
Prepared for submission to JHEP

Massive twistor worldline in electromagnetic fields

Joon-Hwi Kima Jung-Wook Kimb Sangmin Leec,d,e

aDepartment of Physics, California Institute of Technology,

1200 E California Blvd, Pasadena, CA 91125, U.S.A.
bMax Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, D-14476 Potsdam, Germany
cDepartment of Physics and Astronomy, Seoul National University,

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
dCenter for Theoretical Physics, Seoul National University,

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
eCollege of Liberal Studies, Seoul National University,

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea

E-mail: joonhwi@caltech.edu, jung-wook.kim@aei.mpg.de,

sangmin@snu.ac.kr

Abstract: We study the (ambi-)twistor model for spinning particles interacting via

electromagnetic field, as a toy model for studying classical dynamics of gravitating bodies

including effects of both spins to all orders. We compute the momentum kick and spin kick

up to one-loop order and show precisely how they are encoded in the classical eikonal. The

all-orders-in-spin effects are encoded as a dynamical implementation of the Newman-Janis

shift, and we find that the expansion in both spins can be resummed to simple expressions in

special kinematic configurations, at least up to one-loop order. We confirm that the classical

eikonal can be understood as the generator of canonical transformations that map the in-

states of a scattering process to the out-states. We also show that cut contributions for

converting worldline propagators from time-symmetric to retarded amount to the iterated

action of the leading eikonal at one-loop order.ar
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1 Introduction

Chandrasekhar has remarked that “(t)he black holes of nature are the most perfect macro-

scopic objects there are in the universe: [...] they are the simplest objects as well.” [1]

Can we idealise these simplest objects of the universe and make them even simpler? Since

electromagnetic interactions are simpler than gravitational interactions, let us phrase this

question more concretely in the context of electromagnetism. What would be the de-

scription of the simplest charged, massive, spinning (macroscopic) objects moving on a

background electromagnetic field?

One class of charged spinning (macroscopic) objects that can be called “simplest” is

known in the literature as root-Kerr particles [2], which possess spin-induced multipole

moments of Kerr-Newman black holes [3, 4]. They can be called simplest in the sense that

they correspond to the classical spin limit of “minimal coupling” defined by the high-energy

limit [5], and that all multipole moments are generated by the Newman-Janis shift [6], where

the position of the particle sourcing the gravitational/electromagnetic field is complexified
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and shifted in the imaginary spin direction. In its original formulation, the Newman-Janis

shift only applies to stationary solutions of the Einstein(-Maxwell) equations, therefore the

answer to the question posed in the previous paragraph would only be complete when the

Newman-Janis shift is generalised to dynamical worldlines of spinning bodies.

In this work, improving upon the ideas of ref. [7], we argue that the twistorial descrip-

tion of relativistic spherical tops [8] qualifies as a complete answer. The authors showed in

ref. [8] that the spherical top model [9] for a relativistic spinning particle is equivalent to a

massive twistor model (similar but not identical to ref. [10]) in the absence of interactions.

The attempt to couple the twistor model to a background field was initiated in ref. [11].

A complete description of the twistor model minimally coupled to electromagnetic field is

given here.

We use the model to compute scattering observables, such as the momentum kick

and the spin kick, at low orders in perturbation theory while maintaining exact spin-

dependence. Following the nomenclature of ref. [12], we call the perturbation theory “post-

Lorentzian” (PL) expansion, where n-PL order terms are suppressed by (q1q2)
n where q1,

q2 are the electric charges of two interacting particles. When organised diagrammatically

through Feynman-like diagrams, n-PL order terms involve (n − 1)-loop momentum inte-

grals, although the diagrams themselves have no loops. This is a toy model for studying

the gravitational case, where the dynamics is organised in the post-Minkowskian (PM)

expansion while keeping the exact spin-dependence.

We stress that exact spin-dependence is not only of theoretical interest, but is also

of phenomenological interest. The previous sentence may sound odd to a person familiar

with post-Newtonian (PN) calculations: In the PN expansion spin effects are formally

counted as 1PN, since the corrections take the form of a/r, and for compact objects such

as black holes the spin length scales as the horizon scale a ∼ Gm. For computing the

gravitational waveforms—which are the quantities directly relevant for observations—the

4.5PN corrections seem to be good enough, at least for non-spinning quasi-circular equal

mass binaries; the 4.5PN contributions add less-than-a-radian correction to the ∼ 103−5

cumulative gravitational wave cycles in the detector frequency bands [13]. The spin effect

corrections to the conservative dynamics has already been computed to 5PN order [14–20].

Why would we need all-orders-in-spin effects if they are going to be smaller than what is

already known, which already seems to be sufficient for observations?1

One reason all-orders-in-spin results can be of interest is because in practical applica-

tions the perturbative results need to be resummed for a better accuracy [22–27].2 The

resummations reorganise the perturbative expansion by leveraging the knowledge of sin-

gularity structures that the non-perturbative answer is expected to possess. Therefore,

all-orders-in-spin calculations may reveal singularity structures we can take advantage of

1Caution: The PN expansion is known to converge best for equal-mass quasi-circular orbits, and conver-

gence of the best-case scenario does not guarantee convergence in other regions of the parameter space. For

example, even 5PN may not be enough to reduce systematic errors below the level of statistical errors [21].
2One may also recall that the revival of interest in the PM expansion was partly kindled by the search

for alternative resummation schemes of the gravitational two-body dynamics [28].
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in the resummations, which were not visible at the lowest spin orders. This can be used,

for example, in improving effective-one-body based waveform models which are known to

perform worse for extremal black hole spins [29, 30], where spin effects are resummed as

geodesic motion on a deformed Kerr geometry [31]. Understanding the mechanism behind

the effectiveness of the resummation will be useful in motivating alternative resummation

schemes for spin effects, which may yield better accuracy.

From the viewpoint of resummations, an all-orders-in-spin result that is as rigid as

possible and as simple as possible while keeping essential features of the dynamics will

be the most useful, since we are interested in the singularity structures of all-orders-in-

spin dynamics; any additional structures or free parameters may obscure the singularity

structures that we wish to dig up from all-orders-in-spin results. This motivation brings

us back to the question raised in the beginning of this manuscript; what is the simplest

spinning object that interacts with the background Maxwell field? The motivation also

limits the inputs of the theory to all-orders-in-spin multipole moment information encoded

by the Newman-Janis shift. The expectation is that while the dynamics of the spinning

particle may deviate from that of physical black holes from O(q2), the singularity structures

of the all-orders-in-spin dynamics are still captured by the twistor worldline model.

The twistor worldline model predicts surprisingly simple singularity structures in spe-

cial kinematic configurations, which we expect to be shared by scattering dynamics of

physical black holes. For example, the 2PL aligned-spin eikonal (6.29) resums to the sim-

ple expression

χ(2,aligned) =
(q1q2)

2
(
b2 + (ζ−2)γ

(γ2−1)
ϵ[b, v1, v2, a] +

γ2(1−ζ)+ζ
γ2−1

a2
)

32πm1

√
γ2 − 1 (b2 − a2)3/2

+ (1 ↔ 2) , (1.1)

where the impact parameter bµ ∼ (xµ1−x
µ
2 )⊥ is defined by the covariant spin supplementary

conditions (SSC), aµ = aµ1 + aµ2 is the sum of the spin-length vectors, and ζ is the ratio

parameter defined by aµ1 = ζaµ. To the best of authors’ knowledge, this is the first obser-

vation of spin effect resummation in binary dynamics at the next-to-leading order (NLO)

in the coupling constant expansion, where the model is free of unphysical behaviour and

the spins of both constituents are included to all orders.3

In addition to the construction of the interacting twistor model, and application of

the model to compute observables to the 2PL order, another key result of this work is

the clarification of the classical eikonal ’s role. In the Hamiltonian formulation of binary

dynamics, the classical eikonal is defined as a suitable classical limit of the quantum eikonal

phase that acts as the generator of canonical transformations, mapping the incoming scat-

tering states to the outgoing states. The scattering states are defined in the phase space of

free particles, and the eikonal encodes the interactions such that it produces all scattering

observables through canonical transformations.

3The known spin-resummed NLO scattering angles reported in the literature [32, 33] are based on the

Compton amplitudes that develop unphysical behaviour from cubic (electromagnetism) or quintic (gravity)

order in spin. The spin-resummed results reported by ref. [34] should be considered as leading order effects

in the R3 coupling expansion.
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The manuscript is organised as follows. In section 2 we review the massive twistor

model and couple it to background electromagnetic fields. In section 3 we compute scat-

tering observables using equations of motion. We set up WQFT formulation of the model

in section 4, and use it to compute Compton amplitudes in section 5 and the classical

eikonal in section 6. We conclude our studies and propose future directions in section 7.

Note added While this work was being completed, ref. [35] appeared. Their proposal

for how to extract classical observables from the radial action overlaps with our discussion

on the classical eikonal as the scattering generator in section 3.1.

2 Massive twistor in electromagnetic field

2.1 Free theory

In ref. [8], we proposed a massive twistor model and showed its equivalence to the Hanson-

Regge spherical top model at the free theory level. A general discussion of how to couple

the twistor model to background fields was given in ref. [11]. Here, we give a brief review of

these two main references and clarify some aspects of the twistor model before specialising

to the minimal coupling to a background electromagnetic field.

Spherical Top Massive Twistor

x̃µ, pµ, S̃µν , Λ̃µ
A=0,1,2,3 λα

I , µα̇I , λ̄Iα̇, µ̄I
α

R3 redundancy ↓ ↓ U(1) redundancy

pµ,Λµ
a=1,2,3

unification−−−−−−−→ λα
I λ̄Jα̇

xµ, Sµν unification−−−−−−−→ µα̇I(λ−1)I
α

(p·S·Λ)a=0=(p·Λ)a

Figure 1: Equivalence between the spherical top model and the massive twistor model.

A widely used model for describing relativistic spinning particles is the Hanson-Regge

spherical top [9], which uses the variables (pµ, x̃
µ, Λ̃µ

A, S̃µν) to describe a spinning body;

the momentum pµ, the position x̃µ, the body-fixed tetrad Λ̃µ
A (A = 0, 1, 2, 3) describing

the orientation of the body, and the spin tensor S̃µν . The tilde notation emphasises the

fact that under the “spin-gauge” redundancy [36], the variables (x̃, Λ̃, S̃) have some gauge

dependency while p is gauge-invariant. It was shown in ref. [8] that the gauge orbit is R3

and the “origin” of the orbit corresponds to the covariant gauge conditions: pµSµνΛ
ν
a =

0 = pµΛ
µ
a (a = 1, 2, 3).

The twistor variables describe the same dynamics with less gauge redundancy. Their

global symmetry groups are the superconformal SU(2, 2) (to be broken by the mass-shell
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condition) and the massive little-group SU(2) . The gauge redundancy on the twistor side

is U(1): (λ, µ) → eiθ(λ, µ), (λ̄, µ̄) → e−iθ(λ̄, µ̄), θ ∈ R.
The equivalence of the two models is clearly articulated in terms of the gauge-invariant

coordinates on both sides. The twistor model unifies the variables (pµ,Λ
µ
a) using the

hermitian bi-linear products of (λα
I , λ̄Iα̇):

pµ =
1

2
σ̄µα̇αλα

I λ̄Iα̇ , Λµ
(IJ) =

σ̄µα̇αλα(I λ̄J)α̇√
2m

, (2.1)

in a similar vein to massive spinor-helicity variables [5, 37]. An advantage of the Hamil-

tonian formulation is that nothing stops us from unifying momenta pµ and “generalised

positions” Λµ
a. The remaining variables (xµ, Sµν) are unified and mapped to a set of

gauge-invariant complex variables µα̇I(λ−1)I
α and their complex conjugates. This is in

contrast to the supersymmetric worldline description [38–40] where the spin tensor Sµν is

realised as a bi-linear in Grassmann variables (ΨA, Ψ̄A) and the tetrad Λµ
a is not visible.

A prominent feature of the twistor model is that there is no spin-gauge redundancy

in the first place, so that no discussion of the spin supplementary condition (SSC) is ever

needed. The only constraint yet to be imposed is the mass-shell condition p2 +m2 = 0,

which is common to the spherical top model and the twistor model. Figure 1 summarises

the mapping between the two models before imposing the mass-shell constraint.

2.1.1 Constraints revisited

Our conventions for spinors and twistors are slightly different from those of ref. [8]; see

appendix A for details. Let us mention a few key relations. The fundamental Poisson

brackets of the spherical top model include

{xµ, pν} = δµν ⇒ {xα̇α, pββ̇} = −2δα̇
β̇
δαβ . (2.2)

The fundamental Poisson brackets of the twistor model are

{µ̄Iα, λβJ} = δαβ δ
J
I , {µα̇I , λ̄Jβ̇} = δα̇

β̇
δIJ . (2.3)

The incidence relations relating the two models read

µα̇I =
1

2
zα̇βλβ

I , µ̄I
α =

1

2
λ̄Iβ̇ z̄

β̇α , (2.4)

where the complexified position variable z defined by the incidence relation is mapped to

the spherical top variables through

zµ = xµ + iyµ , yµ =
1

m2
εµνρσpνSρσ . (2.5)

The imaginary part yµ of the complexified position variable zµ is related to the spin-length

vector aµ = sµ/m widely used in the literature by yµ = −aµ. The extra sign is to respect

the standard relation of non-relativistic spins: {si, sj} = ϵijksk.
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In our current conventions, the free action of ref. [8] reads

Sfree =

∫ [
λα

Idµ̄I
α + λ̄Iα̇dµ

α̇I +
1

2

(
κ̄(∆−m) + κ(∆̄−m)

)
dσ

]
,

∆ = det(λ) = −1

2
ϵαβϵIJλα

Iλβ
J , ∆̄ = det(λ̄) =

1

2
ϵIJϵα̇β̇λ̄Iα̇λ̄Jβ̇ .

(2.6)

The Lagrange multipliers (κ, κ̄) enforce the conditions,

∆ = m = ∆̄ , (2.7)

which in turn imply the mass-shell condition −p2 = ∆∆̄ = m2. After a suitable gauge-

fixing of (κ, κ̄), the “Hamiltonian” Re(κ)(∆+ ∆̄)/2 generates the worldline time-evolution

for all dynamical variables which matches the expectation from the spherical top model.

Despite its success, it turns out that the free action in (2.6) is not suitable for the

transition to the interacting theory, and we propose an alternative action:

Sfree =

∫ [
λα

I ˙̄µI
α + λ̄Iα̇µ̇

α̇I − κ0ϕ0 − κ1ϕ1
]
dσ , (2.8)

where

ϕ0 =
1

2
(m2 −∆∆̄) =

1

2
(p2 +m2) , ϕ1 =

1

2i
(λ̄Iα̇µ

α̇I − µ̄I
αλα

I) = p · y . (2.9)

For later purposes, we also propose the gauge-fixing conditions,

χ0 = −1

2
(λ̄Iα̇µ

α̇I + µ̄I
αλα

I) , χ1 =
i

2
log(∆/∆̄) . (2.10)

We recognise ϕ0 as the mass-shell constraint in twistor variables, and ϕ1 as the generator

of the U(1) gauge orbit. Aside from how to implement the mass-shell constraint, the main

difference between the two proposals is that (2.8) contains the U(1) gauge generator while

(2.6) contains a U(1) gauge-fixing condition in the form

Im(κ)

2
(∆− ∆̄) . (2.11)

To understand why the old proposal (2.6) is problematic and why it still yielded the

free equations of motion correctly, let us revisit the general theory of constrained Hamilto-

nian dynamics, building upon appendix A of ref. [8]. The system consists of Hamiltonian

H, symplectic form ω, abelian gauge generators ϕA and gauge fixing functions χA. The

minimal requirements are

{ϕA, H} = 0, {ϕA, ϕB} = 0 CA
B :=

{
χA, ϕB

}
, det(C) ̸= 0 . (2.12)

In general, the gauge-fixed action is written as

S =

∫
dt
(
piq̇

i −H − κAϕA − κ̄Aχ
A
)
. (2.13)
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The Lagrange multipliers (κA, κ̄A) enforce the constraints ϕA = 0 = χA. The variation of

S with respect to the dynamical variables (pi, q
i) gives the equations of motion. The time

evolution of a generic function f(pi, q
i) is computed from the Poisson bracket

df

dt
=
∂f

∂qi
q̇i +

∂f

∂pi
ṗi = {f,H + κAϕA + κ̄Aχ

A} . (2.14)

For consistency, the equations of motion should not induce change of ϕA and χA in time:

dϕA
dt

= 0 =
dχA

dt
. (2.15)

The vanishing of dϕA/dt and the minimal requirements (2.12) imply κ̄A = 0. Hence, we do

not see directly κ̄A in the final form of the equations of motion. The vanishing of dχA/dt

implies κA = −(C−1)AB{χB, H}. We can either choose some χA to fix κA, or prescribe

some κA to fix χA implicitly.

If some of the κA multipliers can be set to zero without violating the requirements

(2.12), the corresponding ϕA will not directly contribute to the equations of motion and it

may look permissible to exchange the roles of ϕA and χA. That is precisely what happened

to the free twistor model. But, as soon as we add interaction terms in the action, the

distinction between the gauge generators ϕA and the gauge fixing conditions χA becomes

evident. By the very definition of gauge redundancy, the interaction terms are required to

Poisson-commute with all ϕA in a sense to be specified below. On the contrary, there is no

reason for the interaction terms to commute with χA.

To conclude, in view of the general theory of constrained Hamiltonian system where the

gauge generators and gauge-fixing conditions play different roles, we need a new proposal

for the free action (2.8) to incorporate interaction terms.

2.1.2 Regge trajectory

Due to rotational kinetic energy, the mass of a spinning top is in general not a constant,

but rather a function of the spin-magnitude W 2 = (y · p)2 − y2p2. The derivative m′ =

dm/d(W 2) is colloquially called the “Regge trajectory”. For a free spinning particle, the

angular velocity is (2m′) times the spin, so (2m′)−1 is the relativistic rotational inertia [8].

In most applications, where we do not keep track of the angular velocity and focus

on the (x, y, p) variables, the Regge trajectory does not affect the dynamics. Specifically,

the equations of motion for (x, y, p) are independent of m′. In the rest of this section, we

will see, from a few different but related angles, how the Regge trajectory m′ decouples

from the dynamics of (x, y, p). From the next subsection on, we will set m′ = 0 to simplify

computations.

2.1.3 Dirac bracket and effective phase space

To describe the physical phase space of the free twistor theory, it is convenient to construct

the Dirac bracket. The ingredients are the unconstrained Poisson bracket (2.3), the gauge

generators (2.9), and the gauge-fixing functions (2.10).
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Let us first consider the case of vanishing Regge trajectory (m′ = 0). Using

CA
B = {χA, ϕB} =

(
∆∆̄ 0

0 1

)
, (2.16)

we construct the Dirac bracket in the standard way,

{f, g}∗ = {f, g} − (C−1)AB

(
{f, ϕA}{χB, g} − {g, ϕA}{χB, f}

)
. (2.17)

The non-vanishing brackets among the twistor variables are

{µ̄Iα, λβJ}∗ = δαβ δ
J
I − 1

2
λβ

J(λ−1)I
α ,

{µα̇I , λ̄Jβ̇}∗ = δα̇
β̇
δIJ − 1

2
λ̄Jβ̇(λ̄

−1)α̇I ,

{µ̄Iα, µ̄Jβ}∗ = −1

2

[
µ̄I

α(λ−1)J
β − µ̄J

β(λ−1)I
α
]
,

{µα̇I , µβ̇J}∗ = −1

2

[
µα̇I(λ̄−1)β̇J − µβ̇J(λ̄−1)α̇I

]
.

(2.18)

We can certainly use these to compute the Dirac brackets among the U(1)-invariant com-

posite variables (xµ, yµ, pµ). But, since we are interested only in the dynamics of (xµ, yµ, pµ)

variables in the bulk of this paper, we can take a shortcut.

We can regard the 16-dimensional unconstrained phase space as a fibre bundle with

the base coordinates (x, y, p) and the fibre SU(2)×U(1). The original Poisson bracket (2.3)

projected onto the (x, y, p) base space can be written as

{ , }◦ = ηµν
∂

∂xµ
∧ ∂

∂pν
− yµpν + pµyν − ηµν(y · p)

p2
∂

∂xµ
∧ ∂

∂yν

− ϵµν [y, p]

2p2

(
∂

∂yµ
∧ ∂

∂yν
+

∂

∂xµ
∧ ∂

∂xν

)
.

(2.19)

The transition from the Poisson bracket to the Dirac bracket can be done within this

effective description. Since (x, y, p) are all U(1) gauge invariant, we can simply disregard

the pair (ϕ1, χ
1) and take into consideration

ϕ0 =
1

2
(p2 +m2) , χ0 = −x · p . (2.20)

The resulting Dirac bracket on the (x, y, p) base space is

{ , }∗ =
(
ηµν − pµpν

p2

)
∂

∂xµ
∧ ∂

∂pν
− yµpν − ηµν(y · p)

p2
∂

∂xµ
∧ ∂

∂yν

− ϵµν [y, p]

2p2

(
∂

∂yµ
∧ ∂

∂yν
+

∂

∂xµ
∧ ∂

∂xν

)
− x[µpν]

p2
∂

∂xµ
∧ ∂

∂xν
.

(2.21)

It agrees perfectly with the full Dirac bracket (2.18) evaluated over (x, y, p).

Let us summarise the content of the effective description. The phase space is effectively

nine dimensional: twelve coordinates (xµ, yµ, pµ) with three constraints,

p2 +m2 = 0 , p · y = 0 , p · x = 0 . (2.22)
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By construction, the Dirac brackets of the constraints automatically vanish:

{f, p2 +m2}∗ = 0 , {f, p · y}∗ = 0 , {f, p · x}∗ = 0 . (2.23)

Incidentally, the Dirac bracket is consistent with fixing the magnitude of spin:

{f, y2}∗ = 0 . (2.24)

So, the phase space is eight dimensional in a sense, although the conservation of y2 is of a

dynamical origin and shouldn’t be put on an equal footing as the true constraints.

In later sections, we will study scattering processes of the twistor particles, where the

interaction is (asymptotically) turned off at the infinite past and future. It makes sense to

use the (effective) free phase space for each particle to describe the asymptotic scattering

states.

For completeness, we also compute the Dirac bracket when the Regge trajectory is

non-trivial (m′ ̸= 0). Remarkably, the C-matrix (2.16) is not altered by m′ at all. It

remains to compute the (m′)-dependent terms from {f, ϕ0}{χ0, g} in (2.17).

In terms of the twistor variables, the function χ0 is given by

χ0 = −x · p = 1

2

(
µα̇I λ̄Iα̇ + µ̄I

αλα
I
)
. (2.25)

It follows that

{χ0, λα
I} = +

1

2
λα

I , {χ0, µα̇I} = −1

2
µα̇I ,

{χ0, λ̄Iα̇} = +
1

2
λ̄Iα̇ {χ0, µ̄I

α} = −1

2
µ̄I

α .

(2.26)

The W tensor is defined as [8]

WIJ = −i
(
µα̇(I λ̄J)α̇ − λα(I µ̄J)

α
)
. (2.27)

It is normalized such that

W 2 =
1

2
WK

LWL
K = (y · p)2 − y2p2 . (2.28)

The (m′)-dependent terms from {f, ϕ0} come from

{f,m(W 2)2/2} = mm′{f,W 2} . (2.29)

It is useful to note that

{λαI ,W 2} = −iλαKWK
I , {µα̇I ,W 2} = −iµα̇KWK

I ,

{λ̄Iα̇,W 2} = +iWI
K λ̄Kα̇ , {µ̄Iα,W 2} = +iWI

K µ̄K
α .

(2.30)

The full Dirac bracket consists of two parts,

{f, g}∗ = {f, g}0∗ + {f, g}′∗ , (2.31)

– 9 –



where {X,Y }0∗ is the result for m′ = 0 stated in (2.18) and {X,Y }′∗ denotes the (m′) terms.

Using (2.26) and (2.30), it is straightforward to show that the (m′) terms are

{λαI , λβJ}′∗ =
im′

2m

[
+(λα

KWK
I)λβ

J − λα
I
(
λβ

KWK
J
)]
,

{λαI , λ̄Jβ̇}
′
∗ =

im′

2m

[
+(λα

KWK
I)λ̄Jβ̇ + λα

I(WJ
K λ̄Kβ̇)

]
,

{λαI , µβ̇J}′∗ =
im′

2m

[
−(λα

KWK
I)µβ̇J − λα

I(µβ̇KWK
J)
]
,

{λαI , µ̄Jβ}′∗ =
im′

2m

[
−(λα

KWK
I)µ̄J

β + λα
I(WJ

K µ̄K
β)
]
,

{µα̇I , µβ̇J}′∗ =
im′

2m

[
−(µα̇KWK

I)µβ̇J + µα̇I(µβ̇KWK
I)
]
,

{µα̇I , µ̄Jβ}′∗ =
im′

2m

[
−(µα̇KWK

I)µ̄J
β − µα̇I(WJ

K µ̄K
β)
]
,

(2.32)

and their complex conjugates. They agree perfectly with Dirac brackets computed in ref. [8]

despite the differences in the choice of constraints.

Comparing (2.32) with (2.18), it may appear that the non-vanishing Regge trajectory

complicates the Dirac bracket significantly. Fortunately, when we focus on the effective

(x, y, p) phase space, the complication disappears completely and the Dirac bracket (2.21)

remains valid. In essence, the reason is that the (m′)-terms in (2.32) all involve infinitesimal

shifts along the SU(2) little-group, but the (x, y, p) variables are little-group scalars.

2.2 Interacting theory

In this subsection, we explain how to couple the twistor particle to a background electro-

magnetic field minimally using the Newman-Janis shift.

2.2.1 Symplectic perturbation theory

Given a Hamiltonian system defined by (2.12) and (2.13), we may consider two types of

deformations. A familiar way is to deform the Hamiltonian,

H = H◦ + q H ′ , (2.33)

where q is a continuous perturbation parameter. We demand that the gauge generators

are independent of the deformation. The requirement (2.12) implies that

{ϕA, H◦} = 0 = {ϕA, H ′} . (2.34)

Then all the statements around (2.15) remain valid for any value of q.

An alternative way to deform the theory, which we adopt for our twistor model, is to

keep the Hamiltonian fixed and deform the symplectic form [11]:

ω = ω◦ + q ω′ . (2.35)

– 10 –



This is equivalent to keeping the Hamiltonian fixed and deforming the Poisson brackets

used in equations of motion (EOM). For a non-spinning particle, a key feature of the

symplectic perturbation viewpoint is that ω′ = F = dA is manifestly invariant under the

gauge transformation of the Maxwell field and that we do not need to distinguish the two

notions of momenta (canonical vs kinetic). This feature will generalise straightforwardly

to our twistor model.

Again, we demand that the gauge generators are independent of q. We should make

sure that the requirements {ϕA, H} = 0 = {ϕA, ϕB} hold with the deformed symplectic

form. Perturbatively,

{f, g} = {f, g}◦ − q{f, ζm}◦ω′
mn{ζn, g}◦ +O(q2) , (2.36)

where ζm is an arbitrary coordinate system on the phase space and {•, •}◦ is the Poisson

bracket defined by ω◦.

For a random choice of ω′, the perturbation term has no reason to vanish:

−q{ϕA, ζm}◦ω′
mn{ζn, ϕB}◦ ̸= 0 . (2.37)

But, if we change coordinates (at least locally), ζm → (zi, wa) where zi are gauge-invariant

while wa are gauge-dependent, and take ω′ = 1
2ω

′
ijdz

i ∧ dzj with no dwa components, it is

immediately clear that {ϕA, H} = 0 = {ϕA, ϕB} hold exactly.

Coming back to our twistor model, recall that the new free action (2.8) carries two

gauge generators ϕ0, ϕ1 in (2.9). Since the Poisson bracket is antisymmetric, the only

issue is whether {ϕ0, ϕ1} = 0 continues to hold in the interacting theory. But, as long as ω′

consists only of U(1)-gauge invariant coordinates such as pµ and zµ = xµ+iyµ, {ϕ0, ϕ1} = 0

would follow trivially.

A common feature of a relativistic particle theory, shared by the spherical top model, is

that the mass-shell constraint ϕ0 = (p2+m2)/2 also generates the worldline time-evolution.

Ignoring other gauge generators temporarily, the equation of motion of the free theory is

df

dσ
= κ0{f, ϕ0}◦ . (2.38)

There are two equivalent ways to express the equation of motion of the interacting theory.

One is based on the infinite series [11],

ω−1 = (ω◦)−1 − q(ω◦)−1ω′(ω◦)−1 + q2(ω◦)−1ω′(ω◦)−1ω′(ω◦)−1 + · · ·

=⇒ 1

κ0
df

dσ
= {f, ϕ0}◦ − q{f, zi}◦ω′

ij{zj , ϕ0}◦

+ q2{f, zi}◦ω′
ij{zj , zk}◦ω′

kl{zl, ϕ0}◦ + · · · .

(2.39)

The other is more compact,

ω−1 = (ω◦)−1 − q(ω◦)−1ω′ω−1

=⇒ 1

κ0
df

dσ
= {f, ϕ0}◦ − q{f, zi}◦ω′

ij{zj , ϕ0} ,
(2.40)

but less explicit in that the last term involves the Poisson bracket of the interacting theory.

Of course, (2.40) can be iterated to reproduce (2.39).
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2.2.2 Minimal coupling via Newman-Janis shift

The unification of (xµ, Sµν) into the complex coordinates (z, z̄) defined by (2.4) and (2.5)

opens up an avenue for implementing the Newman-Janis shift [6] into the dynamics. It

led one of the authors to the concept of “spinspacetime” [41] which unifies spacetime and

spin at the fundamental level, which has refined Newman’s early idea [42]. Our twistor

model is a new member of existing attempts to incorporate the Newman-Janis shift into

the dynamics [7, 43].

In the twistor model, the root-Kerr particle is defined by the minimal extension via

Newman-Janis (NJ) shift fromMinkowski spacetime to spinspacetime [11, 41]. To introduce

the minimal extension, we begin with the usual coupling of a charged scalar particle to the

Maxwell field and split it into two pieces,

Sint = q

∫
Aµ(x)dx

µ = q

∫
A+

µ (x)dx
µ + q

∫
A−

µ (x)dx
µ , (2.41)

where q is the charge and the convention fixed by Aµ = (−ϕ, A⃗). The superscripts (±)

denote the self-dual and anti-self-dual parts in the sense that, under the hodge dual ∗ on

the field-strengths,

F± = dA± , ∗F± = ±iF± . (2.42)

The minimal NJ shift correlates (anti-)self-duality and holomorphy of the complexified

spacetime as [7]

Sint = q

∫
A+

µ (z)dz
µ + q

∫
A−

µ (z̄)dz̄
µ = −q

2

∫
A+

αα̇(z)dz
α̇α − q

2

∫
A−

α̇α(z̄)dz̄
α̇α . (2.43)

In the parlance of the symplectic perturbation theory,

ω′ = (ω′)+ + (ω′)− =
q

2
F+
µν(z)dz

µ ∧ dzν + q

2
F−
µν(z̄)dz̄

µ ∧ dz̄ν . (2.44)

Compared to the non-spinning case where ω′ = 1
2Fµν(x)dx

µ∧dxν , the Newman-Janis shift

introduces a complicated non-linear deformation depending on the yµ coordinate. But, the

invariance under the Maxwell gauge transformation is still manifest.

As usual, the coupling (2.43) plays a dual role; it enters the equation of motion of the

charged particle, and it acts as a source term in the Maxwell’s equations. We focus on the

former aspect in this and the next section, leaving the latter aspect to later sections.

2.2.3 Equations of motion

Adding up the free part (2.8) and the interaction part (2.43), the full action of the root-Kerr

particle becomes

S =

∫ [
λα

I ˙̄µI
α + λ̄Iα̇µ̇

α̇I − κ0

2
(m2 −∆∆̄)− κ1W0 + qA+

µ (z)ż
µ + qA−

µ (z̄) ˙̄z
µ

]
dσ . (2.45)
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The variation of the action with the vanishing Regge trajectory (m′ = 0) gives

δS = δλα
I

[
˙̄µI

α +
κ0∆∆̄

2
(λ−1)I

α +
κ1

2i
µ̄I

α

]
+ δλ̄Iα̇

[
µ̇α̇I +

κ0∆∆̄

2
(λ̄−1)α̇I − κ1

2i
µα̇I
]

+ δµα̇I
[
− ˙̄λIα̇ − κ1

2i
λ̄Iα̇

]
+ δµ̄I

α

[
−λ̇αI +

κ1

2i
λα

I

]
+ δzµ

[
qF+

µν(z)ż
ν
]
+ δz̄µ

[
qF−

µν(z̄) ˙̄z
ν
]

= δλα
I

[
˙̄µI

α +
κ0∆∆̄

2
(λ−1)I

α +
κ1

2i
µ̄I

α + qF+
µν(z)ż

νσµ
ββ̇
µβ̇J(λ−1)J

α(λ−1)I
β

]
+ δλ̄Iα̇

[
µ̇α̇I +

κ0∆∆̄

2
(λ̄−1)α̇I − κ1

2i
µα̇I + qF−

µν(z̄) ˙̄z
νσµ

ββ̇
µ̄J

β(λ̄−1)β̇I(λ̄−1)α̇J
]

− δµα̇I
[
˙̄λIα̇ +

κ1

2i
λ̄Iα̇ + qF+

µν(z)ż
νσµαα̇(λ

−1)I
α

]
− δµ̄I

α

[
λ̇α

I − κ1

2i
λα

I + qF−
µν(z̄) ˙̄z

νσµαα̇(λ̄
−1)α̇I

]
.

(2.46)

In the last step, we used the incidence relations to express δ(z, z̄) in terms of δ(µ, λ, µ̄, λ̄).

To specify the equations of motion completely, we have to fix the Lagrange multipliers κ0,1.

A convenient choice to be used throughout this paper is

κ0 =
1

m
, κ1 = 0 . (2.47)

With this choice, the EOM for the twistor variables are

˙̄µI
α = −m

2
(λ−1)I

α − qF+
µν(z)ż

νσµ
ββ̇
µβ̇J(λ−1)J

α(λ−1)I
β ,

µ̇α̇I = −m
2
(λ̄−1)α̇I − qF−

µν(z̄) ˙̄z
νσµ

ββ̇
µ̄J

β(λ̄−1)β̇I(λ̄−1)α̇J ,

˙̄λIα̇ = −qF+
µν(z)ż

νσµαα̇(λ
−1)I

α ,

λ̇α
I = −qF−

µν(z̄) ˙̄z
νσµαα̇(λ̄

−1)α̇I .

(2.48)

The equations for the U(1) gauge invariant variables (p, z, z̄) are, in the vector notation,

ṗµ = qF+
µν(z)ż

ν + qF−
µν(z̄) ˙̄z

ν ,

żµ =
pµ

m
+

2iq

m2
[yµpν + pµyν + iϵµνρσyρpσ]F

−
νλ(z̄) ˙̄z

λ ,

˙̄zµ =
pµ

m
− 2iq

m2
[yµpν + pµyν − iϵµνρσyρpσ]F

+
νλ(z)ż

λ ,

(2.49)

where we applied the constraints y ·p = 0, ∆∆̄ = m2 after deriving the equations. We may

turn on the Regge trajectory (m′ ̸= 0) and repeat deriving the equations. Not surprisingly,

the twistor equations receive new terms proportional to (m′), but (2.49) remains unchanged.

The appearance of time-derivatives on the RHS of (2.49) may look peculiar. But, it is

a generic feature of the symplectic perturbation theory explained earlier. It is easy to see
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how (2.49) fits with the general structure of (2.40):

{f,∆∆̄} = {f,∆∆̄}◦ − q{f, zν}◦F+
νλ{z

λ,∆∆̄} − q{f, z̄ν}◦F−
νλ{z̄

λ,∆∆̄} . (2.50)

Finally, turning on the Regge trajectory (m′ ̸= 0) modifies (2.48) slightly, but leaves (2.49)

unchanged. In what follows, we take (2.49) as the fundamental EOM for the twistor particle

and use it to compute physical observables.

Unless the background takes very special values, it would be impossible to solve the

EOM exactly. We approach the problem as a perturbative expansion in q. The EOM

truncated up to the 2PL order is given by

ẋµ =
pµ

m
− i

q

m
(F+ − F−)µνy

ν

+
4q2

m3
pµ(yF+F−y) +

2q2

m3
yµ
[
(pF+F−y) + (pF−F+y)

]
+O(q3) ,

ẏµ =
q

m
(F+ + F−)µνy

ν − i
4q2

m3

[
(pF−y)(F+)µν − (pF+y)(F−)µν

]
yν +O(q3) ,

ṗµ =
q

m
(F+ + F−)µνp

ν +O(q3) .

(2.51)

Here the scalar product of vectors and tensors are defined as, for example,

(pF+F−y) = pµ(F
+)µν(F

−)νρy
ρ , (pF−y) = pµ(F

−)µνy
ν . (2.52)

3 Scattering observables

We compute the scattering observables (velocity kick and spin kick) of the massive spinning

bodies in the conservative sector up to the 2PL order; 2PL is the lowest order where our

model may disagree with other models implementing the (dynamical) Newman-Janis shift.

Before we compute the observables of our twistor model, we present a general description

of the scattering observables that is valid in any (Hamiltonian) worldline model.

3.1 Classical eikonal as scattering generator

The eikonal phase has proved useful in quantum and classical scattering in field the-

ory, gravity and string theory; see ref. [44] for a comprehensive review. In the context

of amplitudes-based methods for classical gravitational scattering, several variants of the

eikonal phase are available in the literature such as the HEFT phase [45], the radial action

[46], and the exponential representation [47, 48] just to mention a few.

Here, we introduce the notion of “classical eikonal” which is a particular classical avatar

of the eikonal phase. Simply put, the classical eikonal is the generator of the canonical

transformation between the initial states and the final states of the scattering problem. It is

motivated by the classical limit of an S-matrix, but in can be defined purely within classical

mechanics. The definition is valid in any worldline model in Hamiltonian formulation. The

relevant phase space is that of free particles, just as the scattering states of a quantum

scattering process are defined on the free Hilbert space.

– 14 –



Scattering generator We first recall the KMOC [49] method of extracting a classical

observable from a quantum theory:

∆O = lim
ℏ→0

[
⟨ψ|Ŝ†ÔŜ|ψ⟩ − ⟨ψ|Ô|ψ⟩

]
. (3.1)

We can trade the unitary operator Ŝ for a hermitian operator χ̂ as [47, 48]

Ŝ = eiχ̂/ℏ . (3.2)

Forgetting about the state |ψ⟩ and working in the Heisenberg picture, we have

Ô′ = Ŝ†ÔŜ = e−iχ̂/ℏÔeiχ̂/ℏ

= Ô +
1

iℏ
[χ̂, Ô] +

1

2(iℏ)2
[χ̂, [χ̂, Ô]] + · · · .

(3.3)

Following Dirac’s correspondence,

lim
ℏ→0

1

iℏ
[X̂, Ŷ ] = {X,Y } , (3.4)

we deduce that the classical limit of (3.3) should give

O′ = O + {χ,O}+ 1

2
{χ, {χ,O}}+ · · · . (3.5)

The classical quantity χ, which we call “scattering generator”, is to be understood as a

function on the phase space of a Hamiltonian system. The scattering generator defines a

canonical transformation that maps a free phase space at past infinity to another free phase

space at future infinity. For a constrained Hamiltonian system with gauge generators and

gauge-fixing conditions, χ must be gauge-invariant. If we also demand that O is gauge-

invariant, the difference between the Dirac bracket and the Poisson bracket shown in (2.17)

vanishes, so we may work with the Poisson bracket (2.19).

We used the classical limit of quantum mechanics to motivate the existence of χ. But,

it is certainly possible to argue for its existence purely within classical mechanics. The

Hamiltonian time evolution generates infinitesimal canonical transformation at each mo-

ment in time. Integrating the time evolution from past infinity to future infinity would

result in a finite canonical transformation. Provided that the general relation between a Lie

group and its Lie algebra holds for the (infinite dimensional) group of all canonical trans-

formations on the free phase space, any finite canonical transformation could be written in

a “conjugation” form as in (3.5).

The master formula (3.5) can compute any scattering observable. Perturbatively, with

χ = χ(1) + χ(2) + χ(3) + · · · , (3.6)

it produces systematically all n-PL impulse formulas

∆(1)O = {χ(1), O} ,

∆(2)O = {χ(2), O}+ 1

2
{χ(1), {χ(1), O}} ,

∆(3)O = {χ(3), O}+ 1

2
{χ(2), {χ(1), O}}+ 1

2
{χ(1), {χ(2), O}}

+
1

6
{χ(1), {χ(1), {χ(1), O}}} .

(3.7)
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An important feature of the master formula (3.5) is that, once all the constraints of

the system are taken into account by a suitable Dirac bracket, the preservation of the

constraints is guaranteed to all order in perturbation theory. For the twistor model, recall

from section 2.1.3 that the Dirac bracket satisfies

{f, p2}∗ = {f, y2}∗ = {f, y · p}∗ = 0 . (3.8)

When f is gauge invariant, the Dirac bracket can be replaced by the Poisson bracket.

Setting f = χ = χ(1) + χ(2) + · · · , since each χ(n) scale differently with the coupling

constant, we deduce that at each n,

p · {χ(n), p} = 0 , y · {χ(n), y} = 0 , y · {χ(n), p}+ p · {χ(n), y} = 0 . (3.9)

From a perturbative point of view, the iteration terms in (3.7) are essential for consistency.

For example, at 2PL, the iteration term in (3.7) ensures the mass-shell condition:

2p ·∆(2)p = 2pµ{χ(2), p
µ}+ pµ{χ(1), {χ(1), p

µ}}
= {χ(1), pµ{χ(1), p

µ}} − {χ(1), pµ}{χ(1), p
µ} = −(∆(1)p)

2 ,
(3.10)

where we used (3.9) and the Leibniz rule for the Poisson brackets. In view of (3.9) and

(3.10), when we compute the 2PL observables later in this section, we will call {χ(2), O}
and 1

2{χ(1), {χ(1), O}} “transverse” and “longitudinal” (or “iteration”), respectively.

3.1.1 Non-spinning example

Arguing for the existence of χ is one thing, giving an algorithm to compute χ is another. It

seems plausible that the “WQFT eikonal” χWQFT [50] coincides with our classical eikonal χ.

We will verify this expectation up to 2PL by explicit computations. Proving the equivalence

to all orders in perturbation theory is an open question, which requires incorporation of

bremsstrahlung effects.

Before we compute the scattering generator and observables of the twistor model, to

illustrate the ideas in a simpler setting, we review the binary dynamics of non-spinning

particles in electromagnetism following ref. [49], which shows how to separate the transverse

term {χ(2), p} from the longitudinal term 1
2{χ(1), {χ(1), p}}. The solution of the EOM

involves retarded Green functions on the worldline. When the solution is split into the

time-symmetric part and the time-anti-symmetric part, the former gives the transverse

term while the latter gives the iteration term.

The 1PL momentum kick is well known:

∆(1)p
µ
1 = −q1q2γ

∫
k
(ikµ)

eik·b

k2
δ̄(v1 · k)δ̄(v2 · k) . (3.11)

where the velocity vectors are defined as vµa := pµa/ma and the relative boost is defined

as γ := −(v1 · v2). The impact parameter bµ is the projection of the relative position

xµ12 = xµ1 − xµ2 onto the plane transverse to v1 and v2.
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The 1PL momentum kick (3.11) satisfies (3.7) rather trivially as

∆(1)p
µ
1 = ηµν

∂χ(1)

∂xν1
= {χ(1), p

µ
1} , χ(1) = −q1q2γ

∫
k⊥

eik·b

k2
, (3.12)

where the integral over the transverse plane is defined as∫
k⊥

=

∫
d̄4k δ̄(v1 · k)δ̄(v2 · k) . (3.13)

As we proceed to the 2PL, it is useful to recall that the computation can be organized

according to the mass ratio:

∆(2)p
µ
1 =

1

m1
Kµ

1,1 +
1

m2
Kµ

1,2 , ∆(2)p
µ
2 =

1

m1
Kµ

2,1 +
1

m2
Kµ

2,2 . (3.14)

The vectors Kµ
a,b are integrals independent of the masses. The conservation of (pµ1 + pµ2 )

requires that

Kµ
1,1 +Kµ

2,1 = 0 , Kµ
1,2 +Kµ

2,2 = 0 . (3.15)

The exchange symmetry between the two particles relate the integrals by

Kµ
1,1 ↔ Kµ

2,2 , Kµ
1,2 ↔ Kµ

2,1 . (3.16)

So, it suffices to compute Kµ
1,1. To do so, we may work in the probe limit (m2 → ∞) [51].

In the rest of this section, we will work in the probe limit until further notice.

The 2PL EOM of a spinless particle in the probe limit is given by

v̇µ(2) =
q

m
Fµ

ν ẋ
ν
(1) +

q

m
xλ(1)∂λF

µ
νv

ν
(0) , (3.17)

where F means F(0). Using the Bianchi identity, we may rewrite it as

v̇µ(2) =
q

m
(∂µFλν)x

λ
(1)v

ν
(0) +

d

dt

( q
m
Fµ

νx
ν
(1)

)
. (3.18)

The total derivative on the RHS does not contribute to the momentum kick, so that

∆(2)p
µ
1 = q

∫
dσ(∂µFλν)x

λ
(1)v

ν
(0)

=
q2

m

∫ ∞

−∞
dσ(∂µFλν)v

ν
(0)

[∫ σ

−∞
dσ′
∫ σ′

−∞
dσ′′F λ

ρv
ρ
(0)

]
.

(3.19)

Performing Fourier transform of (Fλν , F
λ
ρ) by (eiℓ·x, eik·x) respectively, and switching to

q = k + ℓ, we obtain

∆(2)p
µ
1 =

(q1q2)
2

m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2

(iℓµ)

[
1 + γ2

ℓ · (q − ℓ)

(v1 · ℓ+ i0+)2

]
. (3.20)
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The i0+ prescription comes from the retarded Green function on the worldline. To separate

the time-symmetric parts from the time-anti-symmetric parts, as explained in ref. [49], we

apply the exchange ℓ↔ q − ℓ to get

∆(2)p
µ
1 =

(q1q2)
2

m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2

(iqµ − iℓµ)

[
1 + γ2

ℓ · (q − ℓ)

(v1 · ℓ− i0+)2

]
. (3.21)

The next step is to take the average of (3.20) and (3.21) and write the result as

∆(2)p
µ
1 = ∆(2)p

µ
1

∣∣
tr
+ ∆(2)p

µ
1

∣∣
iter

. (3.22)

The time-symmetric part carries an integrand proportional to qµ so that

∆(2)p
µ
1

∣∣
tr
=

(q1q2)
2

2m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2

(iqµ)

[
1 + γ2

ℓ · (q − ℓ)

(v1 · ℓ)2

]
. (3.23)

It yields the 2PL eikonal via ∆(2)p
µ
1

∣∣
tr
= {χ(2), p

µ
1}. Omitting the i0+ prescription that is

no longer needed, and restoring the symmetry between the two particles, we obtain

χ(2) =
(q1q2)

2

2m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2

[
1 + γ2

ℓ · (q − ℓ)

(v1 · ℓ)2

]
+ (1 ↔ 2) . (3.24)

It agrees perfectly with the WQFT eikonal [52]. The time-anti-symmetric part of (3.22) is

∆(2)p
µ
1

∣∣
iter

=
(q1q2)

2γ2

2m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
k2ℓ2

(k · ℓ)
[

iℓµ

(v1 · ℓ+ i0+)2
− iℓµ

(v1 · ℓ− i0+)2

]
= −(q1q2)

2γ2

2m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
k2ℓ2

(k · ℓ)ℓµ δ̄′(v1 · ℓ) ,
(3.25)

where k = q − ℓ and we used the identity,

i

x+ i0+
− i

x− i0+
= δ̄(x) =⇒ i

(x+ i0+)2
− i

(x− i0+)2
= −δ̄′(x) . (3.26)

We may compare it with the iteration term. From (3.12) and (3.11), we find

1

2
{χ(1), {χ(1), p

µ
1}} =

i

2
(q1q2)

2

{
γ

∫
k⊥

eik·b

k2
, γ

∫
ℓ⊥

ℓµ
eiℓ·b

ℓ2

}
, (3.27)

In computing the bracket in (3.27), we note that

{δ̄(v1 · k)δ̄(v2 · k)eik·(x1−x2), γ} = δ̄(v1 · k)δ̄(v2 · k)eik·(x1−x2) ik · (−p2 + p1)

m1m2
= 0 . (3.28)

So, the only non-vanishing contributions come from

{eik·(x1−x2), δ̄(v1 · ℓ)δ̄(v2 · ℓ)} and {δ̄(v1 · k)δ̄(v2 · k), eiℓ·(x1−x2)} . (3.29)

Collecting the contributions, we obtain (in the probe limit)

1

2
{χ(1), {χ(1), p

µ
1}} = −1

2
(q1q2)

2γ2
∫
k,ℓ
ei(k+ℓ)·b k · ℓ

k2ℓ2
F(k, ℓ)ℓµ ,

F(k, ℓ) = δ̄(v1 · k)δ̄(v2 · k)
δ̄′(v1 · ℓ)δ̄(v2 · ℓ)

m1
− (k ↔ ℓ) .

(3.30)
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Using the identities,

δ(x+ y)δ(y) = δ(x)δ(y) , δ(x+ y)δ′(y) = δ(x)δ′(y)− δ′(x)δ(y) , (3.31)

we can simplify (3.30) a bit further and obtain

1

2
{χ(1), {χ(1), p1µ}} = −(q1q2)

2γ2

2m1

∫
q⊥

eiq·b
∫
ℓ

k · ℓ
k2ℓ2

ℓµδ̄
′(v1 · ℓ)δ̄(v2 · ℓ) , (3.32)

in perfect agreement with (3.25).

In the paragraphs above, we manipulated the integrands of the Fourier integrals to

separate the iteration term. In the non-spinning case, it is easy to perform the Fourier

integral and compute the brackets in position space. We write the impact parameter as

bµ = xµ12 +
γ(x12 · v2)− (x12 · v1)

γ2 − 1
vµ1 +

γ(x12 · v1)− (x12 · v2)
γ2 − 1

vµ2 , (3.33)

where xµ12 = xµ1 − xµ2 . The 1PL non-spinning eikonal is, after the Fourier integral,

χ(1) =
q1q2γ

4π
√
γ2 − 1

[
1

ϵ
+ log

(
b2

b20

)]
, (3.34)

where ϵ is the dimensional regularisation parameterD = 4−2ϵ and b20 is a scheme-dependent

constant. The precise values of ϵ and b0 are irrelevant. The relevant brackets are

{b2, γ} = 0 , {b2, pµ1}
.
= 2bµ , {b2, bµ} .

= 2b2
(

γvµ2 − vµ1
(γ2 − 1)m1

− γvµ1 − vµ2
(γ2 − 1)m2

)
, (3.35)

where
.
= denotes equivalence up to mass-shell constraint p2i +m2

i = 0. Thus,

{χ(1), {χ(1), p
µ
1}} =

[
q1q2γ

4π
√
γ2 − 1

]2
{log b2, {log b2, pµ1}}

=

[
q1q2γ

4π
√
γ2 − 1

1

b2

]2
{b2, {b2, pµ1}}

.
= 2

[
q1q2γ

4π
√
γ2 − 1

1

b2

]2
{b2, bµ}

.
=

[
q1q2γ

2π
√
γ2 − 1

1√
b2

]2
×
(

γvµ2 − vµ1
(γ2 − 1)m1

− γvµ1 − vµ2
(γ2 − 1)m2

)
=
∣∣{χ(1), p

µ
1}
∣∣2 × ( γvµ2 − vµ1

(γ2 − 1)m1
− γvµ1 − vµ2

(γ2 − 1)m2

)
.

(3.36)

This term generates the longitudinal impulse needed to preserve the mass-shell condition,

p1µ {χ(1), {χ(1), p
µ
1}} = −{χ(1), p

µ
1}

2 . (3.37)

3.2 Momentum kick and spin kick from EOM

In the scattering problem of two spinning particles, the momentum kick and the spin kick

are the main scattering observables. In this subsection, we compute them up to the 2PL
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order by solving the EOM perturbatively. The perturbation computes the deviation from

the free (straight line, constant spin) trajectory for each particle,

zµ(σ) = (xµ(0) + iyµ(0) + vµ(0)σ) + δzµ(σ) ,

pµ(σ) = m(vµ(0) + δvµ(σ)) .
(3.38)

Without loss of generality, and taking constraints into consideration, we demand that the

constant parameters satisfy

v(0) · v(0) = −1 , (x(0) + iy(0)) · v(0) = 0 . (3.39)

The perturbative solution is arranged in the PL order as

δzµ = zµ(1) + zµ(2) + · · · ,

δvµ = vµ(1) + vµ(2) + · · · ,
(3.40)

where X(n) is proportional to qn. To avoid clutter, we will often omit the subscript X(0)

from background values.

3.2.1 1PL

At 1PL, the equations of motion are reduced to

v̇µ(1) =
q

m
(F+

(0) + F−
(0))

µ
νv

ν
(0) , (3.41)

żµ(1) = vµ(1) +
2iq

m
(F−

(0))
µ
νy

ν
(0) . (3.42)

It is understood that F±
(0) here are evaluated along the background worldline (3.38).

In computing the impulse of particle 1 to the 1PL order, we may treat particle 2 as a

stationary source. The field-strength measured at the position of particle 1 is given by

F+
µν(z1(σ1)) = i

q2
2

∫
k
δ̄(v2 · k)

(k ∧ v2)µν − iϵµν [k, v2]

k2
eik·(z1(σ1)−z̄2(0)) ,

F−
µν(z̄1(σ1)) = i

q2
2

∫
k
δ̄(v2 · k)

(k ∧ v2)µν + iϵµν [k, v2]

k2
eik·(z̄1(σ1)−z2(0)) ,

(3.43)

where the worldline time-dependence from zµ2 (σ2) = (xµ2 + iyµ2 + vµ2σ2) has been integrated

out to leave δ̄(v2 · k) behind. The wedge and the epsilon notations mean

(a ∧ b)µν = aµbν − bµaν ,

ϵµν [a, b] = ϵµνρσa
ρbσ , ϵµ[a, b, c] = ϵµνρσa

νbρcσ , ϵ[a, b, c, d] = ϵµνρσa
µbνcρdσ .

(3.44)

Contracting F±
µν with vν1 and integrating (3.41) over σ1, we obtain the velocity kick,

∆(1)v
µ
1 = − q1q2

2m1

∫
k⊥

iγkµ + ϵµ[k, v1, v2]

k2
eik·(b+iy)

− q1q2
2m1

∫
k⊥

iγkµ − ϵµ[k, v1, v2]

k2
eik·(b−iy)

= −q1q2
m1

∫
k⊥

[(ikµ) cosh(k · y)γ − ϵµ[k, v1, v2] sinh(k · y)]
eik·b

k2
.

(3.45)
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The argument of the exponential is decomposed as

zµ1 − z̄µ2 = (xµ1 − xµ2 ) + i(yµ1 + yµ2 ) =: xµ12 + iyµ , (3.46)

and xµ12 is projected onto the impact parameter vector bµ by δ̄(v1 ·k)δ̄(v2 ·k). Note how the

spin sum (yµ1 + yµ2 ) arises from the difference between complex spinspacetime coordinates.

Similarly, we can compute the spin kick and find

∆(1)y
µ
1 =

q1q2
m1

∫
k⊥

[i(k ∧ v2)µνyν1 cosh(k · y)− ϵµ[k, v2, y1] sinh(k · y)]
eik·b

k2
. (3.47)

It is easy to verify orthogonality and conservation of magnitudes of velocity/spin at 1PL:

∆(y1 · v1) = (∆y1 · v1) + (y1 ·∆v1) = 0 ,

∆(v21) = 2(∆v1 · v1) = 0 ,

∆(y21) = 2(∆y1 · y1) = 0 .

(3.48)

The 1PL observables can be compared with predictions of QED in the classical limit.

We use the results of ref. [53] as the reference. When truncated to linear order in y, (3.45)

and (3.47) are found to be consistent with (4.45) and (4.46) of ref. [53], under the conditions

Ci = 1, Di = 0, and the covariant spin supplementary condition. Note that the spin tensor

kick ∆Sµν reported by ref. [53] receives contributions from both (3.45) and (3.47).

The 1PL observables can be reproduced by the classical eikonal as [54]

∆(1)p
µ
1 = {χ(1), p

µ
1} = ηµν

∂

∂xν1
χ(1) ,

∆(1)y
µ
1 = {χ(1), y

µ
1 } =

1

m1

[
vµ1 y

ν
1

∂

∂xν1
+ ϵµν [v1, y1]

∂

∂yν1

]
χ(1) .

(3.49)

An explicit form of the 1PL eikonal is

χ(1) = −q1q2
∫
k⊥

[
cosh(k · y)γ − i

sinh(k · y)
k · y

ϵ[k, v1, v2, y]

]
eik·b

k2
. (3.50)

To reproduce (3.45) and (3.47) from (3.50) via (3.49), we need the identity,

kµϵ[k, v1, v2, y]

k · y
≈ −ϵµ[k, v1, v2] . (3.51)

The approximate equality (≈) means that we may impose the transversality condition

k · v1 = 0 = k · v2 and ignore ultra-local (∝ k2/k2) terms inside the integral. With this

understanding, the identity above can be derived from the 4d Schouten identity,

aµϵ[b, c, d, e] + bµϵ[c, d, e, a] + cµϵ[d, e, a, b]

+ dµϵ[e, a, b, c] + eµϵ[a, b, c, d] = 0 .
(3.52)

In what follows, we will not distinguish the approximate equality from the strict equality.

Inside the integrands of the Fourier integrals, we will take the liberty to set

k2 = 0 , ℓ2 = 0 , k · v2 = 0 = ℓ · v2 , (k + ℓ) · v1 = 0 . (3.53)
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3.2.2 2PL

The 2PL equations directly relevant for the impulse computation are

v̇µ(2) =
q

m
(F+

(0) + F−
(0))

µ
νv

ν
(1) +

q

m
(F+

(1) + F−
(1))

µ
νv

ν
(0) ,

ẏµ(2) =
q

m
(F+

(0) + F−
(0))

µ
νy

ν
(1) +

q

m
(F+

(1) + F−
(1))

µ
νy

ν
(0)

− i
4q2

m2

[
(vF−y)(F+)µν − (vF+y)(F−)µν

]
(0)
yν(0) .

(3.54)

2PL velocity kick As we saw in the non-spinning case, it is sufficient to work in the

probe limit (m1/m2 → 0), and we can use the Bianchi identity and discard a total derivative

to get

∆(2)p
µ = q

∫
dσ(∂µF+

λν)z
λ
(1)v

ν
(0) + q

∫
dσ(∂µF−

λν)z̄
λ
(1)v

ν
(0) . (3.55)

Next, using (3.42), we can turn (z(1), z̄(1)) into integrals,

∆(2)p
µ = ∆(2v)p

µ +∆(2y)p
µ ,

∆(2v)p
µ =

q2

m

∫ ∞

−∞
dσ∂µ(F+ + F−)λνv

ν
(0)

[∫ σ

−∞
dσ′
∫ σ′

−∞
dσ′′(F+ + F−)λρv

ρ
(0)

]
,

∆(2y)p
µ =

2iq2

m

∫ ∞

−∞
dσ(∂µF+

λν)v
ν
(0)

∫ σ

−∞
dσ′(F−)λρy

ρ
(0)

− 2iq2

m

∫ ∞

−∞
dσ(∂µF−

λν)v
ν
(0)

∫ σ

−∞
dσ′(F+)λρy

ρ
(0) .

(3.56)

We divided the computation into two parts. The “y-part” (∆(2y)p
µ) is linear in y1 aside

from the y-dependence in the exponential factors. The “v-part” (∆(2v)p
µ) is independent of

y1 aside from the exponential factors. While we replace vµ(1) by ż(1) or
˙̄z(1), we also encounter

terms proportional to (F+)µν(F
−)νλ − (F−)µν(F

+)νλ, but they vanish identically. Let us

analyse the two parts one by one.

For the y-part, after using the field-strengths (3.43) and integrating over the worldline,

we obtain

∆(2y)p
µ
1 =

(q1q2)
2

m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)(iℓµ)
ℓ2k2(ik · v1 + 0+)

(ch⊟ Cy + sh⊟ Sy) , (3.57)

where we set q = k + ℓ as before and introduce shorthand notations,

ch⊟ = cosh[(k − ℓ) · y] , sh⊟ = sinh[(k − ℓ) · y] ,
ch⊞ = cosh[(k + ℓ) · y] , sh⊞ = sinh[(k + ℓ) · y] .

(3.58)

The functions Cy, Sy are

Cy = −ϵ[k, ℓ, y1, v1] + 2(v2 · y1)ϵ[k, ℓ, v1, v2] ,
Sy = i(ℓ · v1)[(k − ℓ) · y1] + 2iγ(v2 · y1)(k · ℓ) .

(3.59)
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We divide the v-part further into the same helicity contribution (∆(2vs)p
µ) and the

opposite helicity contribution (∆(2vo)p
µ). The opposite helicity part is

∆(2vo)p
µ
1 =

(q1q2)
2

m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)(iℓµ)
ℓ2k2(ik · v1 + 0+)2

(ch⊟ Cvo + sh⊟ Svo) ,

Cvo = −(γ2 − 1
2)(k · ℓ) + (k · v1)(ℓ · v1) , Svo = iγ ϵ[k, l, v1, v2] .

(3.60)

The same helicity part is quite simple:

∆(2vs)p
µ
1 =

(q1q2)
2

m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)(iℓµ)
ℓ2k2(ik · v1 + 0+)2

(−1
2)(k · ℓ)ch⊞ . (3.61)

In the non-spinning limit (y → 0), it cancels against the +1
2(k · ℓ) term of Cvo in (3.60), in

agreement with (3.20).

2PL eikonal As in the non-spinning example, we can extract the 2PL eikonal from the

2PL momentum kick. The key idea [49] is to apply the exchange ℓ ↔ k = q − ℓ to the

integrand,

∆(2)p
µ
1 =

∫
q⊥

eiq·b
∫
ℓ
(iℓµ)J (k, ℓ) =

∫
q⊥

eiq·b
∫
ℓ
(iqµ − iℓµ)J (ℓ, k) . (3.62)

Since q ·v1 = k ·v1+ℓ·v1 = 0, the exchange flips the i0+ prescription for the worldline Green

function. Taking the average of the two expressions and taking the term proportional to

qµ in the integrand, we separate the transverse part of the momentum kick, from which we

read off the 2PL eikonal equipped with the time-symmetric i0+,

∆(2)p
µ
1

∣∣
tr
=

1

2

∫
q⊥

eiq·b
∫
ℓ
(iqµ)J (ℓ, k) = {χ(2), p

µ
1} = ηµν

∂

∂xν1
χ(2)

=⇒ χ(2) =
1

2

∫
q⊥

eiq·b
∫
ℓ
J (ℓ, k) .

(3.63)

The remaining ℓµ terms in the integrand should be matched against the iteration term,

∆(2)p
µ
1

∣∣
iter

=
1

2

∫
q⊥

eiq·b
∫
ℓ
(iℓµ) [J (k, ℓ)− J (ℓ, k)] =

1

2
{χ(1), {χ(1), p

µ
1}} . (3.64)

We have computed ∆(2)p
µ
1 from the EOM. It is straightforward to split it into ∆(2)p

µ
1

∣∣
tr

and ∆(2)p
µ
1

∣∣
iter

, and then read off χ(2) from ∆(2)p
µ
1

∣∣
tr
. The final result for χ(2) is

χ(2) = χ(2)1 + χ(2)2 ,

χ(2)1 = −(q1q2)
2

2m1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
k2ℓ2(ℓ · v1)2

[V1 + Y1] ,

V1 =
[
−(γ2 − 1

2)(k · ℓ) + (k · v1)(ℓ · v1)
]
cosh[(k − ℓ) · y]

− 1
2(k · ℓ) cosh[(k + ℓ) · y] + iγ ϵ[k, ℓ, v1, v2] sinh[(k − ℓ) · y] ,

Y1 = −i(ℓ · v1) [−ϵ[k, ℓ, y1, v1] + 2(v2 · y1)ϵ[k, ℓ, v1, v2]] cosh[(k − ℓ) · y]
+ (ℓ · v1) [(ℓ · v1)[(k − ℓ) · y1] + 2γ(v2 · y1)(k · ℓ)] sinh[(k − ℓ) · y] .

(3.65)

The other half of the answer, χ(2)2, can be obtained from χ(2)1 by the exchange of particle

labels (1 ↔ 2). Verifying the iteration relation (3.64) is also straightforward, but involves

a lengthy computation; see appendix C for details.
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2PL spin kick To complete the 2PL story, let us compute the 2PL spin kick from the

EOM and confirm that it can be reproduced by the 2PL eikonal we obtained earlier. We

begin with a copy of the 2PL EOM for spin from (3.54),

ẏµ(2) =
q

m
(F+

(0) + F−
(0))

µ
νy

ν
(1) +

q

m
(F+

(1) + F−
(1))

µ
νy

ν
(0)

− i
4q2

m2

[
(vF−y)(F+)µν − (vF+y)(F−)µν

]
(0)
yν(0) .

(3.66)

Using the 1PL EOM, we turn the terms on the RHS to integrals,

∆(2)y
µ = ∆(2a)y

µ +∆(2b)y
µ +∆(2c)y

µ +∆(2d)y
µ ,

∆(2a)y
µ =

q2

m2

∫ ∞

−∞
dσ(F+ + F−)µν

∫ σ

−∞
dσ′(F+ + F−)νλy

λ
(0) ,

∆(2b)y
µ =

q2

m2

∫ ∞

−∞
dσ∂λ(F

+ + F−)µνy
ν
(0)

[∫ σ

−∞
dσ′
∫ σ′

−∞
dσ′′(F+ + F−)λρv

ρ
(0)

]
,

∆(2c)y
µ =

2iq2

m2

∫ ∞

−∞
dσ∂λ(F

+)µνy
ν
(0)

∫ σ

−∞
dσ′(F−)λρy

ρ
(0)

− 2iq2

m2

∫ ∞

−∞
dσ∂λ(F

−)µνy
ν
(0)

∫ σ

−∞
dσ′(F+)λρy

ρ
(0) ,

∆(2d)y
µ = −i4q

2

m2

∫ ∞

−∞
dσ
[
(vF−y)(F+)µν − (vF+y)(F−)µν

]
(0)
yν(0) .

(3.67)

Both (b) and (c) terms come from the second term on the RHS of (3.66).

Again, it suffices to work in the probe limit; we keep using the Fourier integral (3.43)

of the field-strength produced by a fixed source. After worldline time integrals, we reach

an expression of the form

∆(2)y
µ
1 =

(q1q2)
2

m2
1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
k2ℓ2(ik · v1 + 0+)2

N µ . (3.68)

The numerator N µ can be computed separately for each term in (3.67). For (a) and (b)

terms, we also distinguish the same/opposite helicity contributions.

N µ
(2ao) = (ch⊟ Cao + sh⊟ Sao)

µ , N µ
(2as) = (ch⊞ Cas + sh⊞ Sas)

µ ,

N µ
(2bo) = (ch⊟ Cbo + sh⊟ Sbo)

µ , N µ
(2bs) = (ch⊞ Cbs + sh⊞ Sbs)

µ ,

N µ
(2c) = (ch⊟ Cc + sh⊟ Sc)

µ , N µ
(2d) = (ch⊟ Cd + sh⊟ Sd)

µ ,

(3.69)

It is straightforward to evaluate all C, S functions in (3.69). The intermediate steps

involve many terms, but after some cancellations, the final results are often quite simple.

For instance, the same helicity sector gives

Cµ
as + Cµ

bs = − i

2
(k · ℓ) [vµ1 (ℓ · y1)− yµ1 (ℓ · v1)] ,

Sµ
as + Sµ

bs = −1

2
(k · ℓ)ϵµ[v1, y1, ℓ] .

(3.70)
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After collecting and simplifying the terms, using the symmetrisation of the i0+ prescription,

we extract the transverse part of the spin kick and check whether the result agrees with

{χ(n), y
µ
1 } =

1

m1

[
vµ1 y

ν
1

∂

∂xν1
+ ϵµν [v1, y1]

∂

∂yν1

]
χ(n) . (3.71)

Again, the procedure is straightforward, and we confirm the agreement, but the calculations

tend to be lengthy. We give some details in appendix C.2.

4 Twistor WQFT

Worldline Quantum Field Theory (WQFT) [50] is a means of organising classical equations

of motion in a diagrammatic way that resembles Feynman diagrams of particle physics.

The simplest WQFT model action consists of two parts; the bulk part which describes field

degrees of freedom (DOFs) on the background spacetime, and one-dimensional sigma model

that takes the background spacetime as the target space, where the latter is interpreted as

the worldline action of a point particle moving on the background spacetime. The DOFs are

decomposed into the background value (which satisfies the classical equations of motion)

and fluctuations from the background value, and diagrammatic techniques developed for

perturbative QFT calculations are applied to the field fluctuations. The background value

for the background spacetime is usually taken to be the flat Minkowski spacetime, and the

background value for the worldline is usually taken to be the straight trajectory of a free

particle; xµ(σ) = bµ+vµσ+δxµ(σ). The fluctuation DOFs are evaluated as a perturbative

series of the coupling constant, which in the gravitational case is taken to be the Newton’s

constant G.

4.1 Worldline Feynman rules

When we apply the WQFT method to our twistor model, one novelty is that the twistor

variables (λ, λ̄, µ, µ̄) are the fundamental variables, and the target space of the worldline is

the twistor space indirectly related to the background spacetime by the incidence relations.

It is natural to express the propagators and vertex factors in terms of the twistor variables.

But, it is often convenient to use the vector variables (z, z̄) in intermediate steps. We will

use the incidence relations to switch between the twistor variables (“twistor picture”) and

the vector variables (“spacetime picture”) whenever necessary.

Classical limit When ℏ is restored, the fundamental variables have the dimensions

[λα
I ] = [λ̄Iα̇] = [M1/2] , [µα̇I ] = [µ̄I

α] = [M1/2L] , [Aµ] = [M1/2L−1/2] , (4.1)

and the coupling becomes dimensionful: [q] = [M1/2L1/2]. The action also becomes iS →
iS/ℏ, therefore the interaction vertices are weighted by ℏ−1 while the propagators (both

⟨λµ̄⟩ type and ⟨µµ⟩ type) are weighted by ℏ. We have no other ℏ scaling if we only use

frequency ω and wavenumber four-vector kµ in momentum space, which is allowed because

there is no “mass” in any of the fluctuation fields. Therefore, at a given q order (which
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determines the number of vertices coupling to the photon field), the classical contribution

is determined from the diagrams with the least number of propagators that makes the

diagram connected, which is equivalent to the statement that tree diagrams determine the

classical physics. The tree diagrams, however, generally have momentum integrals similar

to loop integrals of quantum field theory.

4.1.1 Background-fluctuation expansion

In the non-spinning WQFT, the expansion around a straight line trajectory is done by

xµ(σ) = bµ0 + vµσ + δxµ(σ) , v2 = −1 , b0 · v = 0 . (4.2)

After the NJ-shift, the expansion is generalised as

zµ(σ) = bµ0 + iyµ0 + vµσ + δzµ(σ) , y0 · v = 0 . (4.3)

We should rephrase the background-fluctuation expansion in terms of twistor variables.

As we explained in section 2.1.2, we may assume a flat Regge trajectory m′ = 0. The

resulting equations of motion for the free action (2.8) are

δSfree
δµ̄Iα

= 0 = −dλα
I

dσ
+
κ1

2i
λα

I

δSfree
δµα̇I

= 0 = −dλ̄Iα̇
dσ

− κ1

2i
λ̄Iα̇

δSfree
δλαI

= 0 =
dµ̄I

α

dσ
+
κ0∆∆̄

2
(λ−1)I

α +
κ1

2i
µ̄I

α

δSfree
δλ̄Iα̇

= 0 =
dµα̇I

dσ
+
κ0∆∆̄

2
(λ̄−1)α̇I − κ1

2i
µα̇I .

(4.4)

Just like in the previous section, we fix the Lagrange multipliers as κ0 = 1/m and κ1 = 0.

We introduce the background values ℓα
I and ℓ̄Iα̇ satisfying the conditions

det(ℓ) = det(ℓ̄) = m, ℓα
I ℓ̄Iα̇ = −mvαα̇ , (4.5)

where vµ is the normalised velocity vector introduced in (4.3). The following relations

satisfied by inverse matrices are useful in calculations.

(ℓ−1)I
α = −

ϵIJϵ
αβℓβ

J

det(ℓ)
, (ℓ̄−1)α̇I =

ϵα̇β̇ϵIJ ℓ̄Jβ̇

det(ℓ̄)
, (ℓ̄−1)α̇I(ℓ−1)I

α = −v
α̇α

m
. (4.6)

The twistor variables are expanded as

λα
I → ℓα

I + λα
I(σ) ,

λ̄Iα̇ → ℓ̄Iα̇ + λ̄Iα̇(σ) ,

µα̇I → cα̇I − m

2
(ℓ̄−1)α̇Iσ + µα̇I(σ) ,

µ̄I
α → c̄I

α − m

2
(ℓ−1)I

ασ + µ̄I
α(σ) .

(4.7)
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The background-fluctuation expansion for zµ and z̄µ can be determined from the incidence

relations (A.12),

zα̇α → +2cα̇I(ℓ−1)I
α −m(ℓ̄−1)α̇I(ℓ−1)I

ασ + δzα̇α(σ) = zα̇α0 + vα̇ασ + δzα̇α(σ) ,

z̄α̇α → +2(ℓ̄−1)α̇I c̄I
α −m(ℓ̄−1)α̇I(ℓ−1)I

ασ + δz̄α̇α(σ) = z̄α̇α0 + vα̇ασ + δz̄α̇α(σ) .
(4.8)

The relation between the fluctuation fields are determined from the incidence relations.

2µα̇I(σ) =
(
zα̇α0 + vα̇ασ

)
λα

I(σ) + δzα̇α(σ)ℓα
I + δzα̇α(σ)λα

I(σ) ,

2µ̄I
α(σ) = λ̄Iα̇(σ)

(
z̄α̇α0 + vα̇ασ

)
+ ℓ̄Iα̇δz̄

α̇α(σ) + λ̄Iα̇(σ)δz̄
α̇α(σ) .

(4.9)

We use the positive frequency expansion,

ϕ(x) =

∫
k
ϕ(k)eikx , f(σ) =

∫
ω
f(ω)e−iωσ , (4.10)

which relates the frequency space coefficients to annihilation modes and incoming momenta.

The frequency space expression for the incidence relation turns out to be more useful

δzα̇α(ω) =

[
2µα̇I − zα̇β0 λβ

I + ivα̇β
∂λβ

I

∂ω
−
∫
ω′
δzα̇β(ω′)λβ

I(ω − ω′)

]
(ℓ−1)I

α ,

δz̄α̇α(ω) = (ℓ̄−1)α̇I

[
2µ̄I

α − λ̄Iβ̇ z̄
β̇α
0 + i

∂λ̄Iβ̇
∂ω

vβ̇α −
∫
ω′
λ̄Iβ̇(ω − ω′)δz̄β̇α(ω′)

]
,

(4.11)

where we have suppressed the ω dependence whenever it is obvious.

The free action in terms of the fluctuation fields becomes

Sfree =

∫ [
λα

Idµ̄I
α + λ̄Iα̇dµ

α̇I +
det(λ) + det(λ̄) +m(ℓ−1)αIλα

I(ℓ̄−1)α̇J λ̄Jα̇
2

dσ

+
det(λ)(ℓ̄−1)α̇I λ̄Iα̇ + (ℓ−1)I

αλα
Idet(λ̄)

2
dσ +

det(λ)det(λ̄)

2m
dσ + · · ·

]
.

(4.12)

where the ellipsis denotes constant and total derivative terms irrelevant for Feynman rules.

The first line determines the 2pt functions, while the second line generates cubic and quartic

vertices.

4.1.2 Twistor propagators

The quadratic part of the free action in frequency space can be written as

iS2 =
i

2

∫
ω,ω′

δ̄(ω′ + ω)
(
λα

I(ω′) µ̄I
α(ω′) λ̄Iα̇(ω

′) µα̇I(ω′)
)

×


−1

2ϵ
αβϵIJ −iωδJI δαβ

m
2 (ℓ

−1)I
α(ℓ̄−1)β̇J 0

+iωδIJδ
β
α 0 0 0

m
2 (ℓ̄

−1)α̇I(ℓ−1)J
β 0 +1

2ϵ
IJϵα̇β̇ −iωδIJδα̇β̇

0 0 +iωδJI δ
β̇
α̇ 0



λβ

J(ω)

µ̄J
β(ω)

λ̄Jβ̇(ω)

µβ̇J(ω)

 ,

(4.13)
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where we used the delta support to convert ω′ → −ω. Inverting the quadratic action leads

to the twistor propagators in the straight line background:

⟨λ I
α (ω′)µ̄ β

J (ω)⟩ = −
δβαδIJ
ω

δ̄(ω′ + ω) , ⟨µ̄ α
I (ω′)µ̄ β

J (ω)⟩ = +
i

2

ϵIJϵ
αβ

ω2
δ̄(ω′ + ω) ,

⟨λ̄Iα̇(ω′)µβ̇J(ω)⟩ = −
δβ̇α̇δ

J
I

ω
δ̄(ω′ + ω) , ⟨µα̇I(ω′)µβ̇J(ω)⟩ = − i

2

ϵIJϵα̇β̇

ω2
δ̄(ω′ + ω) ,

⟨µα̇I(ω′)µ̄ β
J (ω)⟩ = − im

2

(ℓ̄−1)α̇I(ℓ−1)βJ
ω2

δ̄(ω′ + ω) .

(4.14)

An i0+ prescription is needed to determine the causality flow of the 2pt functions; e.g.

for ω → ω + i0+ causality flows from ω′ to ω. Otherwise stated, we use time-symmetric

i0+ prescription in the calculations, which is the prescription relevant for computing the

eikonal [40]. We also remark that all position type 2pt functions (i.e. ⟨µµ⟩, ⟨µ̄µ̄⟩, and ⟨µµ̄⟩)
should be understood as

⟨µ̄ α
I (ω′)µ̄ β

J (ω)⟩ = +
iκ0det(ℓ̄)

2

ϵIJϵ
αβ

ω2
δ̄(ω′ + ω) ,

⟨µα̇I(ω′)µβ̇J(ω)⟩ = − iκ
0det(ℓ)

2

ϵIJϵα̇β̇

ω2
δ̄(ω′ + ω) ,

⟨µα̇I(ω′)µ̄ β
J (ω)⟩ = − iκ

0det(ℓ)det(ℓ̄)

2

(ℓ̄−1)α̇I(ℓ−1)βJ
ω2

δ̄(ω′ + ω) ,

(4.15)

when we remove the gauge-fixing condition κ0 = 1
m and background value determinant

conditions det(ℓ) = det(ℓ̄) = m. This will become relevant in discussions of causality cuts

applied to the twistor model [55].

Let us introduce a graphical notation for the propagators (4.14). Without the mass-

shell constraint, the worldline propagator would be simply

ZA
I

Z̄J
B

= −δA
BδJ

I

ω
, (4.16)

which includes ⟨λµ̄⟩ and ⟨λ̄µ⟩ propagators. The mass-shell constraint introduces additional

propagators. We denote the ⟨µµ⟩, ⟨µ̄µ̄⟩ propagators as

µα̇I

µβ̇J

= − i

2

ϵIJϵα̇β̇

ω2
,

µ̄I
α

µ̄J
β

= +
i

2

ϵIJϵ
αβ

ω2
. (4.17)

The black dots in the middle remind us of the fact that these propagators originate from
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the (λ̄λ̄) and (λλ) vertices in the Lagrangian.4 Finally, we denote the ⟨µµ̄⟩ propagator by

µα̇I

µ̄J
β

= − im
2

(ℓ̄−1)α̇I(ℓ−1)βJ
ω2

. (4.18)

The black square in the middle is to show that this propagator comes from the m(ℓ−1)(ℓ̄−1)

vertex in the Lagrangian.

4.1.3 Vector 2-point functions

Turning to the “spacetime picture” where we organize diagrams in terms of δz, δz̄, the

following 2pt functions will play a crucial role.

⟨δzα̇α(ω′)δzβ̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2
δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δz̄β̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2
δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ = − 2

m

[(
ivα̇αvβ̇β

ω2
+
vα̇βzβ̇α0
ω′ +

vα̇β z̄β̇α0
ω

)
δ̄(ω′ + ω)

− ivα̇βvβ̇α
(

1

ω′ +
1

ω

)
δ̄′(ω′ + ω)

]
,

(4.19)

where δ̄′(x) = d
dx δ̄(x) is the delta derivative. Note that terms proportional to ω−2 in

(4.19) are contributions from the 2pt functions given in (4.15). We have neglected the loop

contribution to the ⟨δz̄δz⟩ 2pt function,

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ ⊃ −4vα̇αvβ̇β

m2
δ̄(ω′ + ω)

∫
ω1

1

ω1(ω − ω1)
→ 0 , (4.20)

based on two reasons. First, ℏ counting from dimensional analysis requires an extra ℏ
factor for this loop contribution compared to tree contributions given in (4.19). Second,

the loop integral evaluates to zero if we assume invariance under shifts of the integration

variable:5 ∫
ω′

1

ω′(ω − ω′)
=

1

ω

∫
ω′

[
1

ω′ −
1

ω′ − ω

]
. (4.21)

4This is a valid interpretation of the 2pt functions; we may only regard (4.16) as the fundamental 2pt

functions and understand the position type 2pt functions, (4.17) and (4.18), as insertions of 2pt vertices

between products of fundamental 2pt functions. See appendix D for regularisation of the divergences related

to the symmetric i0+ prescription of the 2pt functions.
5Although widely used in dimensional regularisation, this is not a trivial assumption; for example, ABJ

anomalies evaluate to zero under this assumption for (divergent) loop integrals.
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The delta derivative contribution can be simplified by(
1

ω′ +
1

ω

)
δ̄′(ω′ + ω) =

∂

∂ω

[
δ̄(ω′ + ω)

ω′

]
+

∂

∂ω′

[
δ̄(ω′ + ω)

ω

]
=

∂

∂ω

[
− δ̄(ω

′ + ω)

ω

]
+

∂

∂ω′

[
δ̄(ω′ + ω)

ω

]
=

1

ω2
δ̄(ω′ + ω) ,

(4.22)

leading to

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ = − 2

m

[
i(vα̇αvβ̇β − vα̇βvβ̇α)

ω2
+
vα̇β(z̄β̇α0 − zβ̇α0 )

ω

]
δ̄(ω′ + ω)

= − 2

m

[
iϵα̇β̇ϵαβ

ω2
+
vα̇β(z̄β̇α0 − zβ̇α0 )

ω

]
δ̄(ω′ + ω) ,

(4.23)

so that the delta derivative contribution vanishes. We have used v2 = −1 to simplify the

second line; vα̇αvβ̇β − vα̇βvβ̇α = −v2ϵα̇β̇ϵαβ = ϵα̇β̇ϵαβ. Note that the term proportional to

ω−1 implies propagation of spin degrees of freedom yµ ∝ zµ − z̄µ.

In the vector notation, the δz and δz̄ 2pt functions take the following form,

⟨δzµ(ω′)δzν(ω)⟩ = iηµν

mω2
δ̄(ω′ + ω) ,

⟨δz̄µ(ω′)δz̄ν(ω)⟩ = iηµν

mω2
δ̄(ω′ + ω) ,

⟨δz̄µ(ω′)δzν(ω)⟩ = i

m

[
ηµν

ω2
+

2(vµyν0 + yµ0 v
ν + iεµνλσvλy0σ)

ω

]
δ̄(ω′ + ω) .

(4.24)

It is useful to present the 2-point functions pictorially. To distinguish them from the twistor

propagators (4.16)-(4.18), we denote δzµ, δz̄µ by squares:

δzµ

δzν

= ⟨δzµδzν⟩ ,

δz̄µ

δz̄ν

= ⟨δz̄µδz̄ν⟩ ,

δz̄µ

δz̄ν

= ⟨δz̄µδzν⟩ . (4.25)

Finally, separating the position x and the spin-length y, we get

⟨δxµ(ω′)δxν(ω)⟩ =
[
iηµν

mω2
− 1

mω
εµνλσvλy0σ

]
δ̄(ω′ + ω) ,

⟨δyµ(ω′)δyν(ω)⟩ = − 1

mω
εµνλσvλy0σ δ̄(ω

′ + ω) ,

⟨δxµ(ω′)δyν(ω)⟩ = 1

mω
(vµyν0 + yµ0 v

ν) δ̄(ω′ + ω) = −⟨δyµ(ω′)δxν(ω)⟩ .

(4.26)
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4.1.4 Higher order correlators

For computations at 2PL or higher orders, we will need to evaluate the higher order cor-

relators. We write the 2pt correlators as

⟨δzα̇α(ω′)δzβ̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2
δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δz̄β̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2
δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ = −2i

m

(
ϵα̇β̇ϵαβ

ω2
− 2vα̇βyβ̇α0

ω

)
δ̄(ω′ + ω) .

(4.27)

The connected part of the higher point correlators can be computed using the recursive

substitutions

δzα̇α(ω) →
∫
ω′
δzα̇β(ω′)×

[
−λβI(ω − ω′)(ℓ−1)I

α
]
,

δz̄α̇α(ω) →
∫
ω′

[
−(ℓ̄−1)α̇I λ̄Iβ̇(ω − ω′)

]
× δz̄β̇α(ω′) ,

(4.28)

the 2pt correlators

−(ℓ−1)I
α⟨λβI(ω′)δz̄γ̇γ(ω)⟩ = −

2vγ̇αδγβ
mω

δ̄(ω′ + ω) ,

−(ℓ̄−1)α̇I⟨λ̄Iβ̇(ω
′)δzγ̇γ(ω)⟩ = −

2vα̇γδγ̇
β̇

mω
δ̄(ω′ + ω) ,

(4.29)

additional vertices from the free action

iSfree,3 =
i

2

∫
dσ
[
det(λ)(ℓ̄−1)α̇I λ̄Iα̇ + (ℓ−1)I

αλα
Idet(λ̄)

]
=
i

2

∫
ω′,ω

(
(ℓ̄−1)α̇I λ̄Iα̇(ω

′)det(λ)[ω] + (ℓ−1)I
αλα

I(ω′)det(λ̄)[ω]
)
δ̄(ω′ + ω) ,

iSfree,4 =
i

2m

∫
dσ
[
det(λ)det(λ̄)

]
=

i

2m

∫
ω′,ω

det(λ)[ω′]det(λ̄)[ω]δ̄(ω′ + ω) ,

(4.30)

where

det(λ)[ω] = −ϵ
αβϵIJ
2

∫
ω′
λα

I(ω − ω′)λβ
J(ω′) ,

det(λ̄)[ω] =
ϵα̇β̇ϵIJ

2

∫
ω′
λ̄Iα̇(ω − ω′)λ̄Jβ̇(ω

′) ,

(4.31)

and determinant insertions to the 2pt correlators

⟨⟨δzα̇α(ω0)δz
β̇β(ω1)det(λ̄)[ω2]⟩⟩ =

4ϵα̇β̇ϵαβ

mω0ω1
δ̄(ω0 + ω1 + ω2) ,

⟨⟨δz̄α̇α(ω0)δz̄
β̇β(ω1)det(λ)[ω2]⟩⟩ =

4ϵα̇β̇ϵαβ

mω0ω1
δ̄(ω0 + ω1 + ω2) .

(4.32)
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For example, the following 3pt correlator can be computed as

⟨⟨δz̄α̇α(ω0)δz
β̇β(ω1)δz

γ̇γ(ω2)⟩⟩ = −(ℓ̄−1)α̇I
∫
ω′
⟨λ̄Iδ̇(ω0 − ω′)δzβ̇β(ω1)⟩⟨δz̄δ̇α(ω′)δzγ̇γ(ω2)⟩

− (ℓ−1)I
β

∫
ω′
⟨λδI(ω1 − ω′)δz̄α̇α(ω0)⟩⟨δzβ̇δ(ω′)δzγ̇γ(ω2)⟩

+
(
ω1 ↔ ω2 , β ↔ γ , β̇ ↔ γ̇

)
+
i

2

∫
ω′
(ℓ−1)I

δ⟨λδI(−ω′)δz̄α̇α(ω0)⟩

× ⟨⟨δzβ̇β(ω1)δz
γ̇γ(ω2)det(λ̄)[ω

′]⟩⟩ ,

where the first three lines come from the expansion (4.28) and the last line comes from the

insertion (4.32). The result partially simplifies to

⟨⟨δz̄α̇α(ω0)δz
β̇β(ω1)δz

γ̇γ(ω2)⟩⟩ = −4ivα̇β

m2

(
ϵβ̇γ̇ϵαγ

ω0ω1ω2
+

2vβ̇γyγ̇α0
ω1ω2

)
δ̄(ω0 + ω1 + ω2)

+
(
ω1 ↔ ω2 , β ↔ γ , β̇ ↔ γ̇

)
+

4ivα̇αϵβ̇γ̇ϵβγ

m2ω0ω1ω2
δ̄(ω0 + ω1 + ω2) ,

(4.33)

where the frequency exchange is only present for manifest symmetry. In vectorial notation

the last term coming from determinant insertion cancels and simplifies to

⟨⟨δz̄µ(ω0)δz
ν(ω1)δz

λ(ω2)⟩⟩ = − 4i

m2ω1ω2

[
yµ0 (η

νλ + 2vνvλ) + vµ(vνyλ0 + yν0v
λ)

+ iϵµν [v, y0]v
λ + iϵµλ[v, y0]v

ν
]
δ̄(ω0 + ω1 + ω2) .

(4.34)

A similar calculation for the conjugate 3pt correlator yields

⟨⟨δz̄α̇α(ω0)δz̄
β̇β(ω1)δz

γ̇γ(ω2)⟩⟩ =
4ivα̇γ

m2

(
ϵβ̇γ̇ϵαβ

ω0ω1ω2
+

2vβ̇αyγ̇β0
ω0ω1

)
δ̄(ω0 + ω1 + ω2)

+
(
ω0 ↔ ω1 , α↔ β , α̇↔ β̇

)
+

4ivγ̇γϵα̇β̇ϵαβ

m2ω0ω1ω2
δ̄(ω0 + ω1 + ω2) ,

(4.35)

which, in the vectorial notation, simplifies to

⟨⟨δz̄µ(ω0)δz̄
ν(ω1)δz

λ(ω2)⟩⟩ =
4i

m2ω0ω1

[
yλ0 (η

µν + 2vµvν) + vλ(vµyν0 + yµ0 v
ν)

− iϵλµ[v, y0]v
ν − iϵλν [v, y0]v

µ
]
δ̄(ω0 + ω1 + ω2) .

(4.36)

The following correlator may be of interest,

⟨⟨δyµ(ω0)δy
ν(ω1)δy

λ(ω2)⟩⟩ = − 1

m2

[
yµ(ηνλ + vνvλ)

ω1ω2
+ (cyc.)

]
δ̄(ω0 + ω1 + ω2) , (4.37)
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where (cyc.) denotes cyclic permutation.

Note that δz and δz̄ variables do not obey Wick factorisation, e.g. ⟨(δz)(δz̄)(δz̄)⟩ ≠ 0.

However, purely holomorphic/anti-holomorphic correlators such as ⟨(δz)(δz) · · · (δz)⟩ do

obey Wick factorisation, since δz(δz̄) is at most linear in µ(µ̄) and the correlators reduce

to the correlators of the form ⟨µµ · · ·µ⟩ or ⟨µ̄µ̄ · · · µ̄⟩.

4.1.5 Photon coupling vertex rules

We begin with the spacetime picture where the vertex rules take a simple form that are

easy to compare with other worldline models. Inserting the mode expansion of fluctuations

into the interaction (2.43), we get6

q

∫
k,{ω}

A+
µ (k)(v

µ)eik·z0
∞∑
n=0

1

n!
δ̄

(
(k · v)−

n∑
i=1

ωi

)
n∏

i=1

(ik) · δz(ωi) (4.38)

+ q

∫
k,{ω}

A+
µ (k)(−iω0)δz

µ(ω0)e
ik·z0

∞∑
n=0

1

n!
δ̄

(
(k · v)−

n∑
i=0

ωi

)
n∏

i=1

(ik) · δz(ωi)

+
(
A+

µ (k) → A−
µ (k) , z

µ
0 → z̄µ0 , δz(ωi) → δz̄(ωi)

)
.

This expression is exact in z0, z̄0. To obtain a result at a fixed order in the background

spin-length y0, we may simply set zµ0 = bµ0 + iyµ0 and z̄µ0 = bµ0 − iyµ0 and expand in y0.

To compute Compton amplitudes or the 2PL eikonal, we only need terms up to linear

order in fluctuations,

Sint = q

∫
k
A+

µ (k)v
µeik·z0 δ̄(k · v)

+ iq

∫
k,ω

A+
µ (k) [v

µkν − ωδµν ] δz
ν(ω)eik·z0 δ̄[(k · v)− ω]

+
[
A+

µ (k) → A−
µ (k) , z

µ
0 → z̄µ0 , δz(ωi) → δz̄(ωi)

]
.

(4.39)

Aside from the leading term proportional to A± · v, we can write the Feynman rules in

terms of gauge-invariant field-strengths F±, since the vertex rules with at least one δzµ(σ)

fluctuation field7 can be read out from the variational derivative

δSint
δ[δzµ(σ)]

= qF+
µν [z0 + vσ + δz(σ)]

(
vν +

d(δzν(σ))

dσ

)
, (4.40)

which only depends on the field-strength F+. The same argument trivially generalises to

the anti-holomorphic sector. As a demonstration, we write the interaction terms up to

6Empty sum is zero and empty product is unity, i.e.
∑0

i=1 # = 0 and
∏0

i=1 # = 1.
7We argue using the time domain Feynman rules because the proof is simpler.
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quadratic order in worldline perturbations as

Sint = q

∫
k
(A+

k · v)eik·z0 δ̄(k · v) + q

∫
k,ω

(δzω · F+
k · v)eik·z0 δ̄[(k · v)− ω]

+
q

4

∫
k,ω1,ω2

{[
(δz1 · F+

k · v)(ik · δz2) + (1 ↔ 2)
]
+ i(ω1 − ω2)(δz1 · F+

k · δz2)
}

× eik·z0 δ̄[(k · v)− ω1 − ω2]

+
(
A+

µ (k) → A−
µ (k) , F

+
µν(k) → F−

µν(k) , z
µ
0 → z̄µ0 , δz(ωi) → δz̄(ωi)

)
.

(4.41)

The expansion (4.41) is more useful than the expansion (4.38) since photon propagators

can be chosen to be free of Dirac string singularities. See section 4.2 for more discussions

on the photon propagator.

4.2 Photon propagator

A worldline model of a charged particle provides a localised source for the electromagnetic

field. Away from the sources, the photon propagates freely and the photon propagator

is independent of the worldline model. However, since the NJ shift forces us to separate

the self-dual and anti-self-dual parts of the photon field, we find it useful to recall some

facts regarding how to split the propagator according to self-duality, which translates to

the helicity of the photon at the quantum level.

In our twistor model, the photon field couples to the particle worldline via the NJ shift

(2.43) which we copy here:

Sint = q

∫
A+

µ (z)dz
µ + q

∫
A−

µ (z̄)dz̄
µ . (4.42)

This coupling may look unfamiliar to the readers. To gain some intuition, let us expand

it to the quadratic order in y. The zeroth order term reproduces the standard minimal

coupling for a non-spinning particle. The linear order term is

S
(1)
int = q

∫ [
Ãµẏ

µ + yµ(∂µÃν)ẋ
ν
]
dσ . (4.43)

The appearance of ẏ is a notable feature of the root-Kerr coupling. To linear order, we can

remove it by integration by parts. Up to a total derivative, we find

S
(1)
int = q

∫ [
F̃µνy

µẋν
]
dσ =

q

2

∫
[εµνρσy

µẋνF ρσ] dσ . (4.44)

Starting from the quadratic order, it is impossible to remove all ẏ factors. Up to a total

derivative, we find

S
(2)
int =

q

2

∫
[ẏµyνFµν − (∂µFνρ)y

µyν ẋρ] dσ . (4.45)

We can continue this expansion and express all S
(n)
int (n ≥ 1) as Lorentz invariant products

of yµ, ẏµ, ẋµ, Fµν and εµνρσ, with no reference to A±
µ at all. With this form of the action,

the usual propagator for the photon field will suffice for all perturbative computations.
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The beauty of the NJ shift (4.42) is that we can perform computations exactly in y

without ever expanding in powers of y. A small price to pay is that we should use less

familiar propagators written in terms of A±
µ .

Our discussion is inspired by Zwanziger’s (electromagnetic-duality covariant) two-

potential formalism [56] (see also refs. [57–60]). But, we will not directly follow Zwanziger’s

formalism in that we never use two potentials or consider sources with net magnetic charges.

We are interested in the long-distance interaction between two spatially localised sources.

The interaction is captured by the integral,

I12 =

∫
Jµ
1 (x)⟨Aµ(x)Aν(y)⟩Jν

2 (y) . (4.46)

We are doing classical physics, but we can use the propagator (Green’s function) in a

QFT notation, where ⟨AµAν⟩ is the 2-point function, which we take to be time-ordered for

concreteness.

Let us temporarily ignore the net (electric or magnetic) charges and focus on the dipole

or higher multipole moments. For a magnetic dipole, it is well known that a long-distance

observer cannot distinguish an Ampèrian dipole (electric current loop) from a Gilbertian

dipole (two opposing magnetic monopole charges). A similar story holds for an electric

dipole and all higher electric/magnetic multipole moments. So, as far as the long-distance

interaction is concerned, we can describe the same source using either an electric current

or a magnetic current.

To switch between the two pictures, we recall that Maxwell’s equations with both

electric and magnetic sources read

d†F = J , d†(∗−1F ) = J⋆ , d†F := (∂νFµν)dx
µ . (4.47)

Electric-magnetic duality states that this set of equations is invariant under

EMD : F 7→ ∗−1F , (J, J⋆) 7→ (J⋆,−J) . (4.48)

It is natural to use the complex combinations of F and ∗−1F that are eigenstates of ∗,

F± := 1
2

(
F ± i∗−1F

)
, J± := 1

2

(
J ± iJ⋆

)
=⇒ d†F± = J± . (4.49)

For a given multipole, in the electric picture, we solve

d†F = J , d†(∗−1F ) = 0 , (4.50)

while in the magnetic picture, we solve

d†F = 0 , d†(∗−1F ) = J⋆ . (4.51)

The two pictures are related such that F away from the source is exactly the same. In

other words, for a “point-like” source, the difference between the two pictures is ultra-local

(delta function supported).
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Depending on which picture we choose for each of the two sources, the integral (4.46)

can take different forms,

I12 =

∫
J1(x)⟨A(x)A(y)⟩J2(y) =

∫
J⋆

1(x)⟨A⋆(x)A⋆(y)⟩J⋆
2(y)

=

∫
J1(x)⟨A(x)A⋆(y)⟩J⋆

2(y) =

∫
J⋆

1(x)⟨A⋆(x)A(y)⟩J2(y) ,
(4.52)

where we suppressed the vector indices to avoid clutter. If we call ⟨AA⟩ “electric-electric”
propagator, we may call ⟨A⋆A⋆⟩ “magnetic-magnetic”, ⟨AA⋆⟩ “electric-magnetic”, etc. In

the QFT approach to the propagators, which we will review shortly, we split the mode

expansion according to the photon’s helicity such that8

A = A+ +A− , A⋆ = −i(A+ −A−) . (4.53)

Since ⟨A+A+⟩ = 0 = ⟨A−A−⟩, it follows that

⟨AA⟩ = ⟨A+A−⟩+ ⟨A−A+⟩ = ⟨A⋆A⋆⟩ ,
⟨AA⋆⟩ = +i

[
⟨A+A−⟩ − ⟨A−A+⟩

]
= −⟨A⋆A⟩ .

(4.54)

So far, our discussion has been general. Now let us focus on the multipole moments of

a root-Kerr particle. As we saw in (4.44) and (4.45), we find electric moments at O(y2k)

and magnetic moments at O(y2k+1). This splitting is expected to be a generic feature

of any parity-preserving spinning charged particle. The NJ shift (4.42) suggests a hybrid

approach which uses the electric picture for the electric multipoles and the magnetic picture

of the magnetic multipoles. We denote the currents by Je and J
⋆
o where e and o stand for

even and odd, respectively.

Contributions from different multipole moments simply add up to give

I12 =

∫
J1,e(x)⟨A(x)A(y)⟩J2,e(y) +

∫
J⋆

1,o(x)⟨A⋆(x)A⋆(y)⟩J⋆
2,o(y)

+

∫
J1,e(x)⟨A(x)A⋆(y)⟩J⋆

2,o(y) +

∫
J⋆

1,o(x)⟨A⋆(x)A(y)⟩J2,e(y) .
(4.55)

Rewriting it in terms of ⟨A±A∓⟩, we find

I12 =

∫
J1,+(x)⟨A+(x)A−(y)⟩J2,−(y) +

∫
J1,−(x)⟨A−(x)A+(y)⟩J2,+ , (4.56)

where, for each source,

J± = Je ∓ iJ⋆
o . (4.57)

Comparing this with (4.49), we note a slightly non-trivial “metric” in the complex basis,

J± = 2J∓ . (4.58)

8The notation of this section is related to those in appendix A as Ã = −A⋆. The minus sign originates

from ∗−1F = − ∗ F .
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Applying it to the root-Kerr particle, we have

1

2
(J−)

µ(x) = (J+)µ(x) =
1

2
q

∫
˙̄zµ(σ)δ4(x− z̄(σ))dσ ,

1

2
(J+)

µ(x) = (J−)µ(x) =
1

2
q

∫
żµ(σ)δ4(x− z(σ))dσ .

(4.59)

To summarize, we took a long route to explain how the NJ shift (4.42) can be under-

stood in conventional descriptions of multipole moments, only to motivate a less familiar

method; the most efficient way to compute the interaction between two root-Kerr particles

is to use the “helicity propagators” ⟨A±A∓⟩.

4.2.1 Helicity propagator

Let us present the result first and review the derivation. In terms of self-dual and anti-self-

dual fields, the propagators are [61]

∆+−
µν (k) := ⟨A+

µ (k)A
−
ν (−k)⟩ =

i

k2 − i0+

[
2k(µnν) − (k · n)ηµν + iϵµναβk

αnβ

2(k · n)

]
,

∆−+
µν (k) = ∆+−

νµ (k) = [∆+−
µν (k)]∗ , ∆++

µν (k) = ∆−−
µν (k) = 0 ,

(4.60)

where nµ is an auxiliary reference vector, which we call a “Dirac string”. The spinor

notation offers a more compact expression. Pictorially, we denote the propagator as

k
A+

αα̇ A−
ββ̇ = ∆+−

αα̇ββ̇(k) =
nαβ̇kβα̇
n ·k

i

k2 − i0+
. (4.61)

For later purposes, we also note that

∆+−
µν (k) + ∆−+

µν (k) =
−i

k2 − i0+

(
ηµν −

2k(µnν)

k · n

)
,

i∆+−
µν (k)− i∆−+

µν (k) =
−iϵµναβkαnβ

(k2 − i0+)(k · n)
.

(4.62)

The chiral photon field A±
µ frequently appears in the form of the field strength tensor

F±
µν = ∂µA

±
ν − ∂νA

±
µ . We consider the combinations

⟨F±
µν(k)A

∓
λ (−k)⟩v

λδ̄(k · v) , ⟨F±
µν(k)F

∓
λσ(−k)⟩ .

These 2pt functions can be expressed without the auxiliary reference vector nµ, since they

can be constructed from the non-chiral photon propagator (4.62) using the (anti-)self-dual

projectors

(P±)αβµν :=
δαµδ

β
ν − δβµδαν ∓ iϵ αβ

µν

4
, F±

µν = (P±)αβµνFαβ =: (P± · F )µν . (4.63)

resulting in

⟨F±
µν(k)A

∓
α (−k)⟩vαδ̄(k · v) = (P±)λσµν ⟨Fλσ(k)Aα(−k)⟩⟩vαδ̄(k · v)

=
kµvν − vµkν ∓ iϵµναβk

αvβ

2(k2 − i0+)
δ̄(k · v) ,

(4.64)
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and

⟨F+
µν(k)F

−
αβ(−k)⟩ = (P+)λσµν (P

−)γδαβ⟨Fλσ(k)Fγδ(−k)⟩

=
−i[ηµαkνkβ − ηναkµkβ − ηµβkνkα + ηνβkµkα]

2(k2 − i0+)

+
− (kµϵναβλ − kνϵµαβλ) k

λ + (kαϵβµνλ − kβϵαµνλ) k
λ

4(k2 − i0+)
,

(4.65)

where we have dropped the ultra-local (non-pole-possessing) terms. These 2pt functions

can also be derived from mode expansions of chiral photon fields.

We remark that all scattering observables and the classical eikonal (except for the

1PL eikonal) can be computed from the 2pt functions (4.64) and (4.65), therefore the

dependence on the “Dirac string” of (4.60) is only superficial.

4.2.2 Mode expansion for the propagator

We can obtain the helicity propagator (4.60) through an off-shell extension of the on-shell

mode expansion in QFT. We define the polarisation vectors as (k0 > 0, n0 > 0)

ε±µ (+k
0, k⃗) = ε±µ (k⃗) , ε±µ (−k0, k⃗) = −ε±µ (−k⃗) ,

ε+µ (k) =
[k|σµ|n⟩√
2⟨kn⟩

, ε−µ (k) =
⟨k|σµ|n]√

2[kn]
,

(4.66)

such that [ε±µ (k)]
∗ = ε∓µ (−k). The mode expansion of the chiral photon fields A±

µ (x) are

A±
µ (x) =

∫
k⃗

1

2k0

[
ε±µ (k⃗)ak⃗,±e

−ik0t+ik⃗·x⃗ +
[
ε∓µ (k⃗)

]∗
(a

k⃗,∓)
†e+ik0t−ik⃗·x⃗

]
=

∫
k⃗

ε±µ (k)

2k0

[
a
k⃗,±e

−ik0t+ik⃗·x⃗ − (a
k⃗,∓)

†e+ik0t−ik⃗·x⃗
]
,

(4.67)

where k0 = |⃗k| and [A±
µ (x)]

† = A∓
µ (x). The creation-annihilation operators satisfy[

a
k⃗,h
, (a

k⃗′,h′)
†
]
= 2k0δ̄(3)(k⃗ − k⃗′)δh,h′ , h, h′ = ± . (4.68)

The usual photon field and the dual photon field are given as (see appendix A)

Aµ(x) = A+
µ (x) +A−

µ (x) ,

Ãµ(x) = iA+
µ (x)− iA−

µ (x) .
(4.69)
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The time-ordered 2pt functions are

⟨A±
µ (x)A

±
ν (0)⟩ = 0 , (4.70)

⟨A+
µ (x)A

−
ν (0)⟩ =

∫
k⃗

ε+µ (k⃗)[ε
+
ν (k⃗)]

∗Θ(t)e−i|⃗k|t+ik⃗·x⃗ + [ε−µ (k⃗)]
∗ε−ν (k⃗)Θ(−t)e+i|⃗k|t−ik⃗·x⃗

2|⃗k|

=

∫
k⃗

Θ(t)e−i|⃗k|t+ik⃗·x⃗ +Θ(−t)e+i|⃗k|t−ik⃗·x⃗

2|⃗k|
×
[
−ε+µ (k)ε−ν (k)

]
=

∫
kµ

i[ε+µ (k)ε
−
ν (k)]

k2 − i0+
eik·x

=

∫
kµ

i

k2 − i0+

[
2k(µnν) − (k · n)ηµν + iϵµναβk

αnβ

2(n · k)

]
eik·x , (4.71)

where we used the identity∫
dω

2π

e−iωt

−ω2 + k⃗2 − i0+
=

∫
dω

2π

e−iωt

(|⃗k| − i0+ − ω)(|⃗k| − i0+ + ω)

=
+i

2|⃗k|

[
Θ(t)e−i|⃗k|t +Θ(−t)e+i|⃗k|t

]
.

(4.72)

The computation can be repeated for 2pt functions of field strength tensors, which can

be used to justify the propagators (4.64) and (4.65). For example, (4.64) can be computed

from the substitution

ε+µ (k)ε
−
ν (k) → 2i[k[µε

+
ν](k)ε

−
λ (k)]v

λδ̄(k · v) =
ik[µ[k|σν]|n⟩[n|v|k⟩

⟨kn⟩[nk]
δ̄(k · v) ,

in the second line of (4.71) before using the identity (4.72), where kµ = (|⃗k|, k⃗) satisfies the
on-shell condition k2 = 0. Using the delta constraint, we can recast the numerator as

ik[µ[k|σν]|n⟩[n|v|k⟩
⟨kn⟩[nk]

δ̄(k · v) = − i

4
[k|σµσνv|k⟩δ̄(k · v)

= − i

2

(
kµvν − kνvµ − iϵµναβk

αvβ
)
δ̄(k · v) ,

which leads to the 2pt function (4.64) after off-shell continuation k2 ̸= 0 using (4.72).

With the modified definitions for the mode operators (k0 > 0)

akµ,± = a
k⃗,± , a−kµ,± = −a†

−k⃗,∓
, kµ = (k0, k⃗) , (4.73)

we can rewrite the mode expansion (4.67) as

A±
µ (x) =

∫
k
δ̄(k2) ε±µ (k) ak,± e

ik·x off-shell−→
∫
k
A±

µ (k) e
ik·x , (4.74)

which is the off-shell continued form used to obtain Feynman rules.
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5 Compton amplitude

In this section, we compute the classical Compton amplitudes for a root-Kerr particle, and

compare them with similar results in the literature. We find perfect agreement to the linear

order in spin (at g = 2), whereas we find model-dependent discrepancy starting from the

quadratic order in spin.

3-point coupling The shift (4.42) induces the 3-point coupling of an incoming positive

helicity photon,

iA3 ∼ iq(ε+ · v)e−k·yeik·bδ̄(k · v) , (5.1)

where kµ is photon momentum. This agrees with the black hole 3-point coupling in the

literature. For example, appendix B. of [62] gives the minimal coupling as

Mη,s
3 =Mη,s=0

3 × exp[−ηκ0(k · a)] , (5.2)

where η = ±1 is the helicity sign of the incoming massless quanta of momentum kµ, aµ is

the spin-length vector (yµ = −aµ), and κ0 = η00 is the metric convention parameter.

5.1 Computation

The Compton amplitudes will first be computed using the Feynman rules derived from the

interaction term expansion (4.38) to parallel the WQFT computations in the literature [52,

63], which will be reorganised into a form that connects more naturally to the Feynman

rules of the alternative expansion (4.41).

(a) same helicity (b) opposite helicity

Figure 2: Diagrams for Compton amplitudes.

5.1.1 Same helicity

The diagram in Figure 2(a) gives the same helicity amplitude. We need to compute the fol-

lowing 2-point function of linear A+-fluctuation coupling terms (4.39), where we substitute

the A+
µ fields by the polarisation vectors of the external photons.

iA++
4 =

〈
V +(ε3, k3)× V +(ε4, k4)

〉
,

V +(ε, k) = −q
∫
k,ω

ε+µ (k) [κv
µkν − ωδµν ] δz

ν(ω)eik·z0 δ̄[κ(k · v)− ω] .
(5.3)
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Using the ⟨δzδz⟩ 2-point function (4.24) and contracting the tensor indices, we get

iA++
4 =

iq2

m
ei(k3+k4)·z0 δ̄[(k3 + k4) · v] (5.4)

×
{
(k3 · k4)(ε+3 · v)(ε+4 · v)

(k4 · v)2
+

(ε+3 · k4)(ε+4 · v)− (ε+3 · v)(ε+4 · k3)
(k4 · v)

− (ε+3 · ε+4 )
}
.

This is a simple shift of the non-spinning sector results [63] by an exponential spin factor.

The sign difference compared to (3.26) of the same reference comes from metric conventions.

We may also write the amplitude in a gauge-invariant form as

iA++
4 =

iq2

m

(v · F+
3 · F+

4 · v)
(k4 · v)2

ei(k3+k4)·z0 δ̄[(k3 + k4) · v] , (5.5)

where F±
µν = i(kµε

±
ν − kνε

±
µ ) is the on-shell field strengths of the external photons and

(v · F1 · F2 · · · ) = vµ1F
µ1

1 µ2
F µ2
2 µ3

· · · is a shorthand notation for a concatenation of ten-

sor contractions. The expression (5.5) can be obtained directly from the Feynman rules

corresponding to the alternative interaction term expansion (4.41).

5.1.2 Opposite helicity

The opposite helicity Compton amplitude comes from the diagram in Figure 2(b). We may

simplify the relevant expression in (4.24) as

⟨δz̄µ(ω′)δzν(ω)⟩ ≈ 2i

m

[
ηµν

2ω2
+
iϵµνλσvλy0σ

ω

]
δ̄(ω′ + ω) . (5.6)

We discarded terms proportional to vµ using the fact that the vertex rules at linear order

in perturbations satisfy the “Ward identity” and vanish under the substitution δzµ → vµ.

iq

∫
k,ω

A+
µ (k) [κv

µkν − ωδµν ] δz
ν(ω)eik·z0 δ̄[κ(k · v)− ω]

= −iκq
∫
k,ω

A+
µ (k)(k · v)

[
δµν − vµkν

k · v

]
δzν(ω)eik·z0 δ̄[κ(k · v)− ω] .

(5.7)

Introducing the notation aµν = ϵµναβvαy0β, the resulting Compton amplitude becomes

iA+−
4 =

iq2

m
ei(k3·z0+k4·z̄0)δ̄[(k3 + k4) · v]

×
{
(k3 · k4)(ε+3 · v)(ε−4 · v)

(k4 · v)2
+

(ε+3 · k4)(ε−4 · v)− (ε+3 · v)(ε−4 · k3)
(k4 · v)

− (ε+3 · ε−4 ) +
2i(k3 · a · k4)(ε+3 · v)(ε−4 · v)

(k4 · v)
− 2i(ε+3 · a · ε−4 )(k4 · v)

+ 2i(ε+3 · a · k4)(ε−4 · v)− 2i(k3 · a · ε−4 )(ε
+
3 · v)

}
.

(5.8)

Similar to (5.5), the amplitude can be written in a gauge-invariant form as

iA+−
4 =

iq2

m

{
(v · F+

3 · F−
4 · v)

(k4 · v)2
+ 2i

(v · F+
3 · a · F−

4 · v)
(k4 · v)

}
ei(k3·z0+k4·z̄0)δ̄[(k3 + k4) · v] ,

(5.9)
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which is more natural when the alternative interaction term expansion (4.41) is used for

the Feynman rules.

5.2 Comparison

We compare our classical Compton amplitudes with existing results in the literature, setting

g = 2. The linear-in-spin amplitude should agree, since it is the universal part captured by

the Thomas-Bargmann-Michel-Telegdi (TBMT) equation. We may find model-dependent

discrepancies starting from the quadratic order.

The deviation at quadratic order in spin is an analogue of possible R2 type couplings

at O(S4) in the gravitational case [64]. Such curvature-squared type couplings (R2 or

F 2) have an interpretation as contributions from induced multipole moments, requiring

dimensionful coefficients for their correct normalisation; [ML4] for gravity and [M−1L2]

for electromagnetism at the leading order. We can introduce such operators without in-

troducing any additional length scale in the case of spinning objects, since the spin-length

vector aµ provides the necessary length scale, the spin order being O(S4) for gravity and

O(S2) for electromagnetism for the leading order curvature-squared operators.

5.2.1 Comparison with SUSY WQFT calculations

To compare the two results (5.4) and (5.8) with those of ref. [63], we use the explicit

polarisation vectors

ε+3µ =
[3|σ̄µ|4⟩√
2⟨34⟩

, ε−4µ =
[3|σ̄µ|4⟩√

2[43]
, ε+4µ =

[4|σ̄µ|3⟩√
2⟨43⟩

, (5.10)

and the complex conjugation conditions

(λα)
∗ = sgn(p0)λ̄α̇ . (5.11)

We use sgn(k03)sgn(k
0
4) = −1 because one of the massless photons has to be ingoing and

the other has to be outgoing. In the rest frame of vµ = (1, 0⃗) where ω = k03 is the energy

of the photon, kµ = kµ3 + kµ4 is the transfer momentum, and

(k4 · v) = −(k3 · v) = ω , |⟨34⟩|2 = ⟨34⟩[34] = k2 = 4ω2 sin2(θ/2) = |[34]|2 ,
|[3|v|4⟩|2 = −[3|v|4|v|3⟩ = 4(v · k4)2 − k2 = 4ω2(1− sin2(θ/2)) = |[4|v|3⟩|2 ,

(5.12)

where θ is the scattering angle and we localised onto (k3 + k4) · v = 0 for the second

expression.

The same helicity amplitude becomes

iA++
4 =

iq2

m
e−k·y0 sin2(θ/2) (5.13)

which is simple to evaluate because the ⟨34⟩−2 factors out in the calculations, which we

substitute by |⟨34⟩|−2. For the opposite helicity amplitude, we get

iA+−
4 =

iq2

m
e(k4−k3)·y0 1

−2k2

{
k2(n · v)2

2ω2
+

2iϵ[k3, k4, v, y0](n · v)2

ω
− 2i(k · a · n)(n · v)

}
,

(5.14)
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where nµ = [3|σ̄µ|4⟩ vector carries the helicity weights. Note that this form is manifestly

shift-symmetric; the expression is invariant under the shift of the spin vector by

Sµ → Sµ + ξkµ/k2 ,

where ξ is an arbitrary parameter. The shift symmetry is one of the conjectures for tensor

structures of spinning black holes [64, 65].

Now we multiply the factor [4|v|3⟩2
|[4|v|3⟩|2 to compensate the helicity weights, and use the

identity for fµ = −aµνkν ,

[3|f |4|v|3⟩ = (k · a · n)[4|v|3⟩
= 2 ((k3 · f)(k4 · v)− (k3 · k4)(f · v) + (k4 · f)(k3 · v)− iϵ[k3, f, k4, v])

= −4ω(k3 · a · k4) + 2iϵ[f, k3, k4, v]

= −4ωϵ[k3, k4, v, y0]− ik2(k3 − k4) · y0

(5.15)

to obtain

iA+−
4 =

iq2

m
e(k4−k3)·y0

{
− cos2(θ/2)− (k3 − k4) · y0 + i

ϵ[k3, k4, v, y0]

ω

}
=
iq2

m

{
− cos2(θ/2) + (cos2(θ/2)− 1)(k3 − k4) · y0 + i

ϵ[k3, k4, v, y0]

ω
+O(y20)

}
.

(5.16)

Setting g = 2, the results in (3.27) of ref. [63] for h = 1 become9

iA+−
4 =

iq2

m

[
− cos2(θ/2) + sin2(θ/2)κ0[(k1 − k4) · a]−

i

ω
(−κ1)ϵ[k1, k4, a, v]

]
, (5.17a)

iA++
4 =

iq2

m
sin2(θ/2) [1− κ0[(k1 + k4) · a]] , (5.17b)

where aµ = Sµ/m, and we have restored the convention parameters κ0 and κ1; ref. [63]

uses κ0 = η00 = +1 and κ1 = ϵ0123 = −1. The expressions match perfectly when we set

kµ1 = kµ3 and yµ0 = −aµ.

5.2.2 Comparison with amplitude calculations

For the spin squared coupling, we compare our result with the minimal coupling amplitude

constructed from BCFW recursion [62]

A+−
4 ∝ [3|p1|4⟩2

(s−m2)(u−m2)
exp

[
−ik

µ[3|σν |4⟩Sµν
κ0[3|p1|4⟩

]
, (5.18)

where we have restored the metric convention parameter κ0. Matching the overall normal-

isation10 we write the amplitude as

iA+−
4 = − iq

2

m

(n · v)2

4(k4 · v)2
exp

[
i
ϵ[k3 + k4, n, v, a]

(n · v)

]
, (5.19)

9A factor of 2 has been removed from the results of ref. [63]; the factor is due to overcounting s-channel

and u-channel diagrams.
10As remarked in ref. [63], there is a mass factor difference between QFT amplitude results and WQFT

amplitude results, which can be interpreted as the ratio of δ̄(k · v) to δ̄(2k · p).
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where we set pµ1 = mvµ and take the classical limit for the Mandelstam invariants as

s−m2 = −(u−m2) +O(ℏ2) = 2m(k4 · v) +O(ℏ2) . (5.20)

The exponent can be simplified to

iϵ[k3 + k4, n, v, a]

(n · v)
= (k3 − k4) · a−

[(k3 − k4) · v](n · a)
(n · v)

(5.21)

using the identity

iεµνλσ =
(σµσ̄νσλσ̄σ)α

α − (σν σ̄λσσσ̄µ)α
α

−4
(5.22)

and Schouten identities. It leads to the form of the amplitude used in HPET/HEFT [65–67]

and BHPT [68, 69] approaches,

i(A+−
4 )HEFT = − iq

2

m

(n · v)2

4(k4 · v)2
e(k3−k4)·a exp

[
2(k4 · v)(n · a)

(n · v)

]
(5.23)

after localising onto δ̄[(k3 + k4) · v], where the amplitude is regular up to order O(a2). We

compare it to the classical Compton amplitude of our twistor model,

iA+−
4 =

iq2

m
e(k3−k4)·a

{
− (n · v)2

4(k4 · v)2
+
iϵ[k3, k4, v, a](n · v)2

2(k3 · k4)(k4 · v)
− iϵ[k3 + k4, n, v, a](n · v)

2(k3 · k4)

}
= − iq

2

m

(n · v)2

4(k4 · v)2
e(k3−k4)·a

{
1− 2(k4 · v)2

(k3 · k4)

[
iϵ[k3, k4, v, a]

(k4 · v)
− iϵ[k3 + k4, n, v, a]

(n · v)

]}
where we used yµ0 = −aµ. We can use the identities (k = k3 + k4)

(v · n)ϵ[k, k4, v, a] = (v · k)ϵ[n, k4, v, a] + (v · k4)ϵ[k, n, v, a]
+ (v · v)ϵ[k, k4, n, a] + (v · a)ϵ[k, k4, v, n]

= (k4 · v)ϵ[k, n, v, a]− ϵ[k3, k4, n, a] ,

(5.24)

and

iϵ[k3, k4, n, a] = (k3 · k4)(n · a) , (5.25)

to write the twistor Compton amplitude as

i(A+−
4 )twistor = − iq

2

m

(n · v)2

4(k4 · v)2
e(k3−k4)·a

{
1 +

2(k4 · v)(n · a)
(n · v)

}
. (5.26)

The difference between (5.23) and (5.26) is a non-pole-possessing term,

i∆A+−
4 = − iq

2

m
e(k3−k4)·a(n · a)2 +O(a3) . (5.27)

This term can be reverse-engineered to find a O(a2) worldline contact term that generates

this contribution. From the definition of the polarisation vector (5.10) we relate the nµ

vectors to the polarisation vectors as

nµnν = −4(k3 · k4)ε+µ
3 ε−ν

4 . (5.28)
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To ensure the Ward identity, we use the substitution rule

nµnν → −4
[
(k3 · k4)ε+µ

3 ε−ν
4 − (ε+3 · k4)kµ3 ε

−ν
4 − (k3 · ε−4 )ε

+µ
3 kν4 + (ε+3 · ε−4 )k

µ
3k

ν
4

]
(5.29)

with symmetrisation if necessary. We may also write this substitution as

nµnν → 4ηαβF+
αµ(k3)F

−
βν(k4) , F

±
µν(k) := ikµε

±
ν (k)− ikνε

±
µ (k) , (5.30)

where F±
µν(k) is the momentum space mode coefficient of the field strength 2-form F± =

dA±. We can now attribute the difference (5.27) to the worldline contact term

iScont = i

∫
4q2

m

[
y · F+(z) · F−(z̄) · y

]
dσ +O(y3) . (5.31)

As we observed in section 2.2.2, the combination (y ·F+ ·F− ·y) is an inevitable consequence

of the zig-zag symplectic perturbation theory. Our twistor model differs from other models

which do not carry (y · F+ · F− · y) terms.

The Compton amplitude (5.26) can also be compared to predictions of higher-spin

gauge symmetry [70]. In the notations of ref. [70], the non-scalar part of (5.26) can be

written as ex(1− w), which differs from the result (6.61) of ref. [70] reproduced below

ex cosh z − wex
sinh z

z
+
w2 − z2

2
E(x, y, z) , (5.32)

where

x = −(k4 − k3) · a , y = −(k3 + k4) · a , z = −|a|v1 · (k4 − k3) ,

w = −(n · a)[v · (k4 − k3)]

(n · v)
,

and

E(x, y, z) =
ey − ex cosh z + (x− y)ex sinh z

z

(x− y)2 − z2
+ (y → −y) .

While this amplitude is quite different from the twistor worldline prediction (5.26), the am-

plitude shares the same ex factor conjectured to be responsible for the singularity structure

of the aligned-spin one-loop eikonal (6.29).

6 Conservative dynamics from WQFT

In this section, we revisit the scattering observables of the binary system from the WQFT

perspective. We computed the 1PL and 2PL observables in section 3 by solving the equa-

tions of motion and extracted the classical eikonal along the way. One advantage of the

WQFT approach is that it allows us to compute the eikonal before computing observables.

Using two approaches to compute the same eikonal serves as a consistency check. Besides,

we specialise to the aligned spin configurations and evaluate the Fourier integrals explicitly

to obtain the position space expressions for the classical eikonal up to the 2PL order.
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6.1 1PL observables and eikonal

Since the complex coordinate zµ = xµ + iyµ includes the position and the spin (recall

the sign aµ = −yµ), we can compute the velocity kick ∆vµ and the spin kick ∆yµ both

from the expectation values ⟨⟨δzµ1 (ω)⟩⟩ and ⟨⟨δz̄µ1 (ω)⟩⟩. For particle 1, the expectation value

⟨⟨δzµ1 (ω)⟩⟩ is given by

⟨⟨δzµ1 (ω)⟩⟩ = −q1q2
∫
k,k′,ω′

[
⟨δzµ1 (ω)δz

ν
1 (ω

′)⟩⟨F+
νλ(k)A

−
α (k

′)⟩eik·z1+ik′·z̄2

+ ⟨δzµ1 (ω)δz̄
ν
1 (ω

′)⟩⟨F−
νλ(k)A

+
α (k

′)⟩eik·z̄1+ik′·z2
]

× vλ1 v
α
2 δ̄[(k · v1)− ω′]δ̄(k′ · v2) ,

(6.1)

where z1,2, z̄1,2 in the exponents are understood as background values. This expression is

free of Dirac string singularity when we use the propagator (4.64).

The velocity kick and the spin kick can be computed from the expectation values as

∆(1)v
µ
1 = Re lim

τ→∞

dδzµ1 (τ)

dτ
= Re

∫
τ

d2δzµ1 (τ)

dτ2
= Re

∫
τ,ω

(−ω2)δzµ1 (ω)e
−iωτ

= Re lim
ω→0

(−ω2)δzµ1 (ω) , (6.2)

∆(1)y
µ
1 = Im lim

τ→∞
δzµ1 (τ) = Im

∫
τ

dδzµ1 (τ)

dτ
= Im

∫
τ,ω

(−iω)δzµ1 (ω)e
−iωτ

= Im lim
ω→0

(−iω)δzµ1 (ω) . (6.3)

This may be viewed as the worldline version of the LSZ reduction formula [71]; we can

expect that the equivalent of the S-matrix equivalence theorem [72, 73] will also hold for

worldline observables in WQFT. After some algebra, we can write the velocity kick as

∆(1)v
µ
1 = − q1q2

2m1

∫
k

iγkµ − ϵµ[k, v1, v2]

k2
ek·yeik·bδ̄(k · v1)δ̄(k · v2)

− q1q2
2m1

∫
k

iγkµ + ϵµ[k, v1, v2]

k2
e−k·yeik·bδ̄(k · v1)δ̄(k · v2) .

(6.4)

Similarly, we can write the spin kick as

∆(1)y
µ
1 = +

q1q2
2m1

∫
k

i(v2 · y1)kµ − i(k · y1)vµ2 − vµ1 ϵ[k, v1, v2, y1]− γϵµ[k, v1, y1]

k2

× eik·(b−iy)δ̄(k · v1)δ̄(k · v2)

+
q1q2
2m1

∫
k

i(v2 · y1)kµ − i(k · y1)vµ2 + vµ1 ϵ[k, v1, v2, y1] + γϵµ[k, v1, y1]

k2

× eik·(b+iy)δ̄(k · v1)δ̄(k · v2) .

(6.5)

Both ∆(1)v
µ
1 and ∆(1)y

µ
1 agree with the results of section 3 as expected.
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Figure 3: Diagrams contributing to the 1PL eikonal.

6.1.1 1PL eikonal

The eikonal is evaluated as the sum over the diagrams in Figure 3:

iχ(1) = −q1q2
∫
k⊥

vµ1 v
ν
2

[
eik·(z1−z̄2)∆+−

µν (k) + eik·(z̄1−z2)∆−+
µν (k)

]
, (6.6)

where ∆+−
µν (k) and ∆−+

µν (k) are the helicity propagators (4.60). We write the integrand as

vµ1 v
ν
2

[
e−k·y∆+−

µν (k) + e+k·y∆−+
µν (k)

]
= cosh(k · y)vµ1 v

ν
2

[
∆+−

µν (k) + ∆−+
µν (k)

]
+

sinh(k · y)
(k · y)

yλvµ1 v
ν
2 (ikλ)

[
i∆+−

µν (k)− i∆−+
µν (k)

]
.

(6.7)

Using (4.62), we can simplify the (cosh) term slightly and write

cosh(k · y)vµ1 v
ν
2

[
∆+−

µν (k) + ∆−+
µν (k)

]
= cosh(k · y)(v1 · v2)

−i
k2

. (6.8)

We remind the readers that we are treating terms proportional to (v1 · k), (v2 · k) or k2 as

zero. The (sinh) term is more interesting.

yλvµ1 v
ν
2 (ikλ)

[
i∆+−

µν (k)− i∆−+
µν (k)

]
= yλvµ1 v

ν
2 (ikλ)

[
i∆+−

µν (k)− i∆−+
µν (k)

]
− yλvµ1 v

ν
2 (ikµ)

[
i∆+−

λν (k)− i∆−+
λν (k)

]
= yλvµ1 v

ν
2 ϵλµ

αβ(ikα)
[
∆+−

βν (k) + ∆−+
βν (k)

]
= iϵ[k, v1, v2, y]

−i
k2

.

(6.9)

The term added to the second line vanishes due to δ̄(v1 ·k); its purpose is to anti-symmetrise

in λ, µ indices. The equality between the second line and the third line follows from (4.62)

and the 4d Schouten identity (3.52). In the end, we obtain

χ(1) = −q1q2
∫
k⊥

[
cosh(k · y)γ − i

sinh(k · y)
k · y

ϵ[k, v1, v2, y]

]
eik·b

k2
. (6.10)

in agreement with (3.50). It is free of the Dirac string ambiguity as expected.

Next, we perform the Fourier integral explicitly and obtain

χ(1) =
q1q2γ

4π
√
γ2 − 1

1
ϵ
+Re

(
log

(bµ + iyµ⊥)
2

b20

)

− ϵ[b, v1, v2, y⊥]

2γ
√
b2y2⊥ − (b · y⊥)2

log

b2 + y2⊥ + 2
√
b2y2⊥ − (b · y⊥)2

b2 + y2⊥ − 2
√
b2y2⊥ − (b · y⊥)2

 ,
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whereD = 4−2ϵ, b20 is the dimensional regularisation parameter absorbing all regularisation

artefacts (factors of π and γE , etc.), and

yµ⊥ = yµ +

(
γ(y · v2)− (y · v1)

γ2 − 1

)
vµ1 +

(
γ(y · v1)− (y · v2)

γ2 − 1

)
vµ2 (6.11)

is the projection of yµ onto the impact parameter space defined by b · v1 = b · v2 = 0. In

the aligned spin configuration, yµ⊥ = yµ and (b · y) = 0, the eikonal simplifies even further,

χ(1,aligned) =
q1q2γ

4π
√
γ2 − 1

[
1

ϵ
+ log

b2 − y2

b20
− ϵ[b, v1, v2, y]

γ|b||y|
log

(
|b|+ |y|
|b| − |y|

)]
, (6.12)

where |b| =
√
b2 and |y| =

√
y2. Note that the aligned spin eikonal develops a logarithmic

singularity at b2 = y2; the eikonal “knows” that classical spin is a finite-size effect and the

point particle approximation breaks down when the two bodies are too close to each other.

6.2 2PL eikonal

The diagrams relevant for the 2PL eikonal are shown in Figure 4.

Figure 4: Diagrams contributing to the 2PL eikonal, up to the exchange of the two

particles and the overall flip of holomorphy/helicity.

Building up the eikonal integrand The integrand can be constructed by replacing

the field strength tensors F±
iµν of the Compton amplitudes (5.5) and (5.9) by the linearised

source contribution from the other particle using the propagator (4.64),

F+
iµν → (k ∧ v2)µν − iϵµν [ki, v2]

2k2i
× iq2e

−iki·z̄2 δ̄(ki · v2) ,

F−
iµν → (k ∧ v2)µν + iϵµν [ki, v2]

2k2i
× iq2e

−iki·z2 δ̄(ki · v2) ,
(6.13)

attaching symmetry factors, integrating over photon momenta
∫
k3,k4

, summing over helicity

configurations, and summing over worldline permutation 1 ↔ 2.

iχ(2) = i

∫
k3,k4

[
I++ + 2I+− + I−−]+ (1 ↔ 2) , (6.14)

where we used the fact that I+− = I−+.
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Same helicity integrand The integrand turns out to be quite simple

I++ = −(q1q2)
2

8m1
ei(k3+k4)·(z1−z̄2) δ̄(v1 · k3 + v1 · k4)δ̄(v2 · k3)δ̄(v2 · k4)

(v1 · k3)(v1 · k4)
k3 · k4
k23k

2
4

. (6.15)

At the level of the integrand, it is clear that I++ + I−− agrees with the cosh[(k + ℓ) · y]
term in (3.65) upon the identification (k3, k4)here ↔ (k, ℓ)there.

We can use Passarino-Veltman reduction to rewrite the integrand as

k3 · k4
(v1 · k3)(v1 · k4)k23k24

=
1

2

[
(k3 + k4)

2

(v1 · k3)(v1 · k4)k23k24
− k23 + k24

(v1 · k3)(v1 · k4)k23k24

]
=

−1

2

[
k2

(v1 · k3)2k23(k − k3)2
− 2

(v1 · k3)2k23

] (6.16)

where we used the symmetry between k3 and k4, and then used the condition δ̄[(k3+k4)·v1].
We also set kµ = kµ3 + kµ4 . We are left with evaluation of the integral (in D = 4 − 2ϵ

dimensions for regularisation)

I++(k, v) :=

∫
k3,k4

k3 · k4 ei(k3+k4)·z

(v1 · k3)(v1 · k4)k23k24
δ̄[(k3 + k4) · v1]δ̄[(k3 + k4) · v2]δ̄(k3 · v2)

= −1

2

∫
k⊥

eik·z
∫
k3

[
k2

(v1 · k3)2k23(k − k3)2
− 2

(v1 · k3)2k23

]
δ̄(k3 · v2) .

(6.17)

Then we separate the integral argument into k3∥ and k3⊥, such that k3⊥ · v2 = 0. The dk3∥
integral is trivial due to δ̄(k3 · v2), and we get∫

dD−1k3⊥

[
k2

(v1⊥ · k3⊥)2k23⊥(k − k3⊥)2
− 2

(v1⊥ · k3⊥)2k23⊥

]
, (6.18)

where vµ1⊥ = vµ1 + (v1 · v2)vµ2 = vµ1 − γvµ2 is the projection of vµ1 onto the orthogonal space

such that v1⊥ · v2 = 0. The projection for kµ is not needed due to δ̄(k · v2) constraint.

The remaining integrals evaluate to zero when using the master integral (B.2), which is

consistent with vanishing same helicity sector contributions for the triangle coefficient in

amplitude calculations [32, 74, 75].

Opposite helicity integrand Evaluating the relevant diagrams, and factoring out the

common denominator as

I+− = −(q1q2)
2

8m1
ei(k3+k4)·b δ̄(v1 · k3 + v1 · k4)δ̄(v2 · k3)δ̄(v2 · k4)

k23k
2
4(v1 · k3)(v1 · k4)

× e(k4−k3)·(y1+y2)N [k3, k4, v1, v2, y1] ,

(6.19)

we find that the numerator, organized in powers of γ, is given as

N = 2γ2 (i(v1 · k4)ϵ[k3, k4, v1, y1] + (k3 · k4)) (6.20)

+ 2iγ
(
ϵ[k3, k4, v1, v2]− 2i(k3 · k4)(v1 · k4)(v2 · y1)− (v1 · k4)2ϵ[(k3 + k4), v1, v2, y1]

)
− (k3 · k4) + 2(v1 · k4)2 [1 + (y1 · k3)− (y1 · k4)] + 2i(v1 · k4)(v2 · y1)ϵ[k3, k4, v1, v2] .
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It is straightforward to show that it agrees with the opposite helicity integrand in (3.65).

To evaluate the Fourier integrals, it is convenient to reorganise the numerator as

N = γ2
[
k2 − k23 − k24

]
+ 2iγ2(v1 · k4)ϵ[k3, k, v1, y1]

+ 2iγϵ[k3, k, v1, v2] + 2γ(v2 · y1)(v1 · k4)
[
k2 − k23 − k24

]
+ 2iγ(v1 · k3)(v1 · k4)ϵ[k, v1, v2, y1]

− 1

2

[
k2 − k23 − k24

]
− 2(v1 · k3)(v1 · k4) [1 + (y1 · k3)− (y1 · k4)]

+ 2i(v1 · k4)(v2 · y1)ϵ[k3, k, v1, v2] .

(6.21)

Inspecting the master integral (B.2) we find that k23 and k24 of the numerator will

evaluate to zero (λ1 = 0 or λ2 = 0 condition) and can be thrown away. We organise the

integrand as

I+− =
(q1q2)

2

8m1
eik·(b−iy)δ̄(v1 · k)δ̄(v2 · k)

e−2k3·yN [k3, k − k3, v1, v2, y1]δ̄(v2 · k3)
k23(k − k3)2(v1 · k3)2

,

yµ = yµ1 + yµ2 ,

(6.22)

where we use k3 as the loop momentum. Performing the dk3∥ = dk03 integral we get∫
dDk3
(2π)D

e−2k3·yN δ̄(v2 · k3)
k23(k − k3)2(v1 · k3)2

=

∫
dD−1k3⊥
(2π)D−1

e−2k3·y⊥N⊥
k23(k − k3)2(v1⊥ · k3)2

(6.23)

where yµ⊥ = yµ1 + yµ2 + vµ2 (y1 · v2) and the effective numerator is

N⊥ =
[
γ2 − 1/2

]
k2 − 2γ(v2 · y1)k2(v1⊥ · k3)

+ 2

[
iγϵ[k, v1, v2, y1]

γ2 − 1
+ 1

]
(v1⊥ · k3)2

+ 4(v1⊥ · k3)2
([
y1 −

k(k · y1)
k2

+ v2(y1 · v2)
]
· k3
)

− 2i

{
γ2
([
ϵµ[k, v1, y1] +

vµ1⊥γϵ[k, v1, v2, y1]

γ2 − 1

]
+ v2µϵ[v2, k, v1, y1]

)
+ (v2 · y1)ϵµ[k, v1, v2]

}
(v1⊥ · k3)kµ3

+ 2iγϵµ[k, v1, v2]k
µ
3 . (6.24)

The remaining integral can be evaluated using the list of integrals in appendix B.1. We

present the results in the ancillary file loopdata.dat.m. Including the overall e+k·y fac-

tor from (6.22), the integral is consistent with the QED amplitude coefficients provided

by ref. [53] to bilinear order in spins, under the conditions Ci = 1, Di = 0, and covari-

ant SSC. We also present the full eikonal as a formal power series in the ancillary file

eikonaldata.dat.m. While the expressions by themselves do not provide any insight,

they greatly simplify in the aligned spin configuration, which we present next.
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6.2.1 Aligned spin

Let us simplify the expression by going to the aligned spin configuration. For aligned spin

we have the conditions yµ1 ∝ yµ2 and y ·v1,2 = 0. We introduce the ratio parameter ζ defined

by yµ1 = ζyµ; it follows that yµ2 = (1− ζ)yµ and yµ⊥ = yµ. This reduces the expression to a

single infinite sum and we get∫
d4k3
(2π)4

e−2k3·yN δ̄(v2 · k3)
k23(k − k3)2(v1 · k3)2

=

∫
d3k3⊥
(2π)3

e−2k3·y⊥N⊥
k23(k − k3)2(v1⊥ · k3)2

=
e−k·y

4(k2)
1
2

∞∑
m=0

(
−k2y2

2

)m
m!

[(
2γ2 − 1

γ2 − 1
− ζ

)
Im+1(k · y)
(k · y)m−1

+

(
γ2(4m+ 1)− 2m− 1

γ2 − 1
− 2mζ +

iγ(ζ − 2)ϵ[k, v1, v2, y]

(γ2 − 1)

)
Im(k · y)
(k · y)m

]
,

(6.25)

where In(x) is the modified Bessel function of the first kind. The impact parameter space

integral can be organised as

χ+− =

∫
k3,k4

I+− =
(q1q2)

2

32m1

∫
d4k

(2π)4
δ̄(v1 · k)δ̄(v2 · k)

I+−eik·b√
k2

=
(q1q2)

2

32m1

√
γ2 − 1

∫
d2kE
(2π)2

I+−ei(kE ·b)√
k2E

, (6.26)

I+− =
∞∑

m=0

(
−k2y2

2

)m
m!

[(
2γ2 − 1

γ2 − 1
− ζ

)
Im+1(k · y)
(k · y)m−1

+

(
γ2(4m+ 1)− 2m− 1

γ2 − 1
− 2mζ +

iγ(ζ − 2)ϵ[k, v1, v2, y]

(γ2 − 1)

)
Im(k · y)
(k · y)m

]
, (6.27)

where the factor iϵ[k, v1, v2, y] can be traded for the derivative operator ϵµ[v1, v2, y]
∂

∂bµ .

Imposing the additional constraint11 y · b = 0 simplifies the expression further and yields,

χ+− =
(q1q2)

2

64m1

√
γ2 − 1

(
1

π(b2 − y2)3/2

[
b2 +

γ2(1− ζ) + ζ

γ2 − 1
y2
]

+
(ζ − 2)γ

π(γ2 − 1)
ϵµ[v1, v2, y]

∂

∂bµ
1√

b2 − y2

)
, (6.28)

which has a singularity structure (b2 − y2)−3/2 = (b2 − (a1 + a2)
2)−3/2 that was not visible

in the original perturbative spin expansion. The full aligned-spin 2PL eikonal is

χ(2,aligned) =
(q1q2)

2
(
b2 − (ζ−2)γ

(γ2−1)
ϵ[b, v1, v2, y] +

γ2(1−ζ)+ζ
γ2−1

y2
)

32πm1

√
γ2 − 1 (b2 − y2)3/2

+ (1 ↔ 2) , (6.29)

where symmetrisation is implemented by {m1 → m2 , v
µ
1 ↔ vµ2 , b

µ → −bµ , ζ → 1− ζ}.
11This additional constraint conforms to the usage of “aligned spin” in the literature, where the orbital

angular momentum is also aligned with the spin direction.
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We remark that the singularity is still present in the spinless probe limit ζ → 0, and

since spin-dependence of the eikonal integrand (6.22) enters only through the exponential

factors e+k·ye−2k3·y in this limit, the singularity structure (b2 − y2)−3/2 seems to be a

consequence of the “Newman-Janis shift” of the integrand, which shifts the displacement

between the two worldlines by an imaginary spin sum vector ±iyµ = ∓i(aµ1 + aµ2 ). Note

that a similar singularity structure of the form akp(b
2 − a2b)

−3/2−k was reported for the

2PM gravitational aligned-spin spinning probe scattering where ab is the spin parameter

of the Kerr background and ap is the probe spin (k ≤ 2) [76],12 which can be viewed

as an artifact of expanding the singularity (b2 − (ab + ap)
2)−3/2. If the “Newman-Janis

shift” of the integrand persists at higher loop orders, we can conjecture that the singularity

structure of the spinless probe scattering (b2−a2b)−3n/2 from n-loop contributions reported

by ref. [76] generalises to the singularity structure (b2 − (ab + ap)
2)−3n/2. As remarked

when comparing twistor worldline Compton amplitudes with that of higher spin gauge

symmetry [70], it would also be interesting to check whether same singularity structures

appear in the eikonal when the Compton amplitude has exponential dependence on spin,

a feature that is also shared by the Compton amplitude construction in ref. [77].

We also consider axial scattering yµ ∝ bµ, which is independent of the sign of y · b
because the Fourier integrand (6.27) contains only even powers of k · y. The iϵ[k, v1, v2, y]
contribution drops out due to the condition yµ ∝ bµ, and the Fourier transform (6.26)

evaluates to

χ+− =
(q1q2)

2
√
b2

32π2m1(γ2 − 1)3/2

[
γ2(ζ − 1)− ζ

b2
K

(
−y

2

b2

)
− γ2(ζ − 2)− (ζ − 1)

b2 + y2
E

(
−y

2

b2

)]
,

(6.30)

where K(x) and E(x) are the complete elliptic integrals of the first and second kind. The

full result is

χ(2,axial) =
(q1q2)

2
√
b2

16π2m1(γ2 − 1)3/2

[
γ2(ζ − 1)− ζ

b2
K

(
−y

2

b2

)
− γ2(ζ − 2)− (ζ − 1)

b2 + y2
E

(
−y

2

b2

)]
+ (1 ↔ 2) , (6.31)

which, unlike the aligned-spin case (6.29), develops a singularity at the unphysical impact

parameter b2 = −y2. The results (6.29) and (6.31) can be reproduced from the full eikonal

given in the ancillary file eikonaldata.dat.m by taking the corresponding configurations

and resumming the series expansion in y2/b2.

Before ending this section, we remark that the LSZ-like formulae (6.2) and (6.3) can

also be applied to 2PL scattering observables, where retarded worldline propagators are

used instead [78]. The 2PL observables can be separated into the eikonal part (the same

diagrams with symmetric worldline i0+ prescription) and the causality cut part (the con-

tributions from changing the worldline i0+ prescription), where the eikonal part computes

{χ(2), O} and the causality cut part computes 1
2{χ(1), {χ(1), O}}. This computation serves

12Ref. [76] reports the scattering angle which scales as ak
p(b

2 − a2
b)

−5/2−k ∼ ∂b[a
k
p(b

2 − a2
b)

−3/2−k].
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as a consistency check of the calculations in section 3.2.2. The separation of the observ-

ables into the eikonal part and the causality cut part can be shown to be a more general

phenomenon that holds in Hamiltonian worldline models [55].

7 Discussion

The (ambi-)twistor model for electromagnetically interacting spinning particles was studied

in this manuscript, which has the advantage that it is one of the simplest descriptions of

charged spinning particles where spin effects can be tracked to arbitrarily high orders.

Using (dynamical) Newman-Janis shift as the only input for generating all-orders-in-spin

interactions, it was found that the spin effects can be resummed to simple expressions in

special kinematic configurations; in the aligned-spin case (6.29) and in the axial scattering

case (6.31). Also, the model was used to confirm the interpretation, up to the 2PL order, of

the classical eikonal as the generator of canonical transformations that map the incoming

scattering states to outgoing scattering states.

Despite the disparities between electromagnetic and gravitational interactions, the

similarities between the singularity structures of the spin-resummed electromagnetic eikonal

(6.29), χ(2) ∝ (b2−(a1+a2)
2)−3/2, and the probe limit Kerr scattering reported by ref. [76],

θ(2) ∼ ∂bχ(2) ∝ ∂b[(b
2 − a2b)

−3/2], provides further evidence that using the total spin length

vector aµ+ = aµ1+a
µ
2 as the spin parameter of the effective Kerr metric—an ansatz motivated

by leading order PN Hamiltonian results [79]—in the effective-one-body approach [31] is

the preferable choice for resumming spin effects.13 On the other hand, one-loop results

only correspond to leading order effects in the mass-ratio expansion [51], therefore the

singularity structures resembling that of the background-probe calculation [76] could be a

coincidence of the leading order mass-ratio expansion. Whether novel singularity structures

arise at NLO in mass-ratio expansion will only be answered by pushing the computations

to two-loops and higher orders, and may point us to new directions in resumming spin

effects. Of course, studying the gravitationally interacting case is also necessary to confirm

that such singularity structures are also present in gravitating binary black holes.

When viewing the classical eikonal as the generator of canonical transformations, it

would be interesting to understand what it means to analytically continue the scattering

generator to bound dynamics. The boundary-to-bound map for the radial action [81, 82]

suggests that the continuation is a finite time-evolution generator that advances the system

by one radial period, e.g. the periastron passing is sent to the next periastron passing.

If this interpretation is correct, then we may argue that separability of the Hamilton-

Jacobi equations is not necessary for the existence of the bound orbit counterpart of the

classical eikonal, although its determination by analytic methods may only be possible

when Hamilton-Jacobi equations are separable [35, 83].

Apart from the obvious future direction—massive twistor worldline in gravitational

fields—there are several other directions that would be interesting to expand upon. One

13This is not the unique choice considered in the literature. A comparison of different choices for the spin

parameter of the effective Kerr metric can be found in ref. [80].
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future research direction would be to explore whether recent attempts to resum analytic

results for gravitational scattering of spinning black holes [26, 27] can be improved using

the singularity structures of (6.29) and their conjectured generalisation to higher loops

χ(n) ∝ (b2 − (a1 + a2)
2)−3n/2.

Another direction would be making the (WQFT approach to the) model live up to its

name; quantisation. Since the twistor model has a simple set of constraints, the standard

BRST-BFV methods should be applicable. For small values of quantised spin, say 1/2

or 1, we expect the results to agree with the standard QFT of massive spinning fields.

The attempt to quantise the model for higher spin may shed new light on the complication

with massive higher spin fields. Comparison of the approach with chiral models for massive

higher spin fields [84] would also be an interesting study.

While the fundamental variables of our model are twistors, the physical observables

(and the classical eikonal) were given entirely in terms of the gauge invariant (x, y, p)

variables. Some intermediate steps of the computations, such as the ones in appendix C,

tend to be quite lengthy and not particularly illuminating. The computations may become

vastly simplified when full advantage of the twistor variables is taken. To do so, it would

be crucial to use massless twistor variables for the photon fields as well. Bailey’s twistor

propagator [85], and Guevara’s holomorphic classical limit [74] and twistor reconstruction

[86] could provide clues for further progress.

We remark that iterated action of the classical eikonal can be understood as causal-

ity cuts, which computes contributions associated to changing the i0+ prescription of the

worldline propagators from time-symmetric to retarded; in the WQFT formalism scattering

observables are computed using retarded propagators [78], and changing the i0+ prescrip-

tion of the worldline propagators from retarded to symmetric generates (nested) Poisson

brackets which reorganises the scattering observable ∆O as the action of the scattering

generator e{χ,•}O [55]. A direct consequence is that the longitudinal impulse at 2PL order

is related to the i0+ prescription of the worldline propagators, which could be an interesting

observation for understanding the i0+ prescription affecting the definition of the impact

parameter used in one-loop waveform results [87–93].

Finally, it would be interesting to generalise the concept of the classical eikonal to

massless fields. Such an extended eikonal would place massive particles and massless fields

on an equal footing, and may help us clarify to what extent we can identify the eikonal as

the classical shadow of the quantum S-matrix.
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A Conventions

Vector

Flat metric and Levi-Civita tensor,

ηµν = diag(−,+,+,+) , ε0123 = +1 . (A.1)

Electromagnetism without spin,

∂µFµν = −Jν , m
duµ

dτ
= qFµνuν . (A.2)

Hodge star acting on a two-form,

(∗F )µν =
1

2
εµνρσF

ρσ . (A.3)

Self-dual and anti-self-dual parts of a two-form,

F± =
1

2
(F ∓ i∗F ) =⇒ ∗(F±) = ±i(F±) . (A.4)

We may also use F̃µν = (∗F )µν . If we define A± and Ã by F± = dA± and F̃ = dÃ,

Aµ = A+
µ +A−

µ , Ãµ = i(A+
µ −A−

µ ) . (A.5)

Spinor

We follow the conventions of ref. [8] to a large extent, where |λ⟩ spinors are associated to

incoming negative helicity states. An important difference is that we define

vαα̇ := vµσ
µ
αα̇ , vµ = −1

2
(σ̄µ)α̇αvαα̇ (A.6)

for all vectorial quantities, nullifying the exception for xµ made in ref. [8]. To compare with

references where the metric ηµν and/or the Levi-Civita tensor εµνρσ carry the opposite sign

(e.g. ref. [75]), an invariant way to express conversion between spinor and Lorentz indices

is to introduce the parameters κ0 = η00 and κ1 = ε0123:

pαα̇ = pµσ
µ
αα̇ =

{
κ0|p⟩α[p|α̇ p2 = 0

κ0|pI⟩α[pI |α̇ p2 = κ0m
2

(A.7)

vαα̇w
α̇α = 2κ0(v · w) (A.8)

(σµσ̄νσλσ̄σ)α
α = 2(ηµνηλσ − ηµληνσ + ηµσηνλ − iκ1ε

µνλσ) (A.9)

The invariant tensor satisfies the complex conjugation relation

ϵα̇γ̇ϵβδ
[
σµ
γδ̇

]∗
= σ̄µα̇β (A.10)

which is useful for evaluating complex conjugation of vectors.
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Twistor

The two major differences from ref. [8] are

(xα̇α)here = (−2)(xα̇α)there , (µα̇I , µ̄I
α)here = −(µα̇I , µ̄I

α)there . (A.11)

These changes propagate to all other equations. For example, the incidence relations read

µα̇I =
1

2
zα̇βλβ

I , µ̄I
α =

1

2
λ̄Iβ̇ z̄

β̇α , (A.12)

where we define the complex conjugate relations as

z̄µ = [zµ]∗ ⇒ z̄α̇β =
[
zβ̇α
]∗
, µ̄I

α =
[
µα̇I
]∗
, λ̄Iα̇ =

[
λα

I
]∗
. (A.13)

The defining Poisson brackets are

{xµ, pν} = δµν ⇒ {xα̇α, pββ̇} = −2δα̇
β̇
δαβ ,

{µ̄Iα, λβJ} = δαβ δ
J
I , {µα̇I , λ̄Jβ̇} = δα̇

β̇
δIJ .

(A.14)

The consistency of the defining brackets can be confirmed from the relations

xα̇α =
zα̇α + z̄α̇α

2
, pαα̇ = −λαI λ̄Iα̇ . (A.15)

To determine the relation between yµ and the spin-length vector aµ = Sµ/m, we note

the Poisson brackets of the rotation generators

{J23, J31} = J12 ⇔ {J1, J2} = J3 (A.16)

and leverage the calculation to demand that

{Sµ, Sν}∗ = (−κ1)εαµνλ
(−pα)
m

Sλ ⇔ {aµ, aν}∗ =
κ1
m2

εαµνλpαaλ (A.17)

where {•, •}∗ is the Dirac bracket and κ1 = ε0123. The end result is the standard convention

for the orientation of aµ:

{a1, a2}∗ = +
a3

m
. (A.18)

On the twistor side, from the Poisson brackets we find

{zµ, z̄ν} =
−2i

m

[
yµvν − ηµν(y · v) + vµyµ + iκ1ε

µναβyαvβ

]
(A.19)

which implies

{yµ, yν} =
κ1
m
εµναβyαvβ ⇒ {y1, y2} = −κ1ε1230

y3

m
= −y

3

m
. (A.20)

Thus we have to set yµ = −aµ.
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B List of integrals

B.1 Master one-loop integral

We compute the Euclidean loop integral (k · v = 0)∫
dDℓE e2ℓE ·a

(ℓ2E)
λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3

,

using the identities

1

αλ
=

1

Γ(λ)

∫ ∞

0
dt tλ−1e−αt ,

1

(α− i0+)λ
=

iλ

Γ(λ)

∫ ∞

0
dt tλ−1e−i(α−i0+)t .

(B.1)

After substitution, we have the integral

iλ3

Γ(λ1)Γ(λ2)Γ(λ3)

∫
dt1dt2dt3 t

λ1−1
1 tλ2−1

2 tλ3−1
3 exp

[
− t1t2
t1 + t2

k2 − t23
t1 + t2

v2
]

× exp

[
2t2

t1 + t2
(k · a) + −2it3

t1 + t2
(v · a) + a2

t1 + t2

] ∫
ℓ′E

e−(t1+t2)(ℓ′E)2

where ℓ′E is the shifted loop integration variable. We perform the Gaussian integral and

expand the exponential of the second line. Evaluating the gamma function and beta

function integrals, we get∫
µ2ϵdDℓE e2ℓE ·a

(ℓ2E)
λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3

=
iλ3πD/2µ2ϵ

2Γ(λ1)Γ(λ2)Γ(λ3)(k2)
λ1+λ2+

λ3
2
−D

2 (v2)
λ3
2

×
∞∑

l,m,n=0

(2k · a)l
(
−2i(v · a)

√
k2

v2

)m

(k2a2)n

l!m!n!

Γ(λ1 + λ2 +
λ3
2 − m

2 − n− D
2 )Γ(

λ3+m
2 )

Γ(D − λ1 − λ2 − λ3 + l +m+ 2n)

× Γ(
D

2
− λ2 −

λ3
2

+
m

2
+ n) Γ(

D

2
− λ1 −

λ3
2

+ l +
m

2
+ n) , (B.2)

where µ2ϵ is the mass scale required for dimensional regularisation D = 3 − 2ϵ. It is easy

to verify that for λ1 = 0 or λ2 = 0 the integral vanishes, and for λ3 = 0 that the integral

localises onto m = 0.14 Setting a = 0 we only keep l = m = n = 0 of the sum, and recover

the Euclidean version of (10.25) of ref. [94]. The divergence of the integral for non-positive

integral values of (λ1 + λ2 +
λ3
2 − m

2 − n− D
2 ) ∈ Z≤0 is harmless since the result formally

becomes non-negative integral powers of k2, which vanishes under the impact parameter

14The value for λ3 = 0 should be understood as a limiting value λ3 → 0, where Γ(λ3/2)
Γ(λ3)

→ 2.
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space integral
∫
k e

ik·b for bµ ̸= 0. The master integral (B.2) can be viewed as a tensor

integral generating function, e.g. the vector integral can be evaluated as∫
dDℓE ℓµE e

2ℓE ·a

(ℓ2E)
λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3

=
1

2

∂

∂aµ

∫
dDℓE e2ℓE ·a

(ℓ2E)
λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3

.

This can be used to check consistency of (B.2), e.g. vµ ∂
∂aµ ⇔ (λ3 → λ3 − 1). Such

consistency relations could be used to bootstrap tensor integral generating functions [95].

In all the integrals listed in this appendix, we only keep the non-analytic terms in k2

and drop dimensional regularisation artefacts (O(ϵ−1) and O(ϵ)). All log(k2)-dependent

terms of the integrals vanish for time-symmetric i0+ prescription, which is equivalent to

taking the real part of the integrals.

Special cases: Scalar integrals λ1 = λ2 = 1, λ3 = 2, and D = 3− 2ϵ with extra k2.

k2
∫

dDℓE µ2ϵe2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)2

=
π3

2(k2)1/2v2

∞∑
l,m,n=0

Γ(l +m+ n− 1
2)(2k · a)

l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1
2)Γ(n+ 1)Γ(l + 2m+ 2n− 1)

+
iπ2(v · a) log(k2)

2(v2)3/2

∞∑
l,m,n=0

Γ(l +m+ n)(2k · a)l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n)

=
π5/2

2(k2)1/2v2

∞∑
l,m=0

Γ(l +m− 1
2)(2k · a)

l(−k2a2)m 2F1(1,−m; 12 ;
(v·a)2
v2a2

)

Γ(l + 1)Γ(m+ 1)Γ(l + 2m− 1)

+
iπ2(v · a) log(k2)

2(v2)3/2

∞∑
l,n=0

Γ(l + n)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n
Γ(l + 1)Γ(n+ 1)Γ(l + 2n)

. (B.3)

λ1 = λ2 = λ3 = 1 and D = 3− 2ϵ with extra k2.

k2
∫

dDℓE µ2ϵe2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)

=
π3(v · a)(k2)1/2

2v2

∞∑
l,m,n=0

Γ(l +m+ n+ 1
2)(2k · a)

l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 3
2)Γ(n+ 1)Γ(l + 2m+ 2n+ 1)

+
iπ2 log(k2)

2(v2)1/2

∞∑
l,m,n=0

Γ(l +m+ n)(2k · a)l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n)

=
π5/2(v · a)(k2)1/2

v2

∞∑
l,m=0

Γ(l +m+ 1
2)(2k · a)

l(−k2a2)m 2F1(1,−m; 32 ;
(v·a)2
v2a2

)

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 1)

+
iπ2 log(k2)

2(v2)1/2

∞∑
l,n=0

Γ(l + n)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n
Γ(l + 1)Γ(n+ 1)Γ(l + 2n)

. (B.4)
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λ1 = λ2 = 1, λ3 = 0, and D = 3.∫
dDℓE e2ℓE ·a

(ℓ2E)(k − ℓE)2
=

π5/2

(k2)1/2

∞∑
l,n=0

Γ(l + n+ 1
2)(2k · a)

l(−k2a2)n

Γ(l + 1)Γ(n+ 1)Γ(l + 2n+ 1)
. (B.5)

λ1 = λ2 = 1, λ3 = −1, and D = 3.∫
dDℓE (2v · ℓE) e2ℓE ·a

(ℓ2E)(k − ℓE)2
= −2π5/2(v · a)(k2)1/2

∞∑
l,m=0

Γ(l +m+ 3
2)(2k · a)

l(−k2a2)m

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 3)
.

(B.6)

Special cases: Vector integrals Assume f · k = f · v = 0. λ1 = λ2 = λ3 = 1 and

D = 3− 2ϵ.∫
dDℓE µ2ϵ(f · ℓE) e2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)

= −π
3(v · a)(f · a)(k2)1/2

2v2

∞∑
l,m,n=0

Γ(l +m+ n+ 3
2)(2k · a)

l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 3
2)Γ(n+ 1)Γ(l + 2m+ 2n+ 3)

− iπ2(f · a) log(k2)
2(v2)1/2

∞∑
l,m,n=0

Γ(l +m+ n+ 1)(2k · a)l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n+ 2)

= −π
5/2(v · a)(f · a)(k2)1/2

v2

∞∑
l,m=0

Γ(l +m+ 3
2)(2k · a)

l(−k2a2)m 2F1(1,−m; 32 ;
(v·a)2
v2a2

)

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 3)

− iπ2(f · a) log(k2)
2(v2)1/2

∞∑
l,n=0

Γ(l + n+ 1)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n
Γ(l + 1)Γ(n+ 1)Γ(l + 2n+ 2)

. (B.7)

λ1 = λ2 = 1, λ3 = 2, and D = 3− 2ϵ.∫
dDℓE µ2ϵ(f · ℓE) e2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)2

= − π3(f · a)
2(k2)1/2v2

∞∑
l,m,n=0

Γ(l +m+ n+ 3
2)(2k · a)

l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1
2)Γ(n+ 1)Γ(l + 2m+ 2n+ 3)

− iπ2(f · a)(v · a) log(k2)
2(v2)3/2

∞∑
l,m,n=0

Γ(l +m+ n+ 1)(2k · a)l
(
k2 (v·a)

2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n+ 2)

= −π
5/2(f · a)

2(k2)1/2v2

∞∑
l,m=0

Γ(l +m+ 1
2)(2k · a)

l(−k2a2)m 2F1(1,−m; 12 ;
(v·a)2
v2a2

)

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 1)

− iπ2(f · a)(v · a) log(k2)
2(v2)3/2

∞∑
l,n=0

Γ(l + n+ 1)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n
Γ(l + 1)Γ(n+ 1)Γ(l + 2n+ 2)

. (B.8)
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B.2 Fourier transform integral

The Fourier transform to impact parameter space is given as∫
dDkE
(2π)D

ei(kE ·b)

[k2E ∓ i0+]λ
=

Γ(D2 − λ)

22λπ
D
2 Γ(λ)

1

(b2 ± i0+)
D
2
−λ

, (B.9)

where we assumed b2 ∈ R and included i0+ prescription for convergence. The i0+ pre-

scription can be dropped since there is no branch cut ambiguity for Euclidean signature.

Fourier transforms with numerators can be evaluated using differentiation; kµE ↔
−i ∂

∂bµ
. Repeated numerator factors can be computed as directional derivatives, i.e.

∫
dDkE
(2π)D

(kE · a)lei(kE ·b)

[k2E ]
λ

= l!

∫
dDkE
(2π)D

ei(kE ·[b−ia])

[k2E ]
λ

∣∣∣∣∣
O(al)

=
l!Γ(D2 − λ)

22λπ
D
2 Γ(λ)

1

[(b− ia)2]
D
2
−λ

∣∣∣∣∣
O(al)

=
l!Γ(D2 − λ)

22λπ
D
2 Γ(λ)

ilC
(D
2
−λ)

l ( (a·b)
(a2b2)1/2

)(a2)l/2

(b2)
D
2
−λ+ l

2

,

(B.10)

where C
(λ)
n (x) is the ultraspherical/Gegenbauer polynomial. Differentiation in λ can be

used to compute Fourier transform for logarithms,∫
dDkE
(2π)D

[k2E ]
λ(kE · a)l log(k2E)ei(kE ·b) = l!

∂

∂λ

∫
dDkE
(2π)D

[k2E ]
λei(kE ·[b−ia])

∣∣∣∣
O(al)

= −
(−4)λλ!Γ(D2 + λ)Γ(l + 1)

π
D
2

ilC
(D
2
+λ)

l ( (a·b)
(a2b2)1/2

)(a2)l/2

(b2)
D
2
+λ+ l

2

,

(B.11)

where λ ∈ Z≥0 is assumed.

Special cases: aligned spin Only even powers of l are relevant for the aligned spin

configuration, where a · b = 0. The master integral (B.10) reduces to∫
dDkE
(2π)D

(kE · a)2lei(kE ·b)

[k2E ]
λ

=
Γ(D2 − λ)

22λπ
D
2 Γ(λ)

(D2 − λ)l

(b2)
D
2
−λ

(2l)!

l!

(
a2

b2

)l

, (B.12)

where (a)n is the Pochhammer symbol. For axial scattering we set a · b = ±
√
a2b2, which

leads to∫
dDkE
(2π)D

(kE · a)2lei(kE ·b)

[k2E ]
λ

=
Γ(D + 2l − 2λ)

2D−1π
D−1
2 Γ(λ)Γ(D+1

2 − λ)

1

(b2)
D
2
−λ

(
−a2

b2

)l

. (B.13)
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C 2PL computations

C.1 Longitudinal part of the momentum kick

Our goal is to show that the longitudinal part of ∆(2)p
µ
1 agrees with

∆(2)p
µ
1 |iter =

1

2
{χ(1), {χ(1), p

µ
1}} =

1

2
{χ(1),∆(1)p

µ
1} . (C.1)

Part 1 In the spin-less case, all iteration terms contain δ̄′. That is no longer true when

spin is turned on. Let us first focus on the new terms not containing δ̄′.

Using the following results as building blocks,

{k · b, ℓ · b} = {k · y, ℓ · y} =
ϵ[k, ℓ, y1, v1]

m1
+
ϵ[k, ℓ, y2, v2]

m2
,

{k · b,−ϵµ[ℓ, v1, v2]} =
ϵµ[k, ℓ, v2]

m1
+
ϵµ[k, ℓ, v1]

m2
,

{ϵ[k, v1, v2, y], ℓ · b} =
ϵ[k, ℓ, y, v2]

m1
+
ϵ[k, ℓ, y, v1]

m2
,

{ϵ[k, v1, v2, y], ℓ · y} = (k · ℓ)
(
v2 · y1
m1

− v1 · y2
m2

)
,

(C.2)

we collect four contributions to (C.1):

Aµ
1 = (iℓµ)γ2

{
cosh(k · y)eik·b, cosh(ℓ · y)eiℓ·b

}
= (iℓµ)γ2{k · y, ℓ · y} sinh(k · y) sinh(ℓ · y)eiq·b

− (iℓµ)γ2{k · b, ℓ · b} cosh(k · y) cosh(ℓ · y)eiq·b ,

(C.3)

Aµ
4 =

{
−iϵ[k, v1, v2, y]

sinh(k · y)
k · y

eik·b,−ϵµ[ℓ, v1, v2] sinh(ℓ · y)eiℓ·b
}

= iϵ[k, v1, v2, y]ϵ
µ[ℓ, v1, v2]{k · y, ℓ · y}

[
cosh(k · y)

k · y
− sinh(k · y)

(k · y)2

]
cosh(ℓ · y)eiq·b

− iϵ[k, v1, v2, y]ϵ
µ[ℓ, v1, v2]{k · b, ℓ · b}

sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ ϵ[k, v1, v2, y]

(
ϵµ[k, ℓ, v2]

m1
+
ϵµ[k, ℓ, v1]

m2

)
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

−
(
ϵ[k, ℓ, y, v2]

m1
+
ϵ[k, ℓ, y, v1]

m2

)
ϵµ[ℓ, v1, v2]

sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ i(k · ℓ)
(
v2 · y1
m1

− v1 · y2
m2

)
ϵµ[ℓ, v1, v2]

sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

(C.4)

Aµ
2 = γ

{
cosh(k · y)eik·b,−ϵµ[ℓ, v1, v2] sinh(ℓ · y)eiℓ·b

}
= −γ ϵµ[ℓ, v1, v2]{k · y, ℓ · y} sinh(k · y) cosh(ℓ · y)eiq·b

+ γ ϵµ[ℓ, v1, v2]{k · b, ℓ · b} cosh(k · y) sinh(ℓ · y)eiq·b

+ iγ

(
ϵµ[k, ℓ, v2]

m1
+
ϵµ[k, ℓ, v1]

m2

)
cosh(k · y) sinh(ℓ · y)eiq·b ,

(C.5)
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Aµ
3 = (iℓµ)γ

{
−iϵ[k, v1, v2, y]

sinh(k · y)
k · y

eik·b, cosh(ℓ · y)eiℓ·b
}

= γ ℓµϵ[k, v1, v2, y]{k · y, ℓ · y}
[
cosh(k · y)

k · y
− sinh(k · y)

(k · y)2

]
sinh(ℓ · y)eiq·b

− γ ℓµϵ[k, v1, v2, y]{k · b, ℓ · b}
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b

+ γ ℓµ(k · ℓ)
(
v2 · y1
m1

− v1 · y2
m2

)
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ iγ ℓµ
(
ϵ[k, ℓ, y, v2]

m1
+
ϵ[k, ℓ, y, v1]

m2

)
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

(C.6)

As usual, we may work in the probe limit (m1/m2 → 0), where we get

m1A
µ
1 = −(iℓµ)γ2ϵ[k, ℓ, y1, v1] cosh[(k − ℓ) · y]eiq·b ,

m1A
µ
4 = −iϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]ϵ[k, ℓ, y1, v1]

sinh(k · y)
(k · y)2

cosh(ℓ · y)eiq·b

+ iϵ[k, v1, v2, y]ϵ
µ[ℓ, v1, v2]ϵ[k, ℓ, y1, v1]

cosh[(k − ℓ) · y]
k · y

eiq·b

+ ϵ[k, v1, v2, y]ϵ
µ[k, ℓ, v2]

sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

− ϵ[k, ℓ, y, v2]ϵ
µ[ℓ, v1, v2]

sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ i(k · ℓ)(v2 · y1)ϵµ[ℓ, v1, v2]
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

(C.7)

m1A
µ
2 = −γ ϵµ[ℓ, v1, v2]ϵ[k, ℓ, y1, v1] sinh[(k − ℓ) · y]eiq·b

+ iγϵµ[k, ℓ, v2] cosh(k · y) sinh(ℓ · y)eiq·b ,

m1A
µ
3 = −γ ℓµϵ[k, v1, v2, y]ϵ[k, ℓ, y1, v1]

sinh(k · y)
(k · y)2

sinh(ℓ · y)eiq·b

− γ ℓµϵ[k, v1, v2, y]ϵ[k, ℓ, y1, v1]
sinh[(k − ℓ) · y]

k · y
eiq·b

+ γ ℓµ(k · ℓ)(v2 · y1)
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ iγ ℓµϵ[k, ℓ, y, v2]
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b .

(C.8)

We can simplify Aµ
2 a bit and write

m1A
µ
2 = −γ ℓµ(k · ℓ)(v2 · y1) sinh[(k − ℓ) · y]eiq·b

+iγϵµ[k, ℓ, v2] cosh(k · y) sinh(ℓ · y)eiq·b ,
(C.9)
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Next, using (3.51), we try to remove (k · y) factors in the denominators of Aµ
3 and Aµ

4 :

m1A
µ
3 = −γ ℓµ(k · ℓ)(v2 · y1) sinh[(k − ℓ) · y]eiq·b

+iγ ℓµϵ[k, ℓ, y, v2]
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

m1A
µ
4 = (iℓµ)(v2 · y1)ϵ[k, ℓ, v1, v2] cosh[(k − ℓ) · y]eiq·b

+ϵ[k, v1, v2, y]ϵ
µ[k, ℓ, v2]

sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

−ϵ[k, ℓ, y, v2]ϵµ[ℓ, v1, v2]
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b .

(C.10)

We have enumerated all terms not containing δ̄′. Now we split them into two parts:

the “y-part” and the “v-part”. The former is linear in y1 while the latter (marked red in

the equations above) is independent of y1. The k · y factor in the denominator is to be

cancelled against an ϵ[·, ·, ·, y] factor in the numerator.

The y-part gives fairly simple expressions:

m1A
µ
1+4

|y = (iℓµ)(−γ2ϵ[k, ℓ, y1, v1] + (v2 · y)ϵ[k, ℓ, v1, v2]) cosh[(k − ℓ) · y]eiq·b ,
m1A

µ
2+3|y = (iℓµ)(2iγ)(v2 · y1)(k · ℓ) sinh[(k − ℓ) · y]eiq·b .

(C.11)

There agree perfectly with the longitudinal part of (3.57), (3.59) in the main text.

Part 2 The v-part is more involved, as it gets combined with the δ̄′ terms. In the probe

limit, the δ̄′ factor comes from{
eik·bδ̄(k · v1), eiℓ·bδ̄(ℓ · v1)

}
→ i(k · ℓ)e

iq·b

m1

[
δ̄(k · v1)δ̄′(ℓ · v1)− δ̄′(k · v1)δ̄(ℓ · v1)

]
= i(k · ℓ)e

iq·b

m1
δ̄(q · v1)δ̄′(ℓ · v1) .

(C.12)

This factor is to be multiplied by

Bµ =

[
γ cosh(k · y)− iϵ[k, v1, v2, y]

sinh(k · y)
k · y

]
× [(iℓµ)γ cosh(ℓ · y)− ϵµ[ℓ, v1, v2] sinh(ℓ · y)]

= Bµ
1 +Bµ

2 +Bµ
3 +Bµ

4 ,

(C.13)

where

Bµ
1 = (iℓµ)γ2 cosh(k · y) cosh(ℓ · y) ,

Bµ
4 = iϵ[k, v1, v2, y]ϵ

µ[ℓ, v1, v2]
sinh(k · y)
k · y

sinh(ℓ · y) ,

Bµ
2 = −γϵµ[ℓ, v1, v2] cosh(k · y) sinh(ℓ · y) ,

Bµ
3 = γℓµϵ[k, v1, v2, y]

sinh(k · y)
k · y

cosh(ℓ · y) .

(C.14)
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Multiplying them by i(k · ℓ), and hiding eiq·bδ̄(q · v1)δ̄′(ℓ · v1) for now, we get

Dµ
1 = −ℓµγ2(k · ℓ) cosh(k · y) cosh(ℓ · y) ,

Dµ
4 = −(k · ℓ)ϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]

sinh(k · y)
k · y

sinh(ℓ · y) ,

Dµ
2 = −iγ(k · ℓ)ϵµ[ℓ, v1, v2] cosh(k · y) sinh(ℓ · y) ,

Dµ
3 = iγℓµ(k · ℓ)ϵ[k, v1, v2, y]

sinh(k · y)
k · y

cosh(ℓ · y) .

(C.15)

Now, we bring the red colored terms from (C.9) and (C.10) and apply the identity

δ(x) = −xδ′(x) . (C.16)

After pulling out some overall factor, we record the results as

Cµ
1 = 0 ,

Cµ
4 = −(ℓ · v1)ϵ[k, v1, v2, y]ϵµ[k, ℓ, v2]

sinh(k · y)
k · y

sinh(ℓ · y)

− (k · v1)ϵ[k, ℓ, y, v2]ϵµ[ℓ, v1, v2]
sinh(k · y)
k · y

sinh(ℓ · y) ,

Cµ
2 = −iγ(ℓ · v1)ϵµ[k, ℓ, v2] cosh(k · y) sinh(ℓ · y) ,

Cµ
3 = +iγ(k · v1)ℓµϵ[k, ℓ, y, v2]

sinh(k · y)
k · y

cosh(ℓ · y) .

(C.17)

For Cµ
3 and the second line of Cµ

4 , we used δ̄(k · v1 + ℓ · v1) to replace (ℓ · v1) by −(k · v1).
Merging all the C-terms and the D-terms, we obtain the final result in perfect agreement

with the longitudinal part of ∆(2v)p
µ in (3.60), (3.61) in the main text.

C.2 Transverse part of the spin kick

In section 3.2.2 of the main text, we showed how to compute the 2PL spin kick. In this

appendix, we give some details of the computation and confirm that the transverse part of

the spin kick agrees with the eikonal formula,

{χ(n), y
µ
1 } =

1

m1

[
vµ1 y

ν
1

∂

∂xν1
+ ϵµν [v1, y1]

∂

∂yν1

]
χ(n) . (C.18)

We begin with the overall structure of the 2PL spin kick (3.68):

∆(2)y
µ
1 =

(q1q2)
2

m2
1

∫
q⊥

eiq·b
∫
ℓ

δ̄(v2 · ℓ)
k2ℓ2(ik · v1 + 0+)2

N µ . (C.19)

The numerator N µ can be computed separately for each term in (3.67). For (a) and (b)

terms, we also distinguish the same/opposite helicity contributions.

N µ
(2ao) = (ch⊟ Cao + sh⊟ Sao)

µ , N µ
(2as) = (ch⊞ Cas + sh⊞ Sas)

µ ,

N µ
(2bo) = (ch⊟ Cbo + sh⊟ Sbo)

µ , N µ
(2bs) = (ch⊞ Cbs + sh⊞ Sbs)

µ ,

N µ
(2c) = (ch⊟ Cc + sh⊟ Sc)

µ , N µ
(2d) = (ch⊟ Cd + sh⊟ Sd)

µ ,

(C.20)
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The same helicity terms are

Cµ
as =

1

2
(ik · v1) [kµ(ℓ · y1)− ℓµ(k · y1)− yµ1 (k · ℓ)] , Sµ

as =
i

2
(ik · v1)ϵµ[k, ℓ, y1] ,

Cµ
bs =

i

2
[ℓµ(v2 · y1)− vµ2 (ℓ · y1)] γ(k · ℓ) +

i

2
ϵµ[ℓ, v2, y1]ϵ[k, ℓ, v1, v2] ,

Sµ
bs =

1

2
[ℓµ(v2 · y1)− vµ2 (ℓ · y1)] ϵ[k, ℓ, v1, v2]−

1

2
ϵµ[ℓ, v2, y1]γ(k · ℓ) .

(C.21)

Among the opposite helicity terms, (a) and (b) terms are linear in y1:

Cµ
ao =

1

2
(ik · v1) [−kµ(ℓ · y1)− ℓµ(k · y1) + yµ1 (k · ℓ) + 2vµ2 (v2 · y1)(k · ℓ)] ,

Sµ
ao =

i

2
(ik · v1) [vµ2 ϵ[k, ℓ, y1, v2] + ϵµ[k, ℓ, v2](v2 · y1)] ,

Cµ
bo =

i

2
[ℓµ(v2 · y1)− vµ2 (ℓ · y1)] γ(k · ℓ)−

i

2
ϵµ[ℓ, v2, y1]ϵ[k, ℓ, v1, v2] ,

Sµ
bo =

1

2
[ℓµ(v2 · y1)− vµ2 (ℓ · y1)] ϵ[k, ℓ, v1, v2] +

1

2
ϵµ[ℓ, v2, y1]γ(k · ℓ) ,

(C.22)

whereas (c), (d) terms are quadratic in y1:

Cµ
c = (ik · v1)i [[ℓµ(v2 · y1)− vµ2 (ℓ · y1)] ϵ[k, ℓ, y1, v2]− ϵµ[ℓ, v2, y1](k · ℓ)(v2 · y1)] ,
Sµ
c = (ik · v1) [[ℓµ(v2 · y1)− vµ2 (ℓ · y1)] (k · ℓ)(v2 · y1)− ϵµ[ℓ, v2, y1]ϵ[k, ℓ, v2, y1]] ,

Cµ
d = (ik · v1)2 [(ℓ · v1)(v2 · y1) + γ(ℓ · y1)] ϵµ[k, v2, y1]

+ (ik · v1)2ϵ[ℓ, v1, v2, y1] [kµ(v2 · y1)− vµ2 (k · y1)] ,
Sµ
d = (ik · v1)2i [(ℓ · v1)(v2 · y1) + γ(ℓ · y1)] [kµ(v2 · y1)− vµ2 (k · y1)]

− (ik · v1)2iϵ[ℓ, v1, v2, y1]ϵµ[k, v2, y1] .

(C.23)

Same helicity sector The 2PL eikonal (3.65) contains a single term in the same helicity

sector, so its contribution to the spin kick should be also quite simple. Indeed, after a lot

of cancellations, we get

Cµ
as + Cµ

bs = − i

2
(k · ℓ) [vµ1 (ℓ · y1)− yµ1 (ℓ · v1)] ,

Sµ
as + Sµ

bs = −1

2
(k · ℓ)ϵµ[v1, y1, ℓ] .

(C.24)

Not all terms contribute to the transverse part; ∆(2)y
µ|tr should be orthogonal to yµ1 . The

non-orthogonal term, marked red in the equation above, is projected out upon symmetri-

sation under the exchange operation k ↔ ℓ,

(ℓ · v1)(k · ℓ) cosh⊞ → (q · v1)(k · ℓ) cosh⊞ = 0 . (C.25)

The equality hold in the (q⊥) integral. What is left after the symmetrisation is

Cµ
as+bs|tr = − i

2
(k · ℓ)vµ1 (ℓ · y1) , Sµ

as+bs|tr = −1

2
(k · ℓ)ϵµ[v1, y1, ℓ] . (C.26)

These match the expectation from the 2PL eikonal (C.18) perfectly.
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Opposite helicity sector We treat the (a)-(b) group and the (c)-(d) group separately.

In the (a)-(b) group, partial cancellations leave us with

Cµ
ao + Cµ

bo = i(k · ℓ)γ [ℓµ(v2 · y1)− vµ2 (ℓ · y1)] +
i

2
(k · ℓ)vµ1 (ℓ · y1)

+ iℓµ(ℓ · v1)(k · y1)−
i

2
(k · ℓ)(ℓ · v1)[2vµ2 (v2 · y1) + yµ1 ] ,

Sµ
ao + Sµ

bo = [ℓµ(v2 · y1)− vµ2 (ℓ · y1)] ϵ[k, ℓ, v1, v2] +
1

2
(k · ℓ)ϵµ[ℓ, v1, y1]

+ vµ2 (ℓ · v1)ϵ[k, ℓ, y1, v2] .

(C.27)

Again, the non-orthogonal terms, marked red in the equations above, are projected out

upon symmetrisation under the exchange k ↔ ℓ. We are left with

Cµ
ao+bo|tr = i(k · ℓ)γ [qµ(v2 · y1)− vµ2 (q · y1)] +

i

2
(k · ℓ)vµ1 (q · y1)

+
i

2
[(k − ℓ) · v1] [kµ(ℓ · y1)− ℓµ(k · y1)] ,

Sµ
ao+bo|tr = [qµ(v2 · y1)− vµ2 (q · y1)] ϵ[k, ℓ, v1, v2]−

1

2
(k · ℓ)ϵµ[k − ℓ, v1, y1] .

(C.28)

On the other hand, the transverse spin kick derived from the eikonal by (C.18) contains

Cµ
χ |tr = i(q · y1)vµ1

[
−(γ2 − 1/2)(k · ℓ) + (k · v1)(ℓ · v1)

]
+ iγϵµ[k − ℓ, v1, y1]ϵ[k, ℓ, v1, v2]

− i[(k − ℓ) · v1]ϵµ[v1, v2, y1]ϵ[k, ℓ, v1, v2]

− i

2
[(k − ℓ) · v1]ϵµν [v1, y1]ϵν [k, ℓ, v1] ,

Sµ
χ |tr = −vµ1 (q · y1)γϵ[k, ℓ, v1, v2]

− (γ2 − 1/2)(k · ℓ)ϵµ[k − ℓ, v1, y1] + γ[(k − ℓ) · v1](k · ℓ)ϵµ[v1, v2, y1] .

(C.29)

Despite appearances, things do match as expected,

Cµ
ao+bo|tr = Cµ

χ |tr . Sµ
ao+bo|tr = Sµ

χ |tr . (C.30)

We can repeat the same exercise for the (c)-(d) group. The computations are even

lengthier and not particularly illuminating, so we omit the details here.

D Regularisation for the product of time-symmetric Green’s functions

The usual time-symmetric i0+ prescription for ω−2 propagators is

1

2

(
1

(ω + i0+)2
+

1

(ω − i0+)2

)
⇔ −1

2
|σ| , (D.1)

where we use the positive frequency expansion f(σ) =
∫
ω f(ω)e

−iωσ. The square of the

time-symmetric ω−1 propagator is given as[
1

2

(
1

ω + i0+
+

1

ω − i0+

)]2
⇔ −1

4
|σ|+ e−0+×|σ|

40+
=

1

40+
− 1

2
|σ|+O[(0+)1] , (D.2)
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where we expanded the expression as a Laurent series in the regulator 0+ and kept up to

O[(0+)0] terms. Employing the “minimal subtraction” scheme for the regulator 0+, we

throw out the divergent term in 0+ and conclude that the propagators (D.1) and (D.2) are

equivalent as distributions.

The reason (D.2) has a divergent contribution compared to (D.1) is because it should be

understood as the convolution of the time-symmetric ω−1 propagator in the time domain,

1

2

(
1

ω + i0+
+

1

ω − i0+

)
⇔ − i

2
sgn(σ) , (D.3)

where sgn(σ) is the sign function. Unlike the retarded/advanced Green’s functions given

by the Heaviside step function, the convolution of (D.3) with itself diverges due to the

“infinite volume” of the real line, which manifests itself as the (0+)−1 divergence in (D.2).
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