that aa′ is invertible which implies that a is invertible as we wanted.

(3) This follows a similar argument as parts (1) and (3). Let S → A be a map such that the composite
f : S → A†−red extends to C = R�〈N[S]〉. We want to show that f extends to C. As A is bounded
there is n >> 0 such that f extends to B = R�〈N[π

nS]〉 → A. Then, by the excision fiber sequences
of Remark 2.2.3, f extends to C if and only if D := HomB([B → C], A) = 0, note that this Hom
space is naturally an E∞-algebra thanks to the formalism of locale and Definition 2.2.2, namely,
it is of the form j∗j

∗A for some open localization j of Mod(BR�/). By hypothesis we know that
HomB([B → C], A†,red) = 0, so we have

HomB([B → C],Nil†(A)) = D. (2.10)

Let S be a profinite set, we have maps functorial on R�[S]

HomR(R�[S],D) = HomR(R�[S],HomB([B → C],Nil†(A)))

= HomB([B → C],HomR(R�[S],Nil
†(A)))

= HomB([B → C],Map
AniRingR

(R�{N[S]}
†, A))

→ HomB([B → C],HomR(R�{N[S]}
†, A))

= HomR(R�{N[S]}
†,HomB([B → C], A))

= HomR(R�{N[S]}
†,D),

(2.11)

where Map
AniRingR

(R�{N[S]}
†, A) is the condensed anima given by

Map
AniRingR

(R�{N[S]}
†, A)(S′) = MapAniRingR

(R�{N[S × S′]}†, A),

that coincides with HomR(R�[S],Nil
†(A)). This implies that any map R�[S]→ D can be naturally

extended to a map R�{N[S]}
† → D. We claim that such a map induces an algebra homomorphism

R�{N[S]}
† → π0(D). Suppose the claim holds, by taking the composite R[T ]

T=1
−−−→ R

µ
−→ D where µ

is the unit, the algebra morphism R[T ]→ π0(D) extends to an algebra morphism R{T}† → π0(D),
which implies that 1 = 0, this forces π0(D) = 0 and D = 0.

Next, we prove the claim. Let S be a profinite set, let f : R�[S]→ D be a morphism of solid R-
modules and let g : R�{N[S]}

† → D be the map constructed above. Let π0(g) : R�{N[S]}
† → π0(D)
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be the associated map on π0. We want to prove that π0(g) is compatible with the multiplication

diagrams, for this, consider the map R�[S]⊕R�[S]
f⊕f
−−−→ D ⊕D → D ⊗R�

D. By (2.11) we have a

natural map R�{N[S]} ⊗R�
R�{N[S]}

g⊗g
−−→ D ⊗R�

D. Furthermore, since we have a commutative
diagram

R�[S]⊕R�[S] D ⊗R�
D

R�[S] D,

f⊗1⊕1⊗f

s1+s2 m

f

we have an induced commutative diagram

R�{N[S]}
† ⊗R�

R{N[S]}† D ⊗R�
D

R�{N[S]}
† D.

m

g⊗g

m

g

Taking π0 and knowing that g ⊗ g factors through π0(D)⊗R�
π0(D)→ π0(D⊗R�

D), one deduces
that π0(g) is an algebra homomorphism.

(4) Finally, let S be profinite, let S → Nil†(A†−red) be a map, and take a lift S → A. Then, S → A†−red

extends to B = R�{N[S]}
† by definition, and S → A extends to B by part (4). This implies that

the image of S in A is in its †-nil-radical which shows that S → A†−red is 0, proving Nil†(A†−red) = 0
as wanted.

�

Remark 2.6.17. We believe that the map R�{N[S]}
† → D in the proof of part (3) of Proposition 2.6.16 can

be naturally promoted to a morphism of E∞-rings.

The following lemma explains why classical Tate Huber pairs do not have many †-nilpotent elements.

Lemma 2.6.18. Let A be a solid animated R�-algebra and suppose that π0(A
0) is π-adically separated.

Then Nil†(A) = 0.

Proof. Let S be a profinite set and let S → Nil†(A) be a map. For all n ≥ 1 we have that π−nS maps to
A0, which implies that S is divisible by πn for all n ≥ 0 in π0(A

0). Then, as π0(A0) is π-adically separated,
the map S → π0(A

0) must be zero proving the lemma. �

Example 2.6.19. Let A be a Tate algebra topologically of finite type over a non-archimidean field K, and
let nil(A) be the classical nil-radical of A seen as a closed ideal. Then the reduction Ared = A/nil(A) is a
Tate algebra topologically of finite type such that Ared,0 is π-adically complete and separated (see [Bos14,
Proposition 3.1.10]). Lemma 2.6.18 shows then that

Nil†(A) = nil(A),

i.e. for classical Tate algebras the †-nil-radical recovers the usual nil-radical of the ring.

Corollary 2.6.20. Let A = R〈X1, . . . ,Xd〉�〈N[S]〉{N[S
′]} for profinite sets S and S′. Let I be the aug-

mentation ideal of R�{N[S′]} → R. Then Nil†(A) = IA.

Proof. The quotient A/IA is isomorphic to B = R�〈X1, . . . ,Xd〉�〈N[S]〉. It is easy to see that B0 =

R+〈X1, . . . ,Xd〉�〈N[S]〉 and that it is π-adically separated. By Lemma 2.6.18 we have Nil†(B) = 0. This
shows that Nil†(A) ⊂ IA. On the other hand, Lemma 2.4.8 (2) implies that IA ⊂ Nil†(A) which proves
the equality. �

Finally, the †-nil-radical is related with the closure of ideals in classical Huber rings.

Corollary 2.6.21. Let (A,A+) be a classical Tate Huber pair, and let I ⊂ A be a non-necessarily closed
ideal in A generated by its global sections. Let I be the closure of I in A and suppose that (A/I)0 is
π-adically separated. Then Nil†(A/I) = I/I and (A/I)†−red = A/I.
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Proof. Since (A/I)0 is π-adically separated, A/I is †-reduced by Lemma 2.6.18. This implies that Nil†(A/I) ⊂
I/I. Let f : S → I be a map from a profinite set, we want to show that it extends to R�{N[S]}

†. Let
A0 ⊂ A be a ring of definition, we can assume without loss of generality that S lands in A0 ∩ I. By
hypothesis, the subspace A0 ⊂ I is dense in A0 ∩ I, then for any n ≥ 0, we have that

I + πnA0 = I + πnA0.

Thus, I + πnA0/I = I + πnA0/I ⊂ A/I, and the image of πnA0 in A/I contains I/I for all n ≥ 0. Then,
the composite map S → I → I/I has a lift S → πnA0, proving that we have a factorization

R�〈N[
S

πn
]〉 → A/I,

taking colimits as n → ∞ we get the desired map from R�{N[
S
πn ]}†, proving that I/I = Nil†(A/I) as

wanted. �

2.7. Adic spectrum and derived Tate adic spaces. Let (R,R+) = (Z((π)),Z[[π]]) and R� = (R,R+)�.
Let AffRingbR�

be the ∞-category of bounded affinoid rings over R�. Similarly as for Tate Huber pairs,
given a bounded affinoid ring A we want to construct the adic spectrum |SpaA|, as well as a map of
locales S(A)→ |SpaA| generalizing the one of Definition 2.3.3. Instead of trying to define this space using
valuations, we construct it using the existing maps of locales for classical Huber rings.

Construction 2.7.1. Let A ∈ AffRingbR�
be a bounded affinoid R�-algebra. For any finite set I ⊂ A0 we

have a morphism of analytic rings (depending on lifts) (R〈TI〉, R
+)� → A. By Proposition 2.3.2 we have

maps of locales (independent of lifts)

S(A)→ S((R〈TI〉, R
+)�)→ Spa(R〈TI〉, R

+ +R〈TI〉
00).

Taking limits we set TA := lim←−I⊂π0(A0)
Spa(R〈TI〉, R

+ +R〈TI〉
00) and let

ρA : S(A)→ TA

be the associated map of locales. Note that the formation of both TA and ρA are functorial on A and only
depend on π0(A).

The following theorem is the key input to define the adic spectrum of a bounded affinoid ring.

Theorem 2.7.2. Let A ∈ AffRingbR�
. There is a maximal open subspace U ⊂ TA in the constructible

topology such that ρA factors through a map S(A)→ TA\U → TA. Moreover, S(A)→ TA\U is surjective.

Definition 2.7.3. The adic spectrum of A is the space |SpaA| = TA\U , with U as in Theorem 2.7.2. We
let ρA : S(A) → |SpaA| be the associated maps of locales, and let SpaA denote the categorified locale
(|SpaA|,Mod(A), ρA).

In order to prove Theorem 2.7.2 we need some preparations.

Lemma 2.7.4. Let Z ⊂ TA be a constructible closed subspace, then the idempotent algebra A(Z) := ρ−1
A (Z)

is a compact module in Mod(A).

Proof. This follows from the fact that the complement U of Z is a finite union of rational affinoid localiza-
tions Ui associated to analytic rings Ai, and that the forgetful functor ji,∗ : Mod(Ai)→ Mod(A) commutes
with colimits. Indeed, the forgetful functor j∗ : Mod(U)→ Mod(A) commutes with colimits, and it is given
by

j∗j
∗M = HomA([A → A(Z)],M),

since A is compact one deduces that A(Z) is compact. �

Lemma 2.7.5. Let x ∈ X = TA, then the constructible neighbourhoods C of x of the form

X{fi ≤ g : i = 1, . . . , n} ∩X{g < h},

with fn = π and h ∈ π0(A), are cofinal in all the constructible neighbourhoods of x. We call such a
constructible space C a rational constructible subspace of X.
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Proof. Since TA is a limit of spectra of Tate algebras over R, it suffices to prove the statement for X :=
Spa(R〈TI〉, R

+ + R〈TI〉
00). It is clear that a basis of neighbourhoods of x in X for the adic topology

are rational localizations of the form X{fi ≤ g : i = 1, . . . , n} with fn = π. Let {x}gen be the space of
generalizations of x in X, then we can write

{x}gen =
⋂

x∈U⊂X

U

where U runs over all the open neighbourhoods of x. Then {x}gen is a poset being homeomorphic to the
adic spectrum of the residue field {x}gen = Spa(k(x), k(x)+). But now, any rational subspace of {x}gen is
of the form {x}gen{h̃ ≤ 1} for some h̃ ∈ k(x), equivalently, any constructible closed subspace of {x}gen is
of the form {x}gen{1 < h̃} for h̃ ∈ k(x). Thus, we can find a neighbourhood U = {fi ≤ g} of x, and a lift
h′ of h̃ in O(U) such that {x}gen ∩ U{1 < h′} = {x}gen{1 < h̃}. After multiplying h′ by a power of g, we
can find an element h ∈ R〈TI〉 and an integer n ∈ N such that

U ∩X{gn < h} = U{1 < h′}.

Thus, after replacing g by gn and fi by fn
i , we have found an element h such that

U ∩X{g < h} = U{1 < h′}.

The lemma follows from the previous construction, and the fact that

{x} =
⋂

Z⊂{x}gen

Z

where Z runs over the constructible closed subspaces. �

Lemma 2.7.6. Let C be a rational constructible subspace of TA. Then the category Mod(C) obtained via
ρ−1
A (C) defines a natural analytic ring structure for A. We let AC denote the associated analytic ring.

Proof. We have a natural localization functor f∗ : Mod(A) → Mod(C) with fully faithful right adjoint
f∗. We let Mod(C)≥0 = f∗Mod(C) ∩ Mod(A)≥0. By [CS20, Proposition 12.20] it suffices to show that
Mod(C)≤0 is the category of complete modules of an analytic animated ring. Take any presentation
C = U ∩ Z where U = X{fi ≤ g : i = 1, . . . , n} with fn = π, and Z = X{g < h}. Then AU is an analytic
ring structure of A, and A(Z) is an idempotent algebra in Mod(A). Then, the category f∗Mod(C) is the
category of AU ⊗A A(Z)-modules in Mod(AU ). But we can write

AU ⊗A A(Z) = AU ⊗(Z[T ],Z) Z((T
−1)),

where T is sent to h/g in AU . This last tensor is clearly an analytic animated ring, proving that Mod(C)≥0

is the the category of animated modules over AU ⊗A A(Z). �

Definition 2.7.7. Let x ∈ TA.
(1) The adic stalk of A at x is the filtered colimit of analytic animated rings

A(x) := lim−→
x∈U

A(U),

where U runs over all the open rational neighbourhoods of x in TA.
(2) The constructible stalk of A at x is the filtered colimit of analytic animated rings

A(x)cons := lim
−→
x∈C

AC ,

where C runs over all rational constructible neighbourhoods of x as in Lemma 2.7.5.

Proof of Theorem 2.7.2. We define U as the set of x ∈ TA such that A(x)cons = 0. To deduce the proposition
it suffices to show the following claim:

Claim. U us an open subspace in the constructible topology of TA.

Suppose that the claim holds and let us write |SpaA| = TA\U . We want to show that ρA factors by a
surjective map onto |SpaA|. We have to prove the following:

(a) If Z1, Z2 are closed subspaces of TA such that Z1∩|SpaA| = Z2∩|SpaA| then ρ−1
A (Z1) = ρ−1

A (Z2).
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(b) Let Z1 and Z2 be closed subspaces of TA such that ρ−1
A (Z1) = ρ−1

A (Z2), then Z1 ∩ |SpaA| =
Z2 ∩ |SpaA|.

We can assume without loss of generality that Z1 ⊂ Z2. We first prove part (a). For a closed subspaces
Z ⊂ TA we let A(Z) = ρ−1

A (Z) be its associated idempotent algebra in Mod(A). Let us write Zi =
⋂

j Ci,j

as an intersection of a filtered collection of constructible closed subspaces, we have that

A(Z) = lim−→
i

A(Ci,j).

By Lemma 2.7.4 each A-module A(Ci,j) is compact. Then, by replacing C1,j with C1,j ∩ C2,j , we can
assume without loss of generality the Zi are constructible subspaces. We want to show that the natural
map A(Z2) → A(Z1) is an equivalence. By the claim, and the assumption of (a), we know that for all
x ∈ TA the natural arrow

A(x)cons ⊗A A(Z2)→ A(x)cons ⊗A A(Z1).

Indeed, if x ∈ U then both terms are zero, and if x ∈ |SpaA| this follows from the fact that Z1∩ |SpaA| =
Z2 ∩ |SpaA| and that the Zi are constructible. Since the algebras A(Z1) are compact A-modules, for each
x ∈ TA there is a rational constructible neighbourhood Cx such that ACx ⊗AA(Z2)→ ACx ⊗AA(Z1) is an
equivalence. Since TA is compact for the constructible topology, we can find a finite cover {Ci} by such Cx.
But now the spaces Ci are locally closed for the adic topology and their union is the whole TA. Therefore
the localization functor

Mod(A)→
∏

i

Mod(ACi)

is conservative, which proves that A(Z2) = A(Z1) as wanted.
Next we prove part (b). Let Z1 and Z2 be closed subspaces of TA such that A(Z1) = A(Z2). We can

assume without loss of generality that Z1 ⊂ Z2. Moreover, by writing Zi as colimits of constructible closed
subspaces, by Lemma 2.7.4 we can even assume that Z1 and Z2 are constructible. By hypothesis, we know
that for all x ∈ TA we have A(x)cons ⊗A A(Z2) = A(x)cons ⊗A A(Z1), but the set of those x such that
A(x)cons ⊗A A(Zi) 6= 0 is precisely Zi ∩ |SpaA| thanks to the claim. One gets part (b).

Finally, we prove the claim. Let x ∈ TA be such that A(x)cons = lim−→x∈C
AC = 0, where C runs over all

the rational constructible neighbourhoods of x in TA. Since

A(x)cons[∗] = lim
−→
x∈C

AC [∗],

there is some C such that AC [∗] = 0, so C ⊂ U , proving that U is open in the constructible topology as
wanted. �

Our next task is to prove that the adic spectrum of a bounded affinoid ring enjoys the same properties
of adic spectra of Tate Huber rings. More precisely, we shall prove the following:

Proposition 2.7.8. Let A → B be a morphism of bounded affinoid rings.
(1) |SpaA| is a spectral space and has a basis of qcqs open subspaces given by pullbacks of rational

localizations of the adic spaces Spa(R〈TI〉, R
+) for some finite set I ⊂ A0.

(2) The morphism A → B induces a spectral map |SpaB| → |SpaA|. Moreover, the pullback of an
open rational subspace is a rational subspace.

(3) Let A = (A,A+)� be the analytic ring associated to a Tate Huber pair, then the natural map

|SpaA| → |Spa(A,A+)|

is a homeomorphism.

Proof. (1) By Theorem 2.7.2 we know that the space |SpaA| is pro-constructible in TA, so an spectral
space. Since TA has a basis given by rational localizations, the same holds for |SpaA|.

(2) Let A → B be a morphism in AffRingbR�
. We have a commutative diagram

|SpaB| TB

|SpaA| TA,
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namely, the fiber of x ∈ TA in |SpaB| is given by analytic ring A(x)cons ⊗A B, and this vanishes if
A(x)cons = 0. The right vertical arrow is spectral and the horizontal arrows are pro-constructible
immersions, this implies that the left vertical arrow is spectral. It is clear that the inverse image of
a rational localization is again a rational localization.

(3) Let A = (A,A+)� be the analytic ring attached to an Tate Huber pair. Let us write TA =
lim
←−I

Spa(R〈TI〉, R
+ + R〈TI〉

00), it is easy to see that Spa(A,A+) → TA is a pro-constructible
immersion. Since the map ρA : S((A,A+)�)→ |SpaA| is surjective, we have immersions |SpaA| →
Spa(A,A+) → TA. We are left to show that the map of locales S(A) → Spa(A,A+) is surjective.
Let x ∈ Spa(A,A+), we have a map of affinoid rings (A,A+) → (κ(x), κ(x)+) and an induced
map of topological spaces |Spa((κ(x), κ(x)+)�)| → Spa(κ(x), κ(x)+), thus one can reduce to the
case of an affinoid field Spa(K,K+). Then the open subsets of Spa(K,K+) form a totally ordered
set, and the connected constructible subspaces of Spa(K,K+) containing the generic point are in
bijection with open integrally closed subrings K+ ⊂ K̃+ ⊂ OK , with OK the valuation ring of K.
On the other hand, the functor (A,A+) 7→ (A,A+)� is a fully faithful embedding of Huber pairs in
analytic rings by [And21, Proposition 3.34]. This shows that |Spa(K,K+)�| → Spa(K,K+) must
be a bijection which finishes the proof.

�

Remark 2.7.9. By Lemma 2.1.3 and Theorem 2.7.2, the functor AffRingbR�
→ CatLocSpaR�

sending A
to SpaA is fully faithful when restricted to bounded affinoid R�-algebras over Q. In particular, after
specializing to R → Qp for any prime number p, we have a fully faithful embedding AffRingbQp,� →
CatLocSpaQp,�

from bounded affinoid Qp-algebras to categorified locales over SpaQp,�.

Thanks to the †-nilradical we can define residue fields for both the analytic and constructible topologies
of |SpaA|.

Definition 2.7.10. Let A ∈ AffRingbR�
, and let x ∈ |SpaA|

(1) The residue field of A at x is defined as the †-reduced quotient κ(x) := A(x)†−red.
(2) The constructible residue field of A at x is the †-reduced quotient κ(x)cons = A(x)

†−red
cons .

Next, we prove that the underlying rings of the previous residue fields are honest fields. We need the
following lemma.

Lemma 2.7.11. Let A be a bounded affinoid ring.
(1) The following are equivalent

(a) The open subsets of |SpaA| form a totally ordered set.
(b) There is a unique closed point in |SpaA|.
(c) For any f, g ∈ A\Nil†(A) either {|f | ≤ |g| 6= 0} = |SpaA| or {|g| ≤ |f | 6= 0} = |SpaA|.

Moreover, adic stalks of bounded affinoid rings satisfy these equivalent properties.
(2) The following are equivalent

(a) |SpaA| is a point.
(b) |SpaA| has a unique closed point and for any f ∈ A we have f ∈ A+ or f is invertible and

f−1 ∈ A00.
Moreover, constructible stalks of bounded affinoid rings satisfy these equivalent properties.

Proof. (1) Suppose that the open subsets of |SpaA| form a total order. By taking complements, the
closed subspaces also form a total order. Let I be the total ordered family of non-empty closed
subspaces. Then, since |SpaA| is constructible, by Zorn’s lemma one has that Z =

⋂
C∈I

C
is the minimal non-empty closed subspace of |SpaA|. The space Z is pro-constructible, so it is
spectral. Suppose that Z has more than two points, as it is a T0-topological space, there is a non-
empty properly contained closed subspace in Z which is a contradiction with the fact that it is the
minimal closed subspace of |SpaA|. Thus, Z is a point showing that (a) implies (b).

Suppose that |SpaA| has a unique closed point x. As |SpaA| is spectral, the unique open subset
of |SpaA| containing x is |SpaA|. Let f ∈ A, if for all n ∈ N the open set {|f | ≤ |πn|} contains
x, then the map R[T ] → A defined by f extends to R{T}† → A proving that f ∈ Nil†(A). Thus,
for f ∈ A\Nil†(A) there is some n ∈ N such that {|f | ≤ |πn|} does not contain x, which implies
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that {|πn| ≤ |f |} does contain x and therefore that {|πn| ≤ |f |} = |SpaA|. In particular such an
f must be invertible. Now let f, g ∈ A\Nil†(A), then the open sets {|f/g| ≤ 1} and {|g/f | ≤ 1}
form an open cover of |SpaA|, in particular x belongs to one of them, which shows that either
{|f | ≤ |g| 6= 0} = |SpaA| or {|g| ≤ |f | 6= 0} = |SpaA| as wanted.

Now suppose that (c) holds. It suffices to show that the poset of open rational subspaces forms
a total order. Let f ∈ A\Nil†(A). Then there is some n ∈ N such that {|f | ≤ |πn|} 6= |SpaA|,
by hypothesis this implies that {|πn| ≤ |f | 6= 0} = |SpaA| proving that f is invertible. We define
the following partial order in A\Nil†(A): we say that |f | ≤ |g| if {|f | ≤ |g| 6= 0} = |SpaA|.
By hypothesis, given two elements f, g ∈ A\Nil†(A) we have either |f | ≤ |g| or |g| ≤ |f |. Let
U ⊂ SpaA be a rational set of the form {|fi| ≤ |g| 6= 0 : i = 1, . . . , d} with fd = πn for some
n ∈ N. If U is non-empty then g /∈ Nil†(A), in particular it is invertible and by taking hi = fi/g
we can write U = {|hi| ≤ 1 : i = 1, . . . , d}. Let h be one of the hi with maximal norm |h|, then
U = {|h| ≤ 1}. Now, if U = {|h| ≤ 1} and V = {|g| ≤ 1}, as we have either |h| ≤ |g| or |g| ≤ |h|,
then U ⊂ V or V ⊂ U proving that the rational open subspaces of SpaA form a total order.

Finally the last assertion about stalks of bounded affinoid rings hold since property (c) can be
easily verified by construction.

(2) Suppose that |SpaA| is a point and let f ∈ A, we have an induced map |SpaA| → Spa(R〈T 〉, R++
R〈T 〉00) sending T to f . We can write Spa(R〈T 〉, R+ + R〈T 〉00) = {|T | ≤ 1}

⊔
{|T | > 1}. Since

|SpaA| is a point it must land in one and only one term of the disjoint union, which translates in
property (b) by definition of A+ and A00.

Conversely, suppose that (b) holds. By the proof of part (1), all the rational subspaces of |SpaA|
are of the form {|f | ≤ 1} for some f ∈ A. But then, if {|f | ≤ 1} does not contain the maximal
point of |SpaA|, one has that f /∈ A+, which implies that the complement {|f−1| < 1} = |SpaA|,
i.e. that {|f | ≤ 1} = ∅. This shows that |SpaA| has the trivial topology, and being a spectral space
with a unique closed point it must consist on a single point.

Finally, the last assertion about constructible stalks holds since property (b) can be easily verified
by construction.

�

Lemma 2.7.12. Let {Ai}i be a sifted diagram of bounded affinoid rings with colimit A, then the natural
map |SpaA| → lim

←−i
|SpaAi| is a homeomorphism.

Proof. We have a natural map f : |SpaA| → lim←−i
|SpaAi|. Since A[∗] = lim−→i

Ai[∗], any rational localization
of |SpaA| arises as the pullback of a rational localization of some |SpaAi|. In particular, any constructible
set of |SpaA| is the pullback of some constructible set of some |SpaAi|. Thus, it suffices to show that
f is a bijection, this can be proved using the constructible topology. Let xi ∈ |SpaAi| be a compatible
sequence of points, and let Ai(xi)cons be the constructible stalk of Ai at xi. Then we have a map

A → lim−→
i

Ai(xi)cons

where the right term is non-zero as none of the analytic rings are zero. By Lemma 2.7.11 (2.b), the adic
spectrum of lim

−→i
Ai(xi)cons is a point. But lim

−→i
Ai(xi)cons is also the fiber of f along the sequence (xi)i,

this shows that f−1((xi)i) = {x} is a point, proving that f is indeed a bijection. �

Lemma 2.7.13. Let A → B be a morphism in AffRingbR�
such that B = BA/ and that π0A → π0B is

surjective. Then F : |SpaB| → |SpaA| is an immersion.

Proof. Let x ∈ SpaA, then B ⊗A A(x)cons is either 0 or one has a surjection on π0 of A(x)cons → B ⊗A

A(x)cons. One easily verifies that the tensor satisfies the condition (2.b) of Lemma 2.7.11, this shows that
the fiber F−1(x) is either empty or a point. Furthermore, any element g ∈ B can be lifted to an element
g̃ ∈ A, this implies that a rational subspace of |SpaB| arises as the pullback of a rational subspace of
|SpaA|, and that F is an immersion. �

Proposition 2.7.14. Let A be a bounded affinoid ring. Then the natural map |SpaA| → |SpaA|†−red is
a homeomorphism preserving rational localizations. Moreover, for any x ∈ |SpaA| the underlying discrete
rings of κ(x) and κcons(x) are fields.
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Proof. By Lemma 2.7.13 we have an immersion |SpaA†−red| → |SpaA|. It suffices to show that it is
bijective. But the constructible residue field of A at x factors through A†−red, proving the claim. Finally,
the fact that the underlying discrete rings of κ(x) and κcons(x) are fields follows from Lemma 2.7.11. �

Corollary 2.7.15. Let A → B be as in Lemma 2.7.13. If π0(I) is generated by its discrete points π0(I(∗)),
then the image of F is the Zariski closed subspace {|f | = 0 : f ∈ I}.

Proof. We can assume that both rings are static. Then Z =
⋂

f∈I{|f | = 0} ⊂ |SpaA| corresponds to the
analytic ring AI† = lim

−→f∈I
n∈N
A〈 f

πn 〉. Therefore, the map A → (AI†)
†−red factors through B proving that the

image of |SpaB| in |SpaA| is Z by Proposition 2.7.14. �

We do not know if a morphism A → B in AffRingbR�
that is surjective on π0 induces a closed immersion

in the underlying adic spaces. Nevertheless, it defines a closed subspace in a suitable quotient of the locale
S(A).

Definition 2.7.16. Let A ∈ AffRingbR�
, we let |Spa†A| denote the quotient of S(A) consisting of the

idempotent algebras generated under arbitrary intersections and finite unions by iterations of idempotent
algebras of the form A ⊗Z[T ] Z[[T ]] and A ⊗Z[T ] Z((T

−1)) for some Z[T ] → A, and algebras A ⊗R�[N[S]]

R�〈N[S]〉 for a map from a profinite set S → A.

Lemma 2.7.17. The map of locales S(A)→ |SpaA| factors as a map

S(A)→ |Spa†(A)| → |SpaA|.

Proof. By Lemma 2.3.1 the open subsets of |SpaA| are generated by composite of subspaces of the form {1 ≤
|g|} and {|g| ≤ 1}. The complement of these spaces correspond to the idempotent algebras A⊗Z[T ] Z[[T ]]

and A⊗Z[T ]Z((T
−1)) respectively. The lemma follows by Theorem 2.7.2 and the definition of |Spa†A|. �

Lemma 2.7.18. Let A ∈ AffRingbR�
, then the natural map

|Spa†A†−red| → |Spa†A|

is an isomorphism of locales.

Proof. This follows from the invariance of localizations of the form Z[T ]→ Z[T ]� and R�[N[S]]→ R�〈N[S]〉
under the †-nil-radical of Proposition 2.6.16. �

Proposition 2.7.19. Let A → B be a map of bounded affinoid rings such that B has the induced analytic
structure and that is surjective on π0. Then the natural map

|Spa† B| → |Spa†A|

is a closed immersion of locales.

Proof. By lemma (2.7.18) it suffices to construct an idempotent algebra A′ in |Spa†A| such that we have
a factorization A → A′ → B and that A

′,†−red = B†−red. Let I = [A → B] be the fiber, for any profinite
set S and any map S → π0(I) let us consider the base change A ⊗R�[N[S]] R�{N[S]}

†, and let A′ be the
colimit of all such algebras. Then, by construction, the map A → A′ sends I to the †-nil-radical Nil†(A′)
of A′. This shows that

A
′,†−red = B†−red

as wanted. �

2.7.1. Derived Tate adic spaces. We end this section with the definition of derived Tate adic spaces.

Definition 2.7.20. (1) We let AffZ�
:= AffRingopZ�

be the ∞-category of solid affinoid spaces. For a
ring A ∈ AffRingZ�

, we let AffA be the ∞-category of solid affinoid spaces over A. We also denote
by AnSpecA the representable presheaf on anima over AffZ�

defined by A, we call AnSpecA the
analytic spectrum of A.

(2) We let Affb
R�

:= AffRingb,opR�
be the category of bounded affinoid spaces over R�. The analytic

topology in Affb
R�

is the Grothendieck topology defined by open affinoid coverings of SpaA.
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Lemma 2.7.21. The analytic topology of Affb
R�

is subcanonical.

Proof. Let AnSpecB ∈ Affb
R�

, we want to prove that the functor MapAffb
R
�

(−,AnSpecB) = MapAffRingbR
�

(B,−)

satisfies descent for the analytic topology of Affb
R�

. Given AnSpecA a bounded affinoid ring, by definition
of the category of analytic rings, MapAffRingR

�

(B,A) is the full subanima of MapAniRingR
�

(B,A) whose
connected components are those arrows f : B → A such that any A-complete module is B-complete. Now
let {Ai}

n
i=1 be an analytic cover of A, let C =

∏n
i=1Ai and let Cn be the n-th fold tensor product of C over

A. The maps {SpaAi}i form an open cover of the categorified locale SpaA and by Theorem 2.2.5 one has
descent of modules

Mod(A)→ lim←−
[n]∈∆

Mod(Cn+1). (2.12)

In particular, the natural map A = lim←−[n]∈∆
Cn+1 is an equivalence. Thus, the map

MapAffRingbR
�

(B,A)→ lim←−
[n]∈∆

MapAffRingbR
�

(B, Cn+1)

is a fully faithful embedding, and to prove that it is an equivalence it suffices to check that it is essentially
surjective, but this follows from (2.12) and the fact that Mod(B) is stable under limits and colimits in
Mod(B). �

Definition 2.7.22. We let Shan(Aff
b
R�

) denote the sheaves on anima of bounded affinoid spaces with
respect to the analytic topology. A derived Tate adic space over R� (or more shortly, a derived adic space)
is a sheaf X ∈ Shan(Aff

b
R�

) that admits an open analytic cover by representable sheaves. We let AdicSpR�

be the full ∞-subcategory of Shan(Affb
R�

) consisting on derived adic spaces over R�.
Given X a derived Tate adic space, let ModX,� = lim

←−AnSpecA→X
Mod(A) be its ∞-category of solid

quasi-coherent sheaves on X, and let |X| = lim
−→AnSpecA→X

|AnSpecA| be its associated topological space.
We let Xadic := (|X|,ModX,�) denote the categorified locale of X obtained as the colimit of the categorified
locales on bounded affinoid spaces mapping to X

The following corollary follows from the definitions and Lemma 2.1.3.

Corollary 2.7.23. Let X be a derived Tate adic space, {Ui}i an analytic open cover of X by affinoid
spaces, and ModX,� = lim←−i

ModUi,�. Then |X| = lim−→i
|Ui| is a locally spectral space. Morphisms of derived

Tate adic spaces X → Y induce morphisms of locally spectral spaces |X| → |Y |. When restricted to derived
Tate adic spaces over Q ⊗ R�, the functor X 7→ Xadic from derived Tate adic spaces to categorified locales
over Q⊗R� is fully faithful (eg. for derived Tate adic spaces over Qp).

2.7.2. Analytification functor. We finish this section by defining an analytification functor. Let PSh(AffR�
)

be the category of presheaves on anima of solid affinoid rings over R�.

Definition 2.7.24. We define the analytification functor (−)an to be the composite PSh(AffR�
)

k∗
−→

PSh(Affb
R�

) → Shan(Aff
b
R�

), where the first is the restriction along the inclusion k : Affb
R�
→ AffR� ,

and the second is sheafification.

By Proposition 2.6.8, the category AffRingZ�
of solid affinoid rings is generated by the compact projective

objects Z[T ]�[N[S]], where T is a finite set of variables, and S a profinite set. Therefore, the analytification
functor (−)an is the left Kan extension of its restriction to the objects R〈T 〉�[N[S]]. These are computed
as follows:

Lemma 2.7.25. Let DR := AnSpecR〈T 〉� be the unit affinoid disc. For S a profinite set let us write
A
alg
R,S := AnSpec(R�[N[S]]) and AR,S :=

⋃
n∈NAnSpec(R�〈N[π

nS]〉). Then there is a natural equivalence

(Dn
R × A

alg
R,S)

an = Dn
R × Aan

R,S.

Proof. This follows from the fact that both k∗ and sheafification commute with finite limits, that Dn
R is

already a bounded affinoid space, and that Aan
R,S represents the functor on Affb

R�
given by A 7→ A(S). �
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3. Tate stacks

In this section we introduce a geometric framework to do derived rigid geometry. Following the theory of
analytic stacks of Clausen and Scholze, we use the abstract 6-functor formalisms of Mann [Man22b, Man22a],
revisited in [Zav23] and [Sch23], to construct very general categories of solid and Tate stacks. We discuss
other classical geometric objects and features like finitely presented morphisms of derived Tate adic spaces,
the theory of the cotangent complex for analytic rings, formally étale and smooth morphisms, and Serre
duality. Finally, we introduce new deformation properties for morphisms, called †-formally smoothness and
étaleness, that will be key in the theory of the analytic de Rham stack.

3.1. Recollections on abstract six functor formalisms. In this section we briefly recall the definition
of a six functor formalism and some of its most important features, we follow [Man22b, Man22a] and
[Sch23].

3.1.1. Abstract six functor formalisms. A geometric set up is a pair (C, E) consisting on an ∞-category C
and a collection E of homotopy classes of edges in C such that E contains all isomorphisms, and is stable
under compositions and pullbacks. Throughout this section we assume that C admits finite limits.

Provided the data (C, E), one constructs a symmetric monoidal∞-category of correspondences Corr(C, E),
see [Man22b, Definition A.5.4] and [Sch23, Definition 2.3]. In a more instructive way, the homotopy category
of Corr(C,E) has the following description: the objects of Corr(C, E) are the objects of C, the symmetric
monoidal structure is given by direct products, an arrow from X to Y is a correspondence

W

X Y

f g

with g ∈ E, and the composition of two arrows is given by the outer correspondence of the following diagram

W ×Y W ′

W W ′

X Y Z.

Definition 3.1.1 ([Man22b, Definition A.5.6]). A 3-functor formalism (or a pre 6-functor formalism) on
(C, E) is a lax symmetric monoidal functor

D : Corr(C, E)→ Cat∞

where Cat∞ is endowed with the cartesian symmetric monoidal structure.

As it is explain in the paragraph after [Sch23, Definition 2.4], the data of a 3-functor formalism encodes
a functor D : C → Cat⊗∞ from C to symmetric monoidal ∞-categories, the pullback functors f∗, and the
lower shriek functors f!, in such a way that a diagram

W

X Y

f g

is sent to the functor g!f
∗ : D(X)→ D(Y ).

Definition 3.1.2. A 6-functor formalism is a 3-functor formalism for which the symmetric monoidal cat-
egories D(X) for X ∈ C are closed, and the functors f∗ and f! have right adjoints f∗ and f ! respectively.

Remark 3.1.3 (Dual 3-functor formalism). From the datum of a 3-functor formalism D : Corr(C, E)→ Cat∞
it is possible to construct a dual 3-functor formalism Dop as in [Sch23, Remark 6.3]. Concretely, Dop is

constructed as the composite Corr(C, E)
D
−→ Cat∞

(−)op
−−−→ Cat∞, see [Lur17, Remark 2.4.2.7]. At the level

of objects, it maps X to the opposite symmetric monoidal category D(X)op.
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The following lemma allows us to construct six functors by taking a precomposition.

Lemma 3.1.4. Let (C, E) be a geometric set up and let C′ be an∞-category with finite limits. Let F : C′ → C
be a functor preserving final objects and cartesian squares. Let E′ be the class of edges s in C′ such that
F (s) ∈ E, then (C′, E′) is a geometric set up and F induces a natural symmetric monoidal functor

Corr(F ) : Corr(C′, E′)→ Corr(C, E).

In particular, if D : Corr(C, E)→ Cat∞ is a 3-functor formalism then D ◦ Corr(F ) : Corr(C′, E′)→ Cat∞
is also a 3-functor formalism.

Proof. We use the notation of [Man22b, Definitions A.5.2 and A.5.4]. First, note that the class of arrows
E′ is stable under compositions and pullbacks since F preserves cartesian squares. Let us first see that
the hypothesis imply that there is a natural functor Corr(F ) : Corr(C′, E′) → Corr(C, E). Indeed by
construction, Corr(C, E) is the simplicial subset of B(C) whose n-cells are maps C(∆n) → C sending
vertical edges to E and exact squares to pullback squares. Since F : C′ → C preserves cartesian squares,
the restriction of B(F ) : B(C′) → B(C) to Corr(C′, E′) lands in Corr(C, E) as wanted. For the symmetric
monoidal structure, by [Man22b, Definition A.5.4] one has

Corr(C, E)⊗ = Corr((Cop,
⊔

)op, E−),

where Cop,
⊔

is the symmetric monoidal structure define by co-products, and the class of edges E− are those
living over id : 〈n〉 → 〈n〉 for n ∈ N of the form f : (Yj)1≤j≤n → (Xi)1≤i≤n where Yi → Xi is in E. Then,
since F preserves final objects and cartesian squares, it sends co-products to co-products in the opposite
categories, so that we have a symmetric monoidal functor

(F op,
⊔

)op : (C
′ op,

⊔

)op → (Cop,
⊔

)op.

Moreover, by definition the functor (F op,
⊔
)op still sends the edges E

′− to E−. Then, to finish the proof,
we need to see that the natural functor

B((F op,
⊔

)op) : B((C
′op,

⊔

)op)→ B((Cop,
⊔

)op)

restricts to a functor in the correspondence categories. This follows from the fact that (F op,
⊔
)op still

preserves cartesian diagrams and that it sends E
′− to E−. �

One of the major contributions of [Man22b] is the construction of 6-functor formalisms from a minimal
amount of data that is of easy access in practice, namely, we are usually given a functor D : C → Cat⊗∞
with values in symmetric monoidal (stable) ∞-categories, and two classes of étale and proper maps I and
P . It turns out that if the data (C,D , I, P ) satisfies a minimal set of expected properties, one can construct
a 6-functor formalism for (C,E) in such a way that all element in E is written as p ◦ j with p ∈ P and
j ∈ I, that for f ∈ P one has f∗ = f!, and that for f ∈ I one has f ! = f∗. For the precise statement see
[Man22b, Proposition A.5.10].

On the other hand, the results of Mann permit the extension of a six functor formalism on (C, E) to a
very general class of arrows in a suitable category of sheaves on anima of C. To state such an extension
theorem we need some definitions, we refer to [Sch23, Appendix of Lecture IV] for more details.

Let (C, E) be a geometric set up and suppose that the six functor formalism D : Corr(C, E) → PrL,ex

takes values in presentably stable ∞-categories. Let C̃psh be the ∞-category of presheaves of anima of C,
and D : Corr(C̃psh, ‹E0) → PrL,ex its natural extension to a six-functor formalism on presheaves of anima,
where ‹E0 are the arrows whose pullbacks to C are representable in E (cf. [Man22b, Proposition A.5.16]).

Definition 3.1.5 ([Sch23, Definition 4.14]). Consider {fi : Xi → Y } a family of objects in C.
(1) The maps fi form a canonical cover if for all Z ∈ C an any Y ′ → Y in C with pullback f ′

i : X
′
i → Y ′,

the functor HomC(−, Z) satisfies descent along {f ′
i}.

(2) The maps fi satisfy universal ∗-descent if for all pullbacks {f ′
i : X

′
i → Y ′} along a map Y ′ → Y in

C, the functor D∗ satisfy descent along {f ′
i} (i.e. where the transition maps are given by f∗-maps).

(3) Assume all fi are in E. The maps fi satisfy universal !-descent if for all pullbacks {f ′
i : X

′
i → Y ′}

along Y ′ → Y from a presheaf on anima on C, the functor D ! satisfies descent along {f ′
i} (i.e. where

the transition maps are given by f !-maps).



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 39

A D-cover is a family {fi : Xi → Y } of objects in E such that they form a cover in the canonical
topology, satisfy universal ∗-descent, and satisfy universal !-descent. The D-topology on C is the topology
generated by D-covers, we let C̃ denote the ∞-category of sheaves on C for the D-topology.

Let ‹E0 the class of arrows in C̃ represented by arrows in E. As we saw above, the six functor formalism
of (C, E) extends to (C̃, ‹E0), we want to use the theory of [Man22b, Appendix A.5] to enlarge the class of
arrows ‹E0 by localizing the target and the source of a map, this leads to the following definition.

Definition 3.1.6 ([Sch23, Definition 4.18]). Let ‹E0 ⊂ ‹E be a class of morphisms in C̃ that is stable under
pullbacks and compositions.

(1) The class ‹E is stable under disjoint unions if whenever fi : ‹Xi → ‹Y are morphisms in ‹E then⊔
i fi :

⊔
i
‹Xi → ‹Y is in ‹E.

(2) The class ‹E is local on the target if whenever f̃ : ‹X → ‹Y is a morphism in C such that for all Y ∈ C
with map Y → ‹Y , the pullback ‹X ×‹Y Y → Y is in ‹E, then f ∈ ‹E.

(3) Assume that the six functors of (C̃, ‹E0) extend uniquely to (C̃, ‹E). The class ‹E is local on the source
if whenever f̃ : ‹X → ‹Y is a morphism in ‹C such that there is some map g̃ : ‹X ′ → ‹X in ‹E that is
of universal !-descent, and such that f̃ ◦ g̃ lies in ‹E, then f̃ ∈ ‹E.

(4) Assume that the six functors of (C̃, ‹E0) extend uniquely to (C̃, ‹E). The class ‹E is tame if whenever
Y ∈ C and f̃ : ‹X → Y is a map in ‹E, then there are morphisms hi : Xi → Y in E and a morphism⊔

i Xi → ‹X over Y that lies in ‹E and is of universal !-descent.

Theorem 3.1.7 ([Sch23, Theorem 4.20]). There is a minimal collection of morphisms ‹E0 ⊂ ‹E of C̃ such
that D extends uniquely from (C̃, ‹E0) to (C̃, ‹E), and such that ‹E is stable under disjoint unions, local on
the target, local on the source, and tame.

3.1.2. The Lu-Zheng 2-category. Let (C, E) be a geometric set up with finite limits and D a six functor
formalism on (C, E). We assume that D : Corr(C, E) → PrL,ex takes values in presentable stable ∞-
categories. Another important tool in the theory of six-functor formalisms is the 2-category constructed
by Lu-Zheng [LZ22] which encodes the Fourier-Mukai kernels between objects X and Y in C living over a
base S.

Definition 3.1.8 ([Man22a, Definition 7.1]). Let S ∈ C, the Lu-Zheng category LZD,S of (C, E) (relative
to D and S), is the 2-category with objects given by arrows X → S in E, for each pair of objects X,Y a
1-category of functors HomLZ,S(X,Y ) = D(X×S Y ). The identity functor in D(X×S X) is given by ∆!1X
where ∆ : X → X ×S X is the diagonal map. For a triple of objects X,Y,Z the composite transformations

HomLZ,S(Y,Z)×HomLZ,S(X,Y )→ HomLZ,S(X,Z)

are given by the Fourier-Mukai transform M⋆N = π1,3,!(π
∗
1,2N⊗π

∗
2,3M) for N ∈ D(X×SY ), M ∈ D(Y×SZ)

and πi,j the corresponding projection of X ×S Y ×S Z.

Remark 3.1.9. In [Zav23, Proposition 2.2.6], Zavyalov shows that the Lu-Zheng category has a natural
(∞, 2)-categorical enhancement.

With the help of the Lu-Zheng category one defines smooth and proper objects, cf. [Sch23, Definition
6.1].

Definition 3.1.10. Let (C, E) be a six functor formalism, S ∈ C and f : X → S an arrow in E.
(1) An object M ∈ D(X) = HomLZ,S(X,S) is called f -smooth if it is a left adjoint in LZD,S .
(2) An object M ∈ D(X) = HomLZ,S(S,X) is called f -proper if it is a left adjoint in LZD,S .

The following proposition provides different equivalent characterizations of f -smooth and f -proper ob-
jects.

Proposition 3.1.11. Let f : X → S be an arrow in E, pi : X ×S X → X the projection maps and
∆ : X → X ×S X the diagonal map. Let Q ∈ D(X).

(1) Let Df (Q) = HomX(Q, f !1S). The following are equivalent
(a) Q is f -smooth.



40 JUAN ESTEBAN RODRÍGUEZ CAMARGO

(b) The natural map p∗1Df (Q)⊗ p∗2Q→ HomX×SX(p∗1Q, p!2Q) is an equivalence.
(c) For all g : S′ → S with pullback f ′ : X ′ → S′ and projection map g : X ′ → X the following

natural functors are equivalences

Df ′(g
′∗Q)⊗ f

′∗ → HomX′(g
′∗Q, f

′!),

g
′∗HomX(Q, f !)→ HomX′(g

′∗Q, f
′!g∗).

If these conditions holds then Df (Q) is also f -smooth with right adjoint Q.
(2) Let Pf (Q) = p2,∗(HomX×SX(p∗1Q,∆!1X)). The following are equivalent

(a) Q is f -proper.
(b) The natural map f!(Q⊗ Pf (Q))→ f∗HomX(Q,Q) is an equivalence.
(c) For all g : S′ → S with pullback f ′ : X ′ → S′ and projection map g : X ′ → X the following

natural functors are equivalences

f ′
! (− ⊗Pf ′(g

′∗Q))→ f ′
∗HomX′(g

′∗Q,−),

g∗f∗HomX(Q,−)→ f ′
∗HomX′(g

′∗Q, g
′∗(−)).

If these conditions holds then Pf (Q) is also f -proper with right adjoint Q.

Proof. The point (1) is precisely [Man22a, Proposition 7.7]. For point (2), the equivalence between (a) and
(b) is [Sch23, Proposition 6.9]. The implication (c) to (b) follows by taking g = idS and evaluating the first
equivalence at Q. For (a), (b) implies (c), consider the natural transformation LZD,S → LZD,S′ obtained
by taking pullback along g, then g∗ preserves adjunctions which implies that g

′∗Q is f ′-proper with dual
g
′∗Pf (Q). By [Sch23, Proposition 6.8 (3)] there is a natural equivalence g

′∗Pf (Q) ∼= Pf ′(g
′∗Q). Now, the

adjunction between g
′∗Q and Pf ′(g

′∗Q) shows that the functor f ′∗ ⊗ g
′∗Q : D(S′) → D(X ′) has by right

adjoint the functor f!(−⊗Pf ′(g
′∗Q)), but the first has also by right adjoint the functor f ′

∗HomX′(g
′∗Q,−),

which provides the first equivalence of functors. The second isomorphism follows from the first, proper base
change, and the natural identification g

′∗Pf (Q) ∼= Pf ′(g
′∗Q). �

Proposition 3.1.12 ([Man22a, Proposition 7.11]). Let f : Y → X and g : Z → Y be maps in E, let
P ∈ D(Y ) and Q ∈ D(Z).

(1) If P is f -smooth and Q is g-smooth then Q⊗ g∗P is (f ◦ g)-smooth, and the natural map

g∗Df (P )⊗Dg(Q)→ Df◦g(Q⊗ g∗P )

is an equivalence.
(2) If P is f -proper and Q is g-proper then Q⊗ g∗P is (f ◦g)-proper, and there is a natural equivalence

Pf◦g(Q⊗ g∗P ) ∼= g∗Pf (P )⊗ Pg(Q).

Proof. In loc. cit. it is shown part (1), the same argument using the dual six functors Dop recovers part
(2), see Remark 3.1.3. �

Remark 3.1.13. The equivalence in (2) of Proposition 3.1.12 is not very explicit, it is obtained from a very
involved adjunction in the Lu-Zheng category.

Proposition 3.1.14 (Local on the target and stable by base change). Consider a cartesian square

X ′ X

S′ S

f ′

g′

f

g

with f ∈ E, and let Q ∈ D(X). The following hold:

(1) If Q is f -smooth (resp. f -proper) then g
′∗Q is f ′-smooth (resp. f ′-proper).

(2) If g satisfies universal ∗-descent and g
′∗Q is f ′-smooth (resp. f ′-proper) then Q is f -smooth (resp.

f -proper).
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Proof. For smooth objects this is [Man22a, Corollary 7.8], the same proof applies in the abstract context.
Note that the only property of a v-cover that is used in loc. cit. is that it satisfies universal ∗-descent
which holds in our case by hypothesis. The case for proper objects follows by dual arguments in the sense
of Remark 3.1.3 as we describe next: point (1) follows from the fact that the natural transformation of
2-categories g∗ : LZD,S → LZD,S′ preserves adjunctions. For part (2), by Proposition 3.1.11 (2.b) it suffices
to show that the natural transformation

f!(−⊗ Pf (Q))→ f∗HomX(Q,−)

is an equivalence. Let S′
• be the Čech nerve of g, and X ′

• its pullback to X. By universal ∗-descent we have
natural equivalences

D(S)→ lim
←−
[n]∈∆

D(S′
n) and D(X)→ lim

←−
[n]∈∆

D(X ′
n).

Consider the functor
D(X ′

•)→ D(S′
•) M• 7→ f ′

•,∗HomX′
•
(g

′∗
• Q,M•).

By the second equivalence in Proposition 3.1.11 (2.c), it preserves cocartesian sections, so it descends to a
functor

D(X)→ D(S),

by looking at left adjoints one shows that this functor is actually equal to f∗HomX(Q,−). It follows that
the natural map

g
′∗f∗HomX(Q,−)→ f

′

∗HomX′(g
′∗Q,−)

is an equivalence of functors. On the other hand, since g
′∗Q is f ′-proper, the simplicial object Pf ′

•
(g

′∗
• Q)

is a cocartesian section of D(X ′
•) and it descents to an object B ∈ D(X). Moreover, the isomorphism of

functors
f ′
•,!(−⊗ Pf ′

•
(g

′∗
• Q))→ f ′

•,∗HomX′
•
(g

′∗
• Q,−)

provided by Proposition 3.1.11 (2.c) descents to an equivalence of functors

f!(− ⊗B)→ f∗HomX(Q,−).

Note that the previous equivalence passes through any base change S′′ → S. Taking the base change along
X → S and evaluating at ∆!1X one gets that B = Pf (Q) and that the previous arrow is the natural one
coming from the adjunction of [Sch23, Proposition 6.9], this finishes the proof. �

The following are two practical ways to construct D-covers in a six functor formalism, they correspond
to smooth and proper descent respectively.

Proposition 3.1.15 ([Sch23, Proposition 6.18]). Let f : X → Y be a morphism in E such that 1X is
f -smooth. Then

f∗ : D(Y )→ D(X)

is conservative if and only if the natural map

lim−→
[n]∈∆op

fn+1,!f
n+1,!(1Y )→ 1Y

is an isomorphism (where fn+1 : X
n+1/Y → Y is the n+ 1-th fold fiber product), and this condition passes

to any base change. In that case, the pullback functors

(f∗
n+1)n : D(Y )→ lim←−

[n]∈∆

D(Xn+1/Y ) and (f !
n+1)n : D(Y )→ lim←−

[n]∈∆

D(Xn+1/Y )

are equivalences. In particular, if f is a canonical cover, then it is a D-cover, and of universal ∗ and
!-descent.

Proposition 3.1.16 ([Sch23, Proposition 6.19]). Let f : X → Y be an arrow in E such that 1X is f -proper,
with fn : Xn/Y → Y the n-th fold fiber product. Assume that the map

1Y → “ lim
←−
[n]∈∆

”fn+1,∗1Xn+1/Y

is an isomorphism in Pro(D(Y )); equivalently, f∗1X ∈ CAlg(D(Y )) is descendable.
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Then the pullback functors

(f∗
n+1)n : D(Y )→ lim←−

[n]∈∆

D(Xn+1/Y ) and (f !
n+1)n : D(Y )→ lim←−

[n]∈∆

D(Xn+1/Y )

are equivalences. In particular, if f is a canonical cover, then it is a D-cover, and of universal ∗ and
!-descent.

3.1.3. Cohomologically smooth and co-smooth maps. Let D be a six functor formalism on (C, E) taking val-
ues in presentable stable∞-categories, and suppose that C admits finite limits. One of the main advantages
of the abstract six functor formalisms is that one can axiomatize cohomological properties of smooth and
proper maps in algebraic geometry via the Lu-Zheng category. We follow [Man22a, §8] and [Sch23, Lecture
V] for the definition of cohomologically smooth maps. For the replacement of proper maps, we will use a
weaker notion suggested at the beginning of [Man22a, §9] which we shall call co-smooth maps, this is the
same as cohomologically smooth for the dual six functor formalism Dop.

Definition 3.1.17. An arrow f : X → Y in E is cohomologically smooth if 1X is f -smooth and Df (1X) =

f !1Y is invertible. Similarly, f is cohomologically co-smooth if 1X is f -proper and Pf (1X) is invertible.

Translating the definition of cohomologically smooth and co-smooth maps from the Lu-Zheng category
to functors, a smooth map f : X → Y gives a natural equivalence of functors f !1Y ⊗ f∗ ∼

−→ f ! while a co-
smooth map gives a natural equivalence of functors f!(− ⊗ Pf (1X))

∼
−→ f∗. Among smooth and co-smooth

maps, there are two special families consisting on étale and proper maps.

Definition 3.1.18 ([Sch23, Definitions 6.10 and 6.12]). Let f : Y → X be an n-truncated map in E.
(1) We say that f is cohomologically proper if ∆f is cohomologically proper or an isomorphism, and if

1Y is f -proper.
(2) We say that f is cohomologically étale if ∆f is cohomologically étale or an isomorphism, and if 1Y

is f -smooth.

In coherent cohomology, the maps f : Y → X that are proper in a suitable geometric sense are far from
being n-truncated. However, one still would expect to have identifications f! = f∗, and that the functor f∗
preserves “coherent” sheaves. Moreover, if the six functor formalism arises from a geometric decomposition
(I, P ) one would expect that the arrows in I and P are étale and proper in a suitable sense respectively.
As a replacement of cohomologically étale and proper maps we define the following weaker notion:

Definition 3.1.19. Consider and arrow f : Y → X in E and let ∆f : Y → Y ×X Y . We say that f is
weakly cohomologically proper (resp. étale) if the following hold:

(1) 1Y is ∆f -proper (resp. f -étale) and there is a (non-canonical) equivalence P∆f
(1Y ) ≃ 1Y (resp. an

equivalence D∆f
(1Y ) ≃ 1Y ).

(2) 1Y is f -proper (resp. f -étale).

Remark 3.1.20. Note that, under the hypothesis of the definition, the equivalence P∆f
(1Y ) ≃ 1Y , induces

an equivalence Pf (1Y ) ≃ 1Y . In particular, we have (non-natural) isomorphisms of functors ∆f,! ≃ ∆f,∗

and f! ≃ f∗. Similarly for weakly cohomological étale maps.

The following lemma gives a way to construct weakly cohomologically étale and proper maps from I and
P .

Lemma 3.1.21. Suppose that the six functor formalism on (C, E) arises from a suitable decomposition
(I, P ). Let f : ‹X → S̃ be a map in C̃ that is, locally in the D-topology on S̃, representable by an arrow in
I (resp. P ). Then f is weakly cohomologically étale (resp. proper).

Proof. By Proposition 3.1.14 (2) it suffices to prove that an arrow of I (resp. P ) satisfies the conclusion of
the lemma, this follows from the proof of [Sch23, Propositions 6.11 and 6.13] since diagonal maps of arrows
in I are in I (resp. P ), and by construction f∗ = f ! for f ∈ I (resp. f∗ = f! for f ∈ P ). �

Remark 3.1.22. If the category C is n-truncated then the maps in I and P are cohomologically étale and
proper as in Definition 3.1.18. For a general C, it is not clear to the author how to define a natural notion
of cohomologically étale and proper maps that contains the n-truncated ones, and the arrows of I and P
respectively.
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Lemma 3.1.23 ([Man22a, Lemma 8.7]). Cohomologically smooth and co-smooth maps are stable under
pullbacks and compositions, and ∗-local on the target.

Proof. Stability under pullbacks and local in the target for universal ∗-descent maps follows from Proposition
3.1.14. Stability under composition follows from Proposition 3.1.12. �

One of the interest of cohomologically smooth and co-smooth maps is that they will preserve smooth or
proper objects in a suitable sense.

Proposition 3.1.24 (Local on the source and stable under composition). Let f : Y → X and g : Z → Y
be maps in E and let P ∈ D(Y ). The following hold:

(1) Assume that g is smooth.
(i) If P is f -smooth then g∗P is (f ◦ g)-smooth with dual g∗Df (P )⊗ g!1Y .
(ii) If g is a D-cover and g∗P is (f ◦ g)-smooth then P is f -smooth.

(2) Assume that g is co-smooth.
(i) If P is f -proper then g∗P is (f ◦ g)-proper with dual g∗Pf (P )⊗ Pg(1Z).
(ii) If g is a D-cover satisfying the hypothesis of Proposition 3.1.16 and g∗P is (f ◦ g)-proper then

P is f -proper.

Proof. Part (1) is [Man22a, Proposition 8.6]. Part (2.i) follows from Proposition 3.1.12. For part (2.ii), we
cannot directly dualize the argument of loc. cit since the functors f∗ and f! in Dop might not have right
adjoints, instead we will make use of the descendability property of g.

By Proposition 3.1.11 (2.c), it suffices to prove that there is some Q ∈ D(Z) and a natural equivalance
of functors

f!(−⊗Q)→ f∗HomY (P,−),

that holds after any base change X ′ → X; one then necessarily has that Q = Pf (P ) by taking the pullback
along Y → X and evaluating at ∆!1Y . Let g• : Z• → Z be the Čech nerve of Z over Y . By Lemma
3.1.23, co-smooth covers are stable under composition and pullbacks, in particular, any projection Zn → Z
is co-smooth and by part (2.i) g∗nP ∈ D(Zn) is (f ◦ gn)-proper over X. Furthermore, part (2.i) also gives
rise a cosimplicial object (Pf◦g•(g

∗
•P )⊗Pg•(1Z•)

−1)[n]∈∆ which is a co-cartesian section in D(Z•), defining
an object Q ∈ D(Z). Therefore, the functor

g∗•P ⊗ (f ◦ g•)
∗ : D(X)→ D(Z•) (3.1)

descends to the functor P ⊗ f∗ : D(X)→ D(Y ). For each [n] ∈ ∆, the functor g∗nP ⊗ (f ◦ gn)
∗ has by right

adjoint (f ◦ gn)∗HomZn
(g∗nP,−) which by Proposition 3.1.11 (2.c) is naturally isomorphic to

(f ◦ gn)!(− ⊗D(f◦gn)(g
∗
nP )) = (f ◦ gn)!(−⊗ g∗nQ⊗ Pgn(1Zn)) = f!(gn,∗(−)⊗Q).

Therefore, (3.1) has by right adjoint the totalization

lim←−
[n]∈∆

f!(gn,∗(−)⊗Q).

Evaluating at a co-cartesian section Mn of D(Z•), the proof of [Sch23, Proposition 6.19] shows that the
Pro-system (gn,∗Mn)[n]∈∆ is pro-constant, this implies that

lim
←−
[n]∈∆

f!(gn,∗Mn ⊗Q) ∼= f!( lim←−
[n]∈∆

(gn,∗Mn)⊗Q).

Therefore, P ⊗ f∗ has by right adjoint f!(−⊗Q), which provides the natural equivalence

f!(− ⊗Q)
∼
−→ f∗HomY (P,−). (3.2)

Finally, note that the formation of (3.2) is natural with respect to base change X ′ → X by construction.
This finishes the proof. �

Definition 3.1.25. Let f : Y → X be an arrow in E. We say that f is a smooth (resp. descendable) D-
cover if it is smooth (resp. co-smooth), it is a canonical cover, and it satisfies the hypothesis of Proposition
3.1.15 (resp. of Proposition 3.1.16).

We deduce the following corollary from Proposition 3.1.24.
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Corollary 3.1.26. Being cohomomologically smooth is smooth D-local on the source. Analogously, being
cohomologically co-smooth is descendably D-local on the source.

Smooth and descendable D-covers provides a description of the coefficients of the quotient as modules
and comodules respectively.

Proposition 3.1.27. Let f : Y → X be an arrow in E.
(1) Suppose that f is a smooth D-cover. Then there is a natural equivalence of stable ∞-categories

D(X)
∼
−→ Modf !f!

(D(Y )),

where the monad f !f! naturally belongs to Alg((EndL
D(X)(D(Y ))).

(2) Suppose that f is a descendable D-cover. Then there is a natural equivalence of ∞-categories

D(X)
∼
−→ CoModf∗f∗(D(Y )),

where the comonad f∗f∗ naturally belongs to CoAlg((EndL
D(X)(D(Y ))).

Moreover, if f has a retraction g : X → Y then the monad f !f! in (1) arises from an object Df ∈

Alg(EndD(Y )(D(Y ))) = Alg(D(Y )), and the comonad f∗f∗ arises from an object Cf ∈ CoAlg(EndL
D(Y )(D(Y ))) =

CoAlg(D(Y )).

Proof. In the case of (1), both functors f ! and f! are linear over D(X), namely f ! = f∗ ⊗ f∗1X and f∗ is
D(X)-linear being symmetric monoidal, and f! is D(X)-linear by the projection formula. This implies that
modules of the monad f !f! arises from an object f !f! ∈ Alg(EndL

D(X)(D(Y ))).
Similarly, in the case of (2), we have a natural equivalence f∗ = f!(− ⊗ Pf (1Y )), proving that f∗

satisfies the projection formula so that is D(X)-linear. Therefore, the comonad f∗f∗ arises from an object
f∗f∗ ∈ CoAlg(EndL

D(X)(D(Y ))).
In order to prove the proposition we only need to show that the functor f ! is monadic in the case (1),

and that f∗ is comonadic in the case (2), see [Lur17, Theorem 4.7.3.5]. It is clear that both functors
are conservative in both situations. In the case of (1), the functor f ! already preserves colimits being
isomorphic to f∗ ⊗ f !1X , and the monadicity theorem can be applied. In the case of (2), in order to apply
the comonadicity theorem we need to show that f∗ preserves f∗-split totalizations.

By Proposition 3.1.16 we have that

D(X) = lim
←−
[n]∈∆

D(Y n+1/X)

along pullback maps. Let (Mm)[m]∈∆ be a cosimplicial object in D(X) whose pullback to D(Y ) is split.
Then, for all n ≥ 0, the pullback of (Mm)[m]∈∆ to D(Y n+1/X) is split with limit Nn+1. Moreover, the
object (Nn+1)[n]∈∆ is a cocartesian section in D(Y •+1/X ) because of the splitting, and it defines an object
N in the limit D(X) = lim

←−[n]∈∆
D(Y n+1/X). We deduce that

lim
←−

[m]∈∆

Mm = lim
←−

[m]∈∆

lim
←−
[n]∈∆

fn+1,∗f
∗
n+1Mm

= lim
←−
[n]∈∆

fn+1,∗ lim
←−

[m]∈∆

f∗
n+1Mm

= lim
←−
[n]∈∆

fn+1,∗Nn+1

= N.

We deduce that
f∗( lim
←−

[m]∈∆

Mm) = f∗N = N1 = lim
←−

[m]∈∆

f∗Mm,

proving that f∗ preserves f∗-split totalizations.
Finally, if f : Y → X has a retraction g : Y → X, the functors f ! and f! are D(Y )-linear in the case of

(1), and the functors f∗ and f∗ are D(Y )-linear in the case of (2). This shows that the monad and comonad
f !f! and f∗f∗ in (1) and (2) respectively, arise from objects Df ∈ Alg(EndL

D(Y )(D(Y ))) = Alg(D(Y )) and
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Cf ∈ CoAlg(EndL
D(Y )(D(Y ))) = CoAlg(D(Y )) respectively (see [Man22b, Lemma A.4.7] for the natural

equivalence EndL
D(Y )(D(Y )) = D(Y )). �

Remark 3.1.28. In the part (2) of Proposition 3.1.27 the only important conditions for the statement to
hold is that f∗ satisfies the projection formula, and that f satisfies universal ∗-descent.

We end this section by recalling how smooth and proper objects are preserved by lower shrieck functors
under suitable hypothesis.

Proposition 3.1.29. Let f : Y → X and g : Z → Y be maps in E. Let P,Q ∈ D(Z). The following hold

(1) If P is (f ◦ g)-smooth and Q is g-proper then g∗HomZ(Q,P ) = g!(Pg(Q)⊗ P ) is f -smooth.
(2) If P is (f ◦ g)-proper and Q is g-smooth then g!(Q⊗ P ) is f -proper.

Proof. Part (1) is [Man22a, Proposition 7.13], part (2) is proven with the same argument that we recall
down below:

One has a morphisms of 2-categories ι! : LZD,Y → LZD,X mapping [W → Y ] to [W → X] and M ∈
HomLZ,Y (W,V ) = D(W ×Y V ) to ι!M ∈ HomLZ,X(W,V ) = D(W ×X V ) where ι : W ×Y V → W ×X V .
By hypothesis P ∈ HomLZ,X(X,Z) is a left adjoint and Q ∈ HomLZ,Y (Z, Y ) is a left adjoint. Then, since
ι! sends left adjoints to left adjoints, one has that

ι!Q ⋆ P = πY,!(π
∗
ZP ⊗ ι!Q) = πY,!ι!(ι

∗π∗
ZP ⊗Q) = g!(Q⊗ P )

is a left adjoint in HomLZ,X(X,Y ), proving what we wanted. �

Proposition 3.1.30 ([Man22b, Proposition 9.10] ). Let f : Y → X and g : Z → Y be maps in E, and
P ∈ D(Y ). The following hold:

(1) If g is cohomologically co-smooth and P is (f ◦ g)-smooth then g∗P and g!P are f -smooth.
(2) If g is cohomologically smooth and P is (f ◦ g)-proper then g!P is f -proper.

Proof. This follows from Proposition 3.1.29 by taking Q = 1Z or Q = Pf (1Z) for point (1), and taking
Q = 1Z for point (2). �

We end this section with a couple of lemmas that will be useful later.

Lemma 3.1.31. Let f : Y → X, then there is a natural equivalence

f !HomX(F ,G ) ∼= HomY (f
∗
F , f !

G ).

In particular, if f is cohomological smooth we have that

f∗HomX(F ,G ) ∼= HomY (f
∗
F , f∗

G ).

Proof. This follows from the adjunctions:

HomY (H , f !HomX(F ,G )) ∼= HomX(f!H ,HomX(F ,G ))

∼= HomX(f!H ⊗F ,G )

∼= HomX(f!(H ⊗ f∗
F ),G )

∼== HomY (H ⊗ f∗
F , f !

G )

∼= HomY (H ,HomY (f
∗
F , f !

G )).

The claim about cohomologically smooth maps follows from the fact that f ! = f∗ ⊗ f !1X and that f !1X is
an invertible object in D(Y ). �

Lemma 3.1.32. Let F ∈ D(X) and let f : Y → X be an arrow in E.

(1) If f is a smooth cover and f∗F is f -smooth, then F is dualizable.
(2) If f is a descendable cover and f∗F is f -proper, then F is dualizable.

Proof. This follows from Proposition 3.1.24 as being idX-smooth or proper is equivalent to being a dualizable
object in D(X). �
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3.2. Solid and Tate stacks. In this section we explain how the theory of abstract six functor formalisms of
[Man22b, Man22a] and [Sch23] provides a very general six functor formalism of solid quasi-coherent sheaves
for stacks. Throughout this section we fix an uncountable cutoff cardinal κ as in [Man22b, Definition
2.9.11], in real world applications the construction of the six functors down below will be independent of κ
large enough.

By [Man22b, Lemma 2.9.12], if (A,A+) is a discrete animated Huber ring, then the forgetful functor
Mod((A,A+)�) → Mod(A) preserves κ-small objects. Therefore, if B ∈ Mod((A,A+)�) is a κ-small
algebra, the forgetful functor Mod((B,A+)�) → Mod(B) also preserves κ-small objects. From now on we
will work with κ-small condensed sets. Recall that a solid affinoid ring A is an analytic Z�-algebra such
that the natural map (A,A+)� → A is an equivalence. We let AffRingZ�,κ denote the ∞-category of solid
affinoid rings A with A being a κ-small condensed set, we let AffZ�,κ denote its opposite category of κ-small
solid affinoid spaces, we also let AnSpecA ∈ AffZ�,κ denote the analytic spectrum of the solid affinoid ring
A.

We recall some basic properties of the categories of κ-small complete modules of analytic rings.

Proposition 3.2.1 ([Man22b, Proposition 2.3.9]). Let AnRingκ be the full subcategory of analytic rings
A with κ-small underlying condensed rings, and let Mod(A)κ be the full subcategory of Mod(A) generated
under sifted colimits by the objects A[S] with S a κ-small extremally disconnected set. The functor Mod(−) :
AnRing→ CAlg(Catcolim,ex

∞ ) of complete modules restricts to a functor

Mod(−)κ : AnRingκ → CAlg(PrL,ex),

of κ-small complete modules. In other words, for A a κ-small analytic ring, Mod(A)κ is a presentably
symmetric monoidal stable ∞-category, and for a map A → B of κ-small analytic rings, the base change
B ⊗A − : Mod(A)→ Mod(B) preserves κ-small analytic modules.

We now want to define a six functor formalism for solid affinoid rings, and then apply [Sch23, Theorem
4.20] to construct a very large six functor formalism for suitable stacks over AffZ�,κ. For this, by [Man22b,
Proposition A.5.10], all we need is a minimal amount of data consisting on étale and proper arrows (I, P )
in AffZ�,κ satisfying some minimal properties, cf. Definition A.5.9 of loc. cit. The following definition is
due to Clausen and Scholze.

Definition 3.2.2. We denote C = AffZ�,κ.

(1) Let I be the family of arrows in C consisting on morphisms f : AnSpecB → AnSpecA such that
f∗ : Mod(A) → Mod(B) is an open localization in the sense of Definition 2.2.2, and such that the
associated idempotent algebra D lies in Mod(A)κ.

(2) Let P be the family of arrows in C consisting on morphisms f : AnSpecB → AnSpecA such that
B = BA/ is induced from A.

(3) We let E be the family of arrows in C of the form f ◦ i with i ∈ I and f ∈ P .

We first need to check that (C, E) is a geometric set up.

Lemma 3.2.3. The class of arrows I, P and E are stable under composition and pullbacks in C.

Proof. The stability under pullbacks and compositions for the class P is obvious, for the class I follows
from Theorem 2.2.5. Stability under pullbacks of the class E follows from the stability for I and P , we
are left to prove stability under composition for E. Consider two maps of analytic rings f : A → B and
g : B → D. Suppose that we have factorizations f = j1 ◦ p1 with p1 : A→ A

′ an induced analytic ring and
j1 : A′ → B an open immersion. Similarly, suppose that g = j2 ◦ p2 with p2 : B → B′ and j2 : B′ → D.
Then we can write g ◦ f as the composite

A → B′A/ → B
′
B/ → D,

the first arrow is in P by definition, the second and third arrows are open immersions, so it is their composite.
This proves that E is stable under composition as wanted. Moreover, the idempotent algebra associated
to the map B′A/ → D is a "union" in the sense of Proposition 2.2.1 (5) of two κ-small B-algebras, so it is
κ-small. �
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Remark 3.2.4. Given AnSpecA ∈ AffZ�,κ, the stable ∞-category Mod(A)κ is closed by the adjoint functor
theorem. Indeed, the inclusion Mod(A)κ → Mod(A) has a right adjoint (−)κ given by taking the underlying
κ-small set, and the internal Hom of Mod(A)κ is equal to HomA(−,−)κ. This implies that both internal
Hom’s could differ for general objects N,M ∈ Mod(A)κ. However, after taking some big enough cardinal
κ′ > κ one has that

HomA(N,M)κ′ = HomA(N,M).

Actually, the proof of [Man22b, Proposition 2.1.11 (2)] shows that the choice of the cardinal κ′ only depends
on N : write N = lim

−→I
A[Si] as a small colimit of compact projective generators with Si a κ-small extremally

disconnected set. Then,
HomA(N,M) = lim←−

I

HomA(A[S],M).

Thus, after taking κ′ big enough such that |I| < κ′ and Mod(A)κ′ → Mod(A) commutes with |I|-small
limits, one is reduced to prove that HomA(A[S],M) is κ′-small for all κ-small extremally disconnected set
S and M ∈ Mod(A)κ. Writing M as a colimit of compact projective generators one just needs to take κ′

such that HomA(A[S],A[S
′]) is κ′-small for all κ-small extremally disconnected sets S and S′.

Lemma 3.2.5. Keep the notation of Definition 3.2.2. The pair (I, P ) is a suitable decomposition of the
geometric set up (C, E). Moreover, it satisfies the criteria of [Man22b, Proposition A.5.10], so that the
functor Mod(−)κ : C → CAlg(PrL,ex) enhances to a six functor formalism

D = Mod(−)κ : Corr(C, E)→ PrL,ex.

Furthermore, for any arrow f : AnSpecB → AnSpecA the functors f∗ and f∗ are independent of κ. For
any f ∈ E, the functor f! is independent of κ and there is some κ′ > κ such that for all κ′′ ≥ κ′ > κ the
restriction of the functor f ! from κ′′-small modules to κ-small modules stabilizes.

Proof. First, we check that the conditions of a suitable decomposition hold, cf. [Man22b, Definition A.5.9].
By definition, the objects in E are compositions p ◦ j with j ∈ I and p ∈ P , so property (a) in loc. cit.
holds. Next, if f : A → B is an object in I, then f∗ : Mod(A)→ Mod(B) is an open immersion in the sense
of Definition 2.2.2. Then, A → B is a localization of analytic rings in the sense that B ⊗A B = B, and a
morphism A → D extends to B → D if and only if the natural map D → B ⊗A D is an equivalence, this
shows that f : AnSpecB → AnSpecA is −1-truncated, which implies condition (b). Finally, it is easy to
check that I and P contain the identity maps and that satisfy the two-out-of-three property (use Theorem
2.2.5 for I), this gives (c) and (d) in [Man22b, Definition A.5.9].

For the existence of a 3-functor formalism we need to check the following conditions:
(i) for [j : AnSpecB → AnSpecA] ∈ I the following hold

– j∗ admits a left adjoint j!
– j! satisfies the proper base change.
– j! satisfies the projection formula.

(ii) for f : AnSpecB → AnSpecA the following hold
– f∗ admits a colimit preserving right adjoint f∗.
– f∗ satisfies proper base change
– f∗ satisfies the projection formula.

(iii) For every cartesian diagram

U ′ X ′

U X

j′

f ′ f

j

in C such that j ∈ I and f ∈ P , the natural map j!f
′
∗

∼
−→ f∗j

′
! is an isomorphism.

We will prove the properties for the derived categories Mod(A) and then show that they preserve κ-small
objects. Part (i) is a consequence of Proposition 2.2.4. For part (ii), f∗ is the forgetful functor, then the
projection formula is clear as f is defined by a morphism of analytic rings A → B where B has the induced
structure of A. It is left to check that f∗ satisfies proper base change, but if A → D is another morphism
of analytic rings, then B⊗L

AD = (B⊗AD)D/ and the proper base change formula is clear. Finally we prove
(iii), let X, X ′, U and U ′ be the analytic spectrum of A, A′, B and B′. Then we have that A′ = A′

A/,
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and that B′ = A′ ⊗A B. Let D ∈ Mod(A) be the idempotent algebra that complements U in X, then
D′ = A′ ⊗A D is the idempotent algebra that complements U ′ in X ′. Let M ∈ Mod(B′), by definition we
have that

j!f
′
∗M = [A → D]⊗A M

and
f∗j

′
!M = [A′ → D′]⊗A′ M,

but [A′ → D′] = [A → D]⊗A A
′ so that

[A′ → D′]⊗A′ M = [A → D]⊗A A
′ ⊗A′

A/
M

= [A → D]⊗A M

proving that the natural map j!f
′
∗ → f∗j

′
! is an equivalence.

Finally, we need to show that the functors f∗ and f! are independent of κ, and that f ! is stabilized for
κ′ >> κ large enough. The claim about f∗ follows from [Man22b, Lemma 2.9.12] and the discussion at the
beginning of the section. For the functors f! for f ∈ E, it suffices to prove it for f ∈ I or f ∈ P . If f ∈ P
then f! = f∗ and we are done, if f ∈ I and f : A → B, then f! = [A → D] ⊗A − for D the idempotent
algebra that complements B. By hypothesis D is a κ-small algebra, which implies that the tensor product
[A → D] ⊗A − preserves κ-small objects as wanted. For the stability of f !, we can assume that f ∈ I or
f ∈ P , in the first case f ! = f∗ and we are done, in the second case f corresponds to a map A → BA/ and
f ! = HomA(B,−). Then the stability of f ! for large enough κ′ follows by Remark 3.2.4. �

With the minimalistic 6-functor formalism for solid affinoid spaces C we can create a very large class of
stacks C̃, and a large class of arrows ‹E as in Theorem 3.1.7. One has the following corollary.

Corollary 3.2.6. Let C = AffZ�,κ be the category of κ-small solid affinoid spaces. Let E be as in Definition
3.2.2. Let C̃ = ShD(AffZ�,κ) be the∞-category of sheaves on anima for the D-topology where D = Mod(−),κ.

Then there is a minimal class of arrows ‹E in C̃ containing the arrows represented in E such that the six
functor formalism (C, E) obtained from Lemma 3.2.5 extends uniquely to (C̃, ‹E), and such that ‹E is stable
under disjoint unions, local on the target, local on the source, and tame.

Definition 3.2.7. With the notation of Corollary 3.2.6, we call ShD (AffZ�,κ) the ∞-category of κ-small
solid D-stacks. If κ is omitted in the notation we write instead ShD(AffZ�

) and call it the ∞-category of
solid D-stacks.

Remark 3.2.8. The six functor formalism for solid quasi-coherent sheaves constructed before depends on
the cardinal κ, in particular the functors f∗, f! and f ! might depend on κ. Nevertheless, in practice we will
always have formulas for these functors that will make them independent in large enough cardinals.

Next, we prove that the locale topology of Theorem 2.2.5 gives rise to cohomologically proper and étale
D-covers.

Lemma 3.2.9. The following hold:
(1) Let f : AnSpecB → AnSpecA. If f is open in the associated locale then f is cohomologically étale.

Similarly, if BA/ = B and B is an idempotent algebra over A, then f is cohomologically proper.
(2) Let AnSpecA ∈ AffZ�

and let {fi : AnSpecBi → AnSpecA}ni=1 be a collection of morphisms of
solid affinoid rings. If {fi}i∈I is an open cover of locales then

⊔
fi is a smooth D-cover. Similarly,

if {fi}i∈I is a closed cover of locales then
⊔

i fi is a descendable D-cover.

Proof. (1) Suppose that f is open in the associated locale, by definition f ∈ I and f∗ = f !. Moreover,
f is −1-truncated as B ⊗A B = B, this shows that f is cohomologically étale. Similarly, if B = BA/

is an idempotent algebra over A, then f is −1-truncated and we have f∗ = f!, this implies that f
is cohomologically proper.

(2) Let F =
⋃

i fi :
⋃

i AnSpecBi → AnSpecA be a finite cover. In the case that the {fi}i∈I form an
open cover of the locale, by Proposition 2.7.21 adapted to AffZ�

, the family {fi} form a canonical
cover, and the pullback along F is conservative. Then the conditions of Proposition 3.1.15 hold and
F is a smooth D-cover. Similarly, if {fi}i∈I is a closed cover on the locales, then it is refined by an
open cover and therefore it defines a subcanonical cover. By Proposition 3.1.16, we are left to prove
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that F∗1 =
∏

i Bi is a descendable A-algebra. But by definition of closed covering in the locales, we
know that A is equal to the “union” of the algebras Bi, which clearly belongs to the thick tensor
ideal generated by F∗1 in Mod(A). This proves the lemma.

�

We finish this section with the definition of Tate stacks.

Definition 3.2.10. Let R� = (R,R+)� = (Z((π)),Z[[π]])� , and let Affb
R�,κ be the ∞-category of κ-small

bounded affinoid spaces. The ∞-category of κ-small Tate stacks over R� is the category ShD (Aff
b
R�,κ) of

sheaves on anima of Affb
R�,κ for the D-topology, with D = Mod(−)κ. If κ is omitted in the notation we

simply call ShD (Aff
b
R�

) the category of Tate stacks.

The following lemma gives a sufficient criteria for the existence of !-functors for a morphism of solid
stacks.

Lemma 3.2.11. Let f : X → Y be a map in ShD (AffZ�
) such that there is an epimorphism

⊔
I AnSpecAi →

Y with Ai solid affinoid rings, such that for all pullback Xi → AnSpecAi there is a D-cover
⊔

j AnSpecBi,j →
Xi, such that the maps Ai → Bi,j factor through maps

Ai → A[T1, . . . , Td]� → Bi,j,

where A[T1, . . . , Td]� → Bi,j has the induced analytic structure. Then f ∈ ‹E has !-functors for the theory
of solid quasi-coherent sheaves. The same holds for D-stacks over Affb

R�
.

Proof. By construction, the category ‹E of maps admitting !-functors is stable under disjoint unions, local
on the target and local on the source, thus it suffices to show that each map AnSpecBi,j → AnSpecAi has
!-functors. Since ‹E is stable under compositions, it suffices to see that A → A[T1, . . . , Td]� has !-functors,
for which is enough to show that Z → Z[T ]� has !-functors. But we can write Z → Z[T ] → Z[T ]� where
the first arrow has the induced analytic structure, and the second is an open immersion of locales (see
Proposition 2.3.2), thus the composite has !-functors proving what we wanted. �

3.3. Morphisms of finite presentation. In applications we find different definitions of morphisms of
finite presentation depending on the geometry we are studying. In this section we explain a way to treat
some formal properties of any of these situations in a more axiomatic way. We shall restrict ourselves to
the case of solid affinoid rings.

Definition 3.3.1. Let A be a solid affinoid ring and let A[T ] be the polynomial algebra. A coordinate
theory over A is an idempotent map of solid A-algebras f : A[T ]→ A(T ) such that

(i) A(T ) is an animated ring stack in AffA, i.e. the functor correpresented by A(T ) has a given
enhancement in animated rings, and f is a morphism of animated ring stacks over A.

(ii) The natural map AnSpecA(T )
⊔

AnSpecA(T−1)→ P1
A is a D-cover.

We define A(T±1) := A(T )[T−1]⊗A[T±1] A(T
−1)[T ].

Let us give different examples of coordinate theories that occur in practice:

Example 3.3.2. (1) Of course the trivial example is the identity map Z[T ] → Z[T ], in this case
the “coordinate" is the classical one from algebraic geometry. A more interesting example is the
solidification functor Z[T ]→ Z[T ]�, here we think of T as the “solid coordinate”.

(2) In rigid geometry we have at least two examples: the first one is given by (Qp[T ],Zp)� → (Qp〈T 〉,Zp),
the second one by (Qp[T ],Zp)� → Qp〈T 〉�. The first coordinate is the adic compactification of the
affinoid disc, the last is parametrized by the algebra Qp〈T 〉�. Note that Qp〈T 〉� = Qp ⊗Z�

Z[T ]�,
in general, the base change of a coordinate theory is a coordinate theory.

(3) Let Qp〈T 〉
† := lim

−→ε→0+
Qp〈p

εT 〉, this "coordinate" is the one used in the theory of dagger spaces
over Qp.

We now define rational localizations and morphims of (almost) finite presentation.

Definition 3.3.3. Let A be a solid affinoid ring and A[T ]→ A(T ) a coordinate theory over A.
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(1) A morphism A → B is an A(T )-rational localization if it is a composite of morphisms of the form
A→ A⊗A[T ]A(T ) or A⊗A[T ]A(T

−1)[T ]. The A(T )-analytic topology on AffA is the Grothendieck
topology with covers given by D-covers consisting on finite disjoint unions of A(T )-rational local-
izations. We let ShA(T )(AffA) denote the category of A(T )-analytic sheaves on anima.

(2) A morphism f : A → B is of A(T )-finite presentation if it belong to the smallest category of A-
algebras stable under finite colimits and containing A(T ). We say that f is of local A(T )-finite
presentation if it is a retract of a morphism of A(T )-finite presentation. If A(T ) is clear from the
context we simply say that f is of (local) finite presentation.

(3) An A(T )-adic space is an object in ShA(T )(AffA) which is representable by an affinoid ring locally
in the A(T )-analytic topology.

(4) A morphism X → Y of A(T )-adic spaces is locally of (local) finite presentation if it is of (local)
finite presentation locally in the A(T )-analytic topology of X and Y .

Remark 3.3.4. We use the name “local of finite presentation” for what [Lur04] calls “locally of finite pre-
sentation”. The reason for this difference is to avoid properties on spaces such as “locally of locally of finite
presentation” which might be confusing.

Remark 3.3.5. Condition (ii) in Definition 3.3.1 guarantees that we have non trivial rational covers, namely,
if b ∈ B is depicted from a map A[T ]→ B, the localizations

B → B(g) = B ⊗A[T ] A(T ) and B → B(
1

g
) = B ⊗A[T ] A(T

−1)[T ]

form a D-cover of AnSpecB.

Next, given a suitable six functor formalism on solid prestacks PSh(AffA), we want to give a simple criteria
for morphisms locally of finite presentation of A(T )-adic spaces to admit !-functors. Let X ∈ ShD (AffZ�

)
be a solid D-stack, suppose we are given a finite limit preserving functor F : PSh(AffA)→ ShD (AffZ�

)/X .
Let E′ be the class of edges in PSh(AffA) such that σ ∈ E′ if and only if F (σ) ∈ ‹E, by Lemma 3.1.4
we have an induced 6-functor formalism D ′ on (PSh(AffA), E

′), we let ShD ′(AffA) denote its category of
D ′-stacks and ‹E′ the class of arrows of Theorem 3.1.7.

Proposition 3.3.6. Let us keep the previous notation. Suppose that the following condition hold
(1) F preserves coproducts.
(2) F sends A(T )-analytic covers to D-covers.
(3) The images by F of AnSpecA → AnSpecA(T ) and AnSpecA(T )→ AnSpecA are in ‹E, i.e. they

admit !-functors.
(4) For all n ≥ 1 the image by F of the map AnSpecA → AnSpec(Sym•

AA[n]) is in ‹E.
Then A(T )-analytic covers are D ′-covers, and any map in ShD ′(AffA) representable, locally in the D ′-

topology, by morphisms of A(T )-adic spaces locally of finite presentation is in the class Ẽ′ of morphisms
admitting !-functors.

Proof. Since F sends A(T )-analytic covers to D-covers, rational localizations belong to E′ and admit
!-functors. Indeed, by Remark 3.3.5 any A(T )-rational localization belongs to an analytic A(T )-cover,
and since F preserves disjoint unions, the image under F of rational localizations must admit !-functors.
Furthermore, since F preserve co-products, disjoint union of rational localizations also admit !-functors.
This implies that analytic A(T )-covers of A(T )-adic spaces are D ′-covers. Let f : Y → Z be a map of
D ′-stacks over A representable by a morphism of A(T )-adic spaces locally of finite presentation. Since the
class Ẽ′ is both local on the target and the source, to show that f admits !-functors it suffices to treat the
case of a morphism of algebras B → D of finite presentation. Now, since A[T ] → A(T ) is idempotent, we
have

A⊗A(T ) A = A⊗A[T ] A = Sym•
AA[1].

Then, as Sym•
AA[n + 1] = A ⊗Sym•

AA[n] A for all n ≥ 1, all the morphisms Sym•
AA[n] → A and

A → Sym•
AA[n] are of A(T )-finite presentation. Moreover, since F preserves finite limits, the map

AnSpec(Sym•
AA[n]) → AnSpecA belongs to E′. Therefore, to show that a morphism of finite presen-

tation is in the class Ẽ′, it suffices to see that it is constructed by composites of pushouts along the maps
of the form
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• AnSpecA → AnSpecSym•
AA[n],

• AnSpecSym•
AA[n]→ AnSpecA,

• AnSpecA(T )→ A,
• AnSpecA → AnSpecA(T ).

The claim follows by the following lemma:

Lemma 3.3.7. Let I := (In)n∈N be a sequence of finite sets with almost all In empty, let A(TI) denote the
algebra

A(TI) := A(Ti : i ∈ I0)⊗A Sym•
A(A

⊕I1 [1])⊗A · · · ⊗A Sym•
A(A

⊕In [n])⊗A · · · .

Let (fn,j)j∈Jn be elements in πn(A(TI)) such that Jn is empty for almost all n, and such that f0,j extends
to a map A[X]→ A(X). Write J = (Jn)n∈N. We denote by A(TI)/

L(fJ) the pushout of the diagram

A(TJ) A(TI)

A.

f

Then, any A-algebra of A(T )-finite presentation is isomorphic to a composite of algebras of the form
A(TI)/

L(fJ).

Proof. We need to show that the category CA of A-algebras constructed as composites of algebras of the
form A(TI)/

L(fJ) is stable under finite colimits. By [Lur09, Corollary 4.4.2.4] it suffices to show that it
is stable under pushouts. Note that if B ∈ CA then the objects of CB are in CA. Consider a diagram
C ← B → D in CA, we can write

C ⊗B D = (C ⊗A D)⊗B⊗AB B.

It is clear that C ⊗A D ∈ CA. We claim that the multiplication map B ⊗A B → B is in CB, if this holds
then C ⊗B D ∈ CC⊗AD whose objects are in CA. Let us write B = A(TI)/

L(fJ), then

B ⊗A B = A(TI, SI)/
L(fJ(T ), gJ(S)).

Since A(T ) is a animated ring stack, the maps A[Ti−Si]→ B⊗AB naturally extend to A(Ti−Si)→ B⊗AB.
We have that

B ⊗A B/
L(TI − SI) = B/

L(0J),

where 0J is the sequence of |Jn|-zeros in πn(B) for n ∈ N ≥ 0. But for any ring C we have that C/L(0n) =
C(T [n+1]) is the free algebra over C with one generator in degree n+1. Thus, we can find elements gn+1,Jn

in πn+1(B/L(0J)) such that Ä
B/L(0J)

ä
/L(gJ) = B,

proving the claim. �

�

3.4. The cotangent complex. In this section we briefly discuss some basic properties of cotangent com-
plexes for prestacks on analytic rings. We will follow mutatis mutandis [Lur04, §3.2].

We let PSh(AnRingop) be the ∞-category of presheaves of anima on AnRingop. Given A ∈ AnRing
we let AnSpecA denote its representable presheaf that we refer as the analytic spectrum of A. As it is
standard, we let

Mod(−) : PSh(AnRingop)→ CAlg(Catcolim,ex
∞ )

denote the right Kan extension of the functor of complete modules of analytic rings.

Definition 3.4.1 ([Lur04, Definition 3.2.5]). Let M ∈ Mod(A), we say that M is almost connective if
M [n] is connective for some n ≥ 0. Let F : AnRing → Ani be a functor and M ∈ Mod(F) a quasi-
coherent complex, we say that M is locally almost connective if for all analytic ring A and all η ∈ F(A),
M(η) ∈ Mod(A) is almost connective.
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Let A be an analytic ring and M a connective A-module. We have an adjunction F : AniAlgA →
Mod≥0(A) : Sym

•
A between animated algebras over A and connective A-modules. Given M ∈ Mod≥0(A),

we can form the A-algebra A⊕M as a condensed animated ring, which is obtained by forgetting the terms
of degree ≥ 2 in Sym•

AM .
Since M is a nilpotent ideal of A ⊕M , by Proposition 12.23 of [CS20] the analytic ring structures on

A⊕M and A are in bijection, and we have that

(A⊕M)A/[∗] = A⊕A⊗A M.

Given M ∈ Mod≥0(A) we shall denote by A⊕M the trivial square-zero extension of A by M endowed with
the analytic ring structure arising from A. Let F : AnRing→ Ani be a presheaf, we say that F admits an
absolute cotangent complex if there exists a locally almost connective quasi-coherent complex LF of F such
that the functor mapping a triple (A, η,M) consisting of A ∈ AnRing, η ∈ F(A) and M ∈ Mod≥0(A) to
the fiber product of

η

F(A⊕M) F(A)

is correpresented by LF (η).
One deduces easily the following property:

Proposition 3.4.2 ([Lur04, Proposition 3.2.9]). Let {Fi}i∈I be a diagram of functors Fi : AnRing→ Ani.
Suppose that each Fi has an absolute cotangent complex Li ∈ Mod(Fi). Let F = lim

←−i
Fi and L = lim

−→i
Li|F .

Then L is an absolute cotangent complex for F provided that it is locally almost connective.

More generally, let F ,G : AnRing→ Ani be two functors and let ϕ : F → G be a natural transformation.
We say that the morphism ϕ has a relative cotangent complex if there is a locally almost connective quasi-
coherent complex LF/G ∈ Mod(F) such that for all A ∈ AnRing, η ∈ F(A) and any connective A-module
M , the object LF/G(η) correpresents the fiber product

η

F(A⊕M) F(A)×G(A) G(A⊕M)

where the map from η to G(A⊕M) is induced by the evaluation of G at the zero section A→ A⊕M .
The relative cotangent complexes satisfy the following properties, whose same proofs also hold in our

context.

Proposition 3.4.3 ([Lur04, Proposition 3.2.10]). Let F → G be a natural transformation of functor from
AnRing to Ani. Suppose that LF/G exists, let G′ → G be a natural transformation and F ′ = F ×G G

′. Then
LF/G|F ′ is the cotangent complex of F ′ → G′.

Proposition 3.4.4 ([Lur04, Proposition 3.2.12]). Let F → F ′ → F ′′ be a sequence of natural transforma-
tions of functors. Suppose that there exists a cotangent complex LF ′/F ′′ . Then there is an exact triangle

LF ′/F ′′ |F → LF/F ′′ → LF/F ′

in the sense that if either the second or the third term exists, then so does the other and there is a triangle
above.

The following is the analogue to Proposition 3.2.24 of [Lur04] regarding the existence of relative cotangent
complexes for morphisms of analytic rings.

Proposition 3.4.5. Let f : A → B be a morphism in AnRing and let f ′ : AnSpecB → AnSpecA be
the associated natural transformation at the level of presheaves. Then there exists a cotangent complex
LAnSpecB/AnSpecA that is associated to the B-module LB/A. Furthermore, if LB/A is the cotangent complex
of the map of underlying condensed rings, then

LB/A = B ⊗B LB/A.
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Proof. By Proposition 3.4.4 it is enough to show that the functor AnSpecA has an absolute cotangent
complex given by LA = A⊗A LA. Let A → C be a morphism of analytic rings and let M be a connective
C-module. We want to describe the space

MapAnRing/C
(A, C ⊕M) (3.3)

in terms of the cotangent complex of A. Since the analytic ring structure of C ⊕M only depends on C, and
we have already fixed a morphism of analytic rings A → C, the above space is equivalent to the space

HomCond(AniRing)/C(A, C ⊕M)

of morphisms of condensed animated rings over C. Therefore, (3.3) is naturally equivalent to

HomMod≥0(A)(LA,M) = HomMod≥0(A)(A⊗A LA,M)

proving that LA = A⊗A LA is an absolute cotangent complex for AnSpecA. �

Remark 3.4.6. Let A → B and A → C be two morphisms of analytic rings. The base change property of
the cotangent complex is now given by

LC/A ⊗C (C ⊗A B) = LC⊗AB/B.

If A → B is steady ([CS20, Definition 12.13] and [Man22b, Definition 2.3.16]) then it can be written simply
as LC/A ⊗A B = LC⊗AB/B.

We deduce the following construction that helps to identify the π0 of a relative cotangent complex of
rings with continuous Kähler differentials.

Proposition 3.4.7 ([Lur04, Proposition 3.2.16]). Let A → B be a morphism of analytic rings, and let K
be the cone of this map seen as an object in Mod(A). Then there is a natural map φ : K ⊗A B → LB/A.
Moreover, if f is n-connected for n ≥ 0, then φ is (n+ 2)-connected.

Proof. By loc. cit we have a map of the underlying condensed rings

K ⊗A B → LB/A

satisfying the prescribed properties of the proposition. Since the analytification functor B ⊗B − preserves
connective objects, after B-analytification one has a natural map φ as stated satisfying the same connectness
properties. �

Corollary 3.4.8 ([Lur04, Corollary 3.2.17]). A morphism of analytic rings A → B is an equivalence if and
only if π0(A)→ π0(B) is an isomorphism of analytic rings and LB/A = 0.

Proof. By [CS20, Proposition 12.21] the analytic ring structures of A and π0(A) are in bijection, so we only
need to check that the underlying condensed rings are isomorphic. But then, the same argument of [Lur04,
Corollary 3.2.17] can be applied to deduce the equivalence. �

Remark 3.4.9. Note that the hypothesis in the corollary asks for the map on connected components to
be an isomorphism of analytic rings. If A → A′ is a morphism of analytic rings with same underlying
condensed ring then LA/A′ = 0.

Example 3.4.10. (1) The cotangent complex of a discrete affinoid ring (A,A+)� is simply the cotan-
gent complex of the underlying condensed discrete ring.

(2) Let f : (A,A+) → (B,B+) be a morphism of Huber pairs, by Proposition (3.4.7) we can compute
the continuous Kähler differentials of f as

π0(L(B,B+)�/(A,A+)) = Ω1
(B,B+)/(A,A+) = I/I

2

where I is the augmentation ideal of π0(B⊗(A,A+)�B)→ B, note that this tensor product coincides
with the solid tensor product over (A,Z)� which is equal to the classical completed tensor product
of Huber rings.
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(3) Let A be a I-adically complete I-torsion bounded ring where I is a finitely generated ideal of A.
We have that A⊗Z�

Z[T ]� = (A〈T 〉,Z[T ])� where A〈T 〉 is the I-adic completion of the polynomial
algebra. Then the cotangent complex

L(A〈T 〉,Z[T ])�/(A,Z)� = LZ[T ]�/Z ⊗Z[T ]� (A〈T 〉,Z[T ])� ∼= A〈T 〉 · dT

is just the usual continuous Kähler differentials.
(4) Let A → C be an idempotent morphism or analytic rings, i.e. such that C⊗AC = C. Then LC/A = 0.

Indeed, we have that

LC/A = (C ⊗A C)⊗C LC/A = LC⊗AC/C = LC/C = 0.

Now let us restrict to morphisms of solid affinoid rings.

Definition 3.4.11. We say that a morphism f : A → B of solid affinoid rings is of solid finite presentation
if it belongs to the smallest category containing A[T ]� := A⊗Z�

Z[T ]� and stable under finite colimits (see
Definition 3.3.3 and Example 3.3.2). If the underlying rings of A and B are static, we say that f is of solid
finite presentation as static rings if B is a quotient of A[T1, . . . , Td]� by a finitely generated ideal.

One easily deduces the following lemma thanks to Proposition 3.4.2 and the computation of the cotangent
complex LZ[T ]�/Z = Z[T ]dT .

Lemma 3.4.12. Let A be a solid affinoid ring, and let B be an A-algebra of solid finite presentation. Then
LB/A is a finitely presented B-module, in particular it is discrete.

3.5. Solid étale and smooth maps. In this section we review the definition of formally smooth and
formally étale maps in the ∞-categories of presheaves on bounded affinoid rings over R� = (R,R+)� =
(Z((π)),Z[[π]])�. We will characterize formally smooth maps of solid finite presentation in more geometric
way, in analogy to classical algebraic geometry. Let us first adapt the definition of small extensions to our
setting.

Definition 3.5.1 ([Lur04, Definition 3.3.1]). Let A → B be a morphism of analytic rings and M a B-
module. A small extension of B by M over A is an analytic A-algebra B̃ with a morphism B̃ → B whose
underlying condensed ring is a small extension of B by M as A-animated algebra.

Remark 3.5.2. Note that the map π0(B̃)→ π0(B) is a square zero extension, so the analytic ring structure
of B̃ is uniquely determined by that of B by [CS20, Proposition 12.23]. Therefore, the∞-category of square
zero extensions of B over A is the full subcategory of square zero-extensions ‹B of B over A as condensed
rings such that the fiber [‹B → B] is in Mod(B) ⊂ Mod(B).

Definition 3.5.3 ([Lur04, Definition 3.4.1]). Let F : AnRingZ → Ani be a functor, we say that F is
nilcomplete if for all A ∈ AnRing the natural map F(A)→ lim

←−n
F(τ≤nA) is an equivalence.

We say that F is infinitesimally cohesive if for all small extension ‹A of A by an A-module M , the natural
map

F(‹A)→ F(A)×F(A⊕M [1]) F(A)

is an equivalence.

Definition 3.5.4 ([Lur04, Definition 3.4.3]). Let T : F → F ′ be a natural transformation of functors
F ,F ′ : AnRing→ Ani. We say that T is

(1) weakly formally smooth if it has a relative cotangent complex LF/F ′ which is the dual of a connective
(discrete) perfect complex.

(2) formally smooth if it is weakly formally smooth, nilcomplete and infinitesimally cohesive.
(3) formally étale if it is formally smooth and LF/F ′ = 0.

We can define solid smooth and étale morphisms as follows.

Definition 3.5.5. (1) A morphism f : A→ B of solid affinoid rings is solid smooth (resp. étale) if it is
formally smooth (resp. formally étale) and of solid finite presentation. If A and B are static we say
that f is solid smooth or étale as static rings if it is of finite presentation as static rings (Definition
3.4.11) and formally smooth or étale with respect to square-zero extensions of static rings.
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(2) A morphism f : A → B of solid affinoid rings is standard solid smooth if B = A[T1, . . . , Tn]�/
L(f1, . . . , fk)

for some sequence of elements fi ∈ π0(A[T1, . . . , Tn]�) such that det(( ∂fi
∂Tj

)1≤i,j≤k) is invertible in B,
it is standard solid étale if it is standard solid smooth with n = k. If A and B are static we say that
f is standard solid smooth or étale as static rings if it is the π0 of a standard solid smooth or étale
algebra over A.

Our main goal is to show that (1) and (2) in Definition 3.5.5 are equivalent after taking suitable rational
covers. If A is discrete, any finitely presented A-algebra is discrete and different characterizations of
(classical) smooth morphisms can be deduced from [Lur04, Proposition 3.4.9]. The main case of interest
for us is when A is a bounded affinoid algebra over R�. We have the following theorem.

Theorem 3.5.6. Let A be a bounded affinoid algebra over R�. Let T : A → B be a morphism of bounded
affinoid R�-algebras. The following are equivalent

(1) T is formally smooth and B is of solid finite presentation over A.
(2) T is formally smooth and π0B is of solid finite presentation over π0A as static rings.
(3) T is, locally in the analytic topology of B, a standard solid smooth A-algebra.

Furthermore, let A be nuclear over R�, and f : A → B a morphism of the form B = A〈T1, . . . , Td〉�/
L(f1, . . . , fd)

with fi ∈ π0(A〈T1, . . . , Td〉�). Let D = R〈Xn : n ∈ N〉, then there is a map D → A and elements
gi ∈ D〈T1, . . . , Td〉 mapping to fi in A〈T1, . . . , Td〉�. In particular, f is the pushout of a morphism of solid
finite presentation over D. Moreover, if f is standard solid smooth (resp. étale) we can can take the gi to
define a standard solid smooth (resp. étale) algebra over D. Finally, let K be a non-archimedean field, then
a classical standard solid smooth algebra over K〈Xn : n ∈ N〉 is already derived. In particular, solid smooth
and étale maps of nuclear analytic K-algebras arise, locally in the analytic topology, as pushouts of classical
smooth and étale maps from sous-perfectoid rings.

In order to prove the theorem we need some standard preparations in commutative algebra.

Lemma 3.5.7. Let A ∈ AffRingbR�
and let M be a finite projective connective A-module together with a

surjection
⊕k

i=1Aei → M (i.e. a surjection on π0). Let E ⊂ {1, . . . , k}, there is a maximal analytic open
subspace UE ⊂ Spa(A) such that {ei : i ∈ E} is a basis of M . Moreover, the open subsets UE are Zariski
open and cover Spa(A).

Proof. Let Spa(A) → Spec(π0(A)(∗)) be the natural map that sends a basic open Zariski U zar
g = {g 6=

0} to the analytic set Ug =
⋃

n∈N{|π
n| ≤ |g| 6= 0}. By [Sta22, Lemma 00O0] there is an open cover

{U zar
E }E⊂{1,...,k} of Spec(π0(A(∗))) such that U zar

E is the locus where the map
⊕

i∈E π0(A)(∗)ei → π0(M)(∗)
is an isomorphism. This implies that over U zar

E , the map π :
⊕

i∈E A(∗)ei →M(∗) is an equivalence and the
same holds for

⊕
i∈E A →M since both are discrete A-modules. By taking the analytification UE ⊂ Spa(A)

of U zar
E we get the lemma. �

Lemma 3.5.8. Let A be a static bounded R�-algebra. Let B be a solid finitely presented A-algebra as static
rings. Suppose we have a presentation B = π0(A〈T1, . . . , Tn〉�)/I with I finitely generated and I/I2 a free
B-module. Then B has a (non-derived) presentation of the form B = π0(A〈S1, . . . , Sl〉�)/(f1, . . . , fc) such
that (f1, . . . , fc)/(f1, . . . , fc)2 is a free B-module with basis (f1, . . . , fc).

Proof. This is [Sta22, Lemma 07CF], we will see that the same proof can be adapted in this setting. Let
f1, . . . , fc ∈ I(∗) be such that they form a basis of I/I2. By Nakayama’s lemma there is g ∈ 1 + I(∗) such
that g · I ⊂ (f1, . . . , fc): this holds for the underlying ring π0(A〈T1, . . . , Tn〉�(∗)), but I and I2 are finitely
generated, then by taking the non-derived tensor π0(A〈T1, . . . , Td〉 ⊗A〈T1,...,Td〉(∗) −) the same holds for the
condensed ideal I. Then, I[1g ] is generated by f1, . . . , fc and we can write

B = π0(A〈T1, . . . , Tn〉�[Tn+1])/(f1, . . . , fc, gTn+1 − 1).

where the ideal J = (f1, . . . , fc, gTn+1 − 1) satisfies that {f1, . . . , fc, gTn − 1} is a basis for J/J2. On the
other hand, g maps to 1 in B and we can localize at the open {|g| ≥ 1}. We obtain a presentation

B = π0(A〈T1, . . . , Tn, Tn+1〉�)/(f1, . . . , fc, gTn+1 − 1)

with kernel J ′ satisfying J ′/J
′2
= J/J2 ⊗(Z[T ],Z) Z[T ]� = J/J2, where the solidification is with respect to

T = g−1. This proves the lemma. �

https://stacks.math.columbia.edu/tag/00O0
https://stacks.math.columbia.edu/tag/07CF
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Lemma 3.5.9. Let A → B be a map of static bounded affinoid R�-algebras and let I ⊂ B be a finitely
generated ideal. Set B′ = B/In+1. The map Ω1

B/A → Ω1
B′/A induces an isomorphism of non-derived tensors

π0(Ω
1
B/A ⊗B B/I

n)
∼
−→ π0(Ω

1
B′/A ⊗B′ B/In).

Proof. By [Sta22, Lemma 02HQ] we know that this is true for the differentials of the underline condensed
rings. The lemma follows by taking the analytification with respect to B. �

Lemma 3.5.10. Let A → B be a morphism of static bounded affinoid R�-algebras that is of solid finite
presentation as static rings. Let P = π0(A〈T1, . . . , Tn〉�) and write B = π0(A〈T1, . . . , Tn〉�)/I with I a
finitely generated ideal. Then the sequence

0→ I/I2 → Ω1
P/A ⊗P B → Ω1

B/A → 0. (3.4)

is exact and split if and only if A → B is formally smooth when restricted to static analytic rings.

Proof. This is the analogue of [Sta22, Lemma 031I], let us see that the same argument works. First, by
invariance of analytic ring structures under nilpotent thickenings [CS20, Proposition 12.23], and the fact
that A〈T1, . . . , Tn〉� = A[T1, . . . , Tn]�, it is clear that the Tate ring A〈T1, . . . , Td〉� is formally smooth over
A. Thus, one can easily check that B is formally smooth over A (as static rings) if and only if there is a
section of algebras B → P/I2.

Now, if B is formally smooth we can find a split as above, this provides a section of the map Ω1
P/A⊗PB →

Ω1
B/A and by applying [Sta22, Lemma 02HP] one gets that the sequence (3.4) is also exact (this argument

uses Lemma 3.5.9). Conversely, suppose that the above sequence is exact and split. We want to construct
a section of P/I2 → B. Let σ : Ω1

B/A → Ω1
P/A ⊗P B be a section, and let us take ai ∈ I such that

dai = dTi − σ(dTi) ∈ Ω1
P/A ⊗P B. Consider the map f : P → P/I2 sending Ti to Ti − ai. We claim that

f factors through B providing the desired split. Since I is finitely generated, it is enough to show that for
any b ∈ I we have f(b) = 0. By exactness of the sequence it suffices to show that d(b(Ti − ai)) = 0, but we
have that

d(b(Ti − ai)) = d(b−
k∑

i=1

(
∂b

∂Ti
)ai) =

k∑

i=1

(
∂b

∂Ti
)σ(dTi) = σ(db) = 0.

�

Lemma 3.5.11 ([Sta22, Lemma 00TA]). Let A → B be a solid smooth morphism of bounded affinoid rings.
Then there is a finite analytic affinoid cover {SpaBi}i of SpaB such that the composite map A → Bi is
standard solid smooth.

Proof. Let us write π0(B) = π0(A〈T1, . . . , Tn〉�)/(f1, . . . , fk), and I = (f1, . . . , fk). Since A→ B is formally
smooth, the morphism π0(A)→ π0(B) is formally smooth as static rings. By Lemma 3.5.10 we have a split
short exact sequence (3.4). In particular, I/I2 is a projective π0(B)-module. By Lemma 3.5.7 we can find
a finite analytic Zariski cover of SpaB of the form {Ug}g∈π0(B) such that the module I/I2 restricted to Ug

is free. Taking an open cover by affinoids {|πn| ≤ g 6= 0} we find that

π0(B(
πn

g
)) = π0(A〈T1, . . . , Tn, Tn+1〉�)/(f1, . . . , fk, gTn+1 − πn)

is a presentation with kernel J such that J/J2 = π0(I/I
2 ⊗B B(

πn

g )) ⊕ (dTn+1 − πn)π0(B(
πn

g )) is a free
π0(B(

πn

g ))-module. Thus without loss of generality we can assume that I/I2 is free. Then by Lemma 3.5.8
we have a presentation

π0(B) = π0(A〈T1, . . . , Tn〉�)/(f1, . . . , fc)

such that the elements f1, . . . , fc form a basis of (f1, . . . , fc)/(f1, . . . , fc)
2. By arguing as in [Sta22,

Lemma 00TA] we can find a Zariski cover of the form {Ug}g such that the composition I/I2 →
⊕n

i=1 π0(B)dTi →⊕c
i=1 π0(B)dTi is an isomorphism (after reordering the variables for each open Ug). Thus, we find covers

of the form

π0(B(
πn

g
)) = π0(A〈T1, . . . , Tn, Tn+1〉�)/(f1, . . . , fc, gTn+1 − πn).

https://stacks.math.columbia.edu/tag/02HQ
https://stacks.math.columbia.edu/tag/031I
https://stacks.math.columbia.edu/tag/02HP
https://stacks.math.columbia.edu/tag/00TA
https://stacks.math.columbia.edu/tag/00TA
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Reordering the variables, we get a standard solid smooth presentation of π0(B(π
n

g )) as static rings. Thus, we
can assume that the map π0(A)→ π0(B) is standard solid smooth as static rings: π0(B) = π0(A〈T1, . . . , Tn〉�)/(f1, . . . , fc
with det( ∂fi∂Tj

)1≤i,j≤c invertible in π0(B). Consider B′ = A〈T1, . . . , Tn〉�/
L(f1, . . . , fc). We can lift the ele-

ments Ti ∈ B to a map of rings A[T1, . . . , Tn]→ B that can be completed to A〈T1, . . . , Tn〉�. Moreover, the
elements fi are mapped to 0 in π0(B) so that this map extends to a morphism of analytic rings B′ → B
which is an isomorphism on π0. On the other hand, it is clear that the cotangent complex of LB′/A is free
and generated by dTc+1, . . . , dTn. Thus, the morphism of cotangent complexes

LB′/A ⊗B′ B → LB/A

is a surjective morphism of projective B-modules that is an isomorphism on π0, then it must be an isomor-
phism. One gets that LB/B′ = 0 and by Corollary 3.4.8 we must have an equivalence B′ ∼= B. �

Corollary 3.5.12. A morphism of bounded affinoid rings A → B is solid smooth if and only if locally on
the analytic topology of B it factors as a composition A → A〈T1, . . . , Ts〉� → B where the second arrow is
standard solid étale.

Proof. Suppose f : A → B is solid smooth. By Lemma 3.5.11, locally on B we can write B = A〈T1, . . . , Tn〉�/
L(f1, . . . , fc)

as a standard solid smooth map. It is clear that A〈Tc+1, . . . , Tn〉� → B is standard solid étale.
Conversely, suppose that f is, locally in the analytic topology, standard solid smooth. Since rational

localizations are standard solid étale maps, it suffices to show that standard solid smooth (resp. étale)
morphisms is formally smooth (resp. formally étale). By invariance of analytic ring structure under
nilpotent thickenings, one is even reduced to show that standard solid étale morphisms are formally étale.
But the standard computation of the cotangent complex (using LZ[T ]�/Z = Z[T ]dT ) shows that if f is
standard solid étale then LB/A = 0 proving that it is formally étale. �

Lemma 3.5.13. Let (K,K+) be a non-archimedean field, X = Spa(A,A+) an affinoid sous-perfectoid
space over (K,K+) and B = A〈T1, . . . , Tn〉/(f1, . . . , fn) a (non-derived) standard solid étale extension of
A. Then the sequence (f1, . . . , fn) is regular, i.e. the natural map of condensed anima

Kos(A〈T1, . . . , Tn〉; f1, . . . , fn)→ B (3.5)

is an equivalence.

Proof. By the open mapping theorem it suffices to show that (3.5) is an equivalence for the underlying sets.
Without loss of generality we can take f1, . . . , fn ∈ A+〈T1, . . . Tn〉, then we have to prove that the πi of the
Koszul complex

Kos(A+〈T1, . . . , Tn〉; f1, . . . , fn) (3.6)

have bounded torsion for i > 0. Since A is sous-perfectoid, and the terms of the Koszul complex are free
Banach A+-modules, we can assume that it is a perfectoid ring. Moreover, the Koszul complex (3.6) is
π-adically complete, so by v-descent we can even assume that A is totally disconnected. Since solid almost
π-adically complete modules glue in the analytic topology of X (cf. [Man22b]), it suffices to prove the claim
locally on X.

Let x ∈ Spa(A,A+) be a point with residue field (κ(x), κ(x)+). Then B⊗Aκ(x) is a finite étale extension
of κ(x), so a finite product of κ(x)’s since it is algebraically closed. Thus, since Spa(κ(x), κ(x)+) =
lim
←−x∈U⊂X

U , there is an open neighbourhood x ∈ Ux such that B⊗A O(U) is just a finite product of copies
of A. Then, after localizing B, we can assume that it is equal to

∏
sA. In this case, there are almost

idempotent elements e1, . . . , es ∈ B+ corresponding to the projections on each component of the product,
and the localization B( 1

ei
) = B〈T 〉/(T − ei) corresponds to taking the i-th component. Therefore, we can

even assume that B = A, in this case the Koszul-regularity follows from [FS21, Lemma IV.4.16]. �

Lemma 3.5.14. Let A be a nuclear bounded R�-algebra. Let B be a solid finitely presented algebra over
A of the form A〈T1, . . . , Td〉�/

L(f1, · · · , fk) with fi ∈ π0(A〈T1, . . . , Td〉�). Let C = R〈Xn : n ∈ N〉 be
the Tate algebra over R in countably many variables. Then there is a map (C,R+)� → A and elements
g1, . . . , gk ∈ C〈T1, . . . , Td〉 mapping to f1, . . . , fk. In particular, we have an equivalence

B = C〈T1, . . . , Td〉�/
L(g1, . . . , gk)⊗(C,R+)� A.



58 JUAN ESTEBAN RODRÍGUEZ CAMARGO

Proof. Write π0(A) as a quotient of compact projective generators
⊕

I

R�[Si]→ π0(A).

Since A is nuclear, we have a surjection
⊕

I

R�[Si]⊗R�
R〈T1, . . . , Td〉 → π0(A〈T1, . . . , Td〉).

Let f1, . . . , fk ∈ π0(A〈T1, . . . , Td〉), by taking finite disjoint unions of the Si’s if necessary, we can find a
profinite set S and a lift f̃i ∈ R�[S]〈T1, . . . , Td〉 of the fi. Then, we can find a quasi-finitely generated
subalgebra E ⊂ R+ and a quasi-finitely generated E-module M ⊂ R such that

f̃i ∈M�[S]〈T1, . . . , Td〉

for all i (cf. [And21, §3.1]). We can write fi =
∑

α∈Nd πrαai,αT
α with rα → ∞ as |α| → ∞ and the ai,α

converging to 0 in M�[S]. Let NSd(R) ∼= R+[[T1, . . . , Td]][
1
π ] be the space of null-d-sequences of R�, i.e.

NSd(R�) = R�[N
d ∪ {∞}]/(∞). Then, we have a map

k⊕

i=1

NSd(R�)→ R�[S]

defined by the d null-sequences (ai,n)n∈Nd for i = 1, . . . , k. Since A is bounded, by multiplying the nullse-
quences by a power of π we can assume that the composition

⊔
iN∪ {∞} →

⊕k
i=1 NS

d(R�)→ R�[S]→ A
lands in A0. Thus, by definition of A0, it lifts to a morphism of algebras

R =
k⊗

i=1

R�〈N[N
d ∪∞]〉/(∞)→ A.

Let C = R〈Xi,α : 1 ≤ i ≤ d, α ∈ Nd〉, we can take the composite map

C → R→ A

mapping Xi,α to ai,α. Then letting gi =
∑

α∈N πrαXi,αT
α ∈ C〈T1, . . . , Td〉, we see that gi maps to fk as

wanted. �

Remark 3.5.15. If A admits a surjection from a nuclear R�-algebra then the conclusion of Lemma 3.5.14
holds. Indeed, one can lift a finitely presented algebra of A to the nuclear algebra and then apply the
lemma.

Proof of Theorem 3.5.6. The equivalences between (1)-(3) follow from Lemma 3.5.11 and Corollary 3.5.12.
The second statement for nuclear affinoid rings follows from Lemmas 3.5.13 and 3.5.14. �

Corollary 3.5.16 ([Lur04, Corollary 3.4.10]). Let T : A → B be a morphism of bounded affinoid rings.
The following are equivalent

(1) T is formally étale and of solid finite presentation.
(2) T is formally étale and π0(B) is of solid finite presentation as static rings over π0(A).
(3) T is, locally on the analytic topology of B, a standard solid étale map over A.

3.6. Derived rigid geometry. In this section we study properties of solid smooth and étale morphisms
of derived Tate adic spaces. We will show that these morphisms are cohomologically smooth and étale
respectively, for the solid quasi-coherent six functor formalism. Finally, following [CS22], we give a proof of
Serre duality for solid smooth maps, by identifying the dualizing sheaf f !1 with the canonical line bundle.

3.6.1. Zariski closed immersions. Let us begin with a brief discussion of Zariski closed immersions and
affinoid morphisms.

Definition 3.6.1. (1) Let f : X → Y be a morphism of derived Tate adic spaces. We say that f is
affinoid for the analytic topology if there is an open affinoid cover {Ui}i of Y such that Vi = X×Y Ui

is an affinoid analytic ring. We say that f is strictly affinoid if in addition Vi has the induced analytic
structure from Ui.
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(2) Let f : X → Y be a morphism of derived Tate adic spaces. We say that f is a Zariski closed
immersion for the analytic topology if it is strictly affinoid, and we can find a cover as before such
that the map of animated condensed rings O(Ui)→ O(Vi) is surjective on π0.

(3) More generally, let f : X → Y be a map of Tate stacks, we say that f is affinoid (resp. strictly
affinoid, resp. Zariski closed immersion) in the D-topology, if f is of the form AnSpecB → AnSpecA
(resp. AnSpecBA/ → AnSpecA, resp. surjective on π0) locally in the D-topology of Y . We say
that OX is an analytic OY -algebra and that X = AnSpecY OX is the relative analytic spectrum of
OX over Y .

Lemma 3.6.2. Let A → B be a morphism of bounded affinoid rings. Suppose that the following hold:

• A → B has the induced analytic structure and is surjective on π0.
• B is a retract of an algebra of the form A〈T 〉�/L(f1, . . . , fd) for fi ∈ π0(A〈T 〉�).

Then B is a dualizable A-module.

Proof. By hypothesis B is a retract of an algebra of the form C := A〈T 〉�/L(fi) for some finite set of variables
{T} and a finite sequence (fi)i in π0(A). We can even assume that π0(B) = π0(C) by killing additional
elements. Then, it suffices to show that C is a dualizable A-module, and we can take B = C. Let ai ∈ A be
a lift of the variables Ti, since A is bounded there is some k ≥ 0 such that the map A[Ti]→ A sending Ti to
ai extends to A〈πkT 〉� → A. By Lemma 2.2.7, it suffices to prove that B is dualizable locally in the open
topology of the locale S(A). Actually, we will show that B is dualizable locally in the topology of the locale
Spa†A of Definition 2.7.16. By Proposition 2.7.19 we have a closed immersion Spa† B → Spa†A, let U be
the open complement. Let V be the open subspace of Spa†A that corresponds to the open localization
A → A⊗A〈πkT 〉�

A〈T 〉�. Then V contains Spa† B and we have that V ∪U = Spa†A. The localization of B
at U is zero by construction. On the other hand, the localization at V of Spa†A is defined by an analytic
ring A′ such that we have a commutative diagram

A′ B

A′〈T 〉�

Since B is an A′-module, we also have that

B = B ⊗A A
′ = A′〈T 〉�/

L(fi).

Let ci be the image of fi in π0(A
′〈T 〉), then we have a retraction

B = A′〈T 〉�/
L(fi)→ A

′/L(ci)→ B

proving that B is a perfect A′-complex, so dualizable. �

Remark 3.6.3. The proof of Lemma 3.6.2 shows that B is actually a perfect complex locally in the topology
of Spa†(A). However, this does not necessarily imply that it is a perfect complex over A, only a dualizable
sheaf. If the ring A is Fredholm (cf. [CS22, Definition 9.7]) then any dualizable A-module is perfect so B
would be perfect as well.

Remark 3.6.4. We do not know how to prove that if X → Y is an affinoid (resp. strictly affinoid) map of
derived Tate adic spaces such that Y is affinoid, then X is affinoid. One of the main obstacles is that it is
not clear (and probably unlikely) whether the category of animated algebras over an analytic ring satisfy
analytic descent. Similarly, if f is a Zariski closed immersion, even if we assume that both X and Y are
affinoids, we do not know if the map on π0 is surjective (the problem here is the lack of flatness for rational
localizations).

Example 3.6.5. The hypothesis that B is a retract of an algebra of finite presentation obtained by killing
some 0-cells of a solid Tate algebra is actually necessary. For example, Z→ Sym•

Z(Z[2]) is a Zariski closed
immersion but Sym•

Z(Z[2]) is not a perfect Z-algebra since Symn
Z(Z[2]) = (Γn

ZZ)[2n]
∼= Z[2n].
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3.6.2. Solid étale and smooth maps.

Definition 3.6.6. Let f : X → Y be a morphism of derived Tate adic spaces over A. We define the
following notions for f .

(1) f is locally of (local) solid finite presentation if locally in the analytic topology of X and Y , it is a
morphism of (local) solid finite presentation of bounded affinoid algebras. We say that it is of (local)
solid finite presentation if it is locally of finite presentation and qcqs for the analytic topology (cf.
Definition 3.3.3).

(2) f is solid smooth (resp. étale) if it is, locally in the analytic topology of X and Y , a solid smooth
(resp. étale) morphism of bounded affinoid algebras.

In order to relate Zariski closed immerions of solid finite presentation with conormal cones we need the
following lemmas.

Lemma 3.6.7. Let A → B be a map of animated commutative rings that is surjective in π0. Then
B ⊗A B = Sym•

BLB/A.

Proof. By [Mao21, Theorem 2.23] the surjection A → B can be viewed as an animated pair I → A where
I = [A→ B] is the fiber. Then, since all the formulas commute with sifted colimits, one is reduced to prove
the lemma for a animated pair of the form (Y ) → Z[X,Y ] with Y and X sets of variables. The lemma
follows by taking the Koszul resolution. �

Lemma 3.6.8. Let B → C be a morphism of solid affinoid rings of the form C = B[T ]�/
L(fi) with fi ∈

π0(B[T ]�). Then C is a perfect C ⊗B C-module.

Proof. We have that
C ⊗B C = B[T , S]�/

L(fi(T ), fi(S)),

and the multiplication map C ⊗B C → C factors through

B[T , S]�/
L(fi(T ), fi(S), Ti − Si)→ C.

But we have that
B[T , S]�/

L(fi(T ), fi(S), Ti − Si) = B[T ]�/
L(fi, 0i) = C/

L(0i),

proving that C is a perfect complex over C ⊗A C (here we use that the 0’s in the derived quotient are in
degree 0, so that it is indeed a perfect complex being represeted by a Koszul complex). �

Proposition 3.6.9. Let X and Y be derived Tate adic spaces over A and let f : X → Y be a Zariski closed
immersion of solid finite presentation with OX a perfect OY -module locally in the analytic topology of Y .
The following hold

(1) 1X is f -smooth with dual given by HomOY
(OX ,OY ).

(2) If N∨
X/Y = LX/Y [−1] is locally free, then f !1Y = (

∧dNX/Y )[−d] where NX/Y is the OX -dual of
N∨

X/Y , and d is the locally constant rank of NX/Y . In particular f is cohomologically smooth.

Proof. (1) By hypothesis, OX is a dualizable OY -module, we also have a natural identification f ! ∼=
HomOY

(OX ,−). Thus, the f -smooth dual of OX is HomOY
(OX ,OY ) which is a dualizable OY -

complex. This implies that the formation of f ! and Df (1X ) commutes with any base change Y ′ → Y ,
by Proposition 3.1.11 (1) one deduces that 1X is f -smooth.

(2) To prove part (2) it suffices to show that f !1Y = (
∧dNX/Y )[−d]. As OX is a perfect OY -module

locally in the analytic topology, the ideal I = [OY → OX ] is discrete relative to OY locally in
the analytic topology, and by Lemma 3.6.7 the space X ×Y X is given by the relative analytic
spectrum over Y of the (locally in the analytic topology) animated algebra OZ := Sym•

OX
N∨

X/Y [1] =⊕d
i=0

∧iN∨
X/Y [i]. Consider the diagram

X X ×Y X X

X Y

∆ π2

π1 f

f
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We find that f !1Y = ∆∗π∗
1f

!1Y = ∆∗π!
21X . But then

π!
21X = HomOX

(OZ ,OX)

=

d⊕

i=0

i∧
NX/Y [−i]

= OZ ⊗OX

d∧
NX/Y [−d]

which shows that f !1Y = ∆∗(OZ ⊗OX

∧dNX/Y [−d]) =
∧dNX/Y [−d] as wanted.

�

Corollary 3.6.10. Let S be a derived adic space over A, let X and Y be solid smooth derived Tate adic
spaces over S and f : X → Y a Zariski closed immersion with OX a perfect OY -complex locally in the
analytic topology of Y . Then N∨

X/Y = LX/Y [−1] is a locally free sheaf over X for the analytic topology. In
particular, f is cohomologically smooth.

Proof. We prove that LX/Y [−1] is a locally free sheaf over X. For this, we can assume without loss of
generality that S, X and Y are affinoid with rings B, C and D respectively. Furthermore, by Theorem
3.5.6, we can even assume that D is a standard solid smooth over B, so that LD/B is a free sheaf of constant
rank. We have a fiber sequence of cotangent complexes

LC/D[−1]→ C ⊗D LD/B → LC/B
+
−→ .

Since both LC/B and C ⊗D LD/B are free C-modules, and C ⊗D LD/B → LC/B is surjective on π0, LC/D[−1]
is a projective C-module that is free locally in the analytic topology of X by Lemma 3.5.7. The corollary
follows by Proposition 3.6.9. �

Our next goal is to prove Serre duality in derived rigid geometry following the methods of [CS22, Lecture
XIII]. First, we need to prove that solid smooth and étale maps are indeed cohomologically smooth and
étale.

Lemma 3.6.11. Let B → C be a standard solid étale map of bounded affinoid rings, then the multiplication
map C ⊗B C → C defines an analytic open immersion at the level of affinoid spaces.

Proof. By hypothesis we can write C = B〈T1, . . . , Td〉/
L(f1, . . . , fd) with det( ∂fi∂Tj

)i,j a unit in C that we can
assume solid. Moreover, writing π0(B) as a filtered colimit of quotients of bounded algebras generated by
extremally disconnected sets, we can assume that B = R�〈X〉�〈N[K]〉 with X a finite set of variables and
K a profinite set. Then C is of the form

C = R〈X,T1, . . . , Td〉�〈N[K]〉/L(f1, . . . , fd).

Let g = det( ∂fi∂Tj
)i,j , we can assume that fi ∈ R+〈X,T1, . . . , Td〉�〈N[K]〉 for all i, |g| ≤ 1 and that |πn| ≤ |g|

for some fixed n. We claim that the multiplication map

R〈X,T1, . . . , Td, S1, . . . , Sd〉�〈N[K]〉/L(f1(T ), . . . , fd(T ), f1(S), . . . , fd(S))〈
Ti − Si

π2n+1
〉� → B

is an isomorphism. By Corollary 3.4.8, since the relative cotangent complex vanishes, it suffices to prove
that it is an isomorphism on π0. For this, let D = C〈Si,

Si−Ti
π2n+1 : i = 1, . . . , d〉�, we want to show that the

ideals generated by (Si − Ti)
d
i=1 and (fi(S))

d
i=1 on C are the same. We have Taylor series expansions

fi(S) = fi(T + (S − T )) =
∑

α∈Nd

f
[α]
i (T )(S − T )α

where f [α] is the α-th PD-derivative of f with respect to the variables T . Indeed, as (S − T ) is divisible
by π2n+1, the series converges by the explicit growth conditions of Example 2.6.15. As f(T ) = 0 in π0(C),
we have that

fi(S) =
d∑

k=1

(∂Tk
fi)(T )(Sk − Tk) + hi(S − T ).
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where hi(S − T ) has bounded coefficients in C and monomials of degree ≥ 2. Let (bi,j)i,j be the inverse of
the matrix ((∂Tjfi)(T ))i,j , then we can write

Si − Ti =

d∑

j=1

bi,j(fi(S)− hi(S − T )). (3.7)

By hypothesis, |bi,j| ≤ |g−1| ≤ |π−n|, so that |bi,jhi| ≤ πn+1 in C, this implies that
∑d

j=1 bi,jfi(S) is bounded
by πn+1 in C. Iterating the equation (3.7) one finds that

Si − Ti =
∑

1≤|α|≤2

ci,αf(S)
α + h

(2)
i (S − T )

where the ci,α ∈ C satisfy that |ci,α| ≤ |π|α|(n+1)|, and h
(2)
i (S − T ) has bounded coefficients in C with

monomials of degree ≥ 4. An inductive hypothesis let us write

Si − Ti =
∑

1≤|α|≤2k

ci,αf(S)
α + h

(k)
i (S − T )

where |ci,α| ≤ |π|α|(n+1)| and h
(n)
i (S − T ) has bounded coefficients in C with monomials of degree ≥ 2k.

Taking limits as k → ∞ we get that Si − Ti belong to the ideal generated by the fj(S) for all i , which
finishes the proof. �

Lemma 3.6.12. The map of analytic rings f : Z� → Z[T ]� is cohomologically smooth.

Proof. This is a consequence of [CS19, Theorem 8.1]. Consider the compactification Z�

g
−→ (Z[T ],Z)�

j
−→

Z[T ]�. Let us describe explicitly the shriek functors of f . Recall that (Z[T ],Z)� → Z[T ]� is the open local-
ization complement to the idempotent algebra Z((T−1)). Then, we have descriptions for M ∈ Mod((Z[T ],Z)�)

j!j
∗M = [Z[T ]→ Z((T−1))]⊗Z[T ] M and j∗j

∗M = HomZ[T ]([Z[T ]→ Z((T−1))],M),

notice that the fiber [Z[T ]→ Z((T−1))] is isomorphic to

Z[T ]∨[−1] = HomZ(Z[T ],Z)[−1] = HomZ(Z[T ],Z)[−1]

as Z[T ]-module. Therefore, the funtor f ! is isomorphic to

f !N ≃ HomZ(Z[T ]
∨, N)[1],

but HomZ(Z[T ]
∨,−) = f∗, namely Z[T ]∨ is a compact projective Z-module, both functors commute with

limits and HomZ(Z[T ]
∨,Z) = Z[T ]. In particular, one has that f !Z ≃ Z[T ][1]. Notice that the previous hold

for any base ring A with A a finitely generated Z-algebra. Now, take Y = AnSpecZ[T ]�, X = AnSpecZ�

and consider the cartesian square

X ×Y X X

X Y

p1

p2 f

f

Then, under the identification f !Z ≃ Z[T ][1], one has the natural map p∗1(Z[T ][1]) → p!2Z[T ] is an equiv-
alence (both being equal to Z[T1, T2][1]). This implies that f is cohomologically smooth by Proposition
3.1.11 (1.b). �

Proposition 3.6.13. Let f : X → S be a solid smooth (resp. étale) morphism of derived Tate adic spaces
over A. Then f is cohomologically smooth (resp. étale).

Proof. First, by Lemma 3.6.12, the map Z� → Z[T ]� is cohomologically smooth. Since cohomologically
smooth maps are stable under composition and base change, this implies that any map A→ A〈T1, . . . , Td〉�
of bounded affinoid rings is cohomologically smooth. By Theorem 3.5.6, any solid smooth map factors,
locally in the analytic topology, as a composite of a standard solid étale map and the projection of an
affinoid disc. Therefore, for the first assertion it suffices to see that a solid étale map is cohomologically
étale. Let us assume f solid étale, by Lemma 3.6.11 the diagonal ∆f is an open embedding, so it is −1-
truncated and by Lemma 3.1.21 it is cohomologically étale. Thus, by Definition 3.1.18, it suffices to see
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that 1X is a f -smooth object. We can argue locally in the analytic topology of both X and S and assume
that both are affinoid. Then, we can find a Zariski closed embedding ι : X → S × Dd

R into some affinoid
disc over S such that OX is a perfect OS×Dd

R
-module. By Corollary 3.6.10 the map ι is cohomologically

smooth, as S × Dd
R → S is cohomologically smooth one deduces that X → S is cohomologically smooth

which in particular implies that 1X is f -smooth as wanted.
�

A first application of the previous proposition are some classical facts about étale maps

Proposition 3.6.14. Let S = AnSpecA be a bounded affinoid space and let X = AnSpec C and Y =
AnSpecB be bounded affinoid spaces whose rings of functions are given by B = A〈T 〉/L(fi) and C =
A〈T ′〉/L(gi) with fi ∈ π0(A〈T 〉) and gi ∈ π0(A〈T

′〉). Suppose that we have maps f : X → Y over S. The
following hold

(1) f is of local solid finite presentation, i.e. a retract of a morphism of solid finite presentation.
(2) If X and Y are solid étale over S then f is solid étale.
(3) If f is solid étale and a Zariski closed embedding with OX a perfect OY -module, then it is a rational

open subspace associated to an open and closed subspace of |Y |.

Proof. (1) The algebra C is a retract of B〈T ′〉�/
L(gi), this shows that it is of local solid finite presentation

over B.
(2) By (1) we know that f is of local solid finite presentation. On the other hand, since X and Y are

étale over S, the fiber sequence of cotangent complexes shows that LX/Y = 0, so that f is formally
étale. One deduces that f is solid étale by Corollary 3.5.16.

(3) By Proposition 3.6.9 and Lemma 3.6.7, one deduces that X ×Y X = X, which implies that f is
−1-truncated so an immersion. Since X has the induced analytic structure from Y , one deduces
that OX ⊗OY

OX = OX is an idempotent OY -algebra, and that X defines a closed subspace in the
locale of Mod�(Y ). Since f is étale and a closed immersion, one has that f ! = f∗ and f! = f∗,
which by Proposition 2.2.4 implies that f also defines an open embedding in the locale. Let C be
the open and closed complement of OX in the locale of Mod�(Y ), then we have that OY = OX ⊕C
as E∞-algebras. In particular, C is a locally connective E∞-algebra in the analytic topology of Y .

Note that the notion of being a bounded affinoid algebra only depends on π0, in particular it is
also a well defined notion for connective analytic E∞-algebras over R�. In particular, Proposition
2.6.16 also holds for C. Now, let I = [OY → OX ] be the ideal defining X, by hypothesis I is a perfect
OY -module, so its π0 is a module generated by its global sections at the point, and by Proposition
2.7.15 the idempotent OY -algebra OY {I}

† is associated to the closed subspace |X| ⊂ |Y |. But we
have I ∼= C, so D = OY {I}

† ⊗OY
C is equal to its †-nil-radical which implies that it is 0 as T − 1 is

invertible in R{T}† and the map R[T ] → D mapping T to 1 extends to the overconvergent power
series. The previous reasoning shows that in fact

OX = OY {I}
†.

Now, since OX is OY -perfect, one has that OX = OY 〈
I
πn 〉� for some n >> 0, and X defines both

an open and a closed subspace arising from the underlying space |Y |.
�

3.6.3. Serre duality. We want to prove the following theorem.

Theorem 3.6.15 (Serre duality). Let f : X → S be a solid smooth morphism of derived Tate adic spaces.
Then f is cohomologically smooth and there is a natural identification f !1S = Ωd

X/S [d], where d is the locally

constant relative dimension of f , and Ωd
X/S :=

∧d
LX/S is the determinant of the (locally free) cotangent

complex.

We have already proved the first part of the theorem in Proposition 3.6.13, the rest of the proof will
follow the same steps of [CS22, Theorem 13.6] using the deformation to the normal cone.

Remark 3.6.16. Note that, if A → B of a morphism solid finite presentation which is surjective on π0 and
such that B is a perfect A-module, the ideal I = [A → B] is a discrete A-module, i.e. it arises as base
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change from an ideal of the animated ring A(∗). Therefore, [CS22, Construction 13.4] of deformation to
the normal cone applies in our setting, by taking base change of the construction at the level of underlying
discrete rings and taking analytifications as derived Tate adic spaces, see Definition 2.7.24. The result is
a map ‹Y → Y = AnSpecA locally of solid finite presentation. More generally, if X → Y is a Zariski
closed immersion of solid finite presentation with OY a perfect OX-module in the analytic topology, then
the deformation to the normal cone glues to a morphism locally of solid finite presentation

‹X = X × P1 → ‹Y → X × P1.

In addition, this construction only requires X → Y to be a Zariski closed immersion locally in the analytic
topology on Y , namely, taking U ⊂ Y such that X → U is Zariski closed, one can glue ‹U and Y \X along
the complement of the exceptional divisor.

On the other hand, for B a solid smooth A-algebra, by Lemma 3.6.8 we know that the multiplication
map B ⊗A B → B realizes B as a perfect B ⊗A B-module, allowing the construction of the deformation of
the normal cone for any diagonal embedding ∆ : X → X ×S X for any solid smooth map X → S .

Proof of Theorem 3.6.15. Let f : X → S be a solid smooth morphism of derived Tate adic spaces, consider
the diagonal map ∆f : X → X ×S X =: Y , and let πi : X ×S X → X denote the projection maps. By
Lemma 3.6.11 the map ∆f is a locally Zariski closed immersion such that OX is a perfect OU -complex for
some open neighbourhood U ⊂ X ×S X containing ∆f (X). By smooth base change, we have a natural
isomorphism

f !1S = ∆∗
fπ

∗
1f

!1S = ∆∗
fπ

!
21X .

Therefore, it suffices to prove the statement for the projection π2 : X ×S X → X, or more generally, that
when we have a section s : S → X such that OS is a perfect complex in an open subspace U ⊂ X for
the analytic topology, there is a natural equivalence s∗Ωd

X/S [d] = s∗f !1S . Consider the deformation to the
normal cone of s

f̃ : ‹X → S̃ = S × P1

together with the section s̃ : S̃ → ‹X . Over P1\{0} the section s̃ is isomorphic to the base change of S → X,
and the fiber at 0 is the zero section of the analytification of the normal cone of s (see Definition 2.7.24 and
Construction 4.3.9).

The pullback functor π∗ : Mod�(S) → Mod�(P
1
S) is fully faithful. Indeed, the map π : P1

S → S is
weakly cohomologically proper being the base change of P1

Z → AnSpecZ�, and this last being the glueing
of AnSpec(Z[T ],Z)� and AnSpec(Z[T−1],Z)� along the torus AnSpec(Z[T±],Z)�. Thus, by projection
formula and proper base change it suffices to show that π∗1P1

Z
= Z which is classical. We make the

following claim:

Claim. The sheaf s̃∗f̃ !O
S̃
(d) belongs to the essential image of π∗, where O

S̃
(d) is the d-th Serre twist of

S̃ = P1
S.

Suppose this holds true, and let ι0 : S → P1
S and ι∞ : S → P1

S the 0 and ∞-sections. Then we have
natural isomorphisms

s∗f !1S ∼= ι∗∞s̃∗f̃ !
OS̃(d)

∼= ι∗0s̃
∗f̃ !

OS̃(d)
∼= ῑ∗0p

!1S (3.8)
where p : N an

X/S → S is the (analytic) normal cone of s and ῑ0 : S → N
an
X/S is the zero section.

Proof of the Claim. The formation ‹X is local on S and the section s : S → X, thus, by taking rational
covers, we can assume that S = AnSpecA and that X = AnSpecB is standard solid étale over S. Write
B = A〈T1, . . . , Td+c〉�/

L(f1, . . . , fc) with g = det( ∂fi∂Tj
)1≤i,j≤c invertible. The last d coordinates produce a

standard solid étale map
g : X → Dd

S.

Thus, the composite s′ = g ◦ s : S → Dd
S produces a section. Consider the cartesian square

S′ S

X Dd
S ,

s′′ s′

g
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Then, the section S → X produces a retract S r
−→ S′ which is necessarily a Zariski closed immersion, and by

Proposition 3.6.14 (3), it is actually a closed and open immersion associated to a closed and open subspace
of the underlying adic space. Summarizing, we have the diagram

X Dd
S

S S′ S

g

f

p
s

r

s′′ s′

where the square is cartesian and r is an open and closed immersion. Writting S′ = S ⊔ S′′, and replacing
X with a neighbourhood of s′′ of the form X1 ⊔X2 such that X1 ∩ s′′(S′) = S and X2 ∩ s′′(S′) = S′′, we
can assume that S = S′.

We have a diagram of deformations to normal cone

P1
S

‹X D̃d
S

P1
X P1

Dd
S

P1
S

s̃
‹s′

g̃

f̃ p̃

g

where the middle square is cartesian. Indeed, this follows from [CS22, Proposition 13.3] (see also [Mao21,
Corollary 3.54]) since for a surjection A → B with kernel I = [A → B], the I-adic filtration (In)n∈N is
compatible with base change along A. In particular, g̃ is solid étale and g̃! = g̃∗. Therefore, we find natural
equivalences of functors

s̃∗f̃ ! = s̃∗g̃∗p̃! = s̃′
∗
p̃!,

this reduces the claim to the case of a disc X = Dd
S . By a change of coordinates, we can even assume that

the section s : S → Dd
S is given by the zero section. Thus, by base change we can further reduce to the

algebraic statement of A1
Z = SpecZ[T1, . . . , Td] with the zero section, where this is classical and follows by

an explicit computation. �

Let p : NX/S → S be the normal cone of the section s, and ῑ0 : S → NX/S → S. To end the proof we
need to show that there is a natural equivalence

ι∗0p
!1S = s∗Ωd

X/S [d].

It suffices to show more generally that for a vector bundle E of rank d over S, with analytic geometric
realization q : Ean → S and zero section ι : S → Ean, there is a natural equivalence

ι∗q!1S =
d∧
E∨[d].

The functor mapping [E → S] to ι∗q!1S [−d] defines a map ∗/GLd → Gm of stacks. Equivalently, it defines
a line bundle over ∗/GLd seen as a stack in the analytic topology of Affb

R�
. Thus, to identify this object

it suffices to compute it for the standard vector bundle of rank d over ∗/GLd, this is proven independently
in Proposition 4.3.11. �

We finish this section by describing the smooth objects of solid smooth maps for the six functors of solid
quasi-coherent sheaves.

Proposition 3.6.17. Let f : X → Y be a solid smooth morphism of derived adic spaces over A. Then an
object P ∈ Mod�(X) is f -smooth if and only if it is dualizable.
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Proof. Suppose that f is solid smooth, and let P ∈ Mod�(X). Being f -smooth is a local property in the
analytic topology, we can then assume that both X and Y are affinoids. Consider the diagram

X X ×Y X X

X Y.

∆ π2

π1 f

f

By Proposition 3.6.9, ∆ is cohomologically smooth, then P = ∆∗π∗
1P is idX-smooth which is the same as

dualizable. Conversely, let P be dualizable. We then have that Df (P ) = HomX(P, f !1Y ) = f !1Y ⊗ P∨ is
dualizable and that the natural map

π∗
1Df (P )⊗ π∗

2P → HomX×Y X(π∗
1P, π

!
2P )

is an isomorphism, then P is f -smooth by Proposition 3.1.24 (1.b). �

3.7. Formally overconvergent étale and smooth maps. In this final section we introduce two new
deformation properties that will play a fundamental role in the definition of the analytic de Rham stack.

Definition 3.7.1. Let A ∈ Affb
R�

, a †-nilpotent ideal of A is a full sub A-module I ⊂ A contained in
Nil†(A).

Definition 3.7.2. Let T : F → F ′ be a natural transformation of functors F ,F ′ : Affb
R�
→ Ani. We say

that T is †-formally smooth (resp. †-formally étale) if it is formally smooth (resp. formally étale) and for
all A ∈ Affb

R�
, and all †-nilpotent ideal I of A, the natural map of anima

F(A)→ F(A/I) ×F ′(A/I) F
′(A)

is surjective (resp. an equivalence).

Remark 3.7.3. Since the underlying ring of A/I sits in degree 0, to check that a formally smooth (resp.
étale) functor T : F → F ′ is †-formally smooth (resp. étale) it is enough to take A an static bounded
affinoid ring.

Proposition 3.7.4. (1) A composition of †-formally smooth morphisms is †-formally smooth.
(2) If {Fi → F}i∈I is a cofiltered diagram of †-formally smooth functors with each arrow Fi → Fj

formally étale, then F ′ = lim←−i
Fi → F is †-formally smooth.

(3) A pullback of †-formally smooth maps is †-formally smooth.
Similar statements hold for †-formally étale.

Proof. Parts (1) and (3) are proved in the same way as for formally smooth maps. For part (2), note
that since the transition maps of the cofiltered limit are formally étale, the cotangent complex Llim←−i

Fi/F

is still the dual of a connective perfect complex. It is also clear that the map lim
←−i
Fi → F is nilcomplete

and infinitesimally cohesive since limits commute with limits. The †-formally smooth condition also passes
through the limit. �

The main reason to define these overconvergent deformation properties is that they hold for solid smooth
and étale maps.

Proposition 3.7.5. A solid étale morphism of bounded affinoid rings is †-formally étale. A solid smooth
morphism of affinoid rings is †-formal smooth locally in the analytic topology. Moreover, a standard solid
smooth morphism of bounded affinoid rings is †-formally smooth.

Proof. We can assume without loss of generality that A → B is standard solid smooth or standard solid
étale, namely, rational localizations are also written as composite of standard solid étale maps. First, let us
show that A → A〈T 〉� is †-formally smooth, it suffices to prove that R� → R〈T 〉� is †-formally smooth, but
this follows from Proposition 2.6.16 (1) and the fact that R[T ] is a projective animated R-algebra. Indeed,
if I ⊂ A is a †-nilpotent ideal, then (A/I)†−red = A†−red and a map Z[T ]→ A extends to Z[T ]� if and only
if it does for A/I.

We are left to show that a standard solid étale morphism of bounded algebras is †-formally étale.
By writing π0(A) as a sifted colimit of quotients of algebras of the form R〈X〉�〈N[S]〉, we can assume
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that A = R〈X1, . . . ,Xs〉�〈N[S]〉 for S a profinite set and a finite set of variables Xi, and that B =

A〈T1, . . . , Td〉/
L(f1, . . . , fd) with a = det( ∂fi∂Tj

) a unit. We can also assume that all the fi are of norm ≤ 1

and that |πk| ≤ |a| ≤ 1 for some k ≥ 0. By Lemma 3.6.11 the map AnSpecB → AnSpecA is 0-truncated,
then we only need to prove the existence and uniqueness of lifts at the level of points. Let D be a bounded
affinoid ring and I ⊂ D a †-nilpotent ideal, consider a solid commutative diagram

A B

D D/I.

We want to see that there is a unique dashed arrow B → D making the diagram commutative. By
Proposition 2.6.16 we can find a lift F : A〈T1, . . . , Td〉� → D such that fi(T ) ∈ I ⊂ Nil†(D). Therefore, the
map F extends to a map

A〈T1, . . . , Tn〉�{S1, . . . , Sn}
†/L(fi − Si)→ D.

By Lemma 3.7.6 down below, we have an equivalence of A{S1, . . . , Sd}-algebras

A〈T1, . . . , Tn〉�{S1, . . . , Sn}
†/L(fi − Si) ∼= B{S1, . . . , Sd}

which shows that there is a lift B → D over D/I. Suppose we have two lifts f1, f2 : B → D/I. Then they
extend to a map B ⊗A B → D, write

f : B ⊗A B = A〈T1, . . . , Td, S1, . . . , Sd〉�/(fi(T ), fi(S)),

then the differences Ti − Si are sent to I, and the map f factors through the overconvergent diagonal

B ⊗A B{Ti − Si}
† → D,

but the proof of Lemma 3.6.11 implies that B ⊗A B{Ti − Si}
† = B proving the uniqueness. �

The following lemma was used in the previous proposition.

Lemma 3.7.6. Let A be a bounded affinoid ring, D = A〈T1, . . . , Td〉� a solid Tate algebra over A in d-
variables, and B = D/L(f1, . . . , fd) a standard solid étale algebra over A. Let C = D{fi : i = 1, . . . , d}†

denote the idempotent algebra associated to the closed subspace SpaB ⊂ SpaD, i,e, the base change

C = D ⊗R�[S1,...,Sd] R{S1, . . . , Sd}
†

mapping Sd 7→ fd. Then there is an isomorphism of A{S1, . . . , Sd}-algebras

B{S1, . . . , Sd} ∼= C.

Proof. By writting π0(A) as a sifted colimit of quotients of algebras of the form R〈X〉�〈N[K]〉 for finite set
of variables X and profinite sets K, we can assume without loss of generality that A = R〈X〉�〈N[K]〉,
that the fi have norm ≤ 1 and that g = det( ∂fi∂Tj

)1≤i,j≤d satisfies |πk| ≤ |g| ≤ 1 for some k ≥ 0.

Let A0 = R+〈X〉�〈N[K]〉, D0 = A0〈T1, . . . , Td〉� and B0 = D0/L(f1, . . . , fd). For n ≥ 0 let C0n =

D0〈 S1
πn , . . . ,

Sd
πn 〉/L(fi(T )−Si) and set Dn = D0

n[
1
π ]. The explicit Koszul resolution of the cotangent complex

LB0/A0 shows that multiplication by πk is homotopic to 0. On the other hand, for n ≥ 2k + 1 the map

D0 → C0n/
Lπn

factors trough B0 → C0n/
Lπn, namely, Si = πn Si

πn vanishes in the quotient. By lemma 3.7.7 down below
we have a lift B0 → C0n, and by the uniqueness of lifts shown at the end of Proposition 3.7.5 (which is
independent of the existence of a lift), we have a natural lift in generic fibers B → C independent of n.
Now, let us fix some n ≥ 2k+1 and a lift B0 → C0n, and for all m ≥ n take B0 → C0m to be the composite of
B0 → C0n → C

0
m. We can extend these maps to morphisms B0〈 S1

πm , . . . , Sd
πm 〉 → C0n of A0〈 S1

πm , . . . Sd
πm 〉-algebras.

For m′ > m ≥ n these algebras factor through

B0〈
Si

πm
〉 → B0[[

Si

πm
]]→ B0〈

Si

πm′ 〉

and
C0m → D

0[[
Si

πm
]]/L(fi(T )− Si)→ C

0
m′ .
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Then, we have a map of A0[[ Si
πm ]]-algebras

B0[[
Si

πm
]]→ D0[[

Si

πm
]]/L(fi(T )− Si). (3.9)

Both terms in (3.9) are I = ( Si
πm )-complete, and their reduction modulo I is an equivalence, this implies

that (3.9) is an equivalence. Taking generic fibers and colimits as m→∞ one gets the lemma. �

The following lemma is substracted from the proof of [Sch15, Corollary III.2.2].

Lemma 3.7.7 (Quantitative Hensel’s Lemma). Let A → B be a morphism of π-complete animated R+
�
-

algebras such that there is some k ≥ 1 such that multiplication by πk on LB/A is homotopic to 0. Let C be
a π-complete animated A-algebra, and suppose that we have a solid commutative diagram

A B

C C/Lπ2k+1

Then there is a dashed arrow as above making the diagram commute.

Proof. It suffices to construct a sequence of compatible arrows B → C/Lπn for all n ≥ 0. Suppose that we
have the lift for n ≥ 2k + 1, we will construct a lift for 2(n − k) ≥ n+ 1 over n− k. Consider the algebra

C ′ = C/Lπ2(n−k) ×C/Lπn−k C/Lπn,

then the fiber C ′ → C/Lπn is equivalent to C/Lπn−k under the map ι = (πn−k, 0) : C/Lπn−k → C ′.
Moreover, we have a commutative diagram

C/Lπ2n−k C ′

C/Lπn−k C/Lπn−k

∆

πk

πn ι

where ∆ is the diagonal map. Let us write J = C/Lπn−k for the square zero ideals of the algebras C ′ and
C/Lπ2n−k over C/Lπn. Then, the map ∆ induces a morphism

HomB(LB/A, J)
πk

−→ HomB(LB/A, J),

which is homotopic to zero as the multiplication by πk is homotopic to zero on LB/A by hypothesis. By
deformation theory, we deduce that the obstruction to lift B from C/Lπn to C ′ vanishes, but lifting from
C/Lπn to C ′ is equivalent to lifting from C/Lπn−k to C/Lπ2(n−k), which proves the lemma. �

4. Cartier duality for vector bundles

After all the preliminaries in derived algebraic geometry, we are finally in shape of applying the theory
to more interesting objects. In this section we study Cartier duality for different incarnations of vector
bundles, following the spirit of [Lau96], but using the language of six-functor formalisms and the Lu-Zheng
category. In the next sections we shall apply these results to study different incarnations of the de Rham
stack.

4.1. Vector bundles and torsors. First, let us briefly introduce the category of vector bundles on solid
D-stacks.

Definition 4.1.1. Let C = ShD (AffZ�
) be the category of solid D-stacks.

(1) Let X ∈ C be a solid D-stack, a vector bundle of rank d over X is a quasi-coherent sheaf F ∈
Mod�(X) that is free of rank d locally in the D-topology of X.

(2) Let D → C be the co-cartesian fibration associated to the functor Mod� : Cop → CAlg(PrL,ex). We
let BUNd,C ⊂ D be the subcategory whose objects are pairs (X,F ) with F ∈ Mod�(X) a vector
bundle of rank d, and morphisms (Y,G ) → (X,F ) given by the space of connected components
(f : X → Y, f∗G → F) such that f∗G → F is an equivalence.
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Let GLd be the linear algebraic group of d×d invertible matrices over Z, and let ∗/GLd be its classifying
stack. By definition, ∗/GLd is the object representing the moduli problem of GLd-torsors on D-stacks.
Over ∗/GLd we have a vector bundle St associated to the standard left representation of GLd on Zd. Let
C/[∗/GLd] be the slice category of D-stacks over ∗/GLd, the vector bundle St induces a functor

F : (C/[∗/GLd])
op → BUNd,C .

by taking pullbacks.

Proposition 4.1.2. The functor F is an equivalence of categories over Cop.

Proof. Both (C/[∗/GLd])
op and BUNd,C are left fibrations over Cop, by [Lur09, Proposition 3.3.1.5] it suffices

to prove that the fibers over Cop are equivalent. Let X ∈ C, we want to show that the natural functor

FX : MapX(X, [X/GLd])
op → BUNd,X (4.1)

from maps f : X → X/GLd to rank d-vector bundles over X is an equivalence of anima. To see that FX

is essentially surjective, note that for F a vector bundle over X, the stack IsomX(Od
X ,F ) of isomorphisms

in the D-topology is a GLd|X -torsor over X, which is defined by some map f : X → [X/GLd] such that
f∗ St = F . To show that F is fully faithful, notice that both terms in (4.1) are Kan complexes, so it suffices
to show that for a map f : X → X/GLd, the anima of automorphisms of f is equivalent to the anima of
automorphisms of F = f∗ St. It suffices to show that the natural map of stacks

AutX/GLd
(X)→ AutX(F ) (4.2)

is an equivalence. Since f : X → [X/GLd] is an epimorphism of stacks, it satsifies universal ∗-descent
and it suffices to show that (4.2) is an equivalence after pullback along f . Let Y = X ×[X/GLd] X, then
g : Y → X is a GLd-torsor and we the multiplication map gives rise an equivalence GLd × Y

∼
−→ Y ×X Y ,

one deduces that
AutX/GLd

(X)|Y = GLd × Y.

Similarly, the pullback of F to Y is naturally isomorphic to Od
Y and AutX(F )|Y = AutY (O

d
Y ) = GLd×Y .

It is clear that the restriction of (4.2) to Y is identified with the identity of GLd × Y . �

Remark 4.1.3. Definition 4.1.1 and Proposition 4.1.2 are not special for the D-topology of the category of
solid D-stacks. The same can be done for a general Grothendieck topology in a full subcategory of analytic
rings stable under pullbacks.

Definition 4.1.4. For F a vector bundle over X, we let V(F ) denote its geometrization. Explicitly, let St
be the analytic spectrum of SymSt∨, it is naturally endowed with the standard action of GLd and defines
a vector bundle V(St) over ∗/GLd. Let f : X → ∗/GLd be the map defining F via Proposition 4.1.2, then
V(F ) = f∗V(St). Note that V(F ) is the relative analytic spectrum of SymOX

F∨, which is an analytic
ring locally in the D-topology of X.

4.2. Algebraic Cartier duality for vector bundles. Now that we have related the category of vector
bundles of rank d and the slice category of ∗/GLd, we can state our first Cartier duality that is nothing but
the algebraic Cartier duality of [Bha22, Proposition 2.2.13]. In order to simplify the theory, and since our
main application will be for rigid spaces over Qp, we will focus in characteristic 0, though some statements
will be proven in general.

Definition 4.2.1. Let X be a solid D-stack over Z, F a vector bundle of rank d over X and V(F ) its
geometrization seen as an abelian group object over X. For n ∈ N, let V(F )n be the relative analytic
spectrum of Sym≤n

X F∨ =
⊕n

k=0 Sym
k
XF∨. The formal completion of V(F ) at zero is defined as the

abelian group stack ’V(F ) = lim
−→n

V(F )n, we let ‘SymX(F∨) = lim
←−n

Sym≤n
X (F∨) denote the global sections

of ’V(F ).

The following lemma will be useful to show cohomologically smoothness of classifying stacks.

Lemma 4.2.2. Let (C, E) be a geometric set up and D a six functor formalism on (C, E) taking values in
stable ∞-categories. Let f : Y → X be a map in E with f∗ conservative, and let g : X → Y be a retraction
of f in E.
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(1) Suppose we are given with the following data:
(i) An object L ∈ D(X).
(ii) A map s : f!1Y → L.
(iii) A retraction 1Y ∼= g!f!1Y

g!s−−→ g!L
η
−→ 1Y .

Then 1X is g-smooth and there is a natural identification g!1Y ∼= L.
(2) Suppose we are given with the following data:

(i) An object L ∈ D(X).
(ii) A map s : L → f!1Y .
(iii) A section 1Y

µ
−→ g!L

g!s−−→ g!f!1Y ∼= 1Y .
Then 1X is g-proper and there is a natural identification Pg(1Y ) ∼= L.

Proof. We only prove part (1), part (2) follows by taking the dual six functor formalism Dop, see [Sch23,
Remark 6.5].

Let ∆ : X → X ×Y X be the diagonal map. We need to define a cycle morphism µ : ∆!1X → π∗
2L such

that the following compositions are the identity

1X ∼= π1,!∆!1X
π1,!µ
−−−→ π1,!π

∗
2L
∼= g∗g!L

g∗η
−−→ 1X . (4.3)

L ∼= π2,!(π
∗
1L ⊗∆!1X)

π2,!(π
∗
1L⊗µ)

−−−−−−−−→ π2,!(π
∗
1L ⊗ π∗

2L)
∼= π2,!π

∗
1L ⊗ L

∼= g∗g!L ⊗ L
g∗η⊗L
−−−−→ L. (4.4)

By Lemma [Sch23, Lemma 5.11], after modifying η, it suffices that the composite are equivalences. We
have the following commutative diagram with cartesian squares

Y X Y

X X ×Y X X

Y X Y.

f

f (fg, id)

g

f

∆

g π2

π1

g

f g

(4.5)

In particular, we have that π∗
2f!
∼= ∆!g

∗, we define µ : ∆!1X ∼= π∗
2f!1Y → π∗

2L to be µ = π∗
2s.

The composite (4.3) is the identity. Since g∗g! ∼= π1,!π
∗
2 , the composite (4.3) is obtained by applying

g∗ to the retraction

1Y ∼= g!f!1Y
g!s−−→ g!L

η
−→ 1Y .

The composite (4.4) is the identity. Since the pullback along f : Y → X is conservative, it suffices
to show that (4.4) is an equivalence after taking f∗. By proper base change we have that f∗π2,! ∼= g!∆

∗.
On the other hand, the equivalence L ∼= π2,!(π

∗
1L ⊗∆!1X) arises by the π2,! of the equivalence

π∗
1L ⊗∆!1X ∼= ∆!L ∼= ∆! ⊗ π∗

2L,

taking pullbacks along ∆ we get the natural equivalence

L ⊗∆∗∆!1X ∼= ∆∗∆!1X ⊗ L

given by the braiding isomorphism. Consider the (not necessarily commutative) diagram

π∗
1L ⊗∆!1X ∆!L ∆!1X ⊗ π∗

2L

π∗
1L ⊗ π∗

2L

∼

π∗
1L⊗π∗

2s

∼

π∗
1s⊗π∗

2L
(4.6)

Applying ∆∗ to (4.6), and using that ∆!g
∗ ∼= π∗

2f!, we get the commutative diagram

L ⊗ f!1Y ∆∗∆!L f!1Y ⊗ L

L ⊗ L

∼

L⊗s

∼

s⊗L
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where the composite of the horizontal maps is the braiding isomorphism. In a similar way, using that
π2,!π

∗
1
∼= g∗g! and π1,!π

∗
2
∼= g∗g!, one deduces that the equivalence

f∗L ⊗ g!L ∼= f∗(L ⊗ g∗g!L) ∼= f∗π1,!(π
∗
1L ⊗ π∗

2L)
∼= f∗π2,!(π

∗
1L ⊗ π∗

2L)
∼= f∗(g∗g!L ⊗ L) ∼= g!L ⊗ f∗L

is also the braiding isomorphism. On the other hand, the f -pullback of the map g∗η⊗L is nothing but the
map

g!L ⊗ f∗L
η⊗f∗L
−−−−→ f∗L.

Putting all together, the f -pullback of the map (4.4) becomes

f∗L
∼
−→ g!(f!1Y ⊗ L)

g!(s⊗L)
−−−−−→ g!(L ⊗ L) ∼= g!(L ⊗ g∗f∗L) ∼= g!L ⊗ f∗L

η⊗f∗L
−−−−→ f∗L, (4.7)

but the map g!(f!1Y ⊗ L)
g!(s⊗L)
−−−−−→ g!(L ⊗ L) ∼= g!L ⊗ f∗L is equal to the composite

g!(f!1Y ⊗ L) ∼= g!f!1Y ⊗ f∗L
g!s⊗f∗L
−−−−−→ g!L ⊗ f∗L,

where the equivalence g!(f!1Y ⊗L) ∼= g!f!1Y ⊗f
∗L arises from the natural isomorphism f∗π2,! ∼= g!∆

∗ applied
to π∗

2f!1Y ⊗ π∗
2L. This shows that the composite (4.7) is an equivalence, proving what we wanted. �

Before we state the algebraic Cartier duality theorem we need to show some cohomological properties of
vector bundles. We start with a key lemma that is the core of the computations.

Lemma 4.2.3. Let X be a solid D-stack over Q and let F be a vector bundle of rank d over X.
(1) There is a natural de Rham resolution of OX as Sym•

X(F∨)-comodule given by a complete and
decrasing filtration

OX → Sym•
X(F∨)

d
−→ Sym•

X(F∨)⊗F
∨ d
−→ · · ·

d
−→ Sym•

X(F ) ⊗
d∧

F
∨.

(2) There is a natural Koszul resolution of OX as Sym•
X(F )-module given by a complete and increasing

filtration

Sym•
X(F )⊗

d∧
F · · · → Sym•

X(F ) ⊗F → Sym•
X(F )→ OX ,

whose dual is the de Rham complex for ‘SymX(St∨).

Proof. By base change, it suffices to deal with the universal case X = ∗/GLd and F = St the stan-
dard vector bundle. We have GLd-equivariant de Rham and Koszul resolutions for both Sym•

X(St∨) and
‘SymX(St):

0→ Q→ Sym•
X(St∨)

d
−→ Sym•

X(St∨)⊗ St∨
d
−→ · · ·

d
−→ Sym•

X(St∨)⊗
d∧
St∨ → 0

0→ Sym•
X(St∨)⊗

d∧
St∨ → · · · → · · · → Sym•

X(St∨)⊗ St∨ → Sym•
X(St∨)→ Q→ 0

(4.8)

and

0→‘SymX(St)⊗
d∧
St→ · · · → · · · →‘SymX(St)⊗ St→‘SymX(St)→ Q→ 0

0→ Q→‘SymX(St)
d
−→‘SymX(St)⊗ St

d
−→ · · ·

d
−→‘SymX(St)⊗

d∧
St→ 0

(4.9)

where we have identified the differentials de ∼= e for e ∈ St∨ (resp. for St). The resolutions of (4.8) are the
duals of those in (4.9), this prove the lemma since the de Rham resolution of a vector bundle is a complex
of comodules while the de Koszul resolution is a complex of modules. �

Proposition 4.2.4. Let X be a solid D-stack over Z� and let F be a vector bundle of rank d over X.
(1) The map V(F )→ X is weakly cohomologically proper.
(2) The map f : ’V(F ) → X is cohomologically smooth and there is a natural isomorphism f !1X =

Ωd
÷V(F )/X

[d] = f∗
∧d

F∨[d]. If in addition X is defined over Q then f!1÷V(F )
=
∧d

F⊗(Sym•
XF )[−d].

In particular, f!f !1X = Sym•
XF .
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Proof. Part (1) is clear since V(F ) is just the relative analytic spectrum of the algebra Sym•
XF (locally in

the D-topology) with the induced analytic structure.
For part (2), without loss of generality we can reduce to the universal case X = ∗/GLd and F = St the

standard representation. Then, to see that ’V(St) → ∗/GLd is cohomologically smooth, we can take the
pullback along ∗ → ∗/GLd. In this case, St = Zd is a free Z-module of rank n, and by induction it suffices
to treat the case d = 1. We have a map

j : “Ga ⊂ Ga = AnSpecZ[T ] ⊂ P1
Z.

Note that P1
Z is cohomologically smooth over Z�, namely, it has an open cover in the sense of locale by

the solid affine spaces AnSpecZ[T ]� and AnSpecZ[T−1]�. Then, it suffices to show that j is an open
immersion, this follows since it is the complement of the idempotent algebra over P1

Z given by Z[T−1].
Next, we show that f !1X = f∗

∧d
F∨[d] and f!1÷V(F )

=
∧d

F (Sym•
XF )[−d]. For this, we can reduce to

the universal case of X = ∗/GLd and F = St.
Let {v1, . . . , vd} be the standard basis of St and T1, . . . , Td its dual basis. Then

St = AnSpecX(Z[T ]).

Consider the idempotent (Z[T ],Z)�-algebras

Di = Z[T ][T−1
i ],

and let C be the union of the algebras in the sense of locale. More precisely, for I ⊂ {1, . . . , d} =: [d] let
DI = ⊗i∈I,Z[T ]Di and let C be the idempotent dg-Z[T ]-algebra

C = [D →
⊕

i∈I

Di → · · · →
⊕

|I|=k

DI → · · · → D[d]].

Then j : ’V(St) ⊂ V(St) is the open subspace complement to C, and we can compute

f!1’V(St) = [Z[T ]→ C].

Unravelling the construction of C, and identifying T−1
i = vi, one finds that

f!1’V(St) = (T1T2 · · ·Td)
−1Z[T−1

i : i = 1, . . . , d][−d]. (4.10)

Note that shifting the variables Ti and Tj alters the formulas by a −1 factor, namely, in the union of
idempotent algebras Di and Dj one fixes the map

C
(1,−1)
−−−−→ Di

⊕
Dj ,

which differs from the map

C
(1,−1)
−−−−→ Dj

⊕
Di

under the natural isomorphism Di
⊕

Dj = Dj
⊕

Di by multiplication by a −1. If X is defined over Q, one
deduces that f!1’V(St) =

∧d St⊗Sym•
X St[−d]. In general, using that

HomZ(f!Z[T ],Z) = f∗f
!Z,

we find that f !Z is the localization at V̂(St) of the object

f !Z = T1 · · ·Td ⊗ Z[[T ]][d]

as GLn-equivariant Z[T ]-module, which is nothing but f∗
∧d St∨[d]. �

Next, we study cohomological properties of quotient stacks associated to vector bundles in characteristic
0. Let us first describe the categories of sheaves on X/V(F ) and X/’V(F ) via the monadicity theorem.

Proposition 4.2.5. Let X be a solid D-stack over Q and let F be a vector bundle of rank d over X.
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(1) There are natural equivalences

Mod(X/V(F )) = CoModSym•
XF∨(Mod(X))

and

Mod(X/’V(F )) = ModSym•
XF (ModX).

(2) Consider the maps X
f
−→ X/V(F )

g
−→ X. Then f is a descendable D-cover and g is both weakly

cohomologically proper and cohomologically smooth. Moreover, there is a natural equivalence g!1X ∼=
g∗
∧d

F [d].

(3) Consider the maps X
f
−→ X/’V(F )

g
−→ X. Then f is a smooth D-cover, g is cohomologically smooth,

and there is a natural equivalence g!1X ∼=
∧d

F [−d]. Moreover, g is co-smooth with proper dual
Pg(1X/÷V(F )

) ∼= 1
X/÷V(F )

[−2d].

Proof. By base change, we can reduce all the assertions to the universal case X = ∗/GLd and F = St.
We first use Proposition 3.1.27 to deduce part (1), and then we apply Lemma 4.2.3 to construct the data
required in Lemma 4.2.2 and show (2) and (3).

(1) By Proposition 4.2.4 the maps f : X → X/V(St) and f ′ : X → X/’V(St) are weakly cohomologically
proper and cohomologically smooth respectively. Then, by Proposition 3.1.27 and Remark 3.1.28
we have that

Mod(X/V(St)) = CoModf∗f∗1X (Mod(X))

and
Mod(X/’V(St)) = Modf !f!1X

(Mod(X)).

It is left to compute the monad and comonad, for this one uses the fact that the Čech nerves
of X → X/V(St) and X → ’V(St) are given by the simplicial stack (V(St)n/X)[n]∈∆op (resp.

(’V(F )
n/X

)[n]∈∆op) encoding the commutative group structure of V(St) and V(St) respectively,

which arise from the GLd-equivariant Hopf-algebra structure of Sym•
X St∨ and ‘Sym•

X St∨ respec-
tively (see [Lur17, Theorem 4.7.5.2 (3)] and Proposition 4.2.4 (2)), we left the details to the reader.

(2) By part (1), the category Mod�(X/V(St)) is the category of GLd-equivariant (left) comodules over
Sym•

X(St∨). The map X → X/V(St) is the vector bundle associated to the algebra Sym•
X(St∨)

over X/V(St), endowed with the natural comodule action given by co-multiplication.
The map f is weakly cohomologically proper since V(St) has the induced analytic structure from

X. To show that g has !-functors, it suffices to prove that f is a descendable D-cover, which
amounts to show that f∗1X is descendable over 1X/V(St). For this, we can use the de Rham complex
of Lemma 4.2.3

0→ Q→ Sym•
X St∨

d
−→ Sym•

X St∨⊗ St∨
d
−→ · · ·

d
−→ Sym•

X St∨⊗
d∧
St∨ → 0 (4.11)

which is a GLd-equivariant complex of Sym•
X St∨-comodules, where St∨ has the trivial comodule

action (we higlight for future reference that this is equal to the adjoint comodule action since V(St)

is abelian). Note that if {ei}di=1 is a basis of St∨, we have identified
⊕d

i=1 Qdei ∼= St∨. One formally
deduces that g is weakly cohomologically proper as f is so, see Corollary 3.1.26. Finally, it is
left to show that g is cohomologically smooth with g!1X =

∧d St[d]. Let Q ∈ Mod�(X/V(St))

be the trivial representation seen as a morphism in LZD,X(X/V(St),X). Let L := (
∧d St)[d] ∈

Mod�(X/V(St)) endowed with the trivial comodule action. Twisting (4.11) by
∧d St we get a map

f!1X = Sym•
X St∨ → L. Moreover, (4.11) shows that

g!L =
d⊕

i=0

i∧
St[i],

this gives the retraction g!L → 1X . We conclude by applying Lemma 4.2.2.
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(3) The map f is cohomologically smooth by Proposition 4.2.4. Since the pullback f∗ is conservative,
f is in fact a smooth D-cover, in particular of universal !-descent, and thus g admits !-functors.
On the other hand, since being cohomologically smooth is local on the source (Corollary 3.1.26),
we see that g is also cohomologically smooth. It is left to compute g!1X . By functoriality of
the Lu-Zheng category, it suffices to treat the universal case X = ∗/GLn and F = St. By
Proposition 4.2.5, one has that 1X = f !g!1X = (f !1) ⊗ f∗(g!1X) = f∗

∧d St∨[d] ⊗ f∗(g!1X). This
gives f∗g!1X = f∗

∧d St[−d], and we only need to identify
∧d St as object in Mod�(X/’V(St)).

Consider the diagram

X/’V(St) X/¤�V(St1⊕ St2) X/’V(St)

X/V̂(St) X,

∆ π2

π1 g

g

by smooth base change, we have that g!1X = ∆∗π!
2(1X/’V(St)). On the other hand, let Q =

St1⊕ St2 /∆(St), endowed with the left regular action of St1⊕ St2. The map ∆ is equivalent to the
map

’V(Q)/¤�V(St1⊕ St2)→ X/V(St1⊕ St2). (4.12)

This shows that ∆!1X/V(St1 ⊕ St2) = ∆∗
∧d Q∨[d]. One gets that

g!1X = ∆∗π!
2(1X/V̂(St)

)

= ∆!π!
2(1X/V̂(St))⊗∆∗

d∧
Q[−d]

= ∆∗
d∧
Q[−d]

=
d∧
St[−d].

It is left to show that g is co-smooth with proper dualizing sheaf L = 1
X/’V(St)[−2d]; we use

Lemma 4.2.2. By part (1), Mod(X/’V(St)) is equivalent to the category of Sym•
X St-modules in

Mod(X). The Koszul sequence

0→ Sym•
X St⊗

d∧
St→ · · · → Sym•

X St→ Q→ 0 (4.13)

gives rise a map

1
X/’V(St)[−2d]→ f!1X = Sym•

X St⊗
d∧
St[−d].

To construct a retraction g!L → 1X it suffices to show that the Koszul complex induces a splitting
g!L =

⊕d
i=0

∧d St∨[−i]. We know by (4.13) that g!L is a perfect complex of GLd-equivariant
Q-vector spaces. Then, to show that it is split it suffices to do it for its dual. We have that

HomX(g!L,Q) = g∗L[2d] = g∗

d∧
St[d].

But we have that g∗
∧d St[d] = (g∗1X/’V(St))⊗

∧d St[d], thus, it suffices to show that the cohomology

g∗1X/’V(St) splits, this follows by taking the de Rham resolution for ‘SymX(St∨), since g∗1X is the

“complete” comodule associated to ‘SymX(St∨).
�

Remark 4.2.6. In the previous proposition we always keep track of the adjoint action of St, even if it is
trivial. The reason is that similar computations will hold for the case of classifying stacks of more general
groups, see Proposition 6.1.7.
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Theorem 4.2.7 (Algebraic Cartier duality). Let X be a solid D-stack over Q and F a vector bundle over
X.

(1) There is a natural bi-linear map

F : V(F ) ×X X/◊�V(F∨)→ ∗/Gm

functorial in the category BUNd,C, such that F ∗(O(1)) is an isomorphism in the Lu-Zheng cate-

gory, considered as a map LZX(V(F ),X/◊�V(F∨)). Moreover, the inverse of F ∗(O(1)) is naturally
isomorphic to F ∗(O(−1)) ⊗OX

∧d
F∨[−d].

(2) There is a natural bi-linear map

G :◊�V(F∨)×X X/V(F )→ ∗/Gm

functorial in the category BUNd,C, such that G∗(O(1)) is an isomorphism in the Lu-Zheng category

considered a a map in LZX(◊�V(F∨),X/V(F )). Moreover, the inverse of G∗(O(1)) is naturally
isomorphic to G∗(O(−1)) ⊗

∧d
F [d].

In particular, we have Cartier duality isomorphisms induced by a Fourier-Moukai transform

FM1 : Mod�(V(F ))
∼
−→ Mod�(X/◊�V(F∨)) (4.14)

FM2 : Mod�(◊�V(F∨))
∼
−→ Mod�(X/V(F )), (4.15)

defined by the convolution

FM1(M) = F ∗(O(1)) ⋆ M and FM2(M) = G∗(O(1)) ⋆ M.

Proof. By functoriality of the Lu-Zheng category, we can assume without loss of generality that X = ∗/GLd

and that F = St is the standard vector bundle. On the other hand, by [Sch23, Lemma 5.11] it suffices to
construct a unit and co-unit for the adjunction and prove that they are equivalences.

Step 1. Construction of F and G. We first construct the maps F and G of parts (1) and (2). Let
us start with part (1). Consider the GLn-equivariant vector bundle V(St) = AnSpecX(Sym•

X St∨), as well

as its formal dual◊�V(St∨). By Proposition 4.2.5 (1), a line bundle over V(St)×X X/’V(St) is the same as a
GLn-equivariant line bundle over V(St) endowed with a module action of Sym•

X St∨ commuting with the
O(V(St))-linear structure. We simply take L = Sym•

X St∨ as a right module over V(St) endowed with the
natural left multiplication of Sym•

X St∨, we say that L has the left regular action. This defines the map
F .

For the map G in (2), we argue in a similar way. A line bundle in ◊�V(St∨)×X X/V(St) is the same as a
compatible system of GLn-equivariant line bundles (Ln) on V(St∨)n for all n, together with a compatible
system of GLd-equivariant comodule structures

(Ln → Sym•
X St∨⊗Ln).

To define such an object, we take Ln = Sym≤n
X St endowed with right module structure, and construct

the comodule structure of Sym•
X St∨ by taking adjoints of the multiplication map Sym≤n

X St⊗Ln → Ln,
namely,

Ln → Sym≤n
X St∨⊗Ln → Sym•

X St∨⊗Ln.

This defines a line bundle on◊�V(St∨)×X X/V(St), and so the map G. We say that L has the left regular

action.
Step 2. Identification of F ∗(O(−1)) and G∗(O(−1)). By construction F ∗(O(1)) is the line bundle

Sym•
X St∨ over V(St) endowed with the left multiplication by Sym•

X St∨. Then, F ∗(O(−1)) = F ∗(O(1))−1 is
the line bundle Sym•

X St∨ over V(St) endowed with the Sym•
X St∨-multiplication arising from the composite

Sym•
X St∨⊗Sym•

X St∨
s⊗id
−−−→ Sym•

X St∨⊗Sym•
X St∨

m
−→ Sym•

X St∨

where s : Sym•
X St∨ → Sym•

X St∨ is the antipode map sending v 7→ −v for v ∈ St∨. We say that F ∗(O(−1))
has the right regular action.

Similarly, G∗(O(1)) is the line bundle (Sym≤n
X St)n over◊�V(St∨) endowed with the left regular Sym•

X St∨-
comodule structure constructed as the adjoint of the multiplication map. Then, G∗(O(−1)) is the line
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bundle (Sym≤n
X St)n endowed with the right regular comodule structure of ‘SymX St∨ obtained by composing

the multiplication map with the antipode. We say that G∗(O(−1)) has the right regular action.
Step 3. Unit and co-unit for F . Next, we construct the unit and co-unit maps of the convolutions

and see that they are equivalences. We first deal with (1). Let us write X = ∗/GLd, Y = V(St) and

Z = X/◊�V(St∨). We also let L = F ∗(O(1)) and G := F ∗(O(−1)) ⊗
∧d St∨[−d]. Recall that we consider

L ∈ LZX(Y,Z) and G ∈ LZX(Z, Y ), so that we have the convolution

G ⋆ L = π1,3,!(π
∗
1,2L ⊗ π∗

2,3G)

for the fiber product Y ×X Z ×X Y , and the convolution

L ⋆ G = π1,3,!(π
∗
1,2G ⊗ π∗

2,3L)

for the fiber product Z ×X Y ×X Z. Thus, we want to construct equivalences

∆Y,!1Y
∼
−→ G ⋆ L (4.16)

and
L ⋆ G

∼
−→ ∆Z,!1Z . (4.17)

Let us first compute G ⋆L. The tensor π∗
2,3G⊗π∗

1,2L lies in Y ×X Z×X Y = V(St1⊕ St2)/
◊�V(St∨) where the

quotient is with respect to the trivial action. By step 2 one deduces that π∗
1,2L ⊗ π∗

2,3G is nothing but the
line bundle

∧d St∨2 ⊗Sym
•
X(St∨1 ⊕ St∨2 )[−d] endowed with the Sym•

X St∨-module action which is left regular
on St∨1 and right regular on St∨2 . Thus, by taking the anti-diagonal embedding ∆ant = (id,− id) : St∨ →
St∨1 ⊕ St∨2 , we can write

d∧
St∨2 ⊗Sym

•
X(St∨1 ⊕ St∨2 )[−d] =

d∧
St∨2 ⊗Sym

•
X(∆ant(St∨))⊗ Sym•

X((St∨1 ⊕ St∨2 )/∆
ant(St∨))[−d]

∼=

d∧
(∆ant St)⊗ Sym•

X(∆ant(St∨))⊗ Sym•
X((St∨1 ⊕ St∨2 )/∆

ant(St∨))[−d]

where we use the composite St∨
∆ant

−−−→ St1⊕ St2 → St2 to identify
∧d ∆ant(St) ∼=

∧d St2, and the module
action of Sym•

X(∆ant(St∨)) on Sym•
X((St∨1 ⊕ St∨2 )/∆

ant(St∨)) factors through the counit. Consider the
composite

Y ×X Y
f̃
−→ Y ×X Z ×X Y

g̃
−→ Y ×X Y

arising from the maps X
f
−→ Z

g
−→ X. By Proposition 4.2.5 we can write

f̃!1Y×XY =
d∧
(∆ant St)⊗ Sym•

X(∆ant St)⊗1÷V(St)
1Y×XZ×XY [−d].

Since Y → X is just a vector bundle, it is clear that ∆Y,!1Y = Sym•
X((St1⊕ St2)/(∆

ant(St))). Thus, we
find that

π∗
1,2L ⊗ π∗

2,3G
∼= f̃!1Y×XY ⊗ g̃∗(∆Y,!1Y ).

Applying π1,3,! = g̃!, we get that G ⋆ L ∼= ∆Y,!1Y , which gives the unit map (4.16) that in addition an
equivalence.

Now, let us construct the co-unit map for L ⋆ G. The object π∗
1,2G ⊗ π∗

2,3L lies over Z ×X Y ×X

Z = V(St)/ ¤�V(St∨1 ⊕ St∨2 ). By step (2) it is the line bundle
∧d St∨1 ⊗(Sym

•
X St∨)[−d], where Sym•

X St∨ is
endowed with the ‘SymX(St∨1 ⊕ St∨2 )-module structure which is right regular for St∨1 and left regular for St∨2 .
Equivalently, let Q∨ = (St∨1 ⊕ St∨2 )/(∆(St∨)), then

π∗
2,3L ⊗ π∗

1,2G =

d∧
St∨1 ⊗Sym

•
XQ∨[−d]

endowed with its natural Sym•
X(St∨1 ⊕ St∨2 )-module structure given by left multiplication. Hence,

L ⋆ G =

d∧
St∨1 ⊗(Sym

•
XQ∨)[−d].
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Now, the diagonal map is equivalent to (4.12), and Proposition 4.2.4 (2) provides the isomorphism ∆!1
X/◊�V(St∨)

∼
−→

L ⋆ G as wanted.
Step 4. Unit and co-unit for G. Now we move to (2). We set X = ∗/GLd, Y = ◊�V(St∨)

and Z = X/V(St). We also write L = G∗(O(1)) and G = G∗(O(−1)) ⊗
∧d St[d]. We want to construct

equivalences (4.16) and (4.17). In the first case, the tensor product π∗
1,2L⊗π

∗
2,3G lies over ¤�V(St∨1 ⊕ St∨2 )/V(St)

with quotient given by the trivial action. By step (2), it is described as the line bundle (Sym≤n
X (St1⊕ St2)⊗∧d St2[d])n endowed with the comodule structure over Sym•

X St∨ defined by the composite of the anti-
diagonal embedding ∆ant = (id,− id) : St → St1⊕ St2 and the left regular action of St1⊕ St2. Then, we
can write

(Sym≤n
X (St1⊕ St2)⊗

d∧
St2[d])n = (Sym≤n

X (∆ant(St))⊗
d∧
St2[d]⊗ Sym≤n

X ((St1⊕ St2)/∆
ant(St)))n,

so that the comodule associated to the limit of (Sym≤n
X ∆ant(St))n is the dual to the module structure of

Sym•
X(∆ant(St∨)). Let g : X/V(St)→ X, Proposition 4.2.5 (1) implies

g∗((Sym
•
X St∨)∨ ⊗

d∧
St[d]) = g∗HomX/V(St)(Sym

•
X St∨, g!Q)

= HomX(g!(Sym
•
X St∨),Q)

= Q.

We deduce that
G ⋆ L = Sym≤n

X ((St1⊕ St2)/∆
ant(St)),

which produces the unit map (4.16) that is clearly an equivalence. Next, we construct the co-unit (4.17),

consider the tensor product π∗
1,2G⊗π

∗
2,3L over◊�V(St∨)/V(St1⊕ St2). By step (2) it consists on the line bundle

(Sym≤n
X (Q) ⊗

∧dQ[d])n where Q = (St1⊕ St2)/∆(St) is endowed with its natural comodule structure of
Sym•

X(St∨1 ⊕ St∨2 ) given by left regular action. Thus, by Proposition 4.2.4 (2) we get that

L ⋆ G = Sym•
X(Q∨).

On the other hand, the diagonal map X/V(St) → X/V(St1⊕ St2) is isomorphic to V(Q)/V(St1⊕ St2) →
X/V(St1⊕ St2), this shows that ∆!1X/V(St)

∼= Sym•
XQ∨ ∼= L ⋆ G as wanted. �

Remark 4.2.8. The statement and proof of Theorem 4.2.7 also apply for fpqc-stacks in classical derived
algebraic geometry. Indeed, the functors and objects involved in the universal case arise from stacks
on schemes endowed with the theory of classical quasi-coherent modules. On the other hand, a careful
bookkeeping of the construction of the units and co-units should prove that the composites (4.16) and (4.17)
are actually the identity and that [Sch23, Lemma 5.11] would not be necessary, we left this computation to
the curious reader.

We finish this section with some classical properties of the Fourier-Moukai transform of Theorem 4.2.7.

Proposition 4.2.9. Let X be a solid D-stack over Q and F a vector bundle of rank d. Consider the
Fourier-Moukai transforms FM1 and FM2 of Theorem 4.2.7. The following hold

(1) Let us write Y = V(F ) and Z = X/◊�V(F∨). Denote ι : X → Y the zero section, and p : Y → X,
f : X → Z, g : Z → X the natural maps. We have the following natural identities of convolutions
in the Lu-Zheng category over X:
(i) F ∗(O(1)) ⋆ ι!1X = 1Z
(ii) ι!1X ⋆ (F ∗(O(−1)) ⊗

∧d
F∨[−d]) =

∧d
F∨[−d] = g!1X .

(iii) (F ∗(O(−1)) ⊗
∧d

F∨[−d]) ⋆ f!f
!1Z = 1Y .

(iv) f!1X ⋆ F ∗(O(1)) = 1Y .

(2) Let us write Y =◊�V(F∨) and Z = X/V(F ). Denote ι : X → Y the zero section, and p : Y → X,
f : X → Z, g : Z → X the natural maps. We have the following natural identities of convolutions
in the Lu-Zheng category over X:
(i) G∗(O(1)) ⋆ ι!1X = 1Z
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(ii) ι!1X ⋆ (G∗(O(−1)) ⊗
∧d

F [d]) =
∧d

F [d] = g!1X .
(iii) (G∗(O(−1)) ⊗

∧d
F [d]) ⋆ f!1X = 1Y .

(iv) f!1X ⋆ G∗(O(1)) = p!1X .

Proof. We only show part (1), part (2) is done in a similar way. The object ι!1X is just ι∗1X ∈ Mod�(Y ),
let us considered it as a morphism in LZX(X,Y ). Since ι is both cohomologically smooth (by Corollary
3.6.10), and weakly cohomologically proper (being affinoid with induced analytic structure), it has right
and left adjoints given by ι∗ι

!1Y = ι∗
∧d

F [−d] and ι∗1Y respectively.

(i) Let us compute F ∗(O(1)) ⋆ ι!1X , the term F ∗(O(1)) is seen as a map Y → Z. Consider the fiber
product X ×X Y ×X Z, by definition F ∗(O(1)) ⋆ ι!1X = π1,3,!(π

∗
1,2ι!1X ⊗ π∗

2,3F
∗(O(1))). We obtain

that

π∗
1,2ι!1X ⊗ π∗

2,3F
∗(O(1)) = Sym•

X(F ) ⊗Sym•
X(F ) OX = OX

endowed with the trivial comodule structure. Since π1,3 : Y ×XZ → Z is the base change of Y → X,
one deduces that F ∗(O(1)) ⋆ ι!1X = 1Z as wanted.

(ii) Next, let us take left adjoints to the expression F ∗(O(1)) ⋆ ι!1X = 1Z , recall that we see ι!1X and
F ∗(O(1)) as maps X → Y and X → Z respectively, so that 1Z is seen as a map X → Z. Since
g : Z → X is cohomologically smooth, 1Z is a right adjoint as a map X → Z with left adjoint given
by g!1X =

∧d
F∨[−d]. One deduces that

ι!1X ⋆ (F ∗(O(−1)) ⊗
d∧

F
∨[−d]) =

d∧
F

∨[−d].

(iii) Let us consider f!1X ∈ Mod�(Z) as a morphism X → Z in the Lu-Zheng category over X. Since f is
cohomologically smooth, it is a left adjoint and has by right adjoint f!f

!1X = f!
∧d

F [d]. Consider
the fiber product X ×X Z ×X Y = Z ×X Y , with projections πY and πZ , then

(F ∗(O(−1)) ⊗
d∧

F
∨[−d]) ⋆ f!f

!1Z = πY,!((F
∗(O(−1)) ⊗

d∧
F

∨[−d])⊗ π∗
Z(f!f

!1Z)).

We have a cartesian square

◊�V(F∨)×X Y Z ×X Y

X Z.

f ′

πZ

f

By proper and smooth base change we have a natural equivalence π∗
Zf!f

!1Z = f ′
! f

′!1Y×XZ , which
by Proposition 4.2.4 (2) yields that

(F ∗(O(−1)) ⊗
d∧

F
∨[−d])⊗ π∗

Zf!f
!1Z = (F ∗(O(−1)) ⊗

d∧
F

∨[−d])⊗ Sym(F∨).

where Sym(F∨) is endowed with the left regular comodule structure. Equivalently, consider the
map

Y ×X Z ×X Y
π2,3
−−→ Z ×X Y,

then

(F ∗(O(−1)) ⊗
d∧

F
∨[−d])⊗ π∗

Zf!f
!1Z = (F ∗(O(−1)) ⊗

d∧
F

∨[−d])⊗ π2,3,!π
∗
1,2F

∗(O(1))

= π2,3,!(π
∗
2,3(F

∗(O(−1)) ⊗
d∧

F
∨[−d])⊗ π∗

1,2F
∗(O(1))).
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One gets that

(F ∗(O(−1)) ⊗
d∧

F
∨[−d]) ⋆ f!f

!1Z = πY,!π2,3,!(π
∗
2,3(F

∗(O(−1)) ⊗
d∧

F
∨[−d])⊗ π∗

1,2F
∗(O(1)))

= πY,!π1,3,!(π
∗
2,3(F

∗(O(−1)) ⊗
d∧

F
∨[−d])⊗ π∗

1,2F
∗(O(1)))

= πY,!(F
∗(O(−1)) ⊗

d∧
F

∨[−d]) ⋆ F ∗(O(1))

= πY,!∆Y,!1Y

= 1Y ,

proving what we wanted.
(iv) For the last identity, we take right adjoints to the identity (F ∗(O(−1))⊗

∧d
F∨[−d])⋆f!f

!1Z = 1Y .
Indeed, 1Y is seen as a map X → Y in the Lu-Zheng category over X, and since p : Y → X is
weakly cohomologically proper, 1Y is a left adjoint with right adjoint given by itself. Similarly, since
f : X → Z is cohomologically smooth, f!f !1Z is a left adjoint when seen as a map X → Z, with
right adjoint given by f!1Z . One obtains the identity

f!1Z ⋆ F ∗(O(1)) = 1Y .

�

Corollary 4.2.10. Keep the notation of Proposition 4.2.9.
(1) In the conventions of part (1) there are natural equivalences of functors

(i) FM1 ◦ ι∗ = g∗.
(ii) ι∗ ◦ FM−1

1 = g!(−⊗ g!1X).
(iii) FM−1

1 ◦ f!(− ⊗ f !1Z) = p∗.
(iv) f∗ ◦ FM1 = p!.

(2) In the conventions of part (2) there are natural equivalences of functors
(i) FM2 ◦ ι

∗ = f!.
(ii) ι∗ ◦ FM−1

2 = g!(−⊗ g!1X).
(iii) FM−1

2 ◦ f! = p∗.
(iv) f∗ ◦ FM2 = p!(−⊗ p!1X).

Proof. This follows by translating the kernels in the Lu-Zheng category over X to their associated functors
by convolution. �

Example 4.2.11. We now explain the relation of Cartier duality and the Beilinson t-structure. Consider
the action of Gm on Ga by multiplication, the map Ga/Gm → BGm is the standard line bundle over BGm

and its Cartier dual over BGm is the quotient stack B(Gm ⋉“Ga) where Gm acts on “Ga by multiplication.
Similarly, the Cartier dual of “Ga/Gm is B(Gm ⋉ Ga). The category Fil(Mod(Q)) has two different t-
structures, the standard and the Beilinson t-structure, it turns out that they are actually the natural
t-structures of the modules over the stacks Ga/Gm and B(Gm⋉”Ga) under the Cartier duality isomorphism
respectively.

4.2.1. Solid vector bundles. We finish the section with some short discussion about a variant of vector
bundles for solid D-stacks, namely, solid vector bundles:

Definition 4.2.12. We let GLd,� be the analytic spectrum of the ring Z[Xi,j, Y : 1 ≤ i, j ≤ d]�/(Y det(Xi,j)−
1). The category of solid vector bundles of rank d on solid D-stacks is the slice category ShD(AffZ�

)/[∗/GLd,�].
A solid vector bundle is denote by F�, where F is the underlying vector bundle associated to the composite
X → ∗/GLd,� → ∗/GLd. Let St be the standard representation of GLd, then (Sym•

Z St
∨)� has a natural

action of GLd,�, which defines an analytic space V(St)� → ∗/GLd. For a solid vector bundle F� over a
stack X, we let (Sym•

XF∨)� and V(F )� be the pullback of (Sym•
Z St

∨)� and V(St)� along X → ∗/GLd

respectively.

We have a partial analogue of Proposition 4.2.4
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Proposition 4.2.13. Let X be a solid stack over Z� and F� a solid vector bundle of rank d. Let f :

V(F )� → X. Then f is cohomologically smooth and there are natural equivalences f !1X ∼= f∗
∧d

F∨[d].

Proof. This follows the same proof of Proposition 4.2.4 after taking some modifications on the idempotent
algebras Di. Indeed, using the same notation as loc. cit. consider the idempotent Z[T ]-algebras Di =
Z[[T−1

i ]][T ], and let C be its union in the sense of locale. Then, V(St)� is the open complement of C in
V(St), and we can compute

f!1V(St)� = [Z[T ]→ C].

An explicit calculation gives that

f!1V(St)� = (T1 · · ·Td)
−1Z[[T−1

1 , · · · , T−1
d ]][−d].

Taking duals one finds that
f∗f

11X = (T1 · · · Td)⊗ Z[T ][d],

and that f !1X = f∗
∧d St∨[d]. �

4.3. Analytic Cartier duality for vector bundles. We have proven an algebraic Cartier duality for
vector bundles, in this section we shall study three additional incarnations of this phenomena in rigid
geometry for Tate stacks over Qp, for some fixed prime p. Nevertheless, some of the constructions and
statements still make sense for Tate stacks over (R,R+) = (Z((π)),Z[[π]]), we will make explicit this
distinction when necessary.

4.3.1. Cartier duality for unitary overconvergent vector bundles. In Proposition 4.1.2 we saw that the cat-
egory of vector bundles of rank d on solid D-stacks is equivalent to the category of D-stacks over ∗/GLd.
Therefore, in order to construct different incarnations of vector bundles it suffices to construct different
incarnations of the group GLd.

Definition 4.3.1. Let R〈T 〉† = lim−→ε→0+
R〈πεT 〉 be the overconvergent algebra defining the closed disc of

radius 1.
(1) We define the overconvergent linear group GL

†
d to be the analytic spectrum of the algebra

R〈Xi,j, T : 1 ≤ i, j ≤ d〉†/(det(Xij)T − 1)

representing invertible matrices A such that |A| ≤ |π−ε| and |A−1| ≤ |π−ε| for all ε > 0.
(2) We define the category of unitary overconvergent vector bundles of rank d on analytic D-stacks over

R� to be the slice category ShD (Aff
b
R�

)
/[∗/GL

†
d]
.

(3) Given an analytic D stack X over R�, and a vector bundle F of rank d defined by a map f : X →
∗/GLd, a lattice F+ of F is a factorization

X → ∗/GL
†
d → ∗/GLd.

We also say that F+ is an unitary overconvergent vector bundle over X.

Construction 4.3.2. Let X be an Tate stack over R�. Let f : X → ∗/GL
†
d be a unitary overconvergent

vector bundle of rank d, and let F denote the vector bundle associated to the composite X → ∗/GL
†
d →

∗/GLd. Similarly as for algebraic vector bundles, we can construct two different geometric incarnations
that are analogue to V(F ) and ’V(F ). Let St be the standard representation of GL

†
d with canonical basis

e1, . . . , ed. Let V(St+) ⊂ V(St) be the closed subspace given by the analytic spectrum of R〈e∨1 , . . . , e
∨
d 〉

†

where e∨i ∈ St∨ is the dual basis. By construction, V(St+) ⊂ V(St) admits a descent datum for the action
of GL

†
d, and thus it defines an analytic space over ∗/GL

†
d. We define V(F+) := f∗V(St+) and call it the

closed overconvergent ball of radius 1 in V(F ). Dually, let V̊(F+) :=
⋃

ε>0 π
εV(F+) be the unit open ball

in V(F ). We have a series of inclusions

’V(F ) ⊂ V̊(F+) ⊂ V(F+) ⊂ V(F ).

Remark 4.3.3. The map V̊(F+)→ V(F ) is an open analytic inclusion, namely, locally in the D-topology
it is nothing but the inclusion of the open unit polydisc in the algebraic affine space. In particular, we can
always localize modules over Sym•

X(F∨) to solid sheaves over V̊(F+).
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Definition 4.3.4. Let F+ be an overconvergent vector bundle over X. We let Sym†
X(F∨,+) denote the

algebra of functions of V(F+) seen as an object in Mod�(X). We also let ˚SymX(F∨,+) denote the global
sections over X of V̊(F+).

We now prove the analogue of Proposition 4.2.4

Proposition 4.3.5. Let X be an analytic D-stack over R and let F+ be a unitary overconvergent vector
bundle over X.

(1) The map V(F+)→ X is weakly cohomologically proper.
(2) The map f : V̊(F+) → X is cohomologically smooth and there is a natural isomorphism f !1X =

f∗
∧d

F∨[d]. If in addition X is defined over Qp then f!1V̊(F+) =
∧d

F ⊗ Sym†
X(F+)[−d]. In

particular, f!f !1X = Sym†
X(F+).

Proof. Part (1) is clear since V(F+) is the relative analytic spectrum of the OX -algebra Sym†
X(F+)

endowed with the induced analytic structure.
For part (2), smoothness of f follows from Proposition 3.6.13. The computation of f !1X and f!1V̊(F+)

follows the same lines of the proof of Propositions 4.2.4 and 4.2.13: we first reduce to the univesal case
X = ∗/GL

†
d and F+ = St+, we let e1, . . . , ed be the standard basis of St+ with dual basis T1, . . . , Td. We

then define the idempotent R[T1, . . . , Td]-algebras Di = R〈T−1
i 〉

†[T1, . . . , Td]. The same computations will
show that

f!1V̊(St+) = (T1 · · ·Td)
−1R〈T−1

1 , . . . , T−1
d 〉

†[−d] =
d∧
St⊗( ˚SymX(St∨))∨[−d].

If X is defined over Qp this is precisely
∧d St⊗Sym†

X(St+)[−d]. In general, taking duals one gets that

f∗f
!1X =

d∧
St∨⊗ ˚SymX(St∨)[d],

localizing at V̊(F+) one gets that f !1X = f∗
∧d St∨[d] as wanted. �

Before giving a proof of the analogue of Proposition 4.2.5, we need to find suitable de Rham and Koszul
resolutions as in Lemma 4.2.3.

Lemma 4.3.6. Let X be an Tate stack over Qp and let F+ be a unitary overconvergent vector bundle of
rank d over X.

(1) There is a natural de Rham resolution of OX as Sym†
X(F+)-comodule given by the complete de-

creasing filtration

OX → Sym†
X(F∨,+)

d
−→ Sym†

X(F∨,+)⊗F
∨ d
−→ · · ·

d
−→ Sym†

X(F∨,+)⊗
d∧

F
∨.

(2) There is a natural Koszul resolution of OX as Sym†
X(F+)-module given by the complete increasing

filtration

Sym†
X(F+)⊗

d∧
F → · · · → Sym†

X(F+)⊗F → Sym†
X(F )→ OX ,

whose dual is the de Rham complex for ˚SymX(F∨).

Proof. By base change it suffices to treat the universal case X = ∗/GL
†
d and F+ = St+. We have GL

†
d-

equivariant de Rham and Koszul complexes

0→ Qp → Sym†
X(St+,∨)

d
−→ Sym†

X(St+,∨)⊗ St∨
d
−→ · · ·

d
−→ Sym†

X(St+,∨)⊗
d∧
St∨ → 0

0→ Sym†
X(St∨,+)⊗

d∧
St∨ → · · · → Sym†

X(St∨,+)⊗ St∨ → Sym†
X(St∨,+)→ Qp → 0

(4.18)
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and

0→ Qp → ˚SymX(St+)
d
−→ ˚SymX(St+)⊗ St

d
−→ · · ·

d
−→ ˚SymX(St+)⊗

d∧
St→ 0

0→ ˚SymX(St+)⊗
d∧
St→ · · · → ˚SymX(St+)⊗ St→ ˚SymX(St+)→ Qp → 0.

(4.19)

By the Poincaré lemma for open unit polydiscs [Tam15, Lemma 26], the de Rham sequences in both (4.18)
and (4.19) are exact (one can write Sym†

X(St∨,+) as filtered colimit of functions in open unit polydiscs).
Moreover, the Koszul resolutions in both equations are duals to the de Rham resolutions via the naive duality
between nuclear Fréchet and LB spaces of compact type, cf. [RJRC22, Theorem 3.40], one deduces that
the Koszul resolutions are also exact. Then, the de Rham complex of (4.18) is a complex of Sym†

X(St∨,+)-
comodules proving (1). Similarly, the Koszul resolution of (4.19) is also a complex of Sym†

X(St+)-modules
obtaining (2). �

Proposition 4.3.7. Let X be an analytic D-stack over Qp and let F+ be a unitary overconvergent vector
bundle of rank d over X.

(1) There are natural equivalences

Mod(X/V(F )) = CoMod
Sym†

X(F∨,+)
(Mod(X))

and
Mod(X/V(F )) = Mod

Sym†
X(F+)

(Mod(X)).

(2) Consider the maps X
f
−→ X/V(F+)

g
−→ X. Then f is a descendable D-cover and g is both weakly

cohomologically proper and cohomologically smooth. Moreover, there is a natural equivalence g!1X =∧d
F [d].

(3) Consider the maps X
f
−→ X/V̊(F+)

g
−→ X. Then f is a smooth D-cover, g is cohomologically

smooth, and there is a natural equivalence g!1X =
∧d

F [−d]. Moreover, g is co-smooth with proper
dual Pg(1X/V̊(F+)) = 1X/V̊(F+)[−2d].

Proof. The proof is exactly the same of Proposition 4.2.5 where Proposition 4.2.4 is replaced by Proposition
4.3.5, and the de Rham and Koszul resolutions are those of Lemma 4.3.6. �

Theorem 4.3.8 (Cartier duality for open and closed discs). Let X be an analytic D over Qp and F a
vector bundle of rank d over X.

(1) There is a natural bi-linear map

F : V(F+)×X X/V̊(F∨,+)→ ∗/Gm

such that F ∗(O(1)) is an isomorphism in the Lu-Zheng category, considered in LZX(V(F+),X/V̊(F∨,+)).
Furthermore, the inverse of F ∗(O(1)) is naturally isomorphic to F ∗(O(−1)) ⊗OX

∧d
F∨[−d].

(2) There is a natural bi-linear map

G : V̊(F∨,+)×X X/V(F+)→ ∗/Gm,

such that G∗(O(1)) is an isomorphism in the Lu-Zheng category considered in LZX(V̊(F∨,+),X/V(F+)).
Furthermore, the inverse of G∗(O(1)) is naturally isomorphic to G∗(O(−1)) ⊗

∧d
F [d].

In particular, we have analogue Fourier-Moukai isomorphisms as in (4.14) and (4.15). Moreover, the
analogues of Proposition 4.2.9 and Corollary 4.2.10 hold.

Proof. The proof is totally analogue to the proof of Theorem 4.2.7, we only explain the construction of
the vector bundles F ∗(O(1)) and G∗(O(1)). By functoriality we can always reduce to the universal case
X = ∗/GL

†
d and F+ = St+. For F , we need to construct a line bundle on V(F+)/V̊(F∨,+), where the

quotient is for the trivial action. We take F ∗(O(1)) as the line bundle Sym†
X(St+,∨) endowed with the (left)

multiplication map
Sym†

X(St+,∨)⊗ Sym†
X(St+,∨)→ Sym†

X(St+,∨).



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 83

Similarly, G∗(O(1)) is the line bundle on V̊(St∨,+)/V(St) induced by the localization of O(V̊(St∨,+)) on
V̊(St∨,+) endowed with the Sym†

X(St+,∨)-comodule structure given by the adjoint of the (left) multiplication
map

O(V̊(St∨,+))⊗OX
O(V̊(St∨,+))→ O(V̊(St∨,+)).

Finally, the last statement follows by the analogue computations of Proposition 4.2.9 and Corollary 4.2.10.
�

4.3.2. Cartier duality for analytic vector bundles. We now state a Cartier duality for the analytification
of vector bundles. The restriction of the algebraic group GLd to Tate stacks over R is represented by its
analytification GL

an
d as an adic space, see Definition 2.7.24. We call ShD (Aff

b
R�

)/[∗/GL
an
d ] the category of

analytic vector bundles of rank d, note however that the data of an analytic vector bundle for a Tate stack
is the same as the data of an algebraic vector bundle (this is not true for general solid stacks).

Construction 4.3.9. Let X be an Tate stack over X, and let f : X → ∗/GL
an
d be an analytic vector

bundle of rank d. Let St be the standard vector bundle over ∗/GL
an
d , then the analytification of the algebra

Sym•
X(St∨) admits a group action of GL

an
d and defines an analytic space over ∗/GL

an
d that we denote by

V(St)an. We let V(F )an := f∗V(St)an be the analytification of V(F ). Dually, let ι : X → V(F ) be the
zero section, we let V(F )† be the overconvergent neighbourhood of ι, equivalently, we let

V(F )† =
⋂

ε→∞

πεV(F+)

for any lattice F+ ⊂ F that exists locally in the D-topology.

Definition 4.3.10. Let X be a Tate stack over R� and let F be a vector bundle of rank d over X. We
let Sym†

X(F∨) be the algebra over OX defining the analytic space V(F )†. Similarly, we let Syman
X (F∨)

denote the global sections over X of V(F )an.

Proposition 4.3.11. Let X be an analytic D-stack over R� and let F be an analytic vector bundle over
X.

(1) The map V(F )† → X is weakly cohomologically proper.
(2) The map f : V(F )an → X is cohomologically smooth and there is a natural isomorphism f !1X =

f∗
∧d

F∨[d]. If in addition X is defined over Qp, then there is a natural isomorphism f!1V̊(F+) =∧d
F ⊗ Sym†

X(F )[−d]. In particular, f!f
!1X = Sym†

X(F ) and the localization of Sym†
X(F ) in

V(F )an is f !1X .

Proof. Part (1) is clear since V(F )† is the relative analytic spectrum of the OX-algebra Sym†
X(F ) endowed

with the induced analytic structure.
For part (2), smoothness of f smoothness follows from Proposition 3.6.13. The computation of f !1X and

f!1V̊(F+) follows the same lines of the proof of Propositions 4.2.4 and 4.2.13 where we use the idempotent

R[T ]-algebra R{T−1}†[T ] instead, namely, the analytification A
1,an
R ⊂ A

1,alg
R is the complement of the

idempotent algebra R{T−1}†[T ] . We leave the details to the reader. �

As we saw before, a key point in the construction of the Cartier duality is having available the de Rham
and Koszul resolutions:

Lemma 4.3.12. Let X be an Tate stack over Qp and let F be a vector bundle of rank d over X.

(1) There is a natural de Rham resolution as Sym†
X(F∨)-comodule given by the complete decreasing

filtration

OX → Sym†
X(F∨)

d
−→ Sym†

X(F∨)⊗F
∨ d
−→ · · ·

d
−→ Sym†

X(F∨)⊗
d∧

F
∨.

(2) There is a natural Koszul resolution as Sym†
X(F∨)-module given by the complete increasing filtration

Sym†
X(F ) ⊗

d∧
F → · · · → Sym†

X(F )⊗F → Sym†
X(F )→ OX ,

whose dual is the Rham complex for Syman
X (F∨).
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Proof. The same proof of Lemma 4.3.6 applies; note that the restriction to Tate stacks over Qp is for the
Poincaré lemma to hold. �

Theorem 4.3.13 (Analytic Cartier duality for vector bundles). Let X be a Tate stack over Qp and let F

be a vector bundle of rank d over X. Then the analogue of Propositions 4.2.5 and 4.2.9, Theorem 4.2.7 and
Corollary 4.2.10 hold by replacing the following objects:

• V(F ) for V(F )†,

• ◊�V(F∨) for V(F∨)an,
• Sym•

X St∨ for Sym†
X St∨,

• ‘SymX(St) by Syman
X (St).

Proof. The proof follows the same lines of the cited references after some minor adaptations, we left the
details to the reader. �

4.3.3. Cartier duality for locally analytic Zp-vector bundles. We finish this section with a new Cartier duality
that is closely related with the theory of solid locally analytic representations of [RJRC23]. Let Zp be the
ring of p-adic integers seen as a p-adic Lie group, we let C la(Zp,Qp) denote the space of locally analytic
functions of Zp, and denote by Zla

p its analytic spectrum. Let Dla(Zp,Qp) := HomQp
(C la(Zp,Qp),Qp) be

the locally analytic distribution algebra of Zp. By a theorem of Amice, the algebra Dla(Zp,Qp) is isomorphic
to the global sections of the open unit disc centered at 1, namely “Gm,η := 1 + G̊a ⊂ Gan

m . The algebra
Dla(Zp,Qp) can be written as a limit of analytic distribution algebras Dh(Zp,Qp), which are the dual of
functions of the rigid group Zp + phG̊a,Qp ⊂ Gan

a,Qp
. The rings Dh(Zp,Qp) correspond to suitable closed

overconvergent discs in “Gm,η of radius p−b(h) with b(h) → 0+ as h → ∞. By [RJRC23, Theorem 4.1.7],
there is a natural equivalence between the category of solid locally analytic representations of Zp and that
of quasi-coherent shaves on “Gm,η. Moreover, under this equivalence Zp + phG̊a,Qp-analytic representations
correspond to modules over Dh(Zp,Qp), which is an idempotent algebra on “Gm,η. Our next goal is to
improve this statement to a Cartier duality theorem in a relative setting for a suitable notion of locally
analytic Zp-vector bundle. To make this concrete we first need a construction.

Lemma 4.3.14. There is a natural action Zla
p ×“Gm,η → “Gm,η associated to the adjoint of the multiplication

map Dla(Zp,Qp) ⊗Qp,�
Dla(Zp,Qp) → D

la(Zp,Qp) making “Gm,η an Zla
p -module. At the level of points this

action corresponds to (a, χ) 7→ χa.

Proof. Let h > 0 and let Dh(Zp,Qp) be the h-analytic distribution algebra. The multiplication map

Dh(Zp,Qp)⊗Qp,�
Dh(Zp,Qp)→ D

h(Zp,Qp)

has by adjoint a map
Dh(Zp,Qp)→ HomQp

(Dh(Zp,Qp),D
h(Zp,Qp)).

Since the map Dh′
(Zp,Qp)→ D

h(Zp,Qp) is of trace class for h′ > h, the composite

Dh′

(Zp,Qp)→ HomQp
(Dh′

(Zp,Qp),D
h′

(Zp,Qp))→ HomQp
(Dh′

(Zp,Qp),D
h(Zp,Qp))

factors through C la(Zp,Qp)⊗Qp,�
Dh(Zp,Qp). Taking colimits as h→ h

′,−, one gets a map

Dh′

(Zp,Qp)→ C la(Zp,Qp)⊗Qp,�
Dh′

(Zp,Qp).

One easily checks that this is a morphism of algebras that endows Dh′
(Zp,Qp) with a C la(Zp,Qp)-comodule

structure, namely, it is nothing but the orbit map of Dh′
(Zp,Qp) as locally analytic representation. One

checks that these maps are compatible for h′ > 0, defining the Zla
p -module structure Zla

p ×“Gm,η → “Gm,η as
wanted. �

Construction 4.3.15. We define the category of locally analytic Zp-vector bundles of rank d to be the slice
category ShD(Aff

b
Qp

)[∗/GLd(Zp)la] where GLd(Zp)
la is the analytic group space associated to the Hopf algebra

of locally analytic functions of GLd(Zp). Let St+ = Zd
p be the standard representation over ∗/GLd(Zp)

la,
then the locally analytic Lie group St+,la has a natural action of ∗/GLd(Zp)

la that defines an analytic space



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 85

V(St+,la). For X → ∗/GLd(Zp)
la, with associated vector bundle F induced by f : X → ∗/GLd(Zp)

la →
∗/GLd, we denote by F+,la the Zp-locally analytic vector bundle. We let V(F+,la) := f∗V(St+,la) be the
geometric incarnation of F+,la. Let “Gm,η be the p-adic generic fiber of the formal multiplicative group at
1 endowed with its Zla

p -module structure. We define the dual space of V(F+,la) to be “Gm,η(F
∨,+,la) :=

V(F∨,+,la)⊗Zla
p

“Gm,η.

Definition 4.3.16. Let F+,la be a locally analytic Zp-vector bundle of rank d associated to a map X →

∗/GLd(Zp)
la. We let Symla(F∨,+) denote the OX-algebra of functions of the space V(F+,la). We call

Symla
X(F∨,+) the algebra of locally analytic functions of F+,la. We denote by SymD

X(F∨,+) the global
sections over X of the dual space “Gm,η(F

+), we call this object the algebra of locally analytic distributions
of F∨,+,la.

Proposition 4.3.17. Let X be an analytic D-stack over Qp and let F+,la be a locally analytic Zp-vector
bundle over X.

(1) The map V(F+,la)→ X is weakly cohomologically proper.
(2) The map f : “Gm,η(F

+,la) → X is cohomologically smooth and there are natural isomorphisms
f !1X = f∗

∧d
F∨[d] and f!1V̊(F+) =

∧d
F ⊗Symla

X(F+)[−d]. In particular, f!f !1X = Symla
X(F+).

Proof. Part (1) is clear since V(F+,la) is the relative analytic spectrum of the OX -algebra Symla
X(F+)

endowed with the induced analytic structure.
For part (2), smoothness of f follows from Proposition 3.6.13. The computation of f !1X and f!1V̊(F+)

follows the same lines of the proof of Propositions 4.2.4 and 4.2.13 after we modify the idempotent algebras.
For this, let e1, . . . , ed be the canonical basis of St. For i = 1, . . . , d let Di := Dla(St,Qp)〈1/ei〉

† =

lim
−→ε→0+

Dla(St,Qp)〈
pε

ei
〉. Then Di is an idempotent Dla(St,Qp)-algebra, we let C be the dg algebra obtained

by taking the “union” of D1, . . . ,Dd. Then, the space “Gm,η(St) is the open subspace of AnSpecDla(St,Qp)
obtained as the complement of the idempotent algebra C. Therefore, we can write

f!1“Gm,η(St)
= [Dla(St,Qp)→ C].

An explicit power series computation shows that f!1“Gm,η(St)
is GLd-equivariantly isomorphic to C la(St,Qp)⊗∧d St∨[−d]. Let us see that it has the natural comodule action of C la(St,Qp). For this, it suffices to compute

its dual since it is a LB space of compact type. But the dual is given by

f∗f
!1X =

d∧
St∨⊗Dla(St,Qp)[d],

this shows that f !1X = f∗
∧d St∨[d], and so

f∗f
!1X = (f∗1“Gm,η(St)

)⊗
d∧
St∨[d],

proving that the algebra structure of Dla(St,Qp) is the one arising from “Gm,η(St) as wanted. �

In order to obtain an analogue of Theorem 4.2.7, we need to have access to an analogue of the de Rham
and Koszul resolutions of OX of Lemma 4.2.3:

Lemma 4.3.18. Let X be an analytic D-stack over Qp and F+,la a locally analytic Zp-vector bundle over
X of rank d.

(1) We have a natural resolution as Symla
X(F∨,+)-comodule given by a decreasing complete filtration

OX → Symla
X(F∨,+)

d
−→ Symla

X(F∨,+)⊗F
∨ d
−→ · · ·

d
−→ Symla

X(F∨,+)⊗
d∧

F
∨, (4.20)

whose dual is the Koszul resolution

SymD
X(F ) ⊗

d∧
F → · · · → SymD

X(F )⊗F → SymD
X(F )→ OX .
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(2) We have a natural resolution as Symla
X(F∨,+)-module given by an increasing complete filtration

Symla
X(F+)⊗

d∧
F → · · · → Symla

X(F+)⊗F → Symla
X(F )→ OX , (4.21)

whose dual is the Rham complex

OX → SymD
X(F∨)⊗F

∨ d
−→ · · ·

d
−→ SymD

X(F∨)⊗
d∧

F
∨.

Proof. It suffices to prove the universal case with X = ∗/GLd(Zp)
la and F+,la = Stla. Recall that we have

an equivalence of Hopf algebras Zp,�[Zp] = Zp[[1−X]] sending the unit [1] ∈ Zp to X ∈ Zp[[1−X]]. Under
this equivalence Dla(Zp,Qp) becomes isomorphic to lim

←−h→∞
Qp〈

1−X
p1/h
〉. One obtains a GLd-equivariant

Koszul resolution induced by left multiplication of St:

0→ Dla(St,Qp)⊗
d∧
St→ · · · → Dla(St,Qp)⊗ St→ Dla(St,Qp)→ Qp → 0.

taking duals one gets the resolution (4.20). It is clear that this is a resolution as C la(St,Qp)-comodules
and Dla(St,Qp)-modules.

For part (2) we argue in the similar way, this time knowing that the de Rham complex

0→ Qp → D
la(St,Qp)

d
−→ Dla(St,Qp)⊗ St∨

d
−→ · · ·

d
−→ Dla(St,Qp)⊗

d∧
St∨ → 0

is exact by the Poincaré Lemma, GLd-equivariant, and a complex as Dla(St,Qp)-comodule and C la(St,Qp)-
module. Note that, after fixing a basis e1, . . . , ed of St, the resolution (4.21) is the Koszul resolution of the
regular sequence (Xe1 − 1, . . . ,Xed − 1), where Xei − 1 is the projection to the i-th component. �

Remark 4.3.19. The resolution of Lemma 4.3.18 (1) is not the de Rham complex of Symla
X(F∨,+). It is

actually obtained by the Lazard-Serre resolution of the Iwasawa algebra, see [Koh11, Theorem 4.4].

Theorem 4.3.20 (Cartier duality for locally analytic Zp-lattices). Let X be an analytic stack over Qp and
let F+,la be a locally analytic Zp-vector bundle over X. Then the analogue of Propositions 4.2.5 and 4.2.9,
Theorem 4.2.7 and Corollary 4.2.10 hold after replacing the following objects:

• V(F ) for V(F+,la),

• ◊�V(F∨) for “Gm,η(F
∨,+,la),

• Sym•
XF∨ for Symla

X(F∨,+),
• ‘SymX(F ) by SymD

X(F+).

Proof. The same proof of the references applies in this context after making two modifications: the first
one is replacing Lemma 4.2.3 for Lemma 4.3.18. The second is to provide the suitable compactifications of
f : “Gm,η(St

+)→ ∗ that are used to compute f!f
!Qp as in Proposition 4.2.4. �

Remark 4.3.21. There are at least two different generalizations of the Cartier duality for locally analytic
Zp-vector bundles. The first consists in taking a finite extension L/Qp and considering instead L-locally
analytic OL-vector bundles; this theory should be a consequence of what we have done previously since we
have a fiber sequence of group objects over L:

(Lie k)† → O
Qp−la
L → Ola

L ,

where OQp−la
L is the group OL seen as a p-adic Lie group over Qp, and k = ker(LieQp OL⊗QpL→ LieLOL).

A different and more interesting generalization is the passage from locally analytic Zp-vector bundles to
locally analytic Qp-vector bundles. In this case, the Cartier dual of a locally analytic vector bundle F la

should be given by the “universal cover ” ‹“Gm,η(F
∨), where ‹“Gm,η(F

∨) = lim
←−p
“Gm,η(F

∨,+) is the limit as

analytic spaces of multiplication by p of the dual of a Zp-lattice F+,la ⊂ F la (such a lattice exists locally
in the D-topology).
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5. Algebraic and analytic de Rham stacks

In this section we construct the algebraic and analytic (filtered) de Rham stacks for derived Tate adic
spaces over Qp. Following [Bha22], we will obtain the Hodge-filtration of the de Rham cohomology by
reading the geometry of these stacks. We shall prove that both the algebraic and analytic de Rham
stacks have a nice theory of six functors for morphisms locally of solid finite presentation of derived Tate
adic spaces. Finally, we compute the dualizing sheaves of both filtered de Rham stacks for solid smooth
morphisms by applying a deformation to the normal cone argument as in [Man22b] and [CS22].

5.1. The algebraic de Rham stack. The (algebraic) de Rham stack was introduced by Simpson [Sim96,
ST97], and plays a fundamental role in the geometric Langlands correspondence, cf. [GR14]. In the
following we will define algebraic de Rham prestacks in the realm of analytic geometry over Q. We then
specialize to solid prestacks and show that the theory of D-modules obtained in this way admits a good
behaved six-functor formalism.

5.1.1. General definition.

Definition 5.1.1. Let PSh(AnRingopQ ) be the category of prestacks on analytic rings over Q. We define
the following objects

(1) Let X ∈ PSh(AnRingopQ ). The absolute filtered algebraic de Rham prestack of X is the prestack of
anima over A1/Gm given by

Xalg
dR+(O(1)→ A) = lim

−→
I→A

X(cone(I ⊗ O(−1)→ A)),

where I runs over all the uniformly nilpotent ideals of A, see Definition 2.5.8. We define the absolute
de Rham (resp. Hodge) prestack Xalg

dR (resp, Xalg
Hodge) to be the pullback along ∗ = Gm/Gm → A1

Gm

(resp. the pullback along ∗/Gm → A1/Gm). When restricted to solid rings, the filtered de Rham
stack is the D-sheafification of the filtered de Rham prestack (resp. for the de Rham and the Hodge
stacks).

(2) For a morphism X → Y of prestacks on analytic rings over Q we let Xalg
dR+,Y be the pullback

Xalg
dR+,Y

Y × A1/Gm

Xalg
dR+ Y alg

dR+ .

Similarly, we define Xalg
dR,Y and Xalg

Hodge,Y to be the pullback of Xalg
dR+ to Y and Y ×∗/Gm respectively.

The following proposition describes some basic properties of the algebraic de Rham stack.

Proposition 5.1.2. Let f : X → Y be a morphism of prestacks on AnRingQ.

(1) Suppose that f is formally étale, then the natural map X × A1/Gm → Xalg
dR+,Y

is an equivalence.
(2) Suppose that f is formally smooth and let TX/Y = AnSpecX Sym•

XLX/Y . The following hold
(a) The map X × A1/Gm → Xalg

dR+,Y
is an epimorphism.

(b) There is a natural equivalence Xalg
Hodge,Y = (X × ∗/Gm)/’TX/Y (−1).

(3) The formation of X 7→ Xalg
dR+ commutes with small colimits and finite limits of prestacks.

Proof. (1) Let A ∈ AnRingQ, and let O(−1) → A be a generalized Cartier divisor and I → A an
uniformly nilpotent ideal (cf. Definition 2.5.8). Let B = cone(I ⊗ O(−1) → A), then A → B is a
nilpotent thickening and there is a natural equivalence

(X × A1/Gm)(A)
∼
−→ X(B)×Y (B) (Y × A1/Gm)(A) = (Xalg

dR+ ×Y alg

dR+
(Y × A1/Gm))(A) (5.1)

proving what we wanted.
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(2) It is clear that if f is formally smooth then X × A1/Gm → Xalg
dR+ is an epimorphism, namely, the

map (5.1) is surjective by definition of formally smoothness; this shows (a). To prove part (b), note
that A-points of Xalg

Hodge,Y are given by

Xalg
Hodge,Y (A) = lim

−→
I⊂A

X(I ⊗ O(−1)[1] ⊕A)×Y (I⊗O(−1)[1]⊕A) (Y × ∗/Gm)(A).

Thus, given η ∈ Y (A), the fiber of Xalg
Hodge,Y → Y × ∗/Gm at η × ∗/Gm is given by

lim
−→
I⊂A

MapMod≥0(A)(η
∗LX/Y , I ⊗ O(−1)[1]) = (η∗L∨

X/Y ⊗Nil(A)⊗ O(−1))[1])(∗),

which shows that
Xalg

Hodge,Y = (X × ∗/Gm)/’TX/Y (−1).

(3) Finally, by definition at the level of points, X 7→ Xalg
dR+ commutes with small colimits. The com-

mutation with finite limits follows from the definition and the fact that the system of uniformly
bounded ideals of a ring A is filtered.

�

Remark 5.1.3. There is a different definition for the de algebraic (filtered) de Rham prestack, namely, the
prestack given by

Xalg′

dR+(O(1) → A) = X(cone(Nil(A)⊗ O(−1)→ A)),

see §2.5 for the definition of the condensed nil-radical. The apparent advantage of this definition is that
the formation of X 7→ Xalg′

dR+ commutes with small limits and colimits of prestacks, however, after taking
sheafifications with respect to some Grothendieck topology the formation of the de Rham stack will only
commutes with small colimits and finite limits. The disadvantage of this definition is that it is not clear
whether formally smooth maps produce epimorphisms. Nevertheless, for all the spaces in practice both
constructions are the same after a suitable sheafification, eg. smooth morphisms of classical derived schemes
(this follows from the fact that the nilpotent radical of a finitely generated algebra is nilpotent), and solid
smooth morphisms of derived Tate adic spaces (this follows from Proposition 3.7.5 as Nil(A) ⊂ Nil†(A) for
a bounded affinoid ring).

Another feature of the de Rham stack is its relation with formal completions of Zariski closed immersions.

Proposition 5.1.4. Let X = AnSpecB → Y = AnSpecA be a morphism of analytic affine spaces over Q

surjective on π0, and such that B has the induced analytic structure from A (i.e. a Zariski closed immersion).
Let I = [A → B] and suppose that there is an extremally disconnected set S and a map S → I such that
A[S]→ I is surjective on π0. Then the algebraic de Rham stack Xalg

dR,Y is the full substack of Y given by

Xalg
dR,Y = lim

−→
n

Y ×AnSpecZ[N[S]] AnSpecZ[N[S]]
L
n.

We call Xalg
dR,Y the formal completion of Y along X and denote it by “Y X .

Proof. Let us write “Y X := lim
−→n

Y ×AnSpecZ[N[S]] AnSpecZ[N[S]]
L
n, by Proposition 2.5.7 the map “Y X → X

is an immersion. Since for any analytic ring C the ideal of the map C → π0(C) is uniformly nilpotent,
the algebraic de Rham prestack is the right Kan extension of its restriction to static analytic rings. In
particular, XdR and YdR are just presheaves on sets and YdR → XdR is an immersion. Thus, to show that
Xalg

dR,Y = “Y X , it suffices to check at the level of points in static analytic rings. Let J → C be an uniformly
nilpotent ideal of an static analytic ring C, suppose we have a commutative diagram

A C

B C/J.

Let S → I be such that A[S] → I is surjective, then the image of S in C belongs to J , and since J is
uniformly nilpotent there is n such that A → C factors though

A⊗Z[N[S]] Z[N[S]]
L
n → C,
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proving that the map AnSpecC → Y factors through “Y X as wanted. �

Remark 5.1.5. The hypothesis that A[S] → I is surjective on π0 can be thought as a finitely generated
assumption for the Zariski closed immersion. With the alternative definition of the de Rham stack of
Remark 5.1.3 one can extend Proposition 5.1.4 to an arbitrary Zariski closed immersion.

5.1.2. Six functors for algebraic D-modules. Let us now restrict ourselves to the category of solid prestacks
over Q, namely, the category PSh(AffQ) of presheaves on anima of solid affinoid rings over Q. We can
transmute the six functor formalism from quasi-coherent sheaves to D-modules as follows:

Definition 5.1.6. Let S ∈ PSh(AffQ) be a fixed prestack. We define the six-functor formalisms D
alg
dR+,S

,

D
alg
dR,S and D

alg
Hodge,S from PSh(AffQ)/S to be that obtained via Lemma 3.1.4 and the functors X 7→ Xalg

dR+,S
,

Xalg
dR,S and XHodge,S , landing on D-stacks over S × A1/Gm, S and S × ∗/Gm respectively. We call D

alg
dR+,S

(resp. D
alg
dR,S , resp. D

alg
Hodge,S) the six functor formalisms of filtered algebraic D-modules (resp. algebraic

D-modules, resp. algebraic Hodge modules) over S.

By Theorem 3.1.7 we have a six functor formalism on prestacks for the different D-topologies defined
by the functors D

alg
dR+,S

, D
alg
dR,S and D

alg
Hodge,S . There is no reason for these topologies to be the same, and

not even comparable with the D-topology for solid quasi-coherent sheaves. Nevertheless there are some
particular cases where one can relate covers in different topologies.

Lemma 5.1.7. Let S be a base prestack and X → Y a morphism of D
alg
dR+,S

-stacks which is a canonical

cover and such that Xalg
dR+ → Y alg

dR+,S
is a D-cover. Then X → Y is a D

alg
dR+,S

, D
alg
dR,S and D

alg
Hodge,S-cover.

Proof. Being a D
alg
dR+,S

-cover means that it is a canonical cover and of universal ∗ and !-descent for the six

functor formalism D
alg
dR+,S

(X) = Mod�(X
alg
dR+ ,S

). The map X → Y is a canonical cover by definition, and

by hypothesis Xalg
dR+,S

→ Y alg
dR+,S

is a D-cover, in particular of universal ∗ and !-descent. The lemma follows
since the formation of the filtered de Rham stack commutes with finite limits (see Proposition 5.1.2 (c) and
[Lur09, Remark 6.2.2.11]), and the fact that Xalg

dR,S and Xalg
Hodge,S are the fibers over Gm/Gm and ∗/Gm

respectively. �

Let R = Z((π)), our next task is to show that morphisms locally of solid finite presentation of derived
Tate adic spaces admit !-functors for the six functor formalism of algebraic filtered D-modules. Moreover,
we prove an analogue existence result for morphisms of locally finite presentation in Berkovich geometry
and †-geometry. Finally, we show that solid smooth (resp. étale) maps are sent to cohomologically smooth
(resp. étale) maps under D

alg
dR in characteristic 0.

Definition 5.1.8. (1) We let R〈T 〉 denote the Tate algebra of R endowed with the induced analytic
structure from R. Given A a bounded affinoid ring over R, we let A〈T 〉 := A⊗R�

R〈T 〉.
(2) We let R〈T 〉† = lim−→ε→0+

R〈πεT 〉 denote the algebra of overconvergent functions of a closed unit
disc. Given A a bounded affinoid ring we let A〈T 〉† := A⊗R�

R〈T 〉†.

Recall the notion of a coordinate theory of Definition 3.3.1. The natural maps R[T ] → R〈T 〉 and
R[T ] → R〈T 〉† define two coordinate theories over R, this allows us to talk about morphisms locally of
finite presentation for R〈T 〉 and R〈T 〉†, see Definition 3.3.3.

Definition 5.1.9. A Berkovich adic space (resp. a †-space) is a R〈T 〉-adic space (resp. a R〈T 〉†-adic space)
as in Definition 3.3.3 (3). A morphism of Berkovich adic spaces (resp. †-adic spaces) is locally of finite
presentation if it is locally of R〈T 〉-finite presentation (resp. of R〈T 〉†-finite presentation).

Lemma 5.1.10. Let Ga,⋆ denote the analytic spectrum of Q[T ], Z[T ]� ⊗ Q, R〈T 〉 ⊗ Q or R〈T 〉† ⊗ Q.
Let “Ga(−1) be the formal completion at 0 of the twisted line bundle O(−1) over A1/Gm, and consider the
natural morphism of abelian group objects “Ga(−1)→ Ga,⋆ × A1/Gm. The following hold:

(1) G
alg
a,⋆,dR+ = (Ga,⋆ × A1/Gm)/“Ga(−1). In particular the maps

f : ∗alg
dR+ = A1/Gm → G

alg
a,⋆,dR+
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and
g : Galg

a,⋆,dR+ → ∗dR+

admit !-functors. Furthermore, the following properties are satisfied
(a) The pullback of f to the algebraic de Rham stack is (−1)-truncated and cohomologically étale.
(b) If Ga,⋆ = Ga,� = AnSpec(Z[T ]� ⊗Q), then g is cohomologically smooth.
(c) If Ga,⋆ = AnSpecQ[T ], AnSpecR〈T 〉 ⊗ Q or AnSpecR〈T 〉† ⊗ Q, then g is cohomologically

co-smooth.
(2) Let n ≥ 1 and denote Xn := AnSpec(Sym•

Q(Q[n])). Then

Xalg
n,dR+ = (“Ga(−1)

×n+1/Ga)/“Ga(−1),

where “Ga(−1) acts diagonally on the fiber product. In particular, the maps Xalg
n,dR+ → ∗

alg
dR+ and

∗alg
dR+ → Xalg

n,dR+ admit !-functors. Furthermore, their restriction to the de Rham stack is an equiva-
lence.

Proof. (1) By definition, Galg
a,dR+ represents the functor

(O(−1)→ A) 7→ cone(Nil(A)⊗ O(−1)→ A)(∗),

this implies that G
alg
a,dR+ = (Ga × A1/Gm)/“Ga(−1). On the other hand, for any other group Ga,⋆,

the map Ga,⋆ → Ga (with R-extension of scalars if necessary) is formally étale. Since Ga and Ga,⋆

are formally smooth, by Proposition 5.1.2 (2) we have a cartesian diagram

Ga,⋆ × A1/Gm Ga × A1/Gm

G
alg
a,⋆,dR+ G

alg
a,dR+

where the vertical arrows are epimorphisms. One deduces that Ga,⋆,dR+ = (Ga,⋆×A1/Gm)/“Ga(−1)
as wanted.
(a) The map f : ∗alg

dR+ → G
alg
a,⋆,dR+ is equivalent to the map

“Ga(−1)/“Ga(−1)→ (Ga,⋆ × A1/Gm)/“Ga(−1).

since “Ga(−1) → Ga,⋆ × A1/Gm has !-functors, one deduces that f does so. The restriction to
the de Rham stack yields the functor

“Ga/“Ga → Ga,⋆/“Ga,

which defines an open immersion of locales, so it is cohomologically étale.
(b) and (c) The map G

alg
a,⋆,dR+ → ∗

alg
dR+ factors as the composite

(Ga,⋆ × A1/Gm)/“Ga(−1)→ (A1/Gm)/“Ga(−1)→ A1/Gm.

When Ga,⋆ = Ga,�, the first map is smooth by Lemma 3.6.12 and the second is smooth by
Proposition 4.2.5, then so is the composition. If Ga,⋆ is any other coordinate, the first map is
weakly cohomologically proper being a quotient of a map of analytic rings with the induced
analytic structure, and the second is co-smooth by Proposition 4.2.5 again, then so is the
composition.

(2) Since the filtered algebraic de Rham functor commutes with finite limits, and Sym•
Q(Q[n + 1]) =

Q⊗Sym•
Q
(Q[n]) Q for n ≥ 0, we have the desired description of Xalg

n,dR+ . It is also clear that the maps

Xalg
dR+ → ∗

alg
dR+ and ∗alg

dR+ → Xalg
dR+ admit !-functors from this description as stacks.

�

Lemma 5.1.11. Let f : X = AnSpecA → Y = AnSpecB be a morphism of bounded affinoid rings over
(R⊗Q)an.

(1) If f is standard solid smooth (resp. étale) then Xalg
dR+ → Y alg

dR+ is cohomologically smooth (resp.étale).



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 91

(2) Suppose that X =
⊔d

i=1Xi with Xi → Y standard solid smooth. If f is a smooth D-cover then
Xalg

dR+ → Y alg
dR+ is a smooth D-cover. In particular, solid rational covers of Y give rise D-covers of

Y alg
dR+ .

(3) Suppose that f : X → Y is a rational cover for the coordinate theories R〈T 〉 and R〈T 〉†. Then
Xalg

dR+ → Y alg
dR+ is a descendable D-cover.

Proof. (1) We first assume that LY is a projective B-module. By deformation theory the map Y ×

A1/Gm → Y alg
dR+ is surjective, in particular of universal ∗-descent. Then, to show that Xalg

dR+ → Y alg
dR+

is cohomologically smooth it suffices to show that Xalg
dR+,Y

→ Y is cohomologically smooth. We can

factor X → Y × Gn
a,�

prY−−→ Y with the first map being standard solid étale. By Lemma 5.1.10 the
projection (Y ×Gn

a,�)
alg
dR+,Y

→ Y ×A1/Gm is cohomologically smooth, so we only need to show that

the arrow Xalg
dR+,Y

→ Y × Gn
a,�,dR+ is cohomologically étale. But again, the cotangent complex of

Y ×Gn
a,� is a projective B〈T1, . . . , Tn〉�-module, and by the same argument it suffices to show that if

X → Y is standard solid étale then Xalg
dR+,Y

→ Y ×A1/Gm is cohomolgically étale. By Proposition

5.1.2 (1) we have that Xalg
dR+,Y

= X × A1/Gm proving what we wanted. Now we show the general
case, since the formation of the filtered de Rham stack commutes with finite limits, it suffices to
construct a Cartesian diagram

X X ′

Y Y ′

(5.2)

where X ′ = AnSpecA′ → Y ′ = AnSpecB′ is a standard solid smooth (resp. étale) morphism of
bounded affinoid rings (not necessarily over Q!), and LY ′ a projective B′-module. Since B is bounded
affinoid, we can write π0(B) as a filtered colimit of quotients of rings of the form R〈X〉�〈N[K] where
X is a finite set of variables and K is a profinite set. Writing A = B〈T1, . . . , Td〉�/

L(f1, . . . , fc) as
a standard solid smooth map, we can find a map B′ := R〈X〉�〈N[K]〉 → A and a lift f ′

i of fi
to B′〈T1, . . . , Td〉� such that A′ = B′〈T1, . . . , Td〉�/

L(f ′
1, . . . , f

′
c) is standard solid smooth. Taking

Y ′ = AnSpecB′ and X ′ = AnSpecA′ we get the desired cartesian diagram, namely, the cotangent
complex of B′ is isomorphic to

⊕k
i=1 B

′[K] with X = (X1, . . . ,Xk).
(2) By Proposition 3.1.15, it suffices to show that the pullback along the map Xalg

dR+ → Y alg
dR+ is

conservative, for this it suffices to see that it is a surjection as D-stacks. Suppose first that
Y × A1/Gm → Y alg

dR+ is surjective as D-stacks, in particular of universal ∗-descent. Then, it
suffices to show that the map Xalg

dR+,Y
→ Y × A1/Gm is surjective, but we have a factorization

X × A1/Gm → Xalg
dR+,Y

→ Y × A1/Gm. Since X → Y is a smooth D-cover we deduce that

Xalg
dR+,Y

→ Y ×A1/Gm is surjective as wanted. In general, consider the topology T on Affb
R⊗Q with

covers given by solid smooth morphisms that are D-covers. We proved that the formation of the
filtered de Rham stack satisfies T -descent for covers U → W such that W → W alg

dR+ is surjective.
To show descent for a general morphism it suffices to construct a Cartesian diagram as in (5.2) such
that X ′ → Y ′ and Y ′ × A1/Gm → Y

′,alg
dR+ are surjective as morphisms of D-stacks. By part (1) we

can find a cartesian diagram

X X ′

Y Y ′′

(5.3)

of bounded affinoid rings where LY ′′ is a projective module in Mod�(Y
′′) (even compact projective),

in particular Y ′′ → Y
′′,alg
dR+ is surjective. However, X ′ → Y ′′ might not be a surjection. Let Y ′ ⊂ Y ′′

be the full T -substack consisting in the essential image of X ′ in Y ′′, concretely, it is the geometric
realization of the simplicial T -stack (X

′n+1/Y ′′
)[n]∈∆op . Then, since X → Y is a T -cover, we still
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have a Cartesian diagram

X X ′

Y Y ′

.

On the other hand, since Y ′ ⊂ Y ′′ is a full T -substack, the morphism Y ′ × A1/Gm → Y
′,alg
dR+ is

surjective as D-stacks, namely, it is the geometric realization of the surjective morphism of simplicial
D-stacks

(X
′n+1/Y ′′

× A1/Gm)[n]∈∆op → (X
′n+1/Y ′′,alg
dR+ )[n]∈∆op .

The lemma follows.
(3) For part (3), denote R(T ) for R〈T 〉 or R〈T 〉†, and let us write f : X =

⊔
Xi → Y with Xi → Y a

R(T )-rational localization. In particular, each map Xi → Y is defined by an idempotent OY -algebra
and defines a closed subset of the locale of Y . Suppose first that Y → Y alg

dR+ is surjective, then since
Xi → Y is formally étale (cf. Example 3.4.10), we have a cartesian square

Xi × A1/Gm Y × A1/Gm

Xalg
i,dR+ Y alg

dR+

where the vertical arrows are epimorphisms. Then, the inclusion Xalg
i,dR+ → Y alg

dR+ is defined by an

idempotent algebra in Mod�(Y
alg
dR+), and defines a closed subspace of the locale of Y alg

dR+ . Since
X → Y is a cover, we have

⋃
iXi = Y as closed subspaces of the locale, which implies that⋃

i X
alg
i,dR+ = Y alg

dR+ . Since there are only finitely many i’s, one deduces that the map Xalg
dR+ → Y alg

dR+

is descendable, and a D-cover by Proposition 3.1.16.
Let us now deal with the general case. As in part (1), we can assume that there is a bounded

affinoid space Y ′′ = AnSpecB′ such that Y ′′ × A1/Gm → Y
′′,alg
dR+ is surjective, a morphism X ′ =⊔

i X
′
i → Y ′′ consisting in finitely many R(T )-rational localizations (that might not cover Y ′′), and

a cartesian square as in (5.3). Then, taking Y ′ ⊂ Y to be the union of the X ′
i in Y ′′, we have a

Cartesian diagram as in (5.2) where X ′ → Y ′ and a descendable morphism. By the first case treated
we get a descendable morphism X

′,alg
dR+ → Y

′,alg
dR+ whose pullback to Y alg

dR+ gives rise a descendable
morphism Xalg

dR+ → Y alg
dR+ , in particular a D-cover as wanted.

�

Theorem 5.1.12 (Six functors for algebraic D-modules). Let us write R(T ) for R〈T 〉�, R〈T 〉 and R〈T 〉†.
Let f : X → Y be a morphism of derived Tate adic spaces over R ⊗ Q locally of R(T )-finite presentation,
and let falg

dR+ : Xalg
dR+ → Y alg

dR+ be the associated morphism of algebraic filtered de Rham stacks. Then falg
dR+

admits !-functors. Furthermore, if f is solid smooth (resp. solid étale), then falg
dR+ is cohomologically smooth

(resp. cohomologically étale). Moreover, the formation of the filtered de Rham stack satisfies descent for
solid smooth covers, namely, solid smooth maps f such that f∗ is conservative (cf. Proposition 3.1.15).

Proof. By Lemma 5.1.11 (2) and (3), the formation of the de Rham stack satisfies analytic R(T )-descent
for R(T ) = R〈T 〉�, R〈T 〉 and R〈T 〉†. Then the existence of !-functors for morphisms locally of R(T )-finite
presentation follows from Lemma 5.1.10 and Proposition 3.3.6. The fact that solid smooth maps, resp. étale
maps, resp. analytic open subspaces are sent to cohomologically smooth maps, resp. cohomologically étale
maps, resp. open immersions of locales, follows from Lemma 5.1.11 (1) and the fact that the formation
of the filtered de Rham stack commutes with finite limits. Finally, descent for solid smooth covers follows
from Lemma 5.1.11 (2). �

5.1.3. Hodge filtration of the de Rham cohomology. We finish this section with the construction of the Hodge
filtration of the compactly supported de Rham cohomology of a solid smooth morphism of derived Tate
adic spaces over R⊗Q, this discussion follows closely [Bha22, §2].
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Theorem 5.1.13. Let f : X → Y be a solid smooth morphism of derived Tate adic spaces over R ⊗ Q of
relative dimension d, and let fdR+ : Xalg

dR+ → Y alg
dR+ be the associated map of filtered de Rham stacks. Then

the compactly supported de Rham cohomology

DRc(X/Y ) := falg
dR+,!

f !
dR+1Y alg

dR+

is complete with respect to its natural filtration. Moreover, we have a Hodge filtration

gr−i(DRc(X/Y )) ∼= f!Ω
i,∨
X/Y (−i)[i].

when pullbacked to an object in Y .

Proof. In order to see that DRc(X/Y ) is complete, we can work locally in the analytic topology of X and Y ,
and assume that both are affinoid and f is standard solid smooth. Furthermore, by taking a cartesian square
(5.2) as in the proof of Lemma 5.1.11, and proper base change, we can assume that Y ×A1/Gm → Y alg

dR+ is
surjective. Thus, to prove that DRc(X/Y ) is complete, it suffices to consider its pullback to Y × A1/Gm,
or equivalently, take the cohomology with compact support of the map Xalg

dR+,Y
→ Y × A1/Gm. On the

other hand, we have a factorization
X → Y ×Gd

a,� → Y

which gives rise to a factorization

Xalg
dR+,Y

h
−→ Y ×G

alg,d
a,�,dR+

g
−→ Y ×B“Ga(−1)

d k
−→ Y × A1/Gm.

Note that we have a diagram with cartesian squares

X × A1/Gm Y ×Gd
a,� × A1/Gm Y ×A1/Gm

Xalg
dR+,Y

Y ×G
alg,d
a,�,dR+ Y ×B“Ga(−1)

d.

By Theorem 3.6.15 and Proposition 4.2.5 we have an (a priori non-natural) equivalence

f !
dR+,Y 1Y×A1/Gm

≃ h∗g!k!1Y×A1/Gm
≃ 1

Xalg

dR+,Y

(−d),

in particular it is filtered complete, and then so is h!f
!
dR+,Y 1Y×A1/Gm

. One deduces completeness for
DRc(X/Y ) from the following lemma:

Lemma 5.1.14. Let g : Y ×B“Ga(−1)
d → Y × A1/Gm. For any filtered complete module F ∈ Mod�(Y ×

B“Ga(−1)
d), g!F ∈ Mod�(Y × A1/Gm) is also filtered complete.

Proof. By Cartier duality Theorem 4.2.7, we have a natural Mod�(Y ×A1/Gm)-linear equivalence of cate-
gories of solid quasi-coherent sheaves

FM−1 : Mod�(Y ×B“Ga(−1)
d) ∼= Mod�(Y ×Ga(1)

d).

Let ι : Y × A1/Gm → Y ×Ga(1)
d be the zero section, then Corollary 4.2.10 (ii) implies that

g!F = ι∗FM−1(F ⊗ (g!1Y×A1/Gm
)−1) = ι∗FM−1(F ⊗ O(d)[d]).

But the object ι∗FM−1(F ⊗ O(d)[d]) has a finite Koszul filtration with graded pieces given by twists of
finite direct sums of FM−1(F ⊗ O(d)[d]), proving that it is still complete. �

It is left to compute the graded pieces of DRc(X/Y ), this follows from Proposition 4.2.5 and that
Xalg

Hodge,Y = (X ×BGm)/“TX/Y (−1) by Proposition 5.1.2 (2.b). �

Remark 5.1.15. Theorem 5.1.13 was stated for de Rham cohomology with compact supports due to its
well behaviour with respect to the six functors. One recovers the completeness and Hodge filtration of the
usual de Rham cohomology by taking duals. Moreover, the fact that the cohomology of the de Rham stack
coincides with the hypercohomology of the de Rham complex for classical smooth morphisms of rigid spaces
follows by the same argument as in [Bha22, Theorem 2.3.6] by reduction to the case of the unit disc, we
left the details to the reader.
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5.2. The analytic de Rham stack. In Section 5.1 we introduced the algebraic filtered de Rham stack
and proved that it has a reasonable theory of six functors for derived Tate adic spaces. In the next section
we will introduce a variant of this construction that for our convenience we specialize to Tate stacks over
Qp. The new theory of D-modules obtained from this stack is an enhancement of the theory of ÙD-modules
of Ardakov and Wadsley [AW19, AW18], that we call analytic D-modules. A more concrete comparison
between analytic D-modules and Ardakov and Wadsley’s ÙD-modules is left to a future work. For example,
for a smooth rigid space X, we expect coadmissible ÙD-modules to be precisely the smooth objects on XdR.
Instead, we shall construct a six functor formalism for analytic D-modules, and prove good cohomological
properties for morphisms of solid finite presentation. Once the relation between analytic D-modules and
ÙD-modules is made, the six functors constructed hereby will give a very large extension of the six functors
of Bode in [Bod21].

5.2.1. Construction of the stacks. Let Affb
Qp

be the category of bounded affinoid analytic spaces over Qp,
PSh(Affb

Qp
) the category of prestacks on Affb

Qp
and ShD (Aff

b
Qp

) the category of Tate stacks over Qp.

Remark 5.2.1. The functor Affb,op
Qp
→ Ani sending A 7→ A(∗) is not longer represented by the algebraic

affine line A1, instead, it is represented by its analytification A1,an as a rigid space over Qp. Similarly, the
functor A 7→ A(∗)× of units is represented by the analytification of the multiplicative group Gan

m .

Definition 5.2.2. We define the following objects

(1) Let X ∈ PSh(Affb
Qp

). The absolute filtered analytic de Rham prestack of X is the prestack over
A1,an/Gan

m defined as

XdR+(O(1)→ A) = X(cone[Nil†(A)⊗ O(−1)→ A]).

The absolute analytic de Rham prestack XdR (resp. the absolute analytic Hodge prestack XHodge) is
the pullback of XdR+ to ∗ = Gan

m /Gan
m (resp. the pullback to ∗/Gan

m ). The D-sheafification of XdR+

is called the filtered analytic de Rham stack and denoted in the same way (similarly for XdR and
XHodge).

(2) Let S ∈ PSh(Affb
Qp

) and let X be prestack over S. The relative filtered analytic de Rham prestack
of X over S is the pullback

XdR+,S S ×A1,an/Gan
m

XdR+ SdR+ .

The relative analytic de Rham and Hodge prestacks are defined as the pullback of XS,dR+ to ∗ =
Gan

m /Gan
m and ∗/Gan

m respectively. If S is a Tate stack the relative filtered analytic de Rham stack of
X over S is the D-sheafification of XdR+,S that denote it in the same way. We define in the obvious
way the relative analytic de Rham and Hodge stacks.

Next, we prove some formal properties of the analytic de Rham stack that are deduced from the definition,
cf. Proposition 5.1.2.

Proposition 5.2.3. Let f : X → Y be a morphism of prestacks on Affb
Qp

.

(1) Suppose that f is †-formally étale, then the natural map X×A1,an/Gan
m → XdR+,Y is an equivalence.

(2) Suppose that f is †-formally smooth and let T an
X/Y = (AnSpecX Sym•

XLX)an. The following hold
(a) The map X × A1,an/Gan

m → XdR+,Y is an epimorphism.
(b) There is a natural equivalence XHodge,Y = (X × ∗/Gan

m )/T †
X/Y (−1).

(3) The formation of X 7→ XdR+ commutes with small colimits and limits of prestacks.

Proof. (1) This follows from the notion of †-formally étaleness, cf. Definition 3.7.2.
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(2) Part (a) follows from the notion of †-formally smoothness. For part (b), let A ∈ Affb
Qp

, let O(−1)→

A be a generalized Cartier divisor and let η ∈ Y (A). Then the fiber of XHodge,Y over η is given by
the fiber product of

(η,O(1))

Y (A)× ∗/Gan
m

X(Nil†(A)⊗ O(−1)[1] ⊕A) Y (Nil†(A)⊗ O(−1)[1] ⊕A)

which is represented by

MapMod≥0(A)(η
∗LX/Y ,Nil

†(A)⊗ O(−1)[1]) = η∗L∨
X/Y ⊗Nil†(A)(−1)(∗)[1].

This shows that XHodge,Y = (X × ∗/Gan
m )/T †

X/Y (−1) as wanted.
(3) This follows immediately from the definition of the filtered analytic de Rham prestack, as limits

and colimits of prestacks are computed at the level of points.
�

Similarly as for the algebraic de Rham stack, there is a notion of †-formal completion or †-neighbourhood
for a Zariski closed immersion.

Proposition 5.2.4. Let X = AnSpecB → Y = AnSpecA be a morphism of bounded derived Tate adic
spaces over Qp which is surjective on π0 and that has the induced analytic structure (i.e. a Zariski closed
immersion). Let A†/B be the idempotent A-algebra associated to the closed subspace Spa† B ⊂ Spa†A of
Proposition 2.7.19. Then there is a natural equivalence

XdR,Y
∼= AnSpecA†/B.

Proof. By the proof of Proposition 2.7.19 the map A†/B → B induces an equivalence in †-reduced algebras.
This gives rise an equivalence AnSpec(A†/B)|

Affb,†−red
Qp

= AnSpec(B)|
Affb,†−red

Qp

. But by definition, XdR is the

right Kan extension of the restriction of X to Affb,†−red
Qp

. The proposition follows since XdR → YdR is an
immersion, and XdR,Y ⊂ Y is the full sub prestack mapping to XdR. �

As a consequence, we obtain Kashiwara equivalence for analytic D-modules and Zariski closed immer-
sions.

Corollary 5.2.5 (Kashiwara equivalence). Let X → Y be a Zariski closed immersion of derived Tate adic
spaces over Qp, and let Y †/X ⊂ X be the overconvergent neighbouhood of X in Y obtained by gluing the
rings B†/A of Proposition 5.2.4 in the analytic topology of X. Then there is a natural equivalence of analytic
de Rham stacks XdR = Y

†/X
dR . In particular, the category of analytic D-modules of Y supported on X is

equivalent to the category of analytic D-modules of X.

Proof. By Lemma 5.2.9 down below the formation of the analytic de Rham stacks satisfies descent for
the analytic topology. Then, it suffices to prove the statement in the affinoid case of Proposition 5.2.4.
But the analytic de Rham stack of X if the D-sheafification of the right Kan extension of the restriction
of X to Affb,†−red

Qp
, and the †-reductions of A and B†/A are isomorphic by construction. This proves the

corollary. �

5.2.2. Six functor formalism for analytic D-modules.

Definition 5.2.6. Let S ∈ PSh(Affb
Qp

). We define the six functor formalisms DdR+,S, DdR,S and DHodge,S

for PSh(Affb
Qp

)/S to be the six functor formalism obtained by Lemma 3.1.4 applied to the functors X 7→

XdR+,S, XdR,S and XHodge,S , landing in D-stacks over S × A1,an/Gan
m , S and S × ∗/Gan

m respectively. The
six functor formalism DdR+,S (resp. DdR,S , resp. DHodge,S) is called the six functor formalism of filtered
analytic D-modules over S (resp. of analytic D-modules over S, resp. of Hodge modules over S).
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Remark 5.2.7. The analogue of Lemma 5.1.7 holds for the analytic de Rham stack, namely, if X → Y is a
canonical cover such that XdR+,S → YdR+,S is a D-cover, then X → Y is a DdR+,S-cover.

Our next task is to show that the six functor formalism of filtered analytic D-modules admits !-functors for
morphisms locally of solid finite presentation of derived Tate adic spaces. We will even prove the existence
of !-functors for morphisms locally of finite presentation of Berkovich or †-adic spaces, see Definition 5.1.9.
Finally, we will show that solid smooth and étale morphisms of derived Tate adic spaces give rise to
cohomologically smooth and étale maps at the level of filtered analytic de Rham stacks.

Lemma 5.2.8. Let Ga,⋆ denote the analytic spectrum of one of the algebras Qp〈T 〉�, Qp〈T 〉 or Qp〈T 〉
†.

Let Ga(−1) → A1,an/Gan
m be the line bundle obtained by the analytic spectrum of Sym•

A1,an/Gan
m
(O(1)), and

let Ga(−1)
† be its overconvergent neighbourhood at the zero section; we have a natural morphism of group

objects Ga(−1)
† → Ga,⋆ × A1,an/Gan

m . The following hold:

(1) Ga,⋆,dR+ = (Ga,⋆ × A1,an/Gan
m )/Ga(−1)

†. In particular, the maps

f : ∗dR+ = A1,an/Gan
m → Ga,⋆,dR+

and
g : Ga,⋆,dR+ → ∗dR+

admit !-functors. Furthermore, the following properties are satisfies:
(a) f is always weakly cohomologically proper. Moreover, its pullback to the de Rham stack is

(−1)-truncated so cohomologically proper.
(b) If Ga,⋆ = Ga,� = AnSpecQp〈T 〉�, then g is a cohomologically smooth map.
(c) If Ga,⋆ = AnSpecQp〈T 〉 or Ga,⋆ = AnSpecQp〈T 〉

†, then g is weakly cohomologically proper.
Furthermore, its pullback to the de Rham stack is 0-truncated so cohomologically proper,

(2) Let n ≥ 1 be an integer and denote Xn = AnSpecSym•
Qp

Qp[n]. Then

Xn,dR+ = (Ga(−1)
†,×Gan+1)/Ga(−1)

†,

where Ga(−1)
† acts diagonally. In particular, XdR+ → ∗dR+ and ∗dR+ → XdR+ admit !-functors

and are weakly cohomologically proper. Furthermore, their restriction to the de Rham stack is an
equivalence.

Proof. (1) Let Gan
a = A1,an be the analytic affine line seen as an additive group. By definition, Gan

a,dR+

represents the functor on bounded affinoid algebras over A1,an/Gm given by

(O(−1)→ A) 7→ cone(Nil†⊗O(−1)→ A)(∗).

For Ga,⋆, since the image of Nil†(A)⊗O(−1) in π0(A) is †-nilpotent, by Proposition 2.6.16 the sub
prestack Ga,⋆,dR+ ⊂ Ga,dR consists on the functor

(O(−1)→ A) 7→ cone(Nil†(A)⊗ O(−1)(∗)→ Ga,⋆(A)).

This shows that Ga,⋆,dR+ is represented by the stack (Ga,⋆ × A1,an/Gan
m )/Ga(−1)† as wanted.

(a) The map ∗dR+ → Ga,⋆,dR+ is equivalent to the morphism

Ga(−1)
†/(Ga(−1)

† → (Ga,⋆ × A1,an)/Gan
m )/Ga(−1)

†.

This map admits !-functors and is weakly cohomologically proper since Ga(−1)
† → (Ga,⋆ ×

A1,an/Gan
m ) has the induced analytic structure. Furthermore, its pullback to the analytic de

Rham stack is an immersion so (−1)-truncated.
(b) and (c) We have factorizations for Ga,⋆,dR+ → ∗dR+

(Ga,⋆ × A1,an/Gan
m )/Ga(−1)

† → (A1,an/Gan
m )/Ga(−1)

† → A1,an/Gan
m .

If Ga,⋆ = Ga,�, the first map is cohomologically smooth by Theorem 3.6.15, and the second
is cohomologically smooth by Theorem 4.3.13 and Proposition 4.2.5, so the composite is also
cohomologically smooth. If Ga,⋆ = AnSpecQp〈T 〉 or AnSpecQp〈T 〉

†, then the first map is
weakly cohomologically proper since it has the induced analytic structure, and the second is
weakly cohomologically proper by Theorem 4.3.13 and Proposition 4.2.5, thus, the composite
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is weakly cohomologically proper proving what we wanted. It is clear that its pullback to the
the Rham stack is 0=truncated.

(2) By Proposition 5.2.3 (3), the formation X 7→ XdR+ commutes with all small limits and colimits.
Then, since Xn+1 = ∗×Xn∗, an inductive argument gives the desired description of Xn,dR+ . The fact
that ∗dR+ → Xn,dR+ and Xn,dR+ → ∗dR+ admit !-functors and that they are weakly cohomologically
proper follows a similar argument as part (1). Finally, since the †-reduction of Xn is ∗, they give
rise to the sane analytic de Rham stack.

�

We now prove an analogue of Lemma 5.1.11.

Lemma 5.2.9. Let f : X → AnSpecA → Y AnSpecB be a morphism of bounded affinoid rings over Qp.
(1) If f is standard solid smooth (resp. standard solid étale) then fdR+ : XdR+ → YdR+ is cohomologi-

cally smooth (resp. étale).
(2) Suppose that X =

⊔d
i=1Xi with Xi → Y standard solid smooth. If f is a smooth D-cover, then

fdR+ : XdR+ → YdR+ is a smooth D-cover.
(3) Suppose that f : X → Y is a rational cover for the coordinate theories Qp〈T 〉 and Qp〈T 〉

†. Then
XdR+ → YdR+ is a descendable D-cover.

Proof. The proof is virtually the same of Lemma 5.1.11; the only key step is to have generators B of
AffRingbQp

such that Y ×A1,an/Gan
m → YdR+ is surjective as D-stacks with Y = AnSpecB. For this, we can

take affinoid spaces of the form Y = AnSpecB with B = Qp〈X〉�〈N[K]〉, where X is a finite set of variables
and K is a profinite set. Then, the surjection of Y → YdR+ is a consequence of Proposition 2.6.16. �

Theorem 5.2.10 (Six functors for analytic D-modules). Let us write Qp(T ) for Qp〈T 〉�, Qp〈T 〉 and
Qp〈T 〉

†. Let f : X → Y be a morphism of derived Tate adic spaces over Qp locally of Qp(T )-finite presen-
tation, and let fdR+ : XdR+ → Y alg

dR+ be the associated morphism of algebraic filtered de Rham stacks. Then
fdR+ admits !-functors. Furthermore, if f is solid smooth (resp. solid étale), then fdR+ is cohomologically
smooth (resp. cohomologically étale). Moreover, the formation of the filtered de Rham stack satisfies de-
scent for solid smooth covers, namely, solid smooth maps f such that f∗ is conservative (cf. Proposition
3.1.15). Finally, if f is a qcqs morphism of finite presentation of Qp〈T 〉 or Qp〈T 〉

†-adic spaces, the map
fdR+ : XdR+ → YdR+ is co-smooth.

Proof. This follows the same argument of Theorem 5.1.12, by replacing Lemmas 5.1.10 and 5.1.11 with
Lemmas 5.2.8 and 5.2.9 respectively. For the last statement about qcqs morphisms of finite presentation,
by Lemma 5.2.9 (3) it suffices to prove the claim when f is a morphism of finite presentation of affinoid
rings, this case follows from Lemma 5.2.8 and an inductive argument. �

5.2.3. Comparison with algebraic D-modules. Let X → Y be a solid smooth morphism of derived Tate adic
spaces over Qp. Consider the relative algebraic de Rham stack Xalg

dR+,Y
and let Xalg′

dR+,Y
be its pullback to

A1,an/Gan
m → A1/Gm, or equivalently, its restriction to Affb

Qp
. The definition at the level of points yields

a natural map of de Rham stacks Xalg′

dR+,Y
→ XdR+,Y . In the following paragraph we will show that the

category of analytic D-modules of X over Y embeds fully faithful in the category of algebraic D-modules
of X over Y . We will also deduce that the de Rham cohomology is the same when computed with the
algebraic or analytic de Rham stacks.

Proposition 5.2.11. Let f : X → Y be a solid smooth morphism of derived Tate adic spaces over Qp.
Then the natural map g : Xalg′

dR+,Y
→ XdR+,Y is cohomologically co-smooth. Furthermore, the natural map

1XdR+,Y
→ g∗1XdR+,Y

(5.4)

is an equivalence. In particular, g∗ : Mod�(XdR+,Y )→ Mod�(X
alg,′

dR+,Y
) is a fully faithful embedding.

Proof. Both statements are local in the analytic topology of X and Y , hence we can assume that f is a
standard solid smooth morphism of bounded affinoid spaces. Both claims are also preserved by base change
on Y , so we can assume without loss of generality that Y = AnSpecB with B = Qp〈X〉〈N[K]〉, with X a
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finite set of variables and K a profinite set. We can factor X → Z → Y where X → Z is standard solid
étale and Z = Y ×Gd

a,�. We then have Cartesian diagrams

X × A1,an/Gan
m Z × A1,an/Gan

m X × A1,an/Gan
m Z × A1,an/Gan

m

XdR+,Y ZdR+,Y Xalg
dR+,Y

Zalg′

dR+,Y
.

Since Z × A1,an/Gan
m → Zalg′

dR+,Y
and X × A1,an/Gan

m → Xalg′

dR+,Y
are surjective, we have that Xalg′

dR+,Y
=

XdR+,Y ×ZdR+,Y
Zalg′

dR+,Y
. Thus, by proper base change, we are reduced to consider the case of X = Y ×Gn

a,�.
By proper base change, the statement is also stable under fiber products over Y , so it suffices to consider
X = Y ×Ga,�, and by base change assume that Y = ∗. By Lemmas 5.1.10 and 5.2.8 we have the explicit
descriptions

G
alg′

a,�,dR+ = (Ga,� × A1,an/Gan
m )/“Ga(−1)

and
Ga,�,dR+ = (Ga,� × A1,an/Gan

m )/Ga(−1)
†.

Consider the cartesian square
(
(Ga,� ×A1,an/Gan

m )×A1,an/Gan
m

Ga(−1)
†
)
/“Ga(−1) (Ga,� × A1,an/Gan

m )

G
alg′

a,�,dR+ Ga,�.dR+

h

where “Ga(−1) acts on the fiber product diagonally. Then, to show that g is co-smooth and that (5.4) is an
equivalence, it suffices to prove the analogue statements for the map h. We have an equivalenceÄ

(Ga,� × A1,an/Gan
m )×A1,an/Gan

m
G(−1)†

ä
/“Ga(−1) ∼= Ga,� ×Ga(−1)

†/“Ga(−1)

induced from the action map by translations Ga(−1)
† × (Ga,� ×A1,an/Gan

m
A1,an/Gm)→ (Ga,� ×A1,an/Gm).

Under this equivalence, the action map becomes the projection

Ga,� × (Ga(−1)
†/“Ga(−1))→ Ga × A1,an/Gan

m .

Thus, by base change, we are reduce to prove the claims for the map

(Ga(−1)
†/“Ga(−1))→ A1,an/Gan

m .

This follows from the following lemma

Lemma 5.2.12. Let X be an analytic D-stack over Qp and F a vector bundle over X of rank d. Consider

the quotient V(F )†/’V(F ) where ’V(F ) acts by translations. Then the morphism

g : V(F )†,algdR,X = V(F )†/’V(F )→ X

is co-smooth and the natural map
1X → g∗1

V(F )†/÷V(F )

is an equivalence.

Proof. By proper base change we can reduce to the universal case X = ∗/GLd and F = St. Furthermore,
since ∗ → ∗/GLd is surjective, it suffices to prove the claim after taking pullbacks to ∗. Then St ∼= Qd

p and

since the claim holds after finite fiber products, it suffices to consider the case of h : G†
a/“Ga → ∗. But the

map h factors as G
†
a/“Ga → ∗/“Ga → ∗, the first arrow is weakly cohomologically proper since it has the

induced analytic structure, and the second is co-smooth by Proposition 4.2.5; one deduces that h is itself
co-smooth. Finally, g∗1G†

a/“Ga
is nothing but the de Rham cohomology of G†

a which is equal to Qp by the
Poincaré lemma. �

�
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Corollary 5.2.13. Let f : X → Y be a solid smooth morphism of derived Tate adic spaces, and let
fdR+,Y : XdR+,Y → Y × A1,an/Gan

m . Then fdR+,Y,∗1XdR+,Y
is filtered complete and equal to the de Rham

cohomology DR(X/Y ), namely, the dual of the de Rham cohomology with compact supports of Theorem
5.1.13 (see Remark 5.1.15).

Proof. Consider the commutative diagram

Xalg′

dR+,Y
XdR+,Y

Y

h

falg

dR+,Y

fdR+,Y

Then
DR(X/Y ) = falg

dR+,Y,∗
1 = fdR+,Y,∗h∗1 = fdR+,Y,∗1.

�

5.3. Poincaré duality for D-modules. Next, we prove Poincaré duality for filtered algebraic and analytic
D-modules. The strategy is similar as for coherent cohomology by taking the deformation to the normal
cone. We shall adapt [Zav23, §4] to derived Tate adic spaces.

Definition 5.3.1 ([Zav23, Definition 4.2.1]). Let C be the category of derived Tate adic spaces over Qp.
A six functor formalism D on C is premotivic if the following hold:

(1) It is A1,an-acyclic, i.e., if we denote f : A1,an → ∗, then the natural map 1 → f∗1A1,an is an
equivalence in D(∗).

(2) Any any solid smooth morphism f : X → Y is cohomologically smooth with respect to D .

Remark 5.3.2. Theorems 5.1.12 and 5.2.10 imply that solid smooth maps are cohomologically smooth for
the six functors D

alg
dR+ and DdR+ . Furthermore, de Rham cohomology of the analytic affine line A1,an is

trivial, by Theorem 5.1.13 and Corollary 5.2.13 we deduce that both D
alg
dR+ and DdR+ are motivic.

For a symmetric monoidal category E let Pic(E ) denote the full subcategory consisting on invertible
objects.

Lemma 5.3.3 ([Zav23, Lemma 2.1.11]). Let D be a premotivic six functor formalism on C , X ∈ C and
f : X × A1,an → X. Then the pullback functor

f∗ : Pic(D(X))→ Pic(D(X × A1,an))

is fully faithful.

Proof. The same proof of loc. cit. applies. �

Definition 5.3.4. Let D be a six functor formalism on C . Let f : X → Z be a solid smooth morphism
and let s : Z → X be a Zariski closed immersion.

(1) We denote C(f, s) := s∗f !1Z ∈ D(Z).
(2) For a vector bundle F over X with projection f : V(F )an → X and zero section s : X → V(F )an,

we let CX(F ) := C(f, s).
(3) Suppose that OZ is a perfect OX-module locally in the analytic topology. By Remark 3.6.16 we can

form the deformation to the normal cone

Z × P1 → ‹X → Z × P1

living over P1. We let DZ(X) denote the pullback of ‹X to A1,an = P1\{∞}; we get maps

Z × A1,an s̃
−→ DZ(X)

f̃
−→ Z × A1,an.

Proposition 5.3.5 ([Zav23, Proposition 4.2.6]). Suppose that the six functor formalism D over C is
premotivic. Let f : X → Z be a solid smooth morphism with section s : Z → X such that OZ is a perfect
OX-module locally in the analytic topology. Then, in the notation of Definition 5.3.4, the object

s̃∗f̃ !1Z×A1,an ∈ Pic(D(Z × A1,an))

lies in the essential image of Pic(D(Z)).
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Proof. We perform the same series of reductions as in the proof of Theorem 3.6.15. In fact, we can assume
that Z is affinoid and replace X by an open neighbourhood of the section of X. We can then assume that
X → Z is standard solid smooth and that we have a standard solid étale map X → Z × Gd

a,�. By further
refining Z, we can even assume that the pullback of Z → X → Z × Gd

a,� along X → Z × Ga,� is Z itself,
and reduce to the case where X = Z ×Gd

a,�, see the proof of Theorem 3.6.15. By a change of coordinates,
we can suppose that Z → X is the zero section, and by base change that Z = ∗. This last case is covered
in Step 3 of [Zav23, Proposition 4.2.6]. �

Corollary 5.3.6 ([Zav23, Corollary 4.2.7 and Theorem 4.2.8]). In the notation of the Proposition 5.3.5,
let N an

Z/X denote the analytification of the normal cone of Z in X. There is a natural equivalence

C(f, s) ∼= CZ(N
an
X/Y ).

Moreover, if f : X → Y is a solid smooth morphism, there is a natural equivalence

f !1Y ∼= CX(T an
X/Y ) ∈ D(X),

where T an
X/Y is the analytification of the tangent space of X over Y .

Proof. The same proof of loc. cit. applies. �

Theorem 5.3.7 (Poincaré duality for D-modules). Let f : X → Y be a solid smooth morphism of derived
Tate adic spaces of relative dimension d, and let falg

dR+ : Xalg
dR+ → Y alg

dR+ and fdR+ : XdR+ → YdR+ be the
associated maps of stacks. Then there are natural equivalences

falg,!
dR+1 = O(−d).

and
f !
dR+1 = O(−d)[2d].

Proof. By Corollary 5.3.6 it suffices to prove the theorem for a vector bundle F over X. By further reducing
to the universal case X = ∗/GLd and F = St, it suffices to prove it for the relative filtered de Rham stacks
of V(F )an over X. Let f : V(F )an → X be the natural projection and s : X → V(F )an the zero section.
We have a natural equivalence

TV(F )an/X = V(F )an ×X V(F )an

provided by the group structure of V(F )an. This implies that f !
dR+1 ∼= f∗s∗f !

dR+1 (resp. for falg,!
dR∗ 1). In

particular, by A1,an-invariance, we have that fdR+,∗f
!
dR+1 = s∗f !

dR+1 (resp. for falg
dR+).

Case of falg
dR+ . We have a natural equivalence

V(F )an,alg
dR+ ,X

= (V(F )an × A1,an/Gm)/’V(F )(−1).

Indeed, by Lemma 5.1.10 there is a natural equivalence G
d,alg
a,dR+ = (Gd

a×A1/Gm)/“Gd
a(−1), this isomorphism

is clearly GLd-equivariant (eg. looking at the level of points) and it descends to an equivalence over the
stack ∗/GLd; by base change one deduces the general case. The map falg

dR+,X
factors through

V(F )an,alg
dR+ ,X

h
−→ (X × A1/Gm)/’V(F )(−1)

g
−→ X × A1/Gm,

we find that
s∗falg,!

dR+,X
1 = s∗h∗g!1⊗ s∗h!1.

By Theorems 3.6.15 and 4.2.5 we obtain that

s∗falg,!
dR+,X

1 =
d∧

F
∨[d]⊗

d∧
F (−d)[−d] = O(−d).

Case of fdR+ . We have a natural equivalence

V(F )andR+ ,X = V(F )an/V(F )(−1)†.
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Indeed, by Lemma 5.2.8 there is a natural equivalence G
d,an
a,dR+ = (Gd,an

a ×A1,an/Gan
m )/Gd

a(−1)
†, this isomor-

phism is clearly GLd-equivariant (eg. looking at the level of points) and it descends to an equivalence over
the stack ∗/GLd; by base change one deduces the general case. The map fdR+,X factors trough

V(F )andR+,X
h
−→ (X ×A1/Gm)/V(F )(−1)†

g
−→ X × A1/Gm,

we get
s∗f !

dR+,X1 = s∗h∗g!1⊗ s∗h!1.

By Theorems 3.6.15 and 4.3.13 and Proposition 4.2.5, we find that

s∗f !
dR+,X1 =

d∧
F

∨[d]⊗
d∧

F (−d)[d] = O(−d)[2d].

�

5.4. Analytic de Rham stack of rigid spaces. Let (K,K+) be a non archimedean extension of Qp.
We finish with the study of the de Rham stack for rigid spaces over (K,K+). We thank Alberto Vezzani
for the questions that motivated this section. From now on all the analytic de Rham stacks are relative to
AnSpec(K,K+)�.

The main goal of the section is to prove the following theorem:

Theorem 5.4.1. Let X be an adic space locally of finite type over (K,K+), then the morphism X → XdR

is a D-cover of Tate stacks. Futhermore, if X is quasi-compact then X → XdR is a descendable D-cover.
In particular, we have that

Mod(XdR) = lim
←−
[n]∈∆

Mod(∆n+1(X)†),

for both ∗ and !-pullbacks, where ∆n+1(X)† ⊂ Xn+1 is the overconvergent neighbourhood of the locally closed
diagonal map, obtained as the Čech nerve of X → XdR.

Lemma 5.4.2. Let X be a reduced and irreducible adic space locally of finite type over (K,K+). Then,
locally in the analytic topology, there is an open Zariski subspace U ⊂ X where LU/K is a projective OU -
module.

Proof. We can assume without loss of generality that X = AnSpec(A,A+)�. By Noether’s normalization
lemma for rigid spaces ([Bos14, §2.2 Corollary 11]), there is a Tate algebra B = K〈T1, . . . , Td〉 and an
injective and finite map B → A. Let η ∈ SpecB(∗) be the generic point of the underlying discrete ring of
B and κ(η) its residue field, then A⊗B(∗) κ(η) is finite over B ⊗B(∗) κ(η), and the underlying discrete ring
of the last is a field. Then, the underlying discrete ring of A ⊗B(∗) κ(η) is a finite field extension of κ(η).
By noetherian approximation we can find an element b ∈ B(∗) such that A[1b ] is a finite étale extension
of B[1b ], in particular LA[ 1

b
]/K is projective. We can then take U to be the analytification of the space

AnSpecA[1b ]. �

Lemma 5.4.3. Let (A,A+) be an Huber pair with A a Tate algebra of finite type over K. Suppose that
X ′ := AnSpec(A,A0)� is a solid smooth rigid space over K, then X = AnSpec(A,A+)� is †-smooth locally
in the analytic topology of X. Furthermore, if X ′ is standard smooth then X is †-smooth.

Proof. By Theorem 3.5.6 the space X ′ is solid smooth if and only if locally in the analytic topology it
is solid standard smooth. Then, we can assume without loss of generality that (A,A◦) is solid standard
smooth. Let us write A = K〈T1, . . . , Td〉/(f1, . . . , fe) a standard smooth presentation of A, we want to
show that AnSpec(A,A+)� is †-smooth. Since Spa(A,A+) is an analytic open subspace of Spa(A,K+), it
suffices to consider the case when A+ is the open integral closure of K+ in A. We can then write

X
f
−→ D

d−e,/K
K

g
−→ AnSpec(K,K+)�,

where D
d−e,/K
K = AnSpec(K〈Te+1, . . . , Td〉,K

+)�. Then, it suffices to show that f is †-étale and that g
is †-smooth. The fact that g is †-smooth follows from the fact that the polynomial algebra is a compact
projective analytic ring, and by invariance of the bounded condition for analytic rings of Proposition 2.6.16.
The proof that f is †-formally étale follows exactly the same argument of Proposition 3.7.5, we left the
details to the reader. �
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Lemma 5.4.4. Let X be a reduced affinoid adic space of finite type over (K,K+), and suppose that there
is a locally Zariski open subspace U ⊂ X with reduced complement Z such that U → UdR and Z → ZdR are
descendable, then X → XdR is descendable.

Proof. Let us write X = AnSpec(A,A+) and let I ⊂ A be the ideal of definition of Z. Let X†/Z =

AnSpec(A†/Z , A+) be the †-formal completion of X at Z. We have a morphism of Tate stacks

Z → X†/Z → ZdR.

Since Z → ZdR is desendable, then X†/Z → ZdR is also descendable. On the other hand, we have an
excision sequence of de Rham stacks

jdR : UdR ⊂ XdR ⊃ ZdR : ιdR,

we then have a fiber sequence
jdR,!1UdR

→ 1XdR
→ ιdR,∗1ZdR

. (5.5)

We also have an excision
j : U ⊂ X ⊃ X†/Z : ι

giving rise to a fiber sequence
j!1U → 1X → ι∗ι∗1X†/Z .

Note that we have cartesian squares

U X X†/Z

UdR XdR ZdR.

fU fX f
X†/Z

This shows that ι∗dRfX1X = fX†/Z ,∗1X†/Z . Then, by the projection formula of ιdR,∗ and since fX†/Z is
descendable, one deduces that ιdR,∗1ZdR

belongs to the thick tensor ideal generated by fdR,∗1X . Similarly,
jdR,!(fU,∗1U ) is in the thick tensor ideal of fX,∗1X (being the fiber of fX,∗1X → ιdR,∗fX†/Z ,∗1X†/Z), and
by the projection formula and descendability of fU , then so is jdR,!1U,dR. Therefore, by (5.5), we get that
1XdR

is in the thick tensor ideal of fX,∗1X , proving that X → XdR is descendable by [Mat16, Definition
3.18]. �

Proof of Theorem 5.4.1. By taking affinoid covers, we can assume without loss of generality that X is quasi-
compact and separated. Writing X as union of reduced irreducible spaces, we can assume by Lemma 5.4.4
that X is irreducible. Moreover, let I be the nilpotent radical of X, since X is quasi-compact I is nilpotent,
and the map Xred → X is descendable (see [Mat16, Proposition 3.35]). Therefore, we can assume that X
is reduced and irreducible. We proceed to prove the theorem by induction on the dimension of X, the zero
dimensional case being trivial.

By Lemma 5.4.2 there is a locally open Zariski subspace U ⊂ X such that LX/K is a projective OU -
module, we let Z be its Zariski closed complement. By induction in the dimension, Z → ZdR is descendable,
then by Lemma 5.4.4 it suffices to show that U → UdR is descendable.

Let U ′ ⊂ U be the maximal rigid space contained in U , by Theorem 3.5.6 U ′ is solid smooth over K,
and Lemma 5.4.3 implies that U is †-smooth locally in the analytic topology. Then, Proposition 5.2.3 and
Theorem 5.1.13 show that U → UdR is descendable thanks to the Hodge filtration of the de Rham complex.
This finish the proof of the theorem. �

Corollary 5.4.5. Let X be an adic space locally of finite type over (K,K+) and let j : X ′ ⊂ X be maximal
rigid space contained in X. Let jdR : X ′

dR → XdR be the associated maps at the level of de Rham stacks.
Then the natural map

1XdR

∼
−→ jdR,∗1X′

dR

is an equivalence.

Proof. We can assume without loss of generality that X = AnSpec(A,A+) is affinoid, so that X ′ =
AnSpec(A,A0). By Theorem 5.4.1 we have D-covers f : X → XdR and g : X ′ → X ′

dR. Consider the Čech
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nerves (∆n+1(X)†)[n]∈∆ and (∆n+1(X ′)†)[n]∈∆ of f and g respectively, where ∆n(Z)† is the overconvergent
neighbourhood of the diagonal ∆n(Z) ⊂ Zn. We have a map of simplicial affinoid spaces

j• : ∆•+1(X ′)† → ∆•+1(X)†.

Note that the underlying condensed rings of ∆n+1(X ′)† and ∆n+1(X)† are the same: this follows from
the fact that the underlying condensed rings of X

′n+1 and Xn+1 are the same for all n ∈ N, and that
the overconvergent diagonal is defined using the same ideal of definition. This implies that j•∗1∆•+1(X′) =
1∆•+1(X) is a cocartesian section. Then, since

Mod(XdR) = lim←−
[n]∈∆

Mod(∆n+1(X)†)

and
Mod(X ′

dR) = lim←−
[n]∈∆

Mod(∆n+1(X ′)†),

one deduces that 1XdR

∼
−→ jdR,∗1X′

dR
is an equivalence as wanted. �

6. Analytic de Rham stack and locally analytic representations

The last section of this paper concerns the relation between the analytic de Rham stack, the theory
of locally analytic representations as in [RJRC22, RJRC23], and the theory of equivariant ÙD-modules of
[Ard21]. In §6.1 we introduce smooth †-groupoids for derived Tate adic spaces. Geometric realizations
of these kind of groupoids generalize the construction of the de Rham stack for solid smooth morphisms.
Then, in §6.2, we use the notion of smooth †-groupoid together with actions of p-adic Lie groups to give a
very general notion of equivariant analytic D-module.

6.1. Smooth †-groupoids. Different theories of D-modules over rigid spaces X are built up from different
epimorphisms of D-stacks X → X ′, equivalently, from different groupoid objects living over X. In the case
of analytic D-modules, the kind of groupoid objects we encounter have a special shape, namely, they look
like non-commutative deformations of the trivial group object X × G

†,d
a → X for some d ≥ 1, where

G
†
a = AnSpecQp{T}

†. The previous observation leads us to the notion of a smooth †-groupoid over a
derived Tate adic space.

We start by briefly recalling the definition of a groupoid object in an ∞-category as well as some related
notions. Then, we introduce smooth †-groupoids on derived Tate adic spaces over Qp, and prove some
cohomological properties of them. We end with some examples appearing in the theory of twisted D-
modules of rigid spaces.

6.1.1. Groupoids.

Definition 6.1.1 ([Lur09, Definition 6.1.2.7]). Let C be an ∞-category with finite limits. A groupoid
object on C is a simplicial object G : ∆op → C such that for all [n] ∈ ∆ and all partition [n] = S

⋃
S′ with

S ∩ S′ = {s}, the natural map
G([n])→ G(S)×G(s) G(S

′)

is an equivalence. We let G• denote the groupoid object in C . We call G0 the objects of the groupoid, the
map d1 : G1 → G0 the source map and d0 : G1 → G0 the target map. By an abuse of notation we say that
G is a groupoid over X := G0, if C admits geometric realizations we denote

X/G := lim
−→

[n]∈∆op

G•.

Let G be a group, a standard procedure to construct more groups from G is to take quotients G/H by
normal subgroups. It turns out that being "normal" for a map of groups in higher category theory is not
longer a property but additional datum:

Definition 6.1.2 (Normal map of groupoids). Let C be an ∞-topos with effective epimorphisms and let
G be groupoid over X in C. Let H be a group object over X and f : H → G a morphism of groupoids over
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X with geometric realizations X/H → X/G. A normal quotient of f is the datum of a pullback square in
CX/

X/H X/G

X Y

such that X → Y is an epimorphism. By an abuse of notation we let G/H denote the groupoid associated
to the epimorphism X → Y .

6.1.2. †-groupoids. We let C = AdicSpQp
denote the category of derived Tate adic spaces over Qp.

Definition 6.1.3. Let X ∈ C , let G be a groupoid in C over X, and let X/G be its geometric realization.
(1) We say that G is a †-groupoid if the topological simplicial object |G•| is the constant object |X|, i.e.

if for all map [n]→ [m] we have an homeomorphism of topological spaces |Gm|
∼
−→ |Gn|.

(2) Let G be a †-groupoid over X. We say that G is smooth of relative dimension d if the target map
d0 : G1 → X is, locally in the analytic topology of X, equivalent to the projection X ×G

†,d
a → X.

Remark 6.1.4. Let G be a †-groupoid over X. The fact that any object Gn has the same underlying
topological space implies that we can localize the groupoid in the analytic topology of X. Namely, for any
open subspace U ⊂ X, the preimages Un of the map d0 : Gm → X define a subsimplicial object U• ⊂ G•
that is clearly a groupoid over U .

The following proposition implies that geometric realizations of smooth †-groupoids have a well behaved
theory of six functors.

Proposition 6.1.5. Let G be a smooth †-groupoid over X, then the natural map f : X → X/G is a
descendable D-cover.

Proof. We have a cartesian diagram

G1 X

X X/G1.

d0

d1

Therefore, locally in the analytic topology of X, the arrow X → X/G has fibers given by G
†,d
a . Thus, we

have a natural equivalence
fdR : XdR,X/G

∼
−→ X/G

and the de Rham cohomology 1X/G = fdR,∗1XdR,X/G
is Hodge complete. By Proposition 5.2.3, 1X/G has by

Hodge graduation (after forgetting the weight)

gri(1X/G) = f∗Ω
i
X/(X/G).

Since Ωi
X/(X/G) is locally free in the analytic topology of X, one has descendability of f as wanted. �

Let us now focus in the case of a smooth †-group G over a derived Tate adic space X, namely, group
objects over X that are in addition smooth †-groupoids.

Lemma 6.1.6. Let X be a derived Tate adic space, G a group object over X in derived Tate adic spaces,
and e : X → G the unit section. Then the co-lie complex e∗LG/X has a natural structure of G-module
defining an object ℓG/X ∈ Mod�(X/G). Moreover, if f : X → X/G, then there is a natural equivalence
LX/(X/G)

∼= f∗ℓX/G.

Proof. The diagonal map G→ G×G induces a morphism of classifying stacks

∆ : X/G→ X/(G×G). (6.1)

We have a natural equivalence X/G
∼
−→ G/(G × G), where X → G is the unit map, G → G × G is the

diagonal map, and G×G acts on G by (g1, g2) · g = g1gg
−1
2 . Then, the arrow (6.1) is equivalent to the map

G/(G ×G)→ X/(G×G).



THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY 105

This implies that the underlying object of L∆ is precisely ℓG/X , and that G acts on ℓG/X by the adjoint
action. The last statement follows from the previous computation and the following cartesian diagram

X X/G

X/G X/(G×G),

h

∆

where h corresponds to the map of groups (id, e) : G→ G×G. �

Proposition 6.1.7. Let G be a smooth †-group over X of relative dimension d. Then the map g : X/G→ X

is cohomologically smooth and there is a natural equivalence g!1X ∼=
∧d ℓ∨G/X [d].

Proof. Let f : X → X/G, by Proposition 6.1.5 the map g admits !-functors and is weakly cohomologically
proper. In order to show that g is cohomologically smooth we first compute the right adjoint g!. The proof
of Proposition 6.1.5 produced a Hodge filtration for the unit object 1X/G. By proper base change, we have
Hodge filtrations for all M ∈ Mod�(X/G) such that

gri(M) = f∗f
∗(

i∧
ℓG/X ⊗M).

Let N ∈ Mod�(X). The Hom space
HomX(g∗M,N)

has a filtration with graded pieces

gr−i(RHomX(g∗M,N)) = RHomX(g∗(f∗f
∗(

i∧
ℓG/X ⊗M)), N)

= RHomX(f∗(

i∧
ℓG/X ⊗M), N)

= RHomX/G(M,

i∧
ℓ∨G/X ⊗ f∗N)

= RHomX/G(M,f∗f
∗(

i∧
ℓ∨G/X ⊗ g∗N)).

But this filtration is also induced by the dual of the Hodge-filtration of g∗N which is nothing but a∧d ℓ∨G/X [d]-twist of the Hodge filtration. This shows that there is a natural equivalence g!N ∼=
∧d ℓ∨G/X [d]⊗

g∗N . We still need to prove that g is cohomologically smooth, for this we employ Lemma 4.2.2. We let
L = g!1X =

∧d ℓℓG/X [d]. The Hodge filtration gives rise a map f∗1X → L, and the adjunction g∗L =

g∗g
!1X → 1X produces a splitting 1X → g∗L → 1X . Thus, we have all the data and hypothesis needed in

Lemma 4.2.2, proving that g is cohomologically smooth. �

Example 6.1.8. In the following we give some examples of smooth †-groups and groupoids that appear in
the theory of analytic D-modules.

(1) Let f : X → Y be a solid smooth morphism of derived rigid spaces. Since X → Y is formally
†-smooth in the analytic topology of Y , (cf. Proposition 3.7.5), the map X → XdR+,Y is an
epimorphism by Proposition 3.7.5. Then, by Proposition 3.7.5 one deduces that the Čech nerve
of X → XdR+,Y is equal to (∆n+1,†

Y X)[n]∈∆op , where ∆n
Y : X → X×Y n is the diagonal map, and

where ∆n,†
Y X ⊂ X×Y n is the immersion attached to the locally closed Zariski immersion |∆n

Y (X)| ⊂
|X×Y n|. Then, locally in the analytic topology of Y and X, the morphism f is standard solid
smooth and by taking a factorization X → Y ×Gd

a,� → Y with the first arrow being standard solid
étale, one gets that (∆n+1,†

Y X)[n]∈∆op is a smooth †-groupoid over X by Lemma 5.2.8 (1). Moreover,
the previous description holds for any locally closed subspace of X in the sense of locale for the
analytic topology.

(2) Let X be a derived Tate adic space and let G be a group object over X such that G → X is,
locally in the analytic topology of X and G, a locally closed subspace of a solid smooth map. Let
exp(LieG)† ⊂ G be the locally closed subspace associated to the unit map |X| → |G|. Then there is



106 JUAN ESTEBAN RODRÍGUEZ CAMARGO

a natural equivalence GdR,X = G/ exp(LieG)†. Indeed, by (1) GdR,X is the geometric realization of
the overconvergent diagonals of the Čech nerve of G→ X, but the Čech nerve of G→ X is equivalent
to the simplicial space (G×Xn+1)[n]∈∆op that encodes the group structure of G, and the Čech nerve
of the de Rham stack of G corresponds to the subspace given by (exp(LieG)†,×Xn×G)[n]∈∆op, whose
geometric realization is precisely G/ exp(LieG)†.

(3) Let (K,K+) be a non-archimedean extension of Qp and let X be a rigid space over (K,K+),
seen as a derived Tate adic space over AnSpec(K,K+)�. Let L be a K-linear Lie algebroid over
X (cf. [AW19, §9.1]) which is locally finite free in the analytic topology of X. Let U(L) be its
enveloping algebra over OX and D(L) its algebra of locally analytic distributions, i.e. the Fréchet
completion of [AW19, §9.3]. The diagonal map L → L ⊕ L defines a commutative co-algebra
structure on D(L) compatible with its algebra structure, that endows D(L) with a Hopf-algebra
structure over K. Let us fix the left OX -action on D(L). Taking duals with respect to OX of
the natural projection D(L) → D(L)/D(L)(L) ∼= OX we get a morphism of commutative algebras
d0 : OX → C†(L). By fixing a basis of L over OX , the Poincaré-Birkhoff-Witt theorem implies that
C†(L) is isomorphic to OX{T1, . . . , Td}

†, where d is the rank of L over OX . On the other hand, the
orbit map d1 : OX → C†(L) obtained by the action of L on OX is also a morphism of commutative
algebras. The natural map OX → D(L) induces an augmentation map s : C†(L) → OX . Taking
analytic spectrum over X we end up with the data of a (≤ 1)-simplicial space

exp(L)† X

d0

d1

e (6.2)

with exp(L)† = AnSpecX C†(L). It is not hard to see that the Lie algebra structure of L defines
a groupoid object structure on (6.2), we call this groupoid the exponential of L. We also call
Mod�(X/ exp(L)†) the category of analytic U(L) or D(L)-modules.

(4) In the notation of the previous point, let X be a smooth rigid space over (K,K+). Then the tangent
space TX/K has a natural structure of Lie algebroid over X. The exponential exp(TX/K)† is nothing
but the Čech nerve of the de Rham stack of X. Indeed, it suffices to prove this locally in the analytic
topology of X, and we can assume that we have an étale map towards a relative polydisc over K.
By naturality under étale maps, it suffices to prove it for Gd

a,�, which follows from the case of group
objects of point (2).

(5) Let (K,K+) be a non-archimedean extension of Qp and let G be a reductive group over K. Let
P ⊂ G be a parabolic subgroup, let N → P → M be the short exact sequence of its unipotent
radical and the Levi quotient, and let Fℓ = P\G be the flag variety. For a group H we let h denote
its Lie algebra. There is a natural action of g on Fℓ by derivations, this defines a Lie algebroid
g0 := OFℓ ⊗ g over Fℓ whose exponential is the smooth † groupoid exp(g)† ×Fℓ→ Fℓ induced by
the natural multiplication. The Lie algebras n and p have a natural adjoint action by P, and they
define Lie algebroids n0 ⊂ p0 ⊂ g0. In fact, these Lie algebroids act trivially on OFℓ and they are
ideals of g0, thus the associated smooth †-groupoids exp(n0)† and exp(p0)† are normal subgroups of
exp(g0)† (they are actually normal subgroups of the bigger groupoid G

an × Fℓ → Fℓ, where G
an

is the analytitfication of G to a rigid space). The quotient g0/p0 is the tangent space of Fℓ, this
implies that we have a fiber sequence

Fℓ / exp(p0)† → Fℓ / exp(g)† → FℓdR .

On the other hand, we call Fℓ /(exp(g0/n0))† the universal twisted analytic de Rham stack of Fℓ,
and call Mod�(Fℓ /(exp(g

0/n0))†) the category of analytic universal twisted D-modules of Fℓ.

6.2. p-adic Lie groups and analytic D-modules. We end this section with the relation between analytic
D-modules, locally analytic representations of p-adic Lie groups, and the theory of equivariant twisted ÙD-
modules. We need some notations.

Definition 6.2.1. Let G be a p-adic Lie group. We let G, Gsm and Gla denote the analytic adic spaces
obtained by sending a compact open subspace U ⊂ G to the spaces C(U,Qp), Csm(U,Qp) and C la(U,Qp)
of continuous, locally constant, and locally analytic functions of U .
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The following lemma provides a clean relation between the groups G, Gla and Gsm.

Lemma 6.2.2. Let G† ⊂ G be the closed immersion of locales corresponding to the unit section. Then
G† is a normal subgroup of G and there is a natural equivalence G/G† = Gsm. Similarly, we have that
Gla

dR = Gla/ exp(g)† = Gsm.

Proof. We can assume without loss of generality that G is compact. We can write G† = lim
←−1∈H⊂G

H where
H runs over all compact open subgroups of G. Then one finds that

G/G† = lim←−
H

G/H = Gsm.

For the claim about Gla, by Example 6.1.8 (2) we have that Gla
dR = Gla/ exp(g)†. We can also write

exp(g)† = lim←−H
H la where H runs over all the open compact subgroups of G. One finds that

Gla
dR = lim←−

H

Gla/H la = lim←−
H

G/H = Gsm.

�

Next we show that the classifying stacks of G, Gla and Gsm have !-functors.

Proposition 6.2.3. Let G be a p-adic Lie group. The maps ∗ → ∗/G, ∗ → ∗/Gla and ∗ → ∗/Gsm are
D-covers. Furthermore, if G is compact they are descendable D-covers.

Proof. Let H ⊂ G be an open and compact subgroup, the natural map ∗/H → ∗/G is fibered on G/H
which is discrete over ∗, so cohomologically étale. Thus, to show that ∗ → ∗/G is a D-cover it suffices to
show that ∗ → ∗/H is a D-cover (resp. for H la and Hsm), so we can assume that G is compact. Let us write
f for any of the projections of ∗ to the classifying stacks. In the case of Gsm, the object f∗Qp is nothing but
the algebra Csm(Qp) of smooth functions endowed with the left regular action. Since Csm(G,Qp) admits
Qp as an equivariant direct summand, we get that ∗ → ∗/Gsm is descendable. Descendability for G and
Gla follows from the Lazard-Serre resolution ([RJRC22, Theorems 5.7 and 5.8]), namely, the Lazard-Serre
resolution is a long exact sequence of Zp,�[G]-modules

0→ Zp,�[G]dimG → · · · → Zp,�[G]→ Zp → 0

which by a theorem of Kolhaase extends to a long exact sequence of the locally analytic distribution algebra
of G:

0→ Dla(G)dimG → · · · → Dla(G)→ Qp → 0.

Taking duals with respect to Qp, we got long exact sequences of representations of G

0→ Qp → C(G,Qp)→ · · · → C(G,Qp)
dimG → 0

and
0→ Qp → C la(G,Qp)→ · · · → C la(G,Qp)

dimG → 0,

which proves descendability of ∗ → ∗/G and ∗ → ∗/Gla respectively. �

We now study cohomological properties of the classifying stacks of G and Gla.

Proposition 6.2.4. Let G be a p-adic Lie group and consider the maps f : ∗/Gsm → ∗, g : ∗/G → ∗ and
h : ∗/Gla → ∗. Then f , g and h are cohomologically smooth, both g!Qp and h!Qp are naturally isomorphic
to
∧dimG

g[d], and f !Qp = δG is the unimodular character.

Proof. We can assume without loss of generality that G is compact. Indeed, given H a compact open
subgroup of G, the Čech nerve X• of the map ∗/H → ∗/G is given by Xn = H\G ×H · · · ×H G/H (n-
copies of G), and all the arrows Xn → Xm are cohomologically étale (resp. for Gla). Thus, all the maps
gn : Xn → ∗ would be cohomologically smooth and one has natural isomorphisms g!nQp = d∗0g

!
HQp where

gH : ∗/H → ∗, proving that the object g!Qp is already determined by its restriction to ∗/H. An explicit
but tedious bookkeeping of the maps in the Čech nerve will show that the action is the adjoint for G and
Gla, and the unimordular action for Gsm (see [HKW22, Example 4.2.4]).

Now let us suppose that G is compact, we can even assume that G is a uniform pro-p-group and fix a
coordinate system G ∼= Zd

p. We first deal with f . By [RJRC23, Theorem 5.4.2] the category Mod(∗/Gsm) is
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equivalent to the category of solid smooth representations. In particular, f∗ is identified with the invariant
functor which is exact, and has by right adjoint the formation of the trivial representations, namely, f∗.
Then, Lemma 4.2.2 can be applied with L = f∗Q being the trivial representation, proving that f is
cohomologically smooth.

Finally, we deal with g and h. By the Lazard-Serre resolution, we know that both g and h are co-
homologically smooth, namely, g∗ and h∗ are group cohomology, and their right adjoints are the trivial
representation after twisting by a character, see [RJRC22, Theorem 5.19] (one can also apply Lemma 4.2.2
with L to the line bundle χ = HomG(Qp,Qp,�[G])). It is left to compute the dualizing sheaf χ of the
classifying stacks. Let G(h) be the affinoid group consisting on finitely many disjoint affinoid polydiscs of
radius p−h around the elements of g ∈ G, we also let G

(h)
= lim
←−h′<h

G(h′) be the overconvergent affinoid
group of radius p−h. Then, since the Lazard-Serre resolution is already extended for analytic distribution
algebras (see proof of [Koh11, Theorem 4.4]), letting f : ∗/G

(h)
→ ∗ and k : ∗/Gla → ∗/G

(h)
, we have that

h!Qp = k∗f !Qp for some h >> 0. Hence, it suffices to compute the dualizing sheaf of the map f . By taking
the connected component of the identity, we are reduced to compute the dualizing sheaf of the classifying
stack of an affinoid group G whose underlying adic space is a closed polydisc of dimension d, this follows
the same argument as Proposition 6.1.7 obtaining

∧d LieG[d] endowed with its adjoint action. This finishes
the proof. �

With the previous preparations we can finally define equivariant D-modules on derived Tate adic spaces.

Definition 6.2.5. Let X → Y be a morphism of derived Tate adic spaces over Qp, let G be a p-adic Lie
group and suppose that we have an action of Gla on X over Y . Let exp(g0)† denote the groupoid over X
obtained by the restriction of the action of Gla to exp(g)†. Let H† → exp(g0)† be a normal morphism of
groupoids such that the composite H† → Gla is also normal. We define the category of analytic equivariant
D(Gla/H†)-modules to be Mod�(X/(Gla/H†)).

Finally, the following theorem computes dualizing sheaves for equivariant analytic D-modules of solid
smooth morphisms.

Theorem 6.2.6. Let X → Y be a solid smooth morphism of derived Tate adic spaces over Qp of relative
dimension d, and let G be a p-adic Lie group of dimension g acting locally analytically on X over Y . Let
us denote g = LieG. Let H† be a †-smooth group over X of relative dimension e, let H† → Gla ×X be a
map of groupoids with given normal quotient Gla/H†. Then g : X/(Gla/H†)→ Y is cohomologically smooth
and its underlying Gla-equivariant dualizing sheaf is equivalent to

g!1Y = Ωd
X/Y [d]⊗

g∧
g[g]⊗

e∧
ℓH†/X [−e].

Proof. By hypothesis, the map h : X/Gla → X/(Gla/H†) is an epimorphism fibered on X/H†. Then, the
pullback along h is conservative and it is cohomologically smooth by Proposition 6.1.7. Therefore, h is a
smooth D-cover and by Corollary 3.1.26 g is cohomologically smooth if g ◦ h is so. On the other hand, we
can write

X/Gla f
−→ Y/Gla k

−→ Y,

the map f is representable by a solid smooth map so it is cohomologically smooth, and the map k is
cohomologically smooth by Proposition 6.2.4. Finally, it is left to compute the pullback of g!Qp along h .
Since g ◦ h = k ◦ f we find that

f∗k!1Y ⊗ f !1Y/Gla = h∗g!1Y ⊗ h!1X/(Gla/H†).

Therefore,
h∗g!1Y = f∗k!1Y ⊗ f !1Y/Gla ⊗ (h!1X/(Gla/H†))

−1.

The theorem follows since k!1Y =
∧g

g[g] by Proposition 6.2.4, f !1Y/Gla = Ωd
X/Y [d] by Theorem 3.6.15, and

h!1X/(Gla/H†) =
∧e ℓ∨

H†/X
[e] by Proposition 6.1.7 since h is fibered on X/H†. �

Example 6.2.7. Let X → Y be a smooth morphism of rigid spaces and let G be a p-adic Lie group
acting on X over Y . The action of G on X is locally analytic and extends to an action of Gla. Let
α : OX ⊗ g→ TX/Y be the anchor map, and let us assume that it is surjective. Let k0 = ker(α), then k0 is
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a locally finite free Lie algebroid over X acting trivially on OX , and it defines a group object H† over X.
Furthermore, since k0 is a G-equivariant sheaf, the map H† → Gla×X is a normal map of 1-groupoids and
we can perform the groupoid quotient Gla/H†. Then, the category of analytic D(Gla/H†)-modules will be
an enhancement of the category of equivariant ÙD(X,G)-modules of [Ard21]. A concrete relation between
these two categories is left to a future work.
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