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ABSTRACT: We study the (ambi-)twistor model for spinning particles interacting via
electromagnetic field, as a toy model for studying classical dynamics of gravitating bodies
including effects of both spins to all orders. We compute the momentum kick and spin kick
up to one-loop order and show precisely how they are encoded in the classical eikonal. The
all-orders-in-spin effects are encoded as a dynamical implementation of the Newman-Janis
shift, and we find that the expansion in both spins can be resummed to simple expressions in
special kinematic configurations, at least up to one-loop order. We confirm that the classical
eikonal can be understood as the generator of canonical transformations that map the in-
states of a scattering process to the out-states. We also show that cut contributions for
converting worldline propagators from time-symmetric to retarded amount to the iterated
action of the leading eikonal at one-loop order.
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1 Introduction

Chandrasekhar has remarked that “(t)he black holes of nature are the most perfect macro-
scopic objects there are in the universe: [...] they are the simplest objects as well.” [1]
Can we idealise these simplest objects of the universe and make them even simpler? Since
electromagnetic interactions are simpler than gravitational interactions, let us phrase this
question more concretely in the context of electromagnetism. What would be the de-
scription of the simplest charged, massive, spinning (macroscopic) objects moving on a
background electromagnetic field?

One class of charged spinning (macroscopic) objects that can be called “simplest” is
known in the literature as root-Kerr particles [2], which possess spin-induced multipole
moments of Kerr-Newman black holes [3, 4]. They can be called simplest in the sense that
they correspond to the classical spin limit of “minimal coupling” defined by the high-energy
limit [5], and that all multipole moments are generated by the Newman-Janis shift [6], where
the position of the particle sourcing the gravitational/electromagnetic field is complexified



and shifted in the imaginary spin direction. In its original formulation, the Newman-Janis
shift only applies to stationary solutions of the Einstein(-Maxwell) equations, therefore the
answer to the question posed in the previous paragraph would only be complete when the
Newman-Janis shift is generalised to dynamical worldlines of spinning bodies.

In this work, improving upon the ideas of ref. [7], we argue that the twistorial descrip-
tion of relativistic spherical tops [8] qualifies as a complete answer. The authors showed in
ref. [8] that the spherical top model [9] for a relativistic spinning particle is equivalent to a
massive twistor model (similar but not identical to ref. [10]) in the absence of interactions.
The attempt to couple the twistor model to a background field was initiated in ref. [11].
A complete description of the twistor model minimally coupled to electromagnetic field is
given here.

We use the model to compute scattering observables, such as the momentum kick
and the spin kick, at low orders in perturbation theory while maintaining exact spin-
dependence. Following the nomenclature of ref. [12], we call the perturbation theory “post-
Lorentzian” (PL) expansion, where n-PL order terms are suppressed by (g1¢2)" where ¢,
g2 are the electric charges of two interacting particles. When organised diagrammatically
through Feynman-like diagrams, n-PL order terms involve (n — 1)-loop momentum inte-
grals, although the diagrams themselves have no loops. This is a toy model for studying
the gravitational case, where the dynamics is organised in the post-Minkowskian (PM)
expansion while keeping the exact spin-dependence.

We stress that exact spin-dependence is not only of theoretical interest, but is also
of phenomenological interest. The previous sentence may sound odd to a person familiar
with post-Newtonian (PN) calculations: In the PN expansion spin effects are formally
counted as 1PN, since the corrections take the form of a/r, and for compact objects such
as black holes the spin length scales as the horizon scale a ~ Gm. For computing the
gravitational waveforms—which are the quantities directly relevant for observations—the
4.5PN corrections seem to be good enough, at least for non-spinning quasi-circular equal
mass binaries; the 4.5PN contributions add less-than-a-radian correction to the ~ 10375
cumulative gravitational wave cycles in the detector frequency bands [13]. The spin effect
corrections to the conservative dynamics has already been computed to 5PN order [14-20].
Why would we need all-orders-in-spin effects if they are going to be smaller than what is
already known, which already seems to be sufficient for observations?!

One reason all-orders-in-spin results can be of interest is because in practical applica-
tions the perturbative results need to be resummed for a better accuracy [22-27].2 The
resummations reorganise the perturbative expansion by leveraging the knowledge of sin-
gularity structures that the non-perturbative answer is expected to possess. Therefore,
all-orders-in-spin calculations may reveal singularity structures we can take advantage of

lCaution: The PN expansion is known to converge best for equal-mass quasi-circular orbits, and conver-
gence of the best-case scenario does not guarantee convergence in other regions of the parameter space. For
example, even 5PN may not be enough to reduce systematic errors below the level of statistical errors [21].

20ne may also recall that the revival of interest in the PM expansion was partly kindled by the search
for alternative resummation schemes of the gravitational two-body dynamics [28].



in the resummations, which were not visible at the lowest spin orders. This can be used,
for example, in improving effective-one-body based waveform models which are known to
perform worse for extremal black hole spins [29, 30], where spin effects are resummed as
geodesic motion on a deformed Kerr geometry [31]. Understanding the mechanism behind
the effectiveness of the resummation will be useful in motivating alternative resummation
schemes for spin effects, which may yield better accuracy.

From the viewpoint of resummations, an all-orders-in-spin result that is as rigid as
possible and as simple as possible while keeping essential features of the dynamics will
be the most useful, since we are interested in the singularity structures of all-orders-in-
spin dynamics; any additional structures or free parameters may obscure the singularity
structures that we wish to dig up from all-orders-in-spin results. This motivation brings
us back to the question raised in the beginning of this manuscript; what is the simplest
spinning object that interacts with the background Maxwell field? The motivation also
limits the inputs of the theory to all-orders-in-spin multipole moment information encoded
by the Newman-Janis shift. The expectation is that while the dynamics of the spinning
particle may deviate from that of physical black holes from O(g?), the singularity structures
of the all-orders-in-spin dynamics are still captured by the twistor worldline model.

The twistor worldline model predicts surprisingly simple singularity structures in spe-
cial kinematic configurations, which we expect to be shared by scattering dynamics of
physical black holes. For example, the 2PL aligned-spin eikonal (6.29) resums to the sim-
ple expression

0 (7 + 528 o v+ P95 )

X(2,aligned) = 327rm1\/727—1(52 _ a2)3/2

where the impact parameter b ~ (' —%) | is defined by the covariant spin supplementary

+(1+2), (1.1)

conditions (SSC), a* = af + ab is the sum of the spin-length vectors, and ¢ is the ratio
parameter defined by af = (a*. To the best of authors’ knowledge, this is the first obser-
vation of spin effect resummation in binary dynamics at the next-to-leading order (NLO)
in the coupling constant expansion, where the model is free of unphysical behaviour and
the spins of both constituents are included to all orders.?

In addition to the construction of the interacting twistor model, and application of
the model to compute observables to the 2PL order, another key result of this work is
the clarification of the classical eikonal’s role. In the Hamiltonian formulation of binary
dynamics, the classical eikonal is defined as a suitable classical limit of the quantum eikonal
phase that acts as the generator of canonical transformations, mapping the incoming scat-
tering states to the outgoing states. The scattering states are defined in the phase space of
free particles, and the eikonal encodes the interactions such that it produces all scattering
observables through canonical transformations.

3The known spin-resummed NLO scattering angles reported in the literature [32, 33] are based on the
Compton amplitudes that develop unphysical behaviour from cubic (electromagnetism) or quintic (gravity)
order in spin. The spin-resummed results reported by ref. [34] should be considered as leading order effects
in the R?® coupling expansion.



The manuscript is organised as follows. In section 2 we review the massive twistor
model and couple it to background electromagnetic fields. In section 3 we compute scat-
tering observables using equations of motion. We set up WQFT formulation of the model
in section 4, and use it to compute Compton amplitudes in section 5 and the classical
eikonal in section 6. We conclude our studies and propose future directions in section 7.

Note added While this work was being completed, ref. [35] appeared. Their proposal
for how to extract classical observables from the radial action overlaps with our discussion
on the classical eikonal as the scattering generator in section 3.1.

2 DMassive twistor in electromagnetic field

2.1 Free theory

In ref. [8], we proposed a massive twistor model and showed its equivalence to the Hanson-
Regge spherical top model at the free theory level. A general discussion of how to couple
the twistor model to background fields was given in ref. [11]. Here, we give a brief review of
these two main references and clarify some aspects of the twistor model before specialising
to the minimal coupling to a background electromagnetic field.

Spherical Top Massive Twistor
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Figure 1: Equivalence between the spherical top model and the massive twistor model.

A widely used model for describing relativistic spinning particles is the Hanson-Regge
spherical top [9], which uses the variables (p,, ", AP 4, S’W) to describe a spinning bodys;
the momentum p,, the position z#, the body-fixed tetrad Aty (A =0,1,2,3) describing
the orientation of the body, and the spin tensor S;w- The tilde notation emphasises the
fact that under the “spin-gauge” redundancy [36], the variables (&, A, S) have some gauge
dependency while p is gauge-invariant. It was shown in ref. [8] that the gauge orbit is R3
and the “origin” of the orbit corresponds to the covariant gauge conditions: p"S,, A", =
0=pu Aty (a=1,2,3).

The twistor variables describe the same dynamics with less gauge redundancy. Their
global symmetry groups are the superconformal SU(2,2) (to be broken by the mass-shell



condition) and the massive little-group SU(2) . The gauge redundancy on the twistor side
is U(1): (A p) — e\ p), (\RE) — e (N 0), 0 € R.

The equivalence of the two models is clearly articulated in terms of the gauge-invariant
coordinates on both sides. The twistor model unifies the variables (p,,A",) using the
hermitian bi-linear products of (Ao’ Azs):

G .

Pt = %aﬂaa)\al')\ld ’ A?[‘]) — w , (2‘1)
in a similar vein to massive spinor-helicity variables [5, 37]. An advantage of the Hamil-
tonian formulation is that nothing stops us from unifying momenta p, and “generalised
positions” A*,. The remaining variables (z#,S,,) are unified and mapped to a set of
gauge-invariant complex variables p% (A1) and their complex conjugates. This is in
contrast to the supersymmetric worldline description [38-40] where the spin tensor S, is
realised as a bi-linear in Grassmann variables (W 4, U 4) and the tetrad A, is not visible.

A prominent feature of the twistor model is that there is no spin-gauge redundancy
in the first place, so that no discussion of the spin supplementary condition (SSC) is ever
needed. The only constraint yet to be imposed is the mass-shell condition p? + m? = 0,
which is common to the spherical top model and the twistor model. Figure 1 summarises
the mapping between the two models before imposing the mass-shell constraint.

2.1.1 Constraints revisited

Our conventions for spinors and twistors are slightly different from those of ref. [8]; see
appendix A for details. Let us mention a few key relations. The fundamental Poisson
brackets of the spherical top model include

{a o} =0 = {2 pye} = —26505 . (2:2)
The fundamental Poisson brackets of the twistor model are

{mr, A"y = 0567, {u™, 2,5} = 8505 (2.3)
The incidence relations relating the two models read

: 1, 1< ¢
I J - -
p = DT = R, 24
where the complexified position variable z defined by the incidence relation is mapped to
the spherical top variables through
N 1 vVpo
M=t iy, Yyt = —25“ P7puSpo - (2.5)
m

The imaginary part y* of the complexified position variable z* is related to the spin-length
vector a* = s*/m widely used in the literature by y* = —a*. The extra sign is to respect

the standard relation of non-relativistic spins: {s’, s/} = e¥*sF,



In our current conventions, the free action of ref. [8] reads

Stree = / [)\aldula + Aradp®’ + % (F(A =m) +x(A —m))do|

(2.6)
1 _ _ 1 Cae
A = det(\) = —§eaﬁeuxau5% A =det(\) = ie”eaﬂ)\[d/\m.
The Lagrange multipliers (k, k) enforce the conditions,
A=m=A, (2.7)

which in turn imply the mass-shell condition —p> = AA = m?. After a suitable gauge-
fixing of (k, &), the “Hamiltonian” Re(k)(A + A)/2 generates the worldline time-evolution
for all dynamical variables which matches the expectation from the spherical top model.

Despite its success, it turns out that the free action in (2.6) is not suitable for the
transition to the interacting theory, and we propose an alternative action:

St = [ Drals™ + st = k000 — 1] do (2.8)
where
Lo o A L 5 2 Ls a1 ay I
b0 =5(m* —AL) = S(p" +m%), 1= (Nrap™ — " Aa’) =p-y. (2.9)
For later purposes, we also propose the gauge-fixing conditions,

0

. i B
X = = Arap®™ + aNS), Xt = §1Og(A/A)- (2.10)

1
2
We recognise ¢ as the mass-shell constraint in twistor variables, and ¢; as the generator
of the U(1) gauge orbit. Aside from how to implement the mass-shell constraint, the main
difference between the two proposals is that (2.8) contains the U(1) gauge generator while
(2.6) contains a U(1) gauge-fixing condition in the form

(A—A). (2.11)

To understand why the old proposal (2.6) is problematic and why it still yielded the
free equations of motion correctly, let us revisit the general theory of constrained Hamilto-
nian dynamics, building upon appendix A of ref. [8]. The system consists of Hamiltonian
H, symplectic form w, abelian gauge generators ¢4 and gauge fixing functions y*. The
minimal requirements are

{94, H} =0, {pa,08}=0 Cp:={x* o5}, det(C)#£0. (2.12)

In general, the gauge-fixed action is written as

S = /dt (piq'i — H— k%, — /%AXA) . (2.13)



The Lagrange multipliers (HA, k4) enforce the constraints ¢4 = 0 = x*. The variation of
S with respect to the dynamical variables (p;, q%) gives the equations of motion. The time
evolution of a generic function f(p;,q") is computed from the Poisson bracket

a _of ; of . _ A A
&= o +8pipz—{f,H+/<& da+Rax"}. (2.14)

For consistency, the equations of motion should not induce change of ¢4 and x* in time:

doa _ o dx?

2.1
dt dt (2.15)

The vanishing of d¢4/dt and the minimal requirements (2.12) imply 54 = 0. Hence, we do
not see directly &4 in the final form of the equations of motion. The vanishing of dx*/dt
implies k4 = —(C~HAg{x?, H}. We can either choose some x* to fix x4, or prescribe
some £ to fix x4 implicitly.

If some of the x* multipliers can be set to zero without violating the requirements
(2.12), the corresponding ¢4 will not directly contribute to the equations of motion and it
may look permissible to exchange the roles of ¢4 and x“. That is precisely what happened
to the free twistor model. But, as soon as we add interaction terms in the action, the
distinction between the gauge generators ¢4 and the gauge fixing conditions x4 becomes
evident. By the very definition of gauge redundancy, the interaction terms are required to
Poisson-commute with all ¢ 4 in a sense to be specified below. On the contrary, there is no
reason for the interaction terms to commute with x*.

To conclude, in view of the general theory of constrained Hamiltonian system where the
gauge generators and gauge-fixing conditions play different roles, we need a new proposal
for the free action (2.8) to incorporate interaction terms.

2.1.2 Regge trajectory

Due to rotational kinetic energy, the mass of a spinning top is in general not a constant,
but rather a function of the spin-magnitude W? = (y - p)? — y?p?. The derivative m/ =
dm/d(W?) is colloquially called the “Regge trajectory”. For a free spinning particle, the
angular velocity is (2m/) times the spin, so (2m’) ™1 is the relativistic rotational inertia [8].

In most applications, where we do not keep track of the angular velocity and focus
on the (x,y,p) variables, the Regge trajectory does not affect the dynamics. Specifically,
the equations of motion for (z,y,p) are independent of m’. In the rest of this section, we
will see, from a few different but related angles, how the Regge trajectory m’ decouples
from the dynamics of (x,y,p). From the next subsection on, we will set m’ = 0 to simplify

computations.

2.1.3 Dirac bracket and effective phase space

To describe the physical phase space of the free twistor theory, it is convenient to construct
the Dirac bracket. The ingredients are the unconstrained Poisson bracket (2.3), the gauge
generators (2.9), and the gauge-fixing functions (2.10).



Let us first consider the case of vanishing Regge trajectory (m’ = 0). Using

Cp = {x" ¢n} = (AOA ?) : (2.16)

we construct the Dirac bracket in the standard way,

{f.gt ={f. 9} —(C % ({f,0aHXP. g} — {9, 04 X", 1}) - (2.17)

The non-vanishing brackets among the twistor variables are
1
{Ar®, As”he = 0507 — SAa” (A7,

o . 1o 14
[0, X ke = 0505 — 53,500

. (2.18)
{i1*, s} = —3 {ﬂla()\_l)ﬁ —ﬂJﬁ()\_l)IQ} ;
{/’LdIMU'BJ}* —_ _% [NdI(Xfl)BJ o MBJ(}\fl)o'J] .

We can certainly use these to compute the Dirac brackets among the U(1)-invariant com-
posite variables (z*, y*, p*). But, since we are interested only in the dynamics of (x*, y*, p*)
variables in the bulk of this paper, we can take a shortcut.

We can regard the 16-dimensional unconstrained phase space as a fibre bundle with
the base coordinates (x,y, p) and the fibre SU(2)xU(1). The original Poisson bracket (2.3)
projected onto the (x,y,p) base space can be written as
oV LoV oV .
{7}0277#”&/\8 YRy -y -p) 00
oxk " Op¥ p? oxk " Oyv
nz
lypl (0 0 9 0
2p?

(2.19)

oyt oyv Ozt Oxv

The transition from the Poisson bracket to the Dirac bracket can be done within this
effective description. Since (x,y,p) are all U(1) gauge invariant, we can simply disregard
the pair (¢1, x!) and take into consideration

1
b0 = 5(102 +m?), xX'=-z-p. (2.20)

The resulting Dirac bracket on the (z,y, p) base space is
Hp\ O 0 Hp? — ph¥ (y - 0 0
(= (2P A9y —nly-p) 9
p? ) Oxt  OpY p? Ozt Oy

_e“”[y,p] i/\ 0 0 A 0 _ac[“p”] 0 A 0
2p? oyt Oy¥ Ozt Oav p2 Oxt  Oxv

(2.21)

It agrees perfectly with the full Dirac bracket (2.18) evaluated over (z,y,p).

Let us summarise the content of the effective description. The phase space is effectively
nine dimensional: twelve coordinates (x*, y#, p*) with three constraints,

pP’4+m?=0, p-y=0, p-z=0. (2.22)



By construction, the Dirac brackets of the constraints automatically vanish:

{f7p2+m2}*:07 {f,p-y}*zo, {f,p'a?}*:(). (2‘23)

Incidentally, the Dirac bracket is consistent with fixing the magnitude of spin:

{f,y°}«=0. (2.24)

So, the phase space is eight dimensional in a sense, although the conservation of y? is of a
dynamical origin and shouldn’t be put on an equal footing as the true constraints.

In later sections, we will study scattering processes of the twistor particles, where the
interaction is (asymptotically) turned off at the infinite past and future. It makes sense to
use the (effective) free phase space for each particle to describe the asymptotic scattering
states.

For completeness, we also compute the Dirac bracket when the Regge trajectory is
non-trivial (m’ # 0). Remarkably, the C-matrix (2.16) is not altered by m’ at all. Tt
remains to compute the (m’)-dependent terms from {f, ¢o}{x’, g} in (2.17).

In terms of the twistor variables, the function Y is given by
1 ..
XO = —T-p= 5 ('u,al)\]d —+ /._L[a)\al) . (225)

It follows that

1 . 1
{X07 )‘Oél} - +7)\OLI 9 {X07 NOJ} = _§MQI 9

] : - (2.26)
{(X°, Ara} = oA (X" "} = —ghr”
The W tensor is defined as [8]
Wiy = —i (1% (1A e = Aa@in®) - (2.27)
It is normalized such that
w2 = éWKLWLK = (y-p)* —y’p°. (2.28)

The (m’)-dependent terms from {f, ¢9} come from
{f,m(W?)*/2} = mm/{f,W*}. (2.29)

It is useful to note that

{)\a17W2} — *i)\aKWKI, {,U,CU,W2} — *Z'/LdKWKI,

_ ‘ _ ‘ (2.30)
Mo, W = +iWrf Ao, {r®, W2 = +iWr S g™
The full Dirac bracket consists of two parts,



where {X, Y'}? is the result for m’ = 0 stated in (2.18) and {X, Y}, denotes the (m') terms.
Using (2.26) and (2.30), it is straightforward to show that the (m’) terms are

im/

{)‘0/7)‘,3]}; ~ om [+(/\aKWKI)>‘BJ ~ A (/\ﬁKWKJ)] ’

I~ ’ m T K Iy I Ky
Dol Ak = 5 [+ O 5+ AT (W5 S )]

. im’ - . .
Dl i = S | = O™ Wi ) Aal(uﬁKWK‘])} ’ (2.32)
im' T '

{)‘alvﬂfg}; = % *()‘QKWKI)[LJB + )\OLI(WJK/‘_I’Kﬂ):| y

ol pav T ko N BT L Al BK i L
™ 7Y = o =W W™+ ™ (07 Wi )} ,

al — B/ im’ [ aK In- B &l K- B
(T 1Y, = S [~ Wi = (WS )|

and their complex conjugates. They agree perfectly with Dirac brackets computed in ref. [8]
despite the differences in the choice of constraints.

Comparing (2.32) with (2.18), it may appear that the non-vanishing Regge trajectory
complicates the Dirac bracket significantly. Fortunately, when we focus on the effective
(x,y,p) phase space, the complication disappears completely and the Dirac bracket (2.21)
remains valid. In essence, the reason is that the (m’)-terms in (2.32) all involve infinitesimal
shifts along the SU(2) little-group, but the (z,y, p) variables are little-group scalars.

2.2 Interacting theory

In this subsection, we explain how to couple the twistor particle to a background electro-
magnetic field minimally using the Newman-Janis shift.

2.2.1 Symplectic perturbation theory

Given a Hamiltonian system defined by (2.12) and (2.13), we may consider two types of
deformations. A familiar way is to deform the Hamiltonian,

H=H°+qH, (2.33)

where ¢ is a continuous perturbation parameter. We demand that the gauge generators
are independent of the deformation. The requirement (2.12) implies that

{¢a4,H°} =0={pa, H'}. (2.34)

Then all the statements around (2.15) remain valid for any value of g.

An alternative way to deform the theory, which we adopt for our twistor model, is to
keep the Hamiltonian fixed and deform the symplectic form [11]:

w=w’+qu. (2.35)

~10 -



This is equivalent to keeping the Hamiltonian fixed and deforming the Poisson brackets
used in equations of motion (EOM). For a non-spinning particle, a key feature of the
symplectic perturbation viewpoint is that w’ = F = dA is manifestly invariant under the
gauge transformation of the Maxwell field and that we do not need to distinguish the two
notions of momenta (canonical vs kinetic). This feature will generalise straightforwardly
to our twistor model.

Again, we demand that the gauge generators are independent of q. We should make
sure that the requirements {¢p4, H} = 0 = {¢4, ¢} hold with the deformed symplectic
form. Perturbatively,

{f.9} = /.90 — alf, ("o {C", Yo + O(d°) (2.36)

where (™ is an arbitrary coordinate system on the phase space and {e, e}, is the Poisson
bracket defined by w°.

For a random choice of w’, the perturbation term has no reason to vanish:

—q{¢a, (" own{C", @B}0 # 0. (2.37)

But, if we change coordinates (at least locally), ("™ — (2%, w®) where 2! are gauge-invariant
while w® are gauge-dependent, and take w’ = %ngdzi A dz? with no dw® components, it is
immediately clear that {¢4, H} =0 = {¢a,¢p} hold ezactly.

Coming back to our twistor model, recall that the new free action (2.8) carries two
gauge generators ¢g, ¢1 in (2.9). Since the Poisson bracket is antisymmetric, the only
issue is whether {¢g, @1} = 0 continues to hold in the interacting theory. But, as long as w’
consists only of U(1)-gauge invariant coordinates such as p,, and z* = z#+iy#, {¢po, 1} =0
would follow trivially.

A common feature of a relativistic particle theory, shared by the spherical top model, is
that the mass-shell constraint ¢g = (p?+m?)/2 also generates the worldline time-evolution.
Ignoring other gauge generators temporarily, the equation of motion of the free theory is

Y~ 007,00 (2:38)

There are two equivalent ways to express the equation of motion of the interacting theory.
One is based on the infinite series [11],

w = (W) = g(w) W (W) T+ A (W) T (W) T (W) T

1 d o

E% = {f’ QSO}O - Q{fv ZZ}sz'j{Zj7 ¢0}o (2.39)
+a*{/, Zi}owz{j{'zj’ #Yowta{z doYo + -+

The other is more compact,
w—l _ (WO)—l _ q(w0)—1w/w_1

1d o (2.40)
E% = {f7 ¢O}o — Q{f, Zz}owij{zj, (bo} ,

but less explicit in that the last term involves the Poisson bracket of the interacting theory.
Of course, (2.40) can be iterated to reproduce (2.39).
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2.2.2 Minimal coupling via Newman-Janis shift

The unification of (2*,S,,) into the complex coordinates (z, z) defined by (2.4) and (2.5)
opens up an avenue for implementing the Newman-Janis shift [6] into the dynamics. It
led one of the authors to the concept of “spinspacetime” [41] which unifies spacetime and
spin at the fundamental level, which has refined Newman’s early idea [42]. Our twistor
model is a new member of existing attempts to incorporate the Newman-Janis shift into
the dynamics [7, 43].

In the twistor model, the root-Kerr particle is defined by the minimal extension via
Newman-Janis (NJ) shift from Minkowski spacetime to spinspacetime [11, 41]. To introduce
the minimal extension, we begin with the usual coupling of a charged scalar particle to the
Maxwell field and split it into two pieces,

Sint :q/AH(x)dm“ :q/A+( )dx“—l—q/A (2)dz” | (2.41)

where ¢ is the charge and the convention fixed by A, = (—¢, A). The superscripts (+)
denote the self-dual and anti-self-dual parts in the sense that, under the hodge dual * on
the field-strengths,

T = dAT, «FT = 4iF* (2.42)

The minimal NJ shift correlates (anti-)self-duality and holomorphy of the complexified
spacetime as [7]

Sint —q/AJr dz“+q/A )dzt = —/A+ (2)dz" — g/Ada(z)dzdo‘. (2.43)
In the parlance of the symplectic perturbation theory,

W= (W) + (W) iF’j’( z)dz" Ndz" + 2FW( z)dz! A dzY . (2.44)

Compared to the non-spinning case where w’' = %F w(x)daxt Adx, the Newman-Janis shift
introduces a complicated non-linear deformation depending on the y* coordinate. But, the
invariance under the Maxwell gauge transformation is still manifest.

As usual, the coupling (2.43) plays a dual role; it enters the equation of motion of the
charged particle, and it acts as a source term in the Maxwell’s equations. We focus on the
former aspect in this and the next section, leaving the latter aspect to later sections.

2.2.3 Equations of motion

Adding up the free part (2.8) and the interaction part (2.43), the full action of the root-Kerr
particle becomes

0
S = [)\alﬁf" + Arafi™ — %(mQ —AA) — "W + qA;'Lr (2)2" + qA,(2)2"| do. (2.45)
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The variation of the action with the vanishing Regge trajectory (m’ = 0) gives

OAA 1
58 = 0" [M + A+ ’;Z.ma]
< KTAA AA ~ 4 K o

. - /{1 _ . ,L;l
+optt [—Am - .)\Id] + o [—)\al + .Aal]
29 29
+ 52 [qFlj;( )E ] + ozH [ W(Z)E”]

kOAA KL
Foa F+
5 QiM +qF,,(2)2"

N (2.46)

r 0A A 1
o | g0d 4 BB s-nyer U g X e
ke [+ SRR O Bt B ()2 T

. _L 17
—op" | Ara + %)\Id +qF L (2)2 ah, ()\1)1a]

-- 1 - .
— oa” Aaf—g—ixaqu L(2)2 ok (A*)ﬂ .

In the last step, we used the incidence relations to express 6(z, ) in terms of d(ju, A, fi, ).
To specify the equations of motion completely, we have to fix the Lagrange multipliers 1.
A convenient choice to be used throughout this paper is

K=—, k'=0. (2.47)

i = =S D = aB ()2 ol (Dt
af _ M s-1\ar —(5\3V P 5 BN—1\BI aJ
A = =5 )T = b () o m (A (AT (2.48)
Ag = —qF;,(Z)ZVO'Za()\_l)]a,
I _ — =\ 2V —1\ad
A01 - qF/,u/(Z) UZ@()\ )

The equations for the U(1) gauge invariant variables (p, z, Z) are, in the vector notation,

Pu = qF, (2)2" + qF,, (2)2

. p“ 2’Lq . o — (7>

= [+ DY+ i€y o] F (2)2, (2.49)
. p“ 22q ;v ;

== P Y — iy FA(2)2,

where we applied the constraints y-p = 0, AA = m? after deriving the equations. We may
turn on the Regge trajectory (m’ # 0) and repeat deriving the equations. Not surprisingly,
the twistor equations receive new terms proportional to (m’), but (2.49) remains unchanged.

The appearance of time-derivatives on the RHS of (2.49) may look peculiar. But, it is
a generic feature of the symplectic perturbation theory explained earlier. It is easy to see
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how (2.49) fits with the general structure of (2.40):
{f7 AA} = {f7 AA}O - Q{fa ZV}OF:;\{Z/\7 AA} - Q{fa EV}OFU_)\{E)\? AA} : (250)

Finally, turning on the Regge trajectory (m’ # 0) modifies (2.48) slightly, but leaves (2.49)
unchanged. In what follows, we take (2.49) as the fundamental EOM for the twistor particle
and use it to compute physical observables.

Unless the background takes very special values, it would be impossible to solve the
EOM exactly. We approach the problem as a perturbative expansion in ¢g. The EOM
truncated up to the 2PL order is given by

m m
4q” [ P 2¢° 1 + - —Ft 3
+ S WFTF y) + — " [(pF T F y) + (pF~ Fry)] + O(¢°),
m ’I?”L2 (2.51)
: q _ 4q - -
i = L Py — i [Py (FH — 0F ) (P 5 + 0,
= (T 0).
Here the scalar product of vectors and tensors are defined as, for example,
(PFTF7y) = pu(FT)0(F7) py” . (pF7y) = pu(F)"0y” . (2.52)

3 Scattering observables

We compute the scattering observables (velocity kick and spin kick) of the massive spinning
bodies in the conservative sector up to the 2PL order; 2PL is the lowest order where our
model may disagree with other models implementing the (dynamical) Newman-Janis shift.
Before we compute the observables of our twistor model, we present a general description
of the scattering observables that is valid in any (Hamiltonian) worldline model.

3.1 Classical eikonal as scattering generator

The eikonal phase has proved useful in quantum and classical scattering in field the-
ory, gravity and string theory; see ref. [44] for a comprehensive review. In the context
of amplitudes-based methods for classical gravitational scattering, several variants of the
eikonal phase are available in the literature such as the HEFT phase [45], the radial action
[46], and the exponential representation [47, 48] just to mention a few.

Here, we introduce the notion of “classical eikonal” which is a particular classical avatar
of the eikonal phase. Simply put, the classical eikonal is the generator of the canonical
transformation between the initial states and the final states of the scattering problem. It is
motivated by the classical limit of an S-matrix, but in can be defined purely within classical
mechanics. The definition is valid in any worldline model in Hamiltonian formulation. The
relevant phase space is that of free particles, just as the scattering states of a quantum
scattering process are defined on the free Hilbert space.
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Scattering generator We first recall the KMOC [49] method of extracting a classical
observable from a quantum theory:

A0 = lim | (I$1O8[y) - (W|Ol)| - (3.1)
We can trade the unitary operator S for a hermitian operator § as [47, 48]
S =X/ (3.2)
Forgetting about the state |¢) and working in the Heisenberg picture, we have

0' = 510§ = /MO

=0+ 1.0) ol [ O] + .
- Zh X7 2(Zh)2 X7 X7 .
Following Dirac’s correspondence,
1 . .

lim —[X,Y] ={X,Y A4

lim = [X, V] = (XY}, (3.4
we deduce that the classical limit of (3.3) should give

1
O'=0+ {0+ {6 O+ (3.5)

The classical quantity x, which we call “scattering generator”, is to be understood as a
function on the phase space of a Hamiltonian system. The scattering generator defines a
canonical transformation that maps a free phase space at past infinity to another free phase
space at future infinity. For a constrained Hamiltonian system with gauge generators and
gauge-fixing conditions, y must be gauge-invariant. If we also demand that O is gauge-
invariant, the difference between the Dirac bracket and the Poisson bracket shown in (2.17)
vanishes, so we may work with the Poisson bracket (2.19).

We used the classical limit of quantum mechanics to motivate the existence of y. But,
it is certainly possible to argue for its existence purely within classical mechanics. The
Hamiltonian time evolution generates infinitesimal canonical transformation at each mo-
ment in time. Integrating the time evolution from past infinity to future infinity would
result in a finite canonical transformation. Provided that the general relation between a Lie
group and its Lie algebra holds for the (infinite dimensional) group of all canonical trans-
formations on the free phase space, any finite canonical transformation could be written in
a “conjugation” form as in (3.5).

The master formula (3.5) can compute any scattering observable. Perturbatively, with
X=X+ X2 FXxE o (3.6)
it produces systematically all n-PL impulse formulas
A0 = {x@), 0},
A2)0 = {x(2),0} + %{Xu), {xa), 01},
A3 O ={x@),0} + %{X(z), {x),0}} + %{X(na {X(2),O}}

1
+ E{X(l)’ {x@) {xq),0}}}-

~15 —



An important feature of the master formula (3.5) is that, once all the constraints of
the system are taken into account by a suitable Dirac bracket, the preservation of the
constraints is guaranteed to all order in perturbation theory. For the twistor model, recall
from section 2.1.3 that the Dirac bracket satisfies

{£.0° e ={f,v*}e ={f,y-p} =0. (3.8)

When f is gauge invariant, the Dirac bracket can be replaced by the Poisson bracket.
Setting f = x = Xxq) + Xx(2) + -, since each x(,) scale differently with the coupling
constant, we deduce that at each n,

P X))} =0, ¥v-{Xm)¥} =0, v {X@w),P}+p {Xm)y}=0. (3.9)

From a perturbative point of view, the iteration terms in (3.7) are essential for consistency.
For example, at 2PL, the iteration term in (3.7) ensures the mass-shell condition:

2p - Ay = 2pu{x(2), P} + puixay, {xq), P"'}}

(3.10)
= {x(1): Pufx)> "1} — {x1) P Hx ), 2"} = —(A)p)?

where we used (3.9) and the Leibniz rule for the Poisson brackets. In view of (3.9) and
(3.10), when we compute the 2PL observables later in this section, we will call {x (), O}
and %{X(l), {Xx), O}} “transverse” and “longitudinal” (or “iteration”), respectively.

3.1.1 Non-spinning example

Arguing for the existence of x is one thing, giving an algorithm to compute y is another. It
seems plausible that the “WQFT eikonal” xwqrt [50] coincides with our classical eikonal x.
We will verify this expectation up to 2PL by explicit computations. Proving the equivalence
to all orders in perturbation theory is an open question, which requires incorporation of
bremsstrahlung effects.

Before we compute the scattering generator and observables of the twistor model, to
illustrate the ideas in a simpler setting, we review the binary dynamics of non-spinning
particles in electromagnetism following ref. [49], which shows how to separate the transverse
term {X(2),p} from the longitudinal term %{X(l),{x(l),p}}. The solution of the EOM
involves retarded Green functions on the worldline. When the solution is split into the
time-symmetric part and the time-anti-symmetric part, the former gives the transverse
term while the latter gives the iteration term.

The 1PL momentum kick is well known:

etk-b

A(l)plf = —Q1QQ’}//(ik“> ) 5(’01 : k)é(vg : k) (3.11)
k

where the velocity vectors are defined as vl := pl/m, and the relative boost is defined
as v := —(v1 - v2). The impact parameter b* is the projection of the relative position

ziy = ' — a2} onto the plane transverse to vy and vs.
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The 1PL momentum kick (3.11) satisfies (3.7) rather trivially as

X kb
At =" —+={xqa), i}, x =—q1qzv/ —, (3.12)
(LP1 OxY (1)1 1) kL L2
where the integral over the transverse plane is defined as
/ :/d4k5(vl-k)5(v2-k). (3.13)
ki

As we proceed to the 2PL, it is useful to recall that the computation can be organized
according to the mass ratio:

Apyph = 7K1 1+ K{L27 Apyph = m—lKgq + Kg‘z (3.14)

The vectors K 5 , are integrals independent of the masses. The conservation of (P} + )
requires that

Kil+K§1:O, Kﬁ2+K§2:O. (3.15)
The exchange symmetry between the two particles relate the integrals by
Kf’1<—>K§"2, Kf’2<—>K§fl. (3.16)

So, it suffices to compute K7';. To do so, we may work in the probe limit (mg — 00) [51].
In the rest of this section, we will work in the probe limit until further notice.

The 2PL EOM of a spinless particle in the probe limit is given by
ot = Lpngr o DX g gy (3.17)
@) = 0 v T MO v E) .
where F' means F(g). Using the Bianchi identity, we may rewrite it as

Y q AV d q v
iy = (@ Ex)adyoly + 3 (S Fhal)) - (3.18)

The total derivative on the RHS does not contribute to the momentum kick, so that

Apyph = q/da((‘)“FAl,)xf‘l)vé’o)

2 0o o o’
q v / 1"
= — d “EN, d do" F* o” .
m /oo O-(a g )U(O) [/oo 7 /oo 7 PU(O)]

(3.19)

Performing Fourier transform of (F),, F ) by (e“*, ¢?*7) respectively, and switching to
q =k + £, we obtain
2 [ S 0) (-0
Apgph = (9192) / “Y‘b/ 2 0y |1+ 42 . 3.20
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The i0T prescription comes from the retarded Green function on the worldline. To separate
the time-symmetric parts from the time-anti-symmetric parts, as explained in ref. [49], we
apply the exchange ¢ <+ ¢ — £ to get

(q192) Gith vy - 5 . . l-(qg—1)
A(g lf /qL T /62 Zgu) |:1 +’72m . (321)

The next step is to take the average of (3.20) and (3.21) and write the result as

Apl = AP, + A | - (3.22)
The time-symmetric part carries an integrand proportional to ¢* so that
(q192)* / '-b/ 6(v2- ) . 2l (g — 1)
A 9 ——(ig") |1 — . .
@], = 2my J,, € 2 (q— 1) (ig") |1+~ (v1 - €)2 (3.23)

It yields the 2PL eikonal via Ap}| o+ = 1X(2),1'}- Omitting the i0™ prescription that is
no longer needed, and restoring the symmetry between the two particles, we obtain

(QIQQ / qb/ (v - E ol (¢ —1)
! _ 1 2). .24
X(2) = 2mi Jy, 2(q +7 (vy - 0)2 +(1+42) (3.24)
It agrees perfectly with the WQFT eikonal [52]. The time-anti-symmetric part of (3.22) is
Q1q2 iab it i
A _ g _
(2)P1 ’lter 2my / / k:2€2 [(Ul 04+ i0+)2 (Ul P — Z'O+)2 (3 25)
(q192)*7 / ‘q.b/5( 29 , '
= ! k-0)Fo (v -0
omy [, ¢ ), e B O 0,
where k = ¢ — ¢ and we used the identity,
! L ! L (3.26)

x40tz —i0F (z+1i0%)2  (x —i0+)2

We may compare it with the iteration term. From (3.12) and (3.11), we find

*{X > {xq), P} = (Chqz) { /lu ;:zba’Y/L o %“}7 (3.27)

In computing the bracket in (3.27), we note that

U1 Vg ei'x_x Y= 1 Vg e’i']?—l‘ “{(_]:)—24_])1):0 3.28
§(v1 - k)8 (va - k)ek(z1—e2) §(v1 - k)8 (va - k)ek(z1—e2)
mims
So, the only non-vanishing contributions come from
{eF@1=22) 500 O)5(vy - €)} and  {8(vy - k)8(ve - k), e @12 (3.29)

Collecting the contributions, we obtain (in the probe limit)

1 1 i k-4

7{X(1)7 {X(l)?p/f}} = _(Q1Q2)272/ (k)b 2 2f(k,€)€“7

2 2 k.t k20 (3.30)

5/(211 . £)8(U2 . f)

mi

F(k,0) = 8(v1 - k)3(vs - k)

— (k< 10).

~ 18 —



Using the identities,

0@ +y)o(y) =06(x)d(y), oz +y)d'(y) =d(x)d'(y) —0'(x)d(y) , (3.31)

we can simplify (3.30) a bit further and obtain

1 (q192)"7* ;
§{X(1)7 {X(l)vpllt}} == 2) / qb/wg 5/ 1:0)6(va- 1), (3.32)
qL

2m1

in perfect agreement with (3.25).

In the paragraphs above, we manipulated the integrands of the Fourier integrals to
separate the iteration term. In the non-spinning case, it is easy to perform the Fourier
integral and compute the brackets in position space. We write the impact parameter as

Y(z12 - v2) — (T12 - V1) Y(z12 - v1) — (212 - V2)
o vy + o vh (3.33)

bM = fUéLQ +
where 2y, = z{ — z§;. The 1PL non-spinning eikonal is, after the Fourier integral,

_ qey (1 v
X0~ A1 L + log (bﬁ)] ; (3.34)

where € is the dimensional regularisation parameter D = 4—2¢ and bg is a scheme-dependent
constant. The precise values of € and by are irrelevant. The relevant brackets are

Y T
B2~} =0 sop, (R pry o (2 T T 3.3
{ 77} ) { 7p1} { ) } ((72 — 1)m1 ("yg — 1)m2 ’ ( )

where = denotes equivalence up to mass-shell constraint p? + m? = 0. Thus,

2
qq
x> {xq), i} = m] {log b?, {log b%, pi'}}

4Ty -1

_ Q1QQ’7 b2] {b2 {b2,p1}}—2 [4 Q1Q27 b2] {b2 b,u}

2
agey 11 < i —of ol —vh )
| 2m\ /72 — 1 Vb2 (V=1mi (2= 1)mg
T po_
2 yuh — v vyl —
= [{xw.pi}" x ( R Rl v v > :

(V¥ =1Dm1  (7* = 1)m2

(3.36)

This term generates the longitudinal impulse needed to preserve the mass-shell condition,

pia{xay {x), P03 = —{xq). pi'}- (3.37)
3.2 Momentum kick and spin kick from EOM

In the scattering problem of two spinning particles, the momentum kick and the spin kick
are the main scattering observables. In this subsection, we compute them up to the 2PL
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order by solving the EOM perturbatively. The perturbation computes the deviation from

the free (straight line, constant spin) trajectory for each particle,
2H(o) = (x?o) + iyé‘o) + ’UELO)U) +62H(o), (3.38)
(o) = m(vé‘o) + 0vt(0)).

Without loss of generality, and taking constraints into consideration, we demand that the
constant parameters satisfy

vy Vo) = —1, (z() +iy)) - v@o) =0. (3.39)
The perturbative solution is arranged in the PL order as
I
O (3.10
Bo— H H .« e :
O =y + gy o

where X, is proportional to ¢". To avoid clutter, we will often omit the subscript X g
from background values.

3.2.1 1PL

At 1PL, the equations of motion are reduced to

, q - v
'U'Ej‘l) = E(F(—g) + F(O))HVU(O) y (341)
. 2iq , y
2y =" T o, Fo) vy (3.42)

It is understood that F] (%) here are evaluated along the background worldline (3.38).

In computing the impulse of particle 1 to the 1PL order, we may treat particle 2 as a
stationary source. The field-strength measured at the position of particle 1 is given by

k v } v k» ik -z
F;Z/(Zl(o-l)) _ l% / 5(1)2 . k)( A /UZ),U e ey [ UQ]ezk (21(01)—22(0)) ,
k

Falaa(o) = 12 [ 80y iy 02 Ll el oo
k

(3.43)

where the worldline time-dependence from 25 (02) = (x4 + iy} + vho2) has been integrated

out to leave 6(vy - k) behind. The wedge and the epsilon notations mean
aAb),, =aub, —b,a,,
( )IU’ 2 [aatd (344)
€uwla,b] = €upea’d”,  €ula,b, c] = €upea”bc”,  €la,b,c,d] = €upeatb’cd .

Contracting F’ jﬁ, with v} and integrating (3.41) over o1, we obtain the velocity kick,

41492 nyku + 6‘“[]?, U1, UQ] ik- 7
Al = “omy / 12 et o)
ki
q1G2 k! — e[k, v1,v2] oy
S, /}CL 2 e (3.45)
ik-b
- _q1q2 / [(Zk'u) COSh(k ' y)/y - eﬂ[k’ U1, UQ] Slnh(k; : y)] ‘ 2
my k1 k
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The argument of the exponential is decomposed as
A =2y = (27 —ah) +i(y +yh) = 2y, + iy, (3.46)
and 1, is projected onto the impact parameter vector b by &(v1 - k)d(vs - k). Note how the
spin sum (v + y4) arises from the difference between complex spinspacetime coordinates.
Similarly, we can compute the spin kick and find

etk-b

A(l)y’f = (]1(12/ [i(k A vo)Hyyy cosh(k - y) — €[k, ve, y1] sinh(k - y)]

3.47
my ]ﬂ_ k2 ( )

It is easy to verify orthogonality and conservation of magnitudes of velocity/spin at 1PL:

A(yr -v1) = (Ayr -v1) + (y1 - Avy) =0,
A(v?) =2(Avy -v1) =0, (3.48)
A(y) =2(Ayy - 31) =0.

The 1PL observables can be compared with predictions of QED in the classical limit.
We use the results of ref. [53] as the reference. When truncated to linear order in y, (3.45)
and (3.47) are found to be consistent with (4.45) and (4.46) of ref. [53], under the conditions
C; =1, D; = 0, and the covariant spin supplementary condition. Note that the spin tensor
kick AS*" reported by ref. [53] receives contributions from both (3.45) and (3.47).

The 1PL observables can be reproduced by the classical eikonal as [54]

, 0
Ay = {xa),vi} =n" 57 X(1)
1
) 5 5 (3.49)
Ao = py Lo v '
¥ = {xq) v} - [vl Y gur +€ [vl’yl]ayf] X(1)
An explicit form of the 1PL eikonal is
_sinh(k - ekt
X(1) = —q142 //n [cosh(k Y)Y — Zk:(- p y)e[k,m,vz’y]} TR (3.50)
To reproduce (3.45) and (3.47) from (3.50) via (3.49), we need the identity,
ktelk
Rrelk, o1 02091 it oy, v (351)

k-y

The approximate equality (/) means that we may impose the transversality condition
k-vy =0 = k- vg and ignore ultra-local (o< k%/k?) terms inside the integral. With this
understanding, the identity above can be derived from the 4d Schouten identity,

alelb, c,d, e] + ble[c,d, e, a] + cteld, e, a, b]

(3.52)
+ d"ele,a,b, c] + etela, b, e, d) = 0.

In what follows, we will not distinguish the approximate equality from the strict equality.
Inside the integrands of the Fourier integrals, we will take the liberty to set

=0, =0, k-vg=0="L-vy, (k+£)-v;=0. (3.53)
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3.2.2 2PL

The 2PL equations directly relevant for the impulse computation are

. q — 14 q — 14
¥y = —(Foy + Fig) "oy + —(F(T) + Fip))"vely
. q -+ — v q + — v
=1 (F F )4, —(F FoOH,
ey = o Foy + Fo)" vy + —(Fqy + Fq) (o) (3.54)

Ag? - + + - “
— iy [(F ) (F) = F ) (F )] ) uly -

2PL velocity kick As we saw in the non-spinning case, it is sufficient to work in the
probe limit (m1/mg — 0), and we can use the Bianchi identity and discard a total derivative
to get

A" = q/da(a“Ffu)Z?n”(Vo) +q/d0(3“F{V)z(A1)”(Vo)‘ (3.55)
Next, using (3.42), we can turn (2(1), Z(1)) into integrals,
A" = Apyp" + Aayp",

2 00 o o’
Appyp! = % /_ doO*(F* + F7) () [/_ da'/_ do”(FT + F_)Apvfo) ,

" 2Zq2 [e'e) i . o , Y p (356)
Apyp' = ] do (9" FY,, )v(o) N do'(F7) oY(0)
22(]2 0 wm— v 7 / +\A P

¢

We divided the computation into two parts. The “y-part” (A(g,)p#) is linear in y; aside
from the y-dependence in the exponential factors. The “v-part” (A(gv)p“) is independent of
y1 aside from the exponential factors. While we replace vﬁ) by Z(1) or é(l), we also encounter
terms proportional to (FT)*,(F~)"\ — (F~)",(FT)", but they vanish identically. Let us
analyse the two parts one by one.

For the y-part, after using the field-strengths (3.43) and integrating over the worldline,

we obtain

2 . 5(vg - 0)(il")
Ao pt = (0192) / W'b/ 2 h8& C, + sh8 .
(2)P] . e R ik v, 1 07) (chBHCy +shBS,) , (3.57)

where we set ¢ = k + £ as before and introduce shorthand notations,

chB = cosh[(k — ¥¢) - y], shB =sinh[(k —¥¢) -],

(3.58)
chl = cosh[(k + ¢) - y], shH =sinh[(k+¢)-y].
The functions Cy, S, are
Cy = —elk, C,y1,v1] + 2(v2 - y1 )elk, £, v1,v2] , (3.50)

Sy =i(l-v)[(k = £) -y + 2iy(v2 - y1) (k- £).
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We divide the v-part further into the same helicity contribution (A(st)p“) and the
opposite helicity contribution (A g,,)p"). The opposite helicity part is

0)(ilH)
A 'u = q1q2 / Zq b/ U2 chH vo shH Vo
(200)P1 o z%%km+m)( Cuo + shB Suo) ,

(3.60)
Coo=—(V=D(k-0)+(k-v))(l-v1), Spo=iyelk,1,v1,vs].
The same helicity part is qu1te snnple'
£)(ilt)
Ayl = 0122) / wb/ Olvn 1)(k - £)ch . 61
(21}8 1 n £2k2 lk vy +0+) ( 2)( )C (36 )

In the non-spinning limit (y — 0), it cancels against the +4 (k- £) term of Cy, in (3.60), in
agreement with (3.20).

2PL eikonal As in the non-spinning example, we can extract the 2PL eikonal from the
2PL momentum kick. The key idea [49] is to apply the exchange ¢ <+ k = ¢ — ¢ to the

_AfWAW%ﬂh@_LaWA@W4Mjmm. (3.62)

Since q-v1 = k-v1+£-v1; = 0, the exchange flips the 10T prescription for the worldline Green

integrand,

function. Taking the average of the two expressions and taking the term proportional to
¢" in the integrand, we separate the transverse part of the momentum kick, from which we
read off the 2PL eikonal equipped with the time-symmetric i0T,

o iq-b i i 0%
p € (Zq )j(&k)_{x y P } n o X
! }tr 2 /4 ¢ (251 OxY

_{/aw/j@@.
21& 4

The remaining ## terms in the integrand should be matched against the iteration term,

Pl =5 [ €[00 17050 = TR] = Fxor arp)) - 36

2)
(3.63)

We have computed A(Q)pl from the EOM. It is straightforward to split it into A(Q) P ‘

and A(g)p’f and then read off x (o) from Ay ‘ The final result for y o) i

} iter’

X(©2) = X@2)1 1T X@2)2;

_ _(Q1Q2)2 / iq-b/ §(v2 - £)
X@1 = 2my Jq, ¢ k202(¢ - v1)? Vit+l,

Vi=[~(y* = 3)(k- )+ (k- v1)(£ - v1)] cosh[(k — £) - y] (3.65)
— (k- 0) cosh[(k + £) - y] + iy €[k, £,v1, vo] sinh[(k — £) - y] ,
Vi = —i(l-v1) [—€lk, €, y1,v1] + 2(v2 - y1)elk, £, v1,v2]] cosh[(k — £) - y]

+ (€ v) [(€-v1)[(k = £) - y1] + 29(v2 - 1) (K - £)] sinh[(k — £) - y]
The other half of the answer, X/(2)2, can be obtained from x (o)1 by the exchange of particle

labels (1 <+ 2). Verifying the iteration relation (3.64) is also straightforward, but involves
a lengthy computation; see appendix C for details.
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2PL spin kick To complete the 2PL story, let us compute the 2PL spin kick from the
EOM and confirm that it can be reproduced by the 2PL eikonal we obtained earlier. We
begin with a copy of the 2PL EOM for spin from (3.54),

T - v q -+ _ v
Uy = o Foy + Fo)" vy + - (Fqy + Fq) (o) 566)
Ag? _ _ v '
— ZW [(vF Y (FOH*, — (vFTy)(F )“,,] © Y(0) -

Using the 1PL EOM, we turn the terms on the RHS to integrals,

Ay = Dpayy" + Apny" + Apey" + Apgy”,

2 [ee] o
Do =55 [ doErw Fp, [ o (BT,
—00

—0o0

2 [eS) - o
Beny” = :ﬂ/ doO\(F" + F7)" ) l/ o / do"(F* 4+ FP ol |

2ig? [ o \ (3.67)
A(Qc)y'u = W dUaA(F—‘r)uuyzjo)/ dU/(F_) py'(o())
21(]2 [e’s) 3 . o
- e /_Oo dUa}\(F )#Vy(o) /_OO dU,(F+)>‘py€0) )
T - - v
B = i [ o [(0F ) (s — WF ) (F7)) vy

Both (b) and (c) terms come from the second term on the RHS of (3.66).

Again, it suffices to work in the probe limit; we keep using the Fourier integral (3.43)
of the field-strength produced by a fixed source. After worldline time integrals, we reach
an expression of the form

2
B (qu2) iq-b/ 5(1)2 ) ‘6) i
A(z)yl 2 /ql (& , k2£2(ik3 oL+ O+)2N . (368)

The numerator N'* can be computed separately for each term in (3.67). For (a) and (b)
terms, we also distinguish the same/opposite helicity contributions.

/\/'(‘;ao) = (chH Oy + shB Sy0)" /\/'(’;as) = (chH Cys + shf Sys)"

Nlypoy = (chB Cho +5hB Spo)" , Ny, = (chi Ch + shB Sp)" (3.69)

k= (chBC.+shBS.)*, NI = (chBCy+shESy)*,
(20) (2d)

It is straightforward to evaluate all C, S functions in (3.69). The intermediate steps
involve many terms, but after some cancellations, the final results are often quite simple.
For instance, the same helicity sector gives

Clio + Ol = =5 (k- O [ (£ y0) =1 (- )]

. (3.70)
Sgs + Slljs = _i(k . E)e“[vl,yl,ﬁ] .
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After collecting and simplifying the terms, using the symmetrisation of the i0" prescription,
we extract the transverse part of the spin kick and check whether the result agrees with

1 0
PANNL I e Iy, 1
{X(n)7 yl} my V191 +e [Ulv yl] 8y11, X(n) (3 7 )

oxY
Again, the procedure is straightforward, and we confirm the agreement, but the calculations
tend to be lengthy. We give some details in appendix C.2.

4 Twistor WQFT

Worldline Quantum Field Theory (WQFT) [50] is a means of organising classical equations
of motion in a diagrammatic way that resembles Feynman diagrams of particle physics.
The simplest WQFT model action consists of two parts; the bulk part which describes field
degrees of freedom (DOF's) on the background spacetime, and one-dimensional sigma model
that takes the background spacetime as the target space, where the latter is interpreted as
the worldline action of a point particle moving on the background spacetime. The DOFs are
decomposed into the background value (which satisfies the classical equations of motion)
and fluctuations from the background value, and diagrammatic techniques developed for
perturbative QFT calculations are applied to the field fluctuations. The background value
for the background spacetime is usually taken to be the flat Minkowski spacetime, and the
background value for the worldline is usually taken to be the straight trajectory of a free
particle; z# (o) = b* +vto + dz# (o). The fluctuation DOF's are evaluated as a perturbative
series of the coupling constant, which in the gravitational case is taken to be the Newton’s
constant G.

4.1 Worldline Feynman rules

When we apply the WQFT method to our twistor model, one novelty is that the twistor
variables (A, \, 1, i) are the fundamental variables, and the target space of the worldline is
the twistor space indirectly related to the background spacetime by the incidence relations.
It is natural to express the propagators and vertex factors in terms of the twistor variables.
But, it is often convenient to use the vector variables (z, z) in intermediate steps. We will
use the incidence relations to switch between the twistor variables (“twistor picture”) and
the vector variables (“spacetime picture”) whenever necessary.

Classical limit When £ is restored, the fundamental variables have the dimensions
[)\al] = [E\Id] = [M1/2] ) [:udl] = [ﬂfa] = [Ml/QL} ) [A,u} = [Ml/QL_l/Q] ) (41)

and the coupling becomes dimensionful: [q] = [M'/2L'/?]. The action also becomes iS —
iS/h, therefore the interaction vertices are weighted by A~! while the propagators (both
(\z) type and (uu) type) are weighted by . We have no other # scaling if we only use
frequency w and wavenumber four-vector k* in momentum space, which is allowed because
there is no “mass” in any of the fluctuation fields. Therefore, at a given ¢ order (which
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determines the number of vertices coupling to the photon field), the classical contribution
is determined from the diagrams with the least number of propagators that makes the
diagram connected, which is equivalent to the statement that tree diagrams determine the
classical physics. The tree diagrams, however, generally have momentum integrals similar
to loop integrals of quantum field theory.

4.1.1 Background-fluctuation expansion

In the non-spinning WQFT, the expansion around a straight line trajectory is done by
a2 (o) = by +v'o + ozt (o), vP=—1, by-v=0. (4.2)
After the NJ-shift, the expansion is generalised as
(o) = b + iyl +v'o+ 8z (o), yo-v=0. (4.3)

We should rephrase the background-fluctuation expansion in terms of twistor variables.
As we explained in section 2.1.2, we may assume a flat Regge trajectory m’ = 0. The
resulting equations of motion for the free action (2.8) are

0Stree d)\ozl K

—0=— A W
o 0 do + 21
T .
6Sf1jee —0= 7d)\Ioz . i.)\ld
Sped do 2 (4.4)
8 Stree dar®  KOAA Kl '
e 0 = )\ a —_ @
ol do T g Mg
0 Sk du! OAA ; 1
fee:O: H K ()\ 1)a1_iluod

55\]0’4 do 2 1

Just like in the previous section, we fix the Lagrange multipliers as k° = 1/m and ! = 0.
We introduce the background values £,! and ¢4 satisfying the conditions

det() = det(f) =m, Lo 014 = —mUag (4.5)
where v# is the normalised velocity vector introduced in (4.3). The following relations
satisfied by inverse matrices are useful in calculations.
e”eo‘ﬁﬁﬂ‘] L. e‘j‘fée[‘]ZJﬁ-

ot Y=

(g_l)fa:_ —W, o

The twistor variables are expanded as

Aol = LT+ X1 (0),
(o)

Mo = lra + Aia(0)

Ma N ca E(Z 1) 0,_’_“&[(0,)7 (47)
m

Aart — er® — 5(5 Y% + (o).



The background-fluctuation expansion for z* and z* can be determined from the incidence
relations (A.12),

29— 42 (N — (DM (N Y0 + 629%(0) = 2§ + 0% + §2°Y(0),

| o c . ) . _ 4.8
2y 12T — () () + 058 (0) = 4 v 40580 ().

The relation between the fluctuation fields are determined from the incidence relations.
21 (o) = (2§ +v0) Ao’ (0) + 52°%(0)ls" + 627 (0)Aa’ (o)

i (0) = g 07 o) A L) 95 o)+ S5O, (19)
201%(0) = Aia(o) (zoaa + UO‘O‘U) + 01602%%(0) + A1a(0)02%(0) .

We use the positive frequency expansion,

o) = /k o)™ (o) = / flw)e =, (4.10)

which relates the frequency space coefficients to annihilation modes and incoming momenta.
The frequency space expression for the incidence relation turns out to be more useful

. . . o ONA! .
52(w) = [Maf—zgﬁ/\ﬁf—i—iv“ﬁaaﬁ - / 5zaﬁ<w'>xﬁf<w_w'>} (e,

. o . 35\16 _ B . (4.11)
§24%(w) = (£~ H! lz,ua —AE + 1'87050‘ — /w Applw - w')azﬁa(w')] :
where we have suppressed the w dependence whenever it is obvious.
The free action in terms of the fluctuation fields becomes
< : det()\) + det(X O N g4
Sfree_/[)\ald,u]a-i-/\]dd,ual-i- AA) + et )+m(2 S rda” ()" Ava g,
_ (4.12)

L et s + () Aaldet(R) - det(N)det(3)

do 4| .
2 om o+

where the ellipsis denotes constant and total derivative terms irrelevant for Feynman rules.
The first line determines the 2pt functions, while the second line generates cubic and quartic
vertices.

4.1.2 Twistor propagators

The quadratic part of the free action in frequency space can be written as

8= 5 [ 8+ ) (W) 1) Raa@) 11 (W)

~Leer;  —iwd{og (NN 0 Ag”

4 () (4.13)
X L e (A P | +%61J6a§ —iwdf,ég‘ ;\JB(“) ,
0 0 +iwd] o] 0 1 (w)
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where we used the delta support to convert w’ — —w. Inverting the quadratic action leads
to the twistor propagators in the straight line background:

_B 56(5§ B o B Z'eljeaﬁ )
@) @) = =225 ), (g @) @) =+ L ),
3 ‘ f57 . - P
e ()i () = _aifsfg(w/ ), (W) (W) = = 5w+ w), (4.14)

im (1) ()5

W (@RS ) = =2 B + ).

2
An 0" prescription is needed to determine the causality flow of the 2pt functions; e.g.
for w — w + 0" causality flows from w’ to w. Otherwise stated, we use time-symmetric
i0T prescription in the calculations, which is the prescription relevant for computing the
eikonal [40]. We also remark that all position type 2pt functions (i.e. (uu), (p), and (ui))
should be understood as

ikOdet (Z) GIJGQB

(A (W) () =+ = =58+ w),
e = O g, (4.15
<udl(w’)ﬂJﬁ(w)) _ _modet(j)det(f) (g_l)d;(f_l)ﬂjﬁ(w’ Fw),

when we remove the gauge-fixing condition x° = % and background value determinant

conditions det(£) = det(£) = m. This will become relevant in discussions of causality cuts
applied to the twistor model [55].

Let us introduce a graphical notation for the propagators (4.14). Without the mass-
shell constraint, the worldline propagator would be simply

Z !
Bs I
_ 0aTor (4.16)

w

Z;B

which includes (M) and (Au) propagators. The mass-shell constraint introduces additional
propagators. We denote the (uu), (i) propagators as

Ndl B /—”a
_ _zelJeaﬁ _ +E61J66
2 w? 2 w?

T s

(4.17)

The black dots in the middle remind us of the fact that these propagators originate from
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the (AX) and (A)) vertices in the Lagrangian.* Finally, we denote the (ufi) propagator by

_ _m{” ) (4.18)

The black square in the middle is to show that this propagator comes from the m(¢=1)(¢~1)
vertex in the Lagrangian.

4.1.3 Vector 2-point functions

Turning to the “spacetime picture” where we organize diagrams in terms of §z, 0z, the
following 2pt functions will play a crucial role.

(02%9(w')827 (w)) = —Wﬂd +w),
(679°(w')52% (w)) = —W5(w' +w),
(5290 (@)= ) = 2 Kw G ig) sy
— ipByPe <i, + :}) §Fw +w)|,
where &' (z) = %5(3:) is the delta derivative. Note that terms proportional to w™2 in

(4.19) are contributions from the 2pt functions given in (4.15). We have neglected the loop
contribution to the (0zdz) 2pt function,

ApdaqyBB 1
——5( _— 4.2
m2 (w —i_w)/w1 wi(w —wi) =0, (4.20)

based on two reasons. First, i counting from dimensional analysis requires an extra A

(625 (w')52%% (w)) >

factor for this loop contribution compared to tree contributions given in (4.19). Second,
the loop integral evaluates to zero if we assume invariance under shifts of the integration

L/M:i/w,u‘wzl_w] (4.21)

4This is a valid interpretation of the 2pt functions; we may only regard (4.16) as the fundamental 2pt

variable:®

functions and understand the position type 2pt functions, (4.17) and (4.18), as insertions of 2pt vertices
between products of fundamental 2pt functions. See appendix D for regularisation of the divergences related
to the symmetric 407 prescription of the 2pt functions.

5 Although widely used in dimensional regularisation, this is not a trivial assumption; for example, ABJ
anomalies evaluate to zero under this assumption for (divergent) loop integrals.
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The delta derivative contribution can be simplified by

(- 215 [

w! w! ow' w
_ 9 [ tw)] 9 [3w +w) (4.22)
Oow w ow' w

|y
= Eﬁ(u} +w),

leading to
. ; 2 i(v‘mvﬁﬁ — vdﬁvsa) vdﬁ(ZBa — zBa)
z g PP - _= 0 0 /
(029%(w") 27" (w)) = - ! 2 + " O(w' +w)
i s - P (4.23)
2 |ieBe VB (FY — 25
:_[ 5— + G 0)]5(w'+w),
m w w
so that the delta derivative contribution vanishes. We have used v? = —1 to simplify the
second line; v&@ PP — pdByha — _2¢8B¢af = @BcaB  Note that the term proportional to
w™! implies propagation of spin degrees of freedom y* o< z* — Z*.
In the vector notation, the dz and 6z 2pt functions take the following form,
062 (@) = T 5w +w)
mw? ’
=i / —U inlw /
(024(w)0z"(w)) = — 50w +w), (4.24)
; iy 2 (vHa¥ Mo v F UVAC
(2 ()52 () = - | L 4 2B I 0] | ),

m | w? w

It is useful to present the 2-point functions pictorially. To distinguish them from the twistor
propagators (4.16)-(4.18), we denote 6z, 0z* by squares:

ozt ozt ozt
= (62M02"), = (0z16z"), = (0z162"). (4.25)
dz¥ 6z¥ 6z¥

Finally, separating the position z and the spin-length y, we get

v WIW 1 VAo
(B0t ()2 () = |y = — ey, | Gl + ),
1
(0y" (W)Y (w)) = —%E“l’)‘awyoaﬁ(w' +tw), (4.26)

(6 (') oy” (w)) = % (0"yg + g ") 8(w’ + w) = —(0y" (w')da" (w)) -
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4.1.4 Higher order correlators

For computations at 2PL or higher orders, we will need to evaluate the higher order cor-
relators. We write the 2pt correlators as

s ; 2i6d36a5

(629027 (w)) = —Wﬁ(w’ +w),
da 4 2i6d66a5

(679 (w027 (w)) = —Wé(w’ +w), (4.27)
o - 2i (eiBeaB  opsfyPe

(67%%(w)62°P (w)) = - < T, S(w' +w).

The connected part of the higher point correlators can be computed using the recursive
substitutions

525900 / 5293() x [Agh(w — W) ()]

' (4.28)
Call —>/ YA plw — )] x 0270w,
the 2pt correlators
1 I ' QUW(%
—(C) 1" A" (W)F (W) = ———=8(w T w),
mw
puir st (4.29)
= INaI Y, NS LAY _ B
(1 ()32 (@) = ———L (! + ),

additional vertices from the free action

Shees = & / dor [det(\) (@ Rpg + (€)1 "N det(M)]

1

= / ((l}l)é‘];\m (wWdet(\)[w] + (Eil)ja)\al(w’)det(j\)[w]) 5w +w), (4.30)

2
Streed = /do [det(X)det(A / det(M\)[w']det(\) [w]8 (W + w),
2m
where
ap
et = =52 [ dalw = ” W),
g Y (4.31)
B eaBEIJ _ s ,
det(/\)[w] = 5 y )\]d(w—w))\JB(w),
and determinant insertions to the 2pt correlators
. . B 4 aB a8
(02° (w0)62°2 (wr ) det (M) [wa])) = ———8(wo + wi + wa)
1Mot (4.32)
448 B

(92 (w0)07 (wr)det (M) [wal) =

d(wo + w1 + w2) .
mwow1i
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For example, the following 3pt correlator can be computed as
(079 w0)02% (w1)527 (wa))) = — (T / (Aggwo — )82 (1)) (529 ()52 (wn)
— (e h,” / O (@1 — )37 (w0)) (3278 (w527 (ws)
+ (w1Hw2,5<—>’Y 5<—>’Y)

[ D0 gz )

/

_l’_

DN | .

X (6277 (w1)327 (ws)det () [w'])

where the first three lines come from the expansion (4.28) and the last line comes from the
insertion (4.32). The result partially simplifies to

(029 (w0)027 (w1 )62V (w2)) = —

4iv®B [ eBieay QUBVyga
m? +

) 5((,00 + w1 + w2)

WowWi w2 )
+(w1<%w2,ﬁ<—w,5<—>#) (4.33)
42'1)(5[&6’8&65’7

5 S(wo + w1 +wa),
M*Wowiws

where the frequency exchange is only present for manifest symmetry. In vectorial notation
the last term coming from determinant insertion cancels and simplifies to

A
(02 (w0)82" (w1)82* (w2)) = ——5—— [y (" + 20"0) + 0" (0"} + o)
mrwiws (4.34)
+ i€ [v, yoJv + i v, yo]v”} d(wo + w1 + w2) .
A similar calculation for the conjugate 3pt correlator yields
. ; : 4iv®Y emeo‘ﬁ QUBO‘yw
§z0 5358 85277 - 0 5
{62 (w0)02°P (w1)0277 (w2))) 3 (WMW + oo (wo + w1 + wo)
+<w0<—>w1,aHB,0}HB> (4.35)
Liv7edBead
—5———0(wo + w1 +w2),
mewowiwyg
which, in the vectorial notation, simplifies to
A4
(02" (w0)82" ()82 (w2)) = —5—— [y ("™ + 200" + v (0¥ + pfo”)
m-wowi (4.36)

— i, yoJv¥ — i [, yo]v“} 3wy + w1 + wa).

The following correlator may be of interest,

1

JTYSNN v
(6 (w0) 6y (01)8y™ (w2)) = [WH

wiwsz

T2 + (CYC-)] S(wo +wi +wa), (4.37)
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where (cyc.) denotes cyclic permutation.

Note that 0z and 0z variables do not obey Wick factorisation, e.g. ((6z)(02)(dz)) # 0.
However, purely holomorphic/anti-holomorphic correlators such as ((§z)(6z)---(dz)) do
obey Wick factorisation, since 0z(0Z) is at most linear in p(f) and the correlators reduce
to the correlators of the form (up---u) or (ap--- @).

4.1.5 Photon coupling vertex rules

We begin with the spacetime picture where the vertex rules take a simple form that are
easy to compare with other worldline models. Inserting the mode expansion of fluctuations
into the interaction (2.43), we get®

q / A (k) (v)et =0y i,as ((k: v) — sz) [1 k) - 62(w:) (4.38)
k{w} e i=1 i=1
o [ A i) () Y ((k ) - ZM) [TG#) - 52(e)
k{w} il i=0 i=1

+ (Af (k) = A (k) , 2 — 2y, 62(wi) — 62(w;)) -

This expression is exact in zg, Zp. To obtain a result at a fixed order in the background

spin-length yo, we may simply set z{f

= bl + iy} and zj = bl — iy} and expand in yp.
To compute Compton amplitudes or the 2PL eikonal, we only need terms up to linear

order in fluctuations,
Sint = q/A:(k)v“eik'Zoﬂk - v)
k

+iq AL (k) [k, — wdl] 52" (w)e* 5]k - v) — w] (4.39)
kw

+ [A:[(k) — A;(k), 2 = 2, 0z(wi) — (52(%)] )

Aside from the leading term proportional to AT - v, we can write the Feynman rules in
terms of gauge-invariant field-strengths F'*, since the vertex rules with at least one §z#(c)
fluctuation field” can be read out from the variational derivative

5Sint

5[62#(0)]

= qFJV[zo +vo + 6z(0)] <v” + Cl(aj;@) , (4.40)

which only depends on the field-strength F'™. The same argument trivially generalises to
the anti-holomorphic sector. As a demonstration, we write the interaction terms up to

SEmpty sum is zero and empty product is unity, i.e. >0_, # =0 and [[\_, # = 1.
"We argue using the time domain Feynman rules because the proof is simpler.

— 33 —



quadratic order in worldline perturbations as

Sint = q/(A—k"_ . /U)eik'zoﬁ(k; . U) + q/ (520.) . F]:_ . v)eik'205[(k . U) —_ w]
k k

+% i {[(621- By 0)(ik - 020) + (1 4> 2)] +i(wr — wa) (021 - Fif -622) ) (4.41)
x e*2058[(k - v) — wy — wy

+ (AS (k) = Ay (k) Fh (k) = (k) 2 = 2, 82(wi) = 62(wr)) -

The expansion (4.41) is more useful than the expansion (4.38) since photon propagators
can be chosen to be free of Dirac string singularities. See section 4.2 for more discussions
on the photon propagator.

4.2 Photon propagator

A worldline model of a charged particle provides a localised source for the electromagnetic
field. Away from the sources, the photon propagates freely and the photon propagator
is independent of the worldline model. However, since the NJ shift forces us to separate
the self-dual and anti-self-dual parts of the photon field, we find it useful to recall some
facts regarding how to split the propagator according to self-duality, which translates to
the helicity of the photon at the quantum level.

In our twistor model, the photon field couples to the particle worldline via the NJ shift
(2.43) which we copy here:

Sint = q/A:j(z)dz“ + q/A;(Z)dZ“. (4.42)

This coupling may look unfamiliar to the readers. To gain some intuition, let us expand
it to the quadratic order in y. The zeroth order term reproduces the standard minimal
coupling for a non-spinning particle. The linear order term is

Si(r}t) = q/ [Aﬂy“ + y“(@u/iy)x'”} do . (4.43)

The appearance of ¢ is a notable feature of the root-Kerr coupling. To linear order, we can
remove it by integration by parts. Up to a total derivative, we find

S =a / [Fwy“a}”} do = % / (e pvpo i’ FP7) do . (4.44)

Starting from the quadratic order, it is impossible to remove all y factors. Up to a total
derivative, we find

int 9

s =1 / [9"Y" Fuw — (OuFyp)yty" il do . (4.45)

We can continue this expansion and express all Si(:t) (n > 1) as Lorentz invariant products
of y#, y#, i#, F,,, and €,,p,, With no reference to Aff at all. With this form of the action,

the usual propagator for the photon field will suffice for all perturbative computations.
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The beauty of the NJ shift (4.42) is that we can perform computations exactly in y
without ever expanding in powers of y. A small price to pay is that we should use less
familiar propagators written in terms of Af.

Our discussion is inspired by Zwanziger’s (electromagnetic-duality covariant) two-
potential formalism [56] (see also refs. [57-60]). But, we will not directly follow Zwanziger’s
formalism in that we never use two potentials or consider sources with net magnetic charges.
We are interested in the long-distance interaction between two spatially localised sources.
The interaction is captured by the integral,

ha = [ J@) (40040 (0) 5 ). (4.46)

We are doing classical physics, but we can use the propagator (Green’s function) in a
QFT notation, where (A, A,) is the 2-point function, which we take to be time-ordered for
concreteness.

Let us temporarily ignore the net (electric or magnetic) charges and focus on the dipole
or higher multipole moments. For a magnetic dipole, it is well known that a long-distance
observer cannot distinguish an Amperian dipole (electric current loop) from a Gilbertian
dipole (two opposing magnetic monopole charges). A similar story holds for an electric
dipole and all higher electric/magnetic multipole moments. So, as far as the long-distance
interaction is concerned, we can describe the same source using either an electric current
or a magnetic current.

To switch between the two pictures, we recall that Maxwell’s equations with both
electric and magnetic sources read

diF=J, d1F)=J", d'F:=(0"F,)dz". (4.47)
Electric-magnetic duality states that this set of equations is invariant under
EMD : F — x'F, (J,JY) — (J5=J). (4.48)
It is natural to use the complex combinations of F' and *~'F that are eigenstates of *,
FE= (P 'F), JE=f(Jxir) = dFE=J5 (449)
For a given multipole, in the electric picture, we solve
dF=J, d"1F)=0, (4.50)
while in the magnetic picture, we solve
dF=0, d1F)=J". (4.51)

The two pictures are related such that F' away from the source is exactly the same. In
other words, for a “point-like” source, the difference between the two pictures is ultra-local
(delta function supported).
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Depending on which picture we choose for each of the two sources, the integral (4.46)
can take different forms,

mz/AMM@MWh®=/fMMN@N®NHw

(4.52)
—/Ammmm@www—/ﬁmmmmMMb@,

where we suppressed the vector indices to avoid clutter. If we call (AA) “electric-electric”
propagator, we may call (A*A*) “magnetic-magnetic”, (AA*) “electric-magnetic”, etc. In
the QFT approach to the propagators, which we will review shortly, we split the mode
expansion according to the photon’s helicity such that®

A=AT+ A", A = (AT - A7). (4.53)
Since (ATAT) =0= (A~ A7), it follows that

(A4) = (ATA7) + (A A") = (4°27), o
(AA*) = +i [(ATAT) — (A"AT)] = —(A*A). '

So far, our discussion has been general. Now let us focus on the multipole moments of
a root-Kerr particle. As we saw in (4.44) and (4.45), we find electric moments at O(y?*)

2k+1) " This splitting is expected to be a generic feature

and magnetic moments at O(y
of any parity-preserving spinning charged particle. The NJ shift (4.42) suggests a hybrid
approach which uses the electric picture for the electric multipoles and the magnetic picture
of the magnetic multipoles. We denote the currents by J. and J*, where e and o stand for

even and odd, respectively.

Contributions from different multipole moments simply add up to give

m=/%AwmmmmMAm+/fwmmwwmwrm@

(4.55)
+ [ Bl A@A W 200) + [ T 100 A ) AW) o)
Rewriting it in terms of (A* AT), we find
By = [ @A @A @) e (0) + [ B @A @A) B, (450
where, for each source,
Jy = J.FiJ%,. (4.57)

Comparing this with (4.49), we note a slightly non-trivial “metric” in the complex basis,

Jy =2JF (4.58)

8The notation of this section is related to those in appendix A as A = —A*. The minus sign originates
from * 1F = —« F.
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Applying it to the root-Kerr particle, we have

S @) = () (@) = 5a [ #(0)5"(w ~ 2())do .
S @) = (T)() = g / ()6 — 2(0))do

To summarize, we took a long route to explain how the NJ shift (4.42) can be under-
stood in conventional descriptions of multipole moments, only to motivate a less familiar
method; the most efficient way to compute the interaction between two root-Kerr particles
is to use the “helicity propagators” (AT AT).

4.2.1 Helicity propagator

Let us present the result first and review the derivation. In terms of self-dual and anti-self-
dual fields, the propagators are [61]

; 2k, n, — (k : n)n v+ €ua kn?
+7 o n . _ 1 (u"v) o prof
Ay (k)= (A (F)A, (=F)) k2 — 0+t 2(k -n) " (4.60)

AL (k) = A0 (k) = [AL (R), AL (k)=A,(k)=0,

where n,, is an auxiliary reference vector, which we call a “Dirac string”. The spinor
notation offers a more compact expression. Pictorially, we denote the propagator as

+ — _ A+— gy _ Mapkse i

AT W Aﬁﬁ = Aaaﬁﬂ(k) = 0 (4.61)
For later purposes, we also note that
—3 2k ,n
+- — (1) — ¢ (n"*v)
Auu(k)+Auu(k)_M_<n#V_ k-n )7
. 3 (4.62)
—1€agk®n

iy (k) —iALF (k) = 0o

The chiral photon field Aff frequently appears in the form of the field strength tensor
F ;ﬁ = 0,AF — 8,,Aff. We consider the combinations
(Fo ()AL (=k) 0?8 (k- v),  (Fi (k) F(—k)) .
These 2pt functions can be expressed without the auxiliary reference vector n,,, since they

can be constructed from the non-chiral photon propagator (4.62) using the (anti-)self-dual
projectors

390 — 6,08 F i€
4 )

(Pi)gf = ij = (Pi)ngaﬁ = (P* - F)u. (4.63)

resulting in

(Fo (R)AT (=k)v8(k - v) = (PY)30(Fag (k) Aa(—k)))v*8(k - v)
_ kyvy — vk, Foie ,,agkavﬁ (4.64)
- 2&2 - z’Oﬁ) ok - v),
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and

(Fl (R)Fs(=k)) = (PF)2(P7) 25 (Fag (k) Fys(—k))

uv
_ “ilnuakvks — mvakuks — tuskvka + mskukol
2(k2 —i0+) (4.65)
— (ku€vapr — kvepapy) kB + (ka€pmr — kpean) K
A(k2 —i07) ’

where we have dropped the ultra-local (non-pole-possessing) terms. These 2pt functions
can also be derived from mode expansions of chiral photon fields.

We remark that all scattering observables and the classical eikonal (except for the
1PL eikonal) can be computed from the 2pt functions (4.64) and (4.65), therefore the
dependence on the “Dirac string” of (4.60) is only superficial.

4.2.2 Mode expansion for the propagator

We can obtain the helicity propagator (4.60) through an off-shell extension of the on-shell
mode expansion in QFT. We define the polarisation vectors as (k° > 0,n° > 0)

5/:5(—1_]{:0 E) = {_::t(E), Ei(_koa E) = _62:(_];:)’

+ [k]a“]m oy (Kloyln] (4.66)

such that [af(k)]* = ¢ (—k). The mode expansion of the chiral photon fields Aljf(x) are
1

- —ikOt ik ¥ ikOt—ik-@
A (2) = /k%o (2 (Rag e ™R 4 [T (B)| (ag )Ttk ]
4 (4.67)
_ / £ (k) [a~ o~ ikOtik-E (a.,) )ietiROe—ik: x}
where k0 = |k| and [Alf(x)]T = Af(z). The creation-annihilation operators satisfy
|:CL]‘€' h? (CLI‘C‘/ h/)T:| = 2]{505(3)(12 — E/)(Sh,h’ , h7 h, = 4. (468)
The usual photon field and the dual photon field are given as (see appendix A)
Au(z) = A (z) + A,
@) = 452 + 4, 0). o
Au(z) = A (x) —iA, ().
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The time-ordered 2pt functions are

(AZ(2) AL (0)) = 0, (4.70)
(e () *O(+ e_i|1€|t+u$.f+ e (R e— (F)O(—¢t)etHilklt—ik-&
sz oy = [ EOEDIE e (R ey (B)O(-)
E 2|k|
@(t)efi\l_é\tJriE-a‘:'_’_@(_t>e+i|ﬁ\t7il§~f . -
= - x |—e}(k)e, (k
/ AT HOAG)
[ W0,
e k2 —i0t
; 2k — (k- Ly +i€agkin® |
:/ ’L. (") ( n)nﬂ +Z€# grn ezk-x7 (471)
e k2 — 10T 2(n - k)
where we used the identity
dﬂ efiwt _/dw efiwt
2m —2 4 k2 — 0+t J 27 (|k| — 0t — w)(Jk| — 0t + w

— ™ o oIkt +O(—t o FilklE
T [E10 (1)

The computation can be repeated for 2pt functions of field strength tensors, which can
be used to justify the propagators (4.64) and (4.65). For example, (4.64) can be computed
from the substitution

iy lklony ) ol )

e (R)ey (k) = 2ilky,eh (k)ey (k)]0 3(k - v) = ) (k] o(k-v),

in the second line of (4.71) before using the identity (4.72), where k* = (|k|, k) satisfies the
on-shell condition k? = 0. Using the delta constraint, we can recast the numerator as
ik [klo [n) ol k)

§(k - v) = —i[k|auo,,v\k>5(k )
— _% (ku'l)y — kl,v’u — ’L.Glul,aﬁka@ﬁ> 5(k : U) )

which leads to the 2pt function (4.64) after off-shell continuation k? # 0 using (4.72).
With the modified definitions for the mode operators (k% > 0)
Akt = A 4 5 Qfu, £ = _aT_E¢ k= (K, F), (4.73)

we can rewrite the mode expansion (4.67) as
ik-x off-shell ik-x
A¥(z) = /k B(k?) ek (k) ap s e OTSNS /k AE(k) et (4.74)

which is the off-shell continued form used to obtain Feynman rules.
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5 Compton amplitude

In this section, we compute the classical Compton amplitudes for a root-Kerr particle, and
compare them with similar results in the literature. We find perfect agreement to the linear
order in spin (at g = 2), whereas we find model-dependent discrepancy starting from the
quadratic order in spin.

3-point coupling The shift (4.42) induces the 3-point coupling of an incoming positive
helicity photon,

iAs ~iq(et - v)e KV U5 (K - v), (5.1)

where k# is photon momentum. This agrees with the black hole 3-point coupling in the
literature. For example, appendix B. of [62] gives the minimal coupling as

M = MP*=° x exp[~nro(k - a)], (5.2)

where 1 = %1 is the helicity sign of the incoming massless quanta of momentum k*, a* is
the spin-length vector (y* = —at), and ko = 1o is the metric convention parameter.

5.1 Computation

The Compton amplitudes will first be computed using the Feynman rules derived from the
interaction term expansion (4.38) to parallel the WQFT computations in the literature [52,
63], which will be reorganised into a form that connects more naturally to the Feynman
rules of the alternative expansion (4.41).

S -

(a) same helicity (b) opposite helicity

Figure 2: Diagrams for Compton amplitudes.

5.1.1 Same helicity

The diagram in Figure 2(a) gives the same helicity amplitude. We need to compute the fol-
lowing 2-point function of linear A*-fluctuation coupling terms (4.39), where we substitute
the A; fields by the polarisation vectors of the external photons.

PATT = (VT (es, ks) x VT (eq, ka))
V*H(e k) =—q L e (k) [kvPky — wol] 2% (w)e® 5Kk - v) — w]. (5.3)

40 —



Using the (§zdz) 2-point function (4.24) and contracting the tensor indices, we get

iAI+ _ mﬂjei(k3+k4).z05[(k3 + ky) - U] (5.4)
x {(k3-k4)((k€4§‘ 'Ul)g(ei'v) + (si-m)(si-l()l)ﬁ; ng'v)(ei-ka) _ (5;.51)} .

This is a simple shift of the non-spinning sector results [63] by an exponential spin factor.
The sign difference compared to (3.26) of the same reference comes from metric conventions.
We may also write the amplitude in a gauge-invariant form as

. 2 + .t
CFFF ),
'A++ — g ('U 3 4 Z(k3+k4)~205 k ka) - 5.5
Ay m (k4-'l))2 e [(3+ 4) ’U], ( )
where F, lﬁ, = i(kusi kl,e ) is the on-shell field strengths of the external photons and
(v-Fy-Fy---) = U”IFI“L2F2”2#3 .-+ is a shorthand notation for a concatenation of ten-
sor contractions. The expression (5.5) can be obtained directly from the Feynman rules

corresponding to the alternative interaction term expansion (4.41).

5.1.2 Opposite helicity

The opposite helicity Compton amplitude comes from the diagram in Figure 2(b). We may
simplify the relevant expression in (4.24) as

p ]

57 5w +w). (5.6)

(57 )52 (w)) ~ 21[

We discarded terms proportional to v* using the fact that the vertex rules at linear order
in perturbations satisfy the “Ward identity” and vanish under the substitution dz* — v*.

iq : A:(k) [kt ky, — woh] 62" (w)e* 0§k (k - v) — w]

“ (5.7)
= —iK v w_ Uy 2 (w)e* 05 [k(k - v) — w
= —ing | AT 0) |8 = ] 65 )l ) -

Introducing the notation a* = e**# VaYog, the resulting Compton amplitude becomes

A= Zgz ¢!k 20tk 20)5 (ko + ky) - 0]
(ks - ka)(ed - v)(eg -v)  (ef - ka)(eg - v) — (e -v) (g - k3)

X { (k?4 v)2 + (k4 : v)
—(ef e) + Ql(kg'a‘%ijﬁ)' IO

+2i(e5 - a-ky)(ey -v) — 2i(ks - a-e;)(eq - v)} .

(5.8)
—2i(ed ~a-ey)(ky - v)

Similar to (5.5), the amplitude can be written in a gauge-invariant form as

g2 ‘F+~F_-”U) (v-F+-a-F_~v) . _
Ar- = [ By By 2 -3 4 i(ka-z0+ka20) 5[ (g 4 ky) -
i { (kg - )2 ) ’ (bl el

(5.9)
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which is more natural when the alternative interaction term expansion (4.41) is used for
the Feynman rules.

5.2 Comparison

We compare our classical Compton amplitudes with existing results in the literature, setting
g = 2. The linear-in-spin amplitude should agree, since it is the universal part captured by
the Thomas-Bargmann-Michel-Telegdi (TBMT) equation. We may find model-dependent

discrepancies starting from the quadratic order.

The deviation at quadratic order in spin is an analogue of possible R? type couplings
at O(S*) in the gravitational case [64]. Such curvature-squared type couplings (R? or
F?) have an interpretation as contributions from induced multipole moments, requiring
dimensionful coefficients for their correct normalisation; [M L*] for gravity and [M~1L?]
for electromagnetism at the leading order. We can introduce such operators without in-
troducing any additional length scale in the case of spinning objects, since the spin-length
vector a* provides the necessary length scale, the spin order being O(S*) for gravity and
O(S?) for electromagnetism for the leading order curvature-squared operators.

5.2.1 Comparison with SUSY WQFT calculations

To compare the two results (5.4) and (5.8) with those of ref. [63], we use the explicit
polarisation vectors

+ _ Blou4)  — _ Blou4) _ [4loul3)

€q, = , €4, = , &4, = , 5.10
VR4 M VaM) T M V2(48) (10
and the complex conjugation conditions
(M) =sgn(p”) g . (5.11)
We use sgn(k)sgn(k]) = —1 because one of the massless photons has to be ingoing and

the other has to be outgoing. In the rest frame of v# = (1, 5) where w = k§ is the energy
of the photon, k* = k§ + k) is the transfer momentum, and

(ks-v) = —(k3-v) = w, |(34)]> = (34)[34] = k? = 4w?sin?(0/2) = |[34])?, (5.12)
|[Bv[4)[* = ~[3[v[4|v|3) = (v - ka)* — k? = 4w?(1 — sin*(0/2)) = [[4]v3)[?, ‘

where 0 is the scattering angle and we localised onto (k3 + k4) - v = 0 for the second

expression.

The same helicity amplitude becomes
iq® —kyo i 2
iATT = e "W sin?(0/2) (5.13)
m

which is simple to evaluate because the (34)~2 factors out in the calculations, which we
substitute by [(34)|72. For the opposite helicity amplitude, we get

2 2 2 : 2
AT = %e(lm—ks)'yo 1 {’f (n-v) | 2iefks, ks, v, yol(n - v) _2@'(k-a-n)(n-v)} ,

—2k2 2w? w
(5.14)
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where n* = [3|6#]4) vector carries the helicity weights. Note that this form is manifestly
shift-symmetric; the expression is invariant under the shift of the spin vector by
SH — SH 4 kMK,

where £ is an arbitrary parameter. The shift symmetry is one of the conjectures for tensor

structures of spinning black holes [64, 65].
Now we multiply the factor % to compensate the helicity weights, and use the
identity for f# = —a*"k,,
Blf|4[v[3) = (k- a-n)[4|v]3)
=2((ks - f)(ka-v) = (ks - ka)(f - v) + (ka - f) (k3 - v) —ie[ks, f, ks, v])
= —dw(ks - a- kq) + 2ie[f, ks, k4, v]
= —dwe[ks, k1, v, yo] — ik*(ks — ka) - yo

(5.15)

to obtain

- 2
ZAIi = %e(lﬁl—kS)yo {_ COSQ(Q/Q) o (kg . k’4) 1o i ZW}

= %7:12 {—0032(9/2) + (COS2(0/2) —1)(ks — k4) - yo + ZW

Setting g = 2, the results in (3.27) of ref. [63] for h = 1 become’
e g 2 .9 i
1A = . [ cos”(60/2) + sin*(0/2)ko[(k1 — k4) - a] — ;(7!4,1)6[1{31, k4,a,v]] ,  (5.17a)

: 2
AT = "L sin2(0/2) [1 — kol (k1 + k4) - a]] | (5.17b)
m
where a* = S*/m, and we have restored the convention parameters ko and x1; ref. [63]
uses kg = Moo = +1 and kK1 = €g123 = —1. The expressions match perfectly when we set

kY = ki and yff = —at.

5.2.2 Comparison with amplitude calculations

For the spin squared coupling, we compare our result with the minimal coupling amplitude
constructed from BCFW recursion [62]

U
(s —m?)(u —m?2) ko[3|p1]4) ’

where we have restored the metric convention parameter xkg. Matching the overall normal-
10

(5.18)

AI_ x
isation™” we write the amplitude as

. 9 2
g (n-v) €lks + kg, m,v,a]
iA] T = Ak )2 exp [z (- v) , (5.19)

9A factor of 2 has been removed from the results of ref. [63]; the factor is due to overcounting s-channel

and u-channel diagrams.
19As remarked in ref. [63], there is a mass factor difference between QFT amplitude results and WQFT
amplitude results, which can be interpreted as the ratio of §(k - v) to §(2k - p).

43 —



where we set pi’ = mv* and take the classical limit for the Mandelstam invariants as
s—m? = —(u—m?%) + Oh*) = 2m(ky - v) + O(h?). (5.20)
The exponent can be simplified to

ielks + ka,n, v, a)
(n-v)

kg — k4) v](n a)
(n-v)

= (ks —ky) - a— ( (5.21)

using the identity

(Uua.uo.)\a.a)aa _ (O.Va.)\o.aa.u)aa
—4

and Schouten identities. It leads to the form of the amplitude used in HPET /HEFT [65-67]

and BHPT [68, 69] approaches,

Z-E;w)\o' —

(5.22)

(5.23)

) 2 * 2 . .
i(A )mepT = — o ()" (ks—hs)a Z(k‘“’)(”a)]

m Ak - v)? P [ (n-v)

after localising onto 8[(k3 + k4) - v], where the amplitude is regular up to order O(a?). We
compare it to the classical Compton amplitude of our twistor model,

- @e(;ﬁ_m).a {_ (n-v)?  ielks, kg, v,al(n-v)?  delks + kgym, v, a](n - v)}
m

4(]€4 . U)2 2(16‘3 . k4)(k‘4 . U) 2(16‘3 . k4)
_ _ﬁ (n-v)? olks—haya [ 1 _ 2(ky -v)? [ie[ks, k4, v, al _ ielkg + kq,n, v, q]
m 4(ky - v)? (ks - ky) (kg -v) (n-v)
where we used yf = —a*. We can use the identities (k = kg + ka)

(U ’ n)e[k, k4, v, CL] - (’U ) k)e[n, k4, v, a] + (U ’ ]{)4)6[1@',%, v, a]
+ (v-v)elk, ka,n,a] + (v - a)elk, kg, v,n] (5.24)
= (k4 - v)elk,n,v,a] — €[ks, k4, n,al,
and

iﬁ[kg, k4, n, CL] = (kg . k4)(n . CL) 5 (525)

to write the twistor Compton amplitude as

iq®> (n-v)? -v)(n-a
Z.(Azi)twistor = _314((]{34.2})26%3_]{4)‘& {1 + 2<k4(n)(v))} . (5'26)

The difference between (5.23) and (5.26) is a non-pole-possessing term,
A AT iq* (k3—k4) 2 3
IAA;T = — e 3T a) + O(a”) . (5.27)

This term can be reverse-engineered to find a O(a?) worldline contact term that generates
this contribution. From the definition of the polarisation vector (5.10) we relate the n#
vectors to the polarisation vectors as

ni'n? = —4(ks - ky)eg"eg” . (5.28)
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To ensure the Ward identity, we use the substitution rule
Y — —4 (ks - ka)eiter” — (e - ka)kber? — (ks - e7)el kY + (eF - gg)k:gjk;;] (5.29)
with symmetrisation if necessary. We may also write this substitution as
nuny — AP FY (ks) Fy, (ka) , Fr (k) = ikuey (k) — ikyey, (), (5.30)

where Ffl,(k) is the momentum space mode coefficient of the field strength 2-form F* =
dA*. We can now attribute the difference (5.27) to the worldline contact term

2
iScont = 1/451 [y Ft(z) - F(2) - y] do+ O(y°). (5.31)

As we observed in section 2.2.2, the combination (y-F*-F~ -y) is an inevitable consequence
of the zig-zag symplectic perturbation theory. Our twistor model differs from other models
which do not carry (y- F* - F~ -y) terms.

The Compton amplitude (5.26) can also be compared to predictions of higher-spin
gauge symmetry [70]. In the notations of ref. [70], the non-scalar part of (5.26) can be
written as e®(1 — w), which differs from the result (6.61) of ref. [70] reproduced below

inh 2 _ 2
e’ coshz—wexSIIL cL Y 5 : E(z,y,z), (5.32)
where
r=—(ks—ks) a,y=—(ks+ks) a,z=—lalvr - (ks — k3),
__(n-a)[v-(k4—k3)]
(n-v) ’
and

x sinh z

e’ —e*coshz + (x —y)e
—+y—= -y

Bl = (=P

— 2

While this amplitude is quite different from the twistor worldline prediction (5.26), the am-
plitude shares the same e® factor conjectured to be responsible for the singularity structure
of the aligned-spin one-loop eikonal (6.29).

6 Conservative dynamics from WQFT

In this section, we revisit the scattering observables of the binary system from the WQFT
perspective. We computed the 1PL and 2PL observables in section 3 by solving the equa-
tions of motion and extracted the classical eikonal along the way. One advantage of the
WQEFT approach is that it allows us to compute the eikonal before computing observables.
Using two approaches to compute the same eikonal serves as a consistency check. Besides,
we specialise to the aligned spin configurations and evaluate the Fourier integrals explicitly
to obtain the position space expressions for the classical eikonal up to the 2PL order.
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6.1 1PL observables and eikonal

Since the complex coordinate z# = z# + iy* includes the position and the spin (recall
the sign a* = —y#), we can compute the velocity kick Av* and the spin kick Ay* both
from the expectation values (621 (w))) and (621 (w))). For particle 1, the expectation value
(62 (w))) is given by

«62’?(00)» = Q1QZ/ [<5Z¥(w)5zll’(w’)><Fljr>\(k)A;(k/)>ez’k.zl+ik’-22

k! w'
(24w (W) (F (k) AL (B))etkZ1Hik'22 (6.1)

«

x v $8[(k - v1) — W'3(K - v2),

where 21 2, Z1 2 in the exponents are understood as background values. This expression is
free of Dirac string singularity when we use the propagator (4.64).

The velocity kick and the spin kick can be computed from the expectation values as

: dézu(T) d252u(7—) 2 —iwT
A(l)vlljl = ReTll)rgo % = Re/7: T;Q = Re /TM(_W )52?(&))6
= Re lim (—w?)824 (w), (6.2)
w—0
u .
Anyyy =Im ILm 8z (1) = Im/ 0z () = Im/ (—iw)6zt (w)e T
T—00 pu T W
= Im lim (—iw)dz} (w). (6.3)
w—0

This may be viewed as the worldline version of the LSZ reduction formula [71]; we can
expect that the equivalent of the S-matrix equivalence theorem [72, 73] will also hold for
worldline observables in WQFT. After some algebra, we can write the velocity kick as

ivkH — etk .
Aot — D2 [k e [k, v1, 2] V(- 00)5(k - v3)
ke 2m1 k ]{72
6.4
Qg2 [ vk + ek, v, ve] gy ik (6.4)
“omy ), 2 e "Y' 5 (k- v1)d(k - v2) .
Similarly, we can write the spin kick as
Ayt = 43122 / i(vg - y1)kH — ik - yp)vh — v e[k, v1,va, y1] — vet [k, vi, y1]
ke 27711 k ]{72
% ez‘k.(b—z‘y)g(k 01)8(k - v2) 65)
e / i(vo - y1)k* — i(k - y1)vh + o) e[k, v1, v2, y1] + vet [k, v, y1] '
le k k2

x e® T § (1 1) 3(k - vs) .

Both A(l)v’f and A(l)y’l‘ agree with the results of section 3 as expected.
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Figure 3: Diagrams contributing to the 1PL eikonal.

6.1.1 1PL eikonal

The eikonal is evaluated as the sum over the diagrams in Figure 3:
iX(1) = —q192 /k ) vy'vy [e"’“‘(“—f?m;;(k) + el EEA(R)| (6.6)
where Af (k) and AF(k) are the helicity propagators (4.60). We write the integrand as
vi'vl {e_k'yA:l,_(k‘) + e+k’yA;j(k:)}

= cosh(k - y)vivs [A:;(]@ + A;j(’“)} (6.7)
(k-y)

Using (4.62), we can simplify the (cosh) term slightly and write

y oy (iky) [iAS (k) — i (k)]

—1
?.

We remind the readers that we are treating terms proportional to (vy - k), (v - k) or k% as

cosh(k - y)vi'vy [A:V_(k) + A (k)] = cosh(k - y) (v - va)

pv

(6.8)

zero. The (sinh) term is more interesting.
oy (iky) [iA) (k) —id,) (k)]
= y)‘v’fvg(il@\) [zAZ;(k:) — zA;j(k)} — y/\vaé’(ikﬂ) [ZA;\FV_(]C) — zA;j(k)] (6.9)
=y ol vYen, ™ (ika) [A;;(k) + Agj(k)} = ielk, v1, va, y]% .

The term added to the second line vanishes due to §(v; - k); its purpose is to anti-symmetrise

in A\, p indices. The equality between the second line and the third line follows from (4.62)
and the 4d Schouten identity (3.52). In the end, we obtain

sinh(k - eth-b
X(1) = —CI1Q2/ cosh(k - y)y — zMe[k,vl,vg,y] 5 (6.10)

in agreement with (3.50). It is free of the Dirac string ambiguity as expected.

Next, we perform the Fourier integral explicitly and obtain

1 b + iyl )?
ey |1 oo <10g( + 1y} )
€

X0~ /A7 =1 b

Dyt 42,023 — (b y0)?

b2 +y3 — 2\/b2yi —(b-yL)?

_ 6[b7v17v27yl]
27\/521& —(b-yL)?

log

47 —



where D = 4—2¢, b3 is the dimensional regularisation parameter absorbing all regularisation
artefacts (factors of = and g, etc.), and

o () ()

is the projection of y* onto the impact parameter space defined by b-vy =b-vy = 0. In
the aligned spin configuration, ¥ = y* and (b-y) = 0, the eikonal simplifies even further,

_ Qg 0 —y*  €lb,v1, 09,9 6] + [y

1
X(1.aligne ————= | — +log og< )}7 6.12
(Laligned) 47W?—1L 2 ol B=1 (6.12)

where |b| = Vb2 and |y| = \/y?. Note that the aligned spin eikonal develops a logarithmic
singularity at b> = y?; the eikonal “knows” that classical spin is a finite-size effect and the

point particle approximation breaks down when the two bodies are too close to each other.

6.2 2PL eikonal

The diagrams relevant for the 2PL eikonal are shown in Figure 4.

S s

Figure 4: Diagrams contributing to the 2PL eikonal, up to the exchange of the two
particles and the overall flip of holomorphy /helicity.

Building up the eikonal integrand The integrand can be constructed by replacing
the field strength tensors Fijfw of the Compton amplitudes (5.5) and (5.9) by the linearised
source contribution from the other particle using the propagator (4.64),

(ki A ’UQ)/“, — /I;ENVI:k;Z', ’UQ]

Ff, = 3 X igae” M5 (k; - vg)
" 2k; (6.13)
Fi/_w ( vz)“’/;];;E“V[ = UQ] X iq2e_lki.zzg(ki : UZ) )
7

attaching symmetry factors, integrating over photon momenta |, " summing over helicity
configurations, and summing over worldline permutation 1 < 2.

iX(2) = z/ I 42l + I 7]+ (1< 2), (6.14)
k3,ka

where we used the fact that I7T— =T+,
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Same helicity integrand The integrand turns out to be quite simple

e (0192)% kg (1) 801 s+ v1 - Ka)3(vs - Kg)3(va - k) ks - g (6.15)
8m1 (’Ul . k?g)(vl . ]{54) k%k‘z ’ ’

At the level of the integrand, it is clear that I™" + I~ agrees with the cosh[(k + ¢) - 9]
term in (3.65) upon the identification (ks, k4)nere <> (K, €)there-

We can use Passarino-Veltman reduction to rewrite the integrand as

ks - kg B 1 [ (kg + k‘4)2 k% + ki :|
(’Ul . kg)(vl . k4)]€§k‘i - 2 (’Ul . kg)(vl . k4)k§ki (’Ul . kg)(vl . k‘4)k‘§kz
—1 k? 2

2 [(vl ka)?R3(k — ka)? (vn- k3)2k§]

(6.16)

where we used the symmetry between k3 and k4, and then used the condition §[(k3+k4)-v1].
We also set k* = ki + k. We are left with evaluation of the integral (in D = 4 — 2e¢
dimensions for regularisation)

T+ (k by b R a) - )3 l(hs + k) - ook
)= ey ks Rl + ) - ek -v2)

(6.17)

k2 2
— _- k-z — O(ks - v9).
/kJ_ ks [(Ul'k:a)%%(k—k:a)? (v - k3)2k§} (ks - v2)

Then we separate the integral argument into k3| and k3, , such that k3; - vy = 0. The dk3)
integral is trivial due to §(ks - v2), and we get

/dD_lk‘?)L [ i - : ]
(viL - ks1)?k3 (k—ks1)?  (vie-ksi)?k3 ]

where v}'| = v + (v1 - v2)vh = v]' — 40k is the projection of v{' onto the orthogonal space

(6.18)

such that v1; - v = 0. The projection for k* is not needed due to &(k - v2) constraint.
The remaining integrals evaluate to zero when using the master integral (B.2), which is
consistent with vanishing same helicity sector contributions for the triangle coefficient in
amplitude calculations [32, 74, 75].

Opposite helicity integrand Evaluating the relevant diagrams, and factoring out the
common denominator as

It = _ (Q1Q2) oilkatka)- b0(v1 - kg + v1 - ka)8(va - k3)3(v2 - ka)
8my k‘QkQ(’Ul k‘3)(111 k’4) (6.19)
X e(k4ik3).(y1+y2)N[k37 k47 V1, V2, yl] ;

we find that the numerator, organized in powers of ~, is given as

N = 2’72 (i(’Ul . k?4)€[k‘3, ]{34,Ul,y1] + (k‘g . k‘4)) (620)
+ Qi’y (6[k3, k4, V1, 1)2] — Qi(kg . k4)(’l)1 . k4)(vg . yl) — (’Ul . k4)26[(k3 + k4), V1, V2, yl])
— (k3 - ka) +2(v1 - ka)* [1+ (y1 - k3) — (y1 - ka)] + 2i(v1 - ka) (v2 - y1)elks, ka, v1, 2]
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It is straightforward to show that it agrees with the opposite helicity integrand in (3.65).

To evaluate the Fourier integrals, it is convenient to reorganise the numerator as
N =2 [k = k3 — k3] + 2iv* (v1 - ka)elks, k, v, 1]
+ 2ivelks, k, v1,va] + 2v(v2 - y1) (1 - ka) [K* — k3 — K3
+ 2iy(v1 - k) (v1 - ka)elk, v1,v2, 41] (6.21)
1
=5 [B* = k5 — K] = 2(v1 - ks)(v1 - k) [L+ (y1 - Ka) = (y1 - Ka)]
+ 2i(’U1 . k4)(1}2 . yl)e[k‘g, k,v1, UQ] .
Inspecting the master integral (B.2) we find that k3 and k3 of the numerator will

evaluate to zero (A; = 0 or Ay = 0 condition) and can be thrown away. We organise the
integrand as

e 2k YN [ks, k — ks, v1,v2,v1]6(va - k3)
k3 (k — k3)?(v1 - ks)? T (6.22)

2 . .
= O g 1

=yl b,

where we use k3 as the loop momentum. Performing the dkz = dk:g integral we get

/ deig e 2ksy Ny 5(1}2 . k‘g) B / dD_lk?gL 6_2k3'leL (6 23)
(2m)P k3 (k — ks)?(vi - k3)? ) (2m)P=V k3 (k — k)2 (011 - k3)? ‘
where yf = y{' + yh + v (y1 - v2) and the effective numerator is
N = [72 — 1/2] K — 27y(vg - yl)k2(vu - k3)
iyelk, v1, va,
+2 [W + 1] (vi1 - k3)?
k(k -
+4(vyy - k3)2 <|:y1 - (kal) +v2(y1 - U2):| : k3>
vt velk, vi, va,
—2i {72 <|:6M[k>vlayl] + 17 L’2 _11 2 yl]:| + UQ,LLE[U27 ka”lal/l])
+ (v2 - y1)eulk, v1, vz]} (v11 - k3)kE
+ 2iveylk, v1, vl kY . (6.24)

The remaining integral can be evaluated using the list of integrals in appendix B.1. We
present the results in the ancillary file loopdata.dat.m. Including the overall et*¥ fac-
tor from (6.22), the integral is consistent with the QED amplitude coefficients provided
by ref. [53] to bilinear order in spins, under the conditions C; = 1, D; = 0, and covari-
ant SSC. We also present the full eikonal as a formal power series in the ancillary file
eikonaldata.dat.m. While the expressions by themselves do not provide any insight,
they greatly simplify in the aligned spin configuration, which we present next.
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6.2.1 Aligned spin

Let us simplify the expression by going to the aligned spin configuration. For aligned spin
we have the conditions y}' o y4 and y-v1 2 = 0. We introduce the ratio parameter ¢ defined
by y}' = Cy#; it follows that yh = (1 — {)y* and y/| = y*. This reduces the expression to a

single infinite sum and we get

/ d4k‘3 e 2k Y N 8(’02 . /6‘3) _ / d3k73j_ 6_2k3'leJ_
(27’(’)4 k%(k — k3)2(1}1 . k3)2 N (27’(’)3 k%(k‘ — k3)2(’01L . k3)2

et o <*@)m 29% —1 I (k- y)
= _ ¢ imtFy) (6.25)
A(k2)2 7;0 m! [( 7?1 C) (k- y)m—t
Y2(4m +1) —2m — 1 _om iv(¢ — 2)elk, v1,v2,y]\ Im(k-y)
+< 72 -1 2t (7> —1) >(k-y)m}’

where I,,(z) is the modified Bessel function of the first kind. The impact parameter space
integral can be organised as

2 4 T+ gikb
Y= / It — (3;@) / d k45(v1 K)S(ve - k)
ks s my J (2) V2

(@)’ koE Ttelthet) (6.26)
32mi/72 — 1 k2, '
o K2y2 m
I+—_z<_2) 27—1 Ims1(k - y)
= ml v -1 (k-y)ym—1
2 .
7 (4m+1) —2m—1 17(4—2)€[k,01,v27y]) Im(k'y)]
+ —om( + . (627
(s CEmY G-y | > 27

where the factor ie[k, v, v2,y] can be traded for the derivative operator e“[vl,v%y]%.
Imposing the additional constraint!! y - b = 0 simplifies the expression further and yields,

R =
* 64my\/4% — 1 \7(b? —y?)3/2 v-1 7

(€—2)v o 1
+ 71_(’_}/2_1)6M[U17U27y]ab#\/w> 5 (628)

which has a singularity structure (b*> —32)~3/2 = (b* — (a1 + a2)?) /2 that was not visible
in the original perturbative spin expansion. The full aligned-spin 2PL eikonal is

(CI1Q2) <b2 E 2_ )1) [b ’U17’U27 ]+ MyQ
X(2,aligned) = 327‘(’m1\/ﬂﬁ(b2 ~ )3/2

where symmetrisation is implemented by {mq — mg, v{ <> 0§, b — —b, ( — 1 —(}.

) +(1+2), (6.29)

1This additional constraint conforms to the usage of “aligned spin” in the literature, where the orbital
angular momentum is also aligned with the spin direction.
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We remark that the singularity is still present in the spinless probe limit { — 0, and
since spin-dependence of the eikonal integrand (6.22) enters only through the exponential
factors et*¥e=2k3¥ in this limit, the singularity structure (b — 32)~3/2 seems to be a
consequence of the “Newman-Janis shift” of the integrand, which shifts the displacement
between the two worldlines by an imaginary spin sum vector +iy* = Fi(a} + af). Note
that a similar singularity structure of the form a’; (b* — a?)™3/27F was reported for the
2PM gravitational aligned-spin spinning probe scattering where a; is the spin parameter
of the Kerr background and a, is the probe spin (k < 2) [76],'* which can be viewed
as an artifact of expanding the singularity (b — (ap + ap)?)~3/2. If the “Newman-Janis
shift” of the integrand persists at higher loop orders, we can conjecture that the singularity
structure of the spinless probe scattering (b — a%)_?’"/ 2 from n-loop contributions reported
by ref. [76] generalises to the singularity structure (b2 — (ap + a,)?)~"/2. As remarked
when comparing twistor worldline Compton amplitudes with that of higher spin gauge
symmetry [70], it would also be interesting to check whether same singularity structures
appear in the eikonal when the Compton amplitude has exponential dependence on spin,
a feature that is also shared by the Compton amplitude construction in ref. [77].

We also consider axial scattering y* o b*, which is independent of the sign of y - b
because the Fourier integrand (6.27) contains only even powers of k - y. The ie[k, vy, va, y]
contribution drops out due to the condition y* o~ b, and the Fourier transform (6.26)
evaluates to

_ @)V -1 ¢ ¥\ (-2 —(¢-1) y?
X" = 327T2ﬂ1%1§72 —1)3/2 [ b? r (_bz> - b% +y? b <_52>] ’
(6.30)

where K (z) and E(x) are the complete elliptic integrals of the first and second kind. The
full result is

()P 72(4—1)—CK N _72(5—2)—(C—1)E N
X(2,axial) = 167r2m1(’y2 7 1)3/2 b2 b2 b2 + yz b2
+ (1 > 2) , (6.31)

which, unlike the aligned-spin case (6.29), develops a singularity at the unphysical impact
parameter b> = —y2. The results (6.29) and (6.31) can be reproduced from the full eikonal
given in the ancillary file eikonaldata.dat.m by taking the corresponding configurations
and resumming the series expansion in y?/b%.

Before ending this section, we remark that the LSZ-like formulae (6.2) and (6.3) can
also be applied to 2PL scattering observables, where retarded worldline propagators are
used instead [78]. The 2PL observables can be separated into the eikonal part (the same
diagrams with symmetric worldline i0" prescription) and the causality cut part (the con-
tributions from changing the worldline i0" prescription), where the eikonal part computes
{X(2), O} and the causality cut part computes %{X(l), {Xx@1), O}}. This computation serves

12Ref. [76] reports the scattering angle which scales as af (b — a7)™>/27% ~ 9y [ak (b? — af) =/~ *].
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as a consistency check of the calculations in section 3.2.2. The separation of the observ-
ables into the eikonal part and the causality cut part can be shown to be a more general
phenomenon that holds in Hamiltonian worldline models [55].

7 Discussion

The (ambi-)twistor model for electromagnetically interacting spinning particles was studied
in this manuscript, which has the advantage that it is one of the simplest descriptions of
charged spinning particles where spin effects can be tracked to arbitrarily high orders.
Using (dynamical) Newman-Janis shift as the only input for generating all-orders-in-spin
interactions, it was found that the spin effects can be resummed to simple expressions in
special kinematic configurations; in the aligned-spin case (6.29) and in the axial scattering
case (6.31). Also, the model was used to confirm the interpretation, up to the 2PL order, of
the classical eikonal as the generator of canonical transformations that map the incoming
scattering states to outgoing scattering states.

Despite the disparities between electromagnetic and gravitational interactions, the
similarities between the singularity structures of the spin-resummed electromagnetic eikonal
(6.29), x(2) o (b*— (a1 +a2)?)~%/2, and the probe limit Kerr scattering reported by ref. [76],
0(2) ~ IbX(2) X op[(b? — ag)_3/2], provides further evidence that using the total spin length
vector ai = a¥+adb as the spin parameter of the effective Kerr metric—an ansatz motivated
by leading order PN Hamiltonian results [79]—in the effective-one-body approach [31] is
the preferable choice for resumming spin effects.!> On the other hand, one-loop results
only correspond to leading order effects in the mass-ratio expansion [51], therefore the
singularity structures resembling that of the background-probe calculation [76] could be a
coincidence of the leading order mass-ratio expansion. Whether novel singularity structures
arise at NLO in mass-ratio expansion will only be answered by pushing the computations
to two-loops and higher orders, and may point us to new directions in resumming spin
effects. Of course, studying the gravitationally interacting case is also necessary to confirm
that such singularity structures are also present in gravitating binary black holes.

When viewing the classical eikonal as the generator of canonical transformations, it
would be interesting to understand what it means to analytically continue the scattering
generator to bound dynamics. The boundary-to-bound map for the radial action [81, 82]
suggests that the continuation is a finite time-evolution generator that advances the system
by one radial period, e.g. the periastron passing is sent to the next periastron passing.
If this interpretation is correct, then we may argue that separability of the Hamilton-
Jacobi equations is not necessary for the existence of the bound orbit counterpart of the
classical eikonal, although its determination by analytic methods may only be possible
when Hamilton-Jacobi equations are separable [35, 83].

Apart from the obvious future direction—massive twistor worldline in gravitational
fields—there are several other directions that would be interesting to expand upon. One

13This is not the unique choice considered in the literature. A comparison of different choices for the spin
parameter of the effective Kerr metric can be found in ref. [80].
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future research direction would be to explore whether recent attempts to resum analytic
results for gravitational scattering of spinning black holes [26, 27] can be improved using
the singularity structures of (6.29) and their conjectured generalisation to higher loops
X(n) X (62 - (al + (12)2)_3n/2.

Another direction would be making the (WQFT approach to the) model live up to its
name; quantisation. Since the twistor model has a simple set of constraints, the standard
BRST-BFV methods should be applicable. For small values of quantised spin, say 1/2
or 1, we expect the results to agree with the standard QFT of massive spinning fields.
The attempt to quantise the model for higher spin may shed new light on the complication
with massive higher spin fields. Comparison of the approach with chiral models for massive
higher spin fields [84] would also be an interesting study.

While the fundamental variables of our model are twistors, the physical observables
(and the classical eikonal) were given entirely in terms of the gauge invariant (x,y,p)
variables. Some intermediate steps of the computations, such as the ones in appendix C,
tend to be quite lengthy and not particularly illuminating. The computations may become
vastly simplified when full advantage of the twistor variables is taken. To do so, it would
be crucial to use massless twistor variables for the photon fields as well. Bailey’s twistor
propagator [85], and Guevara’s holomorphic classical limit [74] and twistor reconstruction
[86] could provide clues for further progress.

We remark that iterated action of the classical eikonal can be understood as causal-
ity cuts, which computes contributions associated to changing the i0" prescription of the
worldline propagators from time-symmetric to retarded; in the WQFT formalism scattering
observables are computed using retarded propagators [78], and changing the i0" prescrip-
tion of the worldline propagators from retarded to symmetric generates (nested) Poisson
brackets which reorganises the scattering observable AO as the action of the scattering
generator eX:*10 [55]. A direct consequence is that the longitudinal impulse at 2PL order
is related to the i0" prescription of the worldline propagators, which could be an interesting
observation for understanding the i0™ prescription affecting the definition of the impact
parameter used in one-loop waveform results [87-93].

Finally, it would be interesting to generalise the concept of the classical eikonal to
massless fields. Such an extended eikonal would place massive particles and massless fields
on an equal footing, and may help us clarify to what extent we can identify the eikonal as
the classical shadow of the quantum S-matrix.
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A Conventions

Vector
Flat metric and Levi-Civita tensor,
Nuw = diag(—,+,+,+), ¢co123 = +1. (A.1)

Electromagnetism without spin,

8MF;LV =-Jy, mﬁ = qF’“’ul, . (A2)
Hodge star acting on a two-form,
1 .
(*F)MV = iguupUF . (A3)

Self-dual and anti-self-dual parts of a two-form,
Fr=L(FFixF) = «(F*)=%i(F*). (A4)
We may also use F;w = (xF) . If we define A* and A by F* = dA* and F = dA,
A=At + A, A, =i(A}-A)). (A.5)
Spinor
We follow the conventions of ref. [8] to a large extent, where |\) spinors are associated to

incoming negative helicity states. An important difference is that we define

1,
Vaa ‘= ’U,uUZd, vt = —i(Uu)aaUO[d (AG)
for all vectorial quantities, nullifying the exception for z* made in ref. [8]. To compare with
references where the metric n** and/or the Levi-Civita tensor €,,,,, carry the opposite sign
(e.g. ref. [75]), an invariant way to express conversion between spinor and Lorentz indices

is to introduce the parameters kg = ngg and k1 = €g123:

rolp)alpla  p* =0
Poc =puoly =1y . (A7)
Kolp')alprla p™ = Kom
Vagw™® = 2k0(v - w) (A.8)
(O_;La_ua_)\a_a')aa — 2(7,,#1/?7)\0' . nu)\nua + nuanu)\ _ ilﬁ:lE"W/\U) (AQ)
The invariant tensor satisfies the complex conjugation relation
VY {055} = ghab (A.10)

which is useful for evaluating complex conjugation of vectors.

— 55 —



Twistor

The two major differences from ref. [8] are
(xda)hcre == (_2)(xda)thcrc 5 (:del7 ﬂla)horc = _(Ndlv ﬂla)thcrc . (All)

These changes propagate to all other equations. For example, the incidence relations read

. 1 . 1- 5
il = STt = o2 (A-12)

where we define the complex conjugate relations as
¢ = [Z'u]* = Zdﬂ = |:2,’Ba] , ﬂ[a = [Hdl]* , 5\[@ = [)\al]* . (Alg)
The defining Poisson brackets are

{zl,p,} =08 = {x‘m,pm} = —25;52‘,

o . (A.14)
{27} = 6507, {u*, x5} = 6507
The consistency of the defining brackets can be confirmed from the relations
fe70% e e’
e =2 pea= el (A.15)

To determine the relation between y* and the spin-length vector a* = S*/m, we note
the Poisson brackets of the rotation generators

B, =2 o {(JLry=J3 (A.16)
and leverage the calculation to demand that

{SH, 58"}, = (m)ea“”)‘(_nzza)S)\ & {ad' ad"}. = %ea“’»‘paa)\ (A.17)

where {e, o}, is the Dirac bracket and k1 = £g123. The end result is the standard convention
for the orientation of a*:

{a',a*}. = —i—aj (A.18)
bl * m . .

On the twistor side, from the Poisson brackets we find

—9;
{z1,2} = —ml yho” — Y (y - v) + otyt + mle“yaﬁyavg (A.19)
which implies
3 3
K1 Yy Y
wo, vy M _pvap = 1,2y 12309 _ I ) A.20
"y = e yavg vy’ =—me ™ - (A.20)
Thus we have to set y* = —at.
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B List of integrals

B.1 Master one-loop integral

We compute the Euclidean loop integral (k- v = 0)

dDgE eQZE a
/ (EE)M[(k = £p)?2 (20 - Lp — i0F)s
using the identities

1 1 o0
il dt t)\fl —at
T\ /0 €

1 A /OO g A1 pila—i0t)E
(a—i0H)* T\ Jo '

After substitution, we have the integral
A3

i A—1,0—1 A3—1 tita o t3 2
dt1dtodt t] = t5 27T T exp | — k
T ()T / 14t 3 p[ htts  titls

2ty —2it3 a? / bt ()2
X ex k-a)+ v-a)+ e~ (t1+t2)(¢)
p[tl—i-tz( ) t1+t2( ) t1 4+ to e,

where ¢ is the shifted loop integration variable. We perform the Gaussian integral and

expand the exponential of the second line. Evaluating the gamma function and beta
function integrals, we get

/ 26dD£E €2€E a
()M [(k — €p)2]%2(2v0 - £ — 0T )P
')\37TD/2 2¢

- D
2

2P (AT ()T (Ng) (BN P25 -2 (12)F

o (2k-a) (-m -a) ’“) ) P+ 0+ 2 = 2 —n = B2y

2 2 2
Xln;:() l'm!n! (D —X —X2— A3+ 1+m+2n)
D )\3 m D )\3
— — - — — — - — B.2
><(2 A2 2+2+)(2 A 2—|—l—|—2+n) (B.2)

where %€ is the mass scale required for dimensional regularisation D = 3 — 2¢. It is easy

to verify that for Ay = 0 or Ay = 0 the integral vanishes, and for A3 = 0 that the integral

localises onto m = 0.' Setting a = 0 we only keep [ = m = n = 0 of the sum, and recover

the Euclidean version of (10. 25) of ref. [94]. The divergence of the integral for non-positive
m

integral values of (A1 + Ao + 7 -5 —-n- —) € Z=" is harmless since the result formally
becomes non-negative integral powers of k2, which vanishes under the impact parameter

M The value for A3 = 0 should be understood as a limiting value A3 — 0, where Flg?i/?) — 2.
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space integral fk et for b* # 0. The master integral (B.2) can be viewed as a tensor
integral generating function, e.g. the vector integral can be evaluated as

/ dDgE Y 2p-a _1 0 /- dDEE 62€Ea
(EQE)A1 [(k’ — EE)Q]>‘2 (21) Ag — i0+)/\3 2 aau (€2E))‘1 [(k - EE)Q])‘2 (2’0 Ag — i0+)>‘3 .

This can be used to check consistency of (B.2), e.g. v 82# < (A3 = A3 —1). Such
consistency relations could be used to bootstrap tensor integral generating functions [95].

In all the integrals listed in this appendix, we only keep the non-analytic terms in k2
and drop dimensional regularisation artefacts (O(e~!) and O(e)). All log(k?)-dependent
terms of the integrals vanish for time-symmetric 0" prescription, which is equivalent to
taking the real part of the integrals.

Special cases: Scalar integrals A\ = Xy =1, A\3 =2, and D = 3 — 2¢ with extra k2.
k2/ deE ,u25 20p-a
(EQE)Uf — EE)2(21) . EE — i0+)2
3 < T(+m+n—1)(2k- a) (k@ﬂ)m (—k2a2)"
 2(k2)1/2y2 L+ 1D)0(m+ H0(n+ DI +2m+2n — 1)

l,m,n=0

i (0 a)log(k?) & T+m+n)(2k-a) (RE8)" (—k2a?)n
2(v2)3/2 Fl+1)(m+1HI'(n+ 1T+ 2m + 2n)

Immn=

_ Z — 1)(2k - a) (=k2a2)™ o Fy (1, —m; 33 27
2R o T(l+1)(m+1)T (l+2m—1)

i (0 - a)log(k?) < D+ m)(2k - @) (—k2a?) (1- &2 )"
2(v2)3/2 I'(l+1)T(n+ 1T+ 2n)

l,n=0
A =X =X3=1and D = 3 — 2¢ with extra k2.
k2/ deE /1'26 2lg-a
(@) (k — (p)2(2v - (5 — i07)
Blo-a)@)? & Tlrm+n+ 5k o) (RE)" (—r2a)

2v? 1,m,n=0 Ll +1)0(m + %)F(n + DIl +2m+2n+1)

i log(k?) & TU+m+ )@k a)f (RE)" (—p2a2)r
2(v2)1/2 L= T+ 1DI'(m+ DHI(n+ DI+ 2m + 2n)

72w a) ()2 G T+ m 4 §)(2k - a) (~k2a?)™ o Fi (1, —mi §; S)

v? Pt '+ 1)T(m+ 1)1+ 2m+1)

i log(k?) < T(1+n)(2k - o)l (—k2a2)" (1 _ (;}g))j)n
2(v2)1/2 I'(l+1D)I'(n+ 1)+ 2n)

(B.4)

I,n=0
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/\1:/\2:1,)\3:0,811(11):3.

/ dPig e2tee Z L(l+n+ 3)(2k - a)l(—k2%a®)"
(02)(k — Lp)? k:2 1/2 T+ (n+ 1)l +2n+1)"

)\1:>\2:1,)\3:—1,andD:3.

dPlg (20 - 0) e2ea —~ D +m+3)(2k-a)l(=k%a*)™
/ A Z DU+ DE(m+ DI +2m +3)

(B.6)

Special cases: Vector integrals Assume f-k = f-v=0. Ay = Ao = A3 = 1 and
D=3 - 2e.

dDEE u2€(f . £E> elE-a
/ (£3)(k — €g)*(2v - Lg — i07)
R a)(f a2 & T m o+ §(2k-a) (RO (ke

20° L= DU+ DT (m A+ 3)0(n+ DE(L+ 2m + 2n + 3)

v-a)2\™ n
i2(f ) log(?) = TU+m+n+1)2k-a) (BRE0)" (—k2a?)
S 22 & T+ D)T(m+ DT(n+ DT+ 2m + 2n + 2)

_7r5/2(v-a)(f.a)(k;2)l/2 00 F(l‘i‘m‘f'%)(?k-a)l(—k%ﬂ) SFi (1, — ’2; (;)2?22)
v* 1,m=0 '+ 1HC(m+1)I'(+2m+3)
in2(f - a)log(k?) & DU+ n+1)(2k-a)l (~k2a?)" (1_ <§£gj)n

200?12 l;O T+ DI(n+ DI + 2n + 2) : (B.7)

)\1:>\2:1, )\3:2, and D = 3 — 2e.
/ deE MZe(f . KE) 62€E~a
(02)(k — p)?(2v - £ — i0t)?
B(fa) = TU+m+nt3)(2k-a) (k?u) (—k2a?)"
- 2(k2)1/202 ity DU+ DE(m + )T (n+ 1+ 2m + 20+ 3)

i7T2(f . a)(v . a) 10g(k:2) e F(l +m-+n—+ 1)(2]6‘ . a)l (kQ(i)igP)m (—/€26L2)n
- 2(v2)3/2 Tl + 1)T(m + 1)D(n+ DT+ 2m + 2n + 2)

I,m,n=0

- TP ) D(+m o+ §)(2k - 0) (~k2a®)™ o1 (1, —ms §; )

2(k2)1/2y2 = ric+1Hrm+ 1 +2m+1)

S ) 0)log(h?) & D+ 0+ D a)l (-Ra) (1 - G
_ 2(v2)3/2 L+ 1D)C(n+ DT+ 2n + 2)

(B.8)

l,n=
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B.2 Fourier transform integral

The Fourier transform to impact parameter space is given as

/deE elbet) — T(D - ) 1

(2m)P [k2, Fi0t] 922273 T (\) (b2 £i01) B

Nl|s]

-2\’

where we assumed b? € R and included i0" prescription for convergence. The i0" pre-
scription can be dropped since there is no branch cut ambiguity for Euclidean signature.

Fourier transforms with numerators can be evaluated using differentiation; ki, <
—i%. Repeated numerator factors can be computed as directional derivatives, i.e.
I

deE (kE . a)lei(kE~b) | deE ci(kE-[b—ia])
/(QTF)D kE> '/(QW)D Ll

O(al)
NEEDY) 1
27 FT(N) [(b — ia)?] 2

(B.10)
O(at)

I~2=N . (a
@ -1 () @)
= 22/\71'%F()\) (bg)%—)\-f—%

)

where CQ({\) (x) is the ultraspherical/Gegenbauer polynomial. Differentiation in A can be
used to compute Fourier transform for logarithms,

b D
/dkE[k?;]’\(/fE'a)llog(k%)ei(kff'b) _ 6/ d”kp (2] ke-o—ial)

(2m)P o) (2m)P O(al)
. (24‘)\) a- (Bll)
(MR D) PG () (@)
% (12) 2+ ’

where \ € Z=0 is assumed.

Special cases: aligned spin Only even powers of [ are relevant for the aligned spin
configuration, where a - b = 0. The master integral (B.10) reduces to

/ dPkp (kg - a)2eited) (B —X) (5 —X); (21)! <a2>l |

(2m)P 2] Tl ) 0\ (B.12)

where (a),, is the Pochhammer symbol. For axial scattering we set a - b = +va2b?, which
leads to

@mP KRN 201 PR p0n(2EL - A (12)

dPkp (kg - a)2eilkeD) (D + 20 — 2\ 1 —a2\!
/ g (kg a)7c (D + ) (“) (B.13)
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C 2PL computations

C.1 Longitudinal part of the momentum kick

Our goal is to show that the longitudinal part of A(g)p’f agrees with

1 1
AP liter = 5y {x, i} = 5 xay, Aqyph'}- (C.1)

Part 1 In the spin-less case, all iteration terms contain §’. That is no longer true when
spin is turned on. Let us first focus on the new terms not containing 4.

Using the following results as building blocks,
elk, by, 1] | e[k, & y2, 0o

{k-b,0-by ={k-y, L -y} = o~ + - 7
" “lk, 0

{]{;b’ _GM[E,U17U2]}: € [ka’gan] + € [ y 7’[)1] ’

mi mo (C 2)

k.t .

{e[kJULUQ,yLK . b} _ E[k,f,y,vz] 4 6[ , ’y7vl] ,

my mo

_ X V2 - Y1 . V1 Y2

{elk,v1,v2,9], 0y} = (k g)< - ! ) ’

we collect four contributions to (C.1):
Al = (iH)y? {cosh(k: -)e*® cosh(¢ - y)e”'b}

= (il*)y*{k - y,£ - y} sinh(k - y) sinh(¢ - y)e'? (C.3)
— (i0")y*{k - b, £ - b} cosh(k - y) cosh(£ - y)e'?? |

inh(k - ) - .
= { et v I 0 s )
"y

cosh(k -y)  sinh(k - y)
key (k-y)?

= ie[k, v1, v9, yle"[l, v1, vo]{k -y, £ - cosh(f - y)e'?
[7 ) 7y] 9 9 Y, ) )

h(k ,
— ie[k, v1,v2, Yy [0, v1, va]{k - b, £ - b}wsinh(é'y)ezq'b
(C.4)
h(k - .
-l-é[k,vl,vz,y] < [ka&UQ] + [k,f, Ul]) sin (k y) sinh([-y)elq'b
mi mo k-y
- (6[143,57?%7)2] + E{k,f, yﬂ’l}) 6”[6, vy, v2]SIDh(k ) y) smh(€ . y)eiq.b
mi1 ma
: : inh(k - A
+i(k-0) <v2 u_n y2> e“[ﬁ,vl,vg]m cosh(l - y)e'?
mi mo k- Yy
AL =~ {cosh(k -)etk et [0, vy, vy] sinh(¢ - y)e’['b}
= —y e[, v1,va){k - y, £ - y} sinh(k - y) sh(l-y)e'™?
+ v e[l vy, va]{k - b, £ - b} cosh(k - y) sinh (¢ - y)e? (C.5)
—I—i’y( [k:,f,vg "Ik, £, Ul] cosh(k - y) sinh(£ - y)e?
my
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inh(k -
Al = <w“>v{—ie[k,v1,vz,y]m(w %, cosh(£ - 9) m}

k-y
o cosh(k - y) sinh(k'y) il (f - o) e
v e[k, vi,ve, yl{k -y, L - y}{ ey )2 sinh(¢ - y)e
M

— vy e[k, vy, v, yl{k - b, £ - b} cosh(l - y)e? (C.6)

oy (kD) (UZ Y1 v y2) sinh(k - y) sinh(¢ - y)elq-b
mi mo k-y
+ Z,_yeu <6[k7€7 Y, U?] + 6“‘%&%”1]) S ( y) COSh(E . y)ezq.b’
my ma k-y

As usual, we may work in the probe limit (mi/mq — 0), where we get

my Al = —(iﬂ“)v%[k,ﬁ, y1,v1] cosh[(k — ) - yle iq'b
h A
my Al = —ielk,v1,vo, yle[€, vy, vo]e[k, £ yl,vl]W cosh(€ - y)e'?
COSh[(: —y@ -y piab
sinh(k - y) | (C.7)

+ ie[k, v1, va, yle"[l, v1, va]elk, £, y1, v1]

+ e[k, v1, va, yle [k, €, v2) sinh(€ - y)e'?

sinh(k - y) sinh(€ - y)e'®

- 6[]{3, 67 Y, UQ]GM[E’ U1, ’02]
sinh(k - y)

Y

+i(k - £)(v2 - y1)et'[€, v, v2] cosh(l - y)e't?

g A = —y PlE, vy, walelk, € g, o] sinh[(k — €) - gl
+ iyet' [k, £, v9] cosh(k - y) sinh (£ - y)e iab
sinh(k y)

my Ay = —y elk, v1,va, yle[k, £, yl,vl]Wsinh(g,y)eiq-b
hi(k —¢) - ,
— v lelk, vy, va, ylelk, £, y1, Ul]Wezq-b (C.8)
sinh(k - y)

+ Ayt (k- 0)(v2 - y1) sinh (£ - y)e'?

sinh(k - y)

kg cosh(l - y)e? .

+ Z’}/ E”E[k7€7 Y, U2]

We can simplify A4 a bit and write

miAy = —y (k- £)(vz - y1) sinh|(k — €) - yle'?”

C.9
+iryel [k, £, va] cosh(k - i) sinh(£ - y)e? | (G9)
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Next, using (3.51), we try to remove (k - y) factors in the denominators of A4 and A}:

mlAg = —ylF (k- 0)(vy - y1)sinh[(k —£) - y]eiq'b

sinh(k - y)

+Z")/ @Uf[k’ E./ Y, UQ] COSh(f . y)ei(ﬂ) 7

k-y
mlAZ = (i£“>(1}2 ’ yl)e[ka £, v, UQ] COSh[(k - Z) ’ y]eiqb (ClO)
sinh(k - .
+elk, v, va, yle' [k, £, va] ka(ky) sinh (¢ - y)e'?
Sy
_E[k7 E? Y, UQ]EM V? U1, (UQ] bln]::(y) SiIIh(€ : y)ezq-b :
Y

We have enumerated all terms not containing ’. Now we split them into two parts:
the “y-part” and the “v-part”. The former is linear in y; while the latter (marked red in
the equations above) is independent of y;. The k - y factor in the denominator is to be
cancelled against an €[, -, -, y| factor in the numerator.

The y-part gives fairly simple expressions:

mlA’fM\y = (M“)(—*y%[k,& y1,01] + (v2 - y)e[k, €, v1, va]) cosh[(k — ) - y]eiq'b,

m1 Ay gly = (i0*)(2iy)(vz - y1)(k - £) sinh[(k — £) - yle'™.
There agree perfectly with the longitudinal part of (3.57), (3.59) in the main text.

Part 2 The v-part is more involved, as it gets combined with the §’ terms. In the probe
limit, the &’ factor comes from

. . eiq~b
{e”“'bé(k Cor), (L - vl)} S ik O)S— [3(k - v)8 (£ vy) — & (k- v1)5(C - v1)]
o (C.12)
e
-0 50 )¢ )
This factor is to be multiplied by
inh(k -
Bt = [’ycosh(k y) — ie[k,vl,vg,y]smk(y)
Y
X [(i0")y cosh(€ - ) — €[¢, vy, vs] sinh (£ - 1)] (C.13)
= By + By + B + BY,
where
BY' = (i*)y* cosh(k - y) cosh(£ - y) ,
.
BZ = iﬁ[k', U1, V2, y]ey[& U1, Uz]w Slnh(f : y) )
Y (C.14)
BY = —~€!'[€,v1,v2] cosh(k - y) sinh(¢ - y)
—
BE = telk, vr, 09, 51 ) ot ).

k-y
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Multiplying them by i(k - £), and hiding €'4°5(q - v1)8"(¢ - v1) for now, we get
B — P~ (K - £) cosh(k - y) cosh (£ - y)

D = —(k - 0)elk, v1, v, y|e" L, v1, UQ]W sinh(¢ - y), o)
D = —iy(k - £)e'[€,v1,v2] cosh(k - y) sinh(£ - y), '
DE = iytH(k - O)elk, vy, ve, y]smlk;(kyy) cosh(? - y).
Now, we bring the red colored terms from (C.9) and (C.10) and apply the identity
§(x) = —z8'(z). (C.16)
After pulling out some overall factor, we record the results as
cl=o0,
Cl = —(l-v)elk,v1, v, yle! [k, £, UQ]M sinh(¢ - y)
— (k- v1)elk, £, y, va]e" [, v, vg]M sinh(¢ - y), (C.17)

CY = —iy(€ - v1)e" [k, £, va] cosh(k - y) sinh(£ - y) ,
sinh(k - y)

C:"; = —|—Z’y(k : ’Ul)eﬂe[kv 4y, 02] k-y

cosh({ - y).

For C% and the second line of C}', we used &(k - v1 + £ - v1) to replace (£-v1) by —(k - v1).
Merging all the C-terms and the D-terms, we obtain the final result in perfect agreement
with the longitudinal part of Ay,)p* in (3.60), (3.61) in the main text.

C.2 Transverse part of the spin kick

In section 3.2.2 of the main text, we showed how to compute the 2PL spin kick. In this
appendix, we give some details of the computation and confirm that the transverse part of
the spin kick agrees with the eikonal formula,

1 0 0
{Xm)¥1'} = p— [01 W 7 + e [Ul,yﬂay ] X(n) - (C.18)

We begin with the overall structure of the 2PL spin kick (3.68):

0)
Ayt = C]16]2 / uzb/ d(vg - " 1
@% o Bk o+ 00 (C.19)

The numerator A'* can be computed separately for each term in (3.67). For (a) and (b)

terms, we also distinguish the same/opposite helicity contributions.

/\/";ao (chH Cyp + shB Sy0)" N‘;as (chH Cys + shf Sy6)"
Nispoy = (chB Cho +8hB o), Mgy = (chB Cp + shill Sps)" (C.20)

Ny = (chB Ce+shB S )", Ny = (chB Cy + shB Sp)*
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The same helicity terms are

1. L
Clty = ik 01) [B(C - yn) = (- gn) =y (6 0], Sty = S (i o)l [, ]

1

7
Gy, = B [0 (vg - y1) — o5 (£-y1)]y(k - £) + 56“[&1}2, y1]elk, £, vy, v2], (C.21)
1 1
Szlfs = 9 [0H(va - 1) — Ug(g ~y1)) €k, £, v1, 9] — f“[&vmylh(k 0).

Among the opposite helicity terms, (a) and (b) terms are linear in y;:

Cho = %(Z/‘C 1) [=KH (- y1) — (k- yn) + y (R - 0) 4+ 20 (v - y1 ) (K- £)]

1.
Sgo = i(Zk : Ul) [Ugﬁ[kafa yl,v?] + e“[k,f, 02](1}2 : yl)] 5

; Z. (C.22)
Cho = B [0 (v2 - y1) — o5 (- y1)] (k- ) — 56“[5, v2, y1lelk, €, v1, va]
1 1
Sho = 5 [ (v2 - y1) = vy (- y1)] e[k, £, o1, 02] + Sl vz, ] (k- ),
whereas (c), (d) terms are quadratic in y;:
Cl = (ik - v1)i [0 (v2 - y1) — 05 (€ y1)] ek, £, y1,v2] — €[, v2, 1] (k- £)(v2 - y1)]
St = (ik - v1) [[0"(v2 - y1) — vy (L) (k- £)(v2 - y1) — €'[€, v, ynlelk, £, v2,11]]
CY = (ik - v1)* (€ v1)(v2 - y1) + (€ y1)] €[k, v2, 1] (C.23)

+ (ik - v1)€ll, v1,va, y1] [K* (v2 - 1) — V4 (k- y1)]
S = (ik - v1)%i [(£- v) (v - y1) + (€ y)] K (v - y1) — v (k- 1))
— (ik - v1)%ie[l, v1, v2, y1)e' [k, v2, 1] .

Same helicity sector The 2PL eikonal (3.65) contains a single term in the same helicity
sector, so its contribution to the spin kick should be also quite simple. Indeed, after a lot
of cancellations, we get

i .
Cly+ Cly = =2 - O (- ) = 91 (- 01)]
: (C.24)
SE. + S{;S = —5(]6 ) v, 1, 4] -

Not all terms contribute to the transverse part; A g)y*|i: should be orthogonal to 3. The
non-orthogonal term, marked red in the equation above, is projected out upon symmetri-
sation under the exchange operation k < £,

(0-v1)(k-f)coshB — (q-v1)(k-£¢)coshE=0. (C.25)
The equality hold in the (¢, ) integral. What is left after the symmetrisation is
i 1
Clppalie = =5 (k- OV gn) s Sty = =5 (k- O [or,31,]. (C.26)

These match the expectation from the 2PL eikonal (C.18) perfectly.
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Opposite helicity sector We treat the (a)-(b) group and the (c)-(d) group separately.
In the (a)-(b) group, partial cancellations leave us with

Cly+ Cly = il €7 [0 (03 1) = 5 (0 )] + 5 (- O (€ 11)

il (0 v) (k- y1) — %(k: (- v)[20% (02 - 1) + 1], 2

1
Sgo + SZI:O = [EM(UQ . yl) - Ug(e . Z/l)] E[k,e, V1, 1)2] + i(k . e)eu[e, 'Ul,yl]
+ Ug(f . Ul)ﬁ[k7€7 Y1, 1)2] .

Again, the non-orthogonal terms, marked red in the equations above, are projected out
upon symmetrisation under the exchange k <> £. We are left with

. i
Caotpolr = ik - Oy (v2 - 1) — 5 (q - y1)] + 5 (k- O (g y1)
i
+ 5l =0 - o] [RH(E-y1) = (k- y)] (C.28)
1
St poltr = [0 (va - y1) — v (q - y1)] e[k, €, v1,v2] — §(k L)tk — £,v1, 1]
On the other hand, the transverse spin kick derived from the eikonal by (C.18) contains

Cllee = i(q - y)of [-(v* = 1/2)(k - £) + (k- v1)(€ - v1)]
+ivel [k — £, v1,y1)e[k, €, v1, v2]
—i[(k = £) - v1]e" vy, v2, y1 e[k, £, v1, 2]

i (C.29)
5[( ) Uﬂeuy[vlﬂ/lkV[kaga 'Ul} )
Sler = =01 (q - y1)velk, £, v1, 0o
— (V= 1/2)(k - O [k — L,o1,51] +[(k =€) - o] (k - £) e [v1, 02, 1]
Despite appearances, things do match as expected,
ao+bo‘tr - C ‘tr Sgoero‘tr = S;(L‘tr : (C?)O)

We can repeat the same exercise for the (c)-(d) group. The computations are even
lengthier and not particularly illuminating, so we omit the details here.

D Regularisation for the product of time-symmetric Green’s functions

The usual time-symmetric 0 prescription for w™2 propagators is

1 1 1 1
2 <(w—|—z’0+)2 + (w —i0+)2> = _5’017 (D.1)

where we use the pOSlthG frequency expansion f(o f flw)e iwe

. The square of the
time-symmetric w™ propagator is given as

1 1 1 2 1 e 0T xlel 1 o
- - - D.2
[2 (w+i0++w—i0+>] & lol+ —ggr— = r ~alel Ol (D:2)
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where we expanded the expression as a Laurent series in the regulator 0T and kept up to
O[(07)°] terms. Employing the “minimal subtraction” scheme for the regulator 07, we
throw out the divergent term in 0% and conclude that the propagators (D.1) and (D.2) are
equivalent as distributions.

The reason (D.2) has a divergent contribution compared to (D.1) is because it should be
understood as the convolution of the time-symmetric w™! propagator in the time domain,

1/ 1 1 i
- L D.3
2 (w T i0+) & —gsenl), (D-3)

where sgn(o) is the sign function. Unlike the retarded/advanced Green’s functions given

by the Heaviside step function, the convolution of (D.3) with itself diverges due to the
“infinite volume” of the real line, which manifests itself as the (07)~! divergence in (D.2).
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