A Journal of the Gesellschaft Deutscher Chemiker A DOCH International Edition Market Chemiker CDCh Chemiker Ch

Accepted Article

- Title: Hyperpolarization of 15N-Pyridinium by Using Parahydrogen Enables Access to Reactive Oxygen Sensors and Pilot In Vivo Studies
- Authors: Ruhuai Mei, Lisa Fries, Theresa Hune, Maria Daniela Santi, Gonzalo Gabriel Rodriguez, Sonja Sternkopf, and Stefan Glöggler

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 2024, e202403144

Link to VoR: https://doi.org/10.1002/anie.202403144

WILEY ... VCH

COMMUNICATION

Hyperpolarization of ¹⁵N-Pyridinium by Using Parahydrogen Enables Access to Reactive Oxygen Sensors and Pilot In Vivo **Studies**

Ruhuai Mei, +[a,b] Lisa M. Fries, +[a,b] Theresa L. K. Hune, [a,b] Maria Daniela Santi, [a,b] Gonzalo Gabriel Rodriguez,^[a,b] Sonja Sternkopf,^[a,b] Stefan Glöggler*^[a,b]

Dr. R. Mei,⁺ L. M. Fries,⁺ T. L. K. Hune, Dr. M. D. Santi, Dr. G. G. Rodriguez, Dr. S. Sternkopf, Dr. S. Glöggler [a] NMR Signal Enhancement Group Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11, 37077 Göttingen, Germany E-mail: stefan.gloeggler@mpinat.mpg.de [b] Dr. R. Mei,⁺ L. M. Fries,⁺ T. L. K. Hune, Dr. M. D. Santi, Dr. G. G. Rodriguez, Dr. S. Sternkopf, Dr. S. Glöggler Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen

Von-Siebold-Str. 3A, 37075 Göttigen, Germany

+ These authors contributed equally to this work.

Supporting information for this article is given via a link at the end of the document.

Abstract: Magnetic resonance with hyperpolarized contrast agents is one of the most powerful and noninvasive imaging platforms capable for investigating in vivo metabolism. While most of the utilized hyperpolarized agents are based on ¹³C nuclei, a milestone advance in this area is the emergence of ¹⁵N hyperpolarized contrast agents. Currently, the reported ¹⁵N hyperpolarized agents mainly utilize the dissolution dynamic nuclear polarization (d-DNP) protocol. The parahydrogen enhanced ¹⁵N probes have proven to be elusive and have been tested almost exclusively in organic solvents. Herein, we designed a reaction based reactive oxygen sensor ¹⁵N-boronobenzyl-2-styrylpyridinium (15N-BBSP) which can be hyperpolarized with parahydrogen. Reactive oxygen species plays a vital role as one of the essential intracellular signalling molecules. Disturbance of the H₂O₂ level usually represents a hallmark of pathophysiological conditions. This H_2O_2 probe exhibited rapid responsiveness toward H_2O_2 and offered spectrally resolvable chemical shifts. We also provide strategies to bring the newly developed probe from the organic reaction solution into a biocompatible injection buffer and demonstrate the feasibility of in vivo ¹⁵N signal detection. The present work manifests its great potential not only for reaction based reactive sensing probes but also promises to serve as a platform to develop other contrast agents.

Introduction

Nuclear magnetic resonance spectroscopic imaging (MRSI) with hyperpolarized contrast agents represents one of the most powerful and noninvasive techniques capable of clinically investigating in vivo metabolism.^[1] Unlike positronemission tomography (PET), this non-radiative technology provides chemical specificity through spectra information. It elegantly addressed the inherent insensitivity issue of nuclear magnetic resonance (NMR) via the formation of nonequilibrium spin population. Thus, signal enhancement over 10000-fold was

achieved compared to thermal equilibrium spin polarization. Hyperpolarization (HP) techniques extensively expand the scope of magnetic resonance (MR) from the most clinical used ¹H-MRSI, allowing the observation of metabolites in low concentrations with improved spatial and temporal resolutions. These methods are highly desirable for a multitude of preclinical and clinical investigations of metabolic processes.^[2]

Among several available hyperpolarization techniques, dissolution dynamic nuclear polarization (d-DNP)^[3] and parahydrogen (pH_2) induced polarization (PHIP) are the two leading technologies which have been mainly applied for producing nongaseous medically relevant contrast agents.^[1b, 4] Various ¹³C or ¹⁵N-labeled metabolites can be hyperpolarized with large signal enhancements via d-DNP. Although d-DNP is commercially available and a widely applicable method nowadays, superconducting magnets (> 1 T) and cryogenic temperatures (< 2 K) are usually necessary for HP bolus preparation. In addition, tens of minutes are typically consumed to produce one dose of injectable metabolites.

The second hyperpolarization method, *p*H₂ induced polarization (PHIP), utilizes the inexpensive, storable and portable pH₂ as the polarization source. Two pathways have been explored in the context of contrast agent development using pH₂: 1) SABRE (Signal Amplification by Reversible Exchange), [5] during which molecules are hyperpolarized upon interaction with a catalyst and pH_2 and the molecule is not altered and 2) hydrogenative PHIP during which an unsaturated bond is hydrogenated and the obtained proton spin orders transferred via the J-coupling network to a heteronuclear (13C, 15N etc.) spin of interest. ^[6] In the early days angiography and perfusion studies were mostly pursued with pH2 enhanced contrast agents^[7] until recently hyperpolarized metabolites became available that have now been demonstrated in several applications including cancer

WILEY VCH

COMMUNICATION

imaging.^[8] However, majorities of studies to probe metabolic events or chemical species have been conducted almost exclusively with pyruvate. A few other examples with ¹³C and ¹⁵N labelled molecules exist and designing novel hyperpolarized contrast agents and especially for PHIP are still in its infancy.^[1b, 4b, 9]

In this work, we sought to develop a responsive contrast agent that can be hyperpolarized with parahydrogen and undergoes chemical alteration in the presence of reactive oxygen species (ROS) such as hydrogen peroxide (H_2O_2). ROS has shown to be toxic in high concentrations but function as essential intracellular signaling molecules.^[10] Compared to other ROS species, H_2O_2 is stable under physiological conditions and exists in relatively high concentrations *in vivo*.^[11] Generally, the ROS signaling pathways control ROS intracellular homeostasis. Disturbance of the H_2O_2 level represents a hallmark for various

diseases, such as inflammation, tissue injury, cancer, and neurodegenerative disorders.^[12] It would be highly desirable to establish H_2O_2 imaging *in vivo*, which may play an important role for diagnostic and therapeutic utility. Therefore, development of H_2O_2 -sensing probes viable for preclinical models is of great significance.

Currently, the hyperpolarized ROS sensing probes were mainly focused on ¹³C nuclei^[13] and ¹⁵N based hyperpolarized ROS sensors are less explored.^[14] Indeed, ¹⁵N nuclei possess many beneficial properties for metabolic MRI, including: a) relatively long relaxation time T₁ due to its small gyromagnetic ratio γ ,^[15] b) ubiquitous existence in many central metabolic pathways^[16] and c) a broad chemical shift window up to 900 ppm.^[5b, 9a, 15, 17] Recently, some elegant ¹⁵N-nuclei probes using d-DNP have been developed, enabling real-time

Figure 1. Design and synthesis of the PHIP ¹⁵N-labeled H₂O₂-sensoring probe. (A) Proposed H₂O₂-sensoring mechanism *via* boron oxidation followed by base promoted 1,6-elimination. (B) Synthesis of PHIP ¹⁵N-labeled H₂O₂-sensoring probe. (C) Proton hyperpolarization followed by polarization transfer to ¹⁵N nuclei in MeOD-d₄ at 310 K. (Bpin: pinacolato boron)

COMMUNICATION

metabolic imaging in vivo.[14, 18] Notably, Park et al. disclosed a d-DNP ¹⁵N-boronobenzyl-4-cyanopyridinium as a reaction-based H₂O₂-sensing probe, demonstrating the great potential of hyperpolarized ¹⁵N-probes for oxidative stress in MR imaging wherein a ¹⁵N-labelled nitrogen serves as a reporter group.^[19] All existing hyperpolarized ROS sensors use d-DNP strategies. There are currently no known PHIP ROS sensors. Some of these studies suffer from low polarization efficiency, short $T_{1,1}^{[13b]}$ tiny chemical shift changes.^[14] Only a minority of these sensors have produced in vivo data, and to date, no one has successfully demonstrated the conversion product in vivo in a disease model.^[13a,14] In our study, we particularly aim to investigate ¹⁵Nenriched pyridinium moieties,[20] which have only been conceptually introduced and may ensure long tracing time and opportunity to provide hyperpolarization for biomedical MRI. In continuation of our hyperpolarization pyridinium project, ^[21] herein, we described the concise synthesis of ¹⁵N-boronobenzyl-2phenylethynylpyridinium (15N-BBPEP) PHIP precursor and utilized the hyperpolarized ¹⁵N-boronobenzyl-2-styrylpyridinium (¹⁵N-BBSP) as an H₂O₂-responsive probe. Hyperpolarized ¹⁵N-BBSP enables the detection of H₂O₂ with high sensitivity and selectivity with a significant chemical shift difference up to 88.4 ppm. Furthermore, we achieved the detection of the hyperpolarized ¹⁵N-BBSP signal in aqueous media with ¹⁵Nmagnetic resonance spectroscopy (MRS) in vivo.

Results and discussion

Rational design and synthesis of PHIP precursor 15 N-BBPEP as a H₂O₂ sensor

The structure of hyperpolarized ¹⁵N-BBSP consists of ¹⁵N-2styrylpyridin as a PHIP signaling unit and aryl boronate as a H_2O_2 sensing unit (Figure 1A). The synthesis of the labeled compound ¹⁵N-BBPEP PHIP precursor was conducted as shown in Figure 1B. Starting from the reduction of 4-bromobenzoic acid **1** with NaBD₄, boronic ester **4** was readily prepared *via* palladium catalyzed borylation and bromination of benzyl alcohol **3**. Following a protocol developed by our group^[21], we synthesized pyridine-¹⁵N-oxide-d₅ **5** which could be ethynylated at the *ortho*position *via* a N-acyloxypyridinium salt intermediate. Finally, the assembly of ¹⁵N-BBPEP was achieved by conjugation of ¹⁵N-2-(phenylethynyl) pyridine-d₄ **6** and boronic ester **4**. These structures have been confirmed with mass spectrometry and NMR spectra. Further experiment details could be found in the ESI.

In 2019, our group achieved efficient hyperpolarization of ¹⁵N-pyridinium derivatives, a structure that is present in various bio-relevant molecules but has so far not been explored for the design of functional tracers. Furthermore, pyridinium species in the form of a salt would benefit from excellent solubility in aqueous media. Thus, we employed a pyridinium structure here, using ¹⁵N-BBPEP as the H₂O₂ responsive sensor precursor (Figure 1A). After hyperpolarization with *p*H₂ and subsequent polarization transfer from ¹H to ¹⁵N, hyperpolarized H₂O₂ sensor ¹⁵N-BBSP would be formed. Based on previous literature reports, ^[19, 22] we envisioned that a phenol intermediate ¹⁵N-hydroxybenzyl-2-styrylpyridinium (¹⁵N-HBSP) can be released via oxidation with

H₂O₂. Then a base-assisted 1,6 elimination/rearrangement of ¹⁵N-HBSP was expected to take place and delivered ¹⁵N-2styrylpyridin (¹⁵N-SP) as well as quinone methide-d₂ (QM-d₂). As the signaling unit, ¹⁵N-2-phenylethynylpyridinium (¹⁵N-PEP) possesses an unsaturated side arm which is crucial for subsequent ¹H/¹⁵N-hyperpolarization. Due to substantial electronic density and chemical structure change among ¹⁵N-BBSP, ¹⁵N-HBSP and ¹⁵N-SP, significant chemical shift differences would be expected. These chemical shifts are highly desirable for ¹⁵N MR spectroscopy. Indeed, noticeable chemical shift differences, up to 3.1 ppm and 85.3 ppm, were observed among these hyperpolarized ¹⁵N species, which could be utilized as signal readouts in the following H₂O₂ sensing studies.

Hyperpolarization of ¹⁵N-BBSP and ¹⁵N-T₁ investigation of ¹⁵N-BBSP

With ¹⁵N-BBPEP in hand, we performed hydrogenation reactions with pH_2 and investigated the spin order transfer to heteronucleus ¹⁵N afterwards. Prior to conducting hyperpolarization experiments, we checked the stability of ¹⁵N-BBPEP by pretreatment of the sample with deuterium oxide (D₂O) before the hydrogenation reactions. Although negligible hydrolysis of the boronic ester was observed (see S5), the D₂O-pretreated sample ¹⁵N-BBPEP exhibited good stability and comparable hyperpolarization efficiency as normal samples. Both the boronic ester and the boronic acid substituted ¹⁵N-BBPEP could be hyperpolarized and transferred into ¹⁵N-HBSP equivalently upon treatment with H₂O₂ (Figure S1).

To obtain the hyperpolarized probe ¹⁵N-BBSP, pyridinium ¹⁵N-BBPEP was hydrogenated with *p*H₂ at 310 K in MeOD-d₄ using the homogeneous rhodium catalyst [Rh(dppb)(COD)][BF₄] (dppb: diphenylphosphino butane, COD: cyclooctadiene). In the ¹H polarization step, 16.9 ± 0.9 % polarization was achieved with three parallel experiments by comparison with the thermal spectrum (see S2). Subsequently, ¹⁵N polarization was realized by utilizing the MINERVA (Maximizing Insensitive Nuclei Enhancement Reached Via parahydrogen Amplification) sequence,^[23] with a final polarization of 5.1 ± 0.4 % (Figure 1C and S4). The decrease in polarization here may be due to low transfer efficiency caused by the small coupling between the ¹⁵N and ¹H (³J_{N-H} = 1.0 Hz).**Table 1**. ¹⁵N-T₁ values of ¹⁵N-BBSP at 310 K in MeOD-d₄ and D₂O ^[a].

Entry	Mag. field in T	Average T ₁ (s) ^[b]	Solvent
1	7	40.4 ± 3.7	MeOD-d ₄
2	1	128.3 ± 26.5	MeOD-d ₄
3	0.1	193.5 ± 0.7	MeOD-d ₄
4	0.01	133.0 ± 10.4	MeOD-d ₄
5	0.1	133.0 ± 12.8	D ₂ O
6	7.0	32.0 ± 2.0	H ₂ O
7	0.1	77.0 ± 6.0	H ₂ O

 $^{[a]}$ all of the data were obtained from 3 parallel experiments in MeOD-d4 or D₂O at 310 K unless otherwise noted.

Since we succeeded in transferring ¹H polarization to the ¹⁵Nspin with good efficiency, we proceed with relaxation time

15213773, ja, Downloaded from https:

COMMUNICATION

measurements using low flip angle pulses of 10° at various magnetic fields (see ESI for details). As shown in Table 1, the ¹⁵N-T1 gradually increased with decreasing magnetic fields at the initial stage. An outstanding T_1 (193.5 ± 0.7 s) was achieved at a magnetic field of 100 mT (entries 1-3). The ¹⁵N-T₁ decreased slightly when the field was further reduced to 10 mT (entry 4). Remarkably, a comparable ¹⁵N-T₁ was maintained when we performed the T_1 measurement in D_2O buffer (entry 5). The T_1 values in H₂O were shorter than those in deuterated MeOD or in D_2O (entries 6 and 7). We also tried to test the T_1 in the presence of bovine serum albumin. However, with a flip angle of 10°, the hyperpolarized ¹⁵N signal disappeared rapidly during 2Dacquisition, making T1 determination impossible (see S7).^[24] This also implies that the design of ¹⁵N-probes will need to be carefully chosen to minimize albumin binding in the future. The relatively long T₁ of ¹⁵N-BBSP in biocompatible aqueous solution provides the opportunity for in vivo application of our H₂O₂ sensor. Furthermore, given the ubiquitous presence of pyridinium moieties in various drugs or bioactive molecules, our ¹⁵N-BBSP may find important utility in clinical scanners.

H_2O_2 detection of hyperpolarized $^{15}\text{N-BBSP}$ and its in vivo application

To verify the responsiveness of hyperpolarized ¹⁵N-BBSP to H₂O₂, it was further tested with H₂O₂ *in vitro*. As illustrated in Figure 2A, the ¹⁵N signal immediately shifted from 209.6 ppm to 212.7 ppm (Δ^{15} N = 3.1 ppm) upon addition of H₂O₂ solution. The new signal at 212.7 ppm could be assigned to ¹⁵N-HBSP derived from oxidation of ¹⁵N-BBSP. The H₂O₂ concentration could be reduced to the single-digit mM range while still observing a detectable conversion (Figure 2C).The cleavage product ¹⁵N-SP (298.0 ppm, Δ ¹⁵N = 85.3 ppm) was only detected after sequential injection of an alkaline Na₂CO₃ solution and H₂O₂ (Figure 2B).

Figure 2. H_2O_2 detection of hyperpolarized ¹⁵N-BBSP. Time Series spectra were recorded every 10 seconds with a flip angle of 10 degree. All spectra were

recorded at 7.0 T. (A) Time series of hyperpolarized ¹⁵N-NMR spectrum after addition of H_2O_2 (final concentration 100 mM). (B) Time series of hyperpolarized ¹⁵N-NMR spectrum after sequential addition of H_2O_2 (1%) and Na_2CO_3 (50 mM). (C) 1D ¹⁵N spectra recorded with a 90 degree pulse 30 s after H_2O_2 addition with respective final concentrations.

Figure 3. *In vivo* detection of hyperpolarized ¹⁵N-BBSP in a wildtype mouse. ¹⁵N- spectrum of ¹⁵N-BBSP recorded 15 seconds after injection using a 90 degree pulse at 7.0 T. The peak has an SNR of 4 and a linewidth of 50 Hz. Additional experiments (n=3) can be found in S10.

These significant changes of chemical shifts (3.1 ppm & 85.3 ppm) as well as the relatively long T1 of the 15 N-BBSP H2O2 sensor encouraged us to further test its performance in in vivo experiments (n=3). First, a ¹H-NMR image of a wildtype mousewas acquired as shown in Figure S10. Following a protocol developed by our group,^[5a, 23] we evaporated MeOD-d₄ at 371 K under vacuum. The rhodium catalyst was removed via filtration within 40 s to obtain an aqueous solution containing ¹⁵N-BBSP for injection. After tail-vein administration of the freshly prepared ¹⁵N-BBSP hyperpolarized sample, the signal was detected using a nonlocalized ¹⁵N spectrum recorded with a 90° pulse. The spectrum was recorded 15 s after injection of the hyperpolarized sample and showed a single peak at 210 ppm with an SNR of 4 and a linewidth of 50 Hz (Figure 3, for more information see ESI), proofing the feasibility to obtain ^{15}N tracers with pH_2 in biocompatible conditions. No oxidative or cleavage products were detected due to low H₂O₂ concentrations^[25] and pH environment under psychological conditions. Future work will improve polarization and sensitivity^[26] of the ¹⁵N tracers and further develop the concept that in vivo changes become detectable. We would like to emphasize the finding that upon the cleavage of the boronate ester which is six bonds away, a chemical shift difference of the nitrogen of 3.1 ppm is observable. This is larger than the in vivo linewidth of 50 Hz (about 2 ppm) and therefore provides an important guideline for the development of future tracers: reactive moieties can be introduced far away from the hyperpolarized ¹⁵N site putting less constraints on the molecular design.

Conclusion

In conclusion, we designed and synthesized a reaction based H_2O_2 sensor precursor ¹⁵N-BBPEP. The rational designed pyridinium salt ¹⁵N-BBPEP is amenable to hydrogenative PHIP polarization with high efficiency and delivered the hyperpolarized H_2O_2 sensing probe ¹⁵N-BBSP. ¹⁵N-BBSP exhibited rapid

COMMUNICATION

responsiveness toward H2O2 in vitro and offered significant chemical shifts (3.1 ppm & 85.3 ppm) after treatment with H₂O₂ and base, which can be resolved in future MRI studies. For the first time, we successfully detected ¹⁵N signal *in* vivo with a parahydrogen enhanced tracer in biocompatible buffer. In the future we will work towards overcoming the polarization loss during the spin transfer and work-up process. This advancement will contribute to the development of a more sensitive H₂O₂ probe, potentially achieving detection levels within the pathological range. Even though improvements are needed, the present work manifests its great potential as a reaction based H₂O₂ sensing probe, which may be used for oxidative stress imaging in diagnostic and therapeutic medical applications in nearby future. Additionally, we expect that the presented in vivo approach can also be immediately implemented for SABRE enhanced ¹⁵N production enabling the molecules, thus of more hyperpolarizeable contrast agents available in the future.

Supporting Information

The authors have cited additional references within the Supporting Information.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 949180). Stefan Glöggler acknowledges funding by the Max Planck Society and the German Research Foundation (DFG) under Grant 495627437, 491827624 and 450146057. SG is co-founder of MagniKeen. The authors declare no competing financial interests.

Keywords: Hyperpolarization • Parahydrogen • ¹⁵N-pyridinium • NMR • PHIP

- (a) F.-X. Theillet, Chem. Rev. 2022, 122, 9497-9570; (b) J.-B. [1] Hövener, A. N. Pravdivtsev, B. Kidd, C. R. Bowers, S. Glöggler, K. V. Kovtunov, M. Plaumann, R. Katz-Brull, K. Buckenmaier, A. Jerschow, F. Reineri, T. Theis, R. V. Shchepin, S. Wagner, P. Bhattacharya, N. M. Zacharias, E. Y. Chekmenev, Angew. Chem. Int. Ed. 2018, 57, 11140-11162.
- (a) K. Deh, G. Zhang, A. H. Park, C. H. Cunningham, N. D. [2] Bragagnolo, S. Lyashchenko, S. Ahmmed, A. Leftin, E. Coffee, H. Hricak, V. Miloushev, M. Mayerhoefer, K. R. Keshari, Magn. Reson. Med., n/a; (b) J. Eills, D. Budker, S. Cavagnero, E. Y. Chekmenev, S. J. Elliott, S. Jannin, A. Lesage, J. Matysik, T. Meersmann, T. Prisner, J. A. Reimer, H. Yang, I. V. Koptyug, Chem. Rev. 2023, 123, 1417-1551.
- [3] (a) A. Comment, J. Magn. Reson. 2016, 264, 39-48; (b) H. Gutte, A. E. Hansen, H. H. Johannesen, A. E. Clemmensen, J. H. Ardenkjær-Larsen, C. H. Nielsen, A. Kjær, Am. J. Nucl. Med. Mol. Imaging 2015, 5, 548-560; (c) K. M. Brindle, J. Am. Chem. Soc. 2015, 137, 6418-6427; (d) A. Comment, M. E. Merritt, Biochemistry 2014, 53, 7333-7357; (e) K. R. Keshari, D. M. Wilson, Chem. Soc. Rev. 2014, 43, 1627-1659; (f) R. E. Hurd, Y.-F. Yen, A. Chen, J. H. Ardenkjaer-Larsen, J. Magn. Reson. Imaging 2012, 36, 1314-1328.
- (a) Y. Kondo, H. Nonaka, Y. Takakusagi, S. Sando, *Angew. Chem. Int. Ed.* **2021**, *60*, 14779-14799; (b) K. V. Kovtunov, E. V. [4] Pokochueva, O. G. Salnikov, S. F. Cousin, D. Kurzbach, B.

Vuichoud, S. Jannin, E. Y. Chekmenev, B. M. Goodson, D. A. Barskiy, I. V. Koptyug, Chem.: Asian J. 2018, 13, 1857-1871.

- (a) H. de Maissin, P. R. Groß, O. Mohiuddin, M. Weigt, L. Nagel, [5] M. Herzog, Z. Wang, R. Willing, W. Reichardt, M. Pichotka, L. Heß, T. Reinheckel, H. J. Jessen, R. Zeiser, M. Bock, D. von Elverfeldt, M. Zaitsev, S. Korchak, S. Glöggler, J.-B. Hövener, E. Y. Chekmenev, F. Schilling, S. Knecht, A. B. Schmidt, *Angew. Chem. Int. Ed.* **2023**, *62*, e202306654; (b) P. J. Rayner, M. Fekete, C. A. Gater, F. Ahwal, N. Turner, A. J. Kennerley, S. B. Duckett, J. Am. Chem. Soc. 2022, 144, 8756-8769; (c) T. Theis, M. L. Truong, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, E. Y. Chekmenev, *J. Am.* Chem. Soc. 2015, 137, 1404-1407; (d) M. L. Truong, T. Theis, A. M. Coffey, R. V. Shchepin, K. W. Waddell, F. Shi, B. M. Goodson, W. S. Warren, E. Y. Chekmenev, J. Phys. Chem. C 2015, 119, 8786-8797; (e) D. A. Barskiy, K. V. Kovtunov, I. V. Koptyug, P. He, K. A. Groome, Q. A. Best, F. Shi, B. M. Goodson, R. V. Shchepin, A. M. Coffey, K. W. Waddell, E. Y. Chekmenev, J. Am. Chem. Soc. 2014, 136, 3322-3325; (f) R. W. Adams, J. A. Aguilar, K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R. Green, I. G. Khazal, J. López-Serrano, D. C. Williamson, Science 2009, 323, 1708-1711.
- (a) G. Stevanato, Y. Ding, S. Mamone, A. P. Jagtap, S. Korchak, [6] S. Glöggler, J. Am. Chem. Soc. 2023, 145, 5864-5871; (b) L. Kaltschnee, A. P. Jagtap, J. McCormick, S. Wagner, L.-S. Bouchard, M. Utz, C. Griesinger, S. Glöggler, *Chem. Eur. J.* **2019**, 25, 11031-11035; (c) E. Y. Chekmenev, V. A. Norton, D. P. Weitekamp, P. Bhattacharya, J. Am. Chem. Soc. 2009, 131, 3164-3165; (d) C. R. Bowers, D. P. Weitekamp, J. Am. Chem. Soc. 1987, 109, 5541-5542; (e) C. R. Bowers, D. P. Weitekamp, Phys. Rev. Lett. 1986, 57, 2645-2648; (f) S. Korchak, M. Emondts, S. Mamone, B. Blümich, S. Glöggler, Phys. Chem. *Chem. Phys.* **2019**, *21*, 22849-22856; (g) S. Mamone, A. P. Jagtap, S. Korchak, Y. Ding, S. Sternkopf, S. Glöggler, *Angew.* Chem. Int. Ed. 2022, 61, e202206298.
- (a) K. Golman, O. Axelsson, H. Jóhannesson, S. Månsson, C. [7] Olofsson, J. S. Petersson, Magn. Reson. Med. 2001, 46, 1-5; (b) S. Månsson, E. Johansson, P. Magnusson, C.-M. Chai, G. Hansson, J. S. Petersson, F. Ståhlberg, K. Golman, European Radiology 2006, 16, 57-67; (c) K. Golman, J. S. Petersson, Academic Radiology 2006, 13, 932-942; (d) P. Bhattacharya, E. Y. Chekmenev, W. H. Perman, K. C. Harris, A. P. Lin, V. A. Norton, C. T. Tan, B. D. Ross, D. P. Weitekamp, J. Magn. Reson. 2007, 186, 150-155.
- (a) T. Hune, S. Mamone, H. Schroeder, A. P. Jagtap, S. [8] Sternkopf, G. Stevanato, S. Korchak, C. Fokken, C. A. Müller, A. B. Schmidt, D. Becker, S. Glöggler, *ChemPhysChem* **2023**, *24*, e202200615; (b) A. M. Coffey, R. V. Shchepin, M. L. Truong, K. Wilkens, W. Pham, E. Y. Chekmenev, Analytical Chemistry 2016, 88, 8279-8288; (c) P. Bhattacharya, E. Y. Chekmenev, W. F. Reynolds, S. Wagner, N. Zacharias, H. R. Chan, R. Bünger, B. D. Ross, NMR in Biomedicine 2011, 24, 1023-1028.
- (a) H. Park, Q. Wang, Chem. Sci. 2022, 13, 7378-7391; (b) F. [9] Reineri, E. Cavallari, C. Carrera, S. Aime, Magnetic Resonance Materials in Physics, Biology and Medicine 2021, 34, 25-47.
- [10] (a) B. C. Dickinson, C. J. Chang, Nat. Chem. Biol. 2011, 7, 504-511; (b) B. D'Autréaux, M. B. Toledano, Nat. Rev. Mol. Cell Biol. 2007, 8, 813-824; (c) E. A. Veal, A. M. Day, B. A. Morgan, Mol. Cell 2007, 26, 1-14; (d) S. G. Rhee, Science 2006, 312, 1882-1883.
- [11] (a) M. Reth, Nat. Immunol. 2002, 3, 1129-1134; (b) S. Parvez, M. J. C. Long, J. R. Poganik, Y. Aye, Chem. Rev. 2018, 118, 8798-8888
- [12] (a) J. Yang, J. Yang, S. H. Liang, Y. Xu, A. Moore, C. Ran, Sci. Rep. 2016, 6, 35613; (b) G.-Y. Liou, P. Storz, Free Radic. Res. 2010, 44, 479-496; (c) G. H. Kim, J. E. Kim, S. J. Rhie, S. Yoon, Exp Neurobiol 2015, 24, 325-340; (d) A. van der Vliet, Y. M. W. Janssen-Heininger, J. Cell. Biochem. 2014, 115, 427-435; (e) M. P. Lisanti, U. E. Martinez-Outschoorn, Z. Lin, S. Pavlides, D. Whitaker-Menezes, R. G. Pestell, A. Howell, F. Sotgia, Cell Cycle 2011, 10, 2440-2449; (f) K. J. Barnham, C. L. Masters, A. I. Bush, Nat. Rev. Drug Discov. 2004, 3, 205-214; (g) T. P. Szatrowski, C. F. Nathan, Cancer Res. 1991, 51, 794-798.
- [13] (a) A. Wibowo, J. M. Park, S.-C. Liu, C. Khosla, D. M. Spielman, ACS Chem. Biol. 2017, 12, 1737-1742; (b) A. R. Lippert, K. R.

10.1002/anie.202403144

COMMUNICATION

Keshari, J. Kurhanewicz, C. J. Chang, *J. Am. Chem. Soc.* **2011**, *133*, 3776-3779; (c) T. Doura, R. Hata, H. Nonaka, K. Ichikawa, S. Sando, *Angew. Chem. Int. Ed.* **2012**, *51*, 10114-10117.

- [14] H. Nonaka, R. Hata, T. Doura, T. Nishihara, K. Kumagai, M. Akakabe, M. Tsuda, K. Ichikawa, S. Sando, *Nat. Commun.* 2013, 4, 2411.
- [15] T. Theis, G. X. Ortiz, A. W. J. Logan, K. E. Claytor, Y. Feng, W. P. Huhn, V. Blum, S. J. Malcolmson, E. Y. Chekmenev, Q. Wang, W. S. Warren, *Sci. Adv.* **2016**, *2*, e1501438.
- [16] C. Cudalbu, A. Comment, F. Kurdzesau, R. B. van Heeswijk, K. Uffmann, S. Jannin, V. Denisov, D. Kirik, R. Gruetter, *Phys. Chem. Chem. Phys.* **2010**, *12*, 5818-5823.
- [17] (a) P. Saul, S. Mamone, S. Glöggler, RSC Advances 2022, 12, 2282-2286; (b) O. G. Salnikov, N. V. Chukanov, A. Svyatova, I. A. Trofimov, M. S. H. Kabir, J. G. Gelovani, K. V. Kovtunov, I. V. Koptyug, E. Y. Chekmenev, Angew. Chem. Int. Ed. 2021, 60, 2406-2413; (c) J. Bae, G. Zhang, H. Park, W. S. Warren, Q. Wang, Chem. Sci. 2021, 12, 14309-14315; (d) H. Park, G. Zhang, J. Bae, T. Theis, W. S. Warren, Q. Wang, Bioconjugate Chem. 2020, 31, 537-541; (e) J. Bae, Z. Zhou, T. Theis, W. S. Warren, Q. Wang, Sci. Adv. 2018, 4, eaar2978; (f) K. Shen, A. W. J. Logan, J. F. P. Colell, J. Bae, G. X. Ortiz Jr., T. Theis, W. S. Warren, S. J. Malcolmson, Q. Wang, Angew. Chem. Int. Ed. 2017, 56, 12112-12116; (g) J. F. P. Colell, A. W. J. Logan, Z. Zhou, R. V. Shchepin, D. A. Barskiy, G. X. Ortiz, Jr., Q. Wang, S. J. Malcolmson, E. Y. Chekmenev, W. S. Warren, T. Theis, J. Phys. Chem. C 2017, 121, 6626-6634; (h) R. V. Shchepin, D. A. Barskiy, A. M. Coffey, T. Theis, F. Shi, W. S. Warren, B. M. Goodson, E. Y. Chekmenev, ACS Sens. 2016, 1, 640-644.
- [18] J. P. Peters, A. Brahms, V. Janicaud, M. Anikeeva, E. Peschke, F. Ellermann, A. Ferrari, D. Hellmold, J. Held-Feindt, N.-m. Kim, J. Meiser, K. Aden, R. Herges, J.-B. Hövener, A. N. Pravdivtsev, *Sci. Adv.* **2023**, *9*, eadd3643.
- [19] H. Park, J. Chen, I. E. Dimitrov, J. M. Park, Q. Wang, ACS Sens. 2022, 7, 2928-2933.
- [20] (a) S. Sowmiah, J. M. S. S. Esperança, L. P. N. Rebelo, C. A. M. Afonso, *Org. Chem. Front.* **2018**, *5*, 453-493; (b) V. Alptüzün, P. Kapková, K. Baumann, E. Erciyas, U. Holzgrabe, *J. Pharm. Pharmacol.* **2003**, *55*, 1397-1404; (c) J. W. Simpkins, N. Bodor, *Adv. Drug Deliv. Rev.* **1994**, *14*, 243-249.
- [21] A. P. Jagtap, L. Kaltschnee, S. Glöggler, Chem. Sci. 2019, 10, 8577-8582.
- [22] (a) S. Kanputhorn, A. Petsom, P. Thamyongkit, *Tetrahedron* 2010, 66, 7539-7543; (b) X.-R. Zhou, Y. Liu, Z. Huang, Q. Yao, F. He, Y. Gao, *Bioconjugate Chem.* 2021, *32*, 106-110.
- [23] Y. Ding, S. Korchak, S. Mamone, A. P. Jagtap, G. Stevanato, S. Sternkopf, D. Moll, H. Schroeder, S. Becker, A. Fischer, E. Gerhardt, T. F. Outeiro, F. Opazo, C. Griesinger, S. Glöggler, *Chemistry–Methods* **2022**, *2*, e202200023.
- [24] E. H. Suh, Z. Kovacs, ACS Phys. Chem Au 2023, 3, 167-171.
- [25] B. S. van Asbeck, R. Braams, J. M. Aarsman, R. C. Sprong, G. A. Groenewegen, *Critical Care Medicine* **1995**, 23.
- [26] (a) R. Ottenwelter, Thomas Le Saux, Stéphanie Norsikian, Mathilde Pucher, Thomas Lombès, Aurélie Baron, Philippe Durand et al., *Proc. Natl. Acad. Sci. U.S.A.* 2021, 50, e2107503118; (b) A. R. Lippert, G. C. Van de Bittner, C. J. Chang, *Acc. Chem. Res.* 2011, 44, 793-804.

WILEY VCH

COMMUNICATION

Entry for the Table of Contents

A ¹⁵N-labelled tracer for magnetic resonance is introduced that is signal enhanced using parahydrogen and the feasibility for first pilot ¹⁵N in vivo studies is demonstrated.