
AlterEgo: A Dedicated Blockchain Node For Analytics
Qi Guo

Max Planck Institute for Informatics
Saarbrücken, Germany
qiguo@mpi-inf.mpg.de

Mahdi Alizadeh∗
Max Planck Institute for Software Systems

Saarbrücken, Germany
malizade@mpi-sws.org

Ali Falahati∗
Max Planck Institute for Software Systems

Saarbrücken, Germany
afalahat@mpi-sws.org

Laurent Bindschaedler
Max Planck Institute for Software Systems

Saarbrücken, Germany
bindsch@mpi-sws.org

ABSTRACT
Blockchains today amass terabytes of transaction data that demand
efficient and insightful real-time analytics for applications such
as smart contract hack detection, price arbitrage on decentralized
exchanges, or trending token analysis. Conventional blockchain
nodes, constrained by their RPC APIs, and specialized ETL-based
blockchain analytics systems grapple with a trade-off between ma-
terializing pre-calculated query results and analytical expressive-
ness. In response, we introduce AlterEgo, a blockchain node ar-
chitected specifically for analytics that maintains parity with tra-
ditional nodes in ingesting consensus-produced blocks while in-
tegrating a robust analytics API. Our prototype supports efficient
transactional and analytical processing while circumventing the
rigidity of ETL workflows, offering a better trust model, enabling
distributed and collaborative querying, and achieving significant
performance improvements over the state-of-the-art.

CCS CONCEPTS
• Computing methodologies → MapReduce algorithms; • Com-
puter systems organization → Peer-to-peer architectures; •
Networks → Peer-to-peer networks; • Information systems →
Online analytical processing engines;MapReduce-based systems;
Extraction, transformation and loading.

KEYWORDS
Blockchain Analytics, Real-Time Analytics, Blockchain Node Ar-
chitecture, HTAP, ETL, Decentralized Analytics

ACM Reference Format:
Qi Guo, Mahdi Alizadeh, Ali Falahati, and Laurent Bindschaedler. 2024. Al-
terEgo: A Dedicated Blockchain Node For Analytics. In 7th International
Workshop on Edge Systems, Analytics and Networking (EdgeSys ’24), April
22, 2024, Athens, Greece. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3642968.3654814

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International 4.0 
License.
EdgeSys ’24, April 22, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0539-7/24/04.
https://doi.org/10.1145/3642968.3654814

1 INTRODUCTION
Decentralized Ledger Technology (DLT) is rapidly gaining traction
across various industries. As of December 2023, Ethereum, one of
the leading blockchains, contains over one terabyte of transaction
data, growing at a rate of over a million transactions per day [1].
As a result, the need for efficient and low-latency blockchain ana-
lytics systems has become increasingly paramount. While adept
at handling transactional data, traditional blockchain nodes fail
to provide comprehensive analytics capabilities. These nodes typi-
cally offer Remote Procedure Call (RPC) APIs, allowing clients to
access detailed information about transactions, states, and events.
However, these APIs cannot handle complex queries essential for
in-depth analytics, such as filters, joins, and aggregation.

Due to the limitations of blockchain nodes, researchers and com-
panies have recently introduced specialized systems to support an-
alytics workloads [2, 13, 16, 21].The prevailing approach in current
systems for blockchain analytics involves executing Extract, Trans-
form, and Load (ETL) processes to obtain data from a blockchain
node. This paradigm first entails extracting fine-grained informa-
tion from the blockchain node and processing the data in external
analytics systems, which presents several challenges. First, exten-
sive resources are required to extract and store the data. Second, it
introduces considerable latency in processing data updates. Third,
moving processing out of the blockchain nodes, often to the cloud,
hurts the decentralization of the overall system. Fourth, it creates a
dependency on the blockchain node serving the raw data as a sin-
gle source of truth. Finally, it requires knowing the specific data
to be queried in advance, making it impossible to respond to un-
expected queries without initiating another ETL process to collect
the missing data. Overall, these issues contribute to system ineffi-
ciency and suboptimal user experience.

This paper proposes a novel blockchain analytics solution, Al-
terEgo, representing a radical shift from the current ETL paradigm.
AlterEgo is a blockchain node that mirrors the functionality of a
standard node but is inherently designed to support analytics work-
loads. It maintains a copy of the entire blockchain, functioning as
an archive node1, and directly ingests new blocks produced by
the consensus mechanism instead of extracting them from a sin-
gle blockchain node via RPC. Aside from adding an analytics API,
AlterEgo nodes are indistinguishable from traditional nodes from

1An archive node stores a copy of the blockchain since inception and allows querying
the state at any block height.

7

https://doi.org/10.1145/3642968.3654814
https://doi.org/10.1145/3642968.3654814
https://doi.org/10.1145/3642968.3654814
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3642968.3654814&domain=pdf&date_stamp=2024-04-22


EdgeSys ’24, April 22, 2024, Athens, Greece Guo, Alizadeh, Falahati, and Bindschaedler

the perspective of the blockchain system: they are globally dis-
tributed close to end-users, running in the same environments as
traditional nodes, they can participate in consensus, relay trans-
actions, and validate blocks. As a result, AlterEgo nodes provide
additional redundancy and increase the decentralization of the un-
derlying blockchain. What sets AlterEgo apart is its internal archi-
tecture, which revolves around a columnar-vectorized store that
supports analytical query workloads and fast data ingestion. More-
over, this design enables a more potent model for blockchain ana-
lytics that supports decentralized query processing.

To validate our concept, we have developed a prototype of Al-
terEgo and conducted a comprehensive evaluation of its perfor-
mance. We compare our approach against traditional blockchain
RPCs and the leading solution in blockchain analytics, The Graph
Protocol [2]. Our findings demonstrate that AlterEgo significantly
outperforms current solutions while supporting low-latency data
updates, more expressive querying capabilities, lower network over-
heads for distributed execution, and a superior trust model for data
integrity and provenance.

This paper makes the following contributions:
• We introduce AlterEgo, a new kind of blockchain node for

analytics that integrates seamlessly into existing blockchain
environments.

• We present the design of AlterEgo and highlight its advan-
tages over the state-of-the-art.

• We propose a novel distributed and collaborative query ex-
ecution scheme where multiple AlterEgo nodes collectively
answer queries.

• We implement a prototype of AlterEgo and demonstrate sig-
nificant performance improvements and increased flexibility.

2 BACKGROUND & MOTIVATION
2.1 Blockchains & Smart Contracts
Blockchains are a type of distributed ledger that consists of cryp-
tographically linked records. They are organized as peer-to-peer
decentralized networks with nodes typically deployed close to end-
users to enhance accessibility and reduce latency [22, 32]. This de-
centralized design democratizes data access and increases system
robustness against single points of failure, ensuring higher levels
of security and trust. Over time, blockchains have evolved from
simple transactional exchange platforms to complex ecosystems
supporting smart contracts with intricate states and sophisticated
interactions [4, 7]. Smart contracts are written directly into code
and reside on the blockchain, allowing them to interact with other
contracts and user accounts [31].

In this paper, we focus on blockchain systems compatible with
the widely popular Ethereum Virtual Machine (EVM), which in-
clude Ethereum [29], Polygon [17], and Arbitrum [6]. However,
our ideas broadly extend to other systems [9, 26, 30]. Transactions
in EVM blockchains pay a fee to node operators, known as the gas
cost, to execute smart contracts.When a smart contract runs, it can
emit events logged within the blockchain. These events are crucial
for tracking the activity of smart contracts and state changes. Fur-
thermore, each transaction generates a receipt, which provides es-
sential details about the transaction, including its status, the gas
used for its execution, and the log of emitted events.

2.2 Blockchain Analytics
The complexity and richness of blockchain interactions require
advanced analytics to understand, monitor, and optimize the per-
formance and security of blockchain applications and to facilitate
decision-making. For example, smart contracts providing facilities
such as trading, lending, or staking housemillions to billions of dol-
lars that must be continuously monitored to detect abnormal pat-
terns in fund flow that may indicate exploitative actions or illicit
activities [11]. Likewise, capitalizing on price discrepancies across
decentralized exchanges promises substantial profits but demands
comprehensive analyses of trade volumes and prices or fast iden-
tification of negative cycles [28]. Finally, numerous financial and
social applications derive value from tracking trending tokens [25],
which requires advanced window functions and aggregation meth-
ods that surpass the capabilities of the RPC APIs provided by tra-
ditional blockchain nodes.

Blockchains are fundamentally designed to support online trans-
action processing (OLTP) and, therefore, require integrating on-
line analytics processing (OLAP) for effective analytics. Unsurpris-
ingly, current blockchain analytics systems revolve around ETL
processes that transfer blockchain data to an off-chain data man-
agement system for further processing. EtherQL [21] is a query
infrastructure for Ethereum, offering a RESTful API that supports
range and limit queries. Blockchain ETL [13] provides a collec-
tion of public datasets in relational format stored in Google Big-
Query [27]. BlockSci [16] is an in-memory blockchain analytics
database capable of importing data from multiple blockchains that
offers a domain-specific language (DSL) for specifying graph queries.
The Graph Protocol [2] is a commercial solution that lets program-
mers select a subset of the blockchain data to extract and query
using a GraphQL interface.

However, while these systems provide efficient offline blockchain
analytics, they face inherent limitations in real-time data analyt-
ics. Specifically, the ETL process introduces synchronization de-
lays and requires trusting the blockchain nodes that provide the
original data, raising concerns about the data’s integrity and prove-
nance. Moreover, most analytics systems do away with the decen-
tralized nature of blockchains by moving the analytics storage and
querying to powerful servers in the cloud, thereby gating access
to the data behind proprietary and expensive APIs that limit free
access to the contents of the public ledger.

2.3 An Integrated Blockchain Node
This paper advocates for a different approach to blockchain analyt-
ics that addresses the inherent limitations of current systems. The
primary issue with existing solutions lies in using an explicit ETL
process between two separate systems, creating a disconnect be-
tween them. Instead, we propose a unified system paralleling the
Hybrid Transaction Analytics Processing (HTAP) architecture [15,
23], which combines blockchain and analytics functionalities into a
single system. This integrated approach removes synchronization
challenges and enables low update latency while reducing trust as-
sumptions by sourcing transactions directly from the consensus
layer. Supporting richer analytics also unlocks new opportunities
for integrating blockchain nodes in multi-tier analytics systems
where individual nodes can perform advanced filtering and aggre-
gation, enabling efficient collaborative query processing.

8



AlterEgo: A Dedicated Blockchain Node For Analytics EdgeSys ’24, April 22, 2024, Athens, Greece

Ingestion Engine

Blocks
(consensus)

Validation Replay

EVM
Analytics API

JSON RPC APIs
Analytics Engine

StateEvents

Metadata

Figure 1: High-level architecture of an AlterEgo node.

3 DESIGN & IMPLEMENTATION
In this section, we describe the system design and details of Al-
terEgo’s implementation. AlterEgo focuses on achieving two pri-
mary goals: low-latency synchronization of blockchain data to en-
able real-time analytics and efficient and expressive data analytics
supporting arbitrary queries on any data stored in the node.

The architecture of an AlterEgo node, shown in Figure 1, fol-
lows from these design goals. The system efficiently ingests blocks,
validates and replays transactions, and inserts the corresponding
data into an analytics store that exposes a dedicated analytics API
in addition to the standard JSON RPC APIs. In the rest of the sec-
tion, we present the two main components of AlterEgo in more
detail before discussing how multiple AlterEgo nodes can collec-
tively process queries.

3.1 Ingestion Engine
AlterEgo receives blocks directly from the blockchain’s consen-
sus layer as it runs a complete blockchain node. Each block con-
tains a set of transactions representing state changes within the
blockchain, from value transfers to smart contract invocations.The
contents of each block are verified and agreed upon by the network
participants, providing data integrity.

Upon receipt of a block, the system proceeds, much like a con-
ventional blockchain node, with the validation and state replay-
ing of each transaction. Validation ensures that each transaction
adheres to the network rules and does not violate any invariants,
such as preventing double-spending. State replaying entails exe-
cuting transactions to generate event logs and compute the new
state of the blockchain. AlterEgo performs this replay in parallel
for efficiency by determining the serialization order of conflicting
transactions whenever possible.

Finally, AlterEgo stores the block and transaction metadata, the
event logs, and the state changes in its embedded analytics data-
base. Blocks and transactions can be batched together for efficient
insertion. AlterEgo can dynamically adjust the batch size to bal-
ance performance and data freshness.

3.2 Analytical Engine
The analytical engine utilizes a columnar-vectorized store focused
on efficient data retrieval to handle the vast and growing datasets
in blockchain environments. We arrange the tables according to
the snowflake schema [19] with event logs as the fact table, as
shown in Table 1. The engine indexes and stores all the contents
of the blockchain, akin to the functioning of an archive node, en-
abling arbitrary analytics involving any smart contract or state
within the blockchain.

Column Data Type Description
log_id BIGINT Log identifier
block_num BIGINT Block number (sequential)
contract CHAR(40) Contract address
signature CHAR(64) Event signature
block_ts TIMESTAMP Block timestamp
from_addr CHAR(40) Sender address
to_addr CHAR(40) Receiver address
data BLOB Data field

Table 1: Fact table’s schema. log_id is the primary key. We
add indexes on all fields except data.

AlterEgo’s analytics API is based on SQL, enabling users to exe-
cute complex queries with familiar SQL syntax. In addition to stan-
dard SQL, we support window functions and common table expres-
sions to enhance data analysis capabilities and facilitate working
with time, an essential requirement for blockchain analytics.

3.3 Distributed, CollaborativeQuery Execution
AlterEgo nodes are not only beneficial for simple, short queries, but
they can also be integrated intomore complex distributed blockchain
analytics environments. In this mode, multiple AlterEgo nodes col-
lectively execute sophisticated, long-duration queries. This collab-
orative effort reduces the computational load on individual nodes,
boosting performance, reliability, and trustworthiness.

Since AlterEgo nodes support arbitrary SQL queries, we can de-
sign efficient dataflow analytics leveraging near-data processing at
the edge in ways that traditional RPC nodes cannot due to the lim-
ited expressiveness of JSON-RPC queries. For example, AlterEgo
easily supports pushdown filters or partial result aggregation that
can reduce the network traffic overhead by orders of magnitude
while achieving more efficient querying.

Collaborative query execution can work in two ways. In a fully
partitioned fashion, the query is divided, often by time or block
height, and each partition is processed by a different node. In a
replicated fashion, the entire query is executed simultaneously on
multiple nodes to verify the result’s integrity. Figure 2 shows a
simple collaborative query execution with time-based partitioning.

When processing distributed queries, it is crucial to consider
that different nodes may not ingest blocks synchronously. Each
node requires the specification of a block in addition to the query
to ensure the overall consistency of the result. This block serves as
the maximum block height to be considered for the query.

AlterEgo nodes support integrating custom analytical functions
directly by leveraging the storage engine and ingestion pipelines,
e.g., pattern recognition, outlier detection, or machine learning,

9



EdgeSys ’24, April 22, 2024, Athens, Greece Guo, Alizadeh, Falahati, and Bindschaedler

AlterEgo 1 AlterEgo 2 AlterEgo N…

Q[b1,b2-1] R1

Q R

Q[b2,b3-1] R2 Q[bN-1,bN] RN

Analytics System

Figure 2: Collaborative query execution example. A query 𝑄 cov-
ering blocks between 𝑏1 and 𝑏𝑁 is partitioned by block ranges and
executed on 𝑁 AlterEgo nodes independently.The analytics system
combines the partial results (𝑅𝑖 ) to produce the final result 𝑅.

enabling the real-time identification of anomalies or potentially
fraudulent activities. As a result, AlterEgo nodes can also serve
as an effective early warning system for blockchain systems.

Efficiently coordinating multiple AlterEgo nodes for collabora-
tive execution remains an area for further exploration. Our cur-
rent approach proposes an open system where AlterEgo nodes ac-
cept queries from any user, similar to traditional blockchain RPCs.
While this design is simple and flexible enough for many needs, we
leave possible refinements, such as developing more secure, poten-
tially permissioned coordination mechanisms for future work [18,
20, 24] or the integration of Byzantine Fault Tolerant query ver-
ification mechanisms, e.g., through cross-checking [8] or crypto-
graphic proofs [5, 14], for future work. Finally, designing a sharded
analytics node to address the growing size of blockchains remains
an open area of exploration.

3.4 Implementation
We chose the official Ethereum node implementation in Golang,
known as Geth [12], as the foundation for AlterEgo for prototyping
efficiency, modifying ∼270 lines of code. This decision enabled us
to focus on specific enhancements, namely integrating our analyt-
ics storage engine and adding support for the analytics API, while
relying on Geth’s efficient transaction validation and state updates.
While our prototype utilizes Geth, our approach can support other
EVM-compatible blockchains with minimal adjustments. We build
the analytical component of AlterEgo around DuckDB [10], an em-
bedded OLAP database that aligns well with the needs of our sys-
temwhile providing satisfactory performance.We leave the design
of a completely new node without a pre-existing codebase for fu-
ture work.

4 EVALUATION
In this section, we conduct an evaluation of AlterEgo using sev-
eral representative query benchmarks executed over the Ethereum
blockchain. We focus on providing answers to the following re-
search questions.
RQ1: How expressive is AlterEgo compared to existing solutions?
RQ2: How does the performance of AlterEgo compare with tra-

ditional RPC-based analytics and state-of-the-art solutions
such as The Graph Protocol?

RQ3: Howmuch reduction in network traffic canAlterEgo achieve
compared with traditional RPC nodes when processing dis-
tributed queries?

RQ4: How fast can AlterEgo apply updates?
RQ5: Howmuch overhead doesAlterEgo introduce comparedwith

traditional blockchain nodes?
4.1 Experimental Setup
4.1.1 Benchmarks. To the best of our knowledge, there are cur-
rently no benchmarks for blockchain analytics. Therefore, we con-
sider four representative queries inspired by different public sub-
graphs available in The Graph Protocol’s explorer [3]:
Q1: Token Activity: Count the number of transfers of an ERC202

token (USDT) over a given period.
Q2: Top Users: List the top k address pairs with the most trans-

actions of an ERC20 token (USDT) over a given period.
Q3: Top Holders: List the k addresses with the largest balance of

an ERC20 token (USDT) at any given time.
Q4: Trading Volume: Calculate the total trading volume of a trad-

ing pair (USDT-ETH) on Uniswap, a decentralized exchange.

4.1.2 Baselines. We compare with the following baselines:
• Golang+RPC: Collect the data necessary from the query from

a local Ethereum blockchain node (Geth version 1.12.1) us-
ing JSON-RPC and process it in golang (version 1.21.3). For
each query, we execute eth_getLogs iteratively on succes-
sive block ranges with the appropriate event filter on the rel-
evant smart contract(s) to extract the necessary data before
processing it in a custom golang program.

• The Graph: Execute the query directly in The Graph Proto-
col’s GraphQL query format. We run a dedicated subgraph
for each query inside a local The Graph deployment (version
0.33.0) and synchronize it with a local Ethereum node (Geth
version 1.12.1). We synchronize the subgraph before the start
of each experiment and exclude this pre-processing time from
the reported results.

4.1.3 Configuration. We perform all experiments using servers
equipped with four Intel(R) Xeon(R) E7-8857 v2 CPUs with a total
of 48 cores, 1.5 TB DRAM, and 10 TB of secondary storage run-
ning Debian with Linux kernel version 5.15.130.1.amd64-smp. We
make sure that no other applications are executing on the servers
to avoid interference and disable Dynamic Voltage and Frequency
Scaling (DVFS). Note that we mainly use these powerful machines
for their extensive secondary storage (the largest capacity avail-
able in our cluster). AlterEgo nodes require little extra resources
compared to the corresponding traditional blockchain nodes (see
§4.6 for details).

4.2 Expressiveness
AlterEgo, RPC nodes, andTheGraph present distinct paradigms in-
fluencing their expressiveness. AlterEgo employs a schema-based
query model akin to traditional blockchain nodes, offering flexibil-
ity to formulate queries across various parameters and supporting
ad hoc querying for evolving analytical needs. The queries in §4.1
are readily expressible in AlterEgo and benefit from its efficient ex-
ecution. In contrast, while sharing some of this expressive capacity,
traditional RPC nodes incur a significant efficiency trade-off due to
2ERC20 is the standard for fungible tokens on Ethereum.

10



AlterEgo: A Dedicated Blockchain Node For Analytics EdgeSys ’24, April 22, 2024, Athens, Greece

their inability to perform advanced filtering and aggregation.They
also do not operate on timestamps but on block numbers, requir-
ing cumbersome back-and-forth translation. Finally, The Graph
utilizes a fixed computational model that materializes the results
of predefined queries, which confines its query potential to the
bounds of anticipated queries and limits exploratory and real-time
analysis. For instance, accommodating the queries from §4.1 re-
quires extensive pre-calculation for all block heights (i.e., times-
tamps), resulting in increased storage demands, performance over-
head, and restrictions on data granularity.

4.3 Performance Comparison
We begin with a performance comparison of AlterEgo with The
Graph and Golang+RPC on each of the four queries (Q1-4) for dif-
ferent time ranges from 1k blocks to 1M blocks, as shown in Fig-
ure 3. To complete the comparison, we also include a version of
AlterEgo where the query results are materialized (AlterEgo Mat)
similarly toTheGraph. Each block range starts from the 10,000,000th
Ethereum block. Figure 3 shows the averages and standard devia-
tions over ten runs for each query.

The results show that using Golang+RPC for complex queries
across extensive time ranges is impractical due to the round-trip
overheads and high intermediate data. In contrast, AlterEgo con-
sistently delivers fast responses of under 5 seconds to all queries
and shows better scalability as the queried time range expands.
The Graph excels in handling such predefined queries, achieving
impressive performance by pre-computing all results. Finally, Al-
terEgo Mat, which adopts a strategy of materializing query results
similar to the Graph, achieves response times of ∼1 ms, surpassing
The Graph. Overall, the results underscore AlterEgo’s efficiency
and indicate a potential to optimize performance for known queries.

4.4 Traffic Reduction
We now evaluate the network traffic reduction in AlterEgo to an-
swer distributed queries. We compare AlterEgo with Golang+RPC
when the entity issuing queries is remote. This simplified scenario
illustrates a distributed querying example where different nodes
are queried in parallel before aggregation.

Table 2 shows the total traffic in bytes involved when using a re-
mote vanilla Ethereum blockchain node with JSON-RPC to answer
different queries (Golang+RPC) versus a remote AlterEgo node
with SQL to answer the same queries (AlterEgo). In both cases,
we consider a series of increasing time ranges, starting from a 1k
block range to 1M blocks. For Golang+RPC, we split queries into
batches of 1k blocks at a time, as that is the maximum block range
supported by RPCs in a single call. AlterEgo supports arbitrarily
large ranges and executes a single SQL query.

Blocks Golang+RPC AlterEgo
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

1k 13 MB 13 MB 13 MB 0 B 8 B 840 B 420 B 64 B
10k 103 MB 103 MB 103 MB 0 B 8 B 840 B 420 B 64 B

100k 1.27 GB 1.27 GB 1.27 GB 1.20 KB 8 B 840 B 420 B 64 B
1M 5.76 GB 5.76 GB 5.76 GB 1.63 KB 8 B 840 B 420 B 64 B

Table 2: Total network traffic for Golang+RPC and AlterEgo
with different time ranges (defined by block numbers).

AlterEgo achieves minimal network traffic overhead to answer
queries, thanks to the node’s ability to perform advanced filtering,
joins, and aggregations locally, requiring only the communication
of queries and results. On the other hand, the traditional RPC node
(Golang+RPC) suffers from heavy network overhead as it only sup-
ports basic filtering locally and must ship all intermediate trans-
actions to the remote machine issuing the query. In all evaluated
queries, AlterEgo returns a constant amount of data. Also, as the
queried time range increases to 1M blocks, AlterEgo achieves up
to six orders of magnitude reduction in network traffic over the
traditional approach.

4.5 Update Latency
Next, we consider the data update latency (or analytical latency),
i.e., the time between the receipt of a transaction and the point
at which the new data is visible to queries in the different systems.
We use different batch sizes by grouping blocks and applying them
together to update the state of the analytics system.

Table 3 compares the average per-block update latency for Al-
terEgo and The Graph across various batch sizes. Notably, The
Graph’s functionality is confined to indexing a single smart con-
tract. To establish a comparison under equivalent conditions, we
propose a similar workload in AlterEgo, referred to as ’AlterEgo
Single,’ which contrasts with ’AlterEgo Full,’ which indexes the en-
tire blockchain. Since The Graph’s batch size is dynamic and can
only be configured with a maximum value, we report the per-block
update latency average in each scenario. We perform this experi-
ment starting from the 10,000,000th Ethereum block.

Batch Size AlterEgo Full AlterEgo Single The Graph
1 91.70 ms 14.49 ms 31.16 ms

10 71.30 ms 12.64 ms 28.18 ms
100 66.85 ms 11.01 ms 30.87 ms

1,000 65.30 ms 10.73 ms 31.17 ms
10,000 64.00 ms 10.61 ms 31.20 ms

Table 3: Average Update Latency (in milliseconds) for Al-
terEgo andThe Graph with different batch sizes.

AlterEgo Single ingests new blocks up to 3× faster than The
Graph. Despite the increased workload undertaken by processing
entire blocks, AlterEgo Full applies all updates in a timeframe of
only 2-3× longer than The Graph.

These findings underscore the practicality of ingesting blocks
within a 100-ms window, given that this time frame is shorter than
the network propagation delay for blocks on most blockchains.
We conclude that AlterEgo can maintain low update latency, even
when processing data on a block-by-block basis.

4.6 Overhead Analysis
Finally, we briefly quantify AlterEgo’s overheads in terms of addi-
tional memory and storage requirements to support analytics. We
measure the worst-case memory overhead (Q3) at an additional
6.4 GB of main memory, primarily used for the page cache and
intermediate results. AlterEgo requires roughly the same storage
as a traditional blockchain node. We measured the storage require-
ments of ingesting 1M blocks from Ethereum at 57 GB.While these
overheads are non-negligible, they remain reasonable in the con-
text of executing analytics on large amounts of data.

11



EdgeSys ’24, April 22, 2024, Athens, Greece Guo, Alizadeh, Falahati, and Bindschaedler

Q1
1k

Q1
10k

Q1
100k

Q1
1m

Q2
1k

Q2
10k

Q2
100k

Q2
1m

Q3
1k

Q3
10k

Q3
100k

Q3
1m

Q4
1k

Q4
10k

Q4
100k

Q4
1m

Query and Number of Blocks

100

101

102

103

104

105

106

Qu
er

y 
La

te
nc

y 
(m

s)

2.
3k

20
.5 32

.2
0.

5
18

.8
k

19
.2

13
4.

7
0.

9
37

1.
1k

23
.0

46
1.

6
1.

0
94

3.
4k

21
.8

72
6.

4
1.

0
2.

3k
4.

0
16

8.
0

0.
9

19
.0

k
4.

5
26

0.
6

1.
1

23
3.

1k
4.

3
1.

7k
1.

2
96

7.
3k

4.
1

3.
2k

1.
3

2.
3k

3.
6

66
.7

1.
0

19
.0

k
4.

0
27

8.
6

1.
3

23
1.

7k
3.

7
58

6.
4

1.
3

95
6.

3k
3.

6
1.

4k
1.

3
33

4.
6

3.
8

60
.3

0.
4

6.
1k

3.
6

30
5.

4
0.

7
77

.8
k

3.
9

1.
6k

1.
0

48
5.

4k
3.

7
5.

0k
1.

3

Golang+RPC The Graph AlterEgo AlterEgo Mat

Figure 3: Comparison of query latency for the different systems. Note that the y-axis is in logscale for plot readability.

5 CONCLUSIONS AND FUTUREWORK
We introduced AlterEgo, a specialized blockchain node with ad-
vanced analytics capabilities that maintains the core functional-
ities of traditional blockchain nodes, offering substantial perfor-
mance improvements, better user experience, collaborative query
execution, and higher trustworthiness than the state-of-the-art.We
plan to open-source AlterEgo upon publication of this article.

The encouraging outcomes from this initial prototype motivate
the exploration of further research avenues. One key direction is re-
ducing and balancing the load on individual nodes for long-running
queries to ensure efficient operation. We plan to explore query of-
floading, dynamic query decomposition, and data sharding to that
end. Another research opportunity involves leveraging the vast
body of edge AI and analytics work to provide efficient real-time
analytics primitives at the node level, enabling evenmore use cases.
A third area for future work is connecting analytics nodes for dif-
ferent blockchains and non-blockchain systems to analyze their in-
teractions. Our ultimate objective is the design of a comprehensive
framework for decentralized blockchain analytics.

REFERENCES
[1] [n. d.]. https://etherscan.io. Accessed: 2024-03-29.
[2] [n. d.]. https://thegraph.com. Accessed: 2024-03-29.
[3] [n. d.]. https://thegraph.com/explorer. Accessed: 2024-03-29.
[4] Andreas M Antonopoulos and Gavin Wood. 2018. Mastering ethereum: building

smart contracts and dapps. O’reilly Media.
[5] László Babai. 1985. Trading group theory for randomness. In Proceedings of the

seventeenth annual ACM symposium on Theory of computing. 421–429.
[6] Lee Bousfield, Rachel Bousfield, Chris Buckland, Ben Burgess, Joshua Colvin,

EdwardWFelten, StevenGoldfeder, Daniel Goldman, BradenHuddleston, Harry
Kalodner, et al. 2018. Arbitrum Nitro: A Second-Generation Optimistic Rollup.
(2018).

[7] Vitalik Buterin. 2016. Ethereum: platform review. Opportunities and Challenges
for Private and Consortium Blockchains 45 (2016).

[8] Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
OsDI, Vol. 99. 173–186.

[9] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander
Spiegelman. 2022. Narwhal and tusk: a dag-based mempool and efficient bft
consensus. In Proceedings of the Seventeenth European Conference on Computer
Systems. 34–50.

[10] DuckDB Authors. [n. d.]. DuckDB. https://duckdb.org/. Accessed: 2024-03-29.
[11] Bogdan Dumitrescu, Andra Băltoiu, and Ştefania Budulan. 2022. Anomaly de-

tection in graphs of bank transactions for anti money laundering applications.
IEEE Access 10 (2022), 47699–47714.

[12] Ethereum Foundation. [n. d.]. Geth (go-ethereum). https://geth.ethereum.org/.
Accessed: 2024-03-29.

[13] Evgeny Medvedev. [n. d.]. Blockchain ETL. http://blockchainetl.io. Accessed:
2024-03-29.

[14] Shafi Goldwasser, Silvio Micali, and Chales Rackoff. 2019. The knowledge com-
plexity of interactive proof-systems. In Providing sound foundations for cryptog-
raphy: On the work of shafi goldwasser and silvio micali. 203–225.

[15] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[16] Harry Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin Plattner, Al-
ishah Chator, and Arvind Narayanan. 2020. {BlockSci}: Design and applications
of a blockchain analysis platform. In 29th USENIX Security Symposium (USENIX
Security 20). 2721–2738.

[17] Jaynti Kanani, Sandeep Nailwal, and Anurag Arjun. 2021. Matic whitepaper.
Polygon, Bengaluru, India, Tech. Rep., Sep (2021).

[18] Donald Kossmann. 2000. The state of the art in distributed query processing.
ACM Computing Surveys (CSUR) 32, 4 (2000), 422–469.

[19] Mark Levene and George Loizou. 2003. Why is the snowflake schema a good
data warehouse design? Information Systems 28, 3 (2003), 225–240.

[20] Haoran Li, Chenyang Lu, and Christopher D Gill. 2021. RT-ZooKeeper: Taming
the Recovery Latency of a Coordination Service. ACMTransactions on Embedded
Computing Systems (TECS) 20, 5s (2021), 1–22.

[21] Yang Li, Kai Zheng, Ying Yan, Qi Liu, and Xiaofang Zhou. 2017. EtherQL: a
query layer for blockchain system. In Database Systems for Advanced Applica-
tions: 22nd International Conference, DASFAA 2017, Suzhou, China, March 27-30,
2017, Proceedings, Part II 22. Springer, 556–567.

[22] Satoshi Nakamoto. 2008. Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin.
pdf-(: 17.07. 2019) (2008).

[23] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transac-
tional/analytical processing: A survey. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. 1771–1775.

[24] Dennis Przytarski, Christoph Stach, Clémentine Gritti, and Bernhard Mitschang.
2021. Query processing in blockchain systems: Current state and future chal-
lenges. Future Internet 14, 1 (2021), 1.

[25] John Silberholz and Di Andrew Wu. 2021. Measuring utility and speculation in
blockchain tokens. Available at SSRN 3915269 (2021).

[26] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. 2022. Bullshark: Dag bft protocols made practical. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security. 2705–
2718.

[27] Jordan Tigani and Siddartha Naidu. 2014. Google bigquery analytics. John Wiley
& Sons.

[28] Ye Wang, Yan Chen, Haotian Wu, Liyi Zhou, Shuiguang Deng, and Roger Wat-
tenhofer. 2022. Cyclic arbitrage in decentralized exchanges. In Companion Pro-
ceedings of the Web Conference 2022. 12–19.

[29] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[30] Anatoly Yakovenko. 2018. Solana: A new architecture for a high performance
blockchain v0. 8.13. Whitepaper (2018).

[31] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. 2020. An overview on smart contracts: Chal-
lenges, advances and platforms. Future Generation Computer Systems 105 (2020),
475–491.

[32] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and HuaiminWang.
2018. Blockchain challenges and opportunities: A survey. International journal
of web and grid services 14, 4 (2018), 352–375.

12

https://etherscan.io
https://thegraph.com
https://thegraph.com/explorer
https://duckdb.org/
https://geth.ethereum.org/
http://blockchainetl.io

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Blockchains & Smart Contracts
	2.2 Blockchain Analytics
	2.3 An Integrated Blockchain Node

	3 Design & Implementation
	3.1 Ingestion Engine
	3.2 Analytical Engine
	3.3 Distributed, Collaborative Query Execution
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Expressiveness
	4.3 Performance Comparison
	4.4 Traffic Reduction
	4.5 Update Latency
	4.6 Overhead Analysis

	5 Conclusions and Future Work
	References

