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Abstract

Non-human primate (NHP)-based model systems are highly relevant for biomedical

research. However, only few NHP cell lines are available and the generation of additional

cell lines is an urgent need to help in the refinement and replacement of these models.

Using lentiviral transduction of c-Fos, we established cell lines from the brain of rhesus

macaques (Macaca mulatta). Transcriptome analysis revealed that these cell lines are

closely related to astrocytes, which was confirmed by immunoblot and immunofluorescence

microscopy detecting expression of the astrocyte marker glial fibrillary acidic protein

(GFAP). Quantitative real-time PCR (qRT-PCR) demonstrated that major pathways of the

interferon (IFN) system are intact. Using retroviral pseudotypes we found that the cell lines

are susceptible to entry driven by the glycoproteins of vesicular stomatitis virus (VSV), lym-

phocytic choriomeningitis virus (LCMV) and to a lesser extent influenza A virus (IAV).

Finally, these cells supported growth of Zika virus (ZIKV) and Papiine alphaherpesvirus 2

(PaHV2). In summary, we developed IFN-responsive cell lines from the rhesus macaque

brain that allowed entry driven by several viral glycoproteins and were permissive to infec-

tion with ZIKV and a primate simplexvirus. These cell lines will be useful for efforts to ana-

lyze neurotropic viral infections in rhesus macaque models.

Introduction

Macaques are important animal models for biomedical and infectious disease research, due to

their physiologic similarities and their close phylogenetic relationship to humans. Conse-

quently, macaque models of infectious diseases, such as infection with Ebola virus (EBOV) or

Zika virus (ZIKV), closely mirror the pathogenesis observed in human patients [1–3]. How-

ever, the close relatedness to humans has also led to ethical concerns and a call for strategies to

replace, reduce and refine (3R) [4] non-human primate (NHP) model systems. The develop-

ment of suitable ex vivo models, including cell lines, will aid refinement and replacement.
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The availability of NHP induced pluripotent stem cells (iPSC) [5–7] allows for generation

of cells of different lineages. However, this approach is labor intensive and requires specialized

and expensive reagents. In contrast, continuously growing cell lines offer the advantage of low

cost and high scalability [8]. Since cell lines established from tissue explants usually have lim-

ited reproductive capacity, viral or cellular genes like the simian virus 40 (SV40) large T [9] or

the catalytic subunit of telomerase reverse transcriptase (TERT) [10,11] have been employed

to generate immortalized cell lines.

Although thousands of cell lines of human origin are available from commercial suppliers

(such as ATCC), only few cell lines of NHP origin can be obtained. Furthermore, only few cell

lines have been reported in literature [12–14] that are not yet available via repositories. Thus,

there is a clear need for new cell lines of macaque origin. In particular, to our knowledge, no

cell lines are available that have been derived from macaque neuronal tissue. Here, we report

the generation of cell lines from macaque neuronal tissues, such as trigeminal ganglia, cortex

and hippocampus, that are of astrocyte origin, as demonstrated by RNAseq analyses and

expression of the astrocyte marker glial fibrillary acidic protein (GFAP). The interferon (IFN)-

stimulated gene (ISG) MX1 was induced upon treatment with IFN or viral infection, demon-

strating functionality of key pathways of the IFN system. The cells allowed for entry driven by

glycoproteins from diverse viruses and supported productive infection with primate simplex-

virus Papiine alphaherpesvirus 2 (PaHV2) and ZIKV.

Materials and methods

Ethics statement

The German Primate Center (DPZ) has permission for housing and breeding non-human pri-

mates under license number 392001/7 issued by the local veterinary authorities. Rhesus

macaques were housed under conditions in accordance with the German Animal Welfare Act

and the European Union guidelines on the protection of animals used for scientific purposes.

For the purpose of this study, only leftover materials were used, which were derived from ani-

mals in experiments approved by an external ethics committee authorized by the Lower Sax-

ony State Office for Consumer Protection and Food Safety (Niedersächsisches Landesamt für

Verbraucherschutz und Lebensmittelsicherheit) (project license: 33.19-42502-04-18/2902).

Plasmids and oligonucleotides

Plasmid HIV-gag-pol was a kind gift from Thomas von Hahn (Hannover). Plasmids for

Murine leukemia virus (MLV) pseudotype production (MLV-luc, MLV-gag-pol) and expres-

sion of glycoproteins from Vesicular stomatitis virus (VSV-G), influenza A virus strain WSN

(IAV HA and NA) and Lymphocytic choriomeningitis virus strain Armstrong (LCMV-GPC)

have been described previously [15–17]. All oligonucleotides (Table 1) were purchased from

Sigma-Aldrich (Steinheim, Germany).

For lentiviral transduction, we modified a pReceiver-Lv205-based expression plasmid

(Genecopoeia, Rockville, MD, USA) to harbor the SV40 large T gene (lT) in a pQCXIP-based

expression cassette. In a first step, pLenti-IP-PB1 was generated by insertion of a NdeI/Pfl23II

fragment containing CMV promoter-PB1-IRES into EX-A2639-Lv205, as previously described

[18]. In a second step, we inserted the SV40 large T gene as a NotI/PmlI fragment into pLenti-

IP-PB1. The resulting plasmid pLenti-IP-large T contained the SV40 large T gene under con-

trol of the human cytomegalovirus (HCMV) enhancer/promoter followed by an internal ribo-

somal entry sequence (IRES) and a puromycin resistance gene.

To generate additional lentiviral vectors harboring immortalization genes, we modified the

lentiviral plasmid pLenti6/V5-GW/LacZ stepwise into a vector with an expression cassette
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similar to pQCXIP and a multiple cloning site containing sites for NotI-BamHI-AgeI-H-

paI-MluI-XhoI-MluI-EcoRI. First, a NdeI/Acc65I fragment harboring HCMV enhancer/pro-

moter, multiple cloning site and an IRES with mutated AarI site was inserted into pLenti6/

V5-GW/LacZ. In the next step, NruI and NotI sites in the lentiviral backbone were mutated by

splice overlap PCR, using primers LentdNr-for/LentdNr-rev and LentdNo-for/LentdNo-rev

(Table 1). The resulting vector was then cut with Acc65I and an Acc65I/AarI-fragment con-

taining the neomycin resistance gene was inserted after amplification from pQCXIN-mcs [19]

using primer neo3aarI/EMCV_IRES3 to obtain pLCXIN-mcs. Finally, the neomycin resistance

gene was exchanged with a hygromycin resistance gene as an EcoRI/EcoRV fragment from

pQCXIHy-mcs [19] to obtain pLCXIHy-mcs.

To obtain lentiviral vectors harboring the immortalization genes ID2, c-Fos (FOS), HPV16

E7, BMI1, c-Myb (MYB) isoform 3, and Cyclin-1 (CCND1) the genes were amplified from

human cDNA or plasmid (pLXSN-16E6E7) using primers listed in Table 1 and cloned using

NotI/XhoI sites into pLCXIHy-mcs. The genes c-Myc (MYC) isoform 1 and KLF4 isoform 2

had previously been cloned by PCR into pENTR3C (Invitrogen, Carlsbad, CA, USA) using

primers listed in Table 1 and subcloned into pLCXIHy-mcs using BamHI+XhoI sites. All

sequences were verified by sequencing to correspond to reference sequences stored in

GenBank.

Table 1. Oligonucleotides used for cloning.

Name Sequence 5’-3’

LentdNr-for AACCGAATTTTTTCCCACCCGGGTCTAATTCTCCCCCGCT

LentdNr-rev AGCGGGGGAGAATTAGACCCGGGTGGGAAAAAATTCGGTT

LentdNo-for ACCACCGCACAGCAAGCCGGCGCTGATCTTCAGACCT

LentdNo-rev AGGTCTGAAGATCAGCGCCGGCTTGCTGTGCGGTGGT

neo3aarI CGATCACCTGCAAGGGTACGATATCTCCGGATCAGAAGAACTC

EMCV_IRES3 GCTGAAGGATGCCCAGAAGG

ID2-5N CCGCGGCCGCACCATGAAAGCCTTCAGTCCCGT

ID2-3X CCCTCGAGTCAGCCACACAGTGCTTTGC

cFos-5N (6250 CCGCGGCCGCACCATGATGTTCTCGGGCTTCAA

cFos-3X (6179) CACTCGAGTCACAGGGCCAGCAGCGTGG

16E7-5N CCGCGGCCGCACCATGCATGGAGATACACCTAC

16E7-3X GGCTCGAGTTATGGTTTCTGAGAACAGA

hcMyc-5B GCGGATCCCTGGATTTTTTTCGGGTAGTG

hcMyc-3N GGTGCGGCCGCTTACGCACAAGAGTTCCGTAG

BMI1-5N CCGCGGCCGCACCATGCATCGAACAACGAGAAT

BMI1-3X GCCTCGAGTCAACCAGAAGAAGTTGCTGA

cMyb-5N CCGCGGCCGCACCATGGCCCGAAGACCCCGGCA

cMyb-3X GTCTCGAGTCACATGACCAGCGTCCGGG

hKlf4-5B GGGGATCCATGGCTGTCAGCGACGCGC

hKlf4-3N GTGGCGGCCGCTTAAAAATGCCTCTTCATGTG

CCND1-5N CCGCGGCCGCACCATGGAACACCAGCTCCTGTG

CCND1-3X CCCTCGAGTCAGATGTCCACGTCCCGCAC

RhGABBR2-5X CTCGAGCACCATGGCTTCCCCGCGGAGCTCC

RhGABBR2-3E GAATTCTCAGGCCCGAGACCATGACTCG

RhGAD65-5X CTCGAGCCACCATGGCATCTCCGGGCTCTGGC

RhGAD65-3E GAATTCTTATAAATCTTGTCCAAGRCG

RhOLIG1-5X CTCGAGCCACCATGTACTATGCGGTTTCCCAG

RhOLIG1-3E GAATTCTCACTTGGAGAAYTGCGCCTG

https://doi.org/10.1371/journal.pone.0303059.t001
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For expression of rhesus macaque GABBR2, GAD2 and Olig1 the genes were amplified

from cDNA generated from rhesus macaque brain tissue using primers RhGABBR2-5X and

RhGABBR2-3E, RhGAD65-3E and RhGAD65-5X or RhOLIG1-3E and RhOLIG1-5X, respec-

tively (Table 1). PCR fragments were cloned into vectors pmScarlet-idNS-C1 (GAD2, Olig1)

or pmScarlet-idNS-N1 (GABBR2) using XhoI and EcoRI sites. Vector pmScarlet-idNS-C1 was

generated by mutating SalI and NotI sites within the mScarlet-i gene in original vector

pmScarlet-i-C1 (kind gift from Dorus Gadella; Addgene plasmid #85044, Watertown, MA,

USA). Vector pmScarlet-idNS-N1 was generated by replacing the EYFP gene in pEYFP-N1

(Clontech, Mountain View, CA, USA) with the modified mScarlet-idNS gene.

Cell culture

The cell lines 293T (DSMZ GmbH, Braunschweig, Germany), Vero76 (kind gift by Andrea

Maisner) and A549 (kind gift by Thomas Schulz) were cultivated in DMEM supplemented

with 10% fetal calf serum (FCS) and penicillin/streptomycin. Cell lines were routinely tested

for mycoplasma and the identity of human cell lines was verified by short tandem repeat

(STR) analysis [20]. The hybridoma cell line D1-4G2-4-15 [21] was purchased from LGC/

ATCC (Teddington, UK) and cultivated in RPMI1640 supplemented with 10% FCS and peni-

cillin/streptomycin.

Establishment of primary cultures

Tissue samples for trigeminal ganglia, brain cortex and hippocampus were obtained from two

male animals sacrificed at age of 6 (animal 2817) and 7 (animal 2880) years for reasons unre-

lated to this project. Tissue samples were chopped into small (1 mm3) pieces, transferred to

separate Eppendorf tubes und incubated in 1 mL PBS containing 5 mg Collagenase IV. Sam-

ples were incubated for 1–3 hours at 37˚C and 800 rpm in a thermomixer. After centrifugation

for 5 min at 300 x g, cells were resuspended in DMEM/F12 medium and seeded separately

into 6-well plates in a total volume of 3 mL/well. All media were supplemented with 10% FCS

and penicillin, streptomycin, gentamycin, nystatin and amphotericin B. After outgrowth dur-

ing the next two weeks, cells were seeded for transduction with immortalizing genes.

Virus

The primate herpesvirus PaHV2 (HVP2) strain X313 was a kind gift by David Brown and Mat-

thew Jones, Public Health England. ZIKV strain MR766 was cloned from RNA and rescued by

transfection of Vero76 cells [22]. Virus stocks were prepared on Vero76 cells after infection at

low multiplicity of infection (MOI). Virus containing supernatant was harvested when com-

plete cytopathic effect had developed, filtered through 0.45 μm filters to remove cell debris and

stored at -80˚C.

For infection with Vesicular stomatitis virus (VSV), we used a recombinant virus, VSV

ncp*, which carries the eGFP gene as reporter (the asterisk stands for eGFP) and has four

amino acid changes within the matrix gene rendering it less cytopathogenic (ncp) [23].

Retroviral transduction

For production of transducing lentivirus, we seeded 293T cells in T25 flasks at about 106 cells/

flask. Cells were transfected the next day with 6 μg lentiviral vector, 3 μg HIV gag-pol(SCA)

and 3 μg pHIT/G expressing VSV-G, using the calcium phosphate method, as previously

described for retroviral vectors [24,25]. Plasmid HIV gag-pol(SCA), where amino acids 1–204

of the HIV capsid gene (hCA) were substituted by amino acids 1–202 of SIV capsid gene
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(sCA) was used for improved transduction of rhesus macaque cells [18]. After two days, cell

culture supernatants were harvested, filtered through 0.45 μm filters and stored as aliquots at

-80˚C. Lentiviral stocks were not titrated directly, but in parallel we used a EGFP expressing

lentivirus to experimentally determine that we were able to achieve titers between 106−107/mL

on rhesus macaque kidney cells [18].

Transduction and selection was performed as recently described [26]. Briefly, cells were

seeded at 5,000 cells per well in a 96-well plate. After overnight incubation, 50 μl of transducing

lentiviral particles were added. For transduction of several immortalization genes, four sepa-

rate particle preparations were pooled (pools arbitrarily labelled with letters, e.g. “g” or “r”),

resulting in a total volume of 200 μl per well. On the next day, cells were transduced with a sep-

arate pool of lentiviral transducing particles, resulting in cells transduced with two different

pools (labelled “gr”). Spinoculation at 4,000 × g for 30 min was used to increase the transduc-

tion efficiency. After two days, cells were detached and transferred into a 24-well plate contain-

ing selection medium. We used 50 μg/mL hygromycin and 2.5 μg/mL puromycin for selection

of hygromycin (gr-pools) or puromycin (large T, lT) resistance, respectively.

During establishment of cell lines transduced with pools only a subset of transduced genes

is actually present in the final cell line [27]. Therefore, successful transduction of cell lines with

individual transgenes (gr-pools) was analyzed by PCR from genomic DNA isolated from these

cell lines. For the PCR we used one common forward primer within the human cytomegalovi-

rus promoter driving transgene expression and a gene specific reverse primer (Table 2).

Immunoblot

For immunoblot, cells were seeded in 12-well plates at 100,000 cells per well. After overnight

cultivation, cells were lysed in SDS sample buffer (30 mM Tris pH 6.8, 1 mM EDTA, 10% glyc-

erol, 2% SDS, 0.1% bromophenol blue, 5% beta-mercaptoethanol) and heated to 95˚C for 5

min. Denatured samples were subjected to SDS-PAGE and blotted onto nitrocellulose mem-

branes (Protran; Amersham, Freiburg, Germany) in a wet-tank using a Mini-Protean electro-

phoresis system (Bio-Rad, Hercules, CA, USA). After transfer, filters were blocked for 1 h at

room temperature in PBS-T/MP (PBS with 0.1% Tween-20 and 5% skim milk powder) fol-

lowed by overnight incubation with primary antibody in 50 mL tubes at 4˚C on a roller (CAT,

Staufen, Germany). Filters were washed three times in PBS-T (PBS with 0.1% Tween-20) fol-

lowed by incubation with secondary antibody in 50 mL tubes at room temperature for 1 h on a

roller. After three washes in PBS-T, the filters were reacted with HRP Juice (PJK Biotech,

Kleinblittersdorf, Germany) and signals detected in a ChemoCam Imager (Intas, Göttingen,

Germany).

As primary antibodies we used the mouse anti-T antigen monoclonal PAb108

(ABIN967412; antibodies-online GmbH, Aachen, Germany) diluted 1:500 in PBS-T/MP and a

Table 2. Oligonucleotides used for cloning.

Name Sequence 5’-3’

BMI1-rev CAGCAGAAGGATGAGCTGCA

cycD1-rev AGGAAGCGGTCCAGGTAGTT

E7-rev GATGGGGCACACAATTCCTA

FOS-rev ACTGGTCGAGATGGCAGTGA

ID2-rev TGGTGATGCAGGCTGACAAT

Klf4-rev GCTCTCCAGGTCTGTGGCCA

Myb-rev GGCACTGCACATCTGTTCGA

Myc-rev GGCAGCAGCTCGAATTTCTT

https://doi.org/10.1371/journal.pone.0303059.t002
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rabbit anti-actin (A2066; Sigma-Aldrich, St. Louis, MO, USA) diluted 1:1,000 in PBS with 5%

bovine serum albumin. For detection of GFAP, GABBR2, GAD2 (GAD65/67) or Olig1, we

used recombinant monoclonal antibodies derived from mouse hybridoma [28]. The plasmids

(kind gifts from James Trimmer, UC Davis) encoding anti-GFAP (#114536; Addgene, Water-

town, MA, USA), anti-GABBR2 (#114544), anti-GAD65/67 (#177474) or anti-Olig1 (#114540)

were transfected into 293T cells and antibody containing supernatants were harvested after 6

d, passed through a 0.45μm filter and used undiluted or 1:5 diluted for detection. As secondary

antibodies we used horseradish conjugated anti-mouse, anti-rabbit or anti-goat antibodies

(Dianova, Hamburg, Germany) diluted 1:10,000 in PBS-T/MP.

RNAseq and Bioinformatics

For RNA-isolation, cells were seeded in 12-well plates in duplicate samples. After 24 h, total

cellular RNA was extracted using the TRIZOL reagent (Ambion, Austin, TX, USA) following

the manufacturer’s instructions. Extracted total RNA was subjected to 50 bp single-end bulk

RNA sequencing (Illumina HiSeq 4000) at the Integrative Genomics Core Unit (NIG), Depart-

ment of Human Genetics, University Medical Center Göttingen. Data were demultiplexed

using bcl2fastq and further controlled for sequencing quality using FastQC (Galaxy Version

0.72). After verifying data quality, alignment was performed against reference genome

Mmul_10 (https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_003339765.1/) [29]. Raw

count profiles were extracted from aligned bam files using featureCounts, and normalized

TPM values were calculated.

Data deconvolution using external single-cell RNAseq dataset

To prepare the deconvolution of the bulk RNA sequencing experiments, the reference scRNA-

seq dataset from GSE127774 was collected and reanalyzed. In brief, the aligned scRNAseq

matrices from the macaque brain cortical region were acquired and reconstructed using the R

package Seurat v4 [30]. The data object was then reanalyzed using identical parameters from

the original publication [31]. Major cortical cell populations including excitatory neuron (Ex

Neuron), inhibitory neuron (Inh Neuron), astrocyte, oligodendrocyte precursor cell (OPC),

mature oligodendrocyte, and microglia were identified, consistent with what had been

described in the reference publication [31].

Because the reference scRNAseq dataset used human gene annotations for integrative anal-

ysis, to use it as a reference, official gene symbols from raw count profiles from bulk RNA

sequencing experiments were first translated to matching human gene annotations using the

biomaRt package [32]. Afterwards, bulk profiles were deconvoluted with the reference scRNA-

seq data using R package MuSiC [33].

Immunofluorescence staining

Cells were seeded in 24-well plates on 12 mm coverslips at 80.000 cells/well. After growth over-

night, cells were washed with PBS and subsequently fixated with 4% paraformaldehyde

(ROTI1Histofix, Roth, Karlsruhe, Germany) for 15 min at RT, followed by two washes with

PBS. Cells were then permeabilized with PBS/0.2% Triton X-100 followed by washing in PBS/

0.1% Tween-20. After blocking with PBS/10% FCS/1% BSA for 30 min at 37˚C, cells were

incubated with primary antibody (cell culture supernatant containing recombinant monoclo-

nal antibody against GFAP) for 30 min at 37˚C. After three washes with PBS/0.1% Tween-20

cells were incubated with secondary antibody Alexa Fluor488 conjugated donkey anti-mouse

IgG (1:1000 in blocking buffer; Invitrogen Carlsbad, CA, USA) for 30 min at 37˚C. After two
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washes in PBS/0.1% Tween-20, and one additional incubation for 5 min in PBS/0.1% Tween-

20 containing 0.5μg/mL DAPI, cells were mounted in Mowiol/DABCO [34].

Transduction with retroviral pseudoparticles

Retroviral pseudoparticles bearing glycoproteins of different viruses were produced in 293T

cells essentially as previously described [24,25]. Briefly, cells were transfected in T25 flasks

(about 106 cells/flask) by calcium phosphate precipitation with 6 μg vector MLV-luc, 3 μg

MLV-gag-pol and 3 μg expression plasmid for the respective viral glycoprotein. After three

days, supernatants were harvested, filtered through 0.45 μm filters and stored at -80˚C.

For infection, cells were seeded in 96-well plates at 10,000 cells per well in a volume of

50μL/well. On the next day, 50 μl pseudovirus containing supernatant was added in triplicate

samples. After 4–6 hours, an additional 100 μl medium was added and cells were incubated for

3 days until harvest. For this, cells were lysed in 50 μl Luciferase Cell Culture Lysis Reagent

(Promega, Madison, WI, USA) and luciferase activity was measured using Beetle-Juice (PJK

Biotech, Kleinblittersdorf, Germany) as substrate and a Plate Chameleon V (Hidex, Turku,

Finland) microplate reader.

Induction of interferon system

To analyze the IFN response, cells were seeded in 12-well plates at 100,000 cells per well. On

the next day, cells were either treated with IFN or infected with VSV ncp*, which has been

reported to induce high levels of IFN [23]. For IFN treatment, universal type I IFN-α (pan-

Interferon; 11200–2, PBL Assay Science, Piscataway), a chimeric interferon constructed from

human IFN alpha A and alpha D [35] was added at 100 U/mL. Infections with VSV ncp* were

carried out at MOI 0.1. After 24 h, cells were harvested for RNA isolation and quantitative

PCR.

Virus replication and titration

To assess virus replication, cell lines were seeded in 24-well plates at 50,000 cells/well and

infected on the next day with either ZIKV or PaHV2 at an MOI of 1. After removing

medium, 500 μl inoculum was added and cells were incubated at 37˚C for 1 h. Then the

inoculum was removed and cells were washed with phosphate-buffered saline (PBS).

Finally, 500 μl fresh culture medium was added. Cell culture supernatant was harvested

after 1 and 72 h, cleared from floating cells by centrifugation at 1,500 × g for 5 min and fro-

zen at -80˚C.

For titration of herpesviruses by plaque assay, we used a published protocol [36,37]. To

measure titers of ZIKV we modified a focus formation assay originally developed for IAV

[24,38]. In brief, we seeded Vero76 cells in 96-well plates at 20,000 cells/well. On the next day,

tenfold dilutions of virus samples were prepared and cells were inoculated with 100 μL virus-

containing culture supernatants. After incubation for 1 h at 37˚C, the inoculum was replaced

by 100 μL overlay medium (DMEM containing 0.5% methyl cellulose) and incubated for 3 d at

37˚C. The overlay medium was then removed and cells were washed in PBS and fixated with

ice-cold methanol for 10 min at -20˚C. After removal of methanol, cells were dried and then

rehydrated with PBS-T (PBS, 1% Tween-20) followed by quenching (PBS, 0.5% triton X-100,

20mM glycin) and blocking (PBS, 0.5% triton X-100, 1% bovine serum albumin (BSA)). For

detection of ZIKV E protein expression, cells were incubated with 50 μl/well hybridoma 4G2

supernatant for 30 min at 37˚C. Cells were then washed three times with PBS-T followed by

50μl secondary anti-mouse horseradish peroxidase (HRP)-conjugated antibody (1:1,000 in

blocking buffer, Dianova, Hamburg, Germany) and again three washings with PBS-T. Cells
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were then reacted with TrueBlue peroxidase substrate (Seracare, Milford, MA, USA) until blue

foci developed. Foci were counted and titers calculated and expressed as focus forming units

per milliliter (ffu/mL).

Quantitative real-time PCR

For RNA isolation, the RNeasy Mini Kit (Qiagen, Hilden, Germany) was used according to the

protocol of the manufacturer and RNA was finally eluted in a volume of 25 μl RNase-free

water. Subsequently, 1 μg RNA was treated with 0.5 U RNase-free DNase I for 10 min to

remove contaminating DNA. The reaction was stopped by addition of EDTA (final concentra-

tion 5 mM) and heating to 75˚C for 10 min. The SuperScript™ III First-Strand Synthesis Sys-

tem (Thermo, Waltham, MA, USA) was used for cDNA synthesis from 8 μl of DNase-digested

RNA using random hexamers. Quantitative PCR was performed using 1 μl of the cDNA prep-

aration and a QuantiTect SYBR Green PCR kit (Qiagen, Hilden, Germany) on the Rotorgene

Q platform (Qiagen, Hilden, Germany). Primers against IFNB1 (forward 5’-CAGCAATT
TTCAGTGTCAGAAGC-3’, reverse 5’- TCATCCTGTCCTTGAGGCAGT-3’), MX1 (forward

5’-TTCAGCACCTGATGGCCTATC-3’, reverse 5’- TGGATGATCAAAGGGATGT-GG-3’), and the

housekeeping gene 18S rRNA (forward 5’-GATCCATTGGAGGGCAAGTCT-3’, reverse

5’-CCAAGATCCAACTACGAGCTT-3’) have been described previously [39–41]. The 2-ΔΔCT

method [42] was used to calculate induction of MX1 and IFNB1 expression by using 18S

rRNA as reference gene.

Microscopy

Brightfield images were taken on a Zeiss Axio Observer Z1/7 confocal microscope at 10x mag-

nification (10x/0.45 Plan-Apochromat objective) using the electronically switchable illumina-

tion and detection module (ESID) and ZEN software. For figure preparation, images were

subsequently cropped and additionally processed (adjustment of brightness, scale bar) using

ImageJ/Fiji [27,43]. Immunofluorescence images were taken at 20x magnification (20x/0,75

Plan-Apochromat) using ZEN software. For figure preparation, images were equipped with a

scale bar using ImageJ/Fiji.

Results

Establishment of immortalized rhesus macaque cell lines from neuronal

tissues

To establish cell lines from neuronal tissues of rhesus macaques, we dissociated tissue samples

from trigeminal ganglia, cortex and hippocampus of two adult male animals (6 and 7 years

old, animals 2817 and 2880, respectively) and established primary cultures. The cell lines were

termed Macaca mulatta (Mamu) trigeminus ganglion (TG), Cortex (Co) and Hippocampus

(Hi), respectively. After few passages, cells were transduced with lentiviruses expressing SV40

large T (lT), or a mixture of genes shown to immortalize cells [27]. To avoid TRIM5α-medi-

ated restriction of HIV-based vectors we used a modified lentiviral system, which included a

chimeric SIV/HIV-Gag protein [18]. By selection with puromycin or hygromycin, resistant

cell cultures were established after transduction with either large T (“lT”) or a mixture of

immortalizing genes (termed “gr”) and termed MamuTG2880-lT, MamuTG2880-gr, Mamu-

Co2880-lT, MamuCo2880-gr, MamuHi2817-lT and MamuHi2817-gr. Throughout this work

we skip the prefix “Mamu” since it is clear that these cell lines are derived from rhesus

macaques (Macaca mulatta). Cells had a short spindle-like shape as seen in mesenchymal cells

and a number of cells showed protrusions (Fig 1). Cells were successfully passaged for multiple
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passages. However, after prolonged passaging (up to 50 population doublings) we observed

that “gr” cell lines ceased to grow, rendering them not fully immortalized. In contrast, the “lT”

cell lines have so far grown to 70–90 population doublings. Expression of large T was con-

firmed by immunoblot (Fig 2A), using 293T cells as positive and A549 cells as negative control,

while the transduction with genes from the immortalization mixture was analyzed by PCR.

Only a subset of the transduced genes could be detected in the established cell lines. All trans-

duced cell lines contained the c-Fos gene, while Co2880-gr and Hi2817-gr additionally con-

tained the Cyclin D1 and c-Myb genes, respectively (Fig 2B).

Fig 1. Morphology of rhesus macaque cell lines. Cells were seeded in 6-well plates and bright field images taken at

10x magnification. White scale bars indicate 50 μm.

https://doi.org/10.1371/journal.pone.0303059.g001
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RNAseq analysis reveals astrocyte lineage of MamuCo2880-gr cells

To gain more insight into the origin of the cell lines, we chose the cell line Co2880-gr, which

seemed to show more protrusions than the other cell lines, indicating a more differentiated

state. In addition, we chose to analyze Co2880-lT, which showed a more spindle-like morphol-

ogy. Total RNA isolated from these cell lines was subjected to bulk RNAseq analysis (Fig 3A).

Referring to publicly available single-cell resolution RNAseq data from rhesus macaques corti-

cal region (GSE127774) [31] (Fig 3B), we used a deconvolution approach to identify which cell

type is best represented by our cell lines [33]. Deconvolution demonstrated that in both inde-

pendent RNA samples of Co2880-gr cells, cells of the astrocyte lineage represented the most

abundant cell population (Fig 3C). In contrast, for the Co2880-lT cell line the deconvolution

analysis revealed equal populations of cells of astrocyte, inhibitory neuron or oligodendrocyte

origin (Fig 3D). Thus, we obtained large T or FOS-expressing cell lines from all three tissues

and found that the FOS expressing cell line Co2880-gr largely represented the astrocyte

lineage.

Fig 2. Characterization of marker expression in rhesus macaque cell lines. (A) Lysates of the indicated cell lines were analyzed by

immunoblot for expression of the immortalization gene large T. Human cell lines 293T and A549 served as positive and negative controls,

respectively, for large T expression. Detection of β-actin (ACTB) in the same lysates on a separate blot served as expression control.

Similar results were obtained in a separate experiment. (B) Cell lines transduced with a mix of immortalization genes were analyzed by

PCR for the presence of integrated transducing vector by a combination of vector specific and gene specific primers. Detection of a

transduced gene is indicated by black boxes, while white boxes indicate absence.

https://doi.org/10.1371/journal.pone.0303059.g002
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Fig 3. Transcriptome sequencing and cell type deconvolution. (A) Workflow used for transcriptome sequencing and

deconvolution analysis. Bulk sequencing profiles were processed to a gene expression matrix, and relevant cell types were

deconvoluted by reference to a scRNAseq dataset from rhesus macaque brain tissue (GSE127774). (Created with BioRender.

com). (B) Reanalysis of reference scRNAseq data recognized major CNS cell populations and was used for downstream

deconvolution analysis. (C) and (D) Stack barplots show putative proportions of different cell types in deconvoluted bulk RNA

sequencing experiments for Co2880-gr (C) and Co2880-lT (D) cells.

https://doi.org/10.1371/journal.pone.0303059.g003
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Characterization of marker expression in cell lines from neuronal tissue

To address cell line identity more directly, we first used detection of marker genes by immuno-

blot and immunofluorescence microscopy. Using an antibody directed against glial fibrillary

acidic protein (GFAP) we were able to demonstrate strong expression in all “gr” cell lines,

while expression in “lT” cell lines was much lower (Fig 4A). Immunofluorescence staining and

microscopy of “gr” cell lines showed an uniform expression of GFAP in almost all cells, while

in the “lT” cell lines only individual cells showed clear GFAP staining (Fig 4B). To address the

possibility that additional cell types, notably inhibitory neurons and oligodendrocytes, were

present in the cultures, we performed immunoblot analysis using antibodies directed against

GAD2 or GABBR2 (markers for inhibitory neurons) or OLIG1 (marker for oligodendrocytes).

No signals could be detected for any of these markers in our cell lines (Fig 4C). As all antibod-

ies were directed against human proteins, we expressed the corresponding rhesus macaque

proteins fused to Scarlet fluorescent protein and demonstrated robust antibody reactivity (Fig

4C). These results corroborate the RNAseq data discussed above and suggest that the “gr” cell

lines generated are likely of astrocyte origin.

Evidence that immortalized cell lines from neuronal tissue have a

functional IFN system

Next, we characterized whether the cells expressed interferon β1 (IFNB1) or the interferon

stimulated gene (ISG) MX1 in response to treatment with IFN or virus infection. For this, cells

were either treated for 24 h with 100 U/mL pan-IFN, a chimeric human IFN alpha, or infected

with VSV ncp*, which strongly induces IFN [23]. Quantitative RT-PCR was used to analyze

induction of IFNB1 or MX1. As positive control, we included the human lung cell line A549,

which has an intact IFN system [44]. Strong induction of IFNB1, comparable to the A549 cell

line, was observed in most cell lines after infection with VSV (Fig 5A), while treatment with

pan-IFN had only minor effects. However, pan-IFN strongly induced the ISG MX1 (Fig 5B) in

all cell lines, although the actual levels of induction differed between cell lines. Infection with

VSV also induced MX1 to levels similar to those measured upon pan-IFN treatment. These

findings suggest that major pathways of the IFN system are intact in all newly established cell

lines.

Immortalized cell lines from neuronal tissue are susceptible and permissive

to virus infection

We then proceeded to evaluate the susceptibility and permissiveness of the cells to infection by

several viruses. To test susceptibility, we used retroviral pseudotypes bearing the glycoproteins

of Indiana vesiculovirus (VSV), influenza A virus (IAV) or Lymphocytic choriomeningitis

virus (LCMV). As a negative control, we used viral particles bearing no glycoprotein, while

293T cells served as positive control since this cell line is known to allow entry driven by all

viral glycoproteins tested. The rhesus macaque cell lines allowed for entry driven by all glyco-

proteins analyzed although with different efficiency, while entry of particles bearing no glyco-

protein was in the background range of the assay (Fig 6). Thus the LCMV glycoprotein

facilitated entry into the rhesus macaque cell lines and 293T cells with similar efficiency, while

macaque cell entry driven by the VSV and IAV glycoproteins was reduced by more than

10-fold as compared to 293T cell entry.

Finally, we tested the permissiveness of the rhesus macaque cell lines to infection with a

DNA and a RNA virus. As DNA virus we employed the primate simplexvirus Papiine alpha-

herpesvirus 2 (PaHV2), which naturally infects NHP, and as RNA virus we used ZIKV, a
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Fig 4. Expression of the astrocyte marker GFAP in rhesus macaque cell lines. (A) Lysates of immortalized cell lines

were analyzed by immunoblot for expression of glial fibrillary acidic protein (GFAP). Detection of β-actin (ACTB) in

the same lysates on a separate blot served as expression control. Similar results were obtained in a separate experiment.

(B) Immunofluorescence staining of immortalized cell lines with an antibody against GFAP (green). Nuclei were

stained with DAPI (blue). Scale bar indicates 100 μm. Similar results were obtained in a separate experiment. (C)
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human pathogen for which rhesus macaques serve as animal model [45,46]. We determined

titers at 72 hours post infection, since both viruses achieved the plateau at this time point in sin-

gle-step growth curves for several cell lines, including Vero76 cells, which also served as positive

control. Titers right after infection (1 h) served as a background control. For PaHV2 titers com-

parable to Vero76 cells were achieved, especially for “gr” cell lines, while the large T-immortal-

ized cell line from hippocampus (Hi2817-lT) yielded reduced titers (Fig 7A). Titers obtained

after infection with ZIKV were generally reduced compared to Vero76 cells and this was most

pronounced for the cell lines established with the immortalization mix (“gr”) (Fig 7B).

Discussion

We report the generation and analysis of a total of six cell lines originating from cortex, hippo-

campus or trigeminal ganglia of two male rhesus macaques. Major pathways of the IFN system

were intact in these cell lines, they allowed entry driven by the glycoproteins of diverse viruses

and were permissive to infection by PaHV2 and ZIKV.

The cell lines were generated by either transduction of SV40 large T (“lT” cell lines), a well

known immortalization gene, or by employing mixtures of transgenes (“gr” cell lines). Expres-

sion of large T was confirmed by immunoblot. For cell lines transduced with a mix of trans-

genes known to immortalize cells, genomic PCR demonstrated the uniform presence of c-Fos

in these cell lines, while Co2880-gr also carried Cyclin D1 and Hi2817-gr harbored c-Myb.

The fact that only few transgenes were detected in the established lines has been previously

reported and was therefore not unexpected [27]. Since expression of the transgenes was linked

to that of hygromycin, which was used for successful cell selection, we assume that the trans-

genes are actively expressed. In fact, RNAseq analysis of the Co2880gr cells revealed high levels

of FOS and CCND1 expression.

The cell lines demonstrated a spindle-like mesenchymal morphology with protrusions,

which were more prominent in the “gr” lines. RNAseq of cell line Co2880-gr followed by

deconvolution analysis based on scRNAseq data from rhesus macaque brains demonstrated

high similarity to cells of the astrocyte lineage. In keeping with this finding, Co2880-gr cells

expressed the astrocyte marker GFAP, as determined by immunoblot and immunofluores-

cence microscopy. Similarly, GFAP was detected in all cell lines expressing FOS (“gr” cell

lines) but not large T, suggesting that expression of FOS might better preserve the astrocyte

phenotype. Our cell lines did not perfectly reflect astrocyte cells in the deconvolution analysis,

which may be explained by alterations imposed on the cells by prolonged cell culture and

transgene expression. In addition, the cells have not yet been cloned and it cannot be excluded

that they still contain cells of other lineages, which would result in gene expression patterns

overlapping with other lineages. However, by immunoblot we were unable to detect expression

of marker genes for other lineages as suspected from the deconvolution analysis. The identity

of the large T transduced cell lines is currently less clear and needs further investigation.

Immunofluorescence microscopy revealed that a fraction of cells also expressed GFAP,

whereas no expression of marker genes of other lineages was detected by immunoblot. While

large T has previously been used for immortalization of astrocytes [47–49], transduction of the

initial mixed cell population with large T may have led to selection of different non-astrocyte

cell lineages.

Lysates of immortalized cell lines were analyzed by immunoblot for expression of oligodendrocyte (Olig1) or

inhibitory neuron (GAD2, GABBR2) markers. As control, rhesus genes fused to scarlet fluorescent protein were

expressed in transfected 293T cells. Expected molecular weights for the respective proteins are indicated by arrows.

Detection of β-actin (ACTB) in the same lysates on a separate blot served as expression control. Similar results were

obtained in a separate experiment.

https://doi.org/10.1371/journal.pone.0303059.g004
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Fig 5. Evidence that the rhesus macaque cell lines have a functional interferon system. Cells seeded in 12-well plates were either

treated with 100 U/mL pan-IFN or infected with VSV ncp* (MOI 0.1). Untreated cells served as control. Cells were harvested after 24 h

for RNA isolation. Expression of (A) interferon beta (IFNB1) or (B) MX1 was analyzed by quantitative RT-PCR. Transcript levels were

normalized against 18S rRNA transcript levels and expression fold change was calculated with respect to control cells. The results of a

representative experiment carried out with technical triplicates are shown. Error bars indicate standard deviation. Similar results were

obtained in a separate experiment. Statistical significance was tested by two-way ANOVA: *, p�0.05; **, p�0.01; ***, p�0.001.

https://doi.org/10.1371/journal.pone.0303059.g005
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Fig 6. The rhesus macaque cell lines are susceptible to entry driven by several viral glycoproteins. The cell lines were seeded in 96-well

plates and transduced in triplicates with MLV pseudoparticles encoding firefly luciferase and bearing the viral glycoproteins VSV-G (B),

IAV-HA/NA (C) and LCMV-GP (D). Pseudoparticles without viral glycoprotein (Control) served as negative control (A), while

transduction of 293T cells was used as positive control. Cell lysates were harvested after 72 h and luciferase activities determined. The average

of four independent experiments performed with technical triplicates is shown. Error bars indicate standard error of the mean. Statistical

significance was tested by two-way ANOVA: *, p�0.05; **, p�0.01; ***, p�0.001.

https://doi.org/10.1371/journal.pone.0303059.g006
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The IFN system poses an important innate defense against virus infection, which can effi-

ciently limit viral replication. As many cell lines have been derived from cancer cells, they fre-

quently harbor defects in the IFN system. For instance, Vero cells are often used for efficient

virus amplification and their locus for IFN alpha and beta has been deleted [50]. For the cell

lines analyzed here, we could demonstrate that major aspects of the IFN system, including

Fig 7. The rhesus macaque cell lines support growth of Papiine alphaherpesvirus 2 and Zika virus. For infection with (A) Papiine

alphaherpesvirus 2 (PaHV2) or (B) Zika virus (ZIKV) strain MR766, cells were seeded in 24-well plates. Vero76 cells served as positive

control. Cells were infected in triplicates at an MOI of 1. Supernatants were harvested at 1 h, as baseline, and at 72 h postinfection.

Infectious virus titers were determined by plaque assay (PaHV2) or focus formation assay (ZIKV) on Vero76 cells and virus titers

expressed as plaque forming units (pfu) or focus forming units (ffu), respectively. The average of three independent experiments

performed with technical triplicates is shown. Error bars indicate standard error of the mean. Statistical significance tested by two-way

ANOVA: *, p�0.05; **, p�0.01; ***, p�0.001.

https://doi.org/10.1371/journal.pone.0303059.g007
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sensing of virus and induction of ISG expression, are intact, as evidenced by strong IFN beta

induction upon VSV infection and strong induction of the ISG MX1 upon IFN treatment or

viral infection.

Our brain-derived rhesus macaque cells lines allowed entry driven by the glycoproteins

from representatives of the Rhabdoviridae (VSV), Orthomyxoviridae (IAV) and Arenaviridae

(LCMV), all of which have been reported to cause infections of the brain [51–55], while also

experimental infection of astrocytes has been demonstrated for VSV [56,57], IAV [58–60] and

LCMV [61]. However, entry driven by the IAV glycoprotein was less efficient than for human

293T cells. In addition, we demonstrated productive infection with the primate herpesvirus

PaHV2, as well as ZIKV (Flaviviridae). Since astrocytes are target cells for VSV [56,57], IAV

[58–60,62], ZIKV [63,64] and Simplexviruses [65,66], our astrocyte cell lines may be interest-

ing tools for in vitro analysis of neurotropic viruses.

Conclusions

In summary, we established six rhesus macaque brain-derived cell lines with an intact IFN sys-

tem. Three of the cell lines originated from the astrocyte lineage. The cell lines support infec-

tion with a primate herpesvirus and ZIKV and likely other viruses and may therefore be

valuable tools in translational research or comparative infection research.
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