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THE ANALYTIC DE RHAM STACK IN RIGID GEOMETRY

JUAN ESTEBAN RODRIGUEZ CAMARGO

ABSTRACT. Applying the new theory of analytic stacks of Clausen and Scholze we introduce a general notion
of derived Tate adic spaces. We use this formalism to define the analytic de Rham stack in rigid geometry,
extending the theory of D-modules of Ardakov and Wadsley to the theory of analytic D-modules. We prove
some foundational results such as the existence of a six functor formalism and Poincaré duality for analytic
D-modules, generalizing previous work of Bode. Finally, we relate the theory of analytic D-modules to
previous work of the author with Rodrigues Jacinto on solid locally analytic representations of p-adic Lie
groups.
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1. INTRODUCTION

Motivation. The main objective of this paper is to geometrically construct a six functor formalism for
a suitable category of D-modules over rigid spaces. To further develop this idea let us first recall some
aspects of the classical theory of D-modules.

Let K be a field of characteristic 0 and X a smooth scheme over K. Classically, the category of D-
modules over X is constructed by first defining a ring of algebraic differential operators Dx over X, and
then taking the category of Dx-modules whose underlying &'x-module is quasi-coherent. If X admits an
étale map to an affine space X — AC}{, then Dx can be explicitly constructed as the Weyl algebra

DX = ﬁx[aﬂ,... ,8Td],

where A% = Spec K [T1,...,Ty4], and the variables Or, correspond to the partial derivations along the
coordinate T;.

In [Sim96, [ST97], Simpson has proposed a different perspective on the theory of D-modules by the employ
of stacks. Let X be a smooth variety over K, Simpson attaches a space Xgllg from commutative rings over
K to sets whose theory of quasi-coherent sheaves is naturally isomorphic to the theory of D-modules over
X. More concretely, let Ringy be the category of commutative rings of finite type over K, then Simpson’s

de Rham stack is defined as the stack in the étale topology given by
al re
Xgi (R) = X (R™Y),

where R™ is the reduction of the ring R. An advantage from this definition is that one can easily construct
categories of D-modules for any variety over K without the smooth assumption, namely the previous
formula for the de Rham stack extends to any stack over K. The study of D-modules via the de Rham
stack, and its application to geometric Langlands, can be found in the work of Gaitsgory and Rozenblyum
[GR14].

Specializing to p-adic geometry, let K be a non-archimedean extension of @, and let X be a smooth
rigid space over K. In the works [AWIS| [AW19] Ardakov and Wadsley have developed the theory of
coadmissible D-modules over rigid spaces. The departure point to define the category of coadmissible D-
modules is again a sheaf ﬁX of "infinite order p-adic differential operators over X". To describe this sheaf,
let us suppose for simplicity that X = Spa A is affinoid and that we have an étale map f : X — ]D)il{
to a polydisc ]D)il{ = Spa K (Ty,...,T;). Then, as for schemes, we first consider the algebra of algebraic
differential operators of X:

Dx = Al0r,,...,0r,].
The action of dr, on A by derivations is continuous, so we can find N > 0 such that for all n > N
the left sub-A°-module A°[p"0r,,...,p"0r,] C Dx is stable under multiplication. Thus, by taking p-adic

completions ﬁg?) = A(p"Or,,...,p"0r,), and taking limits along n — oo, one constructs the algebra of
infinite order differential operators
5}( = lim ’ZP)\E?)
o

The algebra ﬁx is known as a Fréchet-Stein algebra and its construction is motivated from the algebra of
analytic distributions of p-adic Lie groups of Schneider-Teitelbaum [ST03]. In particular, there is a well
defined category of coadmissible 5X—modules given by the limit along pullbacks of the categories of finite
type 5¥)—modules. Categories of coadmissible 73X—modules have been extended using bornological vector
spaces, and a six functor formalism for Dx-modules has been constructed by Bode in [Bod21].

The theory of the analytic de Rham stack developed in this work is then a conciliation between the
geometric theory of D-modules of Simpson via the de Rham stack, and the theory of 5X-modules of
Ardakov and Wadsley. To justify the tools used to construct the analytic de Rham stack let us start with
an example. Let K be a field of characteristic 0, and let G, = Spec K[T] be an affine space over K seen as
an additive group. It follows from the definition of the algebraic de Rham stack that

al ~
GajR = G,/G,

where @a is the formal completion at 0 € G, acting by translations. It turns out that the Cartier dual of
the stack x/G, is just Gg, then, it is expected (and indeed the case) that modules over Gglg R are given by
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sheaves on G, together with an operator dr (Cartier dual of * /@:), that is equivariant with respect to the
module structure on G, via the additive action of @a on G, (i.e. that dp acts by derivations).

Let us now take K/Q, a non-achimedean extension, and let G, = ]D)}( = Spa K(T') be the open affinoid
disc seen as an additive group. We would like to define an analytic de Rham stack G, qr whose theory of

quasi-coherent sheaves is related to the theory of D-modules. By construction, the sheaf D of infinite order
p-adic differential operators has cotangent variables (i.e. the derivations dr) that look like global sections

of an analytic affine space A}fm. Moreover, the category of coadmissible D-modules is a non-commutative

analogue of the category of coherent sheaves on a relative analytic affine space (eg. A}fn). Therefore, we
would like to define the analytic de Rham stack in such a way that

Gadr = Go/G,

with Gl, c G, a subgroup acting by translations, and such that /G:& is the Cartier dual of A}{m (in a

suitable sense). It is known that the continuous dual of & (A}{m) is given, as a Hopf algebra, by the ring of
germs of functions at 0 € G,

T

K{T}' =lim K(—).

{1} ling el

Therefore, a reasonable candidate for G/, would be given by
G! = Spa K{T}'.

Here is where several foundational problems appear. First, we are obligated to work with topological
rings, and in order to have a good theory of analytic D-modules as quasi-coherent sheaves of a stack, we also
need to work with topological modules. This problem is solved thanks to the theory of analytic geometry
and condensed mathematics of Clausen and Scholze [CS19, [(CS20l [CS22]. Second, if we ever expect to built
up a six functor formalism of analytic D-modules from the theory of complete modules of analytic rings, we
need to construct categories of analytic stacks, and have a strong descent theory. Again, analytic geometry
comes to the rescue, this time making use of the abstract theory of six functor formalisms and Z-stacks as
in [Man22b, Man22a)] and [Sch23].

Once we have analytic stacks and complete modules at our disposal, we can make sense to objects such as
Ga/ Gl, as well as to its category of complete modules. However, in order to make a good definition of the
analytic de Rham stack, we would need to mimic Simpson’s construction of the algebraic de Rham stack.
The key idea is that, while the space @a represents the nilradical of a discrete ring R (i.e. those elements
a such that a™ = 0 for some n), the space G represents a "f-nilradical" for a suitable category of analytic
rings R. In other words, G represents elements a € R "of spectral norm zero", i.e. such that |a| < |p"| for
all n > 0. Thus, our first step is to restrict the theory of analytic rings to a theory of "bounded affinoid
rings" R for which we can construct a f-nilradical Nil'(R). Another motivation for the introduction of
bounded affinoid rings arises from Tate algebras: we should only expect to construct an analytic de Rham
stack for rings that look like affinoid Tate algebras, namely, for rings admitting a pseudo-uniformizer in a
suitable sense.

After bounded affinoid rings are introduced, we study some fundamental geometric properties of them
in Sections 2] and B} an analytic topology analogue to the analytic topology of adic spaces; a theory of
derived Tate adic spaces obtained by gluing bounded affinoid rings via rational localizations; the theory of
the cotangent complex of analytic rings; different notions of morphisms of finite presentation appearing in
non-archimedean analytic geometry; a deformation theoretic description of smooth maps of morphisms of
(solid) finite presentation of derived Tate adic spaces; Serre duality; a new deformation condition involving
t-nilradicals. This study on derived rigid geometry settles the basis for the theory of the analytic the Rham
stack.

Finally, once all the prerequisites in derived rigid geometry are done, we can start the study of the
analytic de Rham stack. Let X be a rigid space over Q,, and let Afffép be the (oo-)category of bounded
affinoid rings over Q,, then the analytic de Rham stack X4z will be defined as a suitable sheafification of
the prestack mapping A € Aﬂ“&’}p to

Xar(A) = X (AT7red),
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where Af=7ed .= A/ Nilf(A) is the "{-reduction of A". Our workhorse to prove properties on the analytic
de Rham stack, such as the existence of six functors, Poincaré duality, and the construction of the Hodge
filtration, will be a new theory of Cartier duality for analytic vector bundles over derived Tate adic spaces
in Section @ The main theory of the analytic de Rham stack, in particular the construction of six functors
for analytic D-modules, is the content of Section[Bl We finish the paper with a generalization of the analytic
de Rham stack of smooth morphisms in the equivariant setting in Section [6] obtaining a generalization of
equivariant D-modules of Ardakov [Ard21], and of the theory of solid locally analytic representations of
p-adic Lie groups of [RJRC22 RJRC23].

Overview of the paper. The body of the paper is divided in two main parts. First, we develop the theory
of derived Tate adic spaces and Tate stacks in Sections 2l and Bl The second part consists on Sections [4]
and [6] where we study different incarnations of Cartier duality of vector bundles, we define the analytic de
Rham stack for Tate stacks over Q,, and finally we relate the theory of the analytic de Rham stack with
the theory of locally analytic representations of p-adic Lie groups.

§2 Derived Tate adic spaces. The theory of adic spaces of Huber [Hub94] have been the language for non-
archimedean analytic geometry in the last few decades, a weakness of this category are the restrictions
imposed in the definition of complete Huber pairs. The main goal of this section is the introduction of
the oo-category of bounded affinoid rings (Definition 2.6.10]), generalizing the category of Tate Huber pairs,
over which we can do both analytic and derived algebraic geometry. Similarly as for Huber pairs, one can
construct a spectral space Spa.A for any bounded affinoid ring A (Definition R.7.3), generalizing the adic
spectrum of an Huber ring. Maps between bounded affinoid rings will give rise to spectral maps of the adic
spectra, and solid quasi-coherent modules will satisfy descent for the analytic topology. A bounded affinoid
ring has the feature that any function is bounded in the sense of the theorem down below. Moreover,
one can define condensed and ft-nilradicals for these rings, consisting on ideals of uniformly nilpotent
or overconvergently close to zero elements respectively. The following summarizes the main results (cf.

Propositions 2.5.7, 2.6.9] 2.6.174] 278 and 2.7.14)).

Theorem 1.0.1. Let R = Z((w)) be the Huber ring parametrizing pseudo-uniformizers in Tate Huber
pairs. There is a full subcategory AffRingl}z C AnRingp of the oo-category of analytic R-algebras, called
the category of bounded affinoid rings, containing fully faithfully the 1-category of Tate Huber pairs over
R. The category AffRinglj% is stable under small colimits in AnRingp. Furthermore, let A € AﬁRing%, the
following hold

(1) There is an animated subring AT C A(x) such that an A-module is A-complete if and only if it is
Zla]n-complete for all a € AT.

(2) For any map Z[T| — A of analytic rings, there is some n € N and an extension to the Tate algebra
R(rm"T) — A. In other words, any element a € A is bounded.

(3) The ring A has a condensed nil-radical Nil(A) whose S points (for S profinite) are given by maps
S — A which are uniformly nilpotent. Furthermore, the analytic ring structure on A is already
determined by the analytic ring structure of the quotient A™d := A/ Nil(A), and Nil(A™4) = 0.

(4) The ring A has a t-nil-radical Nil'(A) whose S-points (for S profinite) are given by maps S — A
which are overconvergently close to zero. Furthermore, the analytic ring structure on A is already
determined by the analytic ring structure of the quotient AT=7ed .= A/ Nilf(A), and Nilf (AT—red) =
0.

(5) There is a spectral space Spa A endowed with an analytic topology with a basis given quasi-compact
rational subspaces, generalizing Huber’s construction of Spa(A, AT). Moreover, any map A —
B of bounded affinoid rings gives rise a spectral morphism SpalB — Spa A preserving rational
localizations.

(6) We have homeomorphisms of spectral spaces Spa. A = Spa A™d = Spa Af—red,

(7) The oco-category Mod(A) of solid A-modules satisfies descent for the analytic topology of Spa A.

Having stated some basic properties for the category of bounded affinoid rings one can formally defined
the category of derived Tate adic space by gluing bounded affinoid rings along open covers (Definition

27.22).
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Definition 1.0.2. We let Aﬂ“ﬂ’q denote be the opposite category of bounded affinoid rings, an object in Aﬂ“ﬂ’q
is called a bounded affinoid space. Given A a bounded affinoid ring we let AnSpec A € Affll’% be its analytic
spectrum. A derived Tate adic space is a sheaf on anima X : Aff?;fp — Ani for the analytic topology of

Aﬂ“ljg, such that X admits an open analytic cover by bounded affinoid spaces. Given X a derived Tate adic
space we let |X| = lim AnSpec A—s X | X| denote its underlying topological space. We let AdicSpp denote the
oo-category of derived Tate adic spaces over R.

The previous definition of derived Tate adic spaces is an extension of Huber’s analytic adic spaces. The
choice of the analytic topology to glue bounded affinoid rings is an arbitrary choice that was taken to
compare with the classical theory. We will see in §3] that one can still do geometry in different kind of
Grothendieck topologies, as long as one has descent for the six functor formalism of quasi-coherent sheaves.

43 Tate stacks. In this section we continue developing the theory of derived Tate adic spaces. In §3.1] we
recall some language in the theory of abstract six functor formalisms of [Man22bl Man22a| and [Sch23].
Then in §3.2] we use [Sch23, Theorem 4.20] to construct a very large six functor formalism on a category
of analytic Z-stacks on bounded affinoid rings (Definitions B.2.7 and B.2.10]). We define different notions of
morphisms of finite presentations in analytic rings in §8.3] study basic properties of cotangent complexes in
analytic rings in §3.4] and introduce the notion of solid smooth and étale maps of derived Tate adic spaces
in §8.51 We obtain an equivalent description of solid smooth and étale maps as formally smooth and étale
maps of solid finite presentation (Theorem and Corollary [3.5.10]).

Theorem 1.0.3. Let f: X — Y be a morphism of solid finite presentation of derived Tate adic spaces
over R =Z((m)). The following are equivalent:

(1) The map f is formally smooth (resp. étale).
(2) The map f is solid smooth (resp. étale), namely, locally in the analytic topology of X and Y the
map f is standard solid smooth (resp. standard solid étale).

We continue by studying some properties of the categories of modules of derived Tate adic spaces with
the goal of proving Serre duality (following an argument of Clausen and Scholze by deformation to the
normal cone). We have the following result (Theorem B.6.T5]).

Theorem 1.0.4. Let f : X — Y be a morphism locally of solid finite presentation of derived Tate adic
spaces. The following hold:

(1) The map f admits !-functors in the siz functor formalisms of solid quasi-coherent sheaves.

(2) If f is solid smooth (resp. étale) then f is cohomologically smooth (resp. cohomologically étale) for
the siz functor formalism of quasi-coherent sheaves. Furthermore, there is a natural identification
1y = ng/y[d] where d is the relative dimension of f, and 1y is the unit in the category of solid

quasi-coherent sheaves on'Y (i.e. the structural sheaf).

Finally, we introduce a new deformation condition called f-formally smoothness and étaleness, related
with liftings along f-nilpotent ideals such as NilT(.A). Then, we prove the following lifting property for solid
smooth and solid étale maps (Proposition B.7.5]).

Proposition 1.0.5. Let f: X — Y be a solid smooth (resp étale) map of derived Tate adic spaces over R.
Then f is t-formally smooth (resp. étale) locally in the analytic topology of X and Y.

In the next sections we apply all the previous theory on derived rigid geometry to study Cartier duality
of vector bundles, and to construct a six functor formalism for analytic D-modules.

{4 Cartier duality for vector bundles. With the introduction of derived Tate adic spaces, new commutative
group objects appear in the nature making possible new incarnations of Cartier duality. In this section we
do not pretend to give a definition or an abstract set up for a Cartier duality theorem, instead we explore
new examples of Cartier duality arising from analytic subspaces of vector bundles. For technical reasons,
these Cartier duality isomorphisms are easier to describe if we restrict ourselves to analytic geometry over
Qp, for simplicity let us even restrict ourselves to derived Tate adic spaces over QQ,. We start with the
definition of the analytic incarnations of vector bundles (Construction [£.3.9)
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Definition 1.0.6. Let X be a derived Tate adic space over Q, and .# a vector bundle over X of rank d.
We let V(%) be its geometric realization as an derived Tate adic space over X. Let ¢ : X — V(.%)?" be
the zero section, and let V(.#)T denote the overconvergent neighbourhood of zero.

So, if X = AnSpecQ), is a point, and & is free of rank 1, the space V(.%)" is isomorphic to the affine
analytic line Al’an Similarly, V(.%)' is nothing but the space G/ 0,0, given by the analytic spectrum of the

algebra Q;,,{T}]L lim Qp( —) of functions that overconverge at 0 € Al * The following theorem describes
the theory of six functors for analytic vector bundles and their classﬁymg stacks (Proposition [4 and

Theorem E.3.13)).

Theorem 1.0.7. Let X be a derived Tate adic space over Q, and let & be a vector bundle over X of rank
d.
(1) Let f : V(F)™ — X, then f is cohomologically smooth and there are natural equivalences f'lx =
FANEZV[d] and fif'lx = Sme( F), where Sym&(ﬂ) is the sheaf of functions of V(ZV)T.
(2) The map f:V(F)' — X satisfies f. = fi.
(3) Let g : X/V(F)™ — X. Then g is cohomologically smooth with ¢'1x = g* N*.Z[—d], and there is
a natural equivalence gy = g,[—2d].
(4) Let g : X/V(F)! — X. Then g is cohomologically smooth with ¢'1x = g* N Z[d], and there is a
natural equivalence g = g,.

The analytic Cartier duality theorem is the following statement (Theorems [£.2.7] and EL3.13)).

Theorem 1.0.8. Let X be a derived Tate adic space over Q, and let .F be a vector bundle over X of rank
d.

(1) There is a bilinear morphzsm F V(&) x (X/V(FV)™) = BG,, such that F*(0(1)) is an
isomorphism V(F)I = X/V(ZV)a in the category of Fourier-Moukai kernels for the siz func-
tor formalisms of solid quasi-coherent sheaves. Furthermore, the inverse of F*(0(1)) is given by
Fr(0(-1)) ® N ZV[~d].

(2) There is a bilinear morphism G : V(F)™ x (X/V(F)) — BG,, such that G*(0(1)) is an
isomorphism V(F)™ = X/V(FV) in the category of Fourier-Moukai kernels for the siz func-
tor formalisms of solid quasi-coherent sheaves. Furthermore, the inverse of G*(O(1)) is given by

G*(0(-1)) @ N* ZV[d).

Corollary 1.0.9. In the notation of Theorem [L.O.8, there are natural equivalences of stable oco-categories
given by Fourier-Mukai transforms

FM; : Modg(V(.Z)T) = Modg(X/V(FY)™).
and

F My : Modq(V(Z)*) 5 Modo(X/V(ZY)T).

We also review algebraic Cartier duality in Theorem [£.2.7] and show two other versions of analytic Cartier
duality in Theorems [4.3.8] and [4.3.201

§0 Algebraic and analytic de Rham stacks. The first construction of the de Rham stack dates back to
Simpson in his papers [Sim96) [ST97]. In this work we propose an analogue of this construction in analytic
geometry, more precisely in rigid analytic geometry over Q,. We begin by extending the construction of
the algebraic de Rham stack from algebraic geometry to condensed mathematics. Specialized to derived
Tate adic spaces we get the following (Definition [E.1.T]).

Definition 1.0.10 (Algebraic de Rham stack). Let R = Z((7)) and let X be a derived Tate adic space
over R ® Q. The algebraic de Rham prestack of X is the presheaf on AH?%@Q given by

X2E(A) = 11% X (cone(I — A))

where I runs over all the uniformly nilpotent ideals of A. The de Rham stack of X is the sheafification
of the de Rham prestack in the Z-topology, and we also denote it by X;}%. Given a morphism X — Y of
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derived Tate adic spaces, the relative algebraic de Rham stack X;}%Y is the pullback

alg
XdR,Y Y

| |

alg alg
X, dR YdR :

We call MOdD(XS}%y) the category of algebraic Dy y-modules.

In analogy to the algebraic de Rham stack, and in view that there is a second kind of nil-radical in the
category of bounded affinoid rings (Theorem [LOJ] (4)), we define the analytic de Rham stack as follows

(Definition [5.2.2)).
Definition 1.0.11 (Analytic de Rham stack). Let X be a derived Tate adic space over Q,, the analytic
de Rham prestack is the presheaf on Afff(’@p defined by

Xap(A) = X (A7),

The analytic de Rham stack is the Z-sheafification of the analytic de Rham prestack, and we also denote
it by X4r. Let f: X — Y be a map of derived Tate adic spaces, we define the relative de Rham stack
X4r,y to be the pullback

XdR,Y —Y
XdR —_— YdR-
We call Modn(Xgr,y) the category of analytic D x/y-modules.

The main theorem on de Rham stacks is the following (see Corollaries and [5.2.13] Propositions
and 523 and Theorems E.1.12] 51131 5.2.10] 5.3.7 and B.4.T]).

Theorem 1.0.12. Let f : X — Y be a morphism of derived Tate adic spaces locally of solid finite pre-

sentation and write ffl‘}l%g : Xg}% — Yda}l%g and far : Xqr — Yar for the associated maps at the level of

stacks.

(1) The formation of X — Xggr and X — X;;% commutes with colimits and finite limits at the level of
prestacks.

(2) The maps f;}zg and fqr admit !-functors.

(3) Suppose that X is a rigid space over a non-archimedean extension K/Qy, then the map h : X —
Xir,K s a P-cover. In particular, quasi-coherent sheaves on X4p i descent along h.

(4) (Kashiwara equivalence) Let X — 'Y be a Zariski closed immersion of derived Tate adic spaces, and
let Y1/X be the overconvergent neighbourhood of X in'Y. Then there is an equivalence of analytic
de Rham stacks Xqr = YdT}/%X, In particular, analytic D-modules of Y supported on X are equivalent
to analytic D-modules of X.

(5) Suppose that f is solid smooth (resp. étale), then the maps f;}% and fgr are cohomologically smooth
(resp. étale).

(6) Suppose that f is solid smooth, then we have natural equivalences f;}%g’!lyjkg = 1X3§% and fc!lRlydR =
1x,,[2d] where d is the relative dimension of f.

(7) Suppose that f is solid smooth and consider the map g : XS}'%,Y — XgRryy, then g admits !-functors,
gs« satisfies the projection formula, and there is a natural equivalence

Ix,.y — gslpa
any T 9XGE

In particular, the pullback functor g* is fully faithful and induces an embedding of analytic Dy y -
modules into algebraic Dx y-modules.



8 JUAN ESTEBAN RODRIGUEZ CAMARGO

(8) Suppose that f is solid smooth, and denote f;ﬁy : XS}'%,Y — Y and fqry : Xqry — Y the natural
maps. Then there are natural equivalences of de Rham cohomology

1
DR(X/Y) = farydyats = faryel Xany-

Furthermore, DR(X/Y') can be naturally promoted to a filtered object given by the Hodge filtration,
with graded pieces

gr' DR(X/Y) = Ql,y,
extending the Hodge filtration for smooth maps of rigid spaces.

Remark 1.0.13. In order to prove Theorem [1.0.12] we need to consider a variation of the de Rham stacks

given by the filtered de Rham stacks X2§+ and X p+, see Definitions 5.1.1] and 5.2.2]

8 Analytic de Rham stack and locally analytic representations. Finally we end with the relation between
the analytic de Rham stack, the theory of solid locally analytic representations of p-adic Lie groups and a
general notion of equivariant analytic D-module, generalizing definitions of [Ard21].

We first briefly discuss the relation with representation theory. Let G be a p-adic Lie group, and denote
by G' and G*™ the analytic spaces defined by G endowed with the sheaf of locally analytic and locally
constant functions respectively. In [RJRC23| we proved that the category of solid locally analytic and
smooth representations are given by the category of solid quasi-coherent sheaves of the classifying stacks
*/G' and x/G™ respectively. A first relation between p-adic Lie groups, representation theory and the de
Rham stacks is encoded in the following proposition (see Lemma [6.2.2]).

Proposition 1.0.14. Let G be a p-adic Lie group. There is a natural equivalence
Gl =G,
In particular, we have an equivalence of classifying stacks
(*/Gla)dR — */Gsm

Next, both solid locally analytic representations and analytic D-modules extend to a theory of equivariant
analytic D-modules. To motivate the definition let us make the following observation.

Remark 1.0.15. Let f : X — Y be a solid smooth map of derived Tate adic spaces. By Proposition
the map h : X — Xyry is an epimorphism of Z-stacks. The Cech nerve of h is given by the analytic de
Rham groupoid, whose n-th is the overconvergent neighbourhood of the diagonal map A’{,HX — X Xyntl
namely, the analytic space (A@HX )T whose functions are given by functions of X *¥™*! that overconverge
the locally closed subspace |AL™| < |X*¥"+1|. This provides an equivalence of Z-stacks

Xopy = lim (AP X)f
[n]eAcp

We extend the analytic de Rham groupoid to t-smooth groupoids in Definition Roughly speaking,
these are groupoid objects that look like the overconvergent neighbourhoods of the zero sections of vector
bundles. Prototipical examples of f-smooth groupoids are constructed from Lie algebroids over rigid spaces
as explained in Example (3). We recall the definition of a normal map in groupoids, and introduce
equivariant analytic D-modules in great generality (Definition [6.2.5]).

Definition 1.0.16. Let X be a derived Tate adic space over @, and G a p-adic Lie group acting locally
analytically on X. Let H' be a f-smooth group over X and let Hf — G x X be a map of groupoids with
given normal quotient G'*/H'. We define the category of analytic equivariant D(G'®/HT)-modules to be
Mod(X/(G'*/HT)).

Equivariant D-modules over solid smooth maps have a good cohomological behaviour (Theorem [6.2.0)):

Theorem 1.0.17. Let X — Y be a solid smooth morphism of derived Tate adic spaces over Q, of relative
dimension d, and let G be a p-adic Lie group of dimension g acting locally analytically on X over Y. Let
H be a t-smooth group over X of relative dimension e, and let HY — G' x X be a map of groupoids
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over X with given normal quotient G'*/H. Then g : X/(G'"/H') — Y is cohomologically smooth and its
underlying G'®-equivariant invertible sheaf is equivalent to

0% vld @ \LieGlgl ® /\ turx[—e].

Notations and conventions. Throughout this paper we freely use the language of higher category theory
and higher algebra of [Lur09] and [Lurl7], the theory of condensed mathematics of [CS19l [CS20l [(CS22],
and the theory of abstract six functor formalisms of [Man22bl [Man22a| and [Sch23].

To avoid any confusion, (0o, 1)-categories will be called oco-categories while classical categories will be
called 1-categories. We let Cats, denote the large co-category of co-categories, let Catgglim be the subcate-
gory with objects given by oco-categories admitting small colimits and morphisms given by colimit preserving
functors, and let Cat* be the subcategory of stable co-categories with exact functors. We let Pr¥ (resp.
Prf) be the co-category of presentable co-categories with colimit preserving functors (resp. accessible and
limit preserving functors). Combining adjectives, we let Prl-** denote the co-category of presentable stable
oo-categories.

Following Lurie, the previous categories have natural cartesian symmetric monoidal structures, we have
the following translation of commutative algebra objects with respect to the cartesian product:

e CAlg(Caty,) is naturally equivalent to the co-category of symmetric monoidal co-categories Cats .

° CAlg(Catgghm) is the oo-category of colimit preserving symmetric monoidal co-categories, i,.e. co-
categories admitting small colimits, endowed with a symmetric monoidal structure that commutes
with colimits in each variable, and symmetric monoidal colimit preserving functors.

o CAlg(CatSy) is the oco-category of stable symmetric monoidal co-categories, i.e. stable co-categories
with a symmetric monoidal structure which is exact in each variable, and symmetric monoidal exact
functors.

° CAlg(Catgghm’eX) is the oco-category of colimit preserving symmetric monoidal stable co-categories;
it is the full subcategory of CAlg(Cat™) with objects having a underlying stable co-category.

e CAlg(Prl) is the oo-category of presentably symmetric monoidal co-categories, i.e. presentable
oo-categories with a symmetric monoidal structure that commutes with colimits in each variable,
and symmetric monoidal colimit preserving functors.

o CAlg(Pr¥) is the oo-category of presentably symmetric monoidal stable co-categories, i.e. pre-
sentable stable co-categories with a symmetric monoidal structure that commutes with colimits in
each variable, and symmetric monoidal colimit preserving functors.

Given an arrow f : X — Y in a pointed oo-category C, we let [X — Y] and cofib[X — Y] denote
the fiber and cofiber of f respectively. The notion of descendable algebra in a symmetric monoidal stable
oo-category will be used repeatedly along the document, we send to [Matl6] for its definition and main
properties.

We let Prof and Extdis be the sites of profinite and extremally disconnected sets with covers given by
finite jointly surjective maps. Given an oo-category C with finite products and small colimits, we let Cond(C)
be the condensification of C, see [CS20), §11.1] and [Man22bl Definition 2.1.1]. Let C be a 1-category that
admits small colimits and that is generated by small colimits under its compact projective objects C, we
let Ani(C) be the animation of C, see [CS20], §11.4].

We shall write AnRing for the oo-category of complete commutative analytic (animated) rings as in
[Man22bl Definition 2.3.10]; unless otherwise specified all analytic rings will be assume to be objects in
AnRing. Given A an analytic ring, we let A be its underlying condensed ring, and for S € Extdis we let
A[S] be the free A-module generated by S, we also write AnRing 4 for the slice co-category of analytic
A-algebras. We denote by Modx>o(A) the oo-category of animated A-modules, and let Mod(A) be its
stabilization. Throughout this paper we use homotopical notation, so for a complex M the fundamental
group m;(M) is the same as the (—i)-th cohomology group H~%*(M). We shall write Mod” (A) for the heart
of Mod(A).

Given A an analytic ring, we shall write AniAlg 4 for the oo-category of animated .4-algebras, namely,
the category of condensed animated A-algebras that are A-complete. Given B an animated A-algebra, we
let B 4, denote the analytic ring obtained by restriction of analytic ring structure from A to B, see [Man22bl
Definition 2.3.13]. More generally, given B an E;-algebra in Mod(.A), we let B4 / be the analytic ring with
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underlying condensed ring B, and whose category of left modules is given by Mod (B 4,) = Mod(Mod(A)),
see Definition 2.T.T1

In this paper all analytic rings are complete, and we always consider colimits as complete analytic rings
unless otherwise specified. Let A be an analytic ring, we will write — ® 4 — and Hom 4(—, —) for the tensor
product and the internal Hom space on Mod(.A), omitting in this way further decorations regarding derived
functors. In case we want to consider a classical tensor or Hom space for objects sitting in degree 0, we will
write mo(— ® 4 —) and mo(Hom 4(—, —)) instead. For C a 1-category with all small colimits and generated
by compact projective objects, an object X in Ani(C) is called static if it belongs to the essential image
of C — Ani(C). We call an analytic ring A static if A is a static condensed animated ring, i.e. a usual
condensed ring sitting in degree 0.

Acknowledgements. This project has been the result of long conversations with Johannes Anschiitz, Ko
Aoki, Arthur Cesar le Bras, Lue Pan, Joaquin Rodrigues Jacinto and Peter Scholze; very special thanks
to all of them. I am particularly grateful with Lucas Mann and Konrad Zou for their patience in several
discussions about higher category theory and abstract six functor formalisms. I hearty thank Grigory
Andreychev, Konstantin Ardakov, Dustin Clausen, Gabriel Dospinescu, Akhil Mathew, Riccardo Pengo,
Alberto Vezzani and Bogdan Zavyalov for very fruitful conversations. This paper is the culmination of the
passage of the author in the Max Planck Institute for Mathematics in Bonn during the year 2022-2023,
my heartfelt thanks to the institute for their hospitality and support that made this work possible. This
project has been partially done while the author was a Junior Fellow of the Simons Society of Fellows at
Columbia university.

2. DERIVED TATE ADIC SPACES

Clausen and Scholze’s analytic geometry is a framework where classical algebraic, archimedean and
non-archimedean geometries can be treated as equals. Throughout this paper we will focus on the non-
archimedean side of the theory, namely the solid theory. By taking as inspiration classical (derived) algebraic
geometry (eg. [Lur04]), and Huber’s theory of (analytic) adic spaces [Hub96], we will introduce a category
of derived Tate adic spacedl.

As primary point, we need to introduce the categories of rings that serve as building blocks of our theories.
The first approximation will be modelled by analytic rings associated to generalized Huber pairs [Man22bl
Definition 2.12.8]|, called in this paper solid affinoid rings, see Definition Roughly speaking, the data
of a solid affinoid ring is provided by a pair (A, AT), where A is a solid animated ring, and At C m(A)(x)
is a discrete subring that determines which variables of A are “solid”.

The next step towards non-archimedean analytic geometry requires some technical constructions. In one
hand, we want to differentiate algebraic varieties from rigid spaces. On the other hand, we want to define a
class of rings that mimics the relevant features of analytic complete Huber pairs (A4, AT), endowed with a
fixed pseudo-uniformizer w. By [And21], the 1-category of complete Huber pairs embeds fully faithfully in
the category of analytic rings. Since (A, AT) admits a pseudo-uniformizer, the subring A° of power bounded
elements is an open subring of A. We can determine the objects in A° in the following way: consider the
map R := Z((m)) — A defined by the pseudo-uniformizer 7. An element a € A belongs to A" if and only if
the map R[T] — A sending T +— a extends to R(T) — A, where R(T') is the Tate algebra of R. Using this
observation, we are able to define a class of bounded affinoid rings that provides the building blocks for our
non-archimedean geometry.

After the introduction of the category of bounded affinoid rings, we extend the construction of the adic
spectrum Spa A from Huber pairs to bounded affinoid rings, then, by gluing along rational covers, we define
the category of (analytic) derived adic spaces, which is a large generalization of the classical 1-category of
(analytic) adic spaces endowed with a fix pseudo-uniformizer.

2.1. Preliminaries. In this section we address some technical results and definitions that will be used
throughout the paper. The reader can skip it on a first reading and come back when the corresponding
statement is referenced.

1Following the conventions of Clausen-Scholze, we will replace the adjective analytic on Huber rings by the adjective Tate,
meaning that we work with Huber rings admitting a pseudo-uniformizer.
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2.1.1. Analytic Eoo-rings. The definition of (complete) analytic ring and the main properties in [CS20l
Lecture XII] can be extended to connective Es-condensed algebras instead of animated rings with minor
changes in the proofs. Moreover, using [CS19l Proposition 12.20] one can even extend the definition of
analytic ring to general [E; and E..-algebras. In this paper we will essentially only use the animated
definition of analytic ring ([Man22b, Definition 2.3.10]). However, it is useful to have this slightly more
general notion in mind, for example, when constructing idempotent algebras in the category of complete
modules of analytic rings.

Definition 2.1.1. An analytic Eq-ring A is the data of a condensed E;-ring A together with a full subcat-
egory Mod(A) C Mod(A) satisfying the following properties.

(1) Mod(.A) is stable under small limits and colimits in Mod(A).

(2) For all S € Extdis and M € Mod(A) the object Hom 4(A[S], M) belongs to Mod(.A).

(3) The inclusion Mod(.A) C Mod(A) has a left adjoint A ®4 —.

We say that an analytic ring is complete if the natural map A — A[%] is an equivalence. An analytic E-
ring is an analytic E1-ring whose underlying ring has a structure of E,.-ring. A morphism A — B of analytic
E; (resp. Eoo)-rings is a morphism of condensed rings such that the forgetful functor Mod(B) — Mod(A)
sends Mod(B) to Mod(A). We let let AnCRing denote the oo-category of complete Eo-analytic rings.

Remark 2.1.2. Let A be an analytic Ey-ring, then Mod(.A) is naturally a symmetric monoidal category.
Indeed, the same argument of [CS20, Proposition 12.4| shows that the kernel of A ® 4 — is a tensor ideal.
Furthermore, by the proof of [Man22bl Proposition 2.3.8], we have a natural transformation of functors
Mod((—)) = Mod(—) given by the analytification functors.

The following lemma says that an analytic E..-ring is completely determined by its category of complete
modules

Lemma 2.1.3. Let S be the sphere spectrum considered as a condensed spectrum, let Mod(S) be the sym-
metric monoidal co-category of condensed spectra and CAlg(Catgglim)S/ the co-category of colimit preserv-
ing symmetric monoidal co-categories tensored over Mod(S). Then the functor Mod(—) : AnCRing —
CAlg(Catgghm)S/ sending an analytic Eoo-ring A to the symmetric monoidal co-category Mod(A) is a fully
faithful embedding.

Proof. Consider CAlg(Mod(S)) the oo-category of E..-condensed rings and let
Mod((-)) : CAlg(Mod(S)) — CAlg(Cat2™)g,

be the functor sending a ring to its category of modules, by [Lurl7, Corollary 4.8.5.21] this functor is fully
faithful. Furthermore, [Man22bl Proposition 2.3.8| provides a natural transformation Mod((—)) = Mod(—)

of functors AnCRing — CAIg(Catgglim)§ / given by the analytification functor A ®4 —: Mody — Mod 4.
Let A, B € AnCRing, observe that any colimit preserving Mod(S)-tensored symmetric monoidal mor-
phism f*: Mod(A) — Mod(B) is compatible with the natural morphisms

Mod(A) f* Mod(B)

l I

Endyoq(4) (Al#]) — Mod(Mod(8)) —— Endypoq(s)(B[#]) — Mod(Mod(§)),

but Endyjoq(4) (A[*]) = A and Endy,q¢p)(B[+]) = B since the analytic rings are complete. Then, we have
a natural commutative diagram
Mod(A) —— Mod(B)

A@A—T TB®§_

Mod(4) zz-= Mod(B),

which shows that f* is naturally equivalent to B® 4 — by definition of the analytic base change. Therefore,
by definition of the mapping space of analytic rings as a full subanima of the mapping space of the underlying
condensed rings, cf. [CS20, Lecture XII| or [Man22bl Definition 2.3.1 (d)], the mapping space from A to



12 JUAN ESTEBAN RODRIGUEZ CAMARGO

B in AnCRing is naturally equivalent to the mapping space from Mod(A) to Mod(B) in CAlg(Catgglim)S /5
which finishes the proof. O

Remark 2.1.4. The previous lemma only applies for analytic E,-rings and not for analytic animated rings.
The obstruction for the statement to hold for analytic animated rings is that the forgetful functor of
animated rings towards E..-rings is not fully faithful. Nevertheless, the lemma holds for analytic animated
rings over Q. In general, the functor Mod(—) is always conservative.

2.1.2. Generalized Huber pairs. For future reference we define generalized Huber pairs, see [Man22bl Def-
inition 2.12.8|. Let Zg denote the analytic ring of solid integers, mapping a profinite set S = 1&12 S; €
Pro(FinSet) to the condensed abelian group Zg[S] = Jm, Z[S;]. More generally, for R a Z-algebra of finite
type we shall write Ry for the analytic ring such that Rp[S] = Jim, RI[S;], and for R a discrete ring we set
Ro[S] = lim , - Ao [S] where A runs over all the finitely generated subrings of R, cf. [CS19, Examples 7.3].

Definition 2.1.5. A generalized Huber pair consists on a tuple (A,S) with A an animated Zg-algebra,
and S a set of elements S C mo(A)(x), such that A is Z[X,]-solid for all s € S, with Z[X] — A a map
sending X — s. We let (4, 5)y denote the analytic ring Az(x,.ses),,-

Remark 2.1.6. In the notation of Definition 2.1.5] the analytic ring structure of (A, S)5 only depends on
the variables S, and not on the lifts Z[X;] — A, thanks to [CS20, Proposition 12.21].

2.2. Categorified locale. In the following section we recall the formalism of categorified locales of [CS22]
Lectures V-VII| and [Aok23|. The notion of categorified locale replaces the more classical definition of
locally ringed space; the building blocks of analytic geometry are analytic rings, and these provide the
data of a condensed ring and a category of complete modules. Thus, instead of gluing rings as in classical
algebraic geometry we need to glue the categories of modules, the language of categorified locales formalizes
this idea. Moreover, categorifies locales offer a clean understanding of open and closed immersions from a
six functor point of view, these notions will be repetitively used throughout the paper.

Let CAlg(Catimex) be the co-category of colimit preserving symetric monoidal stable co-categories,
with morphisms denoted by pullback functors f* : C' — D. In §3lwe shall restrict ourselves to the framework
of presentably symmetric monoidal stable co-categories CAlg(Pr%*); as it is explain in [Ack23], this is not
an important restriction since we will eventually take categories of k-small condensed sets for some cut-off
cardinal x. Given C' € CAlg(Cat®i™ ) we let S(C) denote the class of isomorphism classes of idempotent
algebras in C, that is, the class of isomorphism classes of objects A € C' endowed with a morphism from
the tensor unit 1 — A such that the arrow

A 4@ A
is an equivalence. We endow S(C') with a partial order as follows: A < A’ if and only if there is an arrow
A" — A commuting with the unit maps. By [Aok23| Theorem 3.13], if C' is presentably symmetric monoidal,
the category of idempotent algebras is in fact essentially small, so S(C) defines a honest poset.

Proposition 2.2.1 ([CS22| Proposition 5.3]). The poset S(C) is a locale with closed subspaces Z € S(C')
defined by the isomorphism classes of idempotent algebras A. More explicitly, the following hold:

(1) The “empty subset” corresponds to 0.

(2) The “whole space” corresponds to 1.

(3) The “intersection” Z N Z' corresponds to A®@ A’.

(4) An “arbitrary intersection” [\, Z; corresponds to lim, A;.
()

The “union” Z U Z' corresponds to the fiber B = [A@ A" — A ® A'] together with the unit 1 — B

induced by the map 1 M) Ag A

5

Let Z € S(C) correspond to A. The closed subspace Z has a natural category of modules supported on Z
defined by the symmetric monoidal co-category C'(Z) := Mod4(C') of A-modules in C. For Z € S(C), the
category C'(Z) is a tensor ideal of C' stable under all limits and colimits. The frame S(C)°P can be thought
as the open complements of the class of closed subspaces in S(C'). Let U € S(C)°P be the open complement
of Z € §(C), we can define an co-category of modules on U by taking the localization C'(U) = C/C(Z).
One can explicitly define natural six functors associated to open and closed immersions.
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Definition 2.2.2. Let Z € S(C) be a closed subspace with associated idempotent algebra A and comple-
mentary open U. We define the following functors:
(1) The upper star functors ¢, : C — C(Z) and jj; : C — C(U) given by ;M = A ® M and the
natural projection respectively.
(2) The lower star functors vz, : C(Z) — C and jy. : C(U) — C given by the forgetful functor and
JusitM = Homg ([1 — A], M) for M € C.
(3) The upper shriek functors i, : C — C(Z) and ji; : C — C(U) given by 1, M = Hom(A, M) and
j}] = ji; respectively.
(4) The lower shriek functors ¢tz : C(Z) — C and jy) : C(U) — C given by tz1 = 1z, and jiji;M =
[1 — Al ® M for M € C respectively.

An edge f* : C — D in CAlg(Cat®i™ ) is said an open (resp. closed) immersion if it is equivalent to
an edge of the form jj; : C — C(U) (resp. 3, : C = C(2)).

Remark 2.2.3. Let M € C, by construction we have natural excision fiber sequences
Ji*M — M — 1M

and
Lt M — M — .« M.

The following proposition tells us that the notions of open and closed immersions in CAlg(CatSolim-ex)
behave categorically as expected from a 6-functors point of view.

Proposition 2.2.4 ([CS22, Proposition 6.5]). Let f*: C — D in CAlg(Catcolimex),

(1) f is a closed immersion if and only if f* has a fully faithful right adjoint f. which preserves colimits
and satisfies the projection formula

force C andd e D.
(2) f is an open immersion if and only if f* has a fully faithful left adjoint fi : D — C which satisfies
the projection formula
f(ffe®d) = c® fid
force C and d e D.

Finally, one has the following theorem saying that the functor mapping U € S(C) to C(U) is a sheaf for
the natural topology of the locale.

Theorem 2.2.5 ([CS22, Theorem 6.7]). (1) There is a Grothendieck topology on CAlg(Cat<Hmex) yhere
the sieve coverings over C' are those which contain a set of open immersions whose corresponding
open subsets cover S(C).
(2) The identity functor (CAlg(CatSim-ex)opyop _ CAlg(CatimeX) js o sheaf with respect to this
Grothendieck topology.
(3) The poset of open (resp. closed) immersions satisfies descent with respect to this Grothendieck

topology.
With the previous preparations done we can define the co-category of categorified locale.

Definition 2.2.6 ([CS22, Definition 7.1] and [Aok23| Definition 4.2]). A categorified locale is a triple
(X, C, f) consisting on a locale X, a presentably symmetric monoidal stable co-category C' € CAlg(Catcolim-ex),
and a morphism of locales f : S(C') — X. Morphisms of categorified locales F': (X, C, f) — (Y,C, g) con-
sist on morphisms on the topological spaces, F' : X — Y and morphisms of presentably symmetric monoidal
categories f*: D — C commuting with the arrows f: S(C) — X and g: S(D) = Y.

Given C € CAlg(Catgghm’ex) we let CatLoceo be the oo-category of C-tensored categorified locales,
equivalently, the co-category of categorified locales (X, C”, f) with C’ € CAlg(Cat<lim-ex) . /, and morphisms
given by C-linear morphisms of categorified locales.

We record the following lemma for future reference:
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Lemma 2.2.7. Let (X,C, f) be a categorified locale. The category of dualizable (resp. invertible) objects
on C = C(X) is a sheaf on X.

Proof. By Lemma [Man22al Lemma 6.2], an object £ € C is dualizable if and only if the natural map
L ® Homo(L,1¢) — Home (L, £) is an equivalence. Moreover, it is invertible if in addition the natural
map l¢ — Hom- (L, £) is an equivalence. For U C X an open subspace, and objects N, M € C, we have
a natural equivalence

JuHome (N, M) = Home ) (i N, ji M),

the lemma follows. O

2.3. Tate adic spaces as categorified locale. The goal of this section is to construct a categorified locale
for classical Tate Huber pairs using the main results of [And21], obtaining an analogue of the construction
of categorified locales for complex analytic spaces of [CS22]. In the following we only consider sheafy Tate
Huber rings (A, AT) that admit a pseudo-uniformizer m, we let Spa(A, AT) denote the adic spectrum of
equivalence classes of continuous multiplicative valuations | — |, : A — T that satisfy |al, < 1foralla € AT,
cf. [Hub96]. Let us recall some basic properties of the adic spectrum: by [Hub93, Theorem 3.5], Spa(4, A1)
is a spectral space with a basis of quasi-compact open subsets given by rational localizations {|f;| < |g| # 0 :
i=1,...,d} for f1,..., fa,9 € A elements generating A. Furthermore, since {|f;| <|g| #0:i=1,...,d}
is quasi-compact, there is n € N such that {|f;| <|g| #0:i=1,...,d} C {|7"] < |g| # 0}, so that we can
always assume that some f; is a pseudo-uniformizer of A. We have the following lemma

Lemma 2.3.1. Let U C Spa(A, A1) be a rational subset, then U can be written as a composition of rational
localizations of the form {|g| < 1} and {1 < |g|}.

Proof. Let us write U = {|fi| < |g| #0:4 = 1,...,d}, with f; = 7#". Then U is the composite of the
rational localizations {1 < |7~ "¢|} and {|f;/g| < 1}. O

In [And21l Theorem 4.1], Andreychev proved that the functor mapping a rational localization U C
Spa(A, A1) to the category of solid modules Mod((€(U), 6% (U))g) is in fact a sheaf on CAlg(CatSolimex)
(see Definition for the notion of generalized Huber pair and the construction of (A, S)g). The next
proposition says that this functor can be upgraded to a categorified locale.

Proposition 2.3.2. Let (A, AT) be an Tate Huber pair and let X = Spa(A, AT)°P be the poset of open
subspaces of Spa(A, A1). Consider the functor

MOdX7D(_) : Spa(A,A-i-)op N CAlg(Catgghm,CX)

sending a rational localization U to Mod((€(U), 0 (U))n). Then for any open U C X the localization
functor

37 Mod((A4, AT)g) = Modx (V)
is an open localization in the sense of Proposition[2.27) (2).

Proof. It suffices to prove the statement for rational localizations, by Lemma [2.3.1] we can even reduce to
rational localizations of the form {|g| <1} or U = {1 < |g|} for g € A. Then, by [And21] Proposition 4.11]
we have

(0(U), 0 (U)o = (4, Ao ®r)z), ZIT o and (6(U), 67 (U)o = (A, A ) @ayr) 2y, (21T, ZIT g

respectively, where 7" is mapped to g . Thus, it suffices to show that (Z[T],Z)q — Z[T)n and (Z[T],Z)n —
(Z|T*Y],Z|T~1])n define open localizations for their categories of modules. By the proof of [CS19, Theorem
8.1], the former localization is the complement of the idempotent (Z[T], Z)s-algebra Z((T~1)) = Z[[T~]][T],
and the last is the complement of the idempotent algebra Z[[T]], this ends the proof of the proposition. [

Definition 2.3.3. Let (A, AT) be an Tate Huber pair, we let Spa(A, AT)g denote the categorified locale
(Spa(4, AT),Mod((A, AT)g)) obtained by Proposition

Corollary 2.3.4. The functor (A, A") — Spa(A, A1)y extends to a conservative functor from the 1-
category of analytic adic spaces to the oo-category of categorified locales tensored over Mod(Zg). Moreover,
this functor is fully faithful when restricted to the full subcategory of analytic adic spaces over Q.
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Proof. Let X be an analytic adic space, and let U, be an hypercover of X by open affinoid subspaces.
By Proposition 2.3.2] we can construct the simplicial categorified locale (|U,|, Mody, ), taking geometric
realizations we obtain a categorified locale (|.X|, Modx ), where |X| is the underlying space of X, Modx
is the oo-category of solid quasi-coherent sheaves on X, and f : S(Modxpg) — |X]| is the geometric
realization of the map S(Mody, o) — U,. It is easy to verify that this construction is independent of
the hypercover, so that it gives rise a well defined functor from adic spaces to categorified locales. The
conservativity of the functor is clear by Remark 2.1.4] and Lemma 213 To prove the last statement
about the fully faithful inclusion for adic spaces over Q, one can reduce to Huber pairs (A4, A1), where by
[And21l Proposition 3.34] and Lemma 2.1.3] it suffices to show that the morphism of categorified locales
S(Mod((A, A"))) — Spa(A, AT) is surjective, this will be proved independently in more generality in
Proposition 7.8 (3). O

2.4. Some idempotent algebras. We let Mod(Z) denote the oco-derived category of condensed abelian
groups. Let Cond(AniRing) be the co-category of condensed animated rings, the forgetful functor Cond(AniRing) —
Mod>o(Z) has a left adjoint given by the symmetric group algebra Sym®M. Moreover, for each n > 0 we
have a symmetric power functors Sym"™ M that are computed as the sheafification of S — Sym" (M (S))
for S € Extdis. Analogously, one has wedge products A" M = Sym"M|1][—n] (which are given by the
sheafification of S +— A" M(S)), and divided powers functors I (M) = Sym™ (M [2])[—2n].

For a free abelian group F', a concrete description of its n-th symmetric and divided power functor is
given by the (co-)invariants of the symmetric group 3, in its n-th fold tensor product respectively:

Sym"F = (F®")y, and T"F = (F¥")>".

Thus, for S € Extdis, we have explicit descriptions Sym"Z[S] = Z[S"]s, = Z[S}, | and T"Z[S] =
Z[S™*", where S3. is the quotient space of S™ by the natural action of 3. In particular, the symmetric
algebra of Z[S] is described as Sym®(Z[S]) = Z[N[S]] where N[S] = |J.N[S]<. with N[S]<. = @iN[Si]SC,
and N[S;]<. being the space of sequences »_ g ass with as € Nand ) ¢ as < ¢, note that N[S]—. = S§, .

We want to describe explicitly the solidification of the symmetric powers, ;vedge products and divided
power functors for the groups Z[S].

Lemma 2.4.1. Let S be an extremally disconnected set, we have natural eract sequences

0 —— A"Z[S] Sym"'Z[S] & \' Z[S] —— Sym"Z[S] —— 0

0 —— IZ[S] » A" Z[S] @ T1Z]S] —— A" Z[S] — 0.

Proof. By definition, Z[S] is the sheafification of the presheaf mapping T' € Extdis to the free abelian group
Z[S(T)]. For a finite free Z-module F' we have obvious exact sequences

0—— A\"F sy Sym" 'F @ A\'F —— Sym"F —— 0
(2.1)

0 —— I"F s N TFOT'F ——— N"F —— 0.

where Sym'F @ A7 F — Sym™™ ' F @ A1 F maps (a1 ©® - ©a;) @ (b A--- A b;j) — Zizl(—l)k_l(al ©)
e @a;Obk) @ (b A l/); A -+ Abj), and the second sequence is obtained by taking duals to the first one
evaluated at F'V. Note that both constructions are natural and covariant for F, taking filtered colimits we
obtain the same exact sequences for an arbitrary free Z-module. Taking F' = Z[S(T")] and sheafifications
we get exact sequences as stated in the lemma. O

Definition 2.4.2. For A an analytic ring and M € Mod>((.A), let Sym®% M be the left adjoint of the forget-
ful functor AniAlg , — Mod>o(.A) from animated .A-algebras towards connective A-modules. Equivalently,
we let Sym$ M = @, . Symy M and Sym’y M = A ®4 Sym’y M, where Sym’y M is the symmetric power
as condensed A-module, see [CS20, Proposition 12.26]. We denote the wedge and divided power functors
by A4 M = (SymyM[1])[—n] and Ty M = (Sym’yM[2])[—2n]. Finally, for S an extremally disconnected
set we write A[N[S]] := Sym$%.A[S].
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Lemma 2.4.3. Let S be a profinite set and let I be an index set such that C(S,Z) = @, Ze;, so that
Zn[S) = 11, Ze;. The following hold:

(1) Symg_Zn[S] = Zn[Sg, ] = Haeln Z(O®jecqe)), where © is the symmetric tensor product.

(2 /\ZD Zn[S] = Hd\c—[n Z(Njese), where we have fized a total order for I in the wedge product.
(3
4

Iy Zo[S] = Zg[S™]Fn = nglgn Z((®ieaei))Y, where (=)V is the dual basis.

The sequences of Lemma[2.4.1] remain exact after solidification.

~— ~— \_/\_/

Proof. We can assume without loss of generality that S is extremally disconnected. The first equality in
part (1) follows from the explicit description of the symmetric power functor of the free condensed abelian
group generated by S, and the fact that Zg[T] is the derived solidification of Z[T| for any profinite set
T. Then, Lemma 24T and an inductive argument show that Az Zn[S] and I';_Zn[S] are compact Zp-
modules for all n € N. A compact Zo-module is reflexive, namely, it is a retract of a finite complex of
compact projective modules Zn[T] = [[Z and [ Z is reflexive as solid Zg-module. Therefore, to compute
Nz Zo[S] and T';_Zn|[S] it suffices to compute their dual. But then, by taking duals of the sequences of

Lemma 24T with F' = Z[S] one obtains the analogue sequences

0 —— IC(S,Z) > » 108, Z) @ NV HC(S,Z2) —— N C(S,Z) — 0

0—— A"C(S,Z) — -+ —— Sym"1C(S,Z) ® \' C(S,Z) —— Sym"C(S,Z) — 0.

By [CS19, Theorem 5.4] the Z-module Cont(S,Z) is a free abelian group, so that the previous sequences
are actually exact. This gives the isomorphism Cont(S,Z) = €, Ze; we fixed in the proposition, prov-
ing that Sym" Cont(S,Z) = @gelg Z(®icqati), I"C(S,Z) = @aeln Z(®ieqe))" and A" Cont(S,Z) =

@D sc1 Z(Njesej). Taking duals one deduces that the solidification of the exact sequences of Lemma 2.4
J|=n

are still exact obtaining (4), and that the other explicit descriptions of (1)-(3) also hold. O

Corollary 2.4.4. Let S be a profinite set, then the trivial Zo[N[S]]-module Z has a long Koszul resolution

. = Z[N[S]] ® /2\25[5] — Zo|N[S]]| ® /\ZD — ZN[S]] = Z — 0. (2.2)
Dually, we have a long co-Koszul resolution
0—Z — 17 Zao[S] = T3 ZalS| ® /I\ZD[S] — 7. Z0lS] ® ;\ZD[S] — e (2.3)
Proof. This follows from Lemma 2.4.3] by taking the direct sums of the exact sequences
0— /n\ZD[S] — o = Sym} ' Z5[S] @ N\ Za[S] = Symy_Zg[S] — 0
and
0— T%_Zg[S i /\ZD ®F%DZD[S]—>/H\ZD[S]—>O

O

After the previous preparations we can introduce some large idempotent algebras. We let (R, Rt) =
(Z((7)), Z[[x]]) and Ry = (R, R*)x.

Definition 2.4.5. Let S be a profinite set, we define the following objects:

(1) Let Ig be the natural ideal decreasing filtration of Z[N[S]]. We define Z[N[S]],, := Z|N[S]]/IE. For
A an analytic ring we let Ig 4 and A[N[S]],, be the base change of I§ and Z[N[S]],, to A.

(2) We let Zo[[N[S])] == lim ZoN[S]],.
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1,

(3) We let RE(N[S]) = lim (R*/m™)g[N[S]] and Ru(N[S]) = RE(N[S])[5
(4) We let Ro{N[S]}! =lim Ro(N[%]).
(5) More generally, for an analytic ring A over Zg (resp. over R or Rp) we let A[[N[S]]], A(N[S]) and

A{N[S]}' denote the base change of the constructions in (2)-(4) to A.

Warning 2.4.6. The ring A[[N[S]]] is not in general equal to the limit lim A[N[S]]». This holds for

example if A = By it the analytic ring of a finitely generated algebra over Z, or if A = R = Z[[r]] is a
power series ring.

Lemma 2.4.7. The following hold:
(1) The ring Za|[N[S]]] is an idempotent Zq|N[S]]-algebra.
(2) The ring R (N[S]) is an idempotent R [N[S]]-algebra.
(3) The rings Ro(N[S]) and Ro{N[S]}! are idempotent Ry[N[S]]-algebras.

Moreover they have a natural structure of co-commutative Hopf algebras.

Proof. The ring Zn[N[S]] is naturally a co-commutative Hopf algebra since it correpresents the functor on
solid animated Z-algebras A — A(S). Moreover, the co-multiplication map is induced from the map of
solid abelian groups

Zo[S) = Zo[N[S| |S]]: s—s@lt+les,

in particular it preserves the Ig-filtration. Taking completions we see that Zng[[N[S]]] has a natural co-
commutative Hopf algebra structure. The Hopf algebra structure for the other algebras is constructed by
taking the base change from Zg to Ry of the algebra Zo[N[S]], taking m-adic completions, inverting = and
taking colimits along R[] — Rg[ﬂn—%l].

Now we prove idempotency. Let B denote Zn[N[S]] or its R or Rg-base change, and let C' denote
Zo[[N[S]]], R[(]H(N[S]) or R{N[S]}!. Let A be Z, R* or R depending on the situation. Then both B and C
are A-linear Hopf algebras, and by [RJRC23, Proposition 1.0.6], to prove idempotency it suffices to show
that C @4y, A = A. By Corollary 2.4.4] the map C ®(p ), A — A is represented by the long Koszul
complex

2 1
---—>C®AD/\AD[S] —>C’®AD/\AD[S] —-C—A—0.
A A

In the case of (1) the previous sequence is exact since after taking graded pieces one recovers the long
Koszul resolution of Zg[N[S]]. In the situation (2), exactness follows by taking the m-adic completion of the
Koszul resolution of R [N[S]] — RT. Finally, case (3) follows by inverting 7 in (2) and taking colimits. [

We address the following technical lemma that will be used recurrently in the next section.

Lemma 2.4.8. Let Ay = Z[T1,...,T,]n be a solid polynomial algebra in n-variables, and let Bé—” =

Ap ®74 R(J) be the associated solid Tate algebra over Rgr). Let S1, So and S3 be profinite sets.

(1) For any map Sz — B3 (N[S1]) the natural morphism B3 [N[S3]] — BZ (N[S1]) extends uniquely to
B (N[S3)).

(2) Consider the B-algebra 7 = Bn(N[S1]) ® gy Bo{N[S2]}! and let S5 = ker(Bo{N[Ss]}T — B) be
the augmentation ideal of the second factor. For any map S3 — Bn(N[Si]) ®p, S the natural
morphism of algebras Bo[N[S3]] — 7 extends uniquely to Bn{N[S3]} .

(3) Let . = ker(Ap[[N[S1]]] = A) be the augmentation ideal. Then for all map Ss — &, the natural
morphism of algebras An[N[Ss]] — An[[N[S1]]] extends uniquely to An[[N[Ss]]].

Proof. (1) This follows by taking m-adic completions.
(2) Let us denote .7, = BS(N[:—;]) and let ., be the augmentation ideal of .} ,. By construction
of the algebras we can find n big enough such that the image of S3 in .7 lands in .%o ®BE Fon.

This shows that for all m > 0 the image of S3 in %10 ®p+ F2p4m lands in 751 g @ gt S2n1m-
0 0
Thus, dividing S3 by 7™, by part (1) we get an arrow /3., — 710 ®BE o nt+m- One gets (2) by

inverting 7 and taking colimits as m — oco.
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3) This follows from the fact that the filtration 12 of Ag[N[S1]] is multiplicative.
S1
O

Corollary 2.4.9. The following hold

(1) The Hopf algebra Zn[[N[S]]] corepresents a module sheaf over the ring sheaf corepresented by Z[Tq.

(2) The Hopf algebra RZ(N[S]) corepresents an algebra sheaf over the ring sheaf corepresented by
RYT)q = RY @z, Z[Tn.

(3) The Hopf algebra Ro{N[S|}T corepresents a module sheaf over the ring sheaf corepresented by R{T)g.

Proof. The algebra Zg[N[S]| corepresents an algebra over the sheaf corepresented by Z[T], namely, for A
an analytic ring A(S) is always an A(x)-algebra. Its module action is given by the map

ZoIN[S]| = ZoN[S]| @7 Z[T]: s — s @t (2.4)

which satisfies the diagrams of a comodule over a co-ring. In particular, Zg[S] lands in the ideal generated
by the augmentation ideal of Zg[N[S]].

All the Hopf algebras on points (1)-(3) are idempotent over Zp[N[S]] or R [N[S]], also Z[T]y is an
idempotent analytic ring over Z[T]. Thus, in order to show that the algebras of (1)-(3) correpresent
algebras/modules over Z[T']| or R (T')g, we only need to prove it for the my of the correpresented sheaves,
and assume without loss of generality that A is static.

Then, after taking base change of (2.4]) by Z[T|g or RT[T]n, m-completions and colimits for points (2)
and (3), Lemma 2.4.8 implies that the comodule (resp. co-algebra) diagrams of Zg[N[S]] over Z[T] can be
extended to the corresponding diagrams in each point (1)-(3). (]

2.5. Condensed Nil-radical. To motivate forthcoming constructions let us discuss the concept of nilpo-
tency for condensed rings. Let A be a static condensed ring over Z, since A is a sheaf on rings, the most
natural definition of the nil-radical of A consists on the ideal I whose values at S are nil(A(S)). Equivalently,
we could define

nil(A)(S) = lim HomcondRing;, (Z[T]/T™, Cont(S, A)).

This definition only asks for a function f : S — A to be uniformly point-wise nilpotent, i.e that there is n > 0
such that f(s)™ = 0for all s € S. However, we could also ask for a more uniform nilpotent condition, namely,
that there is some n > 0 such that for any familly of elements si,...,s, € S, the product f(s1)--- f(sn)
vanishes. When S is just a point *, there is no difference between these two conditions. When S = {x, x}
is two points, there is a difference on the n-nilpotent elements, namely, one is correpresented by the ring
Z[X,Y]/(X™ Y™) and the other by Z[X,Y]/(X,Y)", yet both cofiltered systems are cofinal. For a general
profinite set both possible definitions of nilpotent elements differ:

Example 2.5.1. Let S be a profinite set and let Z|N[S]] be the symmetric algebra of Z[S]. Let n > 1,
consider the map Z[S] Al Z[Sy ] € ZIN[S]] with A : S — S§ given by the diagonal map, and let
F : Z|N[S]] — Z|N[S]] be the induced map of algebras. Then, the static ring that co-represents elements
f € A(S) with f™ =0 is the algebra

R = mo(Z[NI[S]] @ FzNis) Z)-

In particular, the k-th graded piece of R for £ > n is non-zero and equal to the cokernel of Z[S]@Z[Sé;fn] =N

Z[Sék]. On the other hand, the quotient
ZIN[S]ln :== ZIN[S]]/ 1§

is the static ring that represents elements f € A(S) with the property that the n-th fold map f®" : Sg. —
A(S%, ) is zero. In other words, it correpresents the maps f : S — A such that f(s1)--- f(sn) = 0 for any
sequence s; € S.

The previous discussion motivates the following definition

Definition 2.5.2. Let A be a static condensed ring, we define the following presheaf on Extdis:
Nil7,(A)(S) := HomcondRing, (Z[N[S]]n, 4).
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We let Nil'(A4) denote the ind-presheaf (Nil/,(A)),eny on Extdis. For an animated condensed ring A we
define Nil/,(A) (resp. Nil'(A4)) to be the full condensed sub-anima of A (resp. the constant ind-system of
sub-anima of A) whose connected components are Nil! (mo(A)) (resp. Nil'(my(A))).

An apparent disadvantage of the above definition is that the objects Nil/,(A)(S) are not sheaves, the
reason being that for S and S’ extremally disconnected sets, the natural map

ZIN[ST]n ® ZIN[S']ln = ZIN[S| | S]]

is not an equivalence. However, in analogy to the inclusions (X,Y)?" c (X", Y") C (X,Y)" for two
elements X and Y in a ring R, we have a factorization

ZIN[S| |SN2n = ZIN[S]]n ® ZIN[S']]n — ZIN[S| | S]ln.

proving that the ind-system Nil'(A) is actually a sheaf. Furthermore, the formation of Nil'(A) is compatible
with analytic ring structures as follows:

Lemma 2.5.3. Let A be an analytic ring, then hi>nn Nill,(A) is a complete A-module.

Proof. By [CS20, Proposition 12.4] it suffices to show that mg (hﬂn Nil/,(A)) is A-complete, so we can assume
that A is static. Let us first see that li . Nil/,(A) has a natural structure of A-module. For this, it suffices

to see that the pro-condensed sheaf S — (Z[N[S]];)nen is a condensed comodule for the condensed co-ring
S — ZIN[S]]. This follows from the fact that for profinite sets S, S" and S”, and any map S — Z[S’ x 5",
we have a factorization

ZN[S]ln — ZIN[S"]] ®z Z[N[S"]]a,
as we have a natural map (S" x S")§, — Sg: x S5, Moreover, the fact that lim Nil/,(A) is A-complete
follows by the same argument: any map S’ — A[S’ x S”] induces a morphism

AN[S]ln — AN[S']] @4 AN[S ]

Therefore, any map f : S — Nil/,(A) can be lifted to a map S — A[S'] for some extremally disconnected
S, so that we have a factorization S — A[N[S"]],, — A, then we can extend f to

AN[S]ln = AN[S]]n — A,
proving that lim Nil/,(A) is the image of maps €, mo(A[S]) — A, so A-complete. O
Definition 2.5.4. Let A be an analytic ring, the condensed nil-radical of A is the A-analytic ideal
Nil(A) = ligNiI;l(.A).

Our next task is to show that the condensed nil-radical is corepresented by an explicit pro-system of
analytic rings, this requires a slight modification of Z[N[S]],.

Definition 2.5.5. For S € Extdis and n > 0 we let Z[N[S]]% := Z[N[S]] ®zN[sy 1) Z-

Lemma 2.5.6. Let S € Extdis, the pro condensed ring (Z[N[S]]%),, has a natural structure of additive Hopf
algebra such that the natural map Z|N[S]] — (Z[N[S]]%),, is a morphism of Hopf algebras.
Proof. The Hopf algebra structure of Z[N[S]] is encoded in the cosimplicial ring (Z[N [|_|f:l Sikea =
(®f:1 ZIN[S]])gjea obtained by the comultiplication map defined by s — s ® 1 +1® s. Let us fix m > 0
and consider the truncation (Z[N[Ule SDimenc,, For afix k and any [ > k we have inclusions

k k

k
P z(si.] ¢ Sym™ (P z[8]) ¢ Sym' (P ZISE.]). (2.5)
i=1 =1

i=1
On the other hand, we have a (< m)-cosimplicial submodule (Sym"(Z[l_lle SD)ik<ac,, C (Z[N[ule SIDik1<a <,
it induces a morphism of (< m)-cosimplicial algebras - -

k k
(Sym'(symn(z[l_l 5]))) — (Z[N[U 5]]) :
=1/ edgn ' (EN
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taking the push-out from the left term towards the constant (< m)-cosimplicial ring (Z)zea.,, one gets a

(< m)-cosimplicial ring
k
(Z[N ] 5]]%) -
i=1 [k}eAgm

Taking the pro-ring as n — oo, by (2.5]) one gets a (< m)-cosimplicial pro-ring

k
(@(Z[N[S]]Hﬁ)new)> :
[K]eA<m

i=1

Taking colimits as m — co, we get a cosimplicial pro-ring

k
((X)(Z[N [SH%)%N)) : (2.6)
[k]leA

1=1

By [Lur09, Proposition 6.1.2.6 (4)], the cosimplicial ring (2.6]) pro-correpresents a group object in AnRing,,
proving that it is in fact a Hopf algebra. By construction, it is clear that Z[N[S]] — (Z|N[S]]%)nen is a
morphism of Hopf algebras, proving the lemma. O

Proposition 2.5.7. Let S € Extdis, the functor A — Nil(A)(S) is correpresented by the pro-condensed
ring (ZIN[S]};)n.

n

Proof. We follow the same argument of [GR23|, Proposition 6.3.3]. Let Nil be the functor
Nil(A)(S) := lim Map s ging, (ZIN[S]Tk, A).

By Lemma 25.6] Nil(4)(S) is naturally an animated Z-module and the natural map f : Nil(A)(S) — A(S)
is a morphism of animated Z-modules. It suffices to show that f is a fully faithful sub-anima with connected
components 7o(Nil(A)(S)). The claim about 7 is clear since mo(Z[N[S]]%) = Z|N[S]],. It is left to show

that for all ¢« > 1 the map m;(Nil(A)(S)) — mi(A(S)) is an isomorphism. Let us denote Nil, (A)(S) :=
MapAnRingZ (Z[N[SH%7 A)
By definition, we have a cartesian square of anima

Nil, (A)(S) —— A(S)
{0} ——— A(S%.)

where the map A(S) — A(S$,) is induced by the map S, — Z[N[S]]. Thus, by taking 0 as marked point,
we have a long exact sequence of homotopy groups for ¢ > 1

mig1 (A(SEn)) = mi(Nily(A)(8)) = mi(A(S)) = mi(A(SEn)).
For m > 1 we have a commutative triangle
A(S) —— A(SE)

A(S5m)

induced by the map S{mh, — Z[N[S$,.]] — Z[N[S]]. This gives rise a natural map 1/\1\1/1n(.,4)(5) — 1/\1\1/1nm(.,4)(5)
defining a map of fiber sequences

Nil, (A)(S) —— A(S) —— A(S%.)

l P

Nilym (A)(S) —— A(S) —— A(SE2).
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This induces a morphism of long exact sequence of homotopy groups

741 (A(S)) — (NIl (A)(S)) —— m(A(S)) —— mi(A(SE.))

! R

i1 (A(SEE)) —— Ti(Nilum (A)(S)) —— m(A(S)) — mi(A(SE)).

We claim that the map m;(A(S$.)) — mi(A(S$n)) is zero for any m > 2. Indeed, it factors through the
map

A(SE) S @ A(SEn) = R A(SEn) — A(SE),
k=1 k=1
and the induced arrow

P mi(A(SE)) — mi(R) A(SE))
k=1

k=1
is zero for ¢ > 1. Taking colimits as m — oo in (2.7)) one finds that

m;(Nil(A4)(S)) = mi(A(S))
is an isomorphism, proving what we wanted. O
With the previous proposition proven, we can define a stronger notion of nilpotent ideal.

Definition 2.5.8. Let A — B be a morphism of analytic rings surjective on 7y with B static and endowed
with the induced analytic structure, let I = [A — B]. We say that I is n-uniformly nilpotent if for any
map S — I with S an extremally disconnected set, there is an extension

ZIN[S|JE — A.

We say that [ is uniformly nilpotent if it is n-uniformly nilpotent for some n > 1. Finally, we say that I is
locally uniformly nilpotent if for any map f : S — I there exists n such that f extends to Z[N[S]]% — A.

Remark 2.5.9. Note that any uniformly nilpotent ideal of an analytic ring is also a nilpotent ideal as
condensed ring. On the other hand, by definition, Nil(A) is a locally nilpotent ideal of A.

We finish this section by proving the invariance of solid structure under locally nilpotent ideals.

Proposition 2.5.10. Let A be a solid affinoid ring and let I — A be a locally uniformly nilpotent ideal.
Let B=A/I. Then a map Z[T) — A extends to Z|Tn if and only if the composite Z[T| — B does so.

Proof. The map Z[T] — A extends to Z[T]g if and only if Z((T~')) @z A = 0. By hypothesis we know
that Z((T™')) ®zppy B = 0, this implies that

(Z((T™1) @ I) @a A = (Z((T™)) @zir) A)[*].

Therefore, (Z((T~1)) ®z;77 A)[#] is a locally uniformly nilpotent ideal when considered as ideal over itself,
in particular the unit is nilpotent and so the ring must be zero proving what we wanted. O

2.6. Bounded affinoid rings and f-nil-radicals. Let (R, R") = (Z(()), Z[[x]]) and Ry = (R, R")g, we

denote by R(+)<T1, ceyTy)p = R(D+) ®zp L[T1, ..., Ty)o the solid Tate algebra over R™) in p-variables. In
the previous section we constructed a nilpotent radical for arbitrary analytic rings. The first motivation
to introduce the category of bounded affinoid rings is the construction of a new nil-radical that will play
a fundamental role in the definition of the analytic de Rham stack. This new nil-radical will measure
elements a € A that are “topologically zero”, namely, elements such that |a| < |#"| for all n € N. The
second motivation to define the bounded affinoid rings is to construct a category of rings that behaves as
Tate affinoid algebras in classical rigid geometry, namely, algebras A admitting some pseudo-uniformizer
7 and some subring of “power bounded functions” A° with A = AO[%], such that any a € A satisfies the
norm inequality |a| < 1 with respect to 7 in a suitable sense.

To make this idea precise we need some further definitions.
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Definition 2.6.1. (1) Let A € AnRingy_ be an analytic ring over Zg. The subring of +-bounded or
solid elements is the discrete animated ring given by the mapping space

AT = MapAnRingZD (Z[T]D7 A)

(2) Let A € AniAlgy  be an animated algebra over Zg. We define the subgroup of topologically nilpotent
elements to be the condensed animated abelian group mapping an extremally disconnected set S
to the anima

A%(S) = Mapaniarg,  (Zo[[NS], A).

(3) Let A € AniAlgg_ be an animated algebra over Rp. We define its condensed subring of power
bounded elements to be the condensed animated ring with values at S € Extdis given by

AY(S) = Mapapiatg,, (Ro(N[S]), A).

(4) Let A € AniAlgp_, the condensed R-subring of bounded elements is defined as Ab = AV,
(5) Finally, let A € AniAlgp_, the f-nil-radical ideal is the condensed AP-ideal whose values at S €
Extdis are
Nil'(4)(S) = Mapayialg,, (Ro{N[S]}, 4).

(6) For A € AnRing;_ we let A%, A°, AP and Nilf(A) be as in (2)-(5) for its underlying ring A.

Remark 2.6.2. By definition, AT C A(x) is the full animated subring consisting on those connected com-
ponents a € A(x) for which the induced map of analytic rings Z[a] — A extends to Z[a]z — A. Indeed,
the co-ring structure of Z[T]g naturally induces a ring structure on my(A"), and we endow AT with an
animated ring structure thanks to the following cartesian diagram

AT —— A(%)

7o(AT) —— mo(A)(*).

Remark 2.6.3. The spaces A% A° and NilT(A) are full condensed sub-anima of A. Indeed, they are con-
densed sheaves since for any of the algebras B(N[S]) as above we have B(N[S| | S’]) = B(N[S]) ® B(N[S"]),
and they are full condensed subanima since the algebras B(N[S]) are idempotent over the corresponding
free algebra generated by S. Therefore, for A* representing any of the previous full condensed subanima of
A, we have a cartesian square of anima

A —— A

| |

7T0(A*) —_— 7T0(A).

In particular, to endow A* with a natural animated abelian group, module or ring structure compatible
with the map A* — A, it suffices to do so for my(A*). Furthermore, Corollary 2.4.9] implies that these
objects are naturally A*-modules. Moreover, as RZ (N[S]) is a co-ring algebra, A° is also a full condensed
animated subring of A.

Remark 2.6.4. In Definition 2.6.1] we restricted ourselves to define the S-valued points of different condensed
objects attached to an animated solid ring A, for S extremally disconnected. Since Zg[S] is compact
projective for S an arbitrary profinite set, the description of S-valued points of the objects in Definition
2.6.1] also extends to S profinite.

As a first reality check we prove that the objects A, A% and A% agree with the classical definitions for
complete Tate algebras

Lemma 2.6.5. Let (A, AT) be a complete Tate Huber pair with pseudo-uniformizer = and set A = (A, A" )q.
The condensed spaces AY and A% agree with the classical subspaces of A of power bounded and topologically
nilpotent elements. In addition, AT = AT.
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Proof. By [And21] Proposition 3.34] one can recover the underlying discrete ring of A™ simply as AT. It
is left to identity the condensed subobjects A% and A% for general A. By definition, the underlying points
of A% and A% consist on all the elements a € A for which the map RT[T] — A extends to R*(T) and
RT[[T]] respectively. Then, by definition A°(x) is the subset of power-bounded elements, and A% (%) is the
set of topologically nilpotent elements. Therefore, to prove the lemma it suffices to show that A° and A%
are open subspaces of A, or equivalently, that A/A% is discrete. Let Ay C A be a ring of definition of A, it
will suffices to show that 1Ay C A%. Let S be a profinite set and let f: S — Ay be a map of condensed
sets. Since wAq is m-adically complete, the map f extends to a morphism of rings

RE[IN[S]]] — Ao,
this proves that mAg C A%, obtaining the claim. O

In order to prove further properties of the condensed subspaces constructed previously, we need to
introduce the category of solid rings that will serve as building blocks for the geometric theory treated in
this paper.

Definition 2.6.6. Let A be an analytic ring over Zg, we say that A is a solid affinoid ring if the natural
map (A, mo(AT))g — A is an equivalence of analytic rings. We let AffRingz C AnRingy_ denote the full
subcategory of solid affinoid rings. Given A a solid affinoid ring we let AffRing 4, denote the slice category
of solid affinoid .A-algebras.

Example 2.6.7. (1) Let A be an animated discrete ring, by [And21l Proposition 3.34] and [CS20]
Proposition 12.19] solid affinoid ring structures on A are in bijection with integrally closed subrings

AT C m(A) via the map AT — (A, AT)g. If AT = A we denote Ag = (A4, A)n.
(2) An example of an analytic ring over Zn that is not solid affinoid is the ring of ultra-solid rational
numbers Q-5 (construction due to Clausen and Scholze). It has by compact projective generators
the Q-vector spaces [[; Q. In terms of locales, Qqn is the open complement of Z5 associated to the

idempotent solid algebra 7= Hp Zy, we left the proof of this fact for a future work.

Polynomials algebras are the compact projective generators in the oo-category of discrete commutative
animated rings. Similarly, one can explicitly provide a class of compact projective generators for the oco-
category of solid affinoid rings.

Proposition 2.6.8. The co-category AffRingy,_ is stable under small colimits and finite products in AnRingy, .
Furthermore, it has a basis of compact projective generators given by the analytic rings Z[T1, ..., T,]o[N[S]],
where {T;}7"_, is a finite set of variables, and S is a profinite set. Moreover, these rings are compact pro-
jective in AnRingg, .

Proof. Tt is clear that the category AffRingy_ is generated by the rings Zn[N[S]] and Z[T']5 under colimits,
namely, the rings Z[N[S]] are generators of animated solid algebras and for any A € AffRing;_ we can
write

A = (A, Z)5 @gjmo(aty) Zlmo(AT)]o.
In particular, AffRingy_ is stable under small colimits in AnRingy . Stability under finite products is clear
since for A and B solid affinoid rings, one has A[[B = (A4 x B, AT x B)g.

It is left to see that the rings Z[T]o[N[S]] are compact projective in the oo-category of solid affinoid
rings. Since the category of compact projective objecs is stable under finite coproducts, it suffices to show
that Z[T|g and Zg[N[S]] are compact projective. The ring Zn[N[S]] is clearly compact projective since it
corepresents A — A(S) = RHomg (Zp[S], A), and Zg[S] is a compact projective solid abelian group. It is
left to show that Z[T]5 is compact projective in AnRingy,_.

Let {A;}icr be a sifted diagram of analytic Zg-algebras with colimit .A. We want to prove that the
natural map

li_lﬁl N[apAnRingZD (Z[T]Dv *’42) - NIapAnRingZD (Z[T]Dv *’4) (28)

is an equivalence. First, note that both sides are full subanima of Map AnRing;,_ (R[T], A) = A(x) as Z[T]n

is an idempotent (Z[T], Z)g-algebra, so it suffices to show that they have the same connected components.
Let f :Z[T]g — A be a morphism of analytic rings, we want to show that f factors through some A;. As
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Z[T] is compact projective, we can find a lift f; : Z[T] — A; to some i. The map f; extends to Z[T]g if and
only if Z((T1')) ®z A; = 0. By hypothesis Z((T~')) ®zr},z), A = 0, and we have that

Z((T™) ®@myzg A= Z(T ™)) @@z, A

Then, there is some ¢ for which the unit of Z((T~1)) ®(z/1],z) Ai vanishes, implying that for any i — 4’
one has Z((T™1)) ®zr),z), A = 0, this proves that fy extends to Z[T]g — Ay and that (28] is an
equivalence. O

We go back to Definition 2.6.1] our next task is to show that the objects there constructed are complete
and have the corresponding algebraic structure.

Proposition 2.6.9. The following hold:

1) Let A € AffRin then A% is a solid AZ-module.
( ) gZD? O
(2) Let A € AﬁRingRE, then A° is an animated AZ -algebra.

(3) Let A € AffRingp_, then AP is a solid A% -algebras and Nil'(A) a solid A% -module. Moreover,
NilT(A) has a natural structure of A’-module, defining a full subideal Nilf(A) C A°.

Proof. By Remarks and 2.6.3] to prove that the objects in the proposition are solid A7 -modules and
that have the claimed algebraic structures, we can take the O-truncation. Therefore, we can assume without
loss of generality that A is static. Corollary 2.4.9shows that any of the objects in (1)-(3) are AT-modules,
and that A° C A is a subring. In particular, AT — A% — A’ are morphisms of (static) commutative
rings. To prove A7 -completeness, it suffices to do it for A%, A° and NilT(.A), let A* denote one of these
condensed modules. We make the following conventions:

(1) We let B denote Z, R™ or R depending on the situation.
(2) We take I C AT a finite set of variables, set B = B ®gz Z[T]n, and let Br(N[S]) be the algebra
Br[[N[S]]], Br(N[S]) or Bf{N[S]} depending on the situation.

Let S be a profinite set and let S — A* C A be a map of condensed sets, by definition it extends uniquely
to a map Bj(N[S]) — A, we claim that B;[S] — A factors through A*. Suppose this holds, then A* would
be the image of maps @g B;[S] — A, proving that A* is Br-complete, taking colimits along all I C A™,
one gets that A* is indeed AZ-complete. Let | ], S! — B;[S] be a surjection of condensed sets. Since B;[S]
is in the augmentation ideal of Br(N[S]), Lemma 248 implies that the map S; — Br(N[S]) extends to
B(N[S]]) — Br(N[S]). Taking the composition we get maps Br(N[S]]) — A for all ¢ € I, that must send
S! to A* by definition. This shows that B;[S] is sent to A* proving the claim.

Finally, suppose that A is a solid affinoid ring over Ry, we want to prove that NilT(A) is naturally an
AP-module. For this, by looking at the corresponding diagrams, it suffices to prove that for all profinite set
S and all n € N, the diagonal map S — S x S induces a morphism of algebras

R{N[S]}" — R(N[7"S]) @ r, R{N[S]}',
but this follows by Lemma [2.4.8] O

After the previous preparations we can define the desired category of bounded affinoid rings.

Definition 2.6.10. (1) An animated Rg-algebra A is bounded if the natural map A® — A is an equiv-
alence. We let AniAlgII’%D be the full subcategory of AniAlgp  consisting on bounded animated
Rp-algebras.

(2) Let A be a bounded Rg-algebra, the cone Af~"d of the map Nil'(A4) — A is called the f-reduction
of A. We say that A is t-reduced if A — Af~d is an equivalence. We let AniAlgI%_Dmd C AniAlgp_
be the full subcategory consisting on {-reduced animated rings.

(3) A solid affinoid Rp-algebra is bounded if its underlying condensed ring is bounded. We let Aﬂ'Ringl}zD C
AffRingp_ be the full subcategory of bounded affinoid Rp-algebras. For A € AﬁRinglj%D we let

AffRinng be the slice category of bounded affinoid A-algebras.
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(4) Given A a bounded affinoid ring, we let Af~med .= Ail_/md be its f-reduction, we say that A is

t-reduced if the previous map is an equivalence. We let Aﬁ'RingI%_Dmd C AﬁRinglj%D be the full
subcategory of {-reduced bounded affinoid rings.

The following notation will be used throughout the rest of the paper.

Definition 2.6.11. Let A be a solid affinoid ring, we let A[T]5 := A ®z, Z[T]|g be the solid polynomial
algebra over A. If A is a bounded Rp-algebra, we write A(T")g := A[T|g and call it the solid Tate algebra
over A.

We end this section by proving some permanence properties of the category of bounded affinoid rings, in
particular that the f-reduction is an idempotent functor.

Lemma 2.6.12. Let A be an animated Rg-algebra.
(1) A is bounded if and only if mo(A) is bounded.
(2) An animated Rp-algebra is bounded if and only if there is a surjection @; Rn[Si]| = A of animated
Ro-modules (i.e. surjection on my) with S; profinite, such that each Rn[S;] — A extends to an
algebra morphism Rp(N[r"S;]) — A for some n depending on i.

Proof. The first statement is clear since A% is a full condensed subanima of A. For the second statement,
the hypothesis is clearly necessary, let us show that it is sufficient. Let A be a static algebra satisfying the
hypothesis of the lemma and let S — A be a map from a profinite set. By (1) we can assume that A is
static. We can lift S to a finite direct sum @le R[S;], after rescaling we can even assume that it lands in

@le RZ[S;] and that each map R [S;] — A extends to RZ (N[S;]). Since

k k
Q) B (NIS]) = RE(NIL| SiD),

the natural map

k k
RE[S] = D RE[Si] — RN 51)
=1 =1
can be extended to RZ (N[S]) — RY (N[|_|i-€:1 Si]), and the map S — A extends to Rg(N[S]) — A proving
that A is bounded. O

Lemma 2.6.13. Let A be a m-adically complete animated RY-algebra, then A[%] 15 a bounded subring.

Proof. Let S be profinite and f : S — A[%], after rescaling we can assume that f factors through a map
f:S — A. Then, since A is m-adically complete, we have an extension

RT(N[S]) — A
and so a map R(N[S]) — A[%], proving that A[%] is bounded as wanted. O

Proposition 2.6.14. The following hold
(1) The category of bounded animated Rg-algebras AniAlgl}zD 1s stable under all small colimits in
AnlAlgRD
(2) The category of bounded animated Ry-algebras admits all limits. More precisely, let {A;}icr be an
I-diagram in AniAlgl}%D, then its limit in AniAlgl}%D s given by the “restricted limit”

! 1
im A; == (lim A))[=].
phmtats
(3) Let A be an animated Rp-solid R[Ty, ..., T,]-algebra whose underlying Rg-algebra is bounded. Then
A Q(R[Ty,...,Tn],R+)0 R(Ty,...Ty)n is bounded.
(4) Let A — B be a morphism of bounded affinoid Ry-algebras, let C' be an animated A-algebra whose
underlying Rg-algebra is bounded, then B ® 4 C is a bounded algebra.
(5) More generally, the category of bounded affinoid rings Aﬂ'Ringl}’%D s stable under all colimits and
finite products in AnRingp, .
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(6) Let A — B be a morphism of bounded affinoid rings and let C be a bounded affinoid A-algebra. Then
the natural map B @4 Nill (C) — B®4 C factors through Nill (B @4 C).

Proof. (1) Let A be a bounded Rp-algebra, B and C' bounded A-algebras and D = B ®(4,rR+)g C-
The property of being a bounded algebra only depends on 7y, so we can assume that A, B and
C are static and take D = mo(B ®4 r+)y C) the non-derived pushout. Let us take surjections
@, Ro[Si] — B and @; Ro[S)] — C, then @, ; Ro[S; x S| — D is a surjection. By hypothesis the
maps Rp[S;] — B and RplS)] — C extend naturally to morphisms of algebras Ro(N[S;]) — B and
Ro(N[S]]) — C respectively (after rescaling the maps). This implies that Ry[S; x S7] — D extends
to a morphism of algebras Ry (N[S; x S}]) — D which by Lemma proves that D is bounded.
Next we prove stability under sifted colimits. Let {4;}; be a sifted diagram of bounded animated
Ro-algebras with colimit A, let S — A be a map from a profinite set, then S lifts to some S — A;
and after rescaling it extends to Ro(N[S]) — A;. Thus, S — A extends to R5(N[S]) — A proving
that A is bounded.
(2) Let {A;}ier be a diagram of bounded animated Rp-algebras, and let B € AniAlgll’%D. We need to
show that @; A; is bounded and that the natural map

/
Map pnialg,_ (B, lim A) — lm Map anialg, (B, A)

is an equivalence. To see that @; A; is bounded, note that for any profinite set .S, a map f: S —

Jim, AY naturally extends to R (N[S]) — lgll AY as so does any projection to A;. On the other
hand, since B is bounded, there is a natural equivalence of mapping spaces

Mapnialg,_ (B, A;) = MapAniAlgRE (B, A;) = MapAniAlgRE (B, A), (2.9)

where the second equivalence follows from the fact that any map of animated R*-algebras B® — A;
factors through AY, and A? is a full subring of A;. Taking limits along i we see that

(3

@ MapAniAIgRD (37 Az) = MapAniAlgR+ (B07 1£1 A?)
i = i

Note that l'mi A? is a full condensed subanima of l&ll A;, namely, for finite limit it is an equivalence,
and cofiltered limits are left exact with respect to the natural ¢-structure. Then, to prove that (2.9)
is an equivalence, it suffices to show that (1&1; AN = Jim, AY. Tt is clear that Jim, AY C (gn: A,

0

conversely, given S profinite and a map S — (1&1; A;)Y, we have an extension

REN[S)) - (jm A,)°,

and by composing with projections, maps R7 (N[S]) — AV, proving that we have a factorization
REN[S)) > lim A7
i

as wanted.

(3) Let S be a profinite set and S — A, after rescaling we can assume that it lifts canonically to
R(N[S]) — A. Then, by Lemma 2.6.12] it suffices to prove that R(T1,...,Ts)o(N[S]) is a bounded
algebra, but this follows from Lemma 2.6.13]

(4) This is a direct consequence of parts (1) and (3), namely, we have that

B C = hg R{Tr) ®(RT1],R)y (B ®Arg, ),
IcB*
where I runs over all the finite subsets. The tensor product is a bounded algebra by part (1), the
solidification is bounded by part (3) and the colimit is bounded by part (1) again.

(5) We need to prove that Aﬂ'Ringl}zD is stable under pushouts and sifted colimits. Let C +- A — B be
a diagram in AﬁRingl}’%D, we want to prove that B® 4 C is still in Aﬁ‘l}’%u. Since A = (A, A1)y (resp.
for B and C), by construction of the pushout, we have B®4 C = (£, BT ® 4+ CT)n, where £ is the
completion of B® 4 C with respect to the variables in Bt ® 4+ CT. By parts (1) and (3) one deduces
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that & is bounded, so that B ® 4 C is a bounded affinoid ring. Let {A;};cs be a sifted diagram in
AffRing};_ with colimit A. By Proposition ZZ6.8 one has that A+ = lim, A, we find that

A= (A AY)o =l (A AT )

proving that A is bounded affinoid. Finally, for stability under finite products, note that (A, A™)g x
(B,BT)n = (A x B, AT x BT)g.

(6) Given a map D — D’ of bounded affinoid rings, we have an induced map Nil' (D) — Nil'(D’) on the
f-nil radical. Then, by Proposition 2.6.9] (3) we can assume without loss of generality that 4 = A,
B = B and C = C have the induced analytic structure from Rp. Since mo(B®4Nil'(C)) is a quotient
of mo(B ® gy Nil'(C)) we can further assume that A = R, and that B and C are static. It suffices
to prove that the image of m(B ®py Nil'(C)) in mo(B ®py C) lands in mo(Nil'(B ®p, C)). Let
®Dic; BolSi] » B and @, ; RolT}] — NilT(C) be surjections, by hypothesis we have extensions to
morphisms of algebras after rescaling Ry (N[S;]) — B and Rp{N[T;]}1 — C. We then have induced
maps

Ro(N[SDANIT Y — B ®ry C
such that the image of P, ; RnlS; x T}] in 7o is the image of mo(B ®py Nil'(C)). By Lemma
28 (2) we can extend the inclusion Ry[S; x T;] — Ro(N[S;]){N[T}]}' to a morphism of algebras
Ro{N[S; x T;]}" — Ro(N[S;]){N[T}]}T, proving that the map R[S; x Tj] — B ®g C extends to
Ro{N[S; x T;]}', in particular its image in 7o(B ® g, C) lands in mo(Nil' (B ® g, C)) as wanted.
(]

Example 2.6.15. In Proposition 2:6.8 we provided a class of compact projective generators for solid affinoid
rings, we next describe the power series developements of their m-completions.

Let S be a profinite set with Rn[S] = [;c; Rs; and d > 1, let us consider the algebra A = R (T, ..., Ty)a(N[S]).
First, by Lemma [2.4.3] we have that

R§<N[S]>:@ I] B's*

neN aelgn

By definition A = RZ(N[S]) ®z, Z[T1, ..., T4)o. This implies that for S” another profinite set one has

A[S] :@%N I1 ®HT,.... Ta)cls)s

aelgn
-8, I &, e
erIgn

In particular, we can write an element in A[x] as a power series

f(T,s) = Z CapTPs®
BeN
aelg
such that for any reduction modulo 7€, there is N >> 0 such that ¢, 3 = 0 for |a] > N, and for each «
there is M, >> 0 such that ¢, 3 = 0 for || > M,
By construction of AffRingl}zD, the rings R(T)o(N[S]) form a class of (non-compact!) generators. More-

over, since AffRingl}’%D C AffRingp_ is a full subcategory, being bounded is a property and not additional
data on solid affinoid Rg-algebras.

In Proposition 2.5.10] we showed that the solid affinoid structure of an analytic ring was independent of
the condensed nil-radical. The next result will prove an analogue statement when restricted to the category
of bounded affinoid rings.

Proposition 2.6.16. (1) Let A be a bounded affinoid Rg-algebra and f : R[T] — A a morphism of
analytic Rp-algebras. Then f extends to R(T)q if and only if the induced map R[T] — AT extends
to R<T>D
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Let A be a bounded affinoid Rn-algebra and R[T] — A a morphism of analytic Rn-algebras. The
image of T is invertible if and only if its image in A*~T is invertible.

Let A be a bounded R-algebra, S a profinite set and S — A a map. Then S extends to Ro(N[S]) if
and only if the composite S — AT=d does so.

Let A be a bounded R-algebra. Then (AT—red)f—red — gf—red

Proof. By Lemma (1) and [CS20), Proposition 12.21] we can assume that A and A are static rings.

(1)

Let A be a bounded affinoid ring over R. We want to prove that a map f : R[T] — A of analytic
rings extends to R(T)g if and only if the composition R[T] — Af7*d does so. This condition is
clearly necessary, let us show that it is sufficient. Let n > 0 be such that f extends to B = R(n"T)q
and let By, = R™(n"T)[[T~']][]. Then f extends to R(T)g if and only if Bs, ®p,.A = 0, and this
holds if and only if

(Buo @0 A)le] = 0.

We have a fiber sequence of A-modules
(Boo ®pg Nil'(A)) ©4 A = (Boo ®g A)[¥] = (Boo @5g AT [4].

Suppose that Be, ®p, AT = 0, then (B @p, Nil'(A)) ® 4 A = (Boo @5 A)[#]. The ring By is
bounded by Lemma 26.13, and by Proposition ZZ6.14 (6) the map By, ®p, Nil'(A) = By @5, A
lands in the f-nil-radical of the tensor. This implies that the map R[T] — Bs ®p A sending 7' — 1
extends to R{T}' which shows that 1 =0 as R{T}| ®R(1),7—1 R = 0, proving what we wanted.
Let R[T] — A be a morphism such that the composite R[T] — A — AT~ sends T to an invertible
clement. By hypothesis there is a’ € A such that aa’ — 1 € Nil(A), as T'+ 1 is invertible in R{T},
we have that aa’ is invertible which implies that a is invertible as we wanted.

This follows a similar argument as parts (1) and (3). Let S — A be a map such that the composite
f:8 — Af=red extends to C' = Ry (N[S]). We want to show that f extends to C. As A is bounded
there is n >> 0 such that f extends to B = Ro(N[r"S]) — A. Then, by the excision fiber sequences
of Remark 2.2.3] f extends to C' if and only if D := Homp([B — C],A) = 0, note that this Hom
space is naturally an E..-algebra thanks to the formalism of locale and Definition 2.2.2] namely,
it is of the form j.j*A for some open localization j of Mod(Bpg/). By hypothesis we know that

Homz([B — C], ATed) = 0, so we have
Homg([B — C],Nil'(A)) = D. (2.10)
Let S be a profinite set, we have maps functorial on Ry[5]
Hom p(Rq[S], D) = Hom g (Ro[S], Homp([B — C], NilT(4))
= Homp([B — C], Hom g (Ro[S], Nil(A))
= Homp([B — C),Map, .. (Ro{N[S]}, 4))
— Homp([B — C], Homp(Ro {N[S]}', 4))
= Hom p(Ro{N[S]}!, Hom([B — C], 4))
= Homp(Ro{N[S]}', D),
(Ro{N[S]}T, A) is the condensed anima given by

)
)

(2.11)

where Map AniRing

MapAniRingR(RD{N[S]}T, A)(S) = MapAniRingR(RD{N[S x S}, A),

that coincides with Hom p(Rq[S], NilT(A)). This implies that any map Rs[S] — D can be naturally
extended to a map Rp{N[S]}| — D. We claim that such a map induces an algebra homomorphism

Ro{N[S]} — mo(D). Suppose the claim holds, by taking the composite R[T]] =4 R & D where 1
is the unit, the algebra morphism R[T] — 7o(D) extends to an algebra morphism R{T}' — m(D),
which implies that 1 = 0, this forces mo(D) = 0 and D = 0.

Next, we prove the claim. Let S be a profinite set, let f: Rg[S] — D be a morphism of solid R-
modules and let g : Ro{N[S]}' — D be the map constructed above. Let mo(g) : Ro{N[S]} — mo(D)
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be the associated map on m9. We want to prove that m(g) is compatible with the multiplication
diagrams, for this, consider the map Rn[S] & Rp[S] L pep—D ®pry D. By (ZII) we have a

natural map Rp{N[S]} ® g, Ro{N[S]} 229, D Ry D. Furthermore, since we have a commutative
diagram

Ro[S] @ Ro[S) 22D ®p, D

Lﬂ +s2 lm

RolS] — L D,

we have an induced commutative diagram

Ro{N[SI}T @py RIN[SH 2% D @p, D

- b

Ro{N[S]}f ’

Taking 7o and knowing that g ® g factors through mo(D) ® g, 7o (D) — mo(D @ g, D), one deduces
that 7y(g) is an algebra homomorphism.

(4) Finally, let S be profinite, let S — NilT(Af~"d) be a map, and take a lift S — A. Then, § — Af-red
extends to B = R{N[S]}! by definition, and S — A extends to B by part (4). This implies that
the image of S in A is in its f-nil-radical which shows that S — Af=*d is 0, proving NilT(AT_md) =0
as wanted.

(]

Remark 2.6.17. We believe that the map Ro{N[S]}' — D in the proof of part (3) of Proposition Z.6.16] can
be naturally promoted to a morphism of E..-rings.

The following lemma explains why classical Tate Huber pairs do not have many t-nilpotent elements.

Lemma 2.6.18. Let A be a solid animated Ry-algebra and suppose that mo(A%) is m-adically separated.
Then Nilf(A) = 0.
Proof. Let S be a profinite set and let S — NilT(A) be a map. For all n > 1 we have that #7™S5 maps to

AV which implies that S is divisible by 7" for all n > 0 in m(A°). Then, as 7o(A?) is 7-adically separated,
the map S — m(A%) must be zero proving the lemma. O

Example 2.6.19. Let A be a Tate algebra topologically of finite type over a non-archimidean field K, and
let nil(A) be the classical nil-radical of A seen as a closed ideal. Then the reduction A™ = A/nil(A) is a
Tate algebra topologically of finite type such that A™%9 is r-adically complete and separated (see [Bosi4]
Proposition 3.1.10]). Lemma 2.6.18 shows then that

Nilf(A) = nil(A),
i.e. for classical Tate algebras the f-nil-radical recovers the usual nil-radical of the ring.

Corollary 2.6.20. Let A = R(Xy,..., Xqg)o(N[S){N[S]} for profinite sets S and S’. Let I be the aug-
mentation ideal of Ro{N[S']} — R. Then Nil'(A) = I A.

Proof. The quotient A/IA is isomorphic to B = R(X1,..., Xq)o(N[S]). It is easy to see that B® =
RY(X1,...,X3)0(N[S]) and that it is m-adically separated. By Lemma 2618 we have Nil'(B) = 0. This
shows that Nilf(A) C T.A. On the other hand, Lemma ZZ8 (2) implies that I.A C Nil'(A) which proves
the equality. O

Finally, the {-nil-radical is related with the closure of ideals in classical Huber rings.

Corollary 2.6.21. Let (A, A1) be a classical Tate Huber pair, and let I C A be a non-necessarily closed
ideal in A generated by its global sections. Let T be the closure of I in A and suppose that (A/T)° is
m-adically separated. Then Nill(A/I) =T/I and (A/I)f="d = A/T.
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Proof. Since (A/T)? is w-adically separated, A/T is t-reduced by LemmaZ6.18. This implies that Nilf(A/I) C
I/I. Let f: S — T be a map from a profinite set, we want to show that it extends to Rp{N[S]}!. Let
Ao C A be a ring of definition, we can assume without loss of generality that S lands in Ay N I. By
hypothesis, the subspace Ay C I is dense in Ag N I, then for any n > 0, we have that

T—l—TF”AO = I—I—ﬂ'nAo.

Thus, I + 7" Ag/I = I + 7" Ao/l C A/I, and the image of ®™"Ag in A/I contains I/I for all n > 0. Then,
the composite map S — I — I/I has a lift S — 7" A, proving that we have a factorization

Ro(NI2)) — A/,

taking colimits as n — oo we get the desired map from RD{N[%]}T, proving that I/I = Nilf(A/I) as
wanted. 0

2.7. Adic spectrum and derived Tate adic spaces. Let (R, R") = (Z((r)),Z[[x]]) and Ry = (R, R™")q.
Let AﬁRingI]’%D be the oo-category of bounded affinoid rings over Rp. Similarly as for Tate Huber pairs,
given a bounded affinoid ring A we want to construct the adic spectrum |Spa.Al|, as well as a map of
locales S(A) — | Spa A| generalizing the one of Definition 2.3.3] Instead of trying to define this space using
valuations, we construct it using the existing maps of locales for classical Huber rings.

Construction 2.7.1. Let A € Aﬁ'Ringl}’%D be a bounded affinoid Ro-algebra. For any finite set I C A% we
have a morphism of analytic rings (depending on lifts) (R(T7), R*)s — A. By Proposition we have
maps of locales (independent of lifts)

S(A) = S((R(T1), R")a) — Spa(R(Ty), Rt + R(T)™).
Taking limits we set T4 := @ICWO(AO) Spa(R(Ty), RT + R(T7)%) and let

pa:S(A) = Ty
be the associated map of locales. Note that the formation of both 74 and p4 are functorial on A and only
depend on 7y(A).
The following theorem is the key input to define the adic spectrum of a bounded affinoid ring.

Theorem 2.7.2. Let A € AﬁRinglj%D. There is a mazximal open subspace U C T4 in the constructible
topology such that p4 factors through a map S(A) — TA\U — Ta. Moreover, S(A) — TA\U is surjective.

Definition 2.7.3. The adic spectrum of A is the space | SpaA| = T4\U, with U as in Theorem We
let pa : S(A) — |SpaA| be the associated maps of locales, and let Spa.4 denote the categorified locale
(I Spa.Al,Mod(A), p.a).

In order to prove Theorem [2.7.2] we need some preparations.

Lemma 2.7.4. Let Z C T4 be a constructible closed subspace, then the idempotent algebra A(Z) = p;ll(Z)
is a compact module in Mod(A).

Proof. This follows from the fact that the complement U of Z is a finite union of rational affinoid localiza-
tions U; associated to analytic rings A;, and that the forgetful functor j; » : Mod(A;) — Mod(.A) commutes
with colimits. Indeed, the forgetful functor j. : Mod(U) — Mod(A) commutes with colimits, and it is given
by

J«j" M = Hom 4 (4 — A(Z)], M),

since A is compact one deduces that A(Z) is compact. O
Lemma 2.7.5. Let x € X = Ty, then the constructible neighbourhoods C' of x of the form
X{fi<g: i=1,...n}nX{g<h},

with f, = m and h € my(A), are cofinal in all the constructible neighbourhoods of x. We call such a
constructible space C' a rational constructible subspace of X.
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Proof. Since T4 is a limit of spectra of Tate algebras over R, it suffices to prove the statement for X :=
Spa(R(T;), RT + R(T;)%). Tt is clear that a basis of neighbourhoods of z in X for the adic topology
are rational localizations of the form X{f; < ¢ :i=1,...,n} with f, = 7. Let {}gen be the space of
generalizations of x in X, then we can write

{z}gen = ﬂ U
zeUCX
where U runs over all the open neighbourhoods of z. Then {z}4en is a poset being homeomorphic to the
adic spectrum of the residue field {2 }gen = Spa(k(z), k(z)"). But now, any rational subspace of {z}gen is
of the form {x}gen{h < 1} for some h € k(x), equivalently, any constructible closed subspace of {Z}gen is
of the form {2}gen{1 < h} for h € k(x). Thus, we can find a neighbourhood U = {f; < g} of x, and a lift
h' of hin O(U) such that {z}gen NU{1l < '} = {2}gen{l < h}. After multiplying A’ by a power of g, we
can find an element h € R(T7) and an integer n € N such that
UNX{g" <h}=U{1<h}.
Thus, after replacing g by ¢" and f; by f;*, we have found an element h such that
UNnX{g<h}=U{l<h}.
The lemma follows from the previous construction, and the fact that
{z}= (| 2
ZC{x}gen

where Z runs over the constructible closed subspaces. O

Lemma 2.7.6. Let C be a rational constructible subspace of Ta. Then the category Mod(C') obtained via
,o;tl(C) defines a natural analytic ring structure for A. We let Ac denote the associated analytic ring.

Proof. We have a natural localization functor f* : Mod(A) — Mod(C) with fully faithful right adjoint
f«. We let Mod(C)>o = f Mod(C) N Mod(A)>g. By [CS20, Proposition 12.20] it suffices to show that
Mod(C)<p is the category of complete modules of an analytic animated ring. Take any presentation
C=UNZ where U = X{f; <g:i=1,...,n} with f,, =, and Z = X{g < h}. Then Ay is an analytic
ring structure of A, and A(Z) is an idempotent algebra in Mod(.A). Then, the category f. Mod(C) is the
category of Ay ® 4 A(Z)-modules in Mod(Ay). But we can write

Av @4 A(Z) = Av @zir),z) Z(T)),

where T is sent to h/g in Ap. This last tensor is clearly an analytic animated ring, proving that Mod(C)>q
is the the category of animated modules over Ay ® 4 A(Z). O

Definition 2.7.7. Let © € T4.
(1) The adic stalk of A at x is the filtered colimit of analytic animated rings
Ale) = lim A(D)
zelU
where U runs over all the open rational neighbourhoods of = in 7T4.
(2) The constructible stalk of A at x is the filtered colimit of analytic animated rings
A()cons = 11_II>1 Ac,
zelC
where C runs over all rational constructible neighbourhoods of x as in Lemma

Proof of Theorem [2.7.2. We define U as the set of z € T4 such that A(x)cons = 0. To deduce the proposition
it suffices to show the following claim:

Claim. U us an open subspace in the constructible topology of T4.

Suppose that the claim holds and let us write | Spa.A| = T4\U. We want to show that p4 factors by a
surjective map onto | Spa.A4|. We have to prove the following:

(a) If Z1, Zy are closed subspaces of T4 such that Z; N|Spa.A| = ZoN|Spa A then p'(Z1) = p!(Zo).
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(b) Let Z; and Z be closed subspaces of T4 such that p'(Z1) = p'(Z2), then Z; N |Spad| =
Zy N | Spa Al.
We can assume without loss of generality that Z; C Z;. We first prove part (a). For a closed subspaces
Z C Ta welet A(Z) = p;'(Z) be its associated idempotent algebra in Mod(A). Let us write Z; = N, Cij
as an intersection of a filtered collection of constructible closed subspaces, we have that

A(Z) = limy A(Ci).

By Lemma 27.4] each A-module A(C; ;) is compact. Then, by replacing C;; with Ci; N Cyj, we can
assume without loss of generality the Z; are constructible subspaces. We want to show that the natural
map A(Z3) — A(Z1) is an equivalence. By the claim, and the assumption of (a), we know that for all
x € T4 the natural arrow
-A(x)cons XA -A(Z?) — A(x)COHS @A 'A(Zl)

Indeed, if z € U then both terms are zero, and if = € | Spa.A| this follows from the fact that Z; N|Spa A| =
Zy N |Spa Al and that the Z; are constructible. Since the algebras A(Z;) are compact A-modules, for each
x € T4 there is a rational constructible neighbourhood C, such that Ac, @ 4 A(Z2) — Ac, ®4.A(Z7) is an
equivalence. Since T4 is compact for the constructible topology, we can find a finite cover {C;} by such C,.
But now the spaces C; are locally closed for the adic topology and their union is the whole 74. Therefore
the localization functor

Mod(A) — [ [ Mod(Ac;)

is conservative, which proves that A(Zy) = A(Z;) as wanted.

Next we prove part (b). Let Z; and Zs be closed subspaces of T4 such that A(Z;) = A(Z2). We can
assume without loss of generality that Z; C Z5. Moreover, by writing Z; as colimits of constructible closed
subspaces, by Lemma [2.7.4] we can even assume that Z; and Zs are constructible. By hypothesis, we know
that for all z € T4 we have A(x)cons @4 A(Z2) = A(Z)cons @4 A(Z1), but the set of those x such that
A()cons @4 A(Z;) # 0 is precisely Z; N |Spa.A| thanks to the claim. One gets part (b).

Finally, we prove the claim. Let = € T4 be such that A(x)cons = li_]rr;me o Ac =0, where C' runs over all
the rational constructible neighbourhoods of x in 7 4. Since

A()cons[*] = h&“ Ac(#],
zeC
there is some C such that Ag[*] = 0, so C C U, proving that U is open in the constructible topology as
wanted. (]

Our next task is to prove that the adic spectrum of a bounded affinoid ring enjoys the same properties
of adic spectra of Tate Huber rings. More precisely, we shall prove the following:

Proposition 2.7.8. Let A — B be a morphism of bounded affinoid rings.

(1) |SpaA| is a spectral space and has a basis of qcqs open subspaces given by pullbacks of rational
localizations of the adic spaces Spa(R{T;), R") for some finite set I C A°.

(2) The morphism A — B induces a spectral map |SpaB| — |Spa.A|. Moreover, the pullback of an
open rational subspace is a rational subspace.

(3) Let A= (A, A1)y be the analytic ring associated to a Tate Huber pair, then the natural map

| Spa Al — |Spa(A4, AT)|
is a homeomorphism.

Proof. (1) By Theorem [2.7.2] we know that the space | Spa .A| is pro-constructible in 74, so an spectral
space. Since T4 has a basis given by rational localizations, the same holds for | Spa A|.
(2) Let A — B be a morphism in AffRingl}’%D. We have a commutative diagram

| SpaB| —— T

| !

|SpaA| —— T4,
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namely, the fiber of z € T4 in | SpaB| is given by analytic ring A(Z)cons ®4 B, and this vanishes if
A(x)eons = 0. The right vertical arrow is spectral and the horizontal arrows are pro-constructible
immersions, this implies that the left vertical arrow is spectral. It is clear that the inverse image of
a rational localization is again a rational localization.

(3) Let A = (A, AT)y be the analytic ring attached to an Tate Huber pair. Let us write T4 =
lim Spa(R(Ty), R* + R(T;)%), it is easy to see that Spa(A, AT) — T4 is a pro-constructible
immersion. Since the map p4 : S((4, AT)n) — | Spa.A| is surjective, we have immersions | Spa . A| —
Spa(A, AT) — T4. We are left to show that the map of locales S(A) — Spa(A, A1) is surjective.
Let x € Spa(A, A™), we have a map of affinoid rings (4, A") — (k(z),x(z)") and an induced
map of topological spaces |Spa((k(z), k(x)")n)| = Spa(k(x),x(z)T), thus one can reduce to the
case of an affinoid field Spa(K, K*). Then the open subsets of Spa(K, KT) form a totally ordered
set, and the connected constructible subspaces of Spa(K, K*) containing the generic point are in
bijection with open integrally closed subrings KT ¢ Kt C Ok, with O the valuation ring of K.
On the other hand, the functor (A4, A%) — (A, A1)y is a fully faithful embedding of Huber pairs in
analytic rings by [And21], Proposition 3.34]. This shows that |Spa(K, K*)g| — Spa(K, K™) must
be a bijection which finishes the proof.

O

Remark 2.7.9. By Lemma 2.1.3] and Theorem 2721 the functor AﬁRingl}’%D — CatLocgpa g, sending A
to Spa A is fully faithful when restricted to bounded affinoid Rg-algebras over Q. In particular, after
specializing to R — Q,, for any prime number p, we have a fully faithful embedding Aﬂ?’Ringf’@mD —
CatLocspa, o from bounded affinoid Q)-algebras to categorified locales over Spa Q.

Thanks to the f-nilradical we can define residue fields for both the analytic and constructible topologies

of | Spa Al.
Definition 2.7.10. Let A € AffRingl}zD, and let = € |Spa Al|

(1) The residue field of A at x is defined as the t-reduced quotient (z) := A(z)f~red,

(2) The constructible residue field of A at  is the T-reduced quotient £(z)eons = A(z)ons?.

Next, we prove that the underlying rings of the previous residue fields are honest fields. We need the
following lemma.

Lemma 2.7.11. Let A be a bounded affinoid ring.

(1) The following are equivalent
(a) The open subsets of | Spa.A| form a totally ordered set.
(b) There is a unique closed point in | Spa A|.
(c) For any f,g € A\Nll(A) cither {|f] < |g| # 0} = | SpaA| or {lgl < |f] # 0} = | SpaA|.
Moreover, adic stalks of bounded affinoid rings satisfy these equivalent properties.
(2) The following are equivalent
(a) |Spa.A| is a point.
(b) | Spa.A| has a unique closed point and for any f € A we have f € AT or f is invertible and
f—l c AOO_

Moreover, constructible stalks of bounded affinoid rings satisfy these equivalent properties.

Proof. (1) Suppose that the open subsets of |Spa.A| form a total order. By taking complements, the
closed subspaces also form a total order. Let .# be the total ordered family of non-empty closed
subspaces. Then, since |Spa.A| is constructible, by Zorn’s lemma one has that Z = (e, C
is the minimal non-empty closed subspace of | Spa.A|. The space Z is pro-constructible, so it is
spectral. Suppose that Z has more than two points, as it is a Ty-topological space, there is a non-
empty properly contained closed subspace in Z which is a contradiction with the fact that it is the
minimal closed subspace of | Spa.A|. Thus, Z is a point showing that (a) implies (b).

Suppose that | Spa . A| has a unique closed point z. As |Spa.A| is spectral, the unique open subset
of | Spa A| containing z is | Spa.A|. Let f € A, if for all n € N the open set {|f| < |7™|} contains
z, then the map R[T] — A defined by f extends to R{T}’ — A proving that f € Nil'(A). Thus,
for f € A\NilT(A) there is some n € N such that {|f| < |7"|} does not contain x, which implies
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that {|7"| < |f|} does contain = and therefore that {|7"| < |f|} = |Spa.A|. In particular such an
f must be invertible. Now let f,g € A\NilT(A), then the open sets {|f/g| < 1} and {|g/f] < 1}
form an open cover of | Spa.A|, in particular = belongs to one of them, which shows that either
{171 < lgl # 0} = |SpaAl or {|g] < |f] # 0} = | Spa Al as wanted.

Now suppose that (c) holds. It suffices to show that the poset of open rational subspaces forms
a total order. Let f € A\Nil'(A). Then there is some n € N such that {|f| < ||} # |Spa A,
by hypothesis this implies that {|z"| < |f| # 0} = | Spa.A| proving that f is invertible. We define
the following partial order in A\ Nilf(A): we say that |f| < |g| if {|f] < |g| # 0} = |SpaAl.
By hypothesis, given two elements f,g € A\Nilf(A) we have either |f| < |g| or |g| < |f|- Let
U C SpaA be a rational set of the form {|fi| < |g| # 0: i =1,...,d} with fg3 = 7" for some
n € N. If U is non-empty then g ¢ Nilf(A), in particular it is invertible and by taking h; = fi/g
we can write U = {|h;| < 1:i=1,...,d}. Let h be one of the h; with maximal norm |h|, then
U ={|h| <1}. Now, if U = {|h] < 1} and V = {|g| < 1}, as we have either |h| < |g| or |g| < |h|,
then U C V or V C U proving that the rational open subspaces of Spa A form a total order.

Finally the last assertion about stalks of bounded affinoid rings hold since property (c) can be
easily verified by construction.

(2) Suppose that | Spa A| is a point and let f € A, we have an induced map | Spa.A| — Spa(R(T), R* +
R(T)%) sending T to f. We can write Spa(R(T), Rt + R(T)°) = {|T| < 1} J{|T] > 1}. Since
| Spa Al is a point it must land in one and only one term of the disjoint union, which translates in
property (b) by definition of A+ and A%,

Conversely, suppose that (b) holds. By the proof of part (1), all the rational subspaces of | Spa A|
are of the form {|f| < 1} for some f € A. But then, if {|f] < 1} does not contain the maximal
point of | Spa.A|, one has that f ¢ AT, which implies that the complement {|f~!| < 1} = |Spa.A|,
L.e. that {|f| <1} = 0. This shows that | Spa.4| has the trivial topology, and being a spectral space
with a unique closed point it must consist on a single point.

Finally, the last assertion about constructible stalks holds since property (b) can be easily verified
by construction.

O

Lemma 2.7.12. Let {A;}; be a sifted diagram of bounded affinoid rings with colimit A, then the natural
map | Spa Al — lim, | Spa A;| is a homeomorphism.

Proof. We have a natural map f : | Spa. A| — Jim, | Spa A;|. Since A[*] = lim, Aj;[*], any rational localization
of | Spa A| arises as the pullback of a rational localization of some | Spa.4;|. In particular, any constructible
set of |Spa.A| is the pullback of some constructible set of some |Spa.4;|. Thus, it suffices to show that
f is a bijection, this can be proved using the constructible topology. Let z; € |Spa.4;| be a compatible
sequence of points, and let A;(z;)cons be the constructible stalk of A; at x;. Then we have a map

A— hﬂ Ai(xi)cons

where the right term is non-zero as none of the analytic rings are zero. By Lemma [2Z77.11] (2.b), the adic
spectrum of hgl A;i(x;)cons 18 @ point. But hgz A;i(2)cons 1s also the fiber of f along the sequence (x;);,
this shows that f~!((x;);) = {x} is a point, proving that f is indeed a bijection. O

Lemma 2.7.13. Let A — B be a morphism in Aﬂ'Ringl}zD such that B = ﬁA/ and that mgpA — moB is
surjective. Then F' :|SpaB| — |Spa.A| is an immersion.

Proof. Let x € Spa A, then B ® 4 A(x)cons is either 0 or one has a surjection on my of A(Z)cons — B @4
A(2)cons- One easily verifies that the tensor satisfies the condition (2.b) of Lemma [Z77.T1] this shows that
the fiber F'~1(x) is either empty or a point. Furthermore, any element g € B can be lifted to an element
g € A, this implies that a rational subspace of | Spa B| arises as the pullback of a rational subspace of
| Spa A|, and that F' is an immersion. O

Proposition 2.7.14. Let A be a bounded affinoid ring. Then the natural map | Spa A| — | Spa Alf=red s
a homeomorphism preserving rational localizations. Moreover, for any x € | Spa A| the underlying discrete
rings of kK(x) and Keons(x) are fields.
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Proof. By Lemma 2713 we have an immersion | Spa A™"4| — |Spa.A|. It suffices to show that it is
bijective. But the constructible residue field of A at x factors through A4, proving the claim. Finally,
the fact that the underlying discrete rings of x(x) and Keons(z) are fields follows from Lemma 27111 O

Corollary 2.7.15. Let A — B be as in LemmalZ7713. If mo(I) is generated by its discrete points mo(I(x)),
then the image of F is the Zariski closed subspace {|f|=0: f € I}.

Proof. We can assume that both rings are static. Then Z = (;c;{[f| = 0} C [SpaA| corresponds to the
analytic ring Ay = ligfej A(ﬂ%) Therefore, the map A — (A;+)T7d factors through B proving that the

neN
image of | SpaB| in |Spa.A| is Z by Proposition 2.7.74 O

We do not know if a morphism A — B in AﬁRingl}’%D that is surjective on mg induces a closed immersion
in the underlying adic spaces. Nevertheless, it defines a closed subspace in a suitable quotient of the locale

S(A).

Definition 2.7.16. Let A € AﬁRingl}’%D, we let | Spal A| denote the quotient of S(A) consisting of the
idempotent algebras generated under arbitrary intersections and finite unions by iterations of idempotent
algebras of the form A ®zpp) Z[[T]] and A ®zpp) Z((T™1)) for some Z[T] — A, and algebras A @ s
R-(N[S]) for a map from a profinite set S — A.

Lemma 2.7.17. The map of locales S(A) — | Spa A| factors as a map
S(A) — | Spal(A)| — | Spa Al.

Proof. By Lemma[2.3T]the open subsets of | Spa A| are generated by composite of subspaces of the form {1 <
lgl} and {|g| < 1}. The complement of these spaces correspond to the idempotent algebras A ®z7 Z|[[T]]

and A @7 Z((T~1)) respectively. The lemma follows by Theorem and the definition of |Spal A|. O
Lemma 2.7.18. Let A € AﬁRinglsz, then the natural map

| Spal AT=red| — | Spal A|
s an isomorphism of locales.

Proof. This follows from the invariance of localizations of the form Z[T| — Z[T] and R5[N[S]] — Ro(N[S])
under the f-nil-radical of Proposition O

Proposition 2.7.19. Let A — B be a map of bounded affinoid rings such that B has the induced analytic
structure and that is surjective on mg. Then the natural map

| Spal B] — | Spal Al
1s a closed immersion of locales.

Proof. By lemma (Z7.I8) it suffices to construct an idempotent algebra A’ in |Spal A| such that we have
a factorization A — A’ — B and that A T—red = Bf=red Tet [ = [A — B] be the fiber, for any profinite
set S and any map S — mo(I) let us consider the base change A @ g ns; Ro{N[S]}, and let A’ be the
colimit of all such algebras. Then, by construction, the map A — A’ sends I to the f-nil-radical Nilf (A"
of A’. This shows that

A’,T—red _ BT—red
as wanted. O

2.7.1. Derived Tate adic spaces. We end this section with the definition of derived Tate adic spaces.

Definition 2.7.20. (1) We let Affz, = AﬁRing%E be the oco-category of solid affinoid spaces. For a
ring A € AffRingy_, we let Aff 4 be the oo-category of solid affinoid spaces over .A. We also denote
by AnSpec A the representable presheaf on anima over Affz_ defined by A, we call AnSpec.A the
analytic spectrum of A.

(2) We let Afflj%m = Aﬁ'Ring?%;p be the category of bounded affinoid spaces over Rn. The analytic

topology in Affll’%u is the Grothendieck topology defined by open affinoid coverings of Spa A.



36 JUAN ESTEBAN RODRIGUEZ CAMARGO

Lemma 2.7.21. The analytic topology of Affl}zm is subcanomnical.

Proof. Let AnSpecB € Aﬁ‘l}’%u, we want to prove that the functor MapAff‘;? (—,AnSpecB) = MapAﬁRingll’? (B,—)
o 0

satisfies descent for the analytic topology of Aﬁ‘%m. Given AnSpec A a bounded affinoid ring, by definition
of the category of analytic rings, Map AffRing (B, A) is the full subanima of Map AniRing (B, A) whose
connected components are those arrows f : B — A such that any A-complete module is B-complete. Now
let {A;}!" ; be an analytic cover of A, let C =[], A; and let C™ be the n-th fold tensor product of C over
A. The maps {Spa A;}; form an open cover of the categorified locale Spa.A and by Theorem one has
descent of modules

Mod(A) — lim Mod(C™*). (2.12)
[n]leA
In particular, the natural map A = @[n]e A C"*! is an equivalence. Thus, the map
Map agRing?, (B, A) = lim Map s gt (B,
- [nJeA 0

is a fully faithful embedding, and to prove that it is an equivalence it suffices to check that it is essentially
surjective, but this follows from (ZI2)) and the fact that Mod(B) is stable under limits and colimits in
Mod(B). O

Definition 2.7.22. We let Shan(Affl}’%D) denote the sheaves on anima of bounded affinoid spaces with
respect to the analytic topology. A derived Tate adic space over Ry (or more shortly, a derived adic space)
is a sheaf X € Shan(Aﬁ‘II’QD) that admits an open analytic cover by representable sheaves. We let AdicSpp_
be the full co-subcategory of Shan(Aﬁ%D) consisting on derived adic spaces over Rp.

Given X a derived Tate adic space, let Modx o = 1&1 AnSpec A—s X Mod(A) be its oo-category of solid

quasi-coherent sheaves on X, and let | X| = 11_11)1 AnSpec A—s X | AnSpec A| be its associated topological space.

We let X4ic == (]X|,Mod x o) denote the categorified locale of X obtained as the colimit of the categorified
locales on bounded affinoid spaces mapping to X

The following corollary follows from the definitions and Lemma Z.T.3]

Corollary 2.7.23. Let X be a derived Tate adic space, {U;}; an analytic open cover of X by affinoid
spaces, and Modx o = gnl Mody, o. Then | X| = hgll |U;| is a locally spectral space. Morphisms of derived
Tate adic spaces X — Y induce morphisms of locally spectral spaces |X| — |Y|. When restricted to derived
Tate adic spaces over Q ® Rp, the functor X — Xggic from derived Tate adic spaces to categorified locales
over Q ® Rn is fully faithful (eg. for derived Tate adic spaces over Q).

2.7.2. Analytification functor. We finish this section by defining an analytification functor. Let PSh(Affg)
be the category of presheaves on anima of solid affinoid rings over Rq.

Definition 2.7.24. We define the analytification functor (—)*" to be the composite PSh(Affr;) LiN

PSh(Aﬁ‘II’QD) — Shan(Aﬁ‘l}’%D), where the first is the restriction along the inclusion & : Aﬂ?lf.%D — Aff oo,
and the second is sheafification.

By Proposition 2.6.8] the category AffRingy,_ of solid affinoid rings is generated by the compact projective
objects Z[T]o[N[S]], where T is a finite set of variables, and S a profinite set. Therefore, the analytification
functor (—)*" is the left Kan extension of its restriction to the objects R(T)5[N[S]]. These are computed
as follows:

Lemma 2.7.25. Let Di := AnSpec R(T)g be the unit affinoid disc. For S a profinite set let us write
A%:gs := AnSpec(Rp[N[S]]) and AR s := U, cy AnSpec(Ro(N[n"S])). Then there is a natural equivalence

n alg yan __ myn an
(D x ARs)™ = Dp x AR

Proof. This follows from the fact that both k* and sheafification commute with finite limits, that D' is
already a bounded affinoid space, and that A%'g represents the functor on Affl}’%u given by A — A(S). O
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3. TATE STACKS

In this section we introduce a geometric framework to do derived rigid geometry. Following the theory of
analytic stacks of Clausen and Scholze, we use the abstract 6-functor formalisms of Mann [Man22b, [Man22al,
revisited in [Zav23| and [Sch23|, to construct very general categories of solid and Tate stacks. We discuss
other classical geometric objects and features like finitely presented morphisms of derived Tate adic spaces,
the theory of the cotangent complex for analytic rings, formally étale and smooth morphisms, and Serre
duality. Finally, we introduce new deformation properties for morphisms, called f-formally smoothness and
étaleness, that will be key in the theory of the analytic de Rham stack.

3.1. Recollections on abstract six functor formalisms. In this section we briefly recall the definition
of a six functor formalism and some of its most important features, we follow [Man22bl Man22a] and

[Sch23].

3.1.1. Abstract sixz functor formalisms. A geometric set up is a pair (C, E) consisting on an oo-category C
and a collection ' of homotopy classes of edges in C such that E contains all isomorphisms, and is stable
under compositions and pullbacks. Throughout this section we assume that C admits finite limits.

Provided the data (C, E'), one constructs a symmetric monoidal oco-category of correspondences Corr(C, E),
see [Man22bl Definition A.5.4] and [Sch23| Definition 2.3]. In a more instructive way, the homotopy category
of Corr(C, F) has the following description: the objects of Corr(C, E) are the objects of C, the symmetric
monoidal structure is given by direct products, an arrow from X to Y is a correspondence

w
VN
X Y
with g € F, and the composition of two arrows is given by the outer correspondence of the following diagram

WXyW,

NS,
X/ \Y/ \Z.

Definition 3.1.1 ([Man22bl Definition A.5.6]). A 3-functor formalism (or a pre 6-functor formalism) on
(C, E) is a lax symmetric monoidal functor

2 : Corr(C, E) — Catoo
where Cat, is endowed with the cartesian symmetric monoidal structure.
As it is explain in the paragraph after [Sch23| Definition 2.4], the data of a 3-functor formalism encodes

a functor 2 : C — Cat% from C to symmetric monoidal oo-categories, the pullback functors f*, and the
lower shriek functors fi, in such a way that a diagram

w
VN
X Y
is sent to the functor gif* : 2(X) — 2(Y).

Definition 3.1.2. A 6-functor formalism is a 3-functor formalism for which the symmetric monoidal cat-
egories 2(X) for X € C are closed, and the functors f* and f, have right adjoints f, and f' respectively.

Remark 3.1.3 (Dual 3-functor formalism). From the datum of a 3-functor formalism 2 : Corr(C, E) — Cato
it is possible to construct a dual 3-functor formalism 2 as in [Sch23l Remark 6.3]. Concretely, 2 is
constructed as the composite Corr(C, F) Z, Cato o7, Catoo, see [Lurl7, Remark 2.4.2.7]. At the level
of objects, it maps X to the opposite symmetric monoidal category Z(X)°P.
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The following lemma allows us to construct six functors by taking a precomposition.

Lemma 3.1.4. Let (C, E) be a geometric set up and let C' be an co-category with finite limits. Let F: C' — C
be a functor preserving final objects and cartesian squares. Let E' be the class of edges s in C' such that
F(s) € E, then (C', E') is a geometric set up and F induces a natural symmetric monoidal functor

Corr(F) : Corr(C', E") — Corr(C, E).

In particular, if 2 : Corr(C, E) — Catoo is a 3-functor formalism then 9 o Corr(F) : Corr(C', E') — Cats
is also a 3-functor formalism.

Proof. We use the notation of [Man22bl Definitions A.5.2 and A.5.4]. First, note that the class of arrows
E’ is stable under compositions and pullbacks since F' preserves cartesian squares. Let us first see that
the hypothesis imply that there is a natural functor Corr(F) : Corr(C’, E') — Corr(C, E). Indeed by
construction, Corr(C, E) is the simplicial subset of B(C) whose n-cells are maps C(A"™) — C sending
vertical edges to E and exact squares to pullback squares. Since F' : C' — C preserves cartesian squares,
the restriction of B(F) : B(C') — B(C) to Corr(C’, E’) lands in Corr(C, F) as wanted. For the symmetric
monoidal structure, by [Man22bl Definition A.5.4] one has

Corr(C, E)® = Corr((coPU)r E7),

where C°PL is the symmetric monoidal structure define by co-products, and the class of edges E~ are those
living over id : (n) — (n) for n € N of the form f : (Yj)i<j<n = (Xi)i<i<n Where Y; — X, is in E. Then,
since F' preserves final objects and cartesian squares, it sends co-products to co-products in the opposite
categories, so that we have a symmetric monoidal functor

(FepLyor . (¢ opLlyor _y (copLlyop,

Moreover, by definition the functor (FOP’U)Op still sends the edges E'~ to E~. Then, to finish the proof,
we need to see that the natural functor

B((Fer)) : B(C L) — B((crLyr)

restricts to a functor in the correspondence categories. This follows from the fact that (FoPL)oP still
preserves cartesian diagrams and that it sends E'~ to E~. O

One of the major contributions of [Man22b] is the construction of 6-functor formalisms from a minimal
amount of data that is of easy access in practice, namely, we are usually given a functor 2 : C — CatZ
with values in symmetric monoidal (stable) co-categories, and two classes of étale and proper maps I and
P. Tt turns out that if the data (C, Z, I, P) satisfies a minimal set of expected properties, one can construct
a 6-functor formalism for (C, E) in such a way that all element in E is written as p o j with p € P and
j € I, that for f € P one has f, = fi, and that for f € T one has f' = f*. For the precise statement see
[Man22bl Proposition A.5.10].

On the other hand, the results of Mann permit the extension of a six functor formalism on (C, E) to a
very general class of arrows in a suitable category of sheaves on anima of C. To state such an extension
theorem we need some definitions, we refer to [Sch23| Appendix of Lecture IV| for more details.

Let (C,E) be a geometric set up and suppose that the six functor formalism & : Corr(C, E) — Pr
takes values in presentably stable oo-categories. Let CP" be the oo-category of presheaves of anima of C,
and 2 : Corr(gp“’h, EY) — Prle® its natural extension to a six-functor formalism on presheaves of anima,

Lex

where E° are the arrows whose pullbacks to C are representable in E (cf. [Man22b, Proposition A.5.16]).

Definition 3.1.5 ([Sch23| Definition 4.14]). Consider {f; : X; — Y’} a family of objects in C.

(1) The maps f; form a canonical cover if for all Z € C an any Y’ — Y in C with pullback f/: X/ — Y,
the functor Home(—, Z) satisfies descent along {f/}.

(2) The maps f; satisfy universal x-descent if for all pullbacks {f/ : X/ — Y’} along a map Y/ — Y in
C, the functor 2* satisfy descent along {f/} (i.e. where the transition maps are given by f*-maps).

(3) Assume all f; are in E. The maps f; satisfy universal !-descent if for all pullbacks {f/ : X! — Y’}
along Y’ — Y from a presheaf on anima on C, the functor Z' satisfies descent along { f1} (i.e. where
the transition maps are given by f'-maps).
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A D-cover is a family {f; : X; — Y} of objects in F such that they form a cover in the canonical
topology, satisfy universal *-descent, and satisfy universal !-descent. The Z-topology on C is the topology
generated by Z-covers, we let C denote the oo-category of sheaves on C for the Z-topology.

Let E° the class of arrows in C represented by arrows in E. As we saw above, the six functor formalism
of (C, E) extends to (C, EY), we want to use the theory of [Man22h, Appendix A.5] to enlarge the class of
arrows BV by localizing the target and the source of a map, this leads to the following definition.

Definition 3.1.6 ([Sch23| Definition 4.18]). Let EY C E be a class of morphisms in C that is stable under
pullbacks and compositions.

(1) The class E is stable under disjoint unions if whenever f; : X; > Y are morphisms in E then
L fi : L; X; —Yisin E.

(2) The class E is local on the target if whenever fiX5Yisa morphism in C such that for all Y € C
with map Y — Y the pullback X Xy Y =Y isin E then f € E.

(3) Assume that the six functors of (C, EO) extend uniquely to (C, E) The class E is local on the source
if whenever f X 3Yisa morphism in C such ‘that there is some map g: X’ — X in E that is
of universal !-descent, and such that f o g lies in E then f € L.

(4) Assume that the six functors of (C, EO) extend uniquely to (C, E). The class E is tame if whenever
Y € C and f X >Yisa map in E then there are morphisms h; : X; — Y in E and a morphism
LJ; Xi = X over Y that lies in E and is of universal |-descent.

Theorem 3.1.7 (|Sch23, Theorem 4.20]). There is a minimal collection of morphisms EY C E of C such

that 9 extends uniquely from (C~, EO) to (C~, E), and such that E is stable under disjoint unions, local on
the target, local on the source, and tame.

3.1.2. The Lu-Zheng 2-category. Let (C,E) be a geometric set up with finite limits and 2 a six functor
formalism on (C, E). We assume that 2 : Corr(C,E) — Pri* takes values in presentable stable oo-
categories. Another important tool in the theory of six-functor formalisms is the 2-category constructed
by Lu-Zheng |[LZ22| which encodes the Fourier-Mukai kernels between objects X and Y in C living over a
base S.

Definition 3.1.8 ([Man22al Definition 7.1|). Let S € C, the Lu-Zheng category LZg g of (C, E) (relative

to & and S), is the 2-category with objects given by arrows X — S in E, for each pair of objects X,Y a

1-category of functors Homyz ¢(X,Y) = Z2(X xgY). The identity functor in Z(X xg X) is given by Ajlx

where A : X — X xg X is the diagonal map. For a triple of objects X, Y, Z the composite transformations
HOII]LZ75(Y, Z) X HOII]LZ75’(X, Y) — HOIIlLZ7s(X, Z)

are given by the Fourier-Mukai transform MxN = 7y 3 (7] o N@73 3 M) for N € 2(X xsY), M € D(Y x5Z)

and ; ; the corresponding projection of X xgY xg Z.

Remark 3.1.9. In [Zav23, Proposition 2.2.6], Zavyalov shows that the Lu-Zheng category has a natural
(00, 2)-categorical enhancement.

With the help of the Lu-Zheng category one defines smooth and proper objects, cf. [Sch23l Definition
6.1].
Definition 3.1.10. Let (C, E)) be a six functor formalism, S € C and f: X — S an arrow in E.
(1) An object M € 2(X) = Homyz,s(X,S) is called f-smooth if it is a left adjoint in LZg g.
(2) An object M € 2(X) = Homyz,s(S, X) is called f-proper if it is a left adjoint in LZ4 g.
The following proposition provides different equivalent characterizations of f-smooth and f-proper ob-
jects.

Proposition 3.1.11. Let f : X — S be an arrow in E, p; : X xg X — X the projection maps and
A: X — X xg X the diagonal map. Let Q € 2(X).

(1) Let Dy(Q) = Hom (Q, f'1g). The following are equivalent
(a) Q is f-smooth.
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(b) The natural map p;D(Q) ® p5Q — Homy, . x (piQ, phQ) is an equivalence.
(¢c) For all g : 8" — S with pullback f': X' — S’ and projection map g : X' — X the following
natural functors are equivalences
Dy(g"Q) @ [ — Homy (g7Q. /),
g “Hom (Q, f') — Homy (" Q, f"g").
If these conditions holds then D¢(Q) tis also f-smooth with right adjoint Q.
Let P(Q) = p2«(Homy,  x (p1Q, Alx)). The following are equivalent
(a) Q is f-proper.
(b) The natural map fi(Q ® Pr(Q)) — fHomy (Q, Q) is an equivalence.
(¢) For all g : 8" — S with pullback f': X' — S’ and projection map g : X' — X the following
natural functors are equivalences
f(= @ Pp(g™Q)) = fHomy (9" Q, ~),
g* f-Hom (Q, —) — flHomy (g7 Q,9™(-)).

If these conditions holds then P¢(Q) is also f-proper with right adjoint Q.

(2)

Proof. The point (1) is precisely [Man22al, Proposition 7.7|. For point (2), the equivalence between (a) and
(b) is [Sch23l Proposition 6.9]. The implication (c) to (b) follows by taking g = idg and evaluating the first
equivalence at @. For (a), (b) implies (c), consider the natural transformation LZy ¢ — LZy g obtained
by taking pullback along g, then g* preserves adjunctions which implies that ¢ *Q is f’-proper with dual
g*P(Q). By [Sch23| Proposition 6.8 (3)] there is a natural equivalence g*P(Q) = Py (g *Q). Now, the
adjunction between ¢ *Q and P (9"*Q) shows that the functor f* ® ¢*Q : 2(S') — 2(X') has by right
adjoint the functor fi(—® Py (¢*Q)), but the first has also by right adjoint the functor f/Hom v (9*@Q, —),
which provides the first equivalence of functors. The second isomorphism follows from the first, proper base
change, and the natural identification g*P(Q) = Py (g™*Q). O

Proposition 3.1.12 (|[Man22al Proposition 7.11|). Let f : Y — X and g : Z — Y be maps in E, let
Pe2(Y)and Q€ 2(Z).
(1) If P is f-smooth and Q is g-smooth then Q @ g*P is (f o g)-smooth, and the natural map
9" Dp(P) ® Dy(Q) = Dyog(Q ® g*P)

s an equivalence.
(2) If P is f-proper and Q is g-proper then Q& g* P is (f og)-proper, and there is a natural equivalence

Prog(Q ® g"P) = g"Pr(P) @ Py(Q).

Proof. In loc. cit. it is shown part (1), the same argument using the dual six functors 2°P recovers part
(2), see Remark B.1.3 O

Remark 3.1.13. The equivalence in (2) of Proposition B.I.12]is not very explicit, it is obtained from a very
involved adjunction in the Lu-Zheng category.

Proposition 3.1.14 (Local on the target and stable by base change). Consider a cartesian square

x 2 x

P

S
with f € E, and let Q € 2(X). The following hold:

(1) If Q is f-smooth (resp. f-proper) then q*Q is f'-smooth (resp. f'-proper).
(2) If g satisfies universal x-descent and g*Q is f'-smooth (resp. f'-proper) then Q is f-smooth (resp.
f-proper).
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Proof. For smooth objects this is [Man22al Corollary 7.8], the same proof applies in the abstract context.
Note that the only property of a v-cover that is used in loc. cit. is that it satisfies universal %-descent
which holds in our case by hypothesis. The case for proper objects follows by dual arguments in the sense
of Remark B.I.3] as we describe next: point (1) follows from the fact that the natural transformation of
2-categories ¢* : LZg g — LZg g preserves adjunctions. For part (2), by Proposition B.I.11] (2.b) it suffices
to show that the natural transformation

(=@ Pp(Q)) = fHomy(Q, —)

is an equivalence. Let S, be the Cech nerve of g, and X its pullback to X. By universal x-descent we have
natural equivalences

2(S) — gn 2(S)) and 2(X) — 1&1 D(X)).
[n]eA [n]eA
Consider the functor
P(XL) = D(SL) My fi Homy, (9,°Q, M.).
By the second equivalence in Proposition B.I.TT] (2.c), it preserves cocartesian sections, so it descends to a
functor

P(X) = 2(5),
by looking at left adjoints one shows that this functor is actually equal to f,Homy(Q,—). It follows that
the natural map

9" fHomy (Q,—) — f.Homy/ (9@, —)
is an equivalence of functors. On the other hand, since gl*Q is f’-proper, the simplicial object Py (gl.*Q)

is a cocartesian section of 2(X]) and it descents to an object B € Z(X). Moreover, the isomorphism of
functors

f:,!(_ ® ,Pfé (go*Q)) — f:,*HomX‘ (go*Q7 _)
provided by Proposition B.I.11] (2.c) descents to an equivalence of functors

fil=® B) = f.Homx(Q,—).

Note that the previous equivalence passes through any base change S” — S. Taking the base change along
X — S and evaluating at A1y one gets that B = P¢(Q) and that the previous arrow is the natural one
coming from the adjunction of [Sch23, Proposition 6.9], this finishes the proof. O

The following are two practical ways to construct Z-covers in a six functor formalism, they correspond
to smooth and proper descent respectively.

Proposition 3.1.15 (|Sch23| Proposition 6.18]). Let f : X — Y be a morphism in E such that 1x is
f-smooth. Then

ffr2() = 2(X)
s conservative if and only if the natural map

lim Fasn " (1y) = 1y
[n]eAop

is an isomorphism (where fp4q : XY Y s the n+ 1-th fold fiber product), and this condition passes
to any base change. In that case, the pullback functors
(frstn: 2(Y) = lim (X" and (foy1)n: 2(Y) = lim @(X"Y)
[nleA [n]leA
are equivalences. In particular, if f is a canonical cover, then it is a PD-cover, and of universal *x and
I-descent.

Proposition 3.1.16 (|Sch23l, Proposition 6.19]). Let f : X — Y be an arrow in E such that 1x 1is f-proper,
with fr, : X™Y =Y the n-th fold fiber product. Assume that the map

ly —» ¢ 1£1 ”fn+1,*1xn+1/Y
[nleA

is an isomorphism in Pro(2(Y")); equivalently, f.1x € CAlg(2(Y)) is descendable.
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Then the pullback functors
(frsn: 2(Y) = lim (X" and (fo41)n: 2(Y) = lim (XY
[nleA [n]leA
are equivalences. In particular, if f is a canonical cover, then it is a PD-cover, and of universal x and
I-descent.

3.1.3. Cohomologically smooth and co-smooth maps. Let 2 be a six functor formalism on (C, E) taking val-
ues in presentable stable co-categories, and suppose that C admits finite limits. One of the main advantages
of the abstract six functor formalisms is that one can axiomatize cohomological properties of smooth and
proper maps in algebraic geometry via the Lu-Zheng category. We follow [Man22al, §8] and [Sch23| Lecture
V] for the definition of cohomologically smooth maps. For the replacement of proper maps, we will use a
weaker notion suggested at the beginning of [Man22al §9] which we shall call co-smooth maps, this is the
same as cohomologically smooth for the dual six functor formalism Z°P.

Definition 3.1.17. An arrow f: X — Y in E is cohomologically smooth if 1x is f-smooth and Dy(1x) =
f'1y is invertible. Similarly, f is cohomologically co-smooth if 1x is f-proper and Ps(1x) is invertible.

Translating the definition of cohomologically smooth and co-smooth maps from the Lu-Zheng category
to functors, a smooth map f : X — Y gives a natural equivalence of functors f'ly @ f* = f' while a co-
smooth map gives a natural equivalence of functors fi(— ® P¢(1x)) = fr. Among smooth and co-smooth
maps, there are two special families consisting on étale and proper maps.

Definition 3.1.18 ([Sch23| Definitions 6.10 and 6.12]). Let f : Y — X be an n-truncated map in E.
(1) We say that f is cohomologically proper if Af is cohomologically proper or an isomorphism, and if
1y is f-proper.
(2) We say that f is cohomologically étale if Ay is cohomologically étale or an isomorphism, and if 1y
is f-smooth.

In coherent cohomology, the maps f: Y — X that are proper in a suitable geometric sense are far from
being n-truncated. However, one still would expect to have identifications fi = f,, and that the functor f,
preserves “‘coherent” sheaves. Moreover, if the six functor formalism arises from a geometric decomposition
(I, P) one would expect that the arrows in I and P are étale and proper in a suitable sense respectively.
As a replacement of cohomologically étale and proper maps we define the following weaker notion:

Definition 3.1.19. Consider and arrow f : Y — X in F and let Ay : Y = Y xx Y. We say that f is
weakly cohomologically proper (resp. étale) if the following hold:
(1) 1y is Ay-proper (resp. f-étale) and there is a (non-canonical) equivalence Pa,(ly) =~ 1y (resp. an
equivalence Da,(ly) =~ 1y).
(2) 1y is f-proper (resp. f-étale).
Remark 3.1.20. Note that, under the hypothesis of the definition, the equivalence Pa f(ly) ~ ly, induces

an equivalence Py(ly) ~ ly. In particular, we have (non-natural) isomorphisms of functors Ay ~ Ay,
and f ~ f.. Similarly for weakly cohomological étale maps.

The following lemma gives a way to construct weakly cohomologically étale and proper maps from I and

P.

Lemma 3.1.21. Suppose that the siz functor formalism on (C,E) arises from a suitable decomposition

(I,P). Let f: X > Sbea map in C that 18, locally in the P-topology on S, representable by an arrow in
I (resp. P). Then f is weakly cohomologically étale (resp. proper).

Proof. By Proposition B.1.14] (2) it suffices to prove that an arrow of I (resp. P) satisfies the conclusion of
the lemma, this follows from the proof of [Sch23l Propositions 6.11 and 6.13| since diagonal maps of arrows
in I are in I (resp. P), and by construction f* = f' for f € I (vesp. f. = fi for f € P). O

Remark 3.1.22. If the category C is n-truncated then the maps in I and P are cohomologically étale and
proper as in Definition B.T.I8 For a general C, it is not clear to the author how to define a natural notion
of cohomologically étale and proper maps that contains the n-truncated ones, and the arrows of I and P
respectively.
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Lemma 3.1.23 ([Man22a, Lemma 8.7]). Cohomologically smooth and co-smooth maps are stable under
pullbacks and compositions, and x-local on the target.

Proof. Stability under pullbacks and local in the target for universal *-descent maps follows from Proposition
BIT4l Stability under composition follows from Proposition B.T.12] O

One of the interest of cohomologically smooth and co-smooth maps is that they will preserve smooth or
proper objects in a suitable sense.

Proposition 3.1.24 (Local on the source and stable under composition). Let f:Y — X andg: Z =Y
be maps in E and let P € 2(Y'). The following hold:
(1) Assume that g is smooth.
(i) If P is f-smooth then g*P is (f o g)-smooth with dual g*Ds(P) @ g'ly-.
(i) If g is a P-cover and g*P is (f o g)-smooth then P is f-smooth.
(2) Assume that g is co-smooth.
(i) If P is f-proper then g*P is (f o g)-proper with dual g*Py(P) ® Py(1z).
(ii) If g is a D-cover satisfying the hypothesis of Proposition[3.1.16 and g* P is (f o g)-proper then
P is f-proper.
Proof. Part (1) is [Man22al, Proposition 8.6]. Part (2.i) follows from Proposition For part (2.ii), we
cannot directly dualize the argument of loc. cit since the functors f* and f in Z°P might not have right
adjoints, instead we will make use of the descendability property of g.

By Proposition B.ILT1] (2.c), it suffices to prove that there is some @ € Z(Z) and a natural equivalance
of functors

fil=® Q) — fHomy (P, —),
that holds after any base change X’ — X; one then necessarily has that @) = Py(P) by taking the pullback
along Y — X and evaluating at Ayly. Let go : Z¢ — Z be the Cech nerve of Z over Y. By Lemma
B.1.23] co-smooth covers are stable under composition and pullbacks, in particular, any projection Z,, — Z
is co-smooth and by part (2.i) giP € 2(Z,) is (f o gn)-proper over X. Furthermore, part (2.i) also gives
rise a cosimplicial object (Pjog, (95P) ® Py, (12,) ') mjea which is a co-cartesian section in Z(Z,), defining
an object Q € Z(Z). Therefore, the functor
9eP @ (foge)" : D(X) = D(Za) (3.1)
descends to the functor P® f*: 2(X) — 2(Y). For each [n] € A, the functor g} P ® (f o g,)* has by right
adjoint (f o g,,)«Homy (g;, P, —) which by Proposition B.I.T1] (2.c) is naturally isomorphic to
(f © gn)!(_ ® D(fogn)(g;kzp)) = (f © gn)!(_ & Q:LQ QP n(lZn)) = f!(gn,*(_) ® Q)
Therefore, ([3.1) has by right adjoint the totalization
lim fi(gos(~) © Q).
[nleA
Evaluating at a co-cartesian section M,, of 2(Z,), the proof of [Sch23, Proposition 6.19] shows that the
Pro-system (gn,«My)pnjea is pro-constant, this implies that

r&l f!(gn,*Mn ® Q) = f'( 1£1 (gn,*Mn) ® Q)

[nleA [n]leA
Therefore, P ® f* has by right adjoint fi(— ® @), which provides the natural equivalence
fil=®Q) = fHomy (P, —). (3.2)
Finally, note that the formation of (3.2)) is natural with respect to base change X’ — X by construction.
This finishes the proof. O

Definition 3.1.25. Let f: Y — X be an arrow in E. We say that f is a smooth (resp. descendable) 2-
cover if it is smooth (resp. co-smooth), it is a canonical cover, and it satisfies the hypothesis of Proposition

B.1.T5l (resp. of Proposition B.IT6]).
We deduce the following corollary from Proposition [3.1.24]



44 JUAN ESTEBAN RODRIGUEZ CAMARGO

Corollary 3.1.26. Being cohomomologically smooth is smooth Z-local on the source. Analogously, being
cohomologically co-smooth is descendably Z-local on the source.

Smooth and descendable Z-covers provides a description of the coefficients of the quotient as modules
and comodules respectively.

Proposition 3.1.27. Let f : Y — X be an arrow in E.
(1) Suppose that f is a smooth P-cover. Then there is a natural equivalence of stable co-categories

P(X) = Mod;,(2(Y)),

where the monad f'fi naturally belongs to Alg((Endé(x)(@(Y))).
(2) Suppose that f is a descendable P-cover. Then there is a natural equivalence of co-categories

2(X) = CoMody- £, (2(Y)),
where the comonad f* f. naturally belongs to CoAlg((EndL@(X)(Q(Y))),

Moreover, if f has a retraction g : X — Y then the monad f'fi in (1) arises from an object Dy €
Alg(Endgy)(2(Y))) = Alg(2(Y)), and the comonad f* f« arises from an object Cy € CoAlg(EndL@(Y)(Q(Y))) =
CoAlg(2(Y)).

Proof. In the case of (1), both functors f' and fi are linear over 2(X), namely f' = f*® f*1x and f* is
2(X)-linear being symmetric monoidal, and f; is Z(X)-linear by the projection formula. This implies that
modules of the monad f'fi arises from an object f'f; € Alg(Endé(X)(.@(Y))).

Similarly, in the case of (2), we have a natural equivalence f, = fi(— ® Pf(ly)), proving that f,
satisfies the projection formula so that is Z(X)-linear. Therefore, the comonad f* f, arises from an object
f*f. € CoAlg(End x\(2(Y))).

In order to prove the proposition we only need to show that the functor f'is monadic in the case (1),
and that f* is comonadic in the case (2), see [Lurl7, Theorem 4.7.3.5]. It is clear that both functors
are conservative in both situations. In the case of (1), the functor f ' already preserves colimits being
isomorphic to f* ® f'l1x, and the monadicity theorem can be applied. In the case of (2), in order to apply
the comonadicity theorem we need to show that f* preserves f*-split totalizations.

By Proposition we have that

2(X) = lim 2(y"TX)
[nJeA
along pullback maps. Let (M,);mjea be a cosimplicial object in Z(X) whose pullback to Z(Y) is split.
Then, for all n > 0, the pullback of (M,)pmea to 2(Y" /XY is split with limit N,4;. Moreover, the
object (Np+1)[mjea is a cocartesian section in 2(Y*+t1/X) because of the splitting, and it defines an object
N in the limit 2(X) =lim | 2(Y" /X)), We deduce that

l.gl Mm = ]&n M fn+l,*f;+1Mm
[m]eA [m]€A [n]eA
= l&l fn—i—l,* 1£1 f;:+1Mm
[n]eA [m]leA
= gn fn—l—l,*Nn—l—l
[nleA
= N.

We deduce that
f*( 1£1 Mm) :f*N:Nl = gn f*Mmy
[mleA [m]eA
proving that f* preserves f*-split totalizations.
Finally, if f : Y — X has a retraction g : Y — X, the functors f' and f are 2(Y)-linear in the case of
(1), and the functors f* and f, are Z(Y)-linear in the case of (2). This shows that the monad and comonad
f'fiand f*f. in (1) and (2) respectively, arise from objects Dy € Alg(Endg(y)(.@(Y))) = Alg(2(Y)) and
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Cr € CoAlg(Endé(Y)(Q(Y))) = CoAlg(2(Y)) respectively (see [Man22bh, Lemma A.4.7] for the natural
equivalence Endé(y)(Q(Y)) =9(Y)). O

Remark 3.1.28. In the part (2) of Proposition B.I1.27] the only important conditions for the statement to
hold is that f. satisfies the projection formula, and that f satisfies universal *-descent.

We end this section by recalling how smooth and proper objects are preserved by lower shrieck functors
under suitable hypothesis.

Proposition 3.1.29. Let f:Y — X and g: Z —'Y be maps in E. Let P,Q € 9(Z). The following hold
(1) If P is (f o g)-smooth and Q is g-proper then g.Hom,(Q, P) = g1(Py(Q) ® P) is f-smooth.
(2) If P is (f o g)-proper and @ is g-smooth then gi(Q ® P) is f-proper.

Proof. Part (1) is [Man22al Proposition 7.13], part (2) is proven with the same argument that we recall
down below:

One has a morphisms of 2-categories v : LZgyy — LZg x mapping (W — Y] to [W — X| and M €
Homypzy (W, V) = 2(W xy V) to uM € Hompy x(W,V) = (W xx V) where t : W xy V. = W xx V.
By hypothesis P € Homyz x (X, Z) is a left adjoint and @ € Homy,zy(Z,Y) is a left adjoint. Then, since
v sends left adjoints to left adjoints, one has that

uQ* P =my (1P @ uQ) =nyu("nzP ® Q) = 9(Q ® P)
is a left adjoint in Homy,z x (X,Y), proving what we wanted. O

Proposition 3.1.30 ([Man22b, Proposition 9.10] ). Let f : Y — X and g : Z — Y be maps in E, and
P e 2(Y). The following hold:

(1) If g is cohomologically co-smooth and P is (f o g)-smooth then g.P and gP are f-smooth.
(2) If g is cohomologically smooth and P is (f o g)-proper then g\ P is f-proper.

Proof. This follows from Proposition by taking @ = 1z or Q = P¢(1z) for point (1), and taking
Q = 1y for point (2). O
We end this section with a couple of lemmas that will be useful later.

Lemma 3.1.31. Let f : Y — X, then there is a natural equivalence
f'Homy (#,%) = Homy (f*Z, ['9).
In particular, if f is cohomological smooth we have that
f*Homy (#,9) = Homy (f*7, f*9).
Proof. This follows from the adjunctions:
Homy (2, f' Homy (#,%)) = Homy (1., Homy (7. 9))
>~ Homy (fi @ F,9)
>~ Homx (fi(H @ f*F),9)
~= Homy (# ® f*7, f'¥)
=~ Homy (¢, Homy (f*.Z, f'9)).

The claim about cohomologically smooth maps follows from the fact that f' = f*® f'1x and that f'ly is
an invertible object in Z(Y). O
Lemma 3.1.32. Let % € 2(X) and let f: Y — X be an arrow in E.

(1) If f is a smooth cover and f*F is f-smooth, then F is dualizable.

(2) If f is a descendable cover and f*% is f-proper, then Z is dualizable.

Proof. This follows from Proposition[8.1.24] as being id x-smooth or proper is equivalent to being a dualizable
object in Z(X). O
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3.2. Solid and Tate stacks. In this section we explain how the theory of abstract six functor formalisms of
[Man22bl Man22a] and [Sch23| provides a very general six functor formalism of solid quasi-coherent sheaves
for stacks. Throughout this section we fix an uncountable cutoff cardinal k as in [Man22bl Definition
2.9.11], in real world applications the construction of the six functors down below will be independent of &
large enough.

By [Man22b, Lemma 2.9.12], if (A, A1) is a discrete animated Huber ring, then the forgetful functor
Mod((A4, A*T)g) — Mod(A) preserves k-small objects. Therefore, if B € Mod((A, AT)y) is a k-small
algebra, the forgetful functor Mod((B, A")5) — Mod(B) also preserves r-small objects. From now on we
will work with x-small condensed sets. Recall that a solid affinoid ring A is an analytic Zg-algebra such
that the natural map (A, A")g — A is an equivalence. We let AffRingy_ ,. denote the oo-category of solid
affinoid rings A with A being a r-small condensed set, we let Affz_ . denote its opposite category of x-small
solid affinoid spaces, we also let AnSpec. A € Affz_ . denote the analytic spectrum of the solid affinoid ring
A.

We recall some basic properties of the categories of k-small complete modules of analytic rings.

Proposition 3.2.1 ([Man22b, Proposition 2.3.9]). Let AnRing, be the full subcategory of analytic rings
A with k-small underlying condensed rings, and let Mod(A), be the full subcategory of Mod(A) generated
under sifted colimits by the objects A[S]| with S a k-small extremally disconnected set. The functor Mod(—) :
AnRing — CAlg(Catgghm’eX) of complete modules restricts to a functor

Mod(—), : AnRing, — CAlg(Prlx),

of k-small complete modules. In other words, for A a k-small analytic ring, Mod(A), is a presentably
symmetric monoidal stable co-category, and for a map A — B of k-small analytic rings, the base change
B®4 —:Mod(A) — Mod(B) preserves k-small analytic modules.

We now want to define a six functor formalism for solid affinoid rings, and then apply [Sch23, Theorem
4.20] to construct a very large six functor formalism for suitable stacks over Affz_ ... For this, by [Man22bl
Proposition A.5.10], all we need is a minimal amount of data consisting on étale and proper arrows (I, P)
in Affz_ . satisfying some minimal properties, cf. Definition A.5.9 of loc. cit. The following definition is
due to Clausen and Scholze.

Definition 3.2.2. We denote C = Affz_ ..

(1) Let I be the family of arrows in C consisting on morphisms f : AnSpec B — AnSpec.A such that
f* : Mod(A) — Mod(B) is an open localization in the sense of Definition 2.2.2] and such that the
associated idempotent algebra D lies in Mod(.A),.

(2) Let P be the family of arrows in C consisting on morphisms f : AnSpec B — AnSpec.A such that
B = B4, is induced from A.

(3) We let E be the family of arrows in C of the form fo¢ with i € [ and f € P.

We first need to check that (C, F) is a geometric set up.
Lemma 3.2.3. The class of arrows I, P and E are stable under composition and pullbacks in C.

Proof. The stability under pullbacks and compositions for the class P is obvious, for the class I follows
from Theorem Stability under pullbacks of the class F follows from the stability for I and P, we
are left to prove stability under composition for E. Consider two maps of analytic rings f : A — B and
g : B — D. Suppose that we have factorizations f = j; o p; with p; : A — A’ an induced analytic ring and
j1 : A* — B an open immersion. Similarly, suppose that g = j3 o py with ps : B — B’ and jo : B — D.
Then we can write g o f as the composite

A— By, — B, — D,

the first arrow is in P by definition, the second and third arrows are open immersions, so it is their composite.
This proves that E is stable under composition as wanted. Moreover, the idempotent algebra associated
to the map B;l/ — D is a "union" in the sense of Proposition 2.2.1] (5) of two x-small B-algebras, so it is
k~small. O
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Remark 3.2.4. Given AnSpec A € Aff7_ ., the stable co-category Mod(A), is closed by the adjoint functor
theorem. Indeed, the inclusion Mod(.A), — Mod(.A) has a right adjoint (—), given by taking the underlying
k-small set, and the internal Hom of Mod(.A),, is equal to Hom 4(—, —),. This implies that both internal
Hom’s could differ for general objects N, M € Mod(A),. However, after taking some big enough cardinal
k' > k one has that
HO_mA(Na M) = Ho_mA(N, M).

Actually, the proof of [Man22bl Proposition 2.1.11 (2)] shows that the choice of the cardinal " only depends
on N: write N = li . A[S;] as a small colimit of compact projective generators with S; a k-small extremally
disconnected set. Then,

Hom 4 (N, M) = lim Hom 4 (A[S], M).
I

Thus, after taking " big enough such that |I| < ' and Mod(A), — Mod(A) commutes with |/|-small
limits, one is reduced to prove that Hom 4(A[S], M) is x’-small for all k-small extremally disconnected set
S and M € Mod(A),. Writing M as a colimit of compact projective generators one just needs to take r’
such that Hom 4(.A[S], A[S"]) is ’-small for all k-small extremally disconnected sets S and S’.

Lemma 3.2.5. Keep the notation of Definition [3.2.3. The pair (I, P) is a suitable decomposition of the
geometric set up (C,E). Moreover, it satisfies the criteria of [Man22b, Proposition A.5.10|, so that the
functor Mod(—),, : C — CAlg(Pr) enhances to a siz functor formalism

2 = Mod(—), : Corr(C, E) — Prie,

Furthermore, for any arrow f : AnSpecB — AnSpec A the functors f* and f. are independent of k. For
any f € E, the functor fi is independent of k and there is some k' > Kk such that for all K" > k' > K the
restriction of the functor f' from k"-small modules to k-small modules stabilizes.

Proof. First, we check that the conditions of a suitable decomposition hold, cf. [Man22b, Definition A.5.9].
By definition, the objects in E are compositions p o j with j € I and p € P, so property (a) in loc. cit.
holds. Next, if f: A — B is an object in I, then f*: Mod(A) — Mod(B) is an open immersion in the sense
of Definition Then, A — B is a localization of analytic rings in the sense that B ®4 B = B, and a
morphism A — D extends to B — D if and only if the natural map D — B ®4 D is an equivalence, this
shows that f : AnSpec B — AnSpecA is —1-truncated, which implies condition (b). Finally, it is easy to
check that I and P contain the identity maps and that satisfy the two-out-of-three property (use Theorem
for I), this gives (¢) and (d) in [Man22bl Definition A.5.9].
For the existence of a 3-functor formalism we need to check the following conditions:
(i) for [j : AnSpec B — AnSpec A] € I the following hold
— 7% admits a left adjoint j
— 71 satisfies the proper base change.
— 71 satisfies the projection formula.
(ii) for f: AnSpec B — AnSpec A the following hold
— f* admits a colimit preserving right adjoint f.
— f. satisfies proper base change
— f. satisfies the projection formula.
(iii) For every cartesian diagram

v x

b
U—1- X
in C such that j € I and f € P, the natural map j f. ~ f«Jji is an isomorphism.

We will prove the properties for the derived categories Mod(.A) and then show that they preserve k-small
objects. Part (i) is a consequence of Proposition 22,4l For part (ii), f. is the forgetful functor, then the
projection formula is clear as f is defined by a morphism of analytic rings A — B where B has the induced
structure of A. It is left to check that f, satisfies proper base change, but if A — D is another morphism
of analytic rings, then B ®JL4D = (B®4D)p , and the proper base change formula is clear. Finally we prove
(iii), let X, X', U and U’ be the analytic spectrum of A, A’, B and B’. Then we have that A’ = 14/,
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and that B/ = A ®4 B. Let D € Mod(A) be the idempotent algebra that complements U in X, then
= A" ®4 D is the idempotent algebra that complements U’ in X'. Let M € Mod(B’), by definition we
have that
jifiM =[A— D] ®a M
and
figiM = [A' = D'l @ M,
but [A" — D'l =[A — D] ®4 A’ so that
A" — D@y M =[A— D] ®AA/®AA/ M
=[A— Dj®as M

proving that the natural map ji f, — f.ji is an equivalence.

Finally, we need to show that the functors f, and fi are independent of x, and that f' is stabilized for
k' >> k large enough. The claim about f, follows from [Man22bl Lemma 2.9.12] and the discussion at the
beginning of the section. For the functors fi for f € F, it suffices to prove it for f € I or f € P. If f€ P
then fi = f. and we are done, if f € I and f: A — B, then fi = [A — D] ® 4 — for D the idempotent
algebra that complements B. By hypothesis D is a k-small algebra, which implies that the tensor product
[A — D] ®4 — preserves s-small objects as wanted. For the stability of f', we can assume that f € I or
f € P, in the first case f' = f* and we are done, in the second case f corresponds to a map A — By , and

f'=Hom 4(B, —). Then the stability of f' for large enough &’ follows by Remark 3241 O

With the minimalistic 6-functor formalism for solid affinoid spaces C we can create a very large class of
stacks C and a large class of arrows E as in Theorem (.17l One has the following corollary.

Corollary 3.2.6. Let C = Affz_ . be the category of k-small solid affinoid spaces. Let E be as in Definition
[3.2.2. Let C = Shy(Affz, ) be the oo- category of sheaves on anima for the Z-topology where 9 = Mod_) ,,

Then there is a minimal class of arrows E inC containing the arrows represented in E such that the siz
functor formalism (C, E) obtained from Lemmal3210 extends uniquely to (C E) and such that E is stable
under disjoint unions, local on the target, local on the source, and tame.

Definition 3.2.7. With the notation of Corollary 3.2.6] we call Shy(Aff7_ ) the oo-category of k-small
solid 9-stacks. If k is omitted in the notation we write instead Shy(Affz) and call it the oco-category of
solid D-stacks.

Remark 3.2.8. The six functor formalism for solid quasi-coherent sheaves constructed before depends on
the cardinal x, in particular the functors fy, fi and f' might depend on k. Nevertheless, in practice we will
always have formulas for these functors that will make them independent in large enough cardinals.

Next, we prove that the locale topology of Theorem 2.2.5] gives rise to cohomologically proper and étale
PD-covers.

Lemma 3.2.9. The following hold:

(1) Let f : AnSpecB — AnSpec A. If f is open in the associated locale then f is cohomologically étale.
Similarly, if B4, = B and B is an idempotent algebra over A, then f is cohomologically proper.

(2) Let AnSpec A € Affz, and let {f; : AnSpecB; — AnSpec A}, be a collection of morphisms of
solid affinoid rings. If {fi}icr is an open cover of locales then || fi is a smooth Z-cover. Similarly,
if {fi}ier is a closed cover of locales then | |, fi is a descendable 2-cover.

Proof. (1) Suppose that f is open in the associated locale, by definition f € I and f* = f'. Moreover,
[ is —1-truncated as B ®4 B = B, this shows that f is cohomologically étale. Similarly, if B = By,
is an idempotent algebra over A, then f is —1-truncated and we have f, = fi, this implies that f
is cohomologically proper.

(2) Let F =, fi - |U; AnSpec B; — AnSpec A be a finite cover. In the case that the {f;}ics form an
open cover of the locale, by Proposition 2.7.2T] adapted to Affz_, the family {f;} form a canonical
cover, and the pullback along F' is conservative. Then the conditions of Proposition B.I.T5 hold and
F is a smooth Z-cover. Similarly, if {f;}icr is a closed cover on the locales, then it is refined by an
open cover and therefore it defines a subcanonical cover. By Proposition B.1.10], we are left to prove
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that Fi.1 =[], B; is a descendable A-algebra. But by definition of closed covering in the locales, we
know that A is equal to the “union” of the algebras B;, which clearly belongs to the thick tensor
ideal generated by Fil in Mod(.A). This proves the lemma.

O

We finish this section with the definition of Tate stacks.

Definition 3.2.10. Let Ry = (R, R")g = (Z((7)), Z[[7]])n, and let Aff%mi be the oco-category of k-small
bounded affinoid spaces. The oco-category of k-small Tate stacks over Ry is the category Sh_@(Aﬂ“l}zD’H) of
sheaves on anima of Affl}’%m,{ for the Z-topology, with 2 = Mod(—),. If k is omitted in the notation we
simply call Shg(Aff%D) the category of Tate stacks.

The following lemma gives a sufficient criteria for the existence of !-functors for a morphism of solid
stacks.

Lemma 3.2.11. Let f : X — Y be a map in Shy(Affz.) such that there is an epimorphism | |; AnSpec A; —
Y with A; solid affinoid rings, such that for all pullback X; — AnSpec A; there is a D-cover |_|j AnSpecB; ; —
X, such that the maps A; — B; j factor through maps

.AZ' — A[Tl, e ,Td]D — Bi7j7

where A[Th, ..., Tqln — B;j has the induced analytic structure. Then f € E has I-functors for the theory
of solid quasi-coherent sheaves. The same holds for 2-stacks over AHI;%D,

Proof. By construction, the category E of maps admitting !-functors is stable under disjoint unions, local
on the target and local on the source, thus it suffices to show that each map AnSpecB; ; — AnSpec A; has
I-functors. Since E is stable under compositions, it suffices to see that A — A[T1,...,Ty|o has !-functors,
for which is enough to show that Z — Z[T|5 has !-functors. But we can write Z — Z[T'| — Z[T]n where
the first arrow has the induced analytic structure, and the second is an open immersion of locales (see
Proposition [2.3.2)), thus the composite has !-functors proving what we wanted. O

3.3. Morphisms of finite presentation. In applications we find different definitions of morphisms of
finite presentation depending on the geometry we are studying. In this section we explain a way to treat
some formal properties of any of these situations in a more axiomatic way. We shall restrict ourselves to
the case of solid affinoid rings.

Definition 3.3.1. Let A be a solid affinoid ring and let A[T] be the polynomial algebra. A coordinate
theory over A is an idempotent map of solid A-algebras f : A[T] — A(T') such that
(i) A(T) is an animated ring stack in Aff 4, i.e. the functor correpresented by A(T) has a given
enhancement in animated rings, and f is a morphism of animated ring stacks over A.
(ii) The natural map AnSpec A(T)| ] AnSpec A(T~!) — P is a Z-cover.
We define A(T=') := A(T)[T~Y] @ gpr1) AT~ H)[T].

Let us give different examples of coordinate theories that occur in practice:

Example 3.3.2. (1) Of course the trivial example is the identity map Z[T] — Z[T], in this case
the “coordinate" is the classical one from algebraic geometry. A more interesting example is the
solidification functor Z[T| — Z[T]q, here we think of T as the “solid coordinate”.

(2) Inrigid geometry we have at least two examples: the first one is given by (Qp[T], Zp)n — (Qp(T'), Zy),
the second one by (Qp[T,Zy)n — Qp(T)n. The first coordinate is the adic compactification of the
affinoid disc, the last is parametrized by the algebra Q,(T)5. Note that Q,(T)g = Q, ®zy Z[Tn,
in general, the base change of a coordinate theory is a coordinate theory.

(3) Let Qu(T)T := lim__ o, Qp(p°T), this "coordinate" is the one used in the theory of dagger spaces

over Q.
We now define rational localizations and morphims of (almost) finite presentation.

Definition 3.3.3. Let A be a solid affinoid ring and A[T] — A(T') a coordinate theory over A.
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(1) A morphism A — B is an A(T)-rational localization if it is a composite of morphisms of the form
A= A 4 A(T) or A® 470 A(T1)[T). The A(T)-analytic topology on Aff 4 is the Grothendieck
topology with covers given by Z-covers consisting on finite disjoint unions of A(T")-rational local-
izations. We let Sh 4(7)(Aff 4) denote the category of A(T')-analytic sheaves on anima.

(2) A morphism f : A — B is of A(T)-finite presentation if it belong to the smallest category of A-
algebras stable under finite colimits and containing A(T'). We say that f is of local A(T)-finite
presentation if it is a retract of a morphism of A(T)-finite presentation. If A(T') is clear from the
context we simply say that f is of (local) finite presentation.

(3) An A(T)-adic space is an object in Sh 4(7)(Aff 4) which is representable by an affinoid ring locally
in the A(7T)-analytic topology.

(4) A morphism X — Y of A(T)-adic spaces is locally of (local) finite presentation if it is of (local)
finite presentation locally in the A(7T)-analytic topology of X and Y.

Remark 3.3.4. We use the name “local of finite presentation” for what [Lur04] calls “locally of finite pre-
sentation”. The reason for this difference is to avoid properties on spaces such as “locally of locally of finite
presentation” which might be confusing.

Remark 3.3.5. Condition (ii) in Definition [3.3.1] guarantees that we have non trivial rational covers, namely,
if b € B is depicted from a map A[T] — B, the localizations

1
B — B(g) = B® 41 A(T) and B — B(;) =B ®am AT H[T)
form a Z-cover of AnSpecB.
Next, given a suitable six functor formalism on solid prestacks PSh(Aff 4), we want to give a simple criteria
for morphisms locally of finite presentation of A(T')-adic spaces to admit !-functors. Let X € Shy(Aff7,)
be a solid Z-stack, suppose we are given a finite limit preserving functor F': PSh(Aff 4) — Shg(Affzy)/x-

Let E’ be the class of edges in PSh(Aff 4) such that o € E’ if and only if F (o) € E, by Lemma B.I1.4
we have an induced 6-functor formalism 2’ on (PSh(Aff 4), E'), we let Shyr(Aff 4) denote its category of

P'-stacks and E’ the class of arrows of Theorem B.1.7

Proposition 3.3.6. Let us keep the previous notation. Suppose that the following condition hold

(1) F preserves coproducts.

(2) F sends A(T')-analytic covers to Z-covers.

(3) The images by F of AnSpec A — AnSpec A(T) and AnSpec A(T)) — AnSpec A are in E, i.e. they

admit \-functors.

(4) For alln > 1 the image by F' of the map AnSpec A — AnSpec(Sym$.A[n]) is in E.

Then A(T)-analytic covers are 9'-covers, and any map in Shg(Aff 4) representable, locally in the 2'-
topology, by morphisms of A(T')-adic spaces locally of finite presentation is in the class E of morphisms
admitting -functors.

Proof. Since F sends A(T)-analytic covers to Z-covers, rational localizations belong to E’ and admit
I-functors. Indeed, by Remark any A(T)-rational localization belongs to an analytic A(T)-cover,
and since F' preserves disjoint unions, the image under F' of rational localizations must admit !-functors.
Furthermore, since F' preserve co-products, disjoint union of rational localizations also admit !-functors.
This implies that analytic A(T)-covers of A(T)-adic spaces are 2'-covers. Let f : Y — Z be a map of
9'-stacks over A representable by a morphism of A(T")-adic spaces locally of finite presentation. Since the
class E is both local on the target and the source, to show that f admits !-functors it suffices to treat the
case of a morphism of algebras B — D of finite presentation. Now, since A[T] — A(T) is idempotent, we
have
A @ AT) A=A @ A[T] A= Sym;lA[l].

Then, as Sym%Aln + 1] = A ®syms,apm) A for all n > 1, all the morphisms Sym%.A[n] — A and
A — Sym$%A[n] are of A(T)-finite presentation. Moreover, since F' preserves finite limits, the map
AnSpec(Sym$%.A[n]) — AnSpec A belongs to E’. Therefore, to show that a morphism of finite presen-
tation is in the class va’, it suffices to see that it is constructed by composites of pushouts along the maps
of the form
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AnSpec A — AnSpec Sym$ A[n],
AnSpec Sym$%.A[n] — AnSpec A,
AnSpec A(T) — A,

AnSpec A — AnSpec A(T).

The claim follows by the following lemma:

Lemma 3.3.7. Let I := (I,)nen be a sequence of finite sets with almost all I, empty, let A(Ty) denote the
algebra

A(Th) == A(T; = i € Ip) @4 Sym% (APN1[1]) @4 - - @4 Sym% (AP [n]) @4 - .
Let (fn.j)jes, be elements in m,(A(T1)) such that J, is empty for almost all n, and such that fo; extends
to a map A[X] — A(X). Write J = (J,)nen. We denote by A(Ty)/“(f1) the pushout of the diagram

A(Ty) —L A(Ty)

|

A.

Then, any A-algebra of A(T)-finite presentation is isomorphic to a composite of algebras of the form
A(Ty) /" (fr)-

Proof. We need to show that the category %4 of A-algebras constructed as composites of algebras of the
form A(Ty)/"(fy) is stable under finite colimits. By [Lur09, Corollary 4.4.2.4] it suffices to show that it
is stable under pushouts. Note that if B € %4 then the objects of ¥5 are in 4. Consider a diagram
C+ B — D in 64, we can write

CoD=(C®4D)®Bg.8B.

It is clear that C ® 4 D € € 4. We claim that the multiplication map B ® 4 B — B is in %3, if this holds
then C ®p D € %ce ,p Whose objects are in 4. Let us write B = A(T1)/%(f), then

B®aB = ATy, S1)/*(f3(T), 93(5))-
Since A(T') is a animated ring stack, the maps A[T;—S;] — B® 4B naturally extend to A(T; —S5;) — BaB.
We have that
B@aB/(Ti — S1) = B/H(0y),
where 0y is the sequence of |J,|-zeros in 7, (B) for n € N > 0. But for any ring C we have that C/%(0,,) =

C(T'[n+1]) is the free algebra over C with one generator in degree n+ 1. Thus, we can find elements gp41,7,
in 7m,.1(B/%(05)) such that

(B/4(01)) /“(g1) = B,

proving the claim.

3.4. The cotangent complex. In this section we briefly discuss some basic properties of cotangent com-
plexes for prestacks on analytic rings. We will follow mutatis mutandis [Lur04 §3.2].

We let PSh(AnRing®?) be the oo-category of presheaves of anima on AnRing®®. Given A € AnRing
we let AnSpec. A denote its representable presheaf that we refer as the analytic spectrum of A. As it is
standard, we let

Mod(—) : PSh(AnRingOP) — CAlg(Catgglim’ex)

denote the right Kan extension of the functor of complete modules of analytic rings.

Definition 3.4.1 (|[Lur04, Definition 3.2.5]). Let M € Mod(A), we say that M is almost connective if
M]n] is connective for some n > 0. Let F : AnRing — Ani be a functor and M € Mod(F) a quasi-
coherent complex, we say that M is locally almost connective if for all analytic ring A and all n € F(A),
M(n) € Mod(A) is almost connective.
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Let A be an analytic ring and M a connective A-module. We have an adjunction F' : AniAlg, —
Mod>o(A) : Sym?% between animated algebras over A and connective A-modules. Given M € MOdZ(KA),
we can form the A-algebra A@® M as a condensed animated ring, which is obtained by forgetting the terms
of degree > 2 in Sym$ M.

Since M is a nilpotent ideal of A @ M, by Proposition 12.23 of [CS20] the analytic ring structures on
A@ M and A are in bijection, and we have that

(A@M)A/[*] =ADAR4 M.

Given M € Mod>(.A) we shall denote by A@® M the trivial square-zero extension of A by M endowed with
the analytic ring structure arising from A. Let F : AnRing — Ani be a presheaf, we say that F admits an
absolute cotangent complex if there exists a locally almost connective quasi-coherent complex Lz of F such
that the functor mapping a triple (A, n, M) consisting of A € AnRing, n € F(A) and M € Mod>(A) to
the fiber product of

n

FA® M) —— F(A)

is correpresented by Lx(n).
One deduces easily the following property:

Proposition 3.4.2 ([Lur04, Proposition 3.2.9]). Let {F;}icr be a diagram of functors F; : AnRing — Ani.
Suppose that each F; has an absolute cotangent complex L; € Mod(F;). Let F = l&ll Fiand L = hgl Li| 7.
Then 1L is an absolute cotangent complex for F provided that it is locally almost connective.

More generally, let F,G : AnRing — Ani be two functors and let ¢ : 7 — G be a natural transformation.
We say that the morphism ¢ has a relative cotangent complex if there is a locally almost connective quasi-
coherent complex Lz, € Mod(F) such that for all A € AnRing, n € F(A) and any connective .A-module
M, the object Lz/g(n) correpresents the fiber product

Ui

!

FAd M) —— F(A) XG(A) GAD M)

where the map from 7 to G(A @ M) is induced by the evaluation of G at the zero section A — A& M.
The relative cotangent complexes satisfy the following properties, whose same proofs also hold in our
context.

Proposition 3.4.3 ([Lur04], Proposition 3.2.10]). Let F — G be a natural transformation of functor from
AnRing to Ani. Suppose that ]L;/g exists, let G — G be a natural transformation and F' = F xgG'. Then
Lz/glF is the cotangent complex of F' — G'.

Proposition 3.4.4 ([Lur04) Proposition 3.2.12]). Let F — F — F" be a sequence of natural transforma-
tions of functors. Suppose that there exists a cotangent complex Lz zn. Then there is an exact triangle

Ly yzilr = Lrjpr = Lz
in the sense that if either the second or the third term exists, then so does the other and there is a triangle

above.

The following is the analogue to Proposition 3.2.24 of [Lur04] regarding the existence of relative cotangent
complexes for morphisms of analytic rings.

Proposition 3.4.5. Let f : A — B be a morphism in AnRing and let f' : AnSpec B — AnSpec A be
the associated natural transformation at the level of presheaves. Then there exists a cotangent complex
L AnSpec B/ AnSpec. 4 that is associated to the B-module Ly, 4. Furthermore, if Lg, 4 is the cotangent complex
of the map of underlying condensed rings, then

LB/A :B®§L§/A
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Proof. By Proposition B.4.4] it is enough to show that the functor AnSpec.A has an absolute cotangent
complex given by Ly = A®4L4. Let A — C be a morphism of analytic rings and let M be a connective
C-module. We want to describe the space

Map pnRing (A,Co M) (3.3)

in terms of the cotangent complex of A. Since the analytic ring structure of C & M only depends on C, and
we have already fixed a morphism of analytic rings A — C, the above space is equivalent to the space

HomCond(AniRing)/Q (Aa Co M)
of morphisms of condensed animated rings over C. Therefore, (8.3) is naturally equivalent to
HomModzo(A) (LAv M) = HomMOdzo(A) (A XA LAv M)
proving that L4 = A®4 L 4 is an absolute cotangent complex for AnSpec A. O

Remark 3.4.6. Let A — B and A — C be two morphisms of analytic rings. The base change property of
the cotangent complex is now given by

Leja ®c (C®aB) = Leg ,8/8-

If A — B is steady (JCS20|, Definition 12.13] and [Man22bl, Definition 2.3.16]) then it can be written simply
as Le/ja @4 B =Leg ,8/8-

We deduce the following construction that helps to identify the my of a relative cotangent complex of
rings with continuous Kéhler differentials.

Proposition 3.4.7 ([Lur04, Proposition 3.2.16]). Let A — B be a morphism of analytic rings, and let K
be the cone of this map seen as an object in Mod(A). Then there is a natural map ¢ : K @ 4 B — Lgja-
Moreover, if f is n-connected for n >0, then ¢ is (n + 2)-connected.

Proof. By loc. cit we have a map of the underlying condensed rings

satisfying the prescribed properties of the proposition. Since the analytification functor B ®p — preserves
connective objects, after B-analytification one has a natural map ¢ as stated satisfying the same connectness
properties. O

Corollary 3.4.8 (|[Lur04) Corollary 3.2.17]). A morphism of analytic rings A — B is an equivalence if and
only if mo(A) — mo(B) is an isomorphism of analytic rings and g4 = 0.

Proof. By |CS20), Proposition 12.21| the analytic ring structures of A and m(A) are in bijection, so we only
need to check that the underlying condensed rings are isomorphic. But then, the same argument of [Lur04)
Corollary 3.2.17] can be applied to deduce the equivalence. O

Remark 3.4.9. Note that the hypothesis in the corollary asks for the map on connected components to
be an isomorphism of analytic rings. If A — A’ is a morphism of analytic rings with same underlying
condensed ring then L 4,4 = 0.

Example 3.4.10. (1) The cotangent complex of a discrete affinoid ring (A, A1)y is simply the cotan-
gent complex of the underlying condensed discrete ring.
(2) Let f: (A, AT) — (B, B") be a morphism of Huber pairs, by Proposition ([3.47) we can compute
the continuous Kahler differentials of f as

mo(L(B,5+)0/(4,41) = g p+yaa+) = L/T°

where 7 is the augmentation ideal of 7y(B ®(a,4+)y B ) — B, note that this tensor product coincides
with the solid tensor product over (A,Z)s which is equal to the classical completed tensor product
of Huber rings.
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(3) Let A be a I-adically complete I-torsion bounded ring where I is a finitely generated ideal of A.
We have that A ®z Z[T)n = (A(T'), Z[T])s where A(T)) is the I-adic completion of the polynomial
algebra. Then the cotangent complex

Lo zimo/azo = Lzmn/z @z (AT), Z[T))o = A(T) - dT
is just the usual continuous Kéahler differentials.
(4) Let A — C be an idempotent morphism or analytic rings, i.e. such that C®4C = C. Then L¢/4 = 0.
Indeed, we have that

Leju=(C®aC)®cLeja=Legc/c =Leje = 0.
Now let us restrict to morphisms of solid affinoid rings.

Definition 3.4.11. We say that a morphism f : A — B of solid affinoid rings is of solid finite presentation
if it belongs to the smallest category containing A[T|g := A ®z, Z[T]|n and stable under finite colimits (see
Definition B.3.3]and Example B.3.2)). If the underlying rings of A and B are static, we say that f is of solid
finite presentation as static rings if B is a quotient of A[T}, ..., Ty]o by a finitely generated ideal.

One easily deduces the following lemma thanks to Proposition and the computation of the cotangent
complex Ly /7 = Z[T]dT.

Lemma 3.4.12. Let A be a solid affinoid ring, and let B be an A-algebra of solid finite presentation. Then
Lg/a is a finitely presented B-module, in particular it is discrete.

3.5. Solid étale and smooth maps. In this section we review the definition of formally smooth and
formally étale maps in the oo-categories of presheaves on bounded affinoid rings over Ry = (R, R1)y =
(Z((m)), Z[[r]])a. We will characterize formally smooth maps of solid finite presentation in more geometric
way, in analogy to classical algebraic geometry. Let us first adapt the definition of small extensions to our
setting.

Definition 3.5.1 (|[Lur04, Definition 3.3.1|). Let A — B be a morphism of analytic rings and M a B-

module. A small extension of B by M over A is an analytic A-algebra B with a morphism B — B whose
underlying condensed ring is a small extension of B by M as A-animated algebra.

Remark 3.5.2. Note that the map m(B) — mo(B) is a square zero extension, so the analytic ring structure
of B is uniquely determined by that of B by [CS20, Proposition 12.23]. Therefore, the co-category of square
zero extensions of B over A is the full subcategory of square zero-extensions B of B over A as condensed
rings such that the fiber [B — B] is in Mod(B) C Mod(B).

Definition 3.5.3 ([Lur04, Definition 3.4.1]). Let F : AnRing; — Ani be a functor, we say that F is
nilcomplete if for all A € AnRing the natural map F(A) — lim F (T<nA) is an equivalence.

We say that F is infinitesimally cohesive if for all small extension Aof A by an .A-module M, the natural
map

F(A) = F(A) X raemn) F(A)

is an equivalence.

Definition 3.5.4 (JLur04) Definition 3.4.3|). Let T : F — F’ be a natural transformation of functors
F,F": AnRing — Ani. We say that T is
(1) weakly formally smooth if it has a relative cotangent complex Lz /7 which is the dual of a connective
(discrete) perfect complex.
(2) formally smooth if it is weakly formally smooth, nilcomplete and infinitesimally cohesive.
(3) formally étale if it is formally smooth and Lz, = 0.

We can define solid smooth and étale morphisms as follows.

Definition 3.5.5. (1) A morphism f : A — B of solid affinoid rings is solid smooth (resp. étale) if it is
formally smooth (resp. formally étale) and of solid finite presentation. If A and B are static we say
that f is solid smooth or étale as static rings if it is of finite presentation as static rings (Definition
B-4T171) and formally smooth or étale with respect to square-zero extensions of static rings.
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(2) A morphism f : A — B of solid affinoid rings is standard solid smooth if B = A[T1, ..., T,)o/"(f1,. .., fx)

for some sequence of elements f; € mo(A[T1,...,T,]n) such that det((g—{é)lgmgk) is invertible in B,
it is standard solid étale if it is standard solid smooth with n = k. If A and B are static we say that
f is standard solid smooth or étale as static rings if it is the my of a standard solid smooth or étale
algebra over A.

Our main goal is to show that (1) and (2) in Definition are equivalent after taking suitable rational
covers. If A is discrete, any finitely presented .A-algebra is discrete and different characterizations of
(classical) smooth morphisms can be deduced from [Lur04, Proposition 3.4.9]. The main case of interest
for us is when A is a bounded affinoid algebra over Ry. We have the following theorem.

Theorem 3.5.6. Let A be a bounded affinoid algebra over Ry. Let T : A — B be a morphism of bounded
affinoid Rg-algebras. The following are equivalent

(1) T is formally smooth and B is of solid finite presentation over A.

(2) T is formally smooth and B is of solid finite presentation over mp.A as static rings.

(3) T is, locally in the analytic topology of B, a standard solid smooth A-algebra.

Furthermore, let A be nuclear over Ry, and f : A — B a morphism of the form B = A(Ty, ..., Ty)o/"(f1,. ..

with fi € mo(A(Th,...,Tq)n). Let D = R(X,, : n € N), then there is a map D — A and elements
gi € D(TY,...,T;) mapping to f; in A(Ty,...,Ty)g. In particular, f is the pushout of a morphism of solid
finite presentation over D. Moreover, if f is standard solid smooth (resp. étale) we can can take the g; to
define a standard solid smooth (resp. étale) algebra over D. Finally, let K be a non-archimedean field, then
a classical standard solid smooth algebra over K(X,, : n € N) is already derived. In particular, solid smooth
and étale maps of nuclear analytic K -algebras arise, locally in the analytic topology, as pushouts of classical
smooth and étale maps from sous-perfectoid rings.

In order to prove the theorem we need some standard preparations in commutative algebra.

Lemma 3.5.7. Let A € AﬁRinglj%D and let M be a finite projective connective A-module together with a
surjection @le Ae; — M (i.e. a surjection on my). Let E C {1,...,k}, there is a mazimal analytic open
subspace Ug C Spa(A) such that {e; : i € E} is a basis of M. Moreover, the open subsets Ug are Zariski
open and cover Spa(A).

Proof. Let Spa(A) — Spec(mo(A)(*)) be the natural map that sends a basic open Zariski Uy = {g #
0} to the analytic set Uy = J,enf|7"] < lg| # 0}. By [Sta22, Lemma 0000] there is an open cover
{UB" Yecqu,...ky of Spec(mo(A(*))) such that UZ™ is the locus where the map ;¢ mo(A)(x)e; — mo(M)(*)
is an isomorphism. This implies that over UZ™, the map 7 : @, A(x)e; — M (x) is an equivalence and the
same holds for @, A — M since both are discrete A-modules. By taking the analytification U C Spa(.A)
of UF" we get the lemma. O

Lemma 3.5.8. Let A be a static bounded Ro-algebra. Let B be a solid finitely presented A-algebra as static
rings. Suppose we have a presentation B = wo(A(Ty, ..., Ty)o)/I with I finitely generated and I1/I* a free
B-module. Then B has a (non-derived) presentation of the form B = mo(A{S1,...,S)a)/(f1,-., fc) such
that (fi,...,f)/(f1,..., fo)? is a free B-module with basis (f1,..., fe).

Proof. This is [Sta22, Lemma 07CF], we will see that the same proof can be adapted in this setting. Let
fi,..., fo € I(*) be such that they form a basis of I/I?. By Nakayama’s lemma there is g € 1 + I(*) such
that g-I C (f1,..., f.): this holds for the underlying ring wo(A(TY,...,T,,)o(*)), but I and I? are finitely
generated, then by taking the non-derived tensor mo(A(T1, ..., Ta) ® a(ry,... 7,y (+) —) the same holds for the
condensed ideal I. Then, I [%] is generated by fi,..., f. and we can write

B = mo(A(Ty, ..., Tu)olTos1])/(f1s -+ fer 9Tns1 — 1).
where the ideal J = (f1,..., fe,gTny1 — 1) satisfies that {f1,..., fe,gT,, — 1} is a basis for J/J2. On the

other hand, g maps to 1 in B and we can localize at the open {|g| > 1}. We obtain a presentation

B =mo(A(T, ..., Ty, Tnt1)o) /(frs- s fo, gTns1 — 1)
with kernel J' satisfying J'/J” = J/.J? ®@zim,z) Z[T)g = J/J?, where the solidification is with respect to
T = g~'. This proves the lemma. O

7fd)
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Lemma 3.5.9. Let A — B be a map of static bounded affinoid Rg-algebras and let I C B be a finitely
generated ideal. Set B = B/I""Y. The map Q%/A — Q%,/A induces an isomorphism of non-derived tensors

70(p/4 ®5 B/I™) = mo(Qpr ) 4 @5 B/TT).

Proof. By [Sta22 Lemma 02HQ| we know that this is true for the differentials of the underline condensed
rings. The lemma follows by taking the analytification with respect to B. O

Lemma 3.5.10. Let A — B be a morphism of static bounded affinoid Rg-algebras that is of solid finite
presentation as static rings. Let P = mo(A(Ty,...,Ty)n) and write B = wo(A{T1,...,Tn)n)/I with I a
finitely generated ideal. Then the sequence

0= 1/I = Qp), ©p B— Qg4 — 0. (3.4)
1s exact and split if and only if A — B is formally smooth when restricted to static analytic rings.

Proof. This is the analogue of [Sta22l Lemma 031I], let us see that the same argument works. First, by
invariance of analytic ring structures under nilpotent thickenings [CS20, Proposition 12.23], and the fact
that A(Ty,...,Ty)o = A[T1,...,Ty)o, it is clear that the Tate ring A(T7y, ..., Ty)g is formally smooth over
A. Thus, one can easily check that B is formally smooth over A (as static rings) if and only if there is a
section of algebras B — P/I.

Now, if B is formally smooth we can find a split as above, this provides a section of the map Q}) /A QpB —

Q}S /A and by applying [Sta22], Lemma 02HP| one gets that the sequence (B.4]) is also exact (this argument

uses Lemma [3.5.9). Conversely, suppose that the above sequence is exact and split. We want to construct
a section of P/I? — B. Let o : Q%s/A — Q}D/A ®p B be a section, and let us take a; € I such that

da; = dT; — o(dT}) € Q}D/A ®p B. Consider the map f : P — P/I? sending T; to T; — a;. We claim that
f factors through B providing the desired split. Since I is finitely generated, it is enough to show that for

any b € I we have f(b) = 0. By exactness of the sequence it suffices to show that d(b(T; — a;)) = 0, but we

have that
k k
AT — ) = (b~ D (oyar) = S (S o (dT7) = () = 0.
7 1 7

i=1 =

O

Lemma 3.5.11 (|Sta22] Lemma 00TA]). Let A — B be a solid smooth morphism of bounded affinoid rings.
Then there is a finite analytic affinoid cover {Spal3;}; of SpalBB such that the composite map A — B; is
standard solid smooth.

Proof. Let us write mo(B) = mo(A(T1, ..., Tn)0)/(f1,- -, fx), and T = (f1,..., fx). Since A — B is formally
smooth, the morphism m(A) — 7o(B) is formally smooth as static rings. By Lemma B.5.10l we have a split
short exact sequence (3.4). In particular, I/I? is a projective mo(B)-module. By Lemma [3.5.7 we can find
a finite analytic Zariski cover of Spa B of the form {Uy} e, (5) such that the module I/1 2 restricted to Uy
is free. Taking an open cover by affinoids {|7"| < g # 0} we find that

7.‘.77/

WO(B(?)) = 7T0(A<T17 cee 7Tn7Tn+1>D)/(f17 s 7fkngTL+1 - 7Tn)

is a presentation with kernel J such that J/J? = mo(I/I* @5 B(%)) @ (dT41 — 71")770(8(”—;)) is a free

WO(B(%))—module. Thus without loss of generality we can assume that I/I? is free. Then by Lemma [3.5.8]
we have a presentation

mo(B) = mo(A(Th, ..., Tn)n)/(f1,--, fe)
such that the elements fi,...,f. form a basis of (fi,...,f.)/(f1,...,f.)?>. By arguing as in [Sta22|
Lemma 00TA| we can find a Zariski cover of the form {Uy}, such that the composition I /1% — @, mo(B)dT; —
@D;_, mo(B)dT; is an isomorphism (after reordering the variables for each open Ugy). Thus, we find covers

of the form N
vww%»=mmmywnﬂmmwmywﬁgmﬂ—w>
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Reordering the variables, we get a standard solid smooth presentation of mo (B (%n)) as static rings. Thus, we
can assume that the map mo(A) — mo(B) is standard solid smooth as static rings: mo(B) = mo(A(T1, ..., Tn)n)/(f1,---, [
with det(g—%)lgi,jgc invertible in m(B). Consider B’ = A(T1,...,T)a/"(f1,..., f.). We can lift the ele-

ments T; € B to a map of rings A[T7,...,T,] — B that can be completed to A(T1,...,T,)n. Moreover, the
elements f; are mapped to 0 in 7y(B) so that this map extends to a morphism of analytic rings B’ — B
which is an isomorphism on mp. On the other hand, it is clear that the cotangent complex of Ly, 4 is free
and generated by d1.y1,...,dT,. Thus, the morphism of cotangent complexes

Lpja®p B—Lpg/a

is a surjective morphism of projective B-modules that is an isomorphism on 7, then it must be an isomor-
phism. One gets that Lg/z = 0 and by Corollary B.4.8 we must have an equivalence B’ = B. O

Corollary 3.5.12. A morphism of bounded affinoid rings A — B is solid smooth if and only if locally on
the analytic topology of B it factors as a composition A — A(T1,...,Ts)g — B where the second arrow is
standard solid étale.

Proof. Suppose f : A — Bis solid smooth. By LemmaB.5.11] locally on B we can write B = A(Ty, ..., Tp)o/"(f1,..., fe)
as a standard solid smooth map. It is clear that A(T,.11,...,T,)o — B is standard solid étale.
Conversely, suppose that f is, locally in the analytic topology, standard solid smooth. Since rational
localizations are standard solid étale maps, it suffices to show that standard solid smooth (resp. étale)
morphisms is formally smooth (resp. formally étale). By invariance of analytic ring structure under
nilpotent thickenings, one is even reduced to show that standard solid étale morphisms are formally étale.
But the standard computation of the cotangent complex (using Ly /z = Z|T)dT) shows that if f is
standard solid étale then Ly, 4 = 0 proving that it is formally étale. O

Lemma 3.5.13. Let (K,K*) be a non-archimedean field, X = Spa(A, AT) an affinoid sous-perfectoid
space over (K, K%) and B = A(Ty,...,T,)/(f1,---, fn) a (non-derived) standard solid étale extension of
A. Then the sequence (fi,..., fn) is reqular, i.e. the natural map of condensed anima

KOS(A(Tl,...,Tn>;f1,...,fn) — B (3.5)
s an equivalence.

Proof. By the open mapping theorem it suffices to show that (3.5]) is an equivalence for the underlying sets.
Without loss of generality we can take fi,..., f, € AT(T1,...T,), then we have to prove that the 7; of the
Koszul complex

Kos(A™{(Ty,....T); f1,-- s fn) (3.6)

have bounded torsion for ¢ > 0. Since A is sous-perfectoid, and the terms of the Koszul complex are free
Banach AT-modules, we can assume that it is a perfectoid ring. Moreover, the Koszul complex (3.6)) is
m-adically complete, so by v-descent we can even assume that A is totally disconnected. Since solid almost
m-adically complete modules glue in the analytic topology of X (cf. [Man22bl), it suffices to prove the claim
locally on X.

Let 2 € Spa(A, A™) be a point with residue field (k(x), k(x)"). Then B®4k(x) is a finite étale extension
of k(x), so a finite product of k(x)’s since it is algebraically closed. Thus, since Spa(k(z),r(z)T) =
T&lerC X U, there is an open neighbourhood z € U, such that B®4 €'(U) is just a finite product of copies
of A. Then, after localizing B, we can assume that it is equal to [[, A. In this case, there are almost
idempotent elements eq,...,es € BT corresponding to the projections on each component of the product,
and the localization B (e%) = B(T)/(T — e;) corresponds to taking the i-th component. Therefore, we can
even assume that B = A, in this case the Koszul-regularity follows from [FS21, Lemma IV .4.16]. U

Lemma 3.5.14. Let A be a nuclear bounded Ro-algebra. Let B be a solid finitely presented algebra over
A of the form A(Ty,...,Ta)a/"(f1, -, fr) with f; € mo(A(TY,...,Ty)n). Let C = R(X,, : n € N) be
the Tate algebra over R in countably many variables. Then there is a map (C,R")g — A and elements
15,9k € C{T1, ..., Ty) mapping to fi,..., fr. In particular, we have an equivalence

B=C(Ty,....T))o/ (g1, 9k) ®c,r)y A-
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Proof. Write mo(A) as a quotient of compact projective generators
@ RD —) 7T0 )

Since A is nuclear, we have a surjection

@RD | @Ry R(Th, ..., Ty) — mo(A(Th, ..., Ty)).

Let f1,..., frx € mo(A(Th,... ,Td>), by taking finite disjoint unions of the S;’s if necessary, we can find a

profinite set S and a lift f; € Ro[S|(T1,...,Ty) of the f;. Then, we can find a quasi-finitely generated
subalgebra £ C RT and a quasi-finitely generated E-module M C R such that

fi € Mo[S|(Th, ..., Ty)
for all i (cf. [And21} §3.1]). We can write f; = Y cne T 00T with ro — 00 as |a| — oo and the a;q

converging to 0 in Mp[S]. Let NSY(R) = R*[[Ty,... ,T4)][2] be the space of null-d-sequences of Rg, i.e.
NS%(Ry) = Ra[N? U {00}]/(c0). Then, we have a map

k
P NS (Ra) — Ro[S]
i=1
defined by the d null-sequences (a;),ene for i =1,..., k. Since A is bounded, by multiplying the nullse-
quences by a power of m we can assume that the composition | |, NU {oo} — @le NS%(Ry) — Ro[S] — A
lands in .A°. Thus, by definition of A, it lifts to a morphism of algebras

k
R = Q) Ro(N[N? U oq]) /(00) — A.

Let C = R(X;,:1<i<d, acN%, wecan take the composite map
C—-R—-A

mapping X; o to a;q. Then letting g; = > 7 X oL € C(T1,...,Ty), we see that g; maps to f; as
wanted. O

Remark 3.5.15. If A admits a surjection from a nuclear Rg-algebra then the conclusion of Lemma B.5.14]
holds. Indeed, one can lift a finitely presented algebra of A to the nuclear algebra and then apply the
lemma.

Proof of Theorem [3.5.8. The equivalences between (1)-(3) follow from Lemma B.5.11] and Corollary [3
The second statement for nuclear affinoid rings follows from Lemmas [3.5.13] and B.5.141 D

Corollary 3.5.16 ([Lur04, Corollary 3.4.10]). Let T : A — B be a morphism of bounded affinoid rings.
The following are equivalent

(1) T is formally étale and of solid finite presentation.
(2) T is formally étale and mo(B) is of solid finite presentation as static rings over mo(A).
(3) T is, locally on the analytic topology of B, a standard solid étale map over A.

3.6. Derived rigid geometry. In this section we study properties of solid smooth and étale morphisms
of derived Tate adic spaces. We will show that these morphisms are cohomologically smooth and étale
respectively, for the solid quasi-coherent six functor formalism. Finally, following [CS22|, we give a proof of
Serre duality for solid smooth maps, by identifying the dualizing sheaf f'1 with the canonical line bundle.

3.6.1. Zariski closed immersions. Let us begin with a brief discussion of Zariski closed immersions and
affinoid morphisms.

Definition 3.6.1. (1) Let f: X — Y be a morphism of derived Tate adic spaces. We say that f is
affinoid for the analytic topology if there is an open affinoid cover {U;}; of Y such that V; = X xy U;
is an affinoid analytic ring. We say that f is strictly affinoid if in addition V; has the induced analytic
structure from Uj.
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(2) Let f : X — Y be a morphism of derived Tate adic spaces. We say that f is a Zariski closed
tmmersion for the analytic topology if it is strictly affinoid, and we can find a cover as before such
that the map of animated condensed rings €'(U;) — €(V;) is surjective on m.

(3) More generally, let f : X — Y be a map of Tate stacks, we say that f is affinoid (resp. strictly
affinoid, resp. Zariski closed immersion) in the Z-topology, if f is of the form AnSpec B — AnSpec.A
(resp. AnSpecB4, — AnSpec A, resp. surjective on mp) locally in the Z-topology of Y. We say
that Ox is an analytic Oy-algebra and that X = AnSpecy Ox is the relative analytic spectrum of
Ox over Y.

Lemma 3.6.2. Let A — B be a morphism of bounded affinoid rings. Suppose that the following hold:

o A — B has the induced analytic structure and is surjective on m.
e B is a retract of an algebra of the form A(T)a/™(f1,. .., f1) for fi € mo(A(T)n).

Then B is a dualizable A-module.

Proof. By hypothesis B is a retract of an algebra of the form C := A(T")5/"(f;) for some finite set of variables
{T'} and a finite sequence (f;); in mo(A). We can even assume that 7y(B) = mo(C) by killing additional
elements. Then, it suffices to show that C is a dualizable A-module, and we can take B = C. Let a; € A be
a lift of the variables T;, since A is bounded there is some k > 0 such that the map A[T;] — A sending T; to
a; extends to A(r*T)5 — A. By Lemma 27, it suffices to prove that B is dualizable locally in the open
topology of the locale S(.A). Actually, we will show that B is dualizable locally in the topology of the locale
Spal A of Definition By Proposition 22719 we have a closed immersion Spal B — Spal A, let U be
the open complement. Let V be the open subspace of Spal A that corresponds to the open localization
A = A® gzr)y A(T)o. Then V contains Spal B and we have that V UU = Spal A. The localization of B

at U is zero by construction. On the other hand, the localization at V of Spal A is defined by an analytic
ring A’ such that we have a commutative diagram

A —— B

1~

Ao
Since B is an A’-module, we also have that
B=Boa A =A(T)a/"(fi)
Let ¢; be the image of f; in mo(A'(T)), then we have a retraction
B=A(T)o/"(f)) » A'/H(e;) = B
proving that B is a perfect A’-complex, so dualizable. O

Remark 3.6.3. The proof of Lemma shows that B is actually a perfect complex locally in the topology
of Spal (A). However, this does not necessarily imply that it is a perfect complex over A, only a dualizable
sheaf. If the ring A is Fredholm (cf. [CS22] Definition 9.7]) then any dualizable .A-module is perfect so B
would be perfect as well.

Remark 3.6.4. We do not know how to prove that if X — Y is an affinoid (resp. strictly affinoid) map of
derived Tate adic spaces such that Y is affinoid, then X is affinoid. One of the main obstacles is that it is
not clear (and probably unlikely) whether the category of animated algebras over an analytic ring satisfy
analytic descent. Similarly, if f is a Zariski closed immersion, even if we assume that both X and Y are
affinoids, we do not know if the map on g is surjective (the problem here is the lack of flatness for rational
localizations).

Example 3.6.5. The hypothesis that B is a retract of an algebra of finite presentation obtained by killing
some 0-cells of a solid Tate algebra is actually necessary. For example, Z — Symy(Z[2]) is a Zariski closed
immersion but Sym3(Z[2]) is not a perfect Z-algebra since Sym?7(Z[2]) = (I'}Z)[2n] = Z[2n].
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3.6.2. Solid étale and smooth maps.

Definition 3.6.6. Let f : X — Y be a morphism of derived Tate adic spaces over A. We define the
following notions for f.

(1) f is locally of (local) solid finite presentation if locally in the analytic topology of X and Y, it is a
morphism of (local) solid finite presentation of bounded affinoid algebras. We say that it is of (local)
solid finite presentation if it is locally of finite presentation and qcgs for the analytic topology (cf.

Definition B.3.3]).
(2) f is solid smooth (resp. étale) if it is, locally in the analytic topology of X and Y, a solid smooth
(resp. étale) morphism of bounded affinoid algebras.

In order to relate Zariski closed immerions of solid finite presentation with conormal cones we need the
following lemmas.

Lemma 3.6.7. Let A — B be a map of animated commutative rings that is surjective in mg. Then
B ®a B = SymIBILB/A.

Proof. By [Mao21l, Theorem 2.23| the surjection A — B can be viewed as an animated pair I — A where
I = [A — B is the fiber. Then, since all the formulas commute with sifted colimits, one is reduced to prove
the lemma for a animated pair of the form (Y) — Z[X,Y] with Y and X sets of variables. The lemma
follows by taking the Koszul resolution. O

Lemma 3.6.8. Let B — C be a morphism of solid affinoid rings of the form C = B[T|o/"(f;) with f; €
mo(B[T]g). Then C is a perfect C ®@g C-module.

Proof. We have that
C @ C = BIL, Slo/™(£:(T), £i(5)),
and the multiplication map C ® C — C factors through
BIT. Slo/"(f:(T), fi(8),T; ~ i) = C.
But we have that
BIT, S)o/"(fi(T), fi(8), T; — 8;) = BITln/"(fi,0;) = C/*(0y),
proving that C is a perfect complex over C ® 4 C (here we use that the 0’s in the derived quotient are in
degree 0, so that it is indeed a perfect complex being represeted by a Koszul complex). O

Proposition 3.6.9. Let X and Y be derived Tate adic spaces over A and let f : X —'Y be a Zariski closed
immersion of solid finite presentation with Ox a perfect Oy -module locally in the analytic topology of Y .
The following hold
(1) 1x is f-smooth with dual given by Hom,, (Ox,Oy).
(2) If/\/)v(/y = Lx/y[—1] is locally free, then fl1y = (/\dNX/y)[—d] where Ny is the Ox-dual of
N)\é/y, and d is the locally constant rank of NX/Y' In particular f is cohomologically smooth.

Proof. (1) By hypothesis, @x is a dualizable Oy-module, we also have a natural identification f' =
Homg,, (Ox,—). Thus, the f-smooth dual of Oy is Homg, (Ox,Oy) which is a dualizable Oy-
complex. This implies that the formation of f' and D #(1x) commutes with any base change Y' — Y,
by Proposition B.I.11] (1) one deduces that 1x is f-smooth.

(2) To prove part (2) it suffices to show that f'ly = (/\dNX/y)[—d]. As Ox is a perfect Oy-module
locally in the analytic topology, the ideal I = [0y — O] is discrete relative to Oy locally in
the analytic topology, and by Lemma B.6.7 the space X xy X is given by the relative analytic
spectrum over Y of the (locally in the analytic topology) animated algebra &z := Sym§, N7 Iy 1] =

EB?:O N Ny sy li]. Consider the diagram

X 20 Xxy X 24 X

W
x 1 Ly
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We find that f'ly = A*W’ff!ly = A*ﬂ'élx. But then

7T!21X = Homﬁx(ﬁz, ﬁx)
d 1
=D AN
=0

d
= 07 6, [\ Nxyy[—d

which shows that f'ly = A*(07 R4, /\de/y[—d]) = /\dNX/y[—d] as wanted.
(]

Corollary 3.6.10. Let S be a derived adic space over A, let X and Y be solid smooth derived Tate adic
spaces over S and f : X — Y a Zariski closed immersion with Ox a perfect Oy -complex locally in the
analytic topology of Y. Then N)V(/Y = Ly y[—1] is a locally free sheaf over X for the analytic topology. In

particular, f is cohomologically smooth.

Proof. We prove that Ly,y[—1] is a locally free sheaf over X. For this, we can assume without loss of
generality that S, X and Y are affinoid with rings B, C and D respectively. Furthermore, by Theorem
[3.5.6], we can even assume that D is a standard solid smooth over B, so that Lp 3 is a free sheaf of constant
rank. We have a fiber sequence of cotangent complexes

]LC/D[_l] —C®p LD/B — LC/B i) .

Since both L¢ /s and C ®@p Lp p are free C-modules, and C ®@p Lp,z — L¢/p is surjective on mo, Le/p[—1]
is a projective C-module that is free locally in the analytic topology of X by Lemma B.5.7l The corollary
follows by Proposition [3.6.9 O

Our next goal is to prove Serre duality in derived rigid geometry following the methods of [CS22l Lecture
XIII]. First, we need to prove that solid smooth and étale maps are indeed cohomologically smooth and
étale.

Lemma 3.6.11. Let B — C be a standard solid étale map of bounded affinoid rings, then the multiplication
map C ®p C — C defines an analytic open immersion at the level of affinoid spaces.

Proof. By hypothesis we can write C = B(T1,...,Ty)/"(f1,..., f4) with det(g—{é)i,j a unit in C that we can

assume solid. Moreover, writing 7y(5) as a filtered colimit of quotients of bounded algebras generated by
extremally disconnected sets, we can assume that B = Ro(X)o(N[K]) with X a finite set of variables and
K a profinite set. Then C is of the form

C= R<£7 T17 e 7Td>D<N[K]>/L(f17 cee 7fd)'
Let g = det(g—{é)i,j, we can assume that f; € R™(X T1,...,T;)o(N[K]) for all 4, |g| < 1 and that |7"| < |g|

for some fixed n. We claim that the multiplication map

RUX Ty, TSt Sa)o(NED/MGA(T), o FalT), A(S), o S gt = B

is an isomorphism. By Corollary B.4.8] since the relative cotangent complex vanishes, it suffices to prove
that it is an isomorphism on 7. For this, let D = C(S;, Sgnjﬁ i=1,...,d)n, we want to show that the

ideals generated by (S; — T;)%_, and (f;(S))%, on C are the same. We have Taylor series expansions
f(8) = F(T+(S = 1) = 3 fUT)(S ~ 1)
aeNd

where fl°l is the a-th PD-derivative of f with respect to the variables T Indeed, as (S —T) is divisible
by 72" +1 the series converges by the explicit growth conditions of Example 2615l As f(T') = 0 in mo(C),
we have that

d
k:l



62 JUAN ESTEBAN RODRIGUEZ CAMARGO

where h;(S — T') has bounded coefficients in C and monomials of degree > 2. Let (b; j); ; be the inverse of
the matrix (07, fi)(T))i,j, then we can write

d
Si—Ti=) _bij(fi(S) = hi(S = T)). (3.7)
j=1
By hypothesis, [b; j| < [g7| < |7 ™|, so that |b; jh;| < 7™+ in C, this implies that Z;l:l b ; fi(S) is bounded
by 77! in C. Iterating the equation (B.7) one finds that
Si—Ti= > ciaf(S)* +hP(S—T)

1<|a|<2

where the ¢;, € C satisfy that |c;q| < |7l®/("+D] and hl(?)(S — T') has bounded coefficients in C with
monomials of degree > 4. An inductive hypothesis let us write

Si—Ti= > caf(S)* + 0P (s 1)

1<|a] <2k

where [ o| < |7l FD] and hgn)(S — T) has bounded coefficients in C with monomials of degree > 2%
Taking limits as k& — oo we get that S; — T; belong to the ideal generated by the f;(S) for all ¢ , which
finishes the proof. O

Lemma 3.6.12. The map of analytic rings f : Zo — Z[T|g is cohomologically smooth.

Proof. This is a consequence of [CS19, Theorem 8.1]. Consider the compactification Zg 2 (Z[T],Z)q ER
Z[T)o. Let us describe explicitly the shriek functors of f. Recall that (Z[T],Z)gy — Z[T)5 is the open local-
ization complement to the idempotent algebra Z((7~1)). Then, we have descriptions for M € Mod((Z[T],Z)x)

35" M = [Z[T] = Z((T~))] @zpry M and j.j*M = Homgr ([Z[T] — Z((T~1))], M),
notice that the fiber [Z[T] — Z((T~'))] is isomorphic to
ZI1]V[~1] = Homg(Z[T], Z)[~1] = Homy (Z[T), Z)[1]
as Z[T]-module. Therefore, the funtor f' is isomorphic to
f'N =~ Homy,(Z[T]", N)[1],

but Homy,(Z[T]V,—) = f*, namely Z[T]" is a compact projective Z-module, both functors commute with
limits and Homy(Z[T]",Z) = Z[T). In particular, one has that f'Z ~ Z[T][1]. Notice that the previous hold
for any base ring A with A a finitely generated Z-algebra. Now, take Y = AnSpecZ[T]5, X = AnSpecZg
and consider the cartesian square

X xy X 25 X

p2l lf

x 1 .y

Then, under the identification f'Z ~ Z[T][1], one has the natural map p}(Z[T][1]) — pbZ[T] is an equiv-
alence (both being equal to Z[T1,T»][1]). This implies that f is cohomologically smooth by Proposition
BIIT (1.b). O

Proposition 3.6.13. Let f : X — S be a solid smooth (resp. étale) morphism of derived Tate adic spaces
over A. Then f is cohomologically smooth (resp. étale).

Proof. First, by Lemma B.6.12] the map Zy — Z[T]g is cohomologically smooth. Since cohomologically
smooth maps are stable under composition and base change, this implies that any map A — A(T1,...,Ty)n
of bounded affinoid rings is cohomologically smooth. By Theorem B.5.6] any solid smooth map factors,
locally in the analytic topology, as a composite of a standard solid étale map and the projection of an
affinoid disc. Therefore, for the first assertion it suffices to see that a solid étale map is cohomologically
étale. Let us assume f solid étale, by Lemma [3.6.11] the diagonal A is an open embedding, so it is —1-
truncated and by Lemma [B.1.2]] it is cohomologically étale. Thus, by Definition B.1.18] it suffices to see
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that 1x is a f-smooth object. We can argue locally in the analytic topology of both X and S and assume
that both are affinoid. Then, we can find a Zariski closed embedding ¢ : X — § X ]D‘}l% into some affinoid
disc over S such that Ox is a perfect & SxDd, -module. By Corollary [3.6.10] the map ¢ is cohomologically

smooth, as § x ]DC}% — S is cohomologically smooth one deduces that X — S is cohomologically smooth
which in particular implies that 1x is f-smooth as wanted.
O

A first application of the previous proposition are some classical facts about étale maps

Proposition 3.6.14. Let S = AnSpec A be a bounded affinoid space and let X = AnSpecC and ¥ =
AnSpec B be bounded affinoid spaces whose rings of functions are given by B = A(T)/“(f;) and C =
AT J2(gi) with fi € mo(A(T)) and g; € mo(A(T")). Suppose that we have maps f : X — Y over S. The
following hold

(1) f is of local solid finite presentation, i.e. a retract of a morphism of solid finite presentation.

(2) If X and Y are solid étale over S then f is solid étale.

(3) If f is solid étale and a Zariski closed embedding with Ox a perfect Oy -module, then it is a rational
open subspace associated to an open and closed subspace of |Y|.

Proof. (1) The algebra C is a retract of B(T")r/"(g;), this shows that it is of local solid finite presentation
over B.

(2) By (1) we know that f is of local solid finite presentation. On the other hand, since X and Y are
étale over S, the fiber sequence of cotangent complexes shows that Lx/y = 0, so that f is formally
étale. One deduces that f is solid étale by Corollary

(3) By Proposition B.6.9] and Lemma [B.6.7] one deduces that X xy X = X, which implies that f is
—1-truncated so an immersion. Since X has the induced analytic structure from Y, one deduces
that Ox ®p, Ox = Ox is an idempotent Oy-algebra, and that X defines a closed subspace in the
locale of Modg(Y). Since f is étale and a closed immersion, one has that f' = f* and fi = f,,
which by Proposition 2.2.4] implies that f also defines an open embedding in the locale. Let C be
the open and closed complement of @y in the locale of Modg(Y'), then we have that 0y = Ox & C
as Eo.-algebras. In particular, C is a locally connective E.-algebra in the analytic topology of Y.

Note that the notion of being a bounded affinoid algebra only depends on 7, in particular it is
also a well defined notion for connective analytic E,-algebras over Rg. In particular, Proposition
2.6.160also holds for C. Now, let I = [0y — Ox] be the ideal defining X, by hypothesis [ is a perfect
Oy-module, so its m is a module generated by its global sections at the point, and by Proposition
the idempotent @y-algebra Oy {I}! is associated to the closed subspace |X| C |Y|. But we
have I 2 C, so D = Oy {I} ®gy C is equal to its f-nil-radical which implies that it is 0 as 7' — 1 is
invertible in R{T}' and the map R[T] — D mapping T to 1 extends to the overconvergent power
series. The previous reasoning shows that in fact

Ox = Oy {I}1.
Now, since Ox is Oy-perfect, one has that Ox = ﬁy(%ﬁg for some n >> 0, and X defines both

an open and a closed subspace arising from the underlying space |Y|.
O

3.6.3. Serre duality. We want to prove the following theorem.

Theorem 3.6.15 (Serre duality). Let f: X — S be a solid smooth morphism of derived Tate adic spaces.
Then f is cohomologically smooth and there is a natural identification f'lg = ng/s[d], where d is the locally

constant relative dimension of f, and Q?{/s = /\d Lx/s is the determinant of the (locally free) cotangent

comple.

We have already proved the first part of the theorem in Proposition B.6.13] the rest of the proof will
follow the same steps of [CS22, Theorem 13.6] using the deformation to the normal cone.

Remark 3.6.16. Note that, if A — B of a morphism solid finite presentation which is surjective on 7y and
such that B is a perfect A-module, the ideal I = [A — B] is a discrete A-module, i.e. it arises as base



64 JUAN ESTEBAN RODRIGUEZ CAMARGO

change from an ideal of the animated ring A(x). Therefore, [CS22] Construction 13.4| of deformation to
the normal cone applies in our setting, by taking base change of the construction at the level of underlying
discrete rings and taking analytifications as derived Tate adic spaces, see Definition The result is
amap Y — Y = AnSpec A locally of solid finite presentation. More generally, if X — Y is a Zariski
closed immersion of solid finite presentation with 0y a perfect Ox-module in the analytic topology, then
the deformation to the normal cone glues to a morphism locally of solid finite presentation

X=XxP' -Y = X xP.
In addition, this construction only requires X — Y to be a Zariski closed immersion locally in the analytic
topology on Y, namely, taking U C Y such that X — U is Zariski closed, one can glue U and Y\ X along
the complement of the exceptional divisor.
On the other hand, for B a solid smooth A-algebra, by Lemma B.6.8] we know that the multiplication

map B ®4 B — B realizes BB as a perfect B ® 4 B-module, allowing the construction of the deformation of
the normal cone for any diagonal embedding A : X — X xg X for any solid smooth map X — S .

Proof of Theorem[36.13. Let f: X — S be a solid smooth morphism of derived Tate adic spaces, consider
the diagonal map Ay : X — X xg X =:Y, and let 7; : X xg X — X denote the projection maps. By
Lemma [B:6.11] the map Ay is a locally Zariski closed immersion such that € is a perfect Op-complex for
some open neighbourhood U C X xg X containing A¢(X). By smooth base change, we have a natural
isomorphism

fllg = Ajrif'ls = Ajmylx.
Therefore, it suffices to prove the statement for the projection ms : X xg X — X, or more generally, that
when we have a section s : S — X such that Og is a perfect complex in an open subspace U C X for
the analytic topology, there is a natural equivalence S*Q§< /s [d] = s*f'1g. Consider the deformation to the
normal cone of s o

fiX—>8=8xP

together with the section s : S — X. Over P'\{0} the section 3 is isomorphic to the base change of S — X,
and the fiber at 0 is the zero section of the analytification of the normal cone of s (see Definition and
Construction [4.3.9]).

The pullback functor 7* : Modn(S) — Mody(PY) is fully faithful. Indeed, the map 7 : P — S is
weakly cohomologically proper being the base change of ]P’% — AnSpecZg, and this last being the glueing
of AnSpec(Z[T),Z)s and AnSpec(Z[T~!],Z)s along the torus AnSpec(Z[T*],Z)s. Thus, by projection
formula and proper base change it suffices to show that W*l% = Z which is classical. We make the
following claim:

Claim. The sheaf 5* f' 05(d) belongs to the essential image of 7*, where 03(d) is the d-th Serre twist of
S =P},

Suppose this holds true, and let ¢o : S — ]P’ls and (o : S — IP% the 0 and oo-sections. Then we have
natural isomorphisms
-

s f'1s 2 L F FO5(d) = 35 [ O5(d) = ip'ls (3.8)

where p : V' ;r; g — S is the (analytic) normal cone of s and 7g : S — N fg} g is the zero section.

Proof of the Claim. The formation X is local on S and the section s : § — X , thus, by taking rational
covers, we can assume that S = AnSpec. A and that X = AnSpec B is standard solid étale over S. Write
B=AT,... Toe)o/"(f1,..., f.) with g = det(%)lgmgc invertible. The last d coordinates produce a
standard solid étale map ’

g: X — ]D)ds.

Thus, the composite s’ =gos: S — ]Dfé produces a section. Consider the cartesian square

S —— 8

N

X —2- Dé,
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Then, the section S — X produces a retract S — S’ which is necessarily a Zariski closed immersion, and by
Proposition B.6.14] (3), it is actually a closed and open immersion associated to a closed and open subspace
of the underlying adic space. Summarizing, we have the diagram

X 2 D¢

f
/ Tsu st/
S —— 9 S
where the square is cartesian and r is an open and closed immersion. Writting S’ = S U S”, and replacing
X with a neighbourhood of s” of the form X; LI X5 such that X; Ns”(S") =5 and Xy N s”(S") = 5", we

can assume that S = 5’
We have a diagram of deformations to normal cone

where the middle square is cartesian. Indeed, this follows from [CS22l, Proposition 13.3] (see also [Mao21]
Corollary 3.54]) since for a surjection A — B with kernel I = [A — B], the I[-adic filtration (I"),en is
compatible with base change along A. In particular, § is solid étale and §' = §*. Therefore, we find natural
equivalences of functors

fswk}ﬂ :""*""*""' ~

*

sgp =5"p,
this reduces the claim to the case of a disc X = D‘é. By a change of coordinates, we can even assume that
the section s : § — ]Dfé is given by the zero section. Thus, by base change we can further reduce to the
algebraic statement of A} = SpecZ[T, ..., T;] with the zero section, where this is classical and follows by
an explicit computation. O

Let p: NX/S — S be the normal cone of the section s, and 79 : S — NX/S — 5. To end the proof we
need to show that there is a natural equivalence
op'ls = 5"Q% gld].

It suffices to show more generally that for a vector bundle £ of rank d over S, with analytic geometric
realization ¢ : £2" — S and zero section ¢ : .S — £2", there is a natural equivalence

d
gl = /\c‘,’v [d].

The functor mapping [£ — S] to t*¢'15[—d] defines a map */GLy — G, of stacks. Equivalently, it defines
a line bundle over */GLy seen as a stack in the analytic topology of Afflj%m. Thus, to identify this object

it suffices to compute it for the standard vector bundle of rank d over x/GL, this is proven independently
in Proposition E3.T11 O

We finish this section by describing the smooth objects of solid smooth maps for the six functors of solid
quasi-coherent sheaves.

Proposition 3.6.17. Let f: X — Y be a solid smooth morphism of derived adic spaces over A. Then an
object P € Modn(X) is f-smooth if and only if it is dualizable.
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Proof. Suppose that f is solid smooth, and let P € Modn(X). Being f-smooth is a local property in the
analytic topology, we can then assume that both X and Y are affinoids. Consider the diagram

X 25 Xxy X 2, X

lm if
x L vy

By Proposition B.6.9] A is cohomologically smooth, then P = A*x}P is id x-smooth which is the same as
dualizable. Conversely, let P be dualizable. We then have that Df(P) = Homy (P, f'ly) = f'ly ® PV is
dualizable and that the natural map

7 Dy(P) @ w3 P — Homy | x (7} P, m5P)
is an isomorphism, then P is f-smooth by Proposition B.1.24] (1.b). O

3.7. Formally overconvergent étale and smooth maps. In this final section we introduce two new
deformation properties that will play a fundamental role in the definition of the analytic de Rham stack.

Definition 3.7.1. Let A € Affl}’%u, a t-nilpotent ideal of A is a full sub A-module I C A contained in
NilT(A).

Definition 3.7.2. Let T : F — F’ be a natural transformation of functors F, F’ : Affl}’%u — Ani. We say
that T is t-formally smooth (resp. T-formally étale) if it is formally smooth (resp. formally étale) and for
all A € Affl}’%u, and all T-nilpotent ideal I of A, the natural map of anima

F(A) = F(A/T) X Friasm F'(A)
is surjective (resp. an equivalence).

Remark 3.7.3. Since the underlying ring of A/I sits in degree 0, to check that a formally smooth (resp.
étale) functor 7' : F — F' is {-formally smooth (resp. étale) it is enough to take A an static bounded
affinoid ring.

Proposition 3.7.4. (1) A composition of T-formally smooth morphisms is T-formally smooth.
(2) If {Fi = Flicr is a cofiltered diagram of t-formally smooth functors with each arrow F; — F;j
formally étale, then F' = gnl Fi — F is T-formally smooth.
(3) A pullback of t-formally smooth maps is f-formally smooth.
Similar statements hold for T-formally étale.

Proof. Parts (1) and (3) are proved in the same way as for formally smooth maps. For part (2), note
that since the transition maps of the cofiltered limit are formally étale, the cotangent complex Ly, 7, /7

is still the dual of a connective perfect complex. It is also clear that the map l'mi Fi; — F is nilcomplete
and infinitesimally cohesive since limits commute with limits. The f-formally smooth condition also passes
through the limit. O

The main reason to define these overconvergent deformation properties is that they hold for solid smooth
and étale maps.

Proposition 3.7.5. A solid étale morphism of bounded affinoid rings is t-formally étale. A solid smooth
morphism of affinoid rings is T-formal smooth locally in the analytic topology. Moreover, a standard solid
smooth morphism of bounded affinoid rings is t-formally smooth.

Proof. We can assume without loss of generality that A — B is standard solid smooth or standard solid
étale, namely, rational localizations are also written as composite of standard solid étale maps. First, let us
show that A — A(T')q is t-formally smooth, it suffices to prove that Ry — R(T)g is t-formally smooth, but
this follows from Proposition (1) and the fact that R[T] is a projective animated R-algebra. Indeed,
if I C Ais a f-nilpotent ideal, then (A/I)T~r4 = AT=r°d and a map Z[T] — A extends to Z[Ty if and only
if it does for A/I.

We are left to show that a standard solid étale morphism of bounded algebras is {-formally étale.
By writing mp(A) as a sifted colimit of quotients of algebras of the form R(X)n(N[S]), we can assume
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that A = R(X1,...,Xs)n(N[S]) for S a profinite set and a finite set of variables X;, and that B =
ATy, .. Ty) /M (f1,. .., fq) with a = det(g%;) a unit. We can also assume that all the f; are of norm < 1
and that |7*| < |a| < 1 for some k > 0. By Lemma B.6.11] the map AnSpec B — AnSpec A is O-truncated,

then we only need to prove the existence and uniqueness of lifts at the level of points. Let D be a bounded
affinoid ring and I C D a t-nilpotent ideal, consider a solid commutative diagram

A—— B

/
.
.
I

D D/I.

We want to see that there is a unique dashed arrow B — D making the diagram commutative. By
Proposition EZ6.16] we can find a lift F : A(Ty, ..., Ty)o — D such that f;(T) € I C Nil'(D). Therefore, the
map F extends to a map
ATy, Ta)alSu,- . Sa} /4 (fi = Si) = D.

By Lemma down below, we have an equivalence of A{S1,...,Sy}-algebras

ATy, . T)e{S, .., Su /M (fi — Si) = B{Sy,..., 54}
which shows that there is a lift B — D over D/I. Suppose we have two lifts fi, fo : B — D/I. Then they
extend to a map B®4 B — D, write

f :B XA B = A<T17 cee 7Td7 Sla SRR Sd>EI/(fZ(T)7 fl(s))7
then the differences T; — .S; are sent to I, and the map f factors through the overconvergent diagonal

B @ B{T; — S;}' — D,

but the proof of Lemma B.6.11] implies that B ®4 B{T; — S;}! = B proving the uniqueness. O

The following lemma was used in the previous proposition.

Lemma 3.7.6. Let A be a bounded affinoid ring, D = A(Ty,...,Ty)g a solid Tate algebra over A in d-
variables, and B = D/™(f1,...,f4) a standard solid étale algebra over A. Let C = D{f; :i =1,...,d}}
denote the idempotent algebra associated to the closed subspace SpalB C SpaD, i,e, the base change

C=D ®RD[S1,...,Sd} R{Sl7 v 7Sd}T
mapping Sq — fq. Then there is an isomorphism of A{S1,...,Sq}-algebras
B{S1,...,Sq4} =C.

Proof. By writting mo(A) as a sifted colimit of quotients of algebras of the form R(X)n(N[K]) for finite set
of variables X and profinite sets K, we can assume without loss of generality that A = R(X)5(N[K]),

that the f; have norm < 1 and that g = det(g—%)lgi,jgd satisfies |7%| < |g| < 1 for some k& > 0.
Let A = RY{X)o(NIK]), D° = ANTy,...,Ty)p and BY = DO/Y(f1,...,fq). For n > 0 let C) =
DO(%, cey %)/L(fi(T) —S;) and set D,, = DY[L]. The explicit Koszul resolution of the cotangent complex

Lo/ 40 shows that multiplication by 7% is homotopic to 0. On the other hand, for n > 2k + 1 the map

DO — (32/%"

factors trough B — C%/L7", namely, S; = i

2t vanishes in the quotient. By lemma B.77] down below
we have a lift B — C%, and by the uniqueness of lifts shown at the end of Proposition B.7.5] (which is
independent of the existence of a lift), we have a natural lift in generic fibers B — C independent of n.

Now, let us fix some n > 2k + 1 and a lift B° — C?, and for all m > n take B — C9 to be the composite of

BY — CY — CY . We can extend these maps to morphisms Bo(f—,}” e ﬂs—,;ﬂ — CY of A0<f—,}” . f—$>—algebras.
For m’ > m > n these algebras factor through
B25) s B - B
T T T

and

m

€h, = DL /H(AAT) — ) = €Oy
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Then, we have a map of AO[[%]]—algebras

Si Si
BI2L]) = DU[s ]/ (AAT) - 80, (39)
Both terms in ([3.9) are I = (f—,ﬁl)—complete, and their reduction modulo I is an equivalence, this implies
that ([B.9) is an equivalence. Taking generic fibers and colimits as m — oo one gets the lemma. O

The following lemma is substracted from the proof of [Sch15l Corollary 111.2.2].

Lemma 3.7.7 (Quantitative Hensel’s Lemma). Let A — B be a morphism of m-complete animated RY-
algebras such that there is some k > 1 such that multiplication by 7 on Lp/a is homotopic to 0. Let C be
a w-complete animated A-algebra, and suppose that we have a solid commutative diagram

A—— B

-

-
-
-
-
-
-
-
-

o< C L2kt
Then there is a dashed arrow as above making the diagram commudte.

Proof. It suffices to construct a sequence of compatible arrows B — C/“x" for all n > 0. Suppose that we
have the lift for n > 2k + 1, we will construct a lift for 2(n — k) > n + 1 over n — k. Consider the algebra

C' = C/"n* ") X g n-r CfET",

then the fiber C’ — C/Tz" is equivalent to C/“7"~* under the map ¢ = (7"7%,0) : C/Lr"~F — ("
Moreover, we have a commutative diagram

C/Lﬂ2nfk A C’

C/]Lﬂ.n—k i C/]Lﬂ.n—k

where A is the diagonal map. Let us write J = C/“7"~* for the square zero ideals of the algebras C’ and
C/En?=F over C'/“n™. Then, the map A induces a morphism

,n_k
mB(LB/Aa J) — MB(LB/Aa J)7

which is homotopic to zero as the multiplication by 7* is homotopic to zero on Ly /A by hypothesis. By
deformation theory, we deduce that the obstruction to lift B from C /"7 to C’ vanishes, but lifting from
C /=7 to C" is equivalent to lifting from C/L7"~* to C'/Ln2("=k) which proves the lemma. O

4. CARTIER DUALITY FOR VECTOR BUNDLES

After all the preliminaries in derived algebraic geometry, we are finally in shape of applying the theory
to more interesting objects. In this section we study Cartier duality for different incarnations of vector
bundles, following the spirit of [Lau96], but using the language of six-functor formalisms and the Lu-Zheng
category. In the next sections we shall apply these results to study different incarnations of the de Rham
stack.

4.1. Vector bundles and torsors. First, let us briefly introduce the category of vector bundles on solid
P-stacks.

Definition 4.1.1. Let C = Shg(Affz,) be the category of solid Z-stacks.

(1) Let X € C be a solid Z-stack, a vector bundle of rank d over X is a quasi-coherent sheaf .# ¢
Modn(X) that is free of rank d locally in the Z-topology of X.

(2) Let D — C be the co-cartesian fibration associated to the functor Modg : CP — CAlg(Priex). We
let BUNy¢ C D be the subcategory whose objects are pairs (X,.#) with .% € Modn(X) a vector
bundle of rank d, and morphisms (Y,¥) — (X,.%#) given by the space of connected components
(f: X =Y, f*G — F) such that f*G — F is an equivalence.
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Let GLg be the linear algebraic group of d x d invertible matrices over Z, and let x/GLy be its classifying
stack. By definition, */GL, is the object representing the moduli problem of GLg-torsors on Z-stacks.
Over %/GL, we have a vector bundle St associated to the standard left representation of GL4 on Ze. Let
C/[+/GL,) be the slice category of Z-stacks over */GLg, the vector bundle St induces a functor

F: (C/[*/GLd])Op — BUNd,C .
by taking pullbacks.
Proposition 4.1.2. The functor F' is an equivalence of categories over C°P.

Proof. Both (C/j/qL,))°" and BUNg ¢ are left fibrations over C°P, by [Lur09, Proposition 3.3.1.5] it suffices
to prove that the fibers over C°P are equivalent. Let X € C, we want to show that the natural functor

Fx : MapX(X, [X/GLd])Op — BUNd,X (4.1)

from maps f: X — X/GLy4 to rank d-vector bundles over X is an equivalence of anima. To see that Fx
is essentially surjective, note that for .# a vector bundle over X, the stack ISﬂX(ﬁSl{, Z) of isomorphisms
in the Z-topology is a GLg4|x-torsor over X, which is defined by some map f : X — [X/GLy] such that
f*St =.%#. To show that F' is fully faithful, notice that both terms in (£.I]) are Kan complexes, so it suffices
to show that for a map f : X — X/GLg, the anima of automorphisms of f is equivalent to the anima of
automorphisms of .# = f*St. It suffices to show that the natural map of stacks

Auty/gr, (X) = Autx (F) (4.2)

is an equivalence. Since f : X — [X/GLy| is an epimorphism of stacks, it satsifies universal x-descent
and it suffices to show that (4.2) is an equivalence after pullback along f. Let Y = X X(x/qrL, X, then

g:Y — X is a GLg-torsor and we the multiplication map gives rise an equivalence GLy x Y =Y xx Y,
one deduces that

Aut /g, (X)ly = GLg x Y.

Similarly, the pullback of .Z to Y is naturally isomorphic to ¢ and Auty (F)|y = Auty (0%) = GLyx Y.
It is clear that the restriction of (4.2) to Y is identified with the identity of GLg x Y. O

Remark 4.1.3. Definition E.1.1] and Proposition [£.1.2] are not special for the Z-topology of the category of
solid Z-stacks. The same can be done for a general Grothendieck topology in a full subcategory of analytic
rings stable under pullbacks.

Definition 4.1.4. For .# a vector bundle over X, we let V(%) denote its geometrization. Explicitly, let St
be the analytic spectrum of Sym St", it is naturally endowed with the standard action of GLg and defines
a vector bundle V(St) over */GLy. Let f : X — x/GLg4 be the map defining .# via Proposition [£.1.2] then
V(F) = f*V(St). Note that V(F) is the relative analytic spectrum of Sym, .#", which is an analytic
ring locally in the Z-topology of X.

4.2. Algebraic Cartier duality for vector bundles. Now that we have related the category of vector
bundles of rank d and the slice category of */GLg, we can state our first Cartier duality that is nothing but
the algebraic Cartier duality of [Bha22, Proposition 2.2.13]. In order to simplify the theory, and since our
main application will be for rigid spaces over Q,, we will focus in characteristic 0, though some statements
will be proven in general.

Definition 4.2.1. Let X be a solid Z-stack over Z, .# a vector bundle of rank d over X and V(%) its
geometrization seen as an abelian group object over X. For n € N let V(.%),, be the relative analytic
spectrum of Sym_%(nﬁ V = @), Symk.ZY. The formal completion of V(%) at zero is defined as the
abelian group stack V(.#) = lim V(F),, we let S/y;1X (FV) = Hm Sym5"(Z") denote the global sections

—

of V(7).
The following lemma will be useful to show cohomologically smoothness of classifying stacks.

Lemma 4.2.2. Let (C, E) be a geometric set up and P a siz functor formalism on (C, E) taking values in
stable co-categories. Let f:Y — X be a map in E with f* conservative, and let g : X — 'Y be a retraction
of fin E.
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(1) Suppose we are given with the following data:
(i) An object L € 2(X).
(i) A map s: fily — L.
(iii) A retraction 1y = g fily ELN gL 2 1y
Then 1x is g-smooth and there is a natural identification g'ly = L.
(2) Suppose we are given with the following data:
(i) An object L € 2(X).
(il) A map s: L — fily.
(i) A section 1y LN gl LN gfily = 1y.
Then 1x is g-proper and there is a natural identification Py(ly) = L.

Proof. We only prove part (1), part (2) follows by taking the dual six functor formalism 2°P, see [Sch23|
Remark 6.5].

Let A : X — X Xy X be the diagonal map. We need to define a cycle morphism p : Ajlx — 735£ such
that the following compositions are the identity

Iy 2 muAly 2 w2 gf gL 20 1. (4.3)

o (mFL *
L2 m (L Aly) 2TE, (L omL) L L gt gl e L L1 L. (4.4)

By Lemma [Sch23| Lemma 5.11|, after modifying 7, it suffices that the composite are equivalences. We
have the following commutative diagram with cartesian squares

y L s x ¢ .y
lf l(fg,id) lf
X 25 Xxy X T X (4.5)

b

y — 1 ox_ 9 .y

~

In particular, we have that 75 fi = Ayg*, we define p : A\lx = 73 fily — 75L to be pp = 73s.
The composite (43)) is the identity. Since ¢g*g1 = 7735, the composite (3] is obtained by applying
g* to the retraction

ly 2 gfily 25 gL 5 1y,

The composite (£4) is the identity. Since the pullback along f: Y — X is conservative, it suffices
to show that (44) is an equivalence after taking f*. By proper base change we have that f*my) = gl A*.
On the other hand, the equivalence £ = my (77 £ ® Ailx) arises by the my of the equivalence

ML ALy ZALE=AN@TSL,
taking pullbacks along A we get the natural equivalence
LA ALy ZAAlx®L
given by the braiding isomorphism. Consider the (not necessarily commutative) diagram

TLRAlY — 5 AL+ Aly @il

\ / (4.6)
Ty LRSS T s@msL

m L& m5L
Applying A* to ([A6]), and using that Ajg* = 73 fi, we get the commutative diagram

L& fily —— s A*A VL fily ® L

L&L
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where the composite of the horizontal maps is the braiding isomorphism. In a similar way, using that
T = g*gr and 775 = g*gi, one deduces that the equivalence

fFLogl= ff(Leggl)= ffmi(riLeml) = ffm (T LRmL) = ff(g° gL L) Zgl® f*L
is also the braiding isomorphism. On the other hand, the f-pullback of the map g*n ® L is nothing but the
map
gLe Ll
Putting all together, the f-pullback of the map (£4)) becomes

FL g(fily £) 2525 gceo )= g(Lo g L) = gL e o205 pr, (4.7)

but the map gi(fily ® £) 2(80), (LR L) = gL ® f*L is equal to the composite

g(fily @ L) Z g fily ® f°L WBIE oL@ frL,

where the equivalence g1(fily ® L) = g1 fily ® f*L arises from the natural isomorphism f*ma) = gt A* applied
to w5 fily @ m3 L. This shows that the composite (1) is an equivalence, proving what we wanted. O

Before we state the algebraic Cartier duality theorem we need to show some cohomological properties of
vector bundles. We start with a key lemma that is the core of the computations.

Lemma 4.2.3. Let X be a solid Z-stack over Q and let F be a vector bundle of rank d over X.

(1) There is a natural de Rham resolution of Ox as Sym% (F")-comodule given by a complete and
decrasing filtration
d
Ox — Symk(FY) & Symy(FV) 0 7V & - b symy (7)o \ 7.

(2) There is a natural Koszul resolution of Ox as Sym% (% )-module given by a complete and increasing
filtration

d
Sym (F) @ \ F -+ = Sym%(F) ® F — Symk (F) - O,
whose dual is the de Rham complex for S/yI\nX(StV),

Proof. By base change, it suffices to deal with the universal case X = %x/GLy and % = St the stan-
dard vector bundle. We have GLg-equivariant de Rham and Koszul resolutions for both Sym% (St") and

Symy (St):

d
0 — Q — Sym%(St”) % Sym% (St”) @ St” % - % Sym% (St¥) ® \ StV — 0

(4.8)
d
0 — Sym%(StY) ® /\Stv — o= o= Sym%(StY) ® St — Sym% (StY) - Q — 0
and
—_— d —_— —_—
0 — Symy(St) ® /\St = -+ — -+ = Symy(St) ® St — Symy(St) - Q — 0 w9)
4.9

d
0 = Q — Symy (St) % Symy (St) ® St % - % Symy (St) @ /\ St — 0

where we have identified the differentials de = e for e € St” (resp. for St). The resolutions of (A.8) are the
duals of those in (£9), this prove the lemma since the de Rham resolution of a vector bundle is a complex
of comodules while the de Koszul resolution is a complex of modules. O

Proposition 4.2.4. Let X be a solid 9-stack over Zg and let F be a vector bundle of rank d over X.
(1) The map V(F) — X is weakly cohomologically proper.

L

(2) The map f : V(F) — X is cohomologically smooth and there is a natural isomorphism f'lx =

d _ +Ad gV : " ~ — ANz * Z)[_
Q@/x[d] = f*AN"ZV[d]. If in addition X is defined over Q then f!lv(ﬂ) = A\"Z®(Sym% F)[—d].

In particular, fif'ly = Sym% .Z.
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Proof. Part (1) is clear since V(.%) is just the relative analytic spectrum of the algebra Sym%.# (locally in
the Z-topology) with the induced analytic structure.
For part (2), without loss of generality we can reduce to the universal case X = %/GLy and .# = St the

—

standard representation. Then, to see that V(St) — */GLy is cohomologically smooth, we can take the
pullback along * — */GLg. In this case, St = Z? is a free Z-module of rank n, and by induction it suffices
to treat the case d = 1. We have a map

j:Gq C Gy = AnSpec Z[T] C P},

Note that IP)% is cohomologically smooth over Zg, namely, it has an open cover in the sense of locale by
the solid affine spaces AnSpecZ[T]y and AnSpecZ[T']5. Then, it suffices to show that j is an open
immersion, this follows since it is the complement of the idempotent algebra over ]P’% given by Z[T~1].

Next, we show that f'1x = f* A.ZV[d] and fgl@ = \?.Z(Sym%.%)|—d]. For this, we can reduce to

the universal case of X = x/GL, and .# = St.
Let {v1,...,v4} be the standard basis of St and T7,..., T}, its dual basis. Then

St = AnSpecy (Z[T]).
Consider the idempotent (Z[T], Z)o-algebras
D; = ZIT)T),

and let C be the union of the algebras in the sense of locale. More precisely, for I C {1,...,d} =: [d] let
D = ®jerzimDi and let C be the idempotent dg-Z[T]-algebra

C:[D—>EBDZ-—>~-—> EBDI—>-~—>DM].
iel \T|=F

Then j : V(St) C V(St) is the open subspace complement to C', and we can compute
Mgy = 2L = C].

Unravelling the construction of C, and identifying TZ._1 = v;, one finds that
Flggy = (MTe- STz i =1, d][—d). (4.10)

Note that shifting the variables T; and T} alters the formulas by a —1 factor, namely, in the union of
idempotent algebras D; and D; one fixes the map

c 7Y, p, & b;,
which differs from the map
¢ b, P,
under the natural isomorphism D; @ D; = D; @ D; by multiplication by a —1. If X is defined over Q, one
deduces that fgl@ = A\%St ®Sym% St[—d]. In general, using that
Homy (fZ[T], Z) = f.f'Z.
we find that f'Z is the localization at \Af(St) of the object
FZ="T T, Z[T)d]
as GLy,-equivariant Z[T]-module, which is nothing but f* A%StY[d]. O

Next, we study cohomological properties of quotient stacks associated to vector bundles in characteristic

o —

0. Let us first describe the categories of sheaves on X/V(.%) and X/V (%) via the monadicity theorem.
Proposition 4.2.5. Let X be a solid P-stack over Q and let F be a vector bundle of rank d over X.
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(1) There are natural equivalences
Mod(X/V(#)) = CoModgyus, #v(Mod(X))

and

—

Mod(X/V(F)) = Modgyms, #(Modx).

(2) Consider the maps X ERN X/V(F) L X. Then f is a descendable P-cover and g is both weakly
cohomologically proper and cohomologically smooth. Moreover, there is a natural equivalence g'lx =
* d ar
g* N Zd]. -
(3) Consider the maps X EN X/V(F) 9y X. Then f is a smooth Z-cover, g is cohomologically smooth,

and there is a natural equivalence ¢'lx = /\dff[—d]. Moreover, g is co-smooth with proper dual
,Pg(lX/Wgz\)) = 1X/§T(,§Z\)[_2d]'

Proof. By base change, we can reduce all the assertions to the universal case X = %x/GLy4 and .# = St.
We first use Proposition B1.27 to deduce part (1), and then we apply Lemma 23] to construct the data
required in Lemma 2.2l and show (2) and (3).

(1) By Proposition E2241the maps f : X — X/V(St) and f': X — X/V(St) are weakly cohomologically
proper and cohomologically smooth respectively. Then, by Proposition and Remark
we have that

Mod(X/V(St)) = CoMod f+ 1.1, (Mod(X))

and

—

Mod(X/V(St)) = Mod s 4,1, (Mod(X)).

It is left to compute the monad and comonad, for this one uses the fact that the Cech nerves

—

of X — X/V(St) and X — V(St) are given by the simplicial stack (V(St)”/x)[n}erp (resp.

——n/X
(V(#)  )mjeacr) encoding the commutative group structure of V(St) and V(St) respectively,

which arise from the GLg-equivariant Hopf-algebra structure of Sym% St and S/y;1;< StV respec-

tively (see |[Lurl7, Theorem 4.7.5.2 (3)| and Proposition f.2.4] (2)), we left the details to the reader.

(2) By part (1), the category Modg(X/V(St)) is the category of GLg-equivariant (left) comodules over

Sym% (St¥). The map X — X/V(St) is the vector bundle associated to the algebra SymS$ (St")
over X/V(St), endowed with the natural comodule action given by co-multiplication.

The map f is weakly cohomologically proper since V(St) has the induced analytic structure from

X. To show that ¢ has !-functors, it suffices to prove that f is a descendable Z-cover, which

amounts to show that f.1x is descendable over 1x/y(g;). For this, we can use the de Rham complex

of Lemma [1.2.3]

d
0 - Q — Sym% St¥ % Sym StV @StY % - & Symg StV @ A\ StV — 0 (4.11)

which is a GLg-equivariant complex of Sym$% St¥-comodules, where St" has the trivial comodule
action (we higlight for future reference that this is equal to the adjoint comodule action since V(St)
is abelian). Note that if {e;}%_; is a basis of St¥, we have identified @?:1 Qde; = StY. One formally
deduces that ¢ is weakly cohomologically proper as f is so, see Corollary Finally, it is
left to show that g is cohomologically smooth with ¢'lx = A?St[d]. Let Q € Modg(X/V(St))
be the trivial representation seen as a morphism in LZg x(X/V(St), X). Let £ := (A\?St)[d] e

Modq(X/V(St)) endowed with the trivial comodule action. Twisting (ZIT) by A% St we get a map
filx = Sym$% St — L. Moreover, ([@II)) shows that

d i
gl =& /\stlil,
=0

this gives the retraction g1£ — 1x. We conclude by applying Lemma [4.2.2]
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(3) The map f is cohomologically smooth by Proposition £.2.4l Since the pullback f* is conservative,

f is in fact a smooth Z-cover, in particular of universal !-descent, and thus g admits !-functors.
On the other hand, since being cohomologically smooth is local on the source (Corollary [B.1.20)),
we see that ¢ is also cohomologically smooth. It is left to compute ¢'ly. By functoriality of
the Lu-Zheng category, it suffices to treat the universal case X = %/GL, and # = St. By

Proposition E22.5] one has that 1x = f'¢'lx = (f'1) @ f*(¢'lx) = f* /\d StV[d] ® f*(g’lX)./T\‘his

gives f*¢'lxy = f* /\d St[—d], and we only need to identify /\d St as object in Modg(X/V(St)).
Consider the diagram

o — —

X/V(St) —2 X/V(St, @ Sty) —2 X/V(St)

.
X/V(St) —L— X,

by smooth base change, we have that ¢'ly = A*Wé(lX/®). On the other hand, let Q =

Sty @ Sto /A(St), endowed with the left regular action of St; @ Ste. The map A is equivalent to the
map

—

V(Q)/V(St1 D St2) — X/V(Stl D StQ). (4.12)
This shows that Allx/V(Stl @Sty) = AF A QV[d]. One gets that
9!1X = A*ﬂ'!z(lx/@(sﬂ)

d
= A'my(1y5s) @ A" A\ Q[=d]
d
= A" \Q[-d]
d
= /\ St[-d.

It is left to show that g is co-smooth with proper dualizing sheaf £ = 1 x50 [—2d]; we use
Lemma By part (1), Mod(X /V/(S\t)) is equivalent to the category of Sym$ St-modules in
Mod(X). The Koszul sequence

d
gives rise a map
d
1X/Ws\t)[_2d] — filx = Sym% St@/\St[—d],

To construct a retraction gi1£ — 1x it suffices to show that the Koszul complex induces a splitting
gL = @?:0 A?StY[=i]. We know by [@I3) that gL is a perfect complex of GLg-equivariant
Q-vector spaces. Then, to show that it is split it suffices to do it for its dual. We have that

d
Hom y (9.£,Q) = g.L[2d] = g. \ St[d].

But we have that g, A% St[d] = ( )& A\ St[d], thus, it suffices to show that the cohomology

9l x sy

g1 X/TE splits, this follows by taking the de Rham resolution for S/yBX(StV), since g.lx is the

“complete” comodule associated to S/yzl ~(StY).
O

Remark 4.2.6. In the previous proposition we always keep track of the adjoint action of St, even if it is
trivial. The reason is that similar computations will hold for the case of classifying stacks of more general
groups, see Proposition [6.1.7]
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Theorem 4.2.7 (Algebraic Cartier duality). Let X be a solid Z-stack over Q and F a vector bundle over
X.

(1) There is a natural bi-linear map
F V() xx X/V(FY) = /G
functorial in the category BUNgc, such that F*(ﬁ( )) is an isomorphism in the Lu-Zheng cate-
gory, considered as a map LZx(V(F), X/V(ﬁv)) Moreover, the inverse of F*(0(1)) is naturally
isomorphic to F*(0(—1)) ® g, N*.ZV[—d).
(2) There is a natural bi-linear map
G:V(FV) xx X/V(F) = %/Gm,
functorial in the category BUNgc, such that G*(0(1)) is an isomorphism in the Lu-Zheng category
considered a a map in LZX(W,?T),X/V(,?)). Moreover, the inverse of G*(0(1)) is naturally
isomorphic to G*(0(—1)) @ N\ Z[d).

In particular, we have Cartier duality isomorphisms induced by a Fourier-Moukai transform

FM, : Modo(V(.F)) = Mods (X/V(ZV)) (4.14)
F M, : Modg (V(ZV)) = Modn(X/V(F)), (4.15)

defined by the convolution
FM;(M)=F*(0(1)) x M and FMs(M) = G*(0(1)) x M.

Proof. By functoriality of the Lu-Zheng category, we can assume without loss of generality that X = x/GLy,
and that % = St is the standard vector bundle. On the other hand, by [Sch23l Lemma 5.11] it suffices to
construct a unit and co-unit for the adjunction and prove that they are equivalences.

Step 1. Construction of F and G. We first construct the maps F' and G of parts (1) and (2). Let
us start with part (1). Consider the GLj-equivariant vector bundle V(St) = AnSpecy (Sym% St"), as well

as its formal dual V(St"). By Proposition (1), a line bundle over V(St) x x X/V(St) is the same as a
GL,,-equivariant line bundle over V(St) endowed with a module action of Sym$% St¥ commuting with the
O (V(St))-linear structure. We simply take £ = Sym$% St" as a right module over V(St) endowed with the
natural left multiplication of Sym$ St¥, we say that £ has the left regular action. This defines the map
F.

For the map G in (2), we argue in a similar way. A line bundle in V(St") x x X/V(St) is the same as a
compatible system of GL,-equivariant line bundles (£,) on V(St¥),, for all n, together with a compatible
system of GLg-equivariant comodule structures

(L, — Sym$% St¥ ®L,).

To define such an object, we take L,, = Sym}" St endowed with right module structure, and construct

the comodule structure of Sym$% StY by taking adjoints of the multiplication map Sym "St®L, = Ly,
namely,
L, — Sme StY ®L, — Sym% St¥ ®L,,.

This defines a line bundle on V(St¥) x x X/V(St), and so the map G. We say that £ has the left regular
action.

Step 2. Identification of F*(0(—1)) and G*(€0(—1)). By construction F*(€(1)) is the line bundle
Sym$% St over V(St) endowed with the left multiplication by Sym% StV. Then, F*(0(—1)) = F*(0(1)) ! is
the line bundle Sym% StV over V(St) endowed with the Sym$ St¥-multiplication arising from the composite

Sym% St¥ ®@Sym% St s8id, Sym$% St ®Sym$% St = Sym$ St"

where s : Sym$% St¥ — Sym$% St is the antipode map sending v — —v for v € St¥. We say that F*(£(—1))
has the right regular action.

Similarly, G*(€'(1)) is the line bundle (Symi" St),, over V(St") endowed with the left regular Sym$% St"-
comodule structure constructed as the adjoint of the multiplication map. Then, G*(&(—1)) is the line
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bundle (Sym)%" St),, endowed with the right regular comodule structure of S/yzl + St¥ obtained by composing
the multiplication map with the antipode. We say that G*(€(—1)) has the right regular action.

Step 3. Unit and co-unit for F'. Next, we construct the unit and co-unit maps of the convolutions
and see that they are equivalences. We first deal with (1). Let us write X = %x/GLgy, Y = V(St) and

Z = X/V(StY). We also let £ = F*(6(1)) and G := F*(0(—1)) ® A\*StV[—d]. Recall that we consider
LelZx(Y,Z)and G € LZx(Z,Y), so that we have the convolution

Gx L =m31(m] 2L @75 3G)
for the fiber product Y X x Z x x Y, and the convolution
LxG=m131(n]2G @75 3L)
for the fiber product Z xx Y xx Z. Thus, we want to construct equivalences

Ayily =G+ L (4.16)

and

LxG = Aglyg. (4.17)

Let us first compute Gx L. The tensor 733G @7 oL liesin Y xx Z xx Y = V(St1 & Sto)/V(StY) where the
quotient is with respect to the trivial action. By step 2 one deduces that 77 5£ ® 73 3G is nothing but the

line bundle A% Sty ®Sym$% (St} & Sty )[—d] endowed with the Sym$% St¥-module action which is left regular
on Sty and right regular on Sty. Thus, by taking the anti-diagonal embedding A" = (id, —id) : St¥ —
Sty @ Sty, we can write

d d
/\ St3 @Sym% (Sty @ Sty)[—d] = A\ Sty @Sym$ (A (StY)) @ Sym ((Sty @ Sty) /A (StY))[—d]

d
= A\ (A" St) @ Sym% (A" (St")) @ Sym% ((Sty @ Sty ) /A" (St))[—d]

where we use the composite St" ﬂ) Sty @ Sto — Sty to identify /\d A(St) = /\d Sto, and the module
action of Sym$% (A% (StY)) on Sym% ((Sty @ Sty)/A¥(StY)) factors through the counit. Consider the
composite

YxxY Ly xy Zxx Y 5V xxY

arising from the maps X i> Z5% X, By Proposition [4.2.5] we can write

d
filyxyy = /\(Aam St) ® Sym.X(Aam St) ®1Ws\c) 1Y><XZ><XY[_d]‘

Since Y — X is just a vector bundle, it is clear that Ay, 1y = Sym% ((St1 @ St2)/(A(St))). Thus, we
find that

1oL @ 753G = filyx vy @G (Ayyly).
Applying 7131 = g1, we get that G« £ = Ay, 1y, which gives the unit map ({IG) that in addition an
equivalence.

Now, let us construct the co-unit map for £ x G. The object 7] ,G @ 75 3L lies over Z Xx Y Xx

Z = V(St)/V(StY @ Sty). By step (2) it is the line bundle A% St @(Sym% St")[—d], where Sym$% St is

endowed with the Sym y (Sty @ Sty )-module structure which is right regular for Sty and left regular for Sty .
Equivalently, let Q¥ = (St & Sty)/(A(StY)), then

d
T 3L @ T oG = /\ Sty @Sym% Q" [—d]

endowed with its natural Sym$% (St} @ Sty )-module structure given by left multiplication. Hence,

d
LxG = A\Sst{ @(Sym%Q")[~d.
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Now, the diagonal map is equivalent to ({12]), and Proposition L.2:4] (2) provides the isomorphism A, 1X G =
L * G as wanted.

Step 4. Unit and co-unit for G.  Now we move to (2). We set X = x/GLy4, Y = V(StY)
and Z = X/V(St). We also write £ = G*(€(1)) and G = G*(0(—1)) ® A\?St[d]. We want to construct
equivalences (.16]) and (AIT). In the first case, the tensor product 77 , L& 3G lies over Vm) JV(St)

with quotient given by the trivial action. By step (2), it is described as the line bundle (Sym "(Sty B Sta) ®

/\d Sto[d])n endowed with the comodule structure over Sym$% St¥ defined by the composite of the anti-
diagonal embedding A = (id, —id) : St — St; @ Sty and the left regular action of St; @ Sta. Then, we
can write

(Sym3"(St; @ St2) ® /\St2 n = (Sym3" (A (St)) /\St2 ® Sym%™((St1 @ Sta) /A (St))) s,

so that the comodule associated to the limit of (Sym)%"A“"t(St))n is the dual to the module structure of
Sym$% (A% (StY)). Let g : X/V(St) — X, Proposition (1) implies
d
g+((Sym% St¥)” @ A\ St[d]) = g.Hom v sy (Sym¥ St”,9'Q)

= Hom x (g:(Sym% St”), Q)

- Q.
We deduce that

G x £ = Sym"((St1 @ Sta) /A (St)),

which produces the unit map (£I0]) that is clearly an equivalence. Next, we construct the co-unit (417,
consider the tensor product 7} ,G®73 5L over m/ V(St1 @ Sta). By step (2) it consists on the line bundle

(Sym$™(Q) ® A Q[d]),, where Q = (Sty @ St2)/A(St) is endowed with its natural comodule structure of
Sym% (Sty & Sty) given by left regular action. Thus, by Proposition EE2.4] (2) we get that

LxG =Sym%(Q").

On the other hand, the diagonal map X/V(St) — X/V(St1 @ Stg) is isomorphic to V(Q)/V(St; & Sta) —
X/V(St; @ Sty), this shows that Ayl x ysy) = Sym§QY = L+ G as wanted. O

Remark 4.2.8. The statement and proof of Theorem 2.7 also apply for fpqgc-stacks in classical derived
algebraic geometry. Indeed, the functors and objects involved in the universal case arise from stacks
on schemes endowed with the theory of classical quasi-coherent modules. On the other hand, a careful
bookkeeping of the construction of the units and co-units should prove that the composites (£16]) and (£I7])
are actually the identity and that [Sch23l Lemma 5.11] would not be necessary, we left this computation to
the curious reader.

We finish this section with some classical properties of the Fourier-Moukai transform of Theorem [£.2.7]

Proposition 4.2.9. Let X be a solid P-stack over Q and F a vector bundle of rank d. Consider the
Fourier-Moukai transforms F My and F My of Theorem[{.2.7. The following hold

(1) Let us write Y = V(F) and Z = X/V(FV). Denote v : X — Y the zero section, andp:Y — X,
f: X —=Z, g:7Z — X the natural maps. We have the following natural identities of convolutions
in the Lu-Zheng category over X:
(i) F*(ﬁ(l)) *Lng = 1Z
(ii) ulx * (F*(0(=1)) @ N*ZV[~d]) = N> FV[-d] = ¢'1x.
(i) (F*(0(~1)) & A" #V[-d]) « fif 17 = 1y
(iV) fng *F*(ﬁ(l)) = 1y,

(2) Let us write Y = V(FV) and Z = X/V(F). Denote . : X — Y the zero section, andp:Y — X,
f:X—=Z g:7Z — X the natural maps. We have the following natural identities of convolutions

in the Lu-Zheng category over X:
(i) G*(ﬁ(l)) *L!1X = 1Z
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(i) ulx *(G*(0(-1)) @ N* Z[d]) = N\’ Z[d] = g'1x.
(iii) (G*(O(-1) @ \"F [])*f'X—ly
(iv) filx xG*(O(1)) =

Proof. We only show part (1), part (2) is done in a similar way. The object ¢1x is just t.1x € Modp(Y),
let us considered it as a morphism in LZx(X,Y’). Since ¢ is both cohomologically smooth (by Corollary
B.6.10]), and weakly cohomologically proper (being affinoid with induced analytic structure), it has right
and left adjoints given by t4t'ly = 1y /\dﬂ[—d] and 41y respectively.
(i) Let us compute F*(€0(1)) x ulx, the term F*(£(1)) is seen as a map Y — Z. Consider the fiber
product X xx Y xx Z, by definition F*(€/(1)) xulx = m 3)(7] sl x @ w5 3F*(0(1))). We obtain
that

T pulx ® w3 F(O(1)) = Sym% (F) @syms,(7) Ox = Ox

endowed with the trivial comodule structure. Since m13:Y x x Z — Z is the base change of Y — X,
one deduces that F*(0(1)) x ylx = 1z as wanted.

(ii) Next, let us take left adjoints to the expression F*(0(1)) x ulx = 1z, recall that we see yy1x and
F*(0(1)) as maps X — Y and X — Z respectively, so that 1 is seen as a map X — Z. Since
g : Z — X is cohomologically smooth, 17 is a right adjoint as a map X — Z with left adjoint given
by ¢'1x = A?.ZV[—d]. One deduces that

d
ulx * (F*(0(-1)) @ \ FV[-d) = \ Z"[-d].
(iii) Let us consider filx € Modn(Z) as a morphism X — Z in the Lu-Zheng category over X. Since f is

cohomologically smooth, it is a left adjoint and has by right adjoint fif'1x = fi /\d Z1d]. Consider
the fiber product X xx Z xx Y = Z xx Y, with projections my and 7z, then

d
( ®/\ 0\\/ *flf 12—7Ty|((F* ®/\9&\/ ®7T}(f1f!1z)).

We have a cartesian square

V(Z V)xXYHZxXY

Lk

— .z

By proper and smooth base change we have a natural equivalence 77 fi f N, = I My« « 7, which
by Proposition £.2.4] (2) yields that

(Fr(o(-1) @ N\ F'[-d) @ a5 fif 1z = (F*(0(-1)) & /\ FV[~d]) @ Sym(F").
where Sym(.#") is endowed with the left regular comodule structure. Equivalently, consider the
map
Y xx ZxxY 2% ZxxY,
then

d d
(F(o(-1)) o NF'[-d) @ nyfif 12 = (F(0(-1) © )\ FV[~d]) © ma3m] ,F(6/(1))

d
= moa)(ms 5 (F(0(=1)) © \ FV[~d]) © 7 ,F*(6(1))).
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One gets that

d d
(F" 1) ® N\ ZV[=d]) * fif 1z = myymas) (75 3(F*(6(-1)) ® N\ ZV[—d]) ® w1 ,F*(0(1)))
d
= myuma(ms 5 (F*(0(-1) @ \ FV[-d]) @ 7} . F*(0(1)))
d
= (P (O(=1)) & \ FV[d]) « F*(0(1))
ZWY,!AY,JY
= ly,

proving what we wanted.

(iv) For the last identity, we take right adjoints to the identity (F*(€(—1))@ A*FY[~d])* fif'l; = 1y.
Indeed, 1y is seen as a map X — Y in the Lu-Zheng category over X, and since p : ¥ — X is
weakly cohomologically proper, 1y is a left adjoint with right adjoint given by itself. Similarly, since
f: X — Z is cohomologically smooth, fif'lz is a left adjoint when seen as a map X — Z, with
right adjoint given by filz. One obtains the identity

fglz*F*(ﬁ(l)) = 1y.

Corollary 4.2.10. Keep the notation of Proposition [{.2.9
(1) In the conventions of part (1) there are natural equivalences of functors
(i) FMy o, = g*.
(i) t* o FM;' = gi(— ® ¢'1x).
(iti) FM; o fi(—® f'l1z) =
(iv) f*o FM; =
(2) In the conventions of part (2) there are natural equivalences of functors
(i) FMyo* = fy.
(ii) tx 0 FMy ' = gi(— ® ¢'1x).
(i) FM;" o fi = p
(iv) f*o FMy = p(— @ p'ly).

Proof. This follows by translating the kernels in the Lu-Zheng category over X to their associated functors
by convolution. O

Example 4.2.11. We now explain the relation of Cartier duality and the Beilinson t-structure. Consider
the action of G,, on G, by multiplication, the map G,/G,, — BG,, is the standard line bundle over BG,,
and its Cartier dual over BG,, is the quotient stack B(G,, x @a) where G,,, acts on @a by multiplication.
Similarly, the Cartier dual of @G/Gm is B(Gy, x G,). The category Fil(Mod(Q)) has two different ¢-
structures, the standard and the Beilinson t-structure, it turns out that they are actually the natural
t-structures of the modules over the stacks G,/G,, and B(G,, X @;) under the Cartier duality isomorphism
respectively.

4.2.1. Solid vector bundles. We finish the section with some short discussion about a variant of vector
bundles for solid Z-stacks, namely, solid vector bundles:

Definition 4.2.12. We let GL 4 be the analytic spectrum of the ring Z[X; ;,Y : 1 < 4,7 < d]g/(Ydet(X; ;)—
1). The category of solid vector bundles of rank d on solid Z-stacks is the slice category Shg(Affz )/[*/GLd,D]'
A solid vector bundle is denote by %5, where .% is the underlying vector bundle associated to the composite
X — %/GLgn — */GLg. Let St be the standard representation of GLg4, then (Sym) St")y has a natural
action of GLg, which defines an analytic space V(St); — %/GLg4. For a solid vector bundle %5 over a
stack X, we let (Sym%.Z")p and V(% )5 be the pullback of (Sym) StY); and V(St)s along X — */GLyg
respectively.

We have a partial analogue of Proposition B.2.4]
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Proposition 4.2.13. Let X be a solid stack over Zg and Fo a solid vector bundle of rank d. Let f :
V(F)y — X. Then f is cohomologically smooth and there are natural equivalences f'lx = f* /\d FVd].

Proof. This follows the same proof of Proposition [£.2.4] after taking some modifications on the idempotent
algebras D;. Indeed, using the same notation as loc. cit. consider the idempotent Z[T]|-algebras D; =
Z([T;Y)][T], and let C be its union in the sense of locale. Then, V(St)g is the open complement of C' in

7
V(St), and we can compute

filysy, = [Z[T] — O
An explicit calculation gives that
flysoy = (T T zTy - T ) =d).
Taking duals one finds that
Fof'1x =Ty Ty) @ Z[T)[d],

and that f'1x = f* A¢StV[d)]. O
4.3. Analytic Cartier duality for vector bundles. We have proven an algebraic Cartier duality for
vector bundles, in this section we shall study three additional incarnations of this phenomena in rigid
geometry for Tate stacks over QQ,, for some fixed prime p. Nevertheless, some of the constructions and

statements still make sense for Tate stacks over (R, R") = (Z((n)),Z[[r]]), we will make explicit this
distinction when necessary.

4.3.1. Cartier duality for unitary overconvergent vector bundles. In Proposition we saw that the cat-
egory of vector bundles of rank d on solid Z-stacks is equivalent to the category of Z-stacks over x/GLg.
Therefore, in order to construct different incarnations of vector bundles it suffices to construct different
incarnations of the group GLg.

Dzlﬁni‘;ion 4.3.1. Let R(T)T = lim o, R(m¢T) be the overconvergent algebra defining the closed disc of
radius 1.

(1) We define the overconvergent linear group GLL to be the analytic spectrum of the algebra
R(X;;,T:1<1i,j<d)l/(det(X;;)T — 1)

representing invertible matrices A such that |A| < |77¢] and |A™1| < |77¢] for all £ > 0.
(2) We define the category of unitary overconvergent vector bundles of rank d on analytic Z-stacks over
Rg to be the slice category Shg(AffS’QD)/[*/GLT].
d

(3) Given an analytic 2 stack X over Ry, and a vector bundle .% of rank d defined by a map f: X —
x/GLg, a lattice FT of Z is a factorization

X — %/GL! = %/GLy.
We also say that .#T is an unitary overconvergent vector bundle over X.

Construction 4.3.2. Let X be an Tate stack over Rg. Let f: X — */GLL be a unitary overconvergent
vector bundle of rank d, and let .% denote the vector bundle associated to the composite X — x/ GLL —
*x/GLg4. Similarly as for algebraic vector bundles, we can construct two different geometric incarnations
that are analogue to V(.%) and @ Let St be the standard representation of GLII with canonical basis
e1,...,eq. Let V(St™) C V(St) be the closed subspace given by the analytic spectrum of R{ey,...,ey)
where e} € St is the dual basis. By construction, V(St™) C V(St) admits a descent datum for the action
of GLIZ’ and thus it defines an analytic space over */GLIl' We define V(#+) := f*V(StT) and call it the

closed overconvergent ball of radius 1 in V(.%). Dually, let V(Z 1) := U.s0 ™V (FT) be the unit open ball
in V(#). We have a series of inclusions

V(Z) c V(F1) cV(FT) c V(F).
Remark 4.3.3. The map V(ﬁf ) — V(&) is an open analytic inclusion, namely, locally in the Z-topology
it is nothing but the inclusion of the open unit polydisc in the algebraic affine space. In particular, we can
always localize modules over Sym$ (.#") to solid sheaves over V(.ZT).
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Definition 4.3.4. Let ZT be an overconvergent vector bundle over X. We let SymTX (FVT) denote the
algebra of functions of V(.Z 1) seen as an object in Modg(X). We also let Symy (.Z#"Y'") denote the global
sections over X of V(.ZT).

We now prove the analogue of Proposition [£.2.4]

Proposition 4.3.5. Let X be an analytic D-stack over R and let F1 be a unitary overconvergent vector
bundle over X.

(1) The map V(F+) = X is weakly cohomologically proper.

(2) The map f : V(ﬁ"’r) — X is cohomologically smooth and there is a natural isomorphism f1x =
FNCZV[d). If in addition X is defined over Q, then flyzey = N F @ Sme(oﬂr)[ d. In

particular, fif'ly = SymTX(,?JF).

Proof. Part (1) is clear since V(#7) is the relative analytic spectrum of the Ox-algebra Sym&(ﬁf ™)
endowed with the induced analytic structure.

For part (2), smoothness of f follows from Proposition B.6.131 The computation of f'1x and f!l@(gﬂ
follows the same lines of the proof of Propositions [4.2.4] and L.2.13t we first reduce to the univesal case
X = */GLL and Z1T = St*, we let eq,...,eq be the standard basis of St™ with dual basis T7,...,T;. We
then define the idempotent R[TY,...,Ty]- algebras D; = R(T;” Wiy, ...,Ty]. The same computations will
show that

d
Flygpry = (T1 - T) 'R T [=d) = \ St@(Symy (StY))Y[—d].

If X is defined over Q,, this is precisely /\d St ®Sym§<(St+)[—d]. In general, taking duals one gets that

d
fuf'lx = \St¥ @Symy (St¥)[d),
localizing at V(.Z1) one gets that f'1x = f* AYSt"[d] as wanted. O

Before giving a proof of the analogue of Proposition [.2.5] we need to find suitable de Rham and Koszul
resolutions as in Lemma [£.2.3]

Lemma 4.3.6. Let X be an Tate stack over Q, and let F* be a unitary overconvergent vector bundle of
rank d over X.

(1) There is a natural de Rham resolution of Ox as Sym&(?ﬂ—comodule gwen by the complete de-
creasing filtration

Ox — Symh (7Y 1) 4 syml (V) 0 Y 4 . & gyml (FV ) @ /\ FV.

(2) There is a natural Koszul resolution of Ox as Sym&(?ﬂ—module given by the complete increasing
filtration

d
Symk (Z#7) ® N7 .= Symh (F1) © F = Sym| (F) — Ox,

whose dual is the de Rham complex for Symy (FV).
Proof. By base change it suffices to treat the universal case X = x/ GLL and .ZT = StT. We have GLL—

equivariant de Rham and Koszul complexes

d
0 — Q@ — Syml(St*") & Sym{ (St+Y) @ St¥ & - & Syml (StHV) @ A StY — 0 s
4.18

d
0 — Symi (St"+) @ A StY — - — Syml(St¥"") @ St — Syml (St +) = Q, — 0
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and
d

0 = Qp — Symx(St*) % Symy (StT) @St % - % Symy (StH) @ A\ St — 0 o)
4.19

d
0 — Symy (StT) ® A\St— - — Symy (StT) © St — Symy (St+) — @, — 0.

By the Poincaré lemma for open unit polydiscs [Tam15, Lemma 26], the de Rham sequences in both (Z£.I8])

and ([@I9) are exact (one can write Sym}(Stv"") as filtered colimit of functions in open unit polydiscs).
Moreover, the Koszul resolutions in both equations are duals to the de Rham resolutions via the naive duality
between nuclear Fréchet and LB spaces of compact type, cf. [RJRC22, Theorem 3.40|, one deduces that

the Koszul resolutions are also exact. Then, the de Rham complex of (£I8)) is a complex of Sym}(StV’Jr)—
comodules proving (1). Similarly, the Koszul resolution of (£19) is also a complex of Sym&(St"')-moduleS
obtaining (2). O
Proposition 4.3.7. Let X be an analytic D-stack over Q, and let F+ be a unitary overconvergent vector
bundle of rank d over X.

(1) There are natural equivalences

Mod(X/V (%)) = CoMod ,ﬂ(Mod(X))

Sym' (FV
and

Mod(X/V(F)) = Mod ,(Mod(X)),

Symk(ﬂ”r
(2) Consider the maps X ERN X/V(Z+) L X. Then f is a descendable P-cover and g is both weakly

cohomologically proper and cohomologically smooth. Moreover, there is a natural equivalence ¢'lx =
A Zd).

(3) Consider the maps X ER X/V(Ft) L X. Then f is a smooth @-cover, g is cohomologically
smooth, and there is a natural equivalence g'lx = Adf[—d]. Moreover, g is co-smooth with proper
dual Py(1 X/0(F pﬂ) = 1X/§/(,9?+)[_2d]'

Proof. The proof is exactly the same of Proposition £.2.5 where Proposition [4.2.4]is replaced by Proposition
E.3.5, and the de Rham and Koszul resolutions are those of Lemma O

Theorem 4.3.8 (Cartier duality for open and closed discs). Let X be an analytic 2 over Q, and F a
vector bundle of rank d over X.

(1) There is a natural bi-linear map
F:V(ZF) xx X/V(FVH) = %/G,,

such that F*(0(1)) is an isomorphism in the Lu-Zheng category, considered in LZx (V(Z 1), X/V(F
Furthermore, the inverse of F*(6(1)) is naturally isomorphic to F*(0(—1)) g N*.FV[—d].
(2) There is a natural bi-linear map

G :V(ZVH) xx X/V(FT) = %/Gyp,

such that G*(0(1)) is an isomorphism in the Lu-Zheng category considered in LZX(V(§V’+), X/V(F+

Furthermore, the inverse of G*(€(1)) is naturally isomorphic to G*(0(—1)) @ \*.Z[d).

In particular, we have analogue Fourier-Moukai isomorphisms as in (£I4) and [@ID). Moreover, the
analogues of Proposition[{.2.9 and Corollary [{.2.10 hold.

Proof. The proof is totally analogue to the proof of Theorem 2.7 we only explain the construction of
the vector bundles F*(€(1)) and G*(€/(1)). By functoriality we can always reduce to the universal case

X = */GLL and ZT = St*. For F, we need to construct a line bundle on V(Z+)/V(Z"1), where the

quotient is for the trivial action. We take F*(£'(1)) as the line bundle Sym&(St+’V) endowed with the (left)
multiplication map

Sym (St™Y)® Sym (StTY) — SymTX(StJ“V).

)

)-
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Similarly, G*(€/(1)) is the line bundle on V(St¥+)/V(St) induced by the localization of ¢(V(St¥'1)) on
V(Stv *) endowed with the Sym (St™V)-comodule structure given by the adjoint of the (left) multiplication
map
O(V(StV' ) ®e, OV(StYV'T)) — O(V(StVT)).
Finally, the last statement follows by the analogue computations of Proposition .2.9]and Corollary .20l
O

4.3.2. Cartier duality for analytic vector bundles. We now state a Cartier duality for the analytification
of vector bundles. The restriction of the algebraic group GLy to Tate stacks over R is represented by its
analytification GL3" as an adic space, see Definition We call Sh@(Afflj%D) /+/GLz the category of
analytic vector bundles of rank d, note however that the data of an analytic vector bundle for a Tate stack
is the same as the data of an algebraic vector bundle (this is not true for general solid stacks).

Construction 4.3.9. Let X be an Tate stack over X, and let f : X — %/GLj" be an analytic vector
bundle of rank d. Let St be the standard vector bundle over x/GL3", then the analytification of the algebra
Sym% (St¥) admits a group action of GL3" and defines an analytic space over */GL3" that we denote by

V(St)*™. We let V(.7)2" := f*V(St)*" be the analytification of V(.Z). Dually, let ¢ : X — V(%) be the
zero section, we let V(%) be the overconvergent neighbourhood of ¢, equivalently, we let

V(A = (| nV(FH)
E—00

tC

for any lattice % Z that exists locally in the Z-topology.

Deﬁnition 4.3.10. Let X be a Tate stack over Ry and let % be a vector bundle of rank d over X. We
let Sym (ZV) be the algebra over @x defining the analytic space V(Z#)f. Similarly, we let Sym3?(.F")
denote the global sections over X of V(.% )"

Proposition 4.3.11. Let X be an analytic D-stack over Ry and let % be an analytic vector bundle over
X.
(1) The map V(F)' — X is weakly cohomologically proper.
(2) The map f : V(F)™ — X is cohomologically smooth and there is a natural isomorphism f'lx =
f* /\d FV[d]. If in addition X is defined over Qy, then there is a natural isomorphism fgl@(’gﬂ =

N F @ Sym}(ﬂ)[—d]. In particular, fif'lx = Sym}(ﬁ) and the localization of Sym}(ﬁ) in
V(F)™ is f'lx.

Proof. Part (1) is clear since V(.#)! is the relative analytic spectrum of the &x-algebra Sym () endowed
with the induced analytic structure.

For part (2), smoothness of f smoothness follows from Proposition B.6.13l The computation of f "1x and
h 1§,( F+) follows the same lines of the proof of Propositions [4.2.4] and [£.2.13] where we use the idempotent

R[T]-algebra R{T~'}[T] instead, namely, the analytification A}%an C A}%alg is the complement of the
idempotent algebra R{T~'}[T] . We leave the details to the reader. O

As we saw before, a key point in the construction of the Cartier duality is having available the de Rham
and Koszul resolutions:

Lemma 4.3.12. Let X be an Tate stack over Q, and let F be a vector bundle of rank d over X.
(1) There is a natural de Rham resolution as Sym&(ﬁv)-comodule given by the complete decreasing
filtration
d
Ox — Symly(7Y) & symly(F) @ ¥ 4 - L syml (7)) 0 \ FV.

(2) There is a natural Koszul resolution as Symx(ﬁv) module given by the complete increasing filtration

Symh(#) @ N\ F — -+ = Sym{ (F) ® F — Sym{ (F) — Ox,

whose dual is the Rham complex for Sym% (FV).
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Proof. The same proof of Lemma [4.3.0 applies; note that the restriction to Tate stacks over Q, is for the
Poincaré lemma to hold. O

Theorem 4.3.13 (Analytic Cartier duality for vector bundles). Let X be a Tate stack over Q, and let F
be a vector bundle of rank d over X. Then the analogue of Propositions[{.2.5 and[{.2.9, Theorem[{.2.7] and
Corollary [{.2.10 hold by replacing the following objects:

V(F) for V(F)T,
V(ZFV) for V(FV)an,
Sym% StV for Sym} StV,

Symy (St) by Sym2(St).

Proof. The proof follows the same lines of the cited references after some minor adaptations, we left the
details to the reader. O

4.3.3. Cartier duality for locally analytic Z,-vector bundles. We finish this section with a new Cartier duality
that is closely related with the theory of solid locally analytic representations of [RJRC23|. Let Z, be the
ring of p-adic integers seen as a p-adic Lie group, we let C'l“(Zp,Qp) denote the space of locally analytic
functions of Z,, and denote by ana its analytic spectrum. Let D'%(Z,,Q,) = Ho_me(Cl“(Zp,Qp),Qp) be
the locally analytic distribution algebra of Z,,. By a theorem of Amice, the algebra Dl“(Zp, Qp) is isomorphic

to the global sections of the open unit disc centered at 1, namely @m,n =1+ @a C G2 The algebra
Dl“(Zp,Qp) can be written as a limit of analytic distribution algebras Dh(Zp,Qp), which are the dual of
functions of the rigid group Z, + thme C Ggf}@p. The rings Dh(Zp,Qp) correspond to suitable closed

overconvergent discs in @mm of radius p~*" with b(h) — 01 as h — oco. By [RJRC23, Theorem 4.1.7],
there is a natural equivalence between the category of solid locally analytic representations of Z, and that

of quasi-coherent shaves on @mﬂ?' Moreover, under this equivalence Z,, + ph@a@p-analytic representations

correspond to modules over Dh(Zp,Qp), which is an idempotent algebra on @m,n' Our next goal is to
improve this statement to a Cartier duality theorem in a relative setting for a suitable notion of locally
analytic Z,-vector bundle. To make this concrete we first need a construction.

Lemma 4.3.14. There is a natural action Z;ll,“ X @m,n — @m,n associated to the adjoint of the multiplication
map D'(Z,, Q) ®qQ, 5 D(Z,,Q,) — D'(Z,,Q,) making @m,n an ana-module. At the level of points this
action corresponds to (a,x) — x*.

Proof. Let h > 0 and let Dh(Zp, Qp) be the h-analytic distribution algebra. The multiplication map

Dh(Zp’ Qp) ®Q, o Dh(Zp’ Qp) - Dh(Zp’ Qp)
has by adjoint a map
’Dh(Z;me) - HO_HR@,,(Dh(Zp’Qp)’ph(zpv@p))-
Since the map D (Z,,Qp) — DM(Z,, Qp) is of trace class for ' > h, the composite

’Dh/(Zp’ Qp) — Homg, (Dhl(Zm Qp)7Dhl(va Qp)) — Homg, (D" (Zp, Qp), D"(Zyp, Qy))
factors through C'*(Z,,Q,) ®qQ, o DMZ,,Q,). Taking colimits as h — R~ one gets a map

Dh,(ZIm Qp) — Cla(Z:m Qp) ®Q, 0 Dh,(ZIm Qp).

One easily checks that this is a morphism of algebras that endows Dh/(Zp, Qp) with a Cl“(Zp, Qp)-comodule
structure, namely, it is nothing but the orbit map of Dh,(Zp,Qp) as locally analytic representation. One

checks that these maps are compatible for A’ > 0, defining the Zé“-module structure Zé“ X @mﬂ? — @mm as
wanted. O

Construction 4.3.15. We define the category of locally analytic Z,-vector bundles of rank d to be the slice
category Sh.@(AH%p)[*/GLd(ZP)M] where GLg(Z,)™ is the analytic group space associated to the Hopf algebra
of locally analytic functions of GL4(Z,). Let StT = ZZ be the standard representation over x/GLg(Z,)'?,
then the locally analytic Lie group St*!® has a natural action of % / GLd(Zp)l“ that defines an analytic space
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V(StH1). For X — */GLg(Z,)", with associated vector bundle .Z induced by f : X — #/GLg(Z,)" —
*/GLg, we denote by .Z !¢ the Zp locally analytic vector bundle. We let V(.Z 1) .= f*V(St*!) be the
geometric incarnation of .Z11¢. Let @m . be the p-adic generic fiber of the formal multiplicative group at
1 endowed with its Z!*-module structure. We define the dual space of V(.Z1!%) to be Gm p(FVHley =

V(}‘V ,+ la) ®Z£J‘l @mm.

Definition 4.3.16. Let .# !¢ be a locally analytic Zy-vector bundle of rank d associated to a map X —
*/GLd( »). We let Sym!®(ZV:F) denote the Ox-algebra of functions of the space V(Z ). We call
Sym‘¢(ZV:+) the algebra of locally analytic functions of .7 +Hla We denote by Sym%(.ZV:F) the global

sections over X of the dual space Gm,n(ﬁ T), we call this object the algebra of locally analytic distributions
of 9\/,+,la.

Proposition 4.3.17. Let X be an analytic I-stack over Q, and let FH1 be a locally analytic ZLyp-vector
bundle over X.
(1) The map V(F+ l“) — X is weakly cohomologically proper.
(2) The map f : G o(FT la)y — X is cohomologically smooth and there are natural isomorphisms
fMx = N\.7 J‘V[ | and fily zv) = A Z @ Sym!¢ (F+)[=d]. In particular, fif'l1x = Sym(F1).

Proof. Part (1) is clear since V(.Z11) is the relative analytic spectrum of the @x-algebra Sym‘(.Z1)
endowed with the induced analytic structure.

For part (2), smoothness of f follows from Proposition B.6.131 The computation of f'l1x and fi 1@( F+)
follows the same lines of the proof of Propositions d.2.4] and [4.2.13] after we modify the idempotent algebras.
For this, let eg,... ,€d be the canonical basis of St. For i = ,d let D; := D%(St,Q,){1/e;)T =
im0 Dla(St Q) (& > Then D; is an idempotent D" (St, Q,)- algebra we let C be the dg algebra obtained

by taking the “union” of D1,...,Dy. Then, the space Gmm(St) is the open subspace of AnSpec D'(St, Qp)
obtained as the complement of the idempotent algebra C'. Therefore, we can write

filg, s = [D(5,Q,) = O]
An explicit power series computation shows that f| e (S) is GLg4-equivariantly isomorphic to Cl“(St, Qp)®
5N
A% StV[—d]. Let us see that it has the natural comodule action of C'%(St, Q,). For this, it suffices to compute

its dual since it is a LB space of compact type. But the dual is given by

d
fof'1x = \ St¥ @D (St,Q,)(d],
this shows that f'l1x = f* A?StV[d], and so

d
f*f!lX = (f*lﬁm,n(St)) ® /\ Stvldl

proving that the algebra structure of D!?(St, Q,) is the one arising from @mm(S‘c) as wanted. O

In order to obtain an analogue of Theorem .2.7] we need to have access to an analogue of the de Rham
and Koszul resolutions of &y of Lemma 2.3t

Lemma 4.3.18. Let X be an analytic Z-stack over Q, and FHle g locally analytic ZLp-vector bundle over
X of rank d.

(1) We have a natural resolution as Syml)‘}(ﬂv’Jr)-comodule given by a decreasing complete filtration
d
Ox — Sym%(FVH) & symlg(FVH) @ 7V L L symg(FV ) 0 \ FY, (4.20)

whose dual is the Koszul resolution

Sym;’%(ﬂ)@/\f%---%Sym;’%(ﬁ)@ — Sym%(F) — Ox.
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(2) We have a natural resolution as Symé‘}(ffvﬁr)—module giwen by an increasing complete filtration

d
Symg(FH) @ \F — - = Sym(F 1) @ F — Symi(F) - Ox, (4.21)

whose dual is the Rham complex

d
Ox — SymR(FV) @ F 4.4 SymZ (F"Y) ®/\ﬂv.

Proof. Tt suffices to prove the universal case with X = %/GLg(Z,)"* and .#+!* = St!®. Recall that we have
an equivalence of Hopf algebras Z, o[Z,] = Z,[[1 — X]] sending the unit [1] € Z, to X € Z,[[1 — X]]. Under

this equivalence Dl“(Zp,Qp) becomes isomorphic to T&lh @p< = /h> One obtains a GLg-equivariant
Koszul resolution induced by left multiplication of St:

d
0 — D'*(St, Q) @ \ St — -+ = D'*(St, Q,) ® St — D' (St, Q) — @y — 0.

taking duals one gets the resolution (E20). It is clear that this is a resolution as C'@(St,Q,)-comodules
and D!%(St, Q,)-modules.

For part (2) we argue in the similar way, this time knowing that the de Rham complex

d
0 = Qp — D9(St,Q,) % D9(St,Q,) @StV 5 - 4 Dla(st,Q,) @ A\ St¥ — 0

is exact by the Poincaré Lemma, GLg-equivariant, and a complex as D" (St, Qp)-comodule and C'a(St, Qp)-
module. Note that, after fixing a basis ey, ..., eq of St, the resolution (£.2]]) is the Koszul resolution of the
regular sequence (X, —1,..., X 1), where X, — 1 is the projection to the i-th component. O

eq

Remark 4.3.19. The resolution of Lemma EE3.I8 (1) is not the de Rham complex of Sym‘¢(FY:F). It is
actually obtained by the Lazard-Serre resolution of the Iwasawa algebra, see [Kohlll Theorem 4.4].

Theorem 4.3.20 (Cartier duality for locally analytic Z,-lattices). Let X be an analytic stack over Q, and
let FHl be a locally analytic Zyp-vector bundle over X. Then the analogue of Propositions[{.2.5 and[{.2.9,
Theorem [{.2.7 and Corollary [{.2.10 hold after replacing the following objects:

V(F) for V(FH1),

V(FY) for Gy (F12),

Sym$%.Z" for Syml“(fv ),

Symy (F) by SymR (7).

Proof. The same proof of the references applies in this context after making two modifications: the first
one is replacing Lemma .2.3] for Lemma 318 The second is to provide the suitable compactifications of
f: Gpp(StT) —  that are used to compute fif'Q, as in Proposition 2.4 O

Remark 4.3.21. There are at least two different generalizations of the Cartier duality for locally analytic
Zyp-vector bundles. The first consists in taking a finite extension L/Q), and considering instead L-locally
analytic Op-vector bundles; this theory should be a consequence of what we have done previously since we
have a fiber sequence of group objects over L:

(Liet)t — 0%~ - ok,

where O%p_la is the group Of, seen as a p-adic Lie group over Q,, and € = ker(Lieg, Or ® Q,L — Lier, Or).
A different and more interesting generalization is the passage from locally analytic Zp-vector bundles to
locally analytic Q,-vector bundles. In thls case, the Cartier dual of a locally analytic vector bundle .#'@

should be given by the “wuniversal cover” Gm,n(fv), where G Gy (F L Gm (ZV>1) is the limit as

analytic spaces of multiplication by p of the dual of a Z,-lattice .Z* l“ C Fla (such a lattice exists locally
in the Z-topology).
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5. ALGEBRAIC AND ANALYTIC DE RHAM STACKS

In this section we construct the algebraic and analytic (filtered) de Rham stacks for derived Tate adic
spaces over Q,. Following [Bha22|, we will obtain the Hodge-filtration of the de Rham cohomology by
reading the geometry of these stacks. We shall prove that both the algebraic and analytic de Rham
stacks have a nice theory of six functors for morphisms locally of solid finite presentation of derived Tate
adic spaces. Finally, we compute the dualizing sheaves of both filtered de Rham stacks for solid smooth
morphisms by applying a deformation to the normal cone argument as in [Man22b] and [CS22].

5.1. The algebraic de Rham stack. The (algebraic) de Rham stack was introduced by Simpson [Sim96l,
ST97|, and plays a fundamental role in the geometric Langlands correspondence, cf. [GR14]. In the
following we will define algebraic de Rham prestacks in the realm of analytic geometry over Q. We then
specialize to solid prestacks and show that the theory of D-modules obtained in this way admits a good
behaved six-functor formalism.

5.1.1. General definition.

Definition 5.1.1. Let PSh(AnRing&p) be the category of prestacks on analytic rings over Q. We define
the following objects
(1) Let X € PSh(AnRingf}p). The absolute filtered algebraic de Rham prestack of X is the prestack of
anima over A!/G,, given by

XiE (0(1) = A) = lim X(cone(I ® 6(—1) = A)),
I—-A
where I runs over all the uniformly nilpotent ideals of A, see Definition 2.5.8] We define the absolute
de Rham (resp. Hodge) prestack Xda},g (resp, X?Ilidge) to be the pullback along * = G,,/G,,, — Al .
(resp. the pullback along */G,, — A'/G,,). When restricted to solid rings, the filtered de Rham
stack is the Z-sheafification of the filtered de Rham prestack (resp. for the de Rham and the Hodge
stacks).
(2) For a morphism X — Y of prestacks on analytic rings over Q we let XS};,Y be the pullback

X;}% y —— Y xAl/G,

! l

alg alg
Xagr — Yapi-

Similarly, we define X;}%Y and X?_}i dge.y 1O be the pullback of X;},% . to Y and Y xx/G,,, respectively.
The following proposition describes some basic properties of the algebraic de Rham stack.

Proposition 5.1.2. Let f: X — Y be a morphism of prestacks on AnRingg.

uppose that f is formally étale, then the natural map X X m — -+ 1S an equivalence.
1) S hat f is formally étale, then th I map X x A'/G, — X208, !
2) Suppose that [ is formally smooth and let Tx /vy = AnSpecy Sym%Lx,/y . e following ho

S hat f is f Il h and 1 T/ AnSpecy S 'XIL/ The foll hold

(a) The map X x A'/G,, — X;gr y 8 an epimorphism.

(b) There is a natural equivalence X;Ilidge,Y = (X x */Gm)/,]{)(/\)/(—l)

(3) The formation of X X;}% commutes with small colimits and finite limits of prestacks.

Proof. (1) Let A € AnRinggp, and let &(—1) — A be a generalized Cartier divisor and I — A an
uniformly nilpotent ideal (cf. Definition 2.5.8]). Let B = cone(f ® 0(—1) — A), then A — B is a
nilpotent thickening and there is a natural equivalence

(X % A1 /@) (A) 5 X(B) Xy (¥ x A/Gm)(A) = (X, xya (¥ X AYGu)(A)  (5.)

proving what we wanted.
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(2) It is clear that if f is formally smooth then X x A'/G,, — X2§+ is an epimorphism, namely, the
map (5.1)) is surjective by definition of formally smoothness; this shows (a). To prove part (b), note

that A-points of X?Ilid ge.y are given by

Xty (A) = lim X(I @ 0(=1)[1] & A) Xy (1eo-nea) (¥ x #/CGn)(A).
IcA

Thus, given n € Y(A), the fiber of X?}%dge y = Y x /Gy, at n x /Gy, is given by

limp Mapygoa, () (7" L)y, I ® O(=1)[1]) = ("L, @ Nil(A) @ 0(-1))[1])(*),
ICA
which shows that

X?—Il%dge,y = (X x %/Gp)/Tx/y (—1).

(3) Finally, by definition at the level of points, X X;}% commutes with small colimits. The com-
mutation with finite limits follows from the definition and the fact that the system of uniformly
bounded ideals of a ring A is filtered.

O

Remark 5.1.3. There is a different definition for the de algebraic (filtered) de Rham prestack, namely, the

prestack given by
XU (0(1) — A) = X (cone(Nil(A) ® 6(—1) — A)),

see §2.5] for the definition of the condensed nil-radical. The apparent advantage of this definition is that
the formation of X — Xgﬁgjr commutes with small limits and colimits of prestacks, however, after taking
sheafifications with respect to some Grothendieck topology the formation of the de Rham stack will only
commutes with small colimits and finite limits. The disadvantage of this definition is that it is not clear
whether formally smooth maps produce epimorphisms. Nevertheless, for all the spaces in practice both
constructions are the same after a suitable sheafification, eg. smooth morphisms of classical derived schemes
(this follows from the fact that the nilpotent radical of a finitely generated algebra is nilpotent), and solid
smooth morphisms of derived Tate adic spaces (this follows from Proposition as Nil(A) c Nilf(A) for

a bounded affinoid ring).
Another feature of the de Rham stack is its relation with formal completions of Zariski closed immersions.

Proposition 5.1.4. Let X = AnSpecB — Y = AnSpec A be a morphism of analytic affine spaces over Q
surjective on Ty, and such that B has the induced analytic structure from A (i.e. a Zariski closed immersion).
Let I = [A — B] and suppose that there is an extremally disconnected set S and a map S — I such that

A[S] — I is surjective on my. Then the algebraic de Rham stack Xc?}%Y 1s the full substack of Y given by
XiEy = Y X Anspee zqn(s)) AnSpec Z[N[S]];.

We call X;}%Y the formal completion of Y along X and denote it by yX.

Proof. Let us write YX = hﬂn Y X AnSpec ZIN[S]] AnSpec Z|N[S]]%, by Proposition 2.5.7 the map YX 5 X
is an immersion. Since for any analytic ring C the ideal of the map C — 7y(C) is uniformly nilpotent,
the algebraic de Rham prestack is the right Kan extension of its restriction to static analytic rings. In
particular, X r and Yy are just presheaves on sets and Yyr — Xyp is an immersion. Thus, to show that

Xg}%Y =YX , it suffices to check at the level of points in static analytic rings. Let J — C be an uniformly
nilpotent ideal of an static analytic ring C, suppose we have a commutative diagram

A——C

|

B——C/J.

Let S — I be such that A[S] — I is surjective, then the image of S in C belongs to J, and since J is
uniformly nilpotent there is n such that A — C factors though

A @zns) ZINIS)ly = C,
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proving that the map AnSpecC — Y factors through YX as wanted. O

Remark 5.1.5. The hypothesis that A[S] — I is surjective on 7y can be thought as a finitely generated
assumption for the Zariski closed immersion. With the alternative definition of the de Rham stack of
Remark [5.1.3] one can extend Proposition [5.1.4] to an arbitrary Zariski closed immersion.

5.1.2. Six functors for algebraic D-modules. Let us now restrict ourselves to the category of solid prestacks
over Q, namely, the category PSh(Affg) of presheaves on anima of solid affinoid rings over Q. We can
transmute the six functor formalism from quasi-coherent sheaves to D-modules as follows:

Definition 5.1.6. Let S € PSh(Affg) be a fixed prestack. We define the six-functor formalisms 98

dR*+,S”
Qg}%gs and %?}idge g from PSh(Affg),g to be that obtained via Lemma [FT.4and the functors X — X;}% o
X;;% g and Xpgodge,s, landing on P-stacks over S x A'/G,,, S and S x x/G,, respectively. We call 95}% S

(resp. 93}% g» Tesp. Qzlfd e g) the six functor formalisms of filtered algebraic D-modules (resp. algebraic
D-modules, resp. algebraic Hodge modules) over S.

By Theorem B.1.7 we have a six functor formalism on prestacks for the different Z-topologies defined
by the functors @;}%’ g @2}% g and Qﬁidge’ g+ There is no reason for these topologies to be the same, and
not even comparable with the Z-topology for solid quasi-coherent sheaves. Nevertheless there are some

particular cases where one can relate covers in different topologies.

Lemma 5.1.7. Let S be a base prestack and X — Y a morphism of Qslg -stacks which is a canonical

R*,S
cover and such that X;},% — Yda}li g is a D-cover. Then X =Y isa .@;}% o @;}%S and @Efdge g-cover.
Proof. Being a .@3}% g-cover means that it is a canonical cover and of universal x and !-descent for the six
functor formalism .@3}% (X)) = ModD(X;“}g+ g)- The map X — Y is a canonical cover by definition, and
by hypothesis X;}é g de;lzi g is a P-cover, in particular of universal * and !-descent. The lemma follows

since the formation of the filtered de Rham stack commutes with finite limits (see Proposition 5.1.2] (¢) and
[Lur09, Remark 6.2.2.11]), and the fact that XS;%,S and X?{lidge,s are the fibers over G,,/G,, and x/Gy,
respectively. O

Let R = Z((m)), our next task is to show that morphisms locally of solid finite presentation of derived
Tate adic spaces admit !-functors for the six functor formalism of algebraic filtered D-modules. Moreover,
we prove an analogue existence result for morphisms of locally finite presentation in Berkovich geometry
and f-geometry. Finally, we show that solid smooth (resp. étale) maps are sent to cohomologically smooth

(resp. étale) maps under @3}% in characteristic 0.
Definition 5.1.8. (1) We let R(T') denote the Tate algebra of R endowed with the induced analytic

structure from R. Given A a bounded affinoid ring over R, we let A(T) := A®p, R(T).
(2) We let R(T)T = limg o, R(m¢T) denote the algebra of overconvergent functions of a closed unit

disc. Given A a bounded affinoid ring we let A(T)T := A ®pg, R(T).
Recall the notion of a coordinate theory of Definition B3Il The natural maps R[T] — R(T) and

R[T] — R(T)' define two coordinate theories over R, this allows us to talk about morphisms locally of
finite presentation for R(T') and R(T), see Definition 3.3.3l

Definition 5.1.9. A Berkovich adic space (resp. a f-space) is a R(T')-adic space (resp. a R{T')T-adic space)
as in Definition B.3.3] (3). A morphism of Berkovich adic spaces (resp. f-adic spaces) is locally of finite
presentation if it is locally of R(T)-finite presentation (resp. of R(T)'-finite presentation).

Lemma 5.1.10. Let Go, denote the analytic spectrum of Q[T], Z[T]n ® Q, R(T) ® Q or R(T)' @ Q.
Let @a(—l) be the formal completion at 0 of the twisted line bundle O(—1) over A'/G,,, and consider the
natural morphism of abelian group objects @a(—l) — Gax X AY/Gyy,. The following hold:

(1) G (Ggx % Al/Gm)/@a(—l). In particular the maps

ax,dRT

cLalg a1l alg
foxgre = A /Gm = G2 pt
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and
g: GZE,d}% — *kqp+
admit \-functors. Furthermore, the following properties are satisfied
(a) The pullback of f to the algebraic de Rham stack is (—1)-truncated and cohomologically étale.
(b) If Gg» = Gop = AnSpec(Z[T]n ® Q), then g is cohomologically smooth.
(¢) If Gox = AnSpecQ[T], AnSpec R(T) ® Q or AnSpec R(T)' @ Q, then g is cohomologically
co-smooth.
(2) Letn > 1 and denote X, := AnSpec(Symg(Q[n])). Then

xole (@a(—l)xn+1/G“)/@a(—l),

ndR+ —
where @a(—l) acts diagonally on the fiber product. In particular, the maps XSEU% — *lei and
*lei — Xf“:fm+ admit \-functors. Furthermore, their restriction to the de Rham stack is an equiva-
lence.
Proof. (1) By definition, GZ%R . represents the functor
(0(—1) = A) — cone(Nil(A) @ O(—1) — A)(x),
this implies that Gzl,ifﬁ = (G, x Al/Gm)/@a(—l). On the other hand, for any other group G, 4,

the map G, — G, (with R-extension of scalars if necessary) is formally étale. Since G, and G «
are formally smooth, by Proposition 5.1.2] (2) we have a cartesian diagram

Gas X AY/Gp, — Gg x A/Gyy,

| |

alg
a,x,dRt (G}GL,dR+
where the vertical arrows are epimorphisms. One deduces that G, , jr+ = (Gax X Al/Gm)/@a(—l)
as wanted.

(a) The map f : *3&% — GZIE Jr+ 18 equivalent to the map

Ga(~1)/Ga(=1) = (Gay x A /Gy)/Ga(—1).

since @a(—l) — Ggx x A1/Gy, has !Hfunctors, one deduces that f does so. The restriction to
the de Rham stack yields the functor

Ga/Gq — Ga, /G,

which defines an open immersion of locales, so it is cohomologically étale.

(b) and (c¢) The map GZIE dR+ *ZII% factors as the composite

(Gax X AY/G)/Ga(=1) = (AY/Grn) /Ga(—1) = Al /Gy

When G, = Gg0, the first map is smooth by Lemma and the second is smooth by
Proposition 4.2.5] then so is the composition. If G, , is any other coordinate, the first map is
weakly cohomologically proper being a quotient of a map of analytic rings with the induced
analytic structure, and the second is co-smooth by Proposition again, then so is the
composition.

(2) Since the filtered algebraic de Rham functor commutes with finite limits, and Symg(Q[n + 1]) =

Q ®Sym@(@[n}) Q for n > 0, we have the desired description of XZ% g+ 1t 1s also clear that the maps

X;}ir — *31}% + and *31}% L — X;}é admit !-functors from this description as stacks. -
Lemma 5.1.11. Let f : X = AnSpec. A — Y = AnSpec B be a morphism of bounded affinoid rings over

(R® Q).

(1) If f is standard solid smooth (resp. étale) then X;;% — Ydallg is cohomologically smooth (resp.étale).



(2)

(3)

Proof.
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Suppose that X = |_|§l:1 X; with X; — Y standard solid smooth. If f is a smooth &Z-cover then
X;}% — Ydaéﬁ 18 a smooth ZD-cover. In particular, solid rational covers of Y give rise Z-covers of

alg
}/dRJr :

Suppose that f : X — Y is a rational cover for the coordinate theories R(T) and R(T)'. Then

1 lg .
X§}§+ — dei is a descendable 9 -cover.

(1) We first assume that Ly is a projective B-module. By deformation theory the map Y X

AY/G,, — Y;}g is surjective, in particular of universal x-descent. Then, to show that X;;% — Yda}lza

is cohomologically smooth it suffices to show that X;}éy — Y is cohomologically smooth. We can

factor X — Y x Gg PIYe ¥ with the first map being standard solid étale. By Lemma [5.1.10] the
alg
dR+)Y

alg n
the arrow XthY —Y x GmD’dR

Y x Gg  is a projective B(T1, . .., T, )p-module, and by the same argument it suffices to show that if

projection (Y x Gg ) — Y x A'/G,, is cohomologically smooth, so we only need to show that

+ is cohomologically étale. But again, the cotangent complex of

X — Y is standard solid étale then X;},%y —Y x A'/G,, is cohomolgically étale. By Proposition

5121 (1) we have that X;}ir v = X x A'/G,, proving what we wanted. Now we show the general
case, since the formation of the filtered de Rham stack commutes with finite limits, it suffices to

construct a Cartesian diagram

X —X

l l (5.2)

Y — Y/

where X’ = AnSpec A’ — Y’ = AnSpecB’ is a standard solid smooth (resp. étale) morphism of
bounded affinoid rings (not necessarily over Q!), and Ly a projective B’-module. Since B is bounded
affinoid, we can write mo(B) as a filtered colimit of quotients of rings of the form R(X)5(N[K] where
X is a finite set of variables and K is a profinite set. Writing A = B(T1,...,Ty)a/"(f1,..., f.) as
a standard solid smooth map, we can find a map B’ := R(X)o(N[K]) — A and a lift f/ of f;
to B'(Ty,...,Ty)n such that A" = B{(Ty,..., Ty)o/"(fl,..., f.) is standard solid smooth. Taking
Y’ = AnSpec B’ and X’ = AnSpec A’ we get the desired cartesian diagram, namely, the cotangent
complex of B' is isomorphic to @F_, B/[K] with X = (X1,..., X3).

By Proposition B.I1.15] it suffices to show that the pullback along the map X;}% — Ydaéi is
conservative, for this it suffices to see that it is a surjection as Z-stacks. Suppose first that
Y x AY/G,, — Yda}li is surjective as Z-stacks, in particular of universal x-descent. Then, it

suffices to show that the map ngﬂY — Y x A'/G,, is surjective, but we have a factorization

X x AY)G,, — X;},% y = Y x AY/G,,. Since X — Y is a smooth Z-cover we deduce that

lel}%tY — Y x Al/G,, is surjective as wanted. In general, consider the topology .7 on Aﬂ“ljz@@ with
covers given by solid smooth morphisms that are Z-covers. We proved that the formation of the
filtered de Rham stack satisfies .7-descent for covers U — W such that W — W;}% is surjective.
To show descent for a general morphism it suffices to construct a Cartesian diagram as in (5.2]) such

that X’ — Y’ and Y’ x A1/G,,, — Yéglf are surjective as morphisms of Z-stacks. By part (1) we
can find a cartesian diagram

X —X

l l (5.3)

Y — Y”

of bounded affinoid rings where Ly is a projective module in Modg(Y") (even compact projective),
in particular Y — Yé;ﬁg is surjective. However, X’ — Y” might not be a surjection. Let Y/ C Y”
be the full .7 -substack consisting in the essential image of X’ in Y, concretely, it is the geometric
realization of the simplicial .Z-stack (X ™+1/ Y")[n]e Aop. Then, since X — Y is a .7 -cover, we still
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have a Cartesian diagram
X — X

|

Y — Y’

On the other hand, since Y/ C Y” is a full .Z-substack, the morphism Y’ x A'/G,, — Ydlglf is

surjective as Z-stacks, namely, it is the geometric realization of the surjective morphism of simplicial

9-stacks

n " 'm+1/Y" al
(XY ¢ AY G pmienor = (XY ) e oo

The lemma follows.

(3) For part (3), denote R(T) for R(T) or R(T)', and let us write f : X = | | X; = Y with X; - Y a
R(T)-rational localization. In particular, each map X; — Y is defined by an idempotent &y-algebra
and defines a closed subset of the locale of Y. Suppose first that Y — Yda}li is surjective, then since
X; — Y is formally étale (cf. Example B.A10), we have a cartesian square

X; x A1/G,, —— Y x A1/G,,

| |

alg alg
. _—
‘Xz,dR+ YvdRﬁL

where the vertical arrows are epimorphisms. Then, the inclusion XziigR L — Yda}li is defined by an

idempotent algebra in ModD(Ydaéﬂ), and defines a closed subspace of the locale of Yda}li. Since

X — Y is a cover, we have |J; X; = Y as closed subspaces of the locale, which implies that

U; XzfigR L= Yda}li. Since there are only finitely many i’s, one deduces that the map X;}% — Yda}li
is descendable, and a Z-cover by Proposition [3.1.16]

Let us now deal with the general case. As in part (1), we can assume that there is a bounded

affinoid space Y” = AnSpecB’ such that Y” x A!/G,, — Y;;’;:g is surjective, a morphism X’ =
Ll; X; — Y consisting in finitely many R(T)-rational localizations (that might not cover Y”’), and
a cartesian square as in (0.3)). Then, taking Y’ C Y to be the union of the X! in Y, we have a

Cartesian diagram as in (5.2]) where X’ — Y’ and a descendable morphism. By the first case treated

! !
we get a descendable morphism X d’;lf — nglf whose pullback to Yda}lngr gives rise a descendable
morphism X;}% — Ydaéi, in particular a Z-cover as wanted.

O

Theorem 5.1.12 (Six functors for algebraic D-modules). Let us write R(T) for R(T)n, R(T) and R(T)T.
Let f : X — Y be a morphism of derived Tate adic spaces over R ® Q locally of R(T)-finite presentation,

and let f;}% : X;gr — Yd%i be the associated morphism of algebraic filtered de Rham stacks. Then f;}%

admits !-functors. Furthermore, if f is solid smooth (resp. solid étale), then f;}% s cohomologically smooth
(resp. cohomologically étale). Moreover, the formation of the filtered de Rham stack satisfies descent for

solid smooth covers, namely, solid smooth maps f such that f* is conservative (cf. Proposition [Z1.11).

Proof. By Lemma [B.1.1T] (2) and (3), the formation of the de Rham stack satisfies analytic R(7")-descent
for R(T) = R(T)g, R(T) and R(T)!. Then the existence of !-functors for morphisms locally of R(T)-finite
presentation follows from Lemma [5.1.10land Proposition The fact that solid smooth maps, resp. étale
maps, resp. analytic open subspaces are sent to cohomologically smooth maps, resp. cohomologically étale
maps, resp. open immersions of locales, follows from Lemma [EI.IT] (1) and the fact that the formation
of the filtered de Rham stack commutes with finite limits. Finally, descent for solid smooth covers follows

from Lemma B.T.1T] (2). O

5.1.3. Hodge filtration of the de Rham cohomology. We finish this section with the construction of the Hodge
filtration of the compactly supported de Rham cohomology of a solid smooth morphism of derived Tate
adic spaces over R ® Q, this discussion follows closely [Bha22) §2|.
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Theorem 5.1.13. Let f: X = Y be a solid smooth morphism of derived Tate adic spaces over R® Q of
relative dimension d, and let fyp+ : X;},% — Ydaéi be the associated map of filtered de Rham stacks. Then
the compactly supported de Rham cohomology

DR.(X/Y) := fy, | !;Q‘ledalnzg+
is complete with respect to its natural filtration. Moreover, we have a Hodge filtration
g (DRX/Y)) 2 Ay (i)l
when pullbacked to an object in Y .

Proof. In order to see that DR.(X/Y) is complete, we can work locally in the analytic topology of X and Y,
and assume that both are affinoid and f is standard solid smooth. Furthermore, by taking a cartesian square
(52) as in the proof of Lemma [5.I.11] and proper base change, we can assume that Y x A'/G,, — de;lzi is
surjective. Thus, to prove that DR.(X/Y) is complete, it suffices to consider its pullback to Y x A'/G,,,
or equivalently, take the cohomology with compact support of the map X;Ety — Y x A'/G,,. On the
other hand, we have a factorization

XY xGly-Y
which gives rise to a factorization

h ~ k
XiE, B Y xGUe L 5 Y x BGu(-1)! S Y x AY/Gp.

Note that we have a diagram with cartesian squares
X xAY)Gp — YV x Gl x AY)Gp, —— Y x Al/Gy,

| ! |

alg alg,d
—>
XdR+,Y Y x Gaﬂ’d

i —— Y x BG,(~1)".

By Theorem [B.6.15] and Proposition L.2.5 we have an (a priori non-natural) equivalence

f[!im,ylyml/@m ~ 1 gk ly nrjg, = 1gae  (—d),
dRt)Y

in particular it is filtered complete, and then so is hy fC!lR + yvlyxalg,,- One deduces completeness for
DR.(X/Y) from the following lemma:

Lemma 5.1.14. Let g: Y X B@a(—l)d — Y x AY/G,,. For any filtered complete module F € Modg(Y x
BG4 (—1)%), g F € Modg(Y x A'/G,,) is also filtered complete.

Proof. By Cartier duality Theorem 27 we have a natural Modg (Y x A!/G,,)-linear equivalence of cate-
gories of solid quasi-coherent sheaves

FM™': Mods(Y x BGa(—1)%) = Mods(Y x Ga(1)%).
Let t: Y x A'/G,, — Y x G,(1)? be the zero section, then Corollary EE2.I0 (ii) implies that
gF = FMHF®© (9'lyxaye,) ") = FMHF © 0(d)[d)).
But the object :*FM 1 (F ® 0(d)[d]) has a finite Koszul filtration with graded pieces given by twists of

finite direct sums of FM~Y(F ® ¢(d)[d]), proving that it is still complete. O
It is left to compute the graded pieces of DR.(X/Y), this follows from Proposition and that
X?—Il%dge,y = (X x BGp,)/Tx /v (—1) by Proposition (2.b). O

Remark 5.1.15. Theorem B.I1.13] was stated for de Rham cohomology with compact supports due to its
well behaviour with respect to the six functors. One recovers the completeness and Hodge filtration of the
usual de Rham cohomology by taking duals. Moreover, the fact that the cohomology of the de Rham stack
coincides with the hypercohomology of the de Rham complex for classical smooth morphisms of rigid spaces
follows by the same argument as in [Bha22l Theorem 2.3.6] by reduction to the case of the unit disc, we
left the details to the reader.
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5.2. The analytic de Rham stack. In Section 5.1l we introduced the algebraic filtered de Rham stack
and proved that it has a reasonable theory of six functors for derived Tate adic spaces. In the next section
we will introduce a variant of this construction that for our convenience we specialize to Tate stacks over

Qp. The new theory of D-modules obtained from this stack is an enhancement of the theory of D-modules
of Ardakov and Wadsley [AW19, [AW18], that we call analytic D-modules. A more concrete comparison
between analytic D-modules and Ardakov and Wadsley’s D-modules is left to a future work. For example,
for a smooth rigid space X, we expect coadmissible D-modules to be precisely the smooth objects on Xyg.
Instead, we shall construct a six functor formalism for analytic D-modules, and prove good cohomological
groperties for morphisms of solid finite presentation. Once the relation between analytic D-modules and

D-modules is made, the six functors constructed hereby will give a very large extension of the six functors
of Bode in [Bod21].

5.2.1. Construction of the stacks. Let Afff(’@p be the category of bounded affinoid analytic spaces over Q,,
PSh(Aﬁ‘ap) the category of prestacks on Aff(b@p and Sh@(Aff(b@p) the category of Tate stacks over Q.

Remark 5.2.1. The functor Aff%zp — Ani sending A +— A(x) is not longer represented by the algebraic

affine line A!, instead, it is represented by its analytification A" as a rigid space over Qp. Similarly, the
functor A +— A(*)* of units is represented by the analytification of the multiplicative group G2

Definition 5.2.2. We define the following objects

(1) Let X € PSh(Aﬁ‘&p). The absolute filtered analytic de Rham prestack of X is the prestack over
AL /G defined as

Xyr+ (0(1) = A) = X (cone[NilT(A) @ O(—1) — A]).

The absolute analytic de Rham prestack Xqgr (resp. the absolute analytic Hodge prestack Xgodge) is
the pullback of X p+ to * = G2 /G2» (resp. the pullback to x/G2"). The P-sheafification of X p+
is called the filtered analytic de Rham stack and denoted in the same way (similarly for Xy and
XHodge)-

(2) Let S € PSh(Affap) and let X be prestack over S. The relative filtered analytic de Rham prestack
of X over S is the pullback

XdR+,S — S x Al,an/@%}

| !

Xap+ —— Sap+-

The relative analytic de Rham and Hodge prestacks are defined as the pullback of Xg jp+ to * =
G2 /G2 and */G2 respectively. If S is a Tate stack the relative filtered analytic de Rham stack of
X over S is the Z-sheafification of Xjp+ ¢ that denote it in the same way. We define in the obvious
way the relative analytic de Rham and Hodge stacks.

Next, we prove some formal properties of the analytic de Rham stack that are deduced from the definition,
cf. Proposition L.1.2]

Proposition 5.2.3. Let f : X — Y be a morphism of prestacks on Aff(b@p,

(1) Suppose that f is t-formally étale, then the natural map X x AL /G0 — Xar+y 18 an equivalence.
(2) Suppose that f is T-formally smooth and let T)?I/ly = (AnSpecy Sym§Lx)*". The following hold
(a) The map X x AY*"/G¥ — X p+ y is an epimorphism.
(b) There is a natural equivalence X froqgey = (X X */G%)/Tg/y(—l).
(3) The formation of X — Xgp+ commutes with small colimits and limits of prestacks.

Proof. (1) This follows from the notion of {-formally étaleness, cf. Definition
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2) Part (a) follows from the notion of {-formally smoothness. For part (b), let A € Aff% | let 0(—1) —
p

A be a generalized Cartier divisor and let € Y'(A). Then the fiber of Xpoq4ey over 7 is given by
the fiber product of

(n,6(1))

J

Y(A) x x/Ga»

|

X(Nilf(A) @ 6(-1)[1] @ A) —— Y(NilT(A) @ 0(-1)[1] & A)
which is represented by
Mapytod. o) (1 Lixyy, Nil'(A) ® 6(=1)[1]) = 9Ly y @ Nil' (A)(=1)(+)[1].

This shows that Xgodgey = (X x */G%)/T;g/y(—l) as wanted.
(3) This follows immediately from the definition of the filtered analytic de Rham prestack, as limits

and colimits of prestacks are computed at the level of points.
O

Similarly as for the algebraic de Rham stack, there is a notion of {-formal completion or t-neighbourhood
for a Zariski closed immersion.

Proposition 5.2.4. Let X = AnSpecB — Y = AnSpec A be a morphism of bounded derived Tate adic
spaces over Q, which is surjective on my and that has the induced analytic structure (i.e. a Zariski closed

immersion). Let AT/B be the idempotent A-algebra associated to the closed subspace Spal B C Spal A of
Proposition [2.7.19. Then there is a natural equivalence

XdR,Y = AnSpec AT/B.

Proof. By the proof of Proposition 227,19 the map A/8 — B induces an equivalence in f-reduced algebras.

This gives rise an equivalence AnSpeC(AT/B)|Aﬂb tored = AnSpec(B)|AHb t—red. But by definition, Xyp is the

right Kan extension of the restriction of X to AﬁbT red The proposmon follows since Xyr — Yygr is an
immersion, and Xyry C Y is the full sub prestack mapplng to Xyr. O

As a consequence, we obtain Kashiwara equivalence for analytic D-modules and Zariski closed immer-
sions.

Corollary 5.2.5 (Kashiwara equivalence). Let X — Y be a Zariski closed immersion of derived Tate adic
spaces over Qp, and let Y1/X c X be the overconvergent neighbouhood of X in'Y obtained by gluing the
rings BT/A of Proposition[5.2.7) in the analytic topology of X. Then there is a natural equivalence of analytic
de Rham stacks Xgr = YJIQX. In particular, the category of analytic D-modules of Y supported on X is
equivalent to the category of analytic D-modules of X.

Proof. By Lemma [5.2.9] down below the formation of the analytic de Rham stacks satisfies descent for
the analytic topology. Then, it suffices to prove the statement in the affinoid case of Proposition £.2.41
But the analytic de Rham stack of X if the Z-sheafification of the right Kan extension of the restriction
of X to Affai_red, and the f-reductions of A and B4 are isomorphic by construction. This proves the
corollary. O

5.2.2. Six functor formalism for analytic D-modules.

Definition 5.2.6. Let S € PSh(Aﬂ“f@p). We define the six functor formalisms Zyp+ s, Zar,s and Pyodge,s
for PSh(Afffép) /s to be the six functor formalism obtained by Lemma [3.1.4] applied to the functors X —
Xar+s» Xar,s and Xpodge,s, landing in Z-stacks over S x Aban/Gan - G and S x /G2 respectively. The
six functor formalism Z;p+ g (resp. Z4r.s, resp. PHodge,s) is called the six functor formalism of filtered
analytic D-modules over S (resp. of analytic D-modules over S, resp. of Hodge modules over S).
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Remark 5.2.7. The analogue of Lemma [5.1.7 holds for the analytic de Rham stack, namely, if X — Y is a
canonical cover such that X p+ ¢ = Yyp+ g is a P-cover, then X — Y is a Yyp+ g-cover.

Our next task is to show that the six functor formalism of filtered analytic D-modules admits !-functors for
morphisms locally of solid finite presentation of derived Tate adic spaces. We will even prove the existence
of -functors for morphisms locally of finite presentation of Berkovich or f-adic spaces, see Definition G.1.91
Finally, we will show that solid smooth and étale morphisms of derived Tate adic spaces give rise to
cohomologically smooth and étale maps at the level of filtered analytic de Rham stacks.

Lemma 5.2.8. Let G, denote the analytic spectrum of one of the algebras Qu(T)n, Qu(T) or Qu(T).
Let Go(—1) — AL /G2 be the line bundle obtained by the analytic spectrum of Sym&lyaD/G%(ﬁ(l)), and
let Go(—1)T be its overconvergent neighbourhood at the zero section; we have a natural morphism of group
objects Go(—1)T — Gay x ALY /G2 . The following hold:

(1) Garar+ = (Gap x AV /G2 /Gy (—1)1. In particular, the maps

. __ aAlan an
f PRJRY = A /Gm — (Ga,*,clRJr

and
9 G drt = *ar+

admit \-functors. Furthermore, the following properties are satisfies:

(a) f is always weakly cohomologically proper. Moreover, its pullback to the de Rham stack is
(=1)-truncated so cohomologically proper.

(b) If G x = Gon = AnSpec Q,(T)g, then g is a cohomologically smooth map.

(¢) If Gax = AnSpecQ,(T) or G,u = AnSpecQ,(T)T, then g is weakly cohomologically proper.
Furthermore, its pullback to the de Rham stack is O-truncated so cohomologically proper,

(2) Letn > 1 be an integer and denote X, = AnSpec Sym¢y Qp[n]. Then

X drt = (Ga(_1)T’XGan+1)/Ga(_1)T7

where Go(—1)1 acts diagonally. In particular, Xyp+ — *qp+ and *gp+ — Xgp+ admit \-functors
and are weakly cohomologically proper. Furthermore, their restriction to the de Rham stack is an
equivalence.

Proof. (1) Let G2 = A2 be the analytic affine line seen as an additive group. By definition, GZ?dRJr

represents the functor on bounded affinoid algebras over A#"/G,, given by
(0(=1) = A) — cone(Nilf @0(—1) = A)().
For G, , since the image of Nil'(A) ® @(—1) in m(A) is f-nilpotent, by Proposition the sub
prestack G, . qr+ C Gg,qr consists on the functor
(O(—1) = A) + cone(NilT(A) @ O(—1)(¥) = Gax(A)).
This shows that G, , gz+ is represented by the stack (Gq x AL /G) /G, (—1)T as wanted.
(a) The map *qp+ — G, gr+ is equivalent to the morphism
Ga(—1)T/(Ga(=1) = (Ga x AM™)/GIT)/Ga(~1)T.

This map admits !-functors and is weakly cohomologically proper since Gq(—1)" — (Gax x
AL /G2 has the induced analytic structure. Furthermore, its pullback to the analytic de
Rham stack is an immersion so (—1)-truncated.

(b) and (c) We have factorizations for G, , jr+ — *ar+

(Gae x AV /G /Ga(~1)T — (AM/GRY) /Ga(~1)T — AL/

If Gy = Ggp, the first map is cohomologically smooth by Theorem B.6.I5] and the second
is cohomologically smooth by Theorem [£.3.13] and Proposition [4.2.5] so the composite is also
cohomologically smooth. If G,, = AnSpecQ,(T) or AnSpecQ,(T)T, then the first map is
weakly cohomologically proper since it has the induced analytic structure, and the second is
weakly cohomologically proper by Theorem [.3.13] and Proposition 4.2.5] thus, the composite
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is weakly cohomologically proper proving what we wanted. It is clear that its pullback to the
the Rham stack is O=truncated.

(2) By Proposition 5.2.3] (3), the formation X +— X, p+ commutes with all small limits and colimits.
Then, since X, 11 = *Xx,, *, an inductive argument gives the desired description of X,, ;p+. The fact
that xjp+ — X, 4p+ and X, jp+ — *4p+ admit !-functors and that they are weakly cohomologically
proper follows a similar argument as part (1). Finally, since the -reduction of X, is *, they give
rise to the sane analytic de Rham stack.

O

We now prove an analogue of Lemma [5.1.11]

Lemma 5.2.9. Let f: X — AnSpec. A — Y AnSpec B be a morphism of bounded affinoid rings over Q.

(1) If f is standard solid smooth (resp. standard solid étale) then fip+ : Xqp+ — Ygr+ is cohomologi-
cally smooth (resp. étale).

(2) Suppose that X = |_|;-i:1 X; with X; — Y standard solid smooth. If f is a smooth @-cover, then
far+ : Xgr+ — Yyp+ is a smooth P-cover.

(3) Suppose that f : X — Y is a rational cover for the coordinate theories Qu(T) and Q,(T)T. Then
Xgr+ = Yyp+ is a descendable Z-cover.

Proof. The proof is virtually the same of Lemma B.IT.1I} the only key step is to have generators B of
AffRingf(’Dp such that Y x AL /G2 — Y, 1 is surjective as P-stacks with Y = AnSpec B. For this, we can
take affinoid spaces of the form Y = AnSpec B with B = Q,(X)5(N[K]), where X is a finite set of variables
and K is a profinite set. Then, the surjection of Y — Y,p+ is a consequence of Proposition U

Theorem 5.2.10 (Six functors for analytic D-modules). Let us write Qu(T) for Qu(T)n, Qp(T) and
Qu(T)t. Let f: X — Y be a morphism of derived Tate adic spaces over Q, locally of Q,(T)-finite presen-

tation, and let fyp+ : Xqp+ — Yda}l%i be the associated morphism of algebraic filtered de Rham stacks. Then
far+ admits \-functors. Furthermore, if f is solid smooth (resp. solid étale), then fip+ is cohomologically
smooth (resp. cohomologically étale). Moreover, the formation of the filtered de Rham stack satisfies de-
scent for solid smooth covers, namely, solid smooth maps f such that f* is conservative (cf. Proposition
[31.13). Finally, if f is a gcgs morphism of finite presentation of Qu(T) or Q,(T)T-adic spaces, the map

far+ : Xgr+ — Yyp+ is co-smooth.

Proof. This follows the same argument of Theorem [B.1.12] by replacing Lemmas [5.1.10] and BE.IT.11] with
Lemmas [(£.2.8 and (.2.9] respectively. For the last statement about gcqs morphisms of finite presentation,
by Lemma [5.2.9] (3) it suffices to prove the claim when f is a morphism of finite presentation of affinoid
rings, this case follows from Lemma [5.2.8 and an inductive argument. O

5.2.3. Comparison with algebraic D-modules. Let X — Y be a solid smooth morphism of derived Tate adic

spaces over Q,. Consider the relative algebraic de Rham stack X2§+ y and let X;;%jr y be its pullback to

Aban/Gan . Al/G,,, or equivalently, its restriction to Aﬁ‘f@p. The definition at the level of points yields

a natural map of de Rham stacks X;E; v
category of analytic D-modules of X over Y embeds fully faithful in the category of algebraic D-modules
of X over Y. We will also deduce that the de Rham cohomology is the same when computed with the

algebraic or analytic de Rham stacks.

— Xgr+y- In the following paragraph we will show that the

Proposition 5.2.11. Let f : X — Y be a solid smooth morphism of derived Tate adic spaces over Q.

Then the natural map g : ng; v — Xar+y 18 cohomologically co-smooth. Furthermore, the natural map

1XdR+,Y — g*lde+7Y (5.4)

is an equivalence. In particular, g* : Modo(X4p+ y) — MOdD(ngi, y) is a fully faithful embedding.

Proof. Both statements are local in the analytic topology of X and Y, hence we can assume that f is a
standard solid smooth morphism of bounded affinoid spaces. Both claims are also preserved by base change
on Y, so we can assume without loss of generality that Y = AnSpecB with B = Q,(X)(N[K]), with X a
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finite set of variables and K a profinite set. We can factor X — Z — Y where X — Z is standard solid
étale and Z =Y x Ggﬂ. We then have Cartesian diagrams

X x Aba/GE —— 7 x Al /Gan X x Aban/GEn —— Z x Aban/Gan
1 lg’
Xar+ty —— Zgr+y X3}§+’y —_— Z:;]%Jr’}/'

: 1,an an alg’ l,an an alg’ : 3 alg’ —
Since Z x Ab*" /G — Zip+y and X x A /G2 — Xyr+y are surjective, we have that Xjp, | =

Xar+y XZ 1t 4 Z;E; y- Thus, by proper base change, we are reduced to consider the case of X =Y x Gy .
By proper base change, the statement is also stable under fiber products over Y, so it suffices to consider
X =Y x G,0, and by base change assume that Y = x. By Lemmas [5.1.10] and [5.2.8 we have the explicit

descriptions
alg’ an /rvany
Ga,é,dRJr = (Gap x AV /G /Gy(—1)
and

Gandrt = (Gap x AM/G) /Go(-1)1.

Consider the cartesian square

((Gap x AL /G2 X g1an jgan Ga(—1)T) /Ga(~1) — (Gop x A2 /G2

i J

alg’
a,0,dR+ Ga,m.dR+

where @a(—l) acts on the fiber product diagonally. Then, to show that g is co-smooth and that (5.4) is an
equivalence, it suffices to prove the analogue statements for the map h. We have an equivalence

((Gao x A /G3) X yran jgan G(—1)1) /Ga(—1) = Ga X Ga(—1) /Ga(-1)
induced from the action map by translations G,(—1)" x (Ga X pran gan AV /Gy ) = (G X AV /Gyp).
Under this equivalence, the action map becomes the projection
Gap X (Ga(—=1)T/Ga(—1)) = G4 x AL /G20,
Thus, by base change, we are reduce to prove the claims for the map
(Ga(=1)T/Ga(-1)) = A /G
This follows from the following lemma

Lemma 5.2.12. Let X be an analytic P-stack over Q, and .F a vector bundle over X of rank d. Consider

—

the quotient V(.Z)1 /V(.F) where V(.F) acts by translations. Then the morphism
g: V(P =V(F) V(F) > X

s co-smooth and the natural map

—

L = 9elyoy 75

s an equivalence.

Proof. By proper base change we can reduce to the universal case X = */GL, and .# = St. Furthermore,
since * — x/GLy is surjective, it suffices to prove the claim after taking pullbacks to *. Then St & Qg and
since the claim holds after finite fiber products, it suffices to consider the case of h : Gl /@a — *. But the
map h factors as GL /@a — % /@a — %, the first arrow is weakly cohomologically proper since it has the
induced analytic structure, and the second is co-smooth by Proposition 2.5} one deduces that h is itself
co-smooth. Finally, g, 1(}2 /Ca is nothing but the de Rham cohomology of Gjl which is equal to Q, by the
Poincaré lemma. O

O
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Corollary 5.2.13. Let f : X — Y be a solid smooth morphism of derived Tate adic spaces, and let
farty  Xgp+ty — Y X Aban/Gan - Thenp far+ yslx .y 18 filtered complete and equal to the de Rham
cohomology DR(X/Y'), namely, the dual of the de Rham cohomology with compact supports of Theorem
(see Remark[5.1.13).

Proof. Consider the commutative diagram

alg’ h
XdRJr,y ? XdR+,Y

Then |
DR(X/Y) = f5]§+7y’*1 = far+ v Pl = fap+ vl
O

5.3. Poincaré duality for D-modules. Next, we prove Poincaré duality for filtered algebraic and analytic
D-modules. The strategy is similar as for coherent cohomology by taking the deformation to the normal
cone. We shall adapt [Zav23l, §4] to derived Tate adic spaces.

Definition 5.3.1 ([Zav23| Definition 4.2.1]). Let € be the category of derived Tate adic spaces over Q.
A six functor formalism & on % is premotivic if the following hold:
(1) It is Ab®-acyclic, i.e., if we denote f : A — % then the natural map 1 — filp1.an is an
equivalence in Z(x).
(2) Any any solid smooth morphism f: X — Y is cohomologically smooth with respect to Z.

Remark 5.3.2. Theorems [(.1.12] and [5.2.10] imply that solid smooth maps are cohomologically smooth for
the six functors .@;}% and Z,z+. Furthermore, de Rham cohomology of the analytic affine line A" is

trivial, by Theorem [B.1.13 and Corollary 5.2.13] we deduce that both .@3}% and Z,p+ are motivic.

For a symmetric monoidal category & let Pic(&) denote the full subcategory consisting on invertible
objects.

Lemma 5.3.3 (|Zav23, Lemma 2.1.11]). Let & be a premotivic siz functor formalism on €, X € € and
f:X x Aba 5 X Then the pullback functor

f*:Pic(2(X)) — Pic(2(X x Alan))
18 fully faithful.
Proof. The same proof of loc. cit. applies. O

Definition 5.3.4. Let Z be a six functor formalism on 4. Let f : X — Z be a solid smooth morphism
and let s : Z — X be a Zariski closed immersion.
(1) We denote C(f,s) := s*f'17 € 2(2).
(2) For a vector bundle .# over X with projection f: V(#)* — X and zero section s: X — V(.%)*"
we let Cx (F) = C(f,s).
(3) Suppose that € is a perfect @'x-module locally in the analytic topology. By Remark B.6.16l we can
form the deformation to the normal cone

ZxP' X — Z x P!
living over P1. We let Dz(X) denote the pullback of X to Aban = P!\ {oc}; we get maps

Z x A¥ 5 Dy(x) Lz x Al

Proposition 5.3.5 ([Zav23l Proposition 4.2.6]). Suppose that the siz functor formalism 9 over € is
premotivic. Let f: X — Z be a solid smooth morphism with section s : Z — X such that Oz is a perfect
Ox -module locally in the analytic topology. Then, in the notation of Definition[5.37], the object

F lygnran € Pic(2(Z x AY™))
lies in the essential image of Pic(2(Z2)).
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Proof. We perform the same series of reductions as in the proof of Theorem [3.6.15l In fact, we can assume
that Z is affinoid and replace X by an open neighbourhood of the section of X. We can then assume that
X — Z is standard solid smooth and that we have a standard solid étale map X — Z x Gd By further

refining Z, we can even assume that the pullback of Z — X — Z x G¢ O along X = Zx Ga o is Z itself,

and reduce to the case where X = Z x Ggﬂ, see the proof of Theorem [3. By a change of coordinates,
we can suppose that Z — X is the zero section, and by base change that Z = x. This last case is covered
in Step 3 of [Zav23l Proposition 4.2.6]. O

Corollary 5.3.6 (|Zav23, Corollary 4.2.7 and Theorem 4.2.8]). In the notation of the Proposition [2.3.3,
let Z/X denote the analytification of the normal cone of Z in X. There is a natural equivalence

C(f,s) = Cx( ;(I}Y)
Moreover, if f : X — Y is a solid smooth morphism, there is a natural equivalence
'y = Ox(TEy) € 2(X),
where X/Y is the analytification of the tangent space of X over Y.

Proof. The same proof of loc. cit. applies. O

Theorem 5.3.7 (Poincaré duality for D-modules). Let f: X — Y be a solid smooth morphism of derived

Tate adic spaces of relative dimension d, and let f;}% : Xa}é — Y%i and fip+ @ Xqr+ — Ygr+ be the

associated maps of stacks. Then there are natural equivalences
fU = 6(—d).

and
fipel = 0(—d)[2d).

Proof. By Corollary 0lit suffices to prove the theorem for a vector bundle .% over X. By further reducing
to the universal case X = %/GL, and .7 = St, it suffices to prove it for the relative filtered de Rham stacks
of V(.Z)* over X. Let f: V(%)™ — X be the natural projection and s : X — V(.%)*" the zero section.

We have a natural equivalence
Ty(zym x = V(F)™" xx V(F)*™"

provided by the group structure of V(.%#)?". This implies that f(!iR+1 > frg* f(!iR+1 (resp. for fsllqg; 1). In

particular, by AM*"-invariance, we have that fyz+ . fC!lR+1 =s* fC!lR+ (resp. for f;}%)

Case of falg We have a natural equivalence

V(F)mits = (V(F)™ x A /Gy ) [V(F) (1)

Indeed, by Lemma 5. I.10 there is a natural equivalence G* zlg . = (GIxAY/G,,)/ @g(—l), this isomorphism
is clearly GLg-equivariant (eg. looking at the level of pomts) and it descends to an equivalence over the
stack */GLg; by base change one deduces the general case. The map f;ll{gt  factors through
V(Fte B (X x AL/Gy) [V(F)(=1) L X x AL /G,
we find that
f;;;g (1=shg1es '
By Theorems and [ we obtain that
d d
S 1= \ZVd e \ F(-d)-d = 6(-d).

Case of fjp+. We have a natural equivalence

V(P e x = V(F)™V(Z)(-1).
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Indeed, by Lemma [5.2.8] there is a natural equivalence GZI’,ZE L = (GF™ x ALan /Gan) /GA(—1)T, this isomor-
phism is clearly GLg-equivariant (eg. looking at the level of points) and it descends to an equivalence over

the stack */GLg; by base change one deduces the general case. The map f;p+ x factors trough

V(P2 x B (X x AYG) /V(F)(-1)T L X x A/G,
we get
S*fc!lRJr,Xl = s*h*g'1 ® s*h'1.
By Theorems and B3T3l and Proposition £2.5] we find that
d

d
S*fc!lR+7X1 = /\yv[d] ® A?(—d)[d] = 0(—d)[2d].
U

5.4. Analytic de Rham stack of rigid spaces. Let (K, K™') be a non archimedean extension of Q,.
We finish with the study of the de Rham stack for rigid spaces over (K, KT). We thank Alberto Vezzani
for the questions that motivated this section. From now on all the analytic de Rham stacks are relative to
AnSpec(K, KT)g.

The main goal of the section is to prove the following theorem:

Theorem 5.4.1. Let X be an adic space locally of finite type over (K, K™), then the morphism X — Xyg
is a D-cover of Tate stacks. Futhermore, if X is quasi-compact then X — Xgg is a descendable Z-cover.
In particular, we have that
Mod(Xqr) = lim Mod(A™ (X)),
[nleA
for both % and -pullbacks, where A"T1(X)T € X"+ is the overconvergent neighbourhood of the locally closed
diagonal map, obtained as the Cech nerve of X = Xyg.

Lemma 5.4.2. Let X be a reduced and irreducible adic space locally of finite type over (K, K™). Then,
locally in the analytic topology, there is an open Zariski subspace U C X where Ly i is a projective Oy -
module.

Proof. We can assume without loss of generality that X = AnSpec(4, A")5. By Noether’s normalization
lemma for rigid spaces ([Bosl4l §2.2 Corollary 11]), there is a Tate algebra B = K(T1,...,T;) and an
injective and finite map B — A. Let n € Spec B(x) be the generic point of the underlying discrete ring of
B and £(n) its residue field, then A ®p(,) k(1) is finite over B ®p(,) #(n), and the underlying discrete ring
of the last is a field. Then, the underlying discrete ring of A ®p(,) x(n) is a finite field extension of (7).
By noetherian approximation we can find an element b € B(x) such that A[%] is a finite étale extension
of B [%], in particular L ALRY/K is projective. We can then take U to be the analytification of the space

AnSpec A[7]. O

Lemma 5.4.3. Let (A, A") be an Huber pair with A a Tate algebra of finite type over K. Suppose that
X' := AnSpec(A, A®)y is a solid smooth rigid space over K, then X = AnSpec(A, A")g is t-smooth locally
in the analytic topology of X. Furthermore, if X' is standard smooth then X is T-smooth.

Proof. By Theorem the space X’ is solid smooth if and only if locally in the analytic topology it
is solid standard smooth. Then, we can assume without loss of generality that (A, A°) is solid standard
smooth. Let us write A = K(T1,...,T4)/(f1,..., fe) a standard smooth presentation of A, we want to
show that AnSpec(A, AT)y is T-smooth. Since Spa(A, AT) is an analytic open subspace of Spa(A4, K1), it
suffices to consider the case when A™ is the open integral closure of K™ in A. We can then write

x4 ]D)}i(_e’/K EN AnSpec(K, K1)z,
d—e,/K

where Dy, = AnSpec(K(Tey1,...,Ty), KT)ag. Then, it suffices to show that f is {-é¢tale and that g
is T-smooth. The fact that ¢ is t-smooth follows from the fact that the polynomial algebra is a compact
projective analytic ring, and by invariance of the bounded condition for analytic rings of Proposition
The proof that f is f-formally étale follows exactly the same argument of Proposition B.7.5 we left the
details to the reader. O
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Lemma 5.4.4. Let X be a reduced affinoid adic space of finite type over (K, K), and suppose that there
1s a locally Zariski open subspace U C X with reduced complement Z such that U — Ugr and Z — Zgg are
descendable, then X — Xg4r is descendable.

Proof. Let us write X = AnSpec(A, A*) and let I C A be the ideal of definition of Z. Let X1/4 =
AnSpec(AT/ Z_A™) be the f-formal completion of X at Z. We have a morphism of Tate stacks
Z = X7 5 Zin.

Since Z — Zyp is desendable, then XT/4 — Z;p is also descendable. On the other hand, we have an
excision sequence of de Rham stacks

Jar Uar C Xar D Zar : tdR,
we then have a fiber sequence

Jar Yugr = 1xyp = tdRx1Z4p- (5.5)
We also have an excision

j:UcXx>Xxt.,
giving rise to a fiber sequence
Iy = 1x = el xi/z.

Note that we have cartesian squares

U X xt/z
lfU lfx leT/Z
Uair Xdir Z4R-

This shows that vjpfx1x = fyt/z,1xt,7. Then, by the projection formula of t4r. and since fyi/z is
descendable, one deduces that t4r «17,, belongs to the thick tensor ideal generated by fgqr.1x. Similarly,
Jdr,(fux1y) is in the thick tensor ideal of fx .1x (being the fiber of fx.l1x — LdR7*fX1/Z7*1XT/Z), and
by the projection formula and descendability of fy, then so is jgr11y,qr. Therefore, by (G.3]), we get that
1x,y is in the thick tensor ideal of fx .1x, proving that X — Xgypr is descendable by [Matl6, Definition
3.18]. O

Proof of Theorem [5.4.1 By taking affinoid covers, we can assume without loss of generality that X is quasi-
compact and separated. Writing X as union of reduced irreducible spaces, we can assume by Lemma [5.4.4]
that X is irreducible. Moreover, let Z be the nilpotent radical of X, since X is quasi-compact Z is nilpotent,
and the map X™ — X is descendable (see [Matli6, Proposition 3.35]). Therefore, we can assume that X
is reduced and irreducible. We proceed to prove the theorem by induction on the dimension of X, the zero
dimensional case being trivial.

By Lemma there is a locally open Zariski subspace U C X such that Ly, is a projective Oy-
module, we let Z be its Zariski closed complement. By induction in the dimension, Z — Z;p is descendable,
then by Lemma [5.4.4] it suffices to show that U — Uyg is descendable.

Let U’ C U be the maximal rigid space contained in U, by Theorem U’ is solid smooth over K,
and Lemma [5.4.3] implies that U is f-smooth locally in the analytic topology. Then, Proposition and
Theorem show that U — Uyp is descendable thanks to the Hodge filtration of the de Rham complex.
This finish the proof of the theorem. O

Corollary 5.4.5. Let X be an adic space locally of finite type over (K, K*) and let j : X' C X be mazimal
rigid space contained in X. Let jar : X)p — Xagr be the associated maps at the level of de Rham stacks.
Then the natural map

Ix.p = Jarslx:,
is an equivalence.

Proof. We can assume without loss of generality that X = AnSpec(A, A1) is affinoid, so that X' =
AnSpec(4, AY). By Theorem .41 we have Z-covers f: X — X4z and g : X' — X! . Consider the Cech
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nerves (A”H(X)T)MEA and (A"H(X’)T)[n]eA of f and g respectively, where A™(Z)T is the overconvergent
neighbourhood of the diagonal A™(Z) C Z™. We have a map of simplicial affinoid spaces
3 ATTHXDT 5 AL X,

Note that the underlying condensed rings of A™*1(X’)T and A" (X) are the same: this follows from
the fact that the underlying condensed rings of X"t and X"*! are the same for all n € N, and that
the overconvergent diagonal is defined using the same ideal of definition. This implies that jflae+1(x/) =
Lae+1(x) 18 a cocartesian section. Then, since

Mod(Xgr) = lim Mod(A™ (X))

[nJea
and
Mod(Xjp) = lim Mod(A™ (X)),
[nJeA
one deduces that 1x,, = Jdr,x1 X' is an equivalence as wanted. O

6. ANALYTIC DE RHAM STACK AND LOCALLY ANALYTIC REPRESENTATIONS

The last section of this paper concerns the relation between the analytic de Rham stack, the theory
of locally analytic representations as in [RJRC22 RJRC23|, and the theory of equivariant D-modules of
[Ard21]. In §6.11 we introduce smooth f-groupoids for derived Tate adic spaces. Geometric realizations
of these kind of groupoids generalize the construction of the de Rham stack for solid smooth morphisms.
Then, in §6.21 we use the notion of smooth f-groupoid together with actions of p-adic Lie groups to give a
very general notion of equivariant analytic D-module.

6.1. Smooth f-groupoids. Different theories of D-modules over rigid spaces X are built up from different
epimorphisms of Z-stacks X — X', equivalently, from different groupoid objects living over X. In the case
of analytic D-modules, the kind of groupoid objects we encounter have a special shape, namely, they look
like non-commutative deformations of the trivial group object X x Gh? — X for some d > 1, where
G = AnSpec QP{T}T. The previous observation leads us to the notion of a smooth f-groupoid over a
derived Tate adic space.

We start by briefly recalling the definition of a groupoid object in an oo-category as well as some related
notions. Then, we introduce smooth f-groupoids on derived Tate adic spaces over Q,, and prove some
cohomological properties of them. We end with some examples appearing in the theory of twisted D-
modules of rigid spaces.

6.1.1. Groupoids.

Definition 6.1.1 (|[Lur09, Definition 6.1.2.7]). Let ¥ be an oco-category with finite limits. A groupoid
object on % is a simplicial object G : A°? — € such that for all [n] € A and all partition [n] = S|JS" with
SN S" = {s}, the natural map

G([n]) = G(8) xg(s) G(5")
is an equivalence. We let G, denote the groupoid object in €. We call Gy the objects of the groupoid, the

map dy : G — Gy the source map and dy : G — Gg the target map. By an abuse of notation we say that
G is a groupoid over X := Gy, if ¥ admits geometric realizations we denote

X/G = hg Go.

[n]eAop

Let G be a group, a standard procedure to construct more groups from G is to take quotients G/H by
normal subgroups. It turns out that being "normal" for a map of groups in higher category theory is not
longer a property but additional datum:

Definition 6.1.2 (Normal map of groupoids). Let € be an oo-topos with effective epimorphisms and let
G be groupoid over X in C. Let H be a group object over X and f : H — G a morphism of groupoids over
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X with geometric realizations X/H — X/G. A normal quotient of f is the datum of a pullback square in
Cx/

X/H — X/G

| |

X —Y

such that X — Y is an epimorphism. By an abuse of notation we let G/H denote the groupoid associated
to the epimorphism X — Y.

6.1.2. t-groupoids. We let ¢’ = AdicSpg, denote the category of derived Tate adic spaces over Q.

Definition 6.1.3. Let X € &, let G be a groupoid in C over X, and let X/G be its geometric realization.
(1) We say that G is a {-groupoid if the topological simplicial object |G| is the constant object | X], i.e.

if for all map [n] — [m] we have an homeomorphism of topological spaces |G,,| — |G-
(2) Let G be a t-groupoid over X. We say that G is smooth of relative dimension d if the target map

do : G1 — X is, locally in the analytic topology of X, equivalent to the projection X x Gj{d — X.

Remark 6.1.4. Let G be a f-groupoid over X. The fact that any object G, has the same underlying
topological space implies that we can localize the groupoid in the analytic topology of X. Namely, for any
open subspace U C X, the preimages U, of the map dy : G, — X define a subsimplicial object Uy C G,
that is clearly a groupoid over U.

The following proposition implies that geometric realizations of smooth f-groupoids have a well behaved
theory of six functors.

Proposition 6.1.5. Let G be a smooth t-groupoid over X, then the natural map f : X — X/G is a
descendable Z-cover.

Proof. We have a cartesian diagram

QILX

o]
X — X/G.

Therefore, locally in the analytic topology of X, the arrow X — X/G has fibers given by Gl’d. Thus, we
have a natural equivalence

far : Xar x)g — X/G
and the de Rham cohomology 1x/,g = dev*leR,X/g is Hodge complete. By Proposition 5.2.3] 1x,g has by
Hodge graduation (after forgetting the weight)
gr'(1x/g) = [+ Q% (x/6)-
Since Qfx 1(X/G) is locally free in the analytic topology of X, one has descendability of f as wanted. O

Let us now focus in the case of a smooth {-group G over a derived Tate adic space X, namely, group
objects over X that are in addition smooth {-groupoids.

Lemma 6.1.6. Let X be a derived Tate adic space, G a group object over X in derived Tate adic spaces,
and e : X — G the unit section. Then the co-lie complex e*Lg/x has a natural structure of G-module
defining an object lg/x € Mody(X/G). Moreover, if f : X — X/G, then there is a natural equivalence

Lx/x/q) = x)a-
Proof. The diagonal map G — G x G induces a morphism of classifying stacks
A:X/G— X/(Gx@G). (6.1)
We have a natural equivalence X/G = G/(G x G), where X — G is the unit map, G — G x G is the
diagonal map, and G x G acts on G by (91,92) -9 = 91995 ! Then, the arrow ([61) is equivalent to the map
G/(GxG)— X/(Gx Q).
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This implies that the underlying object of L is precisely £g/x, and that G acts on {g,x by the adjoint
action. The last statement follows from the previous computation and the following cartesian diagram

X — X/)G

| J

X/G -2 X/(G x G),
where h corresponds to the map of groups (id,e) : G — G x G. U

Proposition 6.1.7. Let G be a smooth T-group over X of relative dimension d. Then the map g : X/G — X
is cohomologically smooth and there is a natural equivalence ¢'lx = /\d Eé/x [d].

Proof. Let f: X — X/G, by Proposition the map g admits !-functors and is weakly cohomologically
proper. In order to show that g is cohomologically smooth we first compute the right adjoint g'. The proof
of Proposition produced a Hodge filtration for the unit object 1x /5. By proper base change, we have
Hodge filtrations for all M € Modg(X/G) such that

gr' (M) = fuf*(N\ la/x @ M).
Let N € Modp(X). The Hom space
_HOIHX (g*M7 N)
has a filtration with graded pieces

gr~ (RHomx (.M, N)) = RHomx (g.(f.f*(/\ te/x © M)),N)
= RHomy (f*(/\ fe/x © M), N)
= RHomy (M, \ ¢/ x ® fN)

= RHom (M, f. f*(\ ¢&)x ® g"N)).
But this filtration is also induced by the dual of the Hodge-filtration of ¢g*/N which is nothing but a
A s, /X [d]-twist of the Hodge filtration. This shows that there is a natural equivalence g'N =2 A e /X [d®
g*N. We still need to prove that g is cohomologically smooth, for this we employ Lemma We let
L=gly = /\d Eé/x [d]. The Hodge filtration gives rise a map filx — £, and the adjunction g.L =
g+9'1x — 1x produces a splitting 1x — g.£ — 1x. Thus, we have all the data and hypothesis needed in
Lemma [£.2.2] proving that g is cohomologically smooth. O

Example 6.1.8. In the following we give some examples of smooth {-groups and groupoids that appear in
the theory of analytic D-modules.

(1) Let f : X — Y be a solid smooth morphism of derived rigid spaces. Since X — Y is formally
f-smooth in the analytic topology of Y, (cf. Proposition BZ3), the map X — Xjz+y is an
epimorphism by Proposition Then, by Proposition one deduces that the Cech nerve
of X — Xyp+y is equal to (A?,H’TX)[,L]EAOP, where A} : X — X*¥" is the diagonal map, and
where A;’TX C X*¥"™ is the immersion attached to the locally closed Zariski immersion |A} (X)| C
|X*¥"|. Then, locally in the analytic topology of Y and X, the morphism f is standard solid
smooth and by taking a factorization X — Y x Ggﬂ — Y with the first arrow being standard solid

étale, one gets that (A?,H’TX )injeacr is a smooth f-groupoid over X by Lemma[5.2.8 (1). Moreover,
the previous description holds for any locally closed subspace of X in the sense of locale for the
analytic topology.

(2) Let X be a derived Tate adic space and let G be a group object over X such that G — X is,
locally in the analytic topology of X and G, a locally closed subspace of a solid smooth map. Let
exp(Lie G)T C G be the locally closed subspace associated to the unit map |X| — |G|. Then there is
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a natural equivalence Gyp x = G/ exp(Lie G)T. Indeed, by (1) G4r x is the geometric realization of
the overconvergent diagonals of the Cech nerve of G — X , but the Cech nerve of G — X is equivalent
to the simplicial space (G*X "H)[n]e Aop that encodes the group structure of G, and the Cech nerve
of the de Rham stack of G corresponds to the subspace given by (exp(Lie G)T*x™ x @) [n]eacr, Whose
geometric realization is precisely G/ exp(Lie G)T.

(3) Let (K,K™) be a non-archimedean extension of @, and let X be a rigid space over (K,K™T),
seen as a derived Tate adic space over AnSpec(K, K*)5. Let £ be a K-linear Lie algebroid over
X (cf. [AW19, §9.1]) which is locally finite free in the analytic topology of X. Let U(£) be its
enveloping algebra over Ox and D(£) its algebra of locally analytic distributions, i.e. the Fréchet
completion of [AW19, §9.3]. The diagonal map £ — £ @ £ defines a commutative co-algebra
structure on D(£) compatible with its algebra structure, that endows D(£) with a Hopf-algebra
structure over K. Let us fix the left Ox-action on D(L£). Taking duals with respect to Ox of
the natural projection D(£) — D(L)/D(L)(L) = Ox we get a morphism of commutative algebras
d’: Ox — CT(£). By fixing a basis of £ over Ox, the Poincaré-Birkhoff-Witt theorem implies that
C1(£) is isomorphic to Ox{Ty,..., Ty}, where d is the rank of £ over &x. On the other hand, the
orbit map d' : Ox — CT(£) obtained by the action of £ on Oy is also a morphism of commutative
algebras. The natural map Oy — D(£) induces an augmentation map s : CT(£) — Ox. Taking
analytic spectrum over X we end up with the data of a (< 1)-simplicial space

do
—
exp(&)f «4— X (6.2)
—
d1
with exp(£)T = AnSpecy CT(£). It is not hard to see that the Lie algebra structure of £ defines
a groupoid object structure on (6.2]), we call this groupoid the exponential of £ We also call
Modg(X/ exp(£)1) the category of analytic U(L) or D(L)-modules.
(4) In the notation of the previous point, let X be a smooth rigid space over (K, KT). Then the tangent

space Tx, g has a natural structure of Lie algebroid over X. The exponential exp(TX/ &)1 is nothing

but the Cech nerve of the de Rham stack of X. Indeed, it suffices to prove this locally in the analytic
topology of X, and we can assume that we have an étale map towards a relative polydisc over K.
By naturality under étale maps, it suffices to prove it for Ggﬂ, which follows from the case of group
objects of point (2).

(5) Let (K, K™) be a non-archimedean extension of Q, and let G be a reductive group over K. Let
P C G be a parabolic subgroup, let N — P — M be the short exact sequence of its unipotent
radical and the Levi quotient, and let 7¢ = P\G be the flag variety. For a group H we let h denote
its Lie algebra. There is a natural action of g on F¥ by derivations, this defines a Lie algebroid
g0 := Or) ® g over F{ whose exponential is the smooth 1 groupoid exp(g)’ x F¢ — F¢ induced by
the natural multiplication. The Lie algebras n and p have a natural adjoint action by P, and they
define Lie algebroids n® c p° C g°. In fact, these Lie algebroids act trivially on &'z, and they are
ideals of g%, thus the associated smooth t-groupoids exp(n®)’ and exp(p®)' are normal subgroups of
exp(g®)T (they are actually normal subgroups of the bigger groupoid G* x F¢ — F{, where G*"
is the analytitfication of G to a rigid space). The quotient g*/p° is the tangent space of F¢, this
implies that we have a fiber sequence

Fi ] exp(p®)t — Ft /exp(g)t — Flyr .
On the other hand, we call 7/ /(exp(g®/n°)) the universal twisted analytic de Rham stack of F¢,
and call Modg(F¢ /(exp(g®/n°))T) the category of analytic universal twisted D-modules of F¢.

6.2. p-adic Lie groups and analytic D-modules. We end this section with the relation between analytic
D-modules, locally analytic representations of p-adic Lie groups, and the theory of equivariant twisted D-
modules. We need some notations.

Definition 6.2.1. Let G be a p-adic Lie group. We let G, G*™ and G'® denote the analytic adic spaces
obtained by sending a compact open subspace U C G to the spaces C(U,Q,), C*™(U,Q,) and C'*(U,Q,)
of continuous, locally constant, and locally analytic functions of U.
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The following lemma provides a clean relation between the groups G, G'* and G*™.

Lemma 6.2.2. Let Gt C G be the closed immersion of locales corresponding to the unit section. Then
G' is a normal subgroup of G and there is a natural equivalence G/GT = G*™. Similarly, we have that
Gl = G/ explg)! = G

Proof. We can assume without loss of generality that G is compact. We can write Gt = 1'&116 HeG H where
H runs over all compact open subgroups of G. Then one finds that

G/G" =1imG/H = G*™.
H

For the claim about G', by Example (2) we have that Gi%, = G'%/exp(g)T. We can also write
exp(g)f = l&l o H' where H runs over all the open compact subgroups of G. One finds that

Gl = lim G"/H' = im G/H = G"™.
H H

O

Next we show that the classifying stacks of G, G** and G*™ have !-functors.

Proposition 6.2.3. Let G be a p-adic Lie group. The maps + — x/G, * — /G and *+ — x/G*™ are
D -covers. Furthermore, if G is compact they are descendable & -covers.

Proof. Let H C G be an open and compact subgroup, the natural map */H — %/G is fibered on G/H
which is discrete over *, so cohomologically étale. Thus, to show that * — /G is a Z-cover it suffices to
show that * — */H is a Z-cover (resp. for H'® and H*™), so we can assume that G is compact. Let us write
f for any of the projections of * to the classifying stacks. In the case of G°", the object f.Q), is nothing but
the algebra C*™(Q,) of smooth functions endowed with the left regular action. Since C*™(G,Q)) admits
Qp as an equivariant direct summand, we get that * — %/G*™ is descendable. Descendability for G' and
G'® follows from the Lazard-Serre resolution (JRJRC22, Theorems 5.7 and 5.8]), namely, the Lazard-Serre
resolution is a long exact sequence of Z, 5[G]-modules

0 — Zpp[GIHME — ... = Z,0[G] = Z, — 0
which by a theorem of Kolhaase extends to a long exact sequence of the locally analytic distribution algebra
of G:

0 — DYG)ImE ... 5 DG) - Q, — 0.
Taking duals with respect to Q,, we got long exact sequences of representations of G

0—Q,— C(G,Qp) = -+ = C(G,Q,)"™% -0
and .
0—Q,— C'"(G,Q,) = -+ = C'(G,Q,) "™ -0,

which proves descendability of * — */G and * — %/G'® respectively. U

We now study cohomological properties of the classifying stacks of G and G'.

Proposition 6.2.4. Let G be a p-adic Lie group and consider the maps f : */G*™ — %, g : x/G — * and
h:x/G'" — x. Then f, g and h are cohomologically smooth, both g!Qp and h!Qp are naturally isomorphic

to N™C g[d], and f 'Qp = ¢ is the unimodular character.

Proof. We can assume without loss of generality that G is compact. Indeed, given H a compact open
subgroup of G, the Cech nerve X, of the map x/H — x/G is given by X,, = H\G x" ... x" G/H (n-
copies of @), and all the arrows X,, — X,,, are cohomologically étale (resp. for G'*). Thus, all the maps
gn : Xn — * would be cohomologically smooth and one has natural isomorphisms Q;Qp = dég}IQp where
gm : */H — %, proving that the object g!Qp is already determined by its restriction to */H. An explicit
but tedious bookkeeping of the maps in the Cech nerve will show that the action is the adjoint for G and
G' and the unimordular action for G*™ (see [HKW22, Example 4.2.4]).

Now let us suppose that G is compact, we can even assume that G is a uniform pro-p-group and fix a
coordinate system G =2 Zg. We first deal with f. By [RJRC23, Theorem 5.4.2] the category Mod(x/G*™) is
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equivalent to the category of solid smooth representations. In particular, f, is identified with the invariant
functor which is exact, and has by right adjoint the formation of the trivial representations, namely, f*.
Then, Lemma can be applied with £ = f*Q being the trivial representation, proving that f is
cohomologically smooth.

Finally, we deal with g and h. By the Lazard-Serre resolution, we know that both g and h are co-
homologically smooth, namely, g, and h, are group cohomology, and their right adjoints are the trivial
representation after twisting by a character, see [RJRC22, Theorem 5.19] (one can also apply Lemma
with £ to the line bundle x = Homg(Qp, Q,o[G])). It is left to compute the dualizing sheaf x of the

classifying stacks. Let G") be the affinoid group consisting on finitely many disjoint affinoid polydiscs of
radius p~" around the elements of g € G, we also let @(h) = @h%h G™) be the overconvergent affinoid

group of radius p~". Then, since the Lazard-Serre resolution is already extended for analytic distribution
algebras (see proof of [Koh1ll Theorem 4.4|), letting f : */G(h) — xand k: x/G!* — */G(h), we have that
h!Qp = k‘*f!Qp for some h >> 0. Hence, it suffices to compute the dualizing sheaf of the map f. By taking
the connected component of the identity, we are reduced to compute the dualizing sheaf of the classifying
stack of an affinoid group G whose underlying adic space is a closed polydisc of dimension d, this follows
the same argument as Proposition obtaining /\d Lie G[d] endowed with its adjoint action. This finishes
the proof. O

With the previous preparations we can finally define equivariant D-modules on derived Tate adic spaces.

Definition 6.2.5. Let X — Y be a morphism of derived Tate adic spaces over Q,, let G be a p-adic Lie
group and suppose that we have an action of G on X over Y. Let exp(g®)" denote the groupoid over X
obtained by the restriction of the action of G to exp(g)". Let HI — exp(g®)’ be a normal morphism of

groupoids such that the composite Hf — G is also normal. We define the category of analytic equivariant
D(G' /H")-modules to be Mody(X/(G' /HT)).

Finally, the following theorem computes dualizing sheaves for equivariant analytic D-modules of solid
smooth morphisms.

Theorem 6.2.6. Let X — Y be a solid smooth morphism of derived Tate adic spaces over Q, of relative
dimension d, and let G be a p-adic Lie group of dimension g acting locally analytically on X over Y. Let
us denote g = LieG. Let H be a t-smooth group over X of relative dimension e, let Hf — G'* x X be a
map of groupoids with given normal quotient G'*/H'. Then g : X/(G'/H) — Y is cohomologically smooth
and its underlying G'®-equivariant dualizing sheaf is equivalent to

g'ly = Qg{/y[d] ® /\9[9] ® /\EHT/X[_E]'

Proof. By hypothesis, the map h : X/G'* — X/(G'*/H) is an epimorphism fibered on X/H'. Then, the
pullback along h is conservative and it is cohomologically smooth by Proposition [6.1.71 Therefore, h is a
smooth Z-cover and by Corollary 3.1.26] g is cohomologically smooth if g o h is so. On the other hand, we
can write

x/c Lyycle by,
the map f is representable by a solid smooth map so it is cohomologically smooth, and the map k is
cohomologically smooth by Proposition Finally, it is left to compute the pullback of g!Qp along h .
Since go h = ko f we find that
FEly ® fllyjga = h*g'ly ® h'lx o -
Therefore,
hg'ly = f By @ f'ly g ® (hLx /o mn) ™

The theorem follows since k'ly = A? g[g] by Proposition .24, f!ly/Gla = Qgc/y[d] by Theorem B.6.10] and
h!lx/(Gza/HT) =A° EHV{T/X[e] by Proposition since h is fibered on X /H. O
Example 6.2.7. Let X — Y be a smooth morphism of rigid spaces and let G be a p-adic Lie group

acting on X over Y. The action of G on X is locally analytic and extends to an action of G!*. Let
a: Ox @9 — Tx/y be the anchor map, and let us assume that it is surjective. Let 0 = ker(a), then £ is
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a locally finite free Lie algebroid over X acting trivially on @, and it defines a group object Hf over X.
Furthermore, since £ is a G-equivariant sheaf, the map Hf — G x X is a normal map of 1-groupoids and
we can perform the groupoid quotient G'@/HTf. Then, the category of analytic D(G/H)-modules will be

an enhancement of the category of equivariant ﬁ(X , G)-modules of [Ard21]. A concrete relation between
these two categories is left to a future work.
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