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Abstract

The eukaryotic mRNA life cycle includes transcription, nuclear mRNA export and degrada-

tion. To quantify all these processes simultaneously, we perform thiol-linked alkylation after

metabolic labeling of RNA with 4-thiouridine (4sU), followed by sequencing of RNA (SLAM-

seq) in the nuclear and cytosolic compartments of human cancer cells. We develop a model

that reliably quantifies mRNA-specific synthesis, nuclear export, and nuclear and cytosolic

degradation rates on a genome-wide scale. We find that nuclear degradation of polyadeny-

lated mRNA is negligible and nuclear mRNA export is slow, while cytosolic mRNA degrada-

tion is comparatively fast. Consequently, an mRNA molecule generally spends most of its

life in the nucleus. We also observe large differences in the nuclear export rates of different

3’UTR transcript isoforms. Furthermore, we identify genes whose expression is abruptly

induced upon metabolic labeling. These transcripts are exported substantially faster than

average mRNAs, suggesting the existence of alternative export pathways. Our results high-

light nuclear mRNA export as a limiting factor in mRNA metabolism and gene regulation.

Author summary

In our work, we aim to quantify two fundamental processes in the life cycle of a eukaryotic

messenger RNA (mRNA), namely export from the nuclear compartment to the cytosol,

and degradation. To enable a genome-wide evaluation, we have implemented an experi-

mental-bioinformatics approach. We use a chemical moiety, 4-thiouridine (4sU), which is

incorporated into RNA molecules when added to the solution, to mark RNA which is

recently synthesized and distinguish it from already existing RNA. We take a time series

of recent and already existing RNA within both the nuclear and cytoplasmic cellular com-

partments. We have devised a computational model that can reliably quantify mRNA

nuclear export and cytosolic degradation rates from this data. We revealed that the export

of mRNA from the nucleus to the cytoplasm emerges as a comparatively tardy event.
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Subsequently, mRNA molecules within the cytoplasm experience swift degradation. This

identifies the nucleus as the predominant residence for the greater portion of an mRNA’s

lifecycle. Yet, we have also found notable exceptions from this scheme which are immedi-

ately exported after transcription without delay, suggesting the plausible existence of alter-

native mRNA export pathways. In sum, our research underscores the pivotal role of

nuclear mRNA export as a determining factor in the orchestration of mRNA metabolism

and the regulation of gene expression within eukaryotic cells.

Introduction

In brief, the life cycle of an mRNA consists of its transcription, translation and degradation.

Gene regulatory mechanisms are intervening in all three processes. In eukaryotic cells, the pro-

cesses of transcription and translation are spatially separated into the nucleus and cytoplasm,

respectively. The export of mRNA to the cytosol adds an additional layer of regulation to RNA

metabolism, which will be investigated in this work. Differences in nuclear RNA export will

affect cytoplasmic mRNA levels and thus the availability of RNA for translation. For example,

slow RNA export under steady-state conditions could buffer the variation in nuclear RNA

abundance caused by transcriptional bursting, leading to stable cytoplasmic mRNA levels [1,

2]. Dysregulation of mRNA export has also been implicated in several neurodegenerative dis-

eases [3].

To be ready for export, a transcript must be synthesized and released from the transcribing

RNA polymerase II. The pre-mRNA undergoes co- and post-transcriptional processing,

including 5’-end capping, splicing, 3’-end processing, and association with RNA-binding pro-

teins (RBPs) to form the messenger ribonucleoprotein (mRNP) complex. Each of these matu-

ration steps contributes to the availability of a transcript for export out of the nucleus.

Transcripts that are incompletely or incorrectly processed do not pass quality control check-

points and are either retained in the nucleus until processing is complete or targeted for degra-

dation by the exosome (reviewed in [4]). In contrast to RNA synthesis, RNA degradation

occurs in both the cytoplasm and the nucleus. Mature mRNA is mainly degraded in the cyto-

plasm after deadenylation [5, 6] or microRNA binding (reviewed in [7]). Other RNAs, in con-

trast, are degraded primarily in the nucleus, where nuclear transcriptome surveillance

pathways capture unstable transcripts such as enhancer RNAs, products of pervasive transcrip-

tion, and improperly processed transcripts [4]. Export of mRNA and non-coding RNA (tRNA,

snoRNA, rRNA) occurs via different pathways (reviewed in [8]). Several adaptor proteins

mediate the export of a mature mRNP through the nuclear pore complex [9]. In contrast,

improperly processed mRNAs do not form export competent mRNPs, are therefore retained

in the nucleus and targeted for degradation [10–12]. The export dynamics of certain RNAs dif-

fer due to the use of non-canonical adaptor proteins or the tethering of the genomic locus to

the nuclear pore [13–15].

mRNA export has primarily been measured by RNA Fluorescence In Situ Hybridization

(RNA-FISH) for individual transcripts [16–18] and has also been scaled up to obtain export

estimates for several hundred transcripts [19]. Genome-wide export estimates have been

obtained by fractionation of cells combined with sequencing of total RNA in each fraction [1].

More recently, subcellular fractionation was combined with metabolic labeling of RNA and

isolation of labeled RNA to quantify newly synthesized RNA in different compartments of

Drosophila cells [20]. In contrast to monitoring mRNA decay upon transcriptional inhibition

[21], radioactive or metabolic labeling of newly synthesized RNA allows monitoring of RNA
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metabolism [22, 23]. The use of nucleoside-analogs such as 4-thiouridine (4sU) have been con-

sidered as minimally perturbing and has also been applied to monitor mRNA metabolism in

single cells [2, 24]. Short RNA labeling pulses are suitable for measuring RNA synthesis rates,

while longer pulses are better suited for estimating RNA degradation rates [25]. Statistical

models that complement these experimental approaches employ a single-compartment model

assuming constant RNA synthesis rates, degradation rates, and a dynamic equilibrium of each

RNA population [26]. While these single-compartment models give insight into the overall

dynamics of an RNA within a cell, it does not provide insights into subcellular dynamics such

as the speed of RNA export.

Previous studies of RNA metabolism have relied on perturbation of transcription or isola-

tion of newly synthesized RNA, which is a multi-step procedure leading to higher technical

variation [27, 28]. To overcome the limitations of the technical variation due to isolation of

newly synthesized RNA, we used thiol-linked alkylation for metabolic sequencing of RNA

(SLAM-seq) [29, 30]. SLAM-seq applies labeling of newly synthesized RNA with 4sU and

thiol-linked alkylation to induce T>C transitions at positions where 4sU was incorporated.

These conversions can be detected by sequencing without prior isolation of the labeled frac-

tion. We combined this technology with subcellular fractionation to monitor RNA metabolism

in the nuclear and cytoplasmic fraction simultaneously. To that end, we have developed a pro-

bablistic framework to reliably fit a two-compartment model of RNA metabolism that quanti-

fies not only RNA synthesis and degradation, but also export to increase the resolution of

RNA metabolism. We compute RNA synthesis and nuclear export rates, as well as nuclear and

cytosolic RNA degradation rates on a genome-wide scale which overcomes the limitations of a

single-compartment model. Our estimates confirm that nuclear degradation of polyadenylated

mRNA is negligible, and mRNA export is slow compared to its cytosolic degradation. Conse-

quently, mRNA remains in the nucleus for considerably longer than in the cytosol. We are

also able to quantify the metabolism of alternative 3’ untranslated region (UTR) transcript iso-

forms of genes. Variation in 3’UTR length alters RBP binding and is known to affect transcript

stability or localization [31–33]. We show that different 3’UTR transcript isoforms can be

exported at substantially different rates and that 3’UTR length is a relevant factor. Finally, we

discover genes whose synthesis is abruptly induced upon 4sU labeling and whose export is an

order of magnitude faster than that of average mRNAs, pointing to the existence of stress-

induced alternative export pathways.

Results

SLAM-seq time-series and 3’UTR quantification

We have performed a SLAM-seq time-series experiment in HeLa-S3 cells, where two replicate

samples were taken at t = 0, 15, 30, 45, 60, 90, 120 and 180 min after the addition of 500 μM

4sU (Fig 1A and A in S1 Appendix). After metabolic labeling of RNA, the cells were fraction-

ated to obtain the nuclear and the cytosolic RNA fractions. The accuracy of the subcellular

fractionation was validated by Western Blots (Section 1 and Fig B in S1 Appendix).

To quantify mRNA metabolism, polyadenylated transcripts were captured by targeted

sequencing library preparation and sequencing of polyadenylated 3’ ends (3’-seq). Reads were

mapped to the human genome using Slamdunk [34], yielding between 8.5–24.4 million

uniquely mapped reads per sample (Section 2–3 in S1 Appendix). The mapping efficiency ran-

ged from 66% and 81%. To exclude a mapping bias against labeled reads, we extensively inves-

tigated the reasons for dropouts (Section 2–3 and Figs C-D in S1 Appendix).

Next, to analyse mRNA metabolism at the transcript level, we merged all reads pertaining

to annotated 3’UTRs of a gene. A fraction of 61% to 78% of all uniquely mapped reads per
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sample aligned to 3’UTRs (Section 2–3 and Fig E in S1 Appendix). After merging overlapping

3’UTRs with the same strand orientation, we obtained 61,834 3’UTRs. For robustness, we con-

sider only 8119 of these 3’UTRs with an average number of at least 30 reads per time point in

each cellular compartment of the time series experiment. The 3’UTR read counts are highly

correlated between time points of both the nuclear and cytosolic fractions, indicating that 4sU

labeling does not generally perturb gene expression patterns (Fig A in S2 Appendix). We

noticed that the read distribution within a 3’UTR was often multimodal, indicating the exis-

tence of alternative 3’UTR isoforms. In addition, we found many reads clustering inside gene

Fig 1. Experimental setup and computational modeling of RNA metabolism. (A) Schematic representation of the experimental setup. SLAM-seq

time series samples were generated from fractionated nuclear and the cytoplasmic fractions at t = 0, 15, 30, 45, 60, 90, 120, 180 min after addition of

500μM 4sU and preprocessed to obtain new and total reads. (B) Two compartment differential equation model of the nuclear RNA fraction (N = N(t))
and the cytosolic RNA fraction (C = C(t)). These fractions are described by 4 parameters, namely the synthesis rate μ, the nuclear degradation rate ν, the

nuclear export rate τ, and the cytosolic degradation rate λ. (C) Parameter fitting of the nuclear vanishing rate ν + τ and the cytosolic degradation rate λ
at the example of the 3’UTR of the MAFG gene using its new by total RNA ratios. (D) Measured new

total RNA ratios, estimated new
total RNA ratios and the

respective residuals after parameter fitting for the nuclear (left) and cytoplasmic (right) fractions. Each row corresponds to one 3’UTR with reliable

parameter estimates. (E) Heat scatterplot of a 2-dimensional MCMC sample of the nuclear and cytoplasmic transcript half-lives for the 3’UTR of the

MAFG gene. The half-life distributions are given at the top and right hand side.

https://doi.org/10.1371/journal.pcbi.1012059.g001
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bodies, likely due to A-rich sequences acting as internal priming sites for the oligo-dT primer

utilized for the sequencing library preparation. We therefore performed a second, refined anal-

ysis in which we defined densely covered, highly confined read clusters (“peaks”) along the

entire genome (Section 4 and Figs F-G in S1 Appendix). We identified 98,102 distinct peaks

within 3’UTRs, of which we selected 10,150 with robust expression, i.e., at least 30 average

counts in each cellular compartment and time-series experiment. Moreover, 1,262,263 peaks

were found in non-3’UTRs, of which 1651 were robustly expressed according to the same cri-

terion. Of these 1651 peaks, 1057 are located within an annotated gene region (334 introns,

174 exons and 549 either overlapping with both an exon and intron, or with regions that have

no transcript annotation). Subsequently, modeling was performed for 3’UTRs and peaks

separately.

A two-compartment model of RNA metabolism

We model the life cycle of a mature (polyadenylated) transcript by four metabolic parameters.

First, RNA is synthesized in the nucleus at a rate μ. Then, the mature transcript is either

exported to the cytosolic compartment at a rate τ or eventually degraded in the nucleus at a

nuclear degradation rate ν (Fig 1B). By “export” we mean all processes that take place after

polyadenylation until passage through the nuclear pore complex. Exported transcripts are

finally degraded at rate λ irrespective of the function they fulfill in the cytosol (Fig 1B). Our

model assumes that these four rates are constant over time and unaffected by 4sU labeling.

Denote by N = N(t) and C = C(t) the time-dependent, cell-averaged nuclear respectively

cytosolic RNA abundances of a given RNA population. We will describe their dynamics by a

two-compartment ordinary differential equation system (Fig 1B):

dN
dt

¼ m � ðnþ tÞN ð1Þ

dC
dt
¼ tN � lC ð2Þ

The system has a closed-form solution for any choice of initial conditions at t = 0. In steady

state, the nuclear and cytosolic RNA abundances are given by N1 ¼
m

nþt
and C1 ¼ t

l
� N1.

Unlike other RNA labeling methods, SLAM-seq does not require the separation of labeled and

unlabeled RNA fractions. As a consequence, SLAM-seq provides, for each transcript, more

accurate measurements of the newly synthesized RNA by total RNA (newtotal) ratio in the nucleus,

n(t), respectively the cytosol, c(t). These two ratios can be derived from Eqs (1) and (2) (Fig 1C,

Methods):

nðtÞ ¼ 1 � e� ðnþtÞt ð3Þ

cðtÞ ¼ 1 �
le� ðnþtÞt � ðnþ tÞe� lt

l � ðnþ tÞ
ð4Þ

Note that Eq (3) involves only one parameter, namely the sum of the export rate and the

nuclear degradation rate, ν + τ. We will henceforth call this quantity nuclear removal rate.

Moreover, the quotient in Eq (4) is determined by two parameters, the nuclear removal rate

and the cytosolic degradation rate λ. Eqs (3) and (4) are the building blocks of our analysis,

because they allow us to fit the dynamics of individual RNA populations with only two

parameters.
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total/total RNA ratios

The ratios n(t) and c(t) required for parameter estimation must be derived from the labeling

pattern of all reads mapping to a certain 3’UTR or peak. However, estimating these ratios is

challenging due to the low 4sU incorporation efficiency, which is reported to be in the range

of 2% [29]. As a result, some reads from new transcripts will not show a single labeling-

induced nucleotide conversion and will appear as pre-existing. Thus, a naive count of labeled

reads in a SLAM-seq RNA library underestimates the relative abundance of new transcripts.

In addition, sequencing errors can mimic or mask converted 4sU positions.

To accurately estimate the labeling efficiency, we first excluded all known SNP positions

and positions enriched for post-transcriptional RNA-editing. As in previous approaches [26,

35], we use a binomial mixture model to robustly estimate the labeling efficiency in a given

sample by an Expectation-Maximization (EM) algorithm [36] (Section 5 in S1 Appendix). We

find that the labeling efficiency rises from about 4.3% (nucleus) and 3.2% (cytosol) at 15 min

to 7.3% (nucleus) and 6.7% (cytosol) at 180 min (Fig H in S1 Appendix).

Note that current models of the RNA labeling process—including ours—assume that all

new RNA molecules present in a sample are labeled with the same efficiency [28, 35, 37]. As

labeling efficiency necessarily increases upon addition of 4sU, we investigated the potential

bias introduced by this assumption. We found that this bias must not be ignored for labeling

periods shorter than 10 min, while the estimates in our experimental setup are not affected

substantially (Section 6 and Figs I-K in S1 Appendix). In addition to the labeling efficiencies,

the EM algorithm also estimates the new
total RNA ratios for each 3’UTR. These serve as observa-

tions to which we fit the parameters of the two-compartment model.

Estimation of metabolic parameters

Using Eqs (3) and (4), we fitted the nuclear removal rate ν + τ and the cytosolic degradation

rate λ to the estimated new
total RNA ratios (Fig 1C). We found that a variance-stabilizing transfor-

mation of the new
total ratios prior to fitting improved the robustness and precision of the estimates

(Section 7 and Fig L in S1 Appendix). We verified the goodness of fit by inspecting the homo-

geneity and independence of the residuals (Fig 1D). Error bounds were constructed by Markov

Chain Monte Carlo sampling (Fig 1E). For ease of interpretation, we report the nuclear

removal rate ν + τ and the cytosolic degradation rate λ as their corresponding nuclear half-life,
ln2

nþt
, and cytosolic half-life, ln2

l
, respectively. The half-life estimates of the two replicate time-

series are highly correlated (Spearman’s ρ: 0.98 for nuclear and 0.70 for cytosolic half-life, Sec-

tion 1 and Figs C-D in S2 Appendix). Subsequently, rate estimates obtained from the two repli-

cates were averaged. We define stringent quality criteria for our metabolic rate estimates in

terms of constant expression, goodness of fit, width of the error bounds, and agreement

between replicates.

We define stringent quality criteria for our metabolic rate estimates in terms of constant

expression, goodness of fit, width of the error bounds, and agreement between replicates

(Methods). Of the 8,119 3’UTRs, we found 1,297 whose nuclear removal rate could be reliably

estimated (Fig 2A and E in S2 Appendix, S1 Table). Of these, 251 3’UTRs also had reliable esti-

mates for the cytosolic degradation rate (Fig 2A and E in S2 Appendix, S2 Table). We report

all results of our analyses for reliable 3’UTRs and the corresponding numbers for all quantified

3’UTRs are listed in parentheses. Applying the same procedure to peak regions, we obtained in

261 peaks with reliable nuclear removal rates and 51 with reliable cytosolic degradation rates.
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Fig 2. Nuclear RNA half-lives are longer than cytosolic half-lives. (A) Nuclear and cytosolic RNA half-life estimates of 3’UTRs. Half-lives were

averaged over both measured time series. Gray dots represent unreliable estimates, yellow dots correspond reliable estimates for nuclear half-life, and

green dots portray reliable estimates for both nuclear and cytosolic compartment (see Methods for reliability criteria). The half-life estimate

distributions are given at the top and right hand side, color representation as in scatterplot. The solid and dashed lines indicate median half-life

estimates of reliable and all 3’UTRs, respectively. (B) Nuclear by cytosolic half-life ratios of all 3’UTRs (gray) and 3’UTRs with reliable half-life

estimates (green) for both compartments. The solid and dashed lines indicate median half-life ratios of reliable and all 3’UTRs, respectively. (C)

Comparison between half-life estimates by our two-compartment model and whole-cell extract half-life measurements from Schueler et al. (2014)

[38]. Our nuclear and cytosolic RNA estimates were summed to generate pseudo-whole-cell estimates. Gray dots represent unreliable estimates, green

points represent reliable estimates. (D) Correlation of half-lives between 3’UTRs and exonic or intronic peaks of the same gene. Only 3’UTRs and

peaks that had one unique gene annotation were considered. Data points are colored by whether the 3’UTR harbors one (gray) or multiple (blue)

expressed 3’UTR peaks. (E) Estimation of the
cyt
nuc RNA ratio using a spherical median. Each dot represents the angular coordinates of a 3d unit vector,

which in turn is determined as the normal vector of a plane spanned by three triplets ðtgi ; � ngi ; � cgi Þ of three randomly sampled 3’UTRs gi, i = 1, 2, 3.
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Nuclear half-life is substantially longer than cytosolic half-life

We compared the reliable half-life estimates of the nuclear and cytosolic compartments (Fig

2A and E in S2 Appendix). Both distributions are right-skewed, with a median of 291 min in

the nucleus (IQR: 171–481 min) and a median of 44 min in the cytosol (IQR: 30–62 min).

These distributions look similar when considering all 3’UTRs, with a median of 322 min in the

nucleus (IQR: 167–619 min) and a median of 58 min in the cytosol (IQR: 28–117 min). Fur-

thermore, the median ratio of the reliable nuclear versus cytosolic half-lives of a 3’UTR is 5.76

(Fig 2B and F in S2 Appendix). These findings imply that nuclear export is much slower than

cytosolic degradation.

Next, we compared our half-lives with estimates from Schueler et al. (2014) [38], which are

based on whole-cell extracts (WCE) from MCF7 and HEK293 cells measured by 4sU labeling

and biotinylation (Fig 2C, Section 2 and Fig G in S2 Appendix). The sum of nuclear and cyto-

solic half-lives correlates highly with the WCE half-lives measured in HEK293 (reliable

3’UTRs: Spearman’s ρ=0.83, all 3’UTRs: Spearman’s ρ=0.78) and MCF7 (reliable 3’UTRs:

Spearman’s ρ=0.72, all 3’UTRs: Spearman’s ρ=0.7) cells. Notably, the estimates from HEK293

cells are systematically shorter than our reliable HeLa-S3 half-lives by a median factor of 0.31

(all 3’UTRs: 0.21), while the opposite is the case for the MCF7 cells with a median factor of

1.73 (all 3’UTRs: 1.18). The systemic differences may be due to actual differences in RNA

metabolism between the different cell lines or due to differences in scaling factors between the

experiments. For further validation, we also compared our half-lives with estimates from Wu

et al. (2019) [39], which were derived from WCE SLAM-seq data of K562 cells (Section 2 and

Fig H in S2 Appendix). The half-lives correlate well (reliable 3’UTRs: Spearman’s ρ=0.7, all

3’UTRs: Spearman’s ρ=0.65) but without a systematic shift.

We expect exons to share their metabolism with the 3’UTRs of the same transcript. Reassur-

ingly, the metabolic rates of peaks located in exonic regions correlate well with their 3’UTRs

(Fig 2D). In contrast, metabolic rates of peaks located in intronic regions show only weak or

no correlation with their corresponding 3’UTRs (Fig 2D), as most introns are spliced out co-

transcriptionally. We hypothesize that intronic peaks detected in the cytosol arise from intron

retention events, unknown alternative exons or unknown non-coding RNA species.

mRNA is more abundant in the nucleus than in the cytosol

The systematic difference in nuclear and cytosolic half-lives has consequences on the subcellu-

lar distribution of mRNA. According to our two-compartment model (Methods), the ratio of

steady-state cytosolic versus nuclear RNA abundance levels is
C1
N1
¼ t

l
. This

cyt
nuc RNA abundance

ratio is at most as large as the quotient of the cytosolic and the nuclear half-life, tþn
l

. The median

of this ratio tþn

l
across all reliable transcripts is 0.17 (median of its inverse l

tþn
= 5.76� 6, Fig

2B). We pursued three independent approaches to verify this finding (Section 3 in S2 Appen-

dix). First, we exploit that the relative abundances tg of a transcript g in the whole-cell RNA are

the sum of the corresponding relative abundances ng, and cg in the nuclear and cytosolic frac-

tions when scaling them to absolute molecule numbers by transcript-independent factors T, N
and C, Ttg = Nng + Ccg. Since there are many outlier triples, we performed a robust non-

Contour lines show locations of constant
cyt
nuc RNA ratio. The red dot is the spherical median of the sampled normal vectors and corresponds to a ratio

of 0.66. Azimuth angles ψ 2 [π, 2π] correspond to normal vectors v in which not all entries are positive and are omitted. (F) Fraction of non-negative

nuclear degradation rate estimates as a function of the
cyt
nuc RNA ratio. Assuming at least 50% positive estimates (orange horizontal line) leads to a

maximum admissible ratio of 0.2 (orange vertical line).

https://doi.org/10.1371/journal.pcbi.1012059.g002
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parametric linear regression (Fig 2E, Section 3 in S2 Appendix). According to this method, the
cyt
nuc RNA ratio is 0.66.

Second, we computed the nuclear degradation rate estimates as a function of the
cyt
nuc RNA

ratio for all 3’UTRs with reliable half-life estimates (Fig 2F, Section 3 in S2 Appendix). As

nuclear degradation rates are non-negative, the majority of their estimates should also be posi-

tive. If we require merely 50% of the degradation rate estimates to be positive, the smallest

admissible
cyt
nuc RNA ratio is 0.22.

Third, we normalized our SLAM-seq time series samples to spike-in counts (Section 3 in S2

Appendix). The resulting
cyt
nuc RNA ratios ranged from 0.28 to 0.7 for the individual samples. In

summary, all methods indicate that the amount of nuclear mRNA exceeds the cytosolic one by

a factor of at least 1.4.

3’UTR length is a major determinant of mRNA half-life

We investigated several gene-specific features for their association with transcript half-life (Sec-

tion 4 in S2 Appendix). Our reliable nuclear and cytosolic transcript half-life estimates are nei-

ther significantly correlated with GC content nor transcript length (Figs J-K in S2 Appendix).

In contrast, the RNA half-lives of both compartments showed mild but significant positive cor-

relations with exon count (reliable 3’UTRs nucleus: Spearman’s ρ=0.24, reliable 3’UTRs cytosol:

Spearman’s ρ=0.3, Fig L in S2 Appendix). We also observed an anticorrelation of 3’UTR length

with nuclear RNA half-life (reliable 3’UTRs: ρ=-0.36, all 3’UTRs: ρ=-0.26, Fig 3A and M in S2

Appendix) and CDS length with nuclear RNA half-life (reliable 3’UTRs: ρ=-0.16 all 3’UTRs:

ρ=-0.22, Fig 3A and N in S2 Appendix). A similar association between whole-cell RNA half-

lives and 3’UTR lengths in yeast was observed by Cheng et al. (2017) [40]. Note that we did not

observe a similar association between 3’UTR length and cytosolic RNA half-life (reliable

3’UTRs: Spearman’s ρ=0.03 and insignificant, all 3’UTRs: Spearman’s ρ=-0.04, Fig 3A and M in

S2 Appendix), as well as CDS length and cytosolic RNA half-life (reliable 3’UTRs: Spearman’s

ρ=0.08 and insignificant, all 3’UTRs: Spearman’s ρ=-0.02, Fig 3A and N in S2 Appendix).

It has been hypothesized that the length of the 3’UTR has a significant effect on the half-life

of nuclear RNA [40]. To test this, we examined the half-lives of different 3’UTR isoforms of

the same transcript (Section 5 in S2 Appendix). Since these isoforms share many sequence fea-

tures and other confounding factors (e.g. epigenetic), comparing their half-lives should reveal

the effect of 3’UTR length with high precision. We considered peaks located in the same

3’UTR but separated by at least 100 nucleotides to be different 3’UTR isoforms. We identified

118 3’UTRs with more than one quantifiable isoform. Of those, the longer 3’UTR isoforms

generally have shorter nuclear half-lives (Fig 3B), and this difference cannot be explained by

technical variation (as observed between the two replicate time-series measurements, Figs O-P

in S2 Appendix). In agreement with our previous observation (Fig 3A), 3’UTR isoform length

had only a minor effect on cytosolic RNA half-life (Fig 3B).

RBP-bound transcripts differ in nuclear turnover rates

RNA binding proteins (RBPs) are involved in many regulatory processes of RNA metabolism.

For instance, they maintain stability, regulate splicing, and control the localization of bound

RNA molecules [41–43]. We retrieved eCLIP data for 120 RBPs deposited on ENCODE [44,

45] and defined confidently RBP-bound and RBP-unbound transcripts (Fig 3C, Section 6 in

S2 Appendix). For RNAs with reliable half-life estimates, we then tested whether there was a

difference between the RBP-bound and unbound groups. In total, 20 RBPs showed significant

effects on nuclear RNA half-lives (Fig Q in S2 Appendix). Unexpectedly, only one protein,
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Fig 3. Factors correlating with nuclear and cytosolic half-lives. (A) Correlation of half-life estimates with gene-specific parameters. Shown are the

nuclear and cytosolic half-lives plotted against the 3’UTR lengths and the CDS lengths per gene. All 3’UTRs are shown in gray and 3’UTRs with reliable

half-life estimates are shown in green with corresponding regression lines. (B) Comparison between RNA half-lives of short and long isoforms of a

3’UTR region (242 peaks from 118 3’UTRs). The medians are indicated by the violet lines with corresponding text labels. (C) Nuclear half-lives differ

between different RBP-bound transcripts. Density plots show the distribution of nuclear half-life fold-changes (FC) relative to the global median (all

bound and unbound transcript half-lives) for selected RBP-bound transcripts (eCLIP data retrieved from ENCODE). Distribution densities with

median fold-change above or below the global median are colored in blue and red, respectively. Black bars indicate the median of the respective

distribution. The number of bound and unbound transcripts is given for each RBP. (D) Violin plot of the nuclear half-life distributions of transcripts
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RBM15, appeared to promote nuclear RNA export. RBM15-bound transcripts have a shorter

median nuclear RNA half-life than the unbound transcripts (bound: 206 min, unbound: 315

min, Fig 3C and 3D). Previous evidence supports our findings as RBM15 has been associated

with NXF1-dependent nuclear export [46, 47]. The putative binding of all other RBPs was cor-

related with longer nuclear half-lives. Among them, LARP4, EIF3G and RPS3 had the most

retarding effect on export from the nucleus (Fig 3C and Q in S2 Appendix). Further, we found

that the putative binding of only 2 RBPs, U2AF1 and DDX24, had a prolonging effect in the

cytosol (Fig R in S2 Appendix).

Long non-coding RNAs have a higher cytoplasmic stability than mRNA

Besides mRNA, we also detected 106 polyadenylated transcripts annotated as long non-coding

RNAs for which we could estimate metabolic rates (Section 7 in S2 Appendix). Interestingly,

the detected lncRNAs exhibit a shorter median nuclear half-life than mRNAs (lncRNA: 158

min vs all other 3’UTRs: 325 min, Fig 3E and S in S2 Appendix). Conversely, the median cyto-

solic half-life of lncRNAs is, compared to mRNAs, substantially longer (lncRNA: 116 min vs

all other 3’UTRs: 58 min, Fig 3E and S in S2 Appendix). Since many lncRNAs perform their

function in the cytosol, such as maintaining mRNA stability and modulating transcript trans-

lation (reviewed in [48]), longer cytoplasmic half-lives might reflect these roles.

Nuclear export of stress-response genes is rapid

While the expression of most genes is not affected by 4sU labeling, we identified a collection of

27 transcripts that are strongly induced immediately after the labeling onset and silenced

shortly afterwards (Fig 3F, S3 Table). According to Uniprot [49], 14 of these genes are linked

to inflammation, cell survival, apoptosis and growth. Note that our two-compartment model

assumes steady-state conditions and, therefore, cannot be applied to this group of genes. How-

ever, the time interval between maximum and the subsequent minimum expression levels is

an upper limit for the RNA half-life in the respective compartment. In the nucleus, this interval

is approximately 60 min, which is substantially shorter than our reported median nuclear

mRNA half-life of 322 min (Fig 2A). As all these labeling-induced transcripts also show a simi-

lar, fast relaxation pattern back to the initial expression level, we hypothesize that these tran-

scripts are exported by an alternative nuclear export mechanism as reported previously [50].

The two-compartment model is robust

Given the surprisingly long nuclear half-lives, we thoroughly investigated potential sources of

bias, namely the accuracy of subcellular RNA fractionation and the neglect of nuclear reten-

tion. Because the endoplasmic reticulum (ER) is physically attached to the nucleus, it could be

co-purified with the nucleus upon subcellular fractionation. Since the rough ER is a site of

cytosolic mRNA translation, such a co-purification would enrich pre-existing cytosolic tran-

scripts in the nuclear fraction. A consequence would be an unintended reduction of the

nuclear new
total RNA ratios, leading to an upward bias of nuclear half-life estimates. Conversely,

cytosolic new
total RNA ratios would be increased, biasing cytosolic half-lives downward. We exam-

ined the metabolic rates of 136 genes annotated as part of an ER structure according to gene

that are either bound (red) or unbound (gray) by RBM15 (p < 0.05, Wilcoxon test; eCLIP data retrieved from ENCODE). (E) Nuclear and cytosolic

RNA half-life estimates of lncRNAs. Blue dots represent lncRNA estimates and gray dots portray all other 3’UTRs. The blue lines indicate the median

half-lives of the lncRNAs, the black lines indicate the median half-lives of all quantified 3’UTRs, respectively. (F) Expression level and new
total RNA ratios of

the ‘supernova’ gene SGK1.

https://doi.org/10.1371/journal.pcbi.1012059.g003
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ontology. The median nuclear half-life for these genes was 596 minutes (compared to the

global median of 322 min), and the median cytosolic half-life was 45 minutes (compared to the

global median of 58 min; Fig 4A and T in S2 Appendix). Although this would require the

majority of cytosolic transcripts to be co-purified with nuclear RNA, we cannot completely

rule out this possibility.

Next, we examined whether a partial nuclear retention of transcripts might affect our half-

life estimates. Our two-compartment model assumes that the nuclear export of an RNA popu-

lation can be appropriately described by a single, constant export rate τ. But it seems plausible

that a certain fraction of these transcripts are exported at a very low efficiency different from τ,

be it due to the lack of export factors, because of erroneous splicing, the use of alternative 3’

ends, or as a mechanism to buffer against transcriptional bursts [1]. Therefore, we challenged

our model by introducing an additional retention rate r, which specifies a fraction of tran-

scripts (of a given RNA population) that are retained in the nucleus, e.g., this fraction has an

export rate of 0 (Section 8 in S2 Appendix). To prevent an infinite accumulation of nuclear

RNA, we also included a non-zero nuclear degradation rate ν which we varied extensively.

Parameter fitting was performed using MCMC (Section 8 in S2 Appendix). For the vast major-

ity of genes, the estimated percentages of retained mRNA are negligible assuming that the

nuclear mRNA degradation rate is substantially lower than the nuclear export rate (Fig 4B).

This observation indicates that RNA retention is not a major cause for low nuclear export rate

estimates.

The time-scale of RNA metabolism is mainly determined by nuclear

processes

So far, RNA half-lives have been estimated from either WCE or cytosolic extracts using an

exponential decay model [22, 26, 35]. The biological features that correlate with the half-lives

obtained by such models were mainly attributed to cytosolic RNA degradation. However, we

have shown that slow nuclear export contributes to a major part of RNA lifespan (Fig 2A). As

the half-lives estimated from whole-cell extracts are essentially the sum of nuclear and cytosolic

RNA half-life estimates (Fig 2C), we hypothesized that fitting a one-compartment model to

Fig 4. Potential biases of the two-compartment model estimates. (A) Nuclear and cytosolic RNA half-life estimates of ER-translated transcripts

according to gene ontology annotation. Blue dots represent estimates for ER-translated transcripts and gray dots portray all other 3’UTRs. The blue and

black lines with corresponding text labels indicate the median half-lives of ER-translated transcripts and all other 3’UTRs, respectively. (B) Line plot

showing the percentage of retained transcripts for a range of postulated nuclear degradation rates. A transcript was defined as retained if its nuclear

retained fraction was at least 5%. (C) Correlation of a simple exponential cytosolic decay model fit results with cytosolic half-lives obtained through

SLAM-seq on the cytosolic fraction of MCF7 cells [47]. Gray dots represent expressed 3’UTRs and green dots portray 3’UTRs that passed our reliability

criteria for the cytosolic compartment.

https://doi.org/10.1371/journal.pcbi.1012059.g004

PLOS COMPUTATIONAL BIOLOGY Nuclear export is a limiting factor in eukaryotic mRNA metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012059 May 16, 2024 12 / 23

https://doi.org/10.1371/journal.pcbi.1012059.g004
https://doi.org/10.1371/journal.pcbi.1012059


either whole-cell extracts or the cytosolic RNA fractions would yield estimates that mainly

reflect the nuclear half-life (Section 9 and Fig U in S2 Appendix). In fact, half-life estimates

obtained by fitting a simple exponential decay model to our cytosolic data show a higher corre-

lation with nuclear half-lives (reliable 3’UTRs: Spearman’s ρ=0.93, all 3’UTRs: Spearman’s

ρ=0.84, Fig U in S2 Appendix) than cytosolic half-lives (reliable 3’UTRs: Spearman’s ρ=0.61,

all 3’UTRs: Spearman’s ρ=0.65, Fig U in S2 Appendix) obtained from our two-compartment

model. Furthermore, compared to the cytosolic half-lives obtained from reliable 3’UTRs by

our two-compartment model, the cytosolic half-life estimates of the one compartment model

are biased upward by a median factor of 15 (Fig U in S2 Appendix). Notably, the half-life esti-

mates obtained by fitting a simple exponential decay model to our cytosolic data correlate best

with the sum of our nuclear and cytosolic half-life estimates (reliable 3’UTRs: Spearman’s

ρ=0.97, all 3’UTRs: Spearman’s ρ=0.95, Fig U in S2 Appendix).

Our results were further supported by the analysis of a previously published SLAM-seq

dataset obtained from MCF7 cells by Zuckerman et al. (2020) [47] (Section 2 in S2 Appendix).

In this study, RNA half-lives were estimated from the cytosolic RNA fraction only. In consis-

tency with our previous findings, we observed a high agreement with our nuclear half-life esti-

mates (reliable 3’UTRs: Spearman’s ρ=0.88, all 3’UTRs: Spearman’s ρ=0.84, Fig I in S2

Appendix). The agreement was even higher when compared to the sum of our nuclear and

cytosolic half-life estimates (reliable 3’UTRs: Spearman’s ρ=0.89, all 3’UTRs: Spearman’s

ρ=0.86, Fig I in S2 Appendix). At the same time, the correlation with our cytosolic half-life esti-

mates was substantially lower (reliable 3’UTRs: Spearman’s ρ=0.45, all 3’UTRs: Spearman’s

ρ=0.42; Fig I in S2 Appendix). Since our one-compartment cytosolic half-life estimates agree

well with the data by Zuckerman et al. (2020) [47] (reliable 3’UTRs: Spearman’s ρ=0.87, all

3’UTRs: Spearman’s ρ=0.82, Fig 4C and V in S2 Appendix), this implies that proper subcellular

RNA fractionation and two-compartment labeling are necessary for adequate quantification of

RNA metabolism.

Discussion

In this work, we quantified nuclear and cytosolic RNA metabolism on a genome-wide scale by

applying a two-compartment model to SLAM-seq time-series data. Although conceptually

simple, the actual implementation of such a model is challenging, as the reliability of the meta-

bolic parameter estimates critically hinges on careful preprocessing, robust parameter estima-

tion, quality filtering and investigation of putative biases. We obtained high quality nuclear

half-life estimates (median half-life of reliable 3’UTRs: 291 min, all 3’UTRs: 322 min) and cyto-

solic half-life estimates (median half-life of reliable 3’UTRs: 44 min, all 3’UTRs: 58 min) for

8,119 mRNAs. Our pseudo-WCE RNA half-life estimates correlate highly with estimates from

three different studies [38, 39, 47]. This suggests that our two-compartment model is consis-

tent with previous one-compartment models, but can resolve the nuclear and cytosolic contri-

bution to RNA metabolism. Interestingly, we find systematic shifts in half-lives between cell

lines, which could either be explained by different cell physiology (e.g., compartment size) or

technical biases specific to the quantification protocols of labeled RNA.

Our main finding is that an mRNA molecule generally spends most of its lifespan in the

nucleus and not in the cytosol. We have shown that most of a cell’s mRNA is, therefore, local-

ized in the nucleus. Our results contrast with the much shorter transit times through the

nuclear pore complex observed in smFISH experiments (on the order of seconds) [17]. How-

ever, these results are not contradictory because the time span we define as the nuclear half-life

includes not only the translocation time through the NPC, but also the time required for disso-

ciation from chromatin and diffusion/transport to the NPC. Thus, the long nuclear half-lives
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suggest that translocation through the NPC is not the bottleneck for RNA export. Slow nuclear

export has been identified as a mechanism to buffer cytoplasmic mRNA levels against tran-

scriptional bursts [1]. Since our nuclear half-life estimates are considerably longer than the

commonly assumed timescales of transcriptional bursts for most transcripts, this suggests a

general buffering function of nuclear export.

The speed of nuclear RNA export also has functional consequences for gene regulation.

The absolute rate at which a cell changes its transcript or protein abundance is essentially

determined by the slowest step in the life of that molecule. Genes involved in fast cellular pro-

cesses have been shown to have shorter cellular half-lives on average than, for example, house-

keeping genes [28]. However, some rapid adaptations must occur on a much shorter time

scale than the typical nuclear mRNA half-lives. Therefore, a rapid regulatory response must

either act at the protein level rather than on the RNA level, or there must be very rapid, tran-

script-specific alternative export mechanisms for this purpose. Indeed, alternative transport

molecules and pathways for stress response genes are being discussed [50].

Although 4sU labeling is considered minimally perturbing (as also confirmed in our case),

it is known to elicit some stress responses [35, 51, 52]. Consistent with this, we have discovered

27 genes that show a rapid increase in transcript levels in both the nucleus and cytosol almost

immediately after the onset of 4sU labeling, followed by a similarly rapid decrease to the origi-

nal levels. To elucidate alternative export mechanisms, it will be promising to investigate the

RNP composition of fast-responding transcripts under normal and stress conditions.

Analysis of eCLIP RNA-protein interactions revealed RBPs that appear to modulate nuclear

half-life upon binding. RBM15 was the only RBP whose bound transcripts were exported faster

to the cytosol and had correspondingly shorter nuclear half-lives. Indeed, RBM15 has previ-

ously been implicated in the NXF1 export pathway [46]. However, its exact function remains

elusive. Surprisingly, all other RBPs with a significant effect appeared to prolong RNA export.

We speculate that the targets of these RBPs are bound while still chromatin-associated. Never-

theless, the eCLIP data must be interpreted with caution, as they were obtained from whole

cell extracts and different cell lines. The subcellular localization of some factors such as LARP4

is cytosolic according to Uniprot [49]. Thus, their association with nuclear half-life is unlikely

to be causal. Looking for other determinants of RNA half-life, we found a weak negative corre-

lation between 3’UTR length and RNA half-life, consistent with previous findings in S. pombe

[40]. Our data allowed an in-depth study of this effect. It contains 118 genes with at least two

different 3’UTR isoforms whose metabolism could be reliably quantified. While there were no

substantial differences in cytosolic half-lives, we found that the median nuclear RNA half-life

for the shorter 3’UTR was 1.5 times longer than the half-life of its longer counterpart. The role

of 3’UTR length in this context is controversial [53]. While some studies report a negative

association between 3’UTR length and half-life [31, 54], others did not observe such a trend

[53]. Our comparison of 3’UTR transcript isoforms provides additional evidence for the

former.

In this work, we have developed a two-compartment model that captures key aspects of

RNA metabolism. We anticipate that our method will elucidate the functions of RBPs in

mRNA export by comparing RNA metabolism in control and functional knockouts of a puta-

tive export factor. It will also allow the dissection of different export pathways and their tran-

script specificity. However, the simplifying assumptions of the two-compartment model limit

its scope. For example, we have neglected the breakdown of the nuclear envelope during mito-

sis. During this phase, it is possible that nuclear and cytosolic RNA fractions mix by diffusion.

Therefore, an extension of the model with a cell cycle phase-specific diffusion parameter is

promising. Complementary to this, SLAM-seq data should be acquired from a synchronized

cell population. Another limitation of our current model is the steady-state assumption, which
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will require extension to non-stationary conditions in future work. In conclusion, we have

shown that nuclear export is a major contributor to RNA lifespan. To our knowledge, all previ-

ous studies have explained transcript stability by cytosolic degradation. Therefore, future stud-

ies should consider the compartmentalization of a eukaryotic cell as a major factor in RNA

metabolism.

Material and methods

Cell culture and subcellular fractionation

Hela-S3 cells were purchased from ATCC and cultured in DMEM supplemented with 10%

heat inactivated FBS without antibiotics and incubated at 37˚C and 5% CO2 Cells were tested

regularly for mycoplasma with the PlasmoTest kit (InvivoGen) and are mycoplasma negative.

We labeled newly synthesized RNA of asynchronously proliferating cells with 4-thiouracil

(4sU; Carbosynth) at a concentration of 500 μM. Apart from one report on 4sU labeling trig-

gering a ribosomal stress response in human cells [51], 4sU labeling at these concentrations is

generally considered minimally perturbing [24, 29, 55]. 45 million cells were used per sample.

After 0, 15, 30, 45, 60, 90, 120 or 180 min of 4sU labeling, we performed subcellular fraction-

ation into nuclear and cytoplasmic fractions as described in Nojima et al. (2016) [56] with

modifications as follows: the cells were rinsed on the cell culture plates twice with 20 ml of ice-

cold DPBS twice and scraped in 10 ml ice-cold DPBS and transfered into a 15-ml tube. The

cells were pelleted at 400 x g or 5 min at 4˚C resuspended in 4 ml of ice-cold HLB+N buffer

(10mM Tris-HCl (pH 7.5), 10 mM NaCl, 2.5 mM MgCl2 and 0.5% (vol/vol) NP-40) followed

by an incubation on ice for 5 min. The cell pellet was underlaid with 1 ml of ice-cold HLB+NS

buffer (10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 2.5 mM MgCl2, 0.5% (vol/vol) NP-40 and

10% (wt/vol) sucrose). The nuclei were pelleted by centrifugation at 400 x g for 5 min at 4˚C.

The supernatant was the collected and lysed with 3 volumes of Trizol LS (Life technologies) for

cytoplasmic fraction. The nuclei were washed with 15 ml ice-cold DPBS and lysed in Qiazol

(Qiagen). For the total fractions we lysed the metabolically labeled cells directly in Qiazol (Qia-

gen). To rule out cross-contamination between the fractions, the purity of the fractions was

assessed by Western Blots. GAPDH and α-tubulin were used as markers for the cytosolic frac-

tion and RNA Pol II CTD—Ser2P, U1snRNAP70 and histone H3 as markers for the nuclear

fraction (Fig B in S1 Appendix).

RNA preparation and sequencing

Synthetic spike-ins were produced and purified as described previously [57, 58]. The prepara-

tion protocol was modified to include in vitro poly(A) tailing with E. coli Poly(A) Polymerase

(NEB) to make the spike-ins compatible with the NGS library preparation. We added equal

amounts of synthetic spike-ins to all the RNA fraction lysates prior to RNA isolation. RNA was

isolated according to the manufacturer’s protocol and then dissolved in nuclease-free water

with 1 mM DTT. The carboxyamidomethylation reactions of 4sU were set up as described by

Herzog et al. [29]. Briefly described here, we set up the reaction with 5 μg RNA in nuclease-

free water with1 mM DTT; 50% DMSO (Sigma); 50 mM sodium phosphate buffer pH 8.0; and

10 mM iodoacetamide (Pierce). The reactions were incubated at 50˚C for 15 min and then

quenched by 100 mM DTT. The conversion efficiency of 4sU was evaluated by absorption

spectra before and after treatment with IAA (Fig A in S1 Appendix).

The RNA was then precipitated with ethanol to clean up and concentrate. Next generation

sequencing (NGS) libraries were prepared from 500 ng RNA with the QuantSeq 3’ mRNA-Seq

Library Prep Kit REV for Illumina (Lexogen) according to the manufacturer’s instructions,

but with two modifications. In brief, the reverse transcription reaction temperature was
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increased to 50˚C and the incubation was extended to 60 min. The NGS libraries were pooled

and sequenced as single-read with the custom sequencing primer provided with the QuantSeq

NGS library preparation kit with 100 cycles on a HiSeq2000 sequencer (Illumina).

Sequencing data pre-processing

We chose slamdunk [34] for read mapping, after comparison with results from bowtie2 [59]

and hisat2 [60] (Fig C in S1 Appendix). Reads were mapped to human reference genome hg19

with slamdunk (version 0.3.0, settings: -n 100, -m; see Section 2 and Figs C and D in S1 Appen-

dix for details). Count statistics for each 3’UTR were obtained by aggregating all mapped reads

overlapping with a given 3’UTR. To prevent double counting, overlapping 3’UTRs on the

same DNA strand were merged.

Most genes have multiple poly-adenylation sites, which can give rise to multiple 3’UTR iso-

forms [61]. Moreover, the annotation of 3’UTRs might be incomplete, and there might be

additional pA sites in the genome arising from non-coding and cryptic transcripts and cryptic

transcripts would have been overlooked by the above pre-processing strategy. Therefore, we

additionally defined and identified “peak regions”, genomic regions in which 3’ ends of

mapped reads pile up, and calculated separate count statistics for each such peak (Section 4 in

S1 Appendix).

In our experiment, observed T>C conversions in a sequence read can be caused on purpose

by 4sU incorporation into newly synthesized RNA, followed by IAA conversion. But T>C

conversions can also be artefacts resulting from SNPs in our HeLa cell line compared to the

hg19 reference genome, or they can be caused by RNA editing. Lastly, such conversions can be

the result of reverse transcription and sequencing errors. While the latter errors are stochastic

and must be accounted for later in an error model, the first two types of errors are systematic

(they introduce bias) and can be identified and corrected. We excluded all known potential

SNP sites reported in the hg19 NCBI dbSNP database [62]. Additionally, all T sites with an

observed conversion rate higher than 5% in the nuclear or cytosolic fraction of the unlabeled

control sample were considered putative SNPs or editing sites and masked. Bias correction in

the control sample, particularly removal of RNA editing sites, resulted in more similar single

nucleotide mismatch rates between both strand-specific A>G or T>C and other conversions,

between the nuclear and cytosolic fractions, and between 3’UTR and non-3’UTR peaks, indi-

cating that our correction was effective (Section 8 and Fig M in S1 Appendix). SNP and RNA

editing site correction was then applied to all samples of the two labeling time series (see Sec-

tion 5 and Figs N-O in S1 Appendix for T>C conversion and mismatch statistics).

Estimation of new/total mRNA ratios

The relative of abundances of newly synthesized among all transcripts of a population—hence-

forth called new/total ratios—are the endpoints predicted by our two-compartment model

(Eqs (3) and (4)). The empirical labeled/total RNA ratio is a bad estimate of the new/total

ratio, as newly synthesized transcripts might escape labeling due to low 4sU incorporation

rates (2% [29]). It is common to use a binomial mixture model to estimate new/total ratios

from the observed labeled and unlabeled reads [26, 35]. We use a slightly modified method for

the estimation of the new/total ratios.

Fix a 3’UTR respectively a peak region onto which J reads were mapped. Given a read j, let

Tj be its number of T-positions in the genomic sequence of the read alignment, and let oj be

the number of T>C conversions observed in that read. Let hj 2 {0, 1} be a hidden variable indi-

cating whether read j originates from a pre-existing RNA (hj = 0) or a newly synthesized RNA

(hj = 1). The target of inference is the fraction ρ 2 [0, 1] of the reads originating from a newly
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synthesized RNA. We assume that the probability of a T>C conversion is constant for posi-

tions in all newly synthesizedtime reads, i.e., T positions are labeled with a constant labeling

efficiency ℓ 2 [0, 1]. We found that this assumption is invalid for short labeling pulses of a few

minutes (Section 7 in S1 Appendix). Yet, for the labeling durations in our experiment, we may

safely take ℓ as a constant. Further, let p0 be the probability of a T>C sequencing error, and �

the probability of a C>non-C sequencing error. Both p0 and � are estimated from the control

RNA samples (Section 6 in S1 Appendix). We model the probability of seing a T>C converted

nucleotide in a read originating from a newly synthesized transcript as p1 = ℓ(1 − �) + (1 − ℓ)
p0. Assuming the reads are drawn independently, and all T>C conversions and sequencing

errors occur independently, the likelihood function becomes

Pðo; hÞ ¼
YJ

j¼1

pðoj; h;; r; ‘Þ ¼
YJ

j¼1

Pðhj; rÞ � Pðoj j hj; ‘Þ ð5Þ

with

Pðhj; rÞ ¼ Bernoulliðhj; rÞ ð6Þ

Pðoj j hj; ‘Þ ¼ Binðoj; Tj; phjÞ ð7Þ

In a first round, we estimate the unknown parameters ρ and ℓ by a standard EM algorithm,

separately for each 3’UTR respectively peak region g (Section 6 in S1 Appendix). It has already

been noted in [26] that such a model does not produce sensible estimates whenever ρg is small

(which occurs particularly often for short labeling intervals). The reason is that it is advanta-

geous to use both binomial mixture components for the labeling of the pre-existing transcripts

than fitting one mixture component to the newly synthesized transcripts. Juerges et al. (2018)

[26] address this problem by pre-filtering of reads with a low number of T>C conversions.

This however leads to highly variable numbers of reads per sample (a few thousand up to more

than 105) that enter the EM algorithm as input data and is therefore potentially susceptible to

biases. To cirumvent this problem, we remove all regions g for which the labeling efficiency

was estimated below 1% and that are suspicious of the above overfitting phenomenon. Note

that this means we generally consider samples with labeling efficiencies below 1% unsuitable

for estimating new/total ratios. Fortunately, this is not the case in any of our samples. We then

fix ℓ to the median of the remaining regions in a sample and calculate the maximum likeli-

hood, region-specific estimates ρ separately for each region g (Section 6 in S1 Appendix).

We would like to point out that all models for estimating the new/total ratio known to us,

including the one presented here, neglect some effects that lead to a delayed aggregation of

labeled transcripts. First, the time it takes to add a polyA-tail to an mRNA after transcription

termination is an interval during which newly synthesized mRNA is not detected by our

method [35]. The effective labeling time is therefore the time after 4sU addition, reduced by

this “detection gap”. On the other hand, variations in the duration of labeling periods or delays

in cell harvesting/processing can shift the offset in a negative direction. Because newly synthe-

sized transcripts are produced continuously, their maturation time is highly variable. Conse-

quently, the labeling efficiency with which their respective 3’-ends were synthesized cannot be

readily assumed identical for all newly synthesized transcripts inside the population of an

RNA sample. We have extensively investigated these potential sources of bias to verify that

they are negligible here, although this is not the case for short labeling pulses <5min (Section 7

in S1 Appendix).
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Fitting of metabolic parameters

Fix a transcript for which we want to fit the transcript-specific parameters Θ = (τ + ν, λ). Solv-

ing Eqs (1) and (2) of the main text with initial conditions N(0) = 0, C(0) = 0 and the parame-

ters Θ, the abundance of the newly synthesized RNA fraction in the nucleus and the cytosol is

NðtÞ ¼ N1 � ð1 � e� ðnþtÞtÞ

CðtÞ ¼ C1 � 1 �
le� ðnþtÞt � ðnþ tÞe� lt

l � ðnþ tÞ

� �

where N1 ¼
m

nþt
and C1 ¼ t

l
N1. The relative abundances (newtotal) ratios are then given by

nðtÞ ¼ NðtÞ
N1

and cðtÞ ¼ CðtÞ
C1

. This yields a series of predictions of the nuclear and cytosolic new/

total ratios ni = n(ti) and ci = c(ti), i = 1,. . ., T, where ti are the time points at which observa-

tions were made. A straightforward approach is to fit a binomial model of the newly synthe-

sized nuclear and cytosolic reads with the respective total number of reads, Rnuc
i and Rcyt

i , and

the ratios ni and ci as parameters. However, this fit is not robust against outliers and slight

violations of the model assumptions. Alternatively, one could perform a least squares fit of

the nuclear and cytosolic new/total ratios rnuc
i and r

cyt
i which have been estimated above at

each of the observation time points ti, i = 1,. . ., T:

‘ðYÞ ¼
XT

i¼1

ðrnuc
i � niÞ

2
þ
XT

i¼1

ðr
cyt
i � ciÞ

2

However, this does not take into account the unequal variance of the individual summands,

which varies largely with rnuc
i respectively r

cyt
i . We therefore chose to combine both approaches

and apply a variance stabilizing transformation. It was demonstrated that for sufficiently large

R, a binomial variable N* Binom(R, p), after transformation N 7!
ffiffiffiffiffiffi
4R
p

� arcsin
ffiffiffi
N
R

p
, can be

approximated by a Gaussian variable Y � N ðm; s2Þ with m ¼
ffiffiffiffiffiffi
4R
p

� arcsin ffiffiffipp and σ2 = 1 [63].

This approximation has been shown to be more accurate than the approximation of N by a

Gaussian with mean p and variance Rp(1 − p). Importantly, the variance of the transformed

variable is approximately independent of its mean, i.e., the proposed transformation is vari-

ance stabilizing. We have verified the variance-stabilizing property of this transformation in

our data (Fig L in S1 Appendix). We exploit this property and minimize the negative log likeli-

hood of the Gaussian approximation, which is, up to additive and multiplicative constants,

‘ðYÞ ¼
XT

i¼1

Rnuc
i ðarcsin

ffiffiffiffiffiffiffiffi
rnuc
i

p
� arcsin

ffiffiffiffi
ni
p
Þ

2
þ
XT

i¼1

Rcyt
i ðarcsin

ffiffiffiffiffiffiffi

r
cyt
i

q

� arcsin
ffiffiffi
ci
p
Þ

2

Instead of fitting Θ = (τ + ν, λ) jointly, parameter estimation was performed for τ + ν first

using the nuclear compartment model only. Then, the estimate of τ + ν was plugged into the

cytosolic compartment model for the fit of λ. The rationale behind this procedure is that a sim-

ple one-compartment is more stable to fit since the new/total ratios are higher in the nucleus.

Further, according to our model, a variation in λ does not affect the nuclear metabolism, and

hence the estimate of τ + ν should not depend on cytosolic observations.

Approximate confidence intervals for τ + ν and λ were calculated as the component-wise

central 95% interval of an MCMC sample. To enhance convergence (burn-in), the MCMC

was initialized with a maximizer of ℓ(Θ) obtained by standard Nelder-Mead numerical optimi-

zation. Finally, a point estimate for Θ was obtained by another round of optimization starting
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from the best scoring MCMC sample. Parameter estimation was executed separately for sam-

ple 1 and 2, and estimates were averaged afterwards.

Reliability criteria

The metabolic rate estimate of a 3’UTR was classified as reliable if the following criteria were

met: 1.) The 3’UTR had a minimum average read count of 30 in each the nuclear and the cyto-

solic fraction of each time series experiment. 2.) The 3’UTR’s expression level was constant

across the measured time series (steady state assumption): A simple linear regression was per-

formed on the 3’UTR’s expression level across each of the two time series. If the average slope

of both fits did not exceed a value of 0.0025 (resp. not come below a value of -0.0025), the

expression was considered constant. 3.) The relative deviation of the single time series’ esti-

mates, x1 and x2, was not higher than 33%, i.e.
2jx1 � x2 j

x1þx2
� 0:33. 4.) The relative deviation of the

confidence interval’s upper and lower bound, cu and cl, was not higher than 0.3, i.e. j
2cu

x1þx2
�

1j � 0:3 and j
2cl

x1þx2
� 1j � 0:3. 5.) The rate estimate provided a reasonable fit to the arcsin-

transformed new/total ratios (R� 0.4). Note that the cytosolic estimates were only considered

reliable if the respective nuclear estimates were reliable as well, since the nuclear parameters

were plugged into the cytosolic compartment model.
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51. Burger K, Mühl B, Kellner M, Rohrmoser M, Gruber-Eber A, Windhager L, et al. 4-thiouridine inhibits

rRNA synthesis and causes a nucleolar stress response. RNA Biology. 2013; 10(10):1623–1630.

https://doi.org/10.4161/rna.26214 PMID: 24025460

52. Schwalb B, Michel M, Zacher B, Frühauf K, Demel C, Tresch A, et al. TT-seq maps the human transient

transcriptome. Science. 2016; 352(6290):1225–1228. https://doi.org/10.1126/science.aad9841 PMID:

27257258

53. Gupta I, Clauder-Münster S, Klaus B, Järvelin AI, Aiyar RS, Benes V, et al. Alternative polyadenylation

diversifies post-transcriptional regulation by selective RNA–protein interactions. Molecular Systems

Biology. 2014; 10(2):719. https://doi.org/10.1002/msb.135068 PMID: 24569168

54. Lin Y, Li Z, Ozsolak F, Kim SW, Arango-Argoty G, Liu TT, et al. An in-depth map of polyadenylation

sites in cancer. Nucleic Acids Research. 2012; 40(17):8460–8471. https://doi.org/10.1093/nar/gks637

PMID: 22753024

55. Altieri JAC, Hertel KJ. The influence of 4-thiouridine labeling on pre-mRNA splicing outcomes. PLOS

ONE. 2021; 16(12):1–13. https://doi.org/10.1371/journal.pone.0257503 PMID: 34898625

PLOS COMPUTATIONAL BIOLOGY Nuclear export is a limiting factor in eukaryotic mRNA metabolism

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012059 May 16, 2024 22 / 23

https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.3390/ijms18122723
http://www.ncbi.nlm.nih.gov/pubmed/29244760
https://doi.org/10.1186/gb-2014-15-1-r15
https://doi.org/10.1186/gb-2014-15-1-r15
http://www.ncbi.nlm.nih.gov/pubmed/24417896
https://doi.org/10.7554/eLife.45396
https://doi.org/10.7554/eLife.45396
http://www.ncbi.nlm.nih.gov/pubmed/31012849
https://doi.org/10.1261/rna.062224.117
https://doi.org/10.1261/rna.062224.117
http://www.ncbi.nlm.nih.gov/pubmed/28802259
https://doi.org/10.1099/vir.0.007021-0
http://www.ncbi.nlm.nih.gov/pubmed/19218215
https://doi.org/10.1104/pp.18.01434
https://doi.org/10.1104/pp.18.01434
http://www.ncbi.nlm.nih.gov/pubmed/30659066
https://doi.org/10.1161/CIRCRESAHA.121.320080
http://www.ncbi.nlm.nih.gov/pubmed/34816743
https://doi.org/10.1038/s41586-020-2077-3
https://doi.org/10.1038/s41586-020-2077-3
http://www.ncbi.nlm.nih.gov/pubmed/32728246
https://doi.org/10.1093/nar/gkz1062
https://doi.org/10.1093/nar/gkz1062
http://www.ncbi.nlm.nih.gov/pubmed/31713622
https://doi.org/10.1074/jbc.M608745200
http://www.ncbi.nlm.nih.gov/pubmed/17001072
https://doi.org/10.1016/j.molcel.2020.05.013
http://www.ncbi.nlm.nih.gov/pubmed/32504555
https://doi.org/10.1016/j.gpb.2016.03.005
http://www.ncbi.nlm.nih.gov/pubmed/27163185
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1038/nature20572
http://www.ncbi.nlm.nih.gov/pubmed/27951587
https://doi.org/10.4161/rna.26214
http://www.ncbi.nlm.nih.gov/pubmed/24025460
https://doi.org/10.1126/science.aad9841
http://www.ncbi.nlm.nih.gov/pubmed/27257258
https://doi.org/10.1002/msb.135068
http://www.ncbi.nlm.nih.gov/pubmed/24569168
https://doi.org/10.1093/nar/gks637
http://www.ncbi.nlm.nih.gov/pubmed/22753024
https://doi.org/10.1371/journal.pone.0257503
http://www.ncbi.nlm.nih.gov/pubmed/34898625
https://doi.org/10.1371/journal.pcbi.1012059


56. Nojima T, Gomes T, Carmo-Fonseca M, Proudfoot NJ. Mammalian NET-seq analysis defines nascent

RNA profiles and associated RNA processing genome-wide. Nature Protocols. 2016; 11(3):413–428.

https://doi.org/10.1038/nprot.2016.012 PMID: 26844429
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