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1 Introduction

Chandrasekhar has remarked that “(t)he black holes of nature are the most perfect macroscopic
objects there are in the universe: [. . . ] they are the simplest objects as well.” [1] Can
we idealise these simplest objects of the universe and make them even simpler? Since
electromagnetic interactions are simpler than gravitational interactions, let us phrase this
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question more concretely in the context of electromagnetism. What would be the description
of the simplest charged, massive, spinning (macroscopic) objects moving on a background
electromagnetic field?

One class of charged spinning (macroscopic) objects that can be called “simplest” is
known in the literature as root-Kerr particles [2], which possess spin-induced multipole
moments of Kerr-Newman black holes [3, 4]. They can be called simplest in the sense that
they correspond to the classical spin limit of “minimal coupling” defined by the high-energy
limit [5], and that all multipole moments are generated by the Newman-Janis shift [6], where
the position of the particle sourcing the gravitational/electromagnetic field is complexified
and shifted in the imaginary spin direction. In its original formulation, the Newman-Janis
shift only applies to stationary solutions of the Einstein(-Maxwell) equations, therefore the
answer to the question posed in the previous paragraph would only be complete when the
Newman-Janis shift is generalised to dynamical worldlines of spinning bodies.

In this work, improving upon the ideas of ref. [7], we argue that the twistorial description
of relativistic spherical tops [8] qualifies as a complete answer. The authors showed in ref. [8]
that the spherical top model [9] for a relativistic spinning particle is equivalent to a massive
twistor model (similar but not identical to ref. [10]) in the absence of interactions. The
attempt to couple the twistor model to a background field was initiated in ref. [11]. A complete
description of the twistor model minimally coupled to electromagnetic field is given here.

We use the model to compute scattering observables, such as the momentum kick and
the spin kick, at low orders in perturbation theory while maintaining exact spin-dependence.
Following the nomenclature of ref. [12], we call the perturbation theory “post-Lorentzian”
(PL) expansion, where n-PL order terms are suppressed by (q1q2)n where q1, q2 are the
electric charges of two interacting particles. When organised diagrammatically through
Feynman-like diagrams, n-PL order terms involve (n− 1)-loop momentum integrals, although
the diagrams themselves have no loops. This is a toy model for studying the gravitational
case, where the dynamics is organised in the post-Minkowskian (PM) expansion while keeping
the exact spin-dependence.

We stress that exact spin-dependence is not only of theoretical interest, but is also of
phenomenological interest. The previous sentence may sound odd to a person familiar with
post-Newtonian (PN) calculations: in the PN expansion spin effects are formally counted
as 1PN, since the corrections take the form of a/r, and for compact objects such as black
holes the spin length scales as the horizon scale a ∼ Gm. For computing the gravitational
waveforms—which are the quantities directly relevant for observations—the 4.5PN corrections
seem to be good enough, at least for non-spinning quasi-circular equal mass binaries; the
4.5PN contributions add less-than-a-radian correction to the ∼ 103−5 cumulative gravitational
wave cycles in the detector frequency bands [13]. The spin effect corrections to the conservative
dynamics has already been computed to 5PN order [14–20]. Why would we need all-orders-
in-spin effects if they are going to be smaller than what is already known, which already
seems to be sufficient for observations?1

1Caution: the PN expansion is known to converge best for equal-mass quasi-circular orbits, and convergence
of the best-case scenario does not guarantee convergence in other regions of the parameter space. For example,
even 5PN may not be enough to reduce systematic errors below the level of statistical errors [21].
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One reason all-orders-in-spin results can be of interest is because in practical applica-
tions the perturbative results need to be resummed for a better accuracy [22–27].2 The
resummations reorganise the perturbative expansion by leveraging the knowledge of sin-
gularity structures that the non-perturbative answer is expected to possess. Therefore,
all-orders-in-spin calculations may reveal singularity structures we can take advantage of
in the resummations, which were not visible at the lowest spin orders. This can be used,
for example, in improving effective-one-body based waveform models which are known to
perform worse for extremal black hole spins [29, 30], where spin effects are resummed as
geodesic motion on a deformed Kerr geometry [31]. Understanding the mechanism behind
the effectiveness of the resummation will be useful in motivating alternative resummation
schemes for spin effects, which may yield better accuracy.

From the viewpoint of resummations, an all-orders-in-spin result that is as rigid as
possible and as simple as possible while keeping essential features of the dynamics will be
the most useful, since we are interested in the singularity structures of all-orders-in-spin
dynamics; any additional structures or free parameters may obscure the singularity structures
that we wish to dig up from all-orders-in-spin results. This motivation brings us back to the
question raised in the beginning of this manuscript; what is the simplest spinning object that
interacts with the background Maxwell field? The motivation also limits the inputs of the
theory to all-orders-in-spin multipole moment information encoded by the Newman-Janis
shift. The expectation is that while the dynamics of the spinning particle may deviate from
that of physical black holes from O(q2), the singularity structures of the all-orders-in-spin
dynamics are still captured by the twistor worldline model.

The twistor worldline model predicts surprisingly simple singularity structures in special
kinematic configurations, which we expect to be shared by scattering dynamics of physical
black holes. For example, the 2PL aligned-spin eikonal (6.29) resums to the simple expression

χ(2,aligned) =
(q1q2)2

(
b2 + (ζ−2)γ

(γ2−1) ϵ[b, v1, v2, a] + γ2(1−ζ)+ζ
γ2−1 a2

)
32πm1

√
γ2 − 1 (b2 − a2)3/2 + (1 ↔ 2) , (1.1)

where the impact parameter bµ ∼ (xµ
1 − xµ

2 )⊥ is defined by the covariant spin supplementary
conditions (SSC), aµ = aµ

1 + aµ
2 is the sum of the spin-length vectors, and ζ is the ratio

parameter defined by aµ
1 = ζaµ. To the best of authors’ knowledge, this is the first observation

of spin effect resummation in binary dynamics at the next-to-leading order (NLO) in the
coupling constant expansion, where the model is free of unphysical behaviour and the spins
of both constituents are included to all orders.3

In addition to the construction of the interacting twistor model, and application of
the model to compute observables to the 2PL order, another key result of this work is the
clarification of the classical eikonal ’s role. In the Hamiltonian formulation of binary dynamics,
the classical eikonal is defined as a suitable classical limit of the quantum eikonal phase that

2One may also recall that the revival of interest in the PM expansion was partly kindled by the search for
alternative resummation schemes of the gravitational two-body dynamics [28].

3The known spin-resummed NLO scattering angles reported in the literature [32, 33] are based on the
Compton amplitudes that develop unphysical behaviour from cubic (electromagnetism) or quintic (gravity)
order in spin. The spin-resummed results reported by ref. [34] should be considered as leading order effects in
the R3 coupling expansion.
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Spherical Top Massive Twistor

x̃µ, pµ, S̃µν , Λ̃µ
A=0,1,2,3 λα

I , µα̇I , λ̄Iα̇, µ̄I
α

R3 redundancy ↓ ↓ U(1) redundancy

pµ,Λµ
a=1,2,3

unification−−−−−−−→ λα
I λ̄Jα̇

xµ, Sµν unification−−−−−−−→ µα̇I(λ−1)I
α

(p·S·Λ)a=0=(p·Λ)a

Figure 1. Equivalence between the spherical top model and the massive twistor model.

acts as the generator of canonical transformations, mapping the incoming scattering states to
the outgoing states. The scattering states are defined in the phase space of free particles,
and the eikonal encodes the interactions such that it produces all scattering observables
through canonical transformations.

The manuscript is organised as follows. In section 2 we review the massive twistor
model and couple it to background electromagnetic fields. In section 3 we compute scattering
observables using equations of motion. We set up WQFT formulation of the model in section 4,
and use it to compute Compton amplitudes in section 5 and the classical eikonal in section 6.
We conclude our studies and propose future directions in section 7.

Note added. While this work was being completed, ref. [35] appeared. Their proposal for
how to extract classical observables from the radial action overlaps with our discussion on
the classical eikonal as the scattering generator in section 3.1.

2 Massive twistor in electromagnetic field

2.1 Free theory

In ref. [8], we proposed a massive twistor model and showed its equivalence to the Hanson-
Regge spherical top model at the free theory level. A general discussion of how to couple
the twistor model to background fields was given in ref. [11]. Here, we give a brief review of
these two main references and clarify some aspects of the twistor model before specialising
to the minimal coupling to a background electromagnetic field.

A widely used model for describing relativistic spinning particles is the Hanson-Regge
spherical top [9], which uses the variables (pµ, x̃

µ, Λ̃µ
A, S̃µν) to describe a spinning body; the

momentum pµ, the position x̃µ, the body-fixed tetrad Λ̃µ
A (A = 0, 1, 2, 3) describing the

orientation of the body, and the spin tensor S̃µν . The tilde notation emphasises the fact that
under the “spin-gauge” redundancy [36], the variables (x̃, Λ̃, S̃) have some gauge dependency
while p is gauge-invariant. It was shown in ref. [8] that the gauge orbit is R3 and the “origin” of
the orbit corresponds to the covariant gauge conditions: pµSµνΛν

a = 0 = pµΛµ
a (a = 1, 2, 3).
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The twistor variables describe the same dynamics with less gauge redundancy. Their
global symmetry groups are the superconformal SU(2, 2) (to be broken by the mass-shell
condition) and the massive little-group SU(2) . The gauge redundancy on the twistor side
is U(1): (λ, µ) → eiθ(λ, µ), (λ̄, µ̄) → e−iθ(λ̄, µ̄), θ ∈ R.

The equivalence of the two models is clearly articulated in terms of the gauge-invariant
coordinates on both sides. The twistor model unifies the variables (pµ,Λµ

a) using the
hermitian bi-linear products of (λα

I , λ̄Iα̇):

pµ = 1
2 σ̄

µα̇αλα
I λ̄Iα̇ , Λµ

(IJ) =
σ̄µα̇αλα(I λ̄J)α̇√

2m
, (2.1)

in a similar vein to massive spinor-helicity variables [5, 37]. An advantage of the Hamiltonian
formulation is that nothing stops us from unifying momenta pµ and “generalised positions”
Λµ

a. The remaining variables (xµ, Sµν) are unified and mapped to a set of gauge-invariant
complex variables µα̇I(λ−1)I

α and their complex conjugates. This is in contrast to the
supersymmetric worldline description [38–40] where the spin tensor Sµν is realised as a
bi-linear in Grassmann variables (ΨA, Ψ̄A) and the tetrad Λµ

a is not visible.
A prominent feature of the twistor model is that there is no spin-gauge redundancy in

the first place, so that no discussion of the spin supplementary condition (SSC) is ever needed.
The only constraint yet to be imposed is the mass-shell condition p2 +m2 = 0, which is
common to the spherical top model and the twistor model. Figure 1 summarises the mapping
between the two models before imposing the mass-shell constraint.

2.1.1 Constraints revisited

Our conventions for spinors and twistors are slightly different from those of ref. [8]; see
appendix A for details. Let us mention a few key relations. The fundamental Poisson brackets
of the spherical top model include

{xµ, pν} = δµ
ν ⇒ {xα̇α, pββ̇} = −2δα̇

β̇
δα

β . (2.2)

The fundamental Poisson brackets of the twistor model are

{µ̄I
α, λβ

J} = δα
β δ

J
I , {µα̇I , λ̄Jβ̇} = δα̇

β̇
δI

J . (2.3)

The incidence relations relating the two models read

µα̇I = 1
2z

α̇βλβ
I , µ̄I

α = 1
2 λ̄Iβ̇ z̄

β̇α , (2.4)

where the complexified position variable z defined by the incidence relation is mapped to
the spherical top variables through

zµ = xµ + iyµ , yµ = 1
m2 ε

µνρσpνSρσ . (2.5)

The imaginary part yµ of the complexified position variable zµ is related to the spin-length
vector aµ = sµ/m widely used in the literature by yµ = −aµ. The extra sign is to respect
the standard relation of non-relativistic spins: {si, sj} = ϵijksk.
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In our current conventions, the free action of ref. [8] reads

Sfree =
∫ [

λα
Idµ̄I

α + λ̄Iα̇dµ
α̇I + 1

2
(
κ̄(∆−m) + κ(∆̄−m)

)
dσ

]
,

∆ = det(λ) = −1
2ϵ

αβϵIJλα
Iλβ

J , ∆̄ = det(λ̄) = 1
2ϵ

IJϵα̇β̇λ̄Iα̇λ̄Jβ̇ .

(2.6)

The Lagrange multipliers (κ, κ̄) enforce the conditions,

∆ = m = ∆̄ , (2.7)

which in turn imply the mass-shell condition −p2 = ∆∆̄ = m2. After a suitable gauge-fixing
of (κ, κ̄), the “Hamiltonian” Re(κ)(∆ + ∆̄)/2 generates the worldline time-evolution for all
dynamical variables which matches the expectation from the spherical top model.

Despite its success, it turns out that the free action in (2.6) is not suitable for the
transition to the interacting theory, and we propose an alternative action:

Sfree =
∫ [

λα
I ˙̄µI

α + λ̄Iα̇µ̇
α̇I − κ0ϕ0 − κ1ϕ1

]
dσ , (2.8)

where

ϕ0 = 1
2(m

2 −∆∆̄) = 1
2(p

2 +m2) , ϕ1 = 1
2i(λ̄Iα̇µ

α̇I − µ̄I
αλα

I) = p · y . (2.9)

For later purposes, we also propose the gauge-fixing conditions,

χ0 = −1
2(λ̄Iα̇µ

α̇I + µ̄I
αλα

I) , χ1 = i

2 log(∆/∆̄) . (2.10)

We recognise ϕ0 as the mass-shell constraint in twistor variables, and ϕ1 as the generator
of the U(1) gauge orbit. Aside from how to implement the mass-shell constraint, the main
difference between the two proposals is that (2.8) contains the U(1) gauge generator while (2.6)
contains a U(1) gauge-fixing condition in the form

Im(κ)
2 (∆− ∆̄) . (2.11)

To understand why the old proposal (2.6) is problematic and why it still yielded the free
equations of motion correctly, let us revisit the general theory of constrained Hamiltonian
dynamics, building upon appendix A of ref. [8]. The system consists of Hamiltonian H,
symplectic form ω, abelian gauge generators ϕA and gauge fixing functions χA. The minimal
requirements are

{ϕA, H} = 0, {ϕA, ϕB} = 0 CA
B :=

{
χA, ϕB

}
, det(C) ̸= 0 . (2.12)

In general, the gauge-fixed action is written as

S =
∫
dt
(
piq̇

i −H − κAϕA − κ̄Aχ
A
)
. (2.13)

– 6 –
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The Lagrange multipliers (κA, κ̄A) enforce the constraints ϕA = 0 = χA. The variation of
S with respect to the dynamical variables (pi, q

i) gives the equations of motion. The time
evolution of a generic function f(pi, q

i) is computed from the Poisson bracket
df

dt
= ∂f

∂qi
q̇i + ∂f

∂pi
ṗi = {f,H + κAϕA + κ̄Aχ

A} . (2.14)

For consistency, the equations of motion should not induce change of ϕA and χA in time:

dϕA

dt
= 0 = dχA

dt
. (2.15)

The vanishing of dϕA/dt and the minimal requirements (2.12) imply κ̄A = 0. Hence, we do
not see directly κ̄A in the final form of the equations of motion. The vanishing of dχA/dt

implies κA = −(C−1)A
B{χB, H}. We can either choose some χA to fix κA, or prescribe

some κA to fix χA implicitly.
If some of the κA multipliers can be set to zero without violating the requirements (2.12),

the corresponding ϕA will not directly contribute to the equations of motion and it may look
permissible to exchange the roles of ϕA and χA. That is precisely what happened to the
free twistor model. But, as soon as we add interaction terms in the action, the distinction
between the gauge generators ϕA and the gauge fixing conditions χA becomes evident. By the
very definition of gauge redundancy, the interaction terms are required to Poisson-commute
with all ϕA in a sense to be specified below. On the contrary, there is no reason for the
interaction terms to commute with χA.

To conclude, in view of the general theory of constrained Hamiltonian system where the
gauge generators and gauge-fixing conditions play different roles, we need a new proposal
for the free action (2.8) to incorporate interaction terms.

2.1.2 Regge trajectory

Due to rotational kinetic energy, the mass of a spinning top is in general not a constant, but
rather a function of the spin-magnitude W 2 = (y · p)2 − y2p2. The derivative m′ = dm/d(W 2)
is colloquially called the “Regge trajectory”. For a free spinning particle, the angular velocity
is (2m′) times the spin, so (2m′)−1 is the relativistic rotational inertia [8].

In most applications, where we do not keep track of the angular velocity and focus on the
(x, y, p) variables, the Regge trajectory does not affect the dynamics. Specifically, the equations
of motion for (x, y, p) are independent of m′. In the rest of this section, we will see, from a
few different but related angles, how the Regge trajectory m′ decouples from the dynamics of
(x, y, p). From the next subsection on, we will set m′ = 0 to simplify computations.

2.1.3 Dirac bracket and effective phase space

To describe the physical phase space of the free twistor theory, it is convenient to construct
the Dirac bracket. The ingredients are the unconstrained Poisson bracket (2.3), the gauge
generators (2.9), and the gauge-fixing functions (2.10).

Let us first consider the case of vanishing Regge trajectory (m′ = 0). Using

CA
B = {χA, ϕB} =

(
∆∆̄ 0
0 1

)
, (2.16)

– 7 –
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we construct the Dirac bracket in the standard way,

{f, g}∗ = {f, g} − (C−1)A
B

(
{f, ϕA}{χB, g} − {g, ϕA}{χB, f}

)
. (2.17)

The non-vanishing brackets among the twistor variables are

{µ̄I
α, λβ

J}∗ = δα
β δ

J
I − 1

2λβ
J(λ−1)I

α ,

{µα̇I , λ̄Jβ̇}∗ = δα̇
β̇
δI

J − 1
2 λ̄Jβ̇(λ̄

−1)α̇I ,

{µ̄I
α, µ̄J

β}∗ = −1
2
[
µ̄I

α(λ−1)J
β − µ̄J

β(λ−1)I
α
]
,

{µα̇I , µβ̇J}∗ = −1
2
[
µα̇I(λ̄−1)β̇J − µβ̇J(λ̄−1)α̇I

]
.

(2.18)

We can certainly use these to compute the Dirac brackets among the U(1)-invariant composite
variables (xµ, yµ, pµ). But, since we are interested only in the dynamics of (xµ, yµ, pµ) variables
in the bulk of this paper, we can take a shortcut.

We can regard the 16-dimensional unconstrained phase space as a fibre bundle with
the base coordinates (x, y, p) and the fibre SU(2)×U(1). The original Poisson bracket (2.3)
projected onto the (x, y, p) base space can be written as

{ , }◦ = ηµν ∂

∂xµ
∧ ∂

∂pν
− yµpν + pµyν − ηµν(y · p)

p2
∂

∂xµ
∧ ∂

∂yν

− ϵµν [y, p]
2p2

(
∂

∂yµ
∧ ∂

∂yν
+ ∂

∂xµ
∧ ∂

∂xν

)
.

(2.19)

The transition from the Poisson bracket to the Dirac bracket can be done within this
effective description. Since (x, y, p) are all U(1) gauge invariant, we can simply disregard
the pair (ϕ1, χ

1) and take into consideration

ϕ0 = 1
2(p

2 +m2) , χ0 = −x · p . (2.20)

The resulting Dirac bracket on the (x, y, p) base space is

{ , }∗ =
(
ηµν − pµpν

p2

)
∂

∂xµ
∧ ∂

∂pν
− yµpν − ηµν(y · p)

p2
∂

∂xµ
∧ ∂

∂yν

− ϵµν [y, p]
2p2

(
∂

∂yµ
∧ ∂

∂yν
+ ∂

∂xµ
∧ ∂

∂xν

)
− x[µpν]

p2
∂

∂xµ
∧ ∂

∂xν
.

(2.21)

It agrees perfectly with the full Dirac bracket (2.18) evaluated over (x, y, p).
Let us summarise the content of the effective description. The phase space is effectively

nine dimensional: twelve coordinates (xµ, yµ, pµ) with three constraints,

p2 +m2 = 0 , p · y = 0 , p · x = 0 . (2.22)

By construction, the Dirac brackets of the constraints automatically vanish:

{f, p2 +m2}∗ = 0 , {f, p · y}∗ = 0 , {f, p · x}∗ = 0 . (2.23)

– 8 –
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Incidentally, the Dirac bracket is consistent with fixing the magnitude of spin:

{f, y2}∗ = 0 . (2.24)

So, the phase space is eight dimensional in a sense, although the conservation of y2 is of a
dynamical origin and shouldn’t be put on an equal footing as the true constraints.

In later sections, we will study scattering processes of the twistor particles, where the
interaction is (asymptotically) turned off at the infinite past and future. It makes sense to use
the (effective) free phase space for each particle to describe the asymptotic scattering states.

For completeness, we also compute the Dirac bracket when the Regge trajectory is
non-trivial (m′ ̸= 0). Remarkably, the C-matrix (2.16) is not altered by m′ at all. It remains
to compute the (m′)-dependent terms from {f, ϕ0}{χ0, g} in (2.17).

In terms of the twistor variables, the function χ0 is given by

χ0 = −x · p = 1
2
(
µα̇I λ̄Iα̇ + µ̄I

αλα
I
)
. (2.25)

It follows that

{χ0, λα
I} = +1

2λα
I , {χ0, µα̇I} = −1

2µ
α̇I ,

{χ0, λ̄Iα̇} = +1
2 λ̄Iα̇ {χ0, µ̄I

α} = −1
2 µ̄I

α .
(2.26)

The W tensor is defined as [8]

WIJ = −i
(
µα̇

(I λ̄J)α̇ − λα(I µ̄J)
α
)
. (2.27)

It is normalized such that

W 2 = 1
2WK

LWL
K = (y · p)2 − y2p2 . (2.28)

The (m′)-dependent terms from {f, ϕ0} come from

{f,m(W 2)2/2} = mm′{f,W 2} . (2.29)

It is useful to note that

{λα
I ,W 2} = −iλα

KWK
I , {µα̇I ,W 2} = −iµα̇KWK

I ,

{λ̄Iα̇,W
2} = +iWI

K λ̄Kα̇ , {µ̄I
α,W 2} = +iWI

K µ̄K
α .

(2.30)

The full Dirac bracket consists of two parts,

{f, g}∗ = {f, g}0
∗ + {f, g}′∗ , (2.31)
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where {X,Y }0
∗ is the result for m′ = 0 stated in (2.18) and {X,Y }′∗ denotes the (m′) terms.

Using (2.26) and (2.30), it is straightforward to show that the (m′) terms are

{λα
I , λβ

J}′∗ =
im′

2m
[
+(λα

KWK
I)λβ

J − λα
I
(
λβ

KWK
J
)]

,

{λα
I , λ̄Jβ̇}

′
∗ =

im′

2m
[
+(λα

KWK
I)λ̄Jβ̇ + λα

I(WJ
K λ̄Kβ̇)

]
,

{λα
I , µβ̇J}′∗ =

im′

2m
[
−(λα

KWK
I)µβ̇J − λα

I(µβ̇KWK
J)
]
,

{λα
I , µ̄J

β}′∗ =
im′

2m
[
−(λα

KWK
I)µ̄J

β + λα
I(WJ

K µ̄K
β)
]
,

{µα̇I , µβ̇J}′∗ =
im′

2m
[
−(µα̇KWK

I)µβ̇J + µα̇I(µβ̇KWK
I)
]
,

{µα̇I , µ̄J
β}′∗ =

im′

2m
[
−(µα̇KWK

I)µ̄J
β − µα̇I(WJ

K µ̄K
β)
]
,

(2.32)

and their complex conjugates. They agree perfectly with Dirac brackets computed in ref. [8]
despite the differences in the choice of constraints.

Comparing (2.32) with (2.18), it may appear that the non-vanishing Regge trajectory
complicates the Dirac bracket significantly. Fortunately, when we focus on the effective
(x, y, p) phase space, the complication disappears completely and the Dirac bracket (2.21)
remains valid. In essence, the reason is that the (m′)-terms in (2.32) all involve infinitesimal
shifts along the SU(2) little-group, but the (x, y, p) variables are little-group scalars.

2.2 Interacting theory

In this subsection, we explain how to couple the twistor particle to a background electro-
magnetic field minimally using the Newman-Janis shift.

2.2.1 Symplectic perturbation theory

Given a Hamiltonian system defined by (2.12) and (2.13), we may consider two types of
deformations. A familiar way is to deform the Hamiltonian,

H = H◦ + q H ′ , (2.33)

where q is a continuous perturbation parameter. We demand that the gauge generators are
independent of the deformation. The requirement (2.12) implies that

{ϕA, H
◦} = 0 = {ϕA, H

′} . (2.34)

Then all the statements around (2.15) remain valid for any value of q.
An alternative way to deform the theory, which we adopt for our twistor model, is to

keep the Hamiltonian fixed and deform the symplectic form [11]:

ω = ω◦ + q ω′ . (2.35)

This is equivalent to keeping the Hamiltonian fixed and deforming the Poisson brackets
used in equations of motion (EOM). For a non-spinning particle, a key feature of the
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symplectic perturbation viewpoint is that ω′ = F = dA is manifestly invariant under the
gauge transformation of the Maxwell field and that we do not need to distinguish the two
notions of momenta (canonical vs kinetic). This feature will generalise straightforwardly
to our twistor model.

Again, we demand that the gauge generators are independent of q. We should make
sure that the requirements {ϕA, H} = 0 = {ϕA, ϕB} hold with the deformed symplectic
form. Perturbatively,

{f, g} = {f, g}◦ − q{f, ζm}◦ω′
mn{ζn, g}◦ +O(q2) , (2.36)

where ζm is an arbitrary coordinate system on the phase space and {•, •}◦ is the Poisson
bracket defined by ω◦.

For a random choice of ω′, the perturbation term has no reason to vanish:

−q{ϕA, ζ
m}◦ω′

mn{ζn, ϕB}◦ ̸= 0 . (2.37)

But, if we change coordinates (at least locally), ζm → (zi, wa) where zi are gauge-invariant
while wa are gauge-dependent, and take ω′ = 1

2ω
′
ijdz

i ∧ dzj with no dwa components, it is
immediately clear that {ϕA, H} = 0 = {ϕA, ϕB} hold exactly.

Coming back to our twistor model, recall that the new free action (2.8) carries two
gauge generators ϕ0, ϕ1 in (2.9). Since the Poisson bracket is antisymmetric, the only issue
is whether {ϕ0, ϕ1} = 0 continues to hold in the interacting theory. But, as long as ω′

consists only of U(1)-gauge invariant coordinates such as pµ and zµ = xµ + iyµ, {ϕ0, ϕ1} = 0
would follow trivially.

A common feature of a relativistic particle theory, shared by the spherical top model, is
that the mass-shell constraint ϕ0 = (p2 +m2)/2 also generates the worldline time-evolution.
Ignoring other gauge generators temporarily, the equation of motion of the free theory is

df

dσ
= κ0{f, ϕ0}◦ . (2.38)

There are two equivalent ways to express the equation of motion of the interacting theory.
One is based on the infinite series [11],

ω−1 = (ω◦)−1 − q(ω◦)−1ω′(ω◦)−1 + q2(ω◦)−1ω′(ω◦)−1ω′(ω◦)−1 + · · ·

=⇒ 1
κ0

df

dσ
= {f, ϕ0}◦ − q{f, zi}◦ω′

ij{zj , ϕ0}◦ + q2{f, zi}◦ω′
ij{zj , zk}◦ω′

kl{zl, ϕ0}◦ + · · · .

(2.39)

The other is more compact,

ω−1 = (ω◦)−1 − q(ω◦)−1ω′ω−1

=⇒ 1
κ0

df

dσ
= {f, ϕ0}◦ − q{f, zi}◦ω′

ij{zj , ϕ0} ,
(2.40)

but less explicit in that the last term involves the Poisson bracket of the interacting theory.
Of course, (2.40) can be iterated to reproduce (2.39).
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2.2.2 Minimal coupling via Newman-Janis shift

The unification of (xµ, Sµν) into the complex coordinates (z, z̄) defined by (2.4) and (2.5)
opens up an avenue for implementing the Newman-Janis shift [6] into the dynamics. It led one
of the authors to the concept of “spinspacetime” [41] which unifies spacetime and spin at the
fundamental level, which has refined Newman’s early idea [42]. Our twistor model is a new
member of existing attempts to incorporate the Newman-Janis shift into the dynamics [7, 43].

In the twistor model, the root-Kerr particle is defined by the minimal extension via
Newman-Janis (NJ) shift from Minkowski spacetime to spinspacetime [11, 41]. To introduce
the minimal extension, we begin with the usual coupling of a charged scalar particle to the
Maxwell field and split it into two pieces,4

Sint = q

∫
Aµ(x)dxµ = q

∫
A+

µ (x)dxµ + q

∫
A−

µ (x)dxµ , (2.41)

where q is the charge and the convention fixed by Aµ = (−ϕ, A⃗). The superscripts (±)
denote the self-dual and anti-self-dual parts in the sense that, under the hodge dual ∗ on
the field-strengths,

F± = dA± , ∗F± = ±iF± . (2.42)

The minimal NJ shift correlates (anti-)self-duality and holomorphy of the complexified
spacetime as [7]

Sint = q

∫
A+

µ (z)dzµ + q

∫
A−

µ (z̄)dz̄µ = −q2

∫
A+

αα̇(z)dzα̇α − q

2

∫
A−

α̇α(z̄)dz̄α̇α . (2.43)

In the parlance of the symplectic perturbation theory,

ω′ = (ω′)+ + (ω′)− = q

2F
+
µν(z)dzµ ∧ dzν + q

2F
−
µν(z̄)dz̄µ ∧ dz̄ν . (2.44)

Compared to the non-spinning case where ω′ = 1
2Fµν(x)dxµ ∧ dxν , the Newman-Janis shift

introduces a complicated non-linear deformation depending on the yµ coordinate. But, the
invariance under the Maxwell gauge transformation is still manifest.

As usual, the coupling (2.43) plays a dual role; it enters the equation of motion of the
charged particle, and it acts as a source term in the Maxwell’s equations. We focus on the
former aspect in this and the next section, leaving the latter aspect to later sections.

2.2.3 Equations of motion

Adding up the free part (2.8) and the interaction part (2.43), the full action of the root-Kerr
particle becomes

S =
∫ [

λα
I ˙̄µI

α + λ̄Iα̇µ̇
α̇I − κ0

2 (m2 −∆∆̄)− κ1W0 + qA+
µ (z)żµ + qA−

µ (z̄) ˙̄zµ

]
dσ . (2.45)

4For related (but not equivalent) massive twistor models and their electromagnetic couplings, see refs. [44, 45]
and references therein.
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The variation of the action with the vanishing Regge trajectory (m′ = 0) gives

δS = δλα
I

[
˙̄µI

α + κ0∆∆̄
2 (λ−1)I

α + κ1

2i µ̄I
α

]

+ δλ̄Iα̇

[
µ̇α̇I + κ0∆∆̄

2 (λ̄−1)α̇I − κ1

2i µ
α̇I

]

+ δµα̇I

[
− ˙̄λIα̇ − κ1

2i λ̄Iα̇

]
+ δµ̄I

α

[
−λ̇α

I + κ1

2i λα
I

]
+ δzµ

[
qF+

µν(z)żν
]
+ δz̄µ

[
qF−

µν(z̄) ˙̄zν
]

= δλα
I

[
˙̄µI

α + κ0∆∆̄
2 (λ−1)I

α + κ1

2i µ̄I
α + qF+

µν(z)żνσµ

ββ̇
µβ̇J(λ−1)J

α(λ−1)I
β

]

+ δλ̄Iα̇

[
µ̇α̇I + κ0∆∆̄

2 (λ̄−1)α̇I − κ1

2i µ
α̇I + qF−

µν(z̄) ˙̄zνσµ

ββ̇
µ̄J

β(λ̄−1)β̇I(λ̄−1)α̇J

]

− δµα̇I

[
˙̄λIα̇ + κ1

2i λ̄Iα̇ + qF+
µν(z)żνσµ

αα̇(λ−1)I
α

]

− δµ̄I
α

[
λ̇α

I − κ1

2i λα
I + qF−

µν(z̄) ˙̄zνσµ
αα̇(λ̄−1)α̇I

]
.

(2.46)

In the last step, we used the incidence relations to express δ(z, z̄) in terms of δ(µ, λ, µ̄, λ̄).
To specify the equations of motion completely, we have to fix the Lagrange multipliers κ0,1.
A convenient choice to be used throughout this paper is

κ0 = 1
m
, κ1 = 0 . (2.47)

With this choice, the EOM for the twistor variables are

˙̄µI
α = −m2 (λ−1)I

α − qF+
µν(z)żνσµ

ββ̇
µβ̇J(λ−1)J

α(λ−1)I
β ,

µ̇α̇I = −m2 (λ̄−1)α̇I − qF−
µν(z̄) ˙̄zνσµ

ββ̇
µ̄J

β(λ̄−1)β̇I(λ̄−1)α̇J ,

˙̄λIα̇ = −qF+
µν(z)żνσµ

αα̇(λ−1)I
α ,

λ̇α
I = −qF−

µν(z̄) ˙̄zνσµ
αα̇(λ̄−1)α̇I .

(2.48)

The equations for the U(1) gauge invariant variables (p, z, z̄) are, in the vector notation,

ṗµ = qF+
µν(z)żν + qF−

µν(z̄) ˙̄zν ,

żµ = pµ

m
+ 2iq
m2 [yµpν + pµyν + iϵµνρσyρpσ]F−

νλ(z̄) ˙̄z
λ ,

˙̄zµ = pµ

m
− 2iq
m2 [yµpν + pµyν − iϵµνρσyρpσ]F+

νλ(z)ż
λ ,

(2.49)

where we applied the constraints y · p = 0, ∆∆̄ = m2 after deriving the equations. We may
turn on the Regge trajectory (m′ ̸= 0) and repeat deriving the equations. Not surprisingly,
the twistor equations receive new terms proportional to (m′), but (2.49) remains unchanged.
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The appearance of time-derivatives on the r.h.s. of (2.49) may look peculiar. But, it is
a generic feature of the symplectic perturbation theory explained earlier. It is easy to see
how (2.49) fits with the general structure of (2.40):

{f,∆∆̄} = {f,∆∆̄}◦ − q{f, zν}◦F+
νλ{z

λ,∆∆̄} − q{f, z̄ν}◦F−
νλ{z̄

λ,∆∆̄} . (2.50)

Finally, turning on the Regge trajectory (m′ ̸= 0) modifies (2.48) slightly, but leaves (2.49)
unchanged. In what follows, we take (2.49) as the fundamental EOM for the twistor particle
and use it to compute physical observables.

Unless the background takes very special values, it would be impossible to solve the EOM
exactly. We approach the problem as a perturbative expansion in q. The EOM truncated
up to the 2PL order is given by

ẋµ = pµ

m
− i

q

m
(F+ − F−)µ

νy
ν

+ 4q2

m3 p
µ(yF+F−y) + 2q2

m3 y
µ
[
(pF+F−y) + (pF−F+y)

]
+O(q3) ,

ẏµ = q

m
(F+ + F−)µ

νy
ν − i

4q2

m3

[
(pF−y)(F+)µ

ν − (pF+y)(F−)µ
ν

]
yν +O(q3) ,

ṗµ = q

m
(F+ + F−)µ

νp
ν +O(q3) .

(2.51)

Here the scalar product of vectors and tensors are defined as, for example,

(pF+F−y) = pµ(F+)µ
ν(F−)ν

ρy
ρ , (pF−y) = pµ(F−)µ

νy
ν . (2.52)

3 Scattering observables

We compute the scattering observables (velocity kick and spin kick) of the massive spinning
bodies in the conservative sector up to the 2PL order; 2PL is the lowest order where our
model may disagree with other models implementing the (dynamical) Newman-Janis shift.
Before we compute the observables of our twistor model, we present a general description of
the scattering observables that is valid in any (Hamiltonian) worldline model.

3.1 Classical eikonal as scattering generator

The eikonal phase has proved useful in quantum and classical scattering in field theory, gravity
and string theory; see ref. [46] for a comprehensive review.5 In the context of amplitudes-
based methods for classical gravitational scattering, several variants of the eikonal phase
are available in the literature such as the HEFT phase [48], the radial action [49], and the
exponential representation [50, 51] just to mention a few.

Here, we introduce the notion of “classical eikonal” which is a particular classical avatar
of the eikonal phase. Simply put, the classical eikonal is the generator of the canonical
transformation between the initial states and the final states of the scattering problem. It is
motivated by the classical limit of an S-matrix, but in can be defined purely within classical
mechanics. The definition is valid in any worldline model in Hamiltonian formulation. The
relevant phase space is that of free particles, just as the scattering states of a quantum
scattering process are defined on the free Hilbert space.

5See ref. [47] for a comparison of different approaches to spinning observables beyond the leading order.
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Scattering generator. We first recall the KMOC [52] method of extracting a classical
observable from a quantum theory:

∆O = lim
ℏ→0

[
⟨ψ|Ŝ†ÔŜ|ψ⟩ − ⟨ψ|Ô|ψ⟩

]
. (3.1)

We can trade the unitary operator Ŝ for a hermitian operator χ̂ as [50, 51]

Ŝ = eiχ̂/ℏ . (3.2)

Forgetting about the state |ψ⟩ and working in the Heisenberg picture, we have

Ô′ = Ŝ†ÔŜ = e−iχ̂/ℏÔeiχ̂/ℏ

= Ô + 1
iℏ
[χ̂, Ô] + 1

2(iℏ)2 [χ̂, [χ̂, Ô]] + · · · .
(3.3)

Following Dirac’s correspondence,

lim
ℏ→0

1
iℏ
[X̂, Ŷ ] = {X,Y } , (3.4)

we deduce that the classical limit of (3.3) should give

O′ = O + {χ,O}+ 1
2{χ, {χ,O}}+ · · · . (3.5)

The classical quantity χ, which we call “scattering generator”, is to be understood as a
function on the phase space of a Hamiltonian system. The scattering generator defines a
canonical transformation that maps a free phase space at past infinity to another free phase
space at future infinity. For a constrained Hamiltonian system with gauge generators and
gauge-fixing conditions, χ must be gauge-invariant. If we also demand that O is gauge-
invariant, the difference between the Dirac bracket and the Poisson bracket shown in (2.17)
vanishes, so we may work with the Poisson bracket (2.19).

We used the classical limit of quantum mechanics to motivate the existence of χ. But,
it is certainly possible to argue for its existence purely within classical mechanics. The
Hamiltonian time evolution generates infinitesimal canonical transformation at each moment
in time. Integrating the time evolution from past infinity to future infinity would result in a
finite canonical transformation. Provided that the general relation between a Lie group and
its Lie algebra holds for the (infinite dimensional) group of all canonical transformations on
the free phase space, any finite canonical transformation could be written in a “conjugation”
form as in (3.5).

The master formula (3.5) can compute any scattering observable. Perturbatively, with

χ = χ(1) + χ(2) + χ(3) + · · · , (3.6)

it produces systematically all n-PL impulse formulas

∆(1)O = {χ(1), O} ,

∆(2)O = {χ(2), O}+ 1
2{χ(1), {χ(1), O}} ,

∆(3)O = {χ(3), O}+ 1
2{χ(2), {χ(1), O}}+ 1

2{χ(1), {χ(2), O}}

+ 1
6{χ(1), {χ(1), {χ(1), O}}} .

(3.7)
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An important feature of the master formula (3.5) is that, once all the constraints of
the system are taken into account by a suitable Dirac bracket, the preservation of the
constraints is guaranteed to all order in perturbation theory. For the twistor model, recall
from section 2.1.3 that the Dirac bracket satisfies

{f, p2}∗ = {f, y2}∗ = {f, y · p}∗ = 0 . (3.8)

When f is gauge invariant, the Dirac bracket can be replaced by the Poisson bracket. Setting
f = χ = χ(1) + χ(2) + · · · , since each χ(n) scale differently with the coupling constant, we
deduce that at each n,

p · {χ(n), p} = 0 , y · {χ(n), y} = 0 , y · {χ(n), p}+ p · {χ(n), y} = 0 . (3.9)

From a perturbative point of view, the iteration terms in (3.7) are essential for consistency.
For example, at 2PL, the iteration term in (3.7) ensures the mass-shell condition:

2p ·∆(2)p = 2pµ{χ(2), p
µ}+ pµ{χ(1), {χ(1), p

µ}}
= {χ(1), pµ{χ(1), p

µ}} − {χ(1), pµ}{χ(1), p
µ} = −(∆(1)p)2 ,

(3.10)

where we used (3.9) and the Leibniz rule for the Poisson brackets. In view of (3.9) and (3.10),
when we compute the 2PL observables later in this section, we will call {χ(2), O} and
1
2{χ(1), {χ(1), O}} “transverse” and “longitudinal” (or “iteration”), respectively.

3.1.1 Non-spinning example

Arguing for the existence of χ is one thing, giving an algorithm to compute χ is another. It
seems plausible that the “WQFT eikonal” χWQFT [53] coincides with our classical eikonal χ.
We will verify this expectation up to 2PL by explicit computations. Proving the equivalence
to all orders in perturbation theory is an open question, which requires incorporation of
bremsstrahlung effects.

Before we compute the scattering generator and observables of the twistor model, to
illustrate the ideas in a simpler setting, we review the binary dynamics of non-spinning
particles in electromagnetism following ref. [52], which shows how to separate the transverse
term {χ(2), p} from the longitudinal term 1

2{χ(1), {χ(1), p}}. The solution of the EOM involves
retarded Green functions on the worldline. When the solution is split into the time-symmetric
part and the time-anti-symmetric part, the former gives the transverse term while the latter
gives the iteration term.

The 1PL momentum kick is well known:

∆(1)p
µ
1 = −q1q2γ

∫
k
(ikµ)e

ik·b

k2 δ̄(v1 · k)δ̄(v2 · k) . (3.11)

where the velocity vectors are defined as vµ
a := pµ

a/ma and the relative boost is defined
as γ := −(v1 · v2). The impact parameter bµ is the projection of the relative position
xµ

12 = xµ
1 − xµ

2 onto the plane transverse to v1 and v2.
The 1PL momentum kick (3.11) satisfies (3.7) rather trivially as

∆(1)p
µ
1 = ηµν ∂χ(1)

∂xν
1

= {χ(1), p
µ
1} , χ(1) = −q1q2γ

∫
k⊥

eik·b

k2 , (3.12)
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where the integral over the transverse plane is defined as∫
k⊥

=
∫
d̄4k δ̄(v1 · k)δ̄(v2 · k) . (3.13)

As we proceed to the 2PL, it is useful to recall that the computation can be organized
according to the mass ratio:

∆(2)p
µ
1 = 1

m1
Kµ

1,1 +
1
m2

Kµ
1,2 , ∆(2)p

µ
2 = 1

m1
Kµ

2,1 +
1
m2

Kµ
2,2 . (3.14)

The vectors Kµ
a,b are integrals independent of the masses. The conservation of (pµ

1 + pµ
2 )

requires that

Kµ
1,1 +Kµ

2,1 = 0 , Kµ
1,2 +Kµ

2,2 = 0 . (3.15)

The exchange symmetry between the two particles relate the integrals by

Kµ
1,1 ↔ Kµ

2,2 , Kµ
1,2 ↔ Kµ

2,1 . (3.16)

So, it suffices to compute Kµ
1,1. To do so, we may work in the probe limit (m2 → ∞) [54]. In

the rest of this section, we will work in the probe limit until further notice.
The 2PL EOM of a spinless particle in the probe limit is given by

v̇µ
(2) =

q

m
Fµ

ν ẋ
ν
(1) +

q

m
xλ

(1)∂λF
µ

νv
ν
(0) , (3.17)

where F means F(0). Using the Bianchi identity, we may rewrite it as

v̇µ
(2) =

q

m
(∂µFλν)xλ

(1)v
ν
(0) +

d

dt

(
q

m
Fµ

νx
ν
(1)

)
. (3.18)

The total derivative on the r.h.s. does not contribute to the momentum kick, so that

∆(2)p
µ
1 = q

∫
dσ(∂µFλν)xλ

(1)v
ν
(0)

= q2

m

∫ ∞

−∞
dσ(∂µFλν)vν

(0)

[∫ σ

−∞
dσ′

∫ σ′

−∞
dσ′′F λ

ρv
ρ
(0)

]
.

(3.19)

Performing Fourier transform of (Fλν , F λ
ρ) by (eiℓ·x, eik·x) respectively, and switching to

q = k + ℓ, we obtain

∆(2)p
µ
1 = (q1q2)2

m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2 (iℓ

µ)
[
1 + γ2 ℓ · (q − ℓ)

(v1 · ℓ+ i0+)2

]
. (3.20)

The i0+ prescription comes from the retarded Green function on the worldline. To separate
the time-symmetric parts from the time-anti-symmetric parts, as explained in ref. [52], we
apply the exchange ℓ ↔ q − ℓ to get

∆(2)p
µ
1 = (q1q2)2

m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2 (iq

µ − iℓµ)
[
1 + γ2 ℓ · (q − ℓ)

(v1 · ℓ− i0+)2

]
. (3.21)
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The next step is to take the average of (3.20) and (3.21) and write the result as

∆(2)p
µ
1 = ∆(2)p

µ
1

∣∣∣
tr
+ ∆(2)p

µ
1

∣∣∣
iter

. (3.22)

The time-symmetric part carries an integrand proportional to qµ so that

∆(2)p
µ
1

∣∣∣
tr
= (q1q2)2

2m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2 (iq

µ)
[
1 + γ2 ℓ · (q − ℓ)

(v1 · ℓ)2

]
. (3.23)

It yields the 2PL eikonal via ∆(2)p
µ
1

∣∣∣
tr
= {χ(2), p

µ
1}. Omitting the i0+ prescription that is no

longer needed, and restoring the symmetry between the two particles, we obtain

χ(2) =
(q1q2)2

2m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
ℓ2(q − ℓ)2

[
1 + γ2 ℓ · (q − ℓ)

(v1 · ℓ)2

]
+ (1 ↔ 2) . (3.24)

It agrees perfectly with the WQFT eikonal [55]. The time-anti-symmetric part of (3.22) is

∆(2)p
µ
1

∣∣∣
iter

= (q1q2)2γ2

2m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
k2ℓ2

(k · ℓ)
[

iℓµ

(v1 · ℓ+ i0+)2 − iℓµ

(v1 · ℓ− i0+)2

]
= −(q1q2)2γ2

2m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
k2ℓ2

(k · ℓ)ℓµ δ̄′(v1 · ℓ) ,
(3.25)

where k = q − ℓ and we used the identity,

i

x+ i0+ − i

x− i0+ = δ̄(x) =⇒ i

(x+ i0+)2 − i

(x− i0+)2 = −δ̄′(x) . (3.26)

We may compare it with the iteration term. From (3.12) and (3.11), we find

1
2{χ(1), {χ(1), p

µ
1}} = i

2(q1q2)2
{
γ

∫
k⊥

eik·b

k2 , γ

∫
ℓ⊥

ℓµ
eiℓ·b

ℓ2

}
, (3.27)

In computing the bracket in (3.27), we note that

{δ̄(v1 · k)δ̄(v2 · k)eik·(x1−x2), γ} = δ̄(v1 · k)δ̄(v2 · k)eik·(x1−x2) ik · (−p2 + p1)
m1m2

= 0 . (3.28)

So, the only non-vanishing contributions come from

{eik·(x1−x2), δ̄(v1 · ℓ)δ̄(v2 · ℓ)} and {δ̄(v1 · k)δ̄(v2 · k), eiℓ·(x1−x2)} . (3.29)

Collecting the contributions, we obtain (in the probe limit)

1
2{χ(1), {χ(1), p

µ
1}} = −1

2(q1q2)2γ2
∫

k,ℓ
ei(k+ℓ)·b k · ℓ

k2ℓ2
F(k, ℓ)ℓµ ,

F(k, ℓ) = δ̄(v1 · k)δ̄(v2 · k)
δ̄′(v1 · ℓ)δ̄(v2 · ℓ)

m1
− (k ↔ ℓ) .

(3.30)

Using the identities,

δ(x+ y)δ(y) = δ(x)δ(y) , δ(x+ y)δ′(y) = δ(x)δ′(y)− δ′(x)δ(y) , (3.31)
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we can simplify (3.30) a bit further and obtain

1
2{χ(1), {χ(1), p1µ}} = −(q1q2)2γ2

2m1

∫
q⊥

eiq·b
∫

ℓ

k · ℓ
k2ℓ2

ℓµδ̄
′(v1 · ℓ)δ̄(v2 · ℓ) , (3.32)

in perfect agreement with (3.25).
In the paragraphs above, we manipulated the integrands of the Fourier integrals to

separate the iteration term. In the non-spinning case, it is easy to perform the Fourier
integral and compute the brackets in position space. We write the impact parameter as

bµ = xµ
12 +

γ(x12 · v2)− (x12 · v1)
γ2 − 1 vµ

1 + γ(x12 · v1)− (x12 · v2)
γ2 − 1 vµ

2 , (3.33)

where xµ
12 = xµ

1 − xµ
2 . The 1PL non-spinning eikonal is, after the Fourier integral,

χ(1) =
q1q2γ

4π
√
γ2 − 1

[
1
ϵ
+ log

(
b2

b2
0

)]
, (3.34)

where ϵ is the dimensional regularisation parameter D = 4− 2ϵ and b2
0 is a scheme-dependent

constant. The precise values of ϵ and b0 are irrelevant. The relevant brackets are

{b2, γ} = 0 , {b2, pµ
1}

.= 2bµ , {b2, bµ} .= 2b2
(

γvµ
2 − vµ

1
(γ2 − 1)m1

− γvµ
1 − vµ

2
(γ2 − 1)m2

)
, (3.35)

where .= denotes equivalence up to mass-shell constraint p2
i +m2

i = 0. Thus,

{χ(1), {χ(1), p
µ
1}} =

[
q1q2γ

4π
√
γ2 − 1

]2

{log b2, {log b2, pµ
1}}

=
[

q1q2γ

4π
√
γ2 − 1

1
b2

]2

{b2, {b2, pµ
1}}

.= 2
[

q1q2γ

4π
√
γ2 − 1

1
b2

]2

{b2, bµ}

.=
[

q1q2γ

2π
√
γ2 − 1

1√
b2

]2

×
(

γvµ
2 − vµ

1
(γ2 − 1)m1

− γvµ
1 − vµ

2
(γ2 − 1)m2

)

=
∣∣∣{χ(1), p

µ
1}
∣∣∣2 × ( γvµ

2 − vµ
1

(γ2 − 1)m1
− γvµ

1 − vµ
2

(γ2 − 1)m2

)
.

(3.36)

This term generates the longitudinal impulse needed to preserve the mass-shell condition,

p1µ {χ(1), {χ(1), p
µ
1}} = −{χ(1), p

µ
1}

2 . (3.37)

3.2 Momentum kick and spin kick from EOM

In the scattering problem of two spinning particles, the momentum kick and the spin kick
are the main scattering observables. In this subsection, we compute them up to the 2PL
order by solving the EOM perturbatively. The perturbation computes the deviation from
the free (straight line, constant spin) trajectory for each particle,

zµ(σ) = (xµ
(0) + iyµ

(0) + vµ
(0)σ) + δzµ(σ) ,

pµ(σ) = m(vµ
(0) + δvµ(σ)) .

(3.38)
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Without loss of generality, and taking constraints into consideration, we demand that the
constant parameters satisfy

v(0) · v(0) = −1 , (x(0) + iy(0)) · v(0) = 0 . (3.39)

The perturbative solution is arranged in the PL order as

δzµ = zµ
(1) + zµ

(2) + · · · ,

δvµ = vµ
(1) + vµ

(2) + · · · ,
(3.40)

where X(n) is proportional to qn. To avoid clutter, we will often omit the subscript X(0)
from background values.

3.2.1 1PL

At 1PL, the equations of motion are reduced to

v̇µ
(1) =

q

m
(F+

(0) + F−
(0))

µ
νv

ν
(0) , (3.41)

żµ
(1) = vµ

(1) +
2iq
m

(F−
(0))

µ
νy

ν
(0) . (3.42)

It is understood that F±
(0) here are evaluated along the background worldline (3.38).

In computing the impulse of particle 1 to the 1PL order, we may treat particle 2 as a
stationary source. The field-strength measured at the position of particle 1 is given by

F+
µν(z1(σ1)) = i

q2
2

∫
k
δ̄(v2 · k)

(k ∧ v2)µν − iϵµν [k, v2]
k2 eik·(z1(σ1)−z̄2(0)) ,

F−
µν(z̄1(σ1)) = i

q2
2

∫
k
δ̄(v2 · k)

(k ∧ v2)µν + iϵµν [k, v2]
k2 eik·(z̄1(σ1)−z2(0)) ,

(3.43)

where the worldline time-dependence from zµ
2 (σ2) = (xµ

2 + iyµ
2 + vµ

2σ2) has been integrated
out to leave δ̄(v2 · k) behind. The wedge and the epsilon notations mean

(a ∧ b)µν = aµbν − bµaν ,

ϵµν [a, b] = ϵµνρσa
ρbσ , ϵµ[a, b, c] = ϵµνρσa

νbρcσ , ϵ[a, b, c, d] = ϵµνρσa
µbνcρdσ .

(3.44)

Contracting F±
µν with vν

1 and integrating (3.41) over σ1, we obtain the velocity kick,

∆(1)v
µ
1 = − q1q2

2m1

∫
k⊥

iγkµ + ϵµ[k, v1, v2]
k2 eik·(b+iy)

− q1q2
2m1

∫
k⊥

iγkµ − ϵµ[k, v1, v2]
k2 eik·(b−iy)

= −q1q2
m1

∫
k⊥

[(ikµ) cosh(k · y)γ − ϵµ[k, v1, v2] sinh(k · y)]
eik·b

k2 .

(3.45)

The argument of the exponential is decomposed as

zµ
1 − z̄µ

2 = (xµ
1 − xµ

2 ) + i(yµ
1 + yµ

2 ) =: xµ
12 + iyµ , (3.46)
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and xµ
12 is projected onto the impact parameter vector bµ by δ̄(v1 · k)δ̄(v2 · k). Note how the

spin sum (yµ
1 + yµ

2 ) arises from the difference between complex spinspacetime coordinates.
Similarly, we can compute the spin kick and find

∆(1)y
µ
1 = q1q2

m1

∫
k⊥

[i(k ∧ v2)µ
νy

ν
1 cosh(k · y)− ϵµ[k, v2, y1] sinh(k · y)]

eik·b

k2 . (3.47)

It is easy to verify orthogonality and conservation of magnitudes of velocity/spin at 1PL:

∆(y1 · v1) = (∆y1 · v1) + (y1 ·∆v1) = 0 ,
∆(v2

1) = 2(∆v1 · v1) = 0 ,
∆(y2

1) = 2(∆y1 · y1) = 0 .
(3.48)

The 1PL observables can be compared with predictions of QED in the classical limit.
We use the results of ref. [56] as the reference. When truncated to linear order in y, (3.45)
and (3.47) are found to be consistent with (4.45) and (4.46) of ref. [56], under the conditions
Ci = 1, Di = 0, and the covariant spin supplementary condition. Note that the spin tensor
kick ∆Sµν reported by ref. [56] receives contributions from both (3.45) and (3.47).

The 1PL observables can be reproduced by the classical eikonal as [57]

∆(1)p
µ
1 = {χ(1), p

µ
1} = ηµν ∂

∂xν
1
χ(1) ,

∆(1)y
µ
1 = {χ(1), y

µ
1 } = 1

m1

[
vµ

1 y
ν
1
∂

∂xν
1
+ ϵµν [v1, y1]

∂

∂yν
1

]
χ(1) .

(3.49)

An explicit form of the 1PL eikonal is

χ(1) = −q1q2

∫
k⊥

[
cosh(k · y)γ − i

sinh(k · y)
k · y

ϵ[k, v1, v2, y]
]
eik·b

k2 . (3.50)

To reproduce (3.45) and (3.47) from (3.50) via (3.49), we need the identity,

kµϵ[k, v1, v2, y]
k · y

≈ −ϵµ[k, v1, v2] . (3.51)

The approximate equality (≈) means that we may impose the transversality condition
k · v1 = 0 = k · v2 and ignore ultra-local (∝ k2/k2) terms inside the integral. With this
understanding, the identity above can be derived from the 4d Schouten identity,

aµϵ[b, c, d, e] + bµϵ[c, d, e, a] + cµϵ[d, e, a, b]
+dµϵ[e, a, b, c] + eµϵ[a, b, c, d] = 0 .

(3.52)

In what follows, we will not distinguish the approximate equality from the strict equality.
Inside the integrands of the Fourier integrals, we will take the liberty to set

k2 = 0 , ℓ2 = 0 , k · v2 = 0 = ℓ · v2 , (k + ℓ) · v1 = 0 . (3.53)
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3.2.2 2PL

The 2PL equations directly relevant for the impulse computation are

v̇µ
(2) =

q

m
(F+

(0) + F−
(0))

µ
νv

ν
(1) +

q

m
(F+

(1) + F−
(1))

µ
νv

ν
(0) ,

ẏµ
(2) =

q

m
(F+

(0) + F−
(0))

µ
νy

ν
(1) +

q

m
(F+

(1) + F−
(1))

µ
νy

ν
(0)

− i
4q2

m2

[
(vF−y)(F+)µ

ν − (vF+y)(F−)µ
ν

]
(0)
yν

(0) .

(3.54)

2PL velocity kick. As we saw in the non-spinning case, it is sufficient to work in the probe
limit (m1/m2 → 0), and we can use the Bianchi identity and discard a total derivative to get

∆(2)p
µ = q

∫
dσ(∂µF+

λν)z
λ
(1)v

ν
(0) + q

∫
dσ(∂µF−

λν)z̄
λ
(1)v

ν
(0) . (3.55)

Next, using (3.42), we can turn (z(1), z̄(1)) into integrals,

∆(2)p
µ = ∆(2v)p

µ +∆(2y)p
µ ,

∆(2v)p
µ = q2

m

∫ ∞

−∞
dσ∂µ(F+ + F−)λνv

ν
(0)

[∫ σ

−∞
dσ′

∫ σ′

−∞
dσ′′(F+ + F−)λ

ρv
ρ
(0)

]
,

∆(2y)p
µ = 2iq2

m

∫ ∞

−∞
dσ(∂µF+

λν)v
ν
(0)

∫ σ

−∞
dσ′(F−)λ

ρy
ρ
(0)

− 2iq2

m

∫ ∞

−∞
dσ(∂µF−

λν)v
ν
(0)

∫ σ

−∞
dσ′(F+)λ

ρy
ρ
(0) .

(3.56)

We divided the computation into two parts. The “y-part” (∆(2y)p
µ) is linear in y1 aside from

the y-dependence in the exponential factors. The “v-part” (∆(2v)p
µ) is independent of y1

aside from the exponential factors. While we replace vµ
(1) by ż(1) or ˙̄z(1), we also encounter

terms proportional to (F+)µ
ν(F−)ν

λ − (F−)µ
ν(F+)ν

λ, but they vanish identically. Let us
analyse the two parts one by one.

For the y-part, after using the field-strengths (3.43) and integrating over the worldline,
we obtain

∆(2y)p
µ
1 = (q1q2)2

m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)(iℓµ)
ℓ2k2(ik · v1 + 0+) (ch⊟ Cy + sh⊟ Sy) , (3.57)

where we set q = k + ℓ as before and introduce shorthand notations,

ch⊟ = cosh[(k − ℓ) · y] , sh⊟ = sinh[(k − ℓ) · y] ,
ch⊞ = cosh[(k + ℓ) · y] , sh⊞ = sinh[(k + ℓ) · y] .

(3.58)

The functions Cy, Sy are

Cy = −ϵ[k, ℓ, y1, v1] + 2(v2 · y1)ϵ[k, ℓ, v1, v2] ,
Sy = i(ℓ · v1)[(k − ℓ) · y1] + 2iγ(v2 · y1)(k · ℓ) .

(3.59)
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We divide the v-part further into the same helicity contribution (∆(2vs)p
µ) and the

opposite helicity contribution (∆(2vo)p
µ). The opposite helicity part is

∆(2vo)p
µ
1 = (q1q2)2

m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)(iℓµ)
ℓ2k2(ik · v1 + 0+)2 (ch⊟ Cvo + sh⊟ Svo) ,

Cvo = −
(
γ2 − 1

2

)
(k · ℓ) + (k · v1)(ℓ · v1) , Svo = iγ ϵ[k, l, v1, v2] .

(3.60)

The same helicity part is quite simple:

∆(2vs)p
µ
1 = (q1q2)2

m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)(iℓµ)
ℓ2k2(ik · v1 + 0+)2

(
−1
2

)
(k · ℓ)ch⊞ . (3.61)

In the non-spinning limit (y → 0), it cancels against the +1
2(k · ℓ) term of Cvo in (3.60),

in agreement with (3.20).

2PL eikonal. As in the non-spinning example, we can extract the 2PL eikonal from the 2PL
momentum kick. The key idea [52] is to apply the exchange ℓ↔ k = q − ℓ to the integrand,

∆(2)p
µ
1 =

∫
q⊥

eiq·b
∫

ℓ
(iℓµ)J (k, ℓ) =

∫
q⊥

eiq·b
∫

ℓ
(iqµ − iℓµ)J (ℓ, k) . (3.62)

Since q · v1 = k · v1 + ℓ · v1 = 0, the exchange flips the i0+ prescription for the worldline
Green function. Taking the average of the two expressions and taking the term proportional
to qµ in the integrand, we separate the transverse part of the momentum kick, from which
we read off the 2PL eikonal equipped with the time-symmetric i0+,

∆(2)p
µ
1

∣∣∣
tr
= 1

2

∫
q⊥

eiq·b
∫

ℓ
(iqµ)J (ℓ, k) = {χ(2), p

µ
1} = ηµν ∂

∂xν
1
χ(2)

=⇒ χ(2) =
1
2

∫
q⊥

eiq·b
∫

ℓ
J (ℓ, k) .

(3.63)

The remaining ℓµ terms in the integrand should be matched against the iteration term,

∆(2)p
µ
1

∣∣∣
iter

= 1
2

∫
q⊥

eiq·b
∫

ℓ
(iℓµ) [J (k, ℓ)− J (ℓ, k)] = 1

2{χ(1), {χ(1), p
µ
1}} . (3.64)

We have computed ∆(2)p
µ
1 from the EOM. It is straightforward to split it into ∆(2)p

µ
1

∣∣∣
tr

and ∆(2)p
µ
1

∣∣∣
iter

, and then read off χ(2) from ∆(2)p
µ
1

∣∣∣
tr

. The final result for χ(2) is

χ(2) = χ(2)1 + χ(2)2 ,

χ(2)1 = −(q1q2)2

2m1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
k2ℓ2(ℓ · v1)2 [V1 + Y1] ,

V1 =
[
−(γ2 − 1

2)(k · ℓ) + (k · v1)(ℓ · v1)
]
cosh[(k − ℓ) · y]

− 1
2(k · ℓ) cosh[(k + ℓ) · y] + iγ ϵ[k, ℓ, v1, v2] sinh[(k − ℓ) · y] ,

Y1 = −i(ℓ · v1) [−ϵ[k, ℓ, y1, v1] + 2(v2 · y1)ϵ[k, ℓ, v1, v2]] cosh[(k − ℓ) · y]
+ (ℓ · v1) [(ℓ · v1)[(k − ℓ) · y1] + 2γ(v2 · y1)(k · ℓ)] sinh[(k − ℓ) · y] .

(3.65)

The other half of the answer, χ(2)2, can be obtained from χ(2)1 by the exchange of particle
labels (1 ↔ 2). Verifying the iteration relation (3.64) is also straightforward, but involves
a lengthy computation; see appendix C for details.
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2PL spin kick. To complete the 2PL story, let us compute the 2PL spin kick from the
EOM and confirm that it can be reproduced by the 2PL eikonal we obtained earlier. We
begin with a copy of the 2PL EOM for spin from (3.54),

ẏµ
(2) =

q

m
(F+

(0) + F−
(0))

µ
νy

ν
(1) +

q

m
(F+

(1) + F−
(1))

µ
νy

ν
(0)

− i
4q2

m2

[
(vF−y)(F+)µ

ν − (vF+y)(F−)µ
ν

]
(0)
yν

(0) .
(3.66)

Using the 1PL EOM, we turn the terms on the r.h.s. to integrals,

∆(2)y
µ = ∆(2a)y

µ +∆(2b)y
µ +∆(2c)y

µ +∆(2d)y
µ ,

∆(2a)y
µ = q2

m2

∫ ∞

−∞
dσ(F+ + F−)µ

ν

∫ σ

−∞
dσ′(F+ + F−)ν

λy
λ
(0) ,

∆(2b)y
µ = q2

m2

∫ ∞

−∞
dσ∂λ(F+ + F−)µ

νy
ν
(0)

[∫ σ

−∞
dσ′

∫ σ′

−∞
dσ′′(F+ + F−)λ

ρv
ρ
(0)

]
,

∆(2c)y
µ = 2iq2

m2

∫ ∞

−∞
dσ∂λ(F+)µ

νy
ν
(0)

∫ σ

−∞
dσ′(F−)λ

ρy
ρ
(0)

− 2iq2

m2

∫ ∞

−∞
dσ∂λ(F−)µ

νy
ν
(0)

∫ σ

−∞
dσ′(F+)λ

ρy
ρ
(0) ,

∆(2d)y
µ = −i4q

2

m2

∫ ∞

−∞
dσ
[
(vF−y)(F+)µ

ν − (vF+y)(F−)µ
ν

]
(0)
yν

(0) .

(3.67)

Both (b) and (c) terms come from the second term on the r.h.s. of (3.66).
Again, it suffices to work in the probe limit; we keep using the Fourier integral (3.43)

of the field-strength produced by a fixed source. After worldline time integrals, we reach
an expression of the form

∆(2)y
µ
1 = (q1q2)2

m2
1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
k2ℓ2(ik · v1 + 0+)2N

µ . (3.68)

The numerator N µ can be computed separately for each term in (3.67). For (a) and (b)
terms, we also distinguish the same/opposite helicity contributions.

N µ
(2ao) = (ch⊟ Cao + sh⊟ Sao)µ , N µ

(2as) = (ch⊞ Cas + sh⊞ Sas)µ ,

N µ
(2bo) = (ch⊟ Cbo + sh⊟ Sbo)µ , N µ

(2bs) = (ch⊞ Cbs + sh⊞ Sbs)µ ,

N µ
(2c) = (ch⊟ Cc + sh⊟ Sc)µ , N µ

(2d) = (ch⊟ Cd + sh⊟ Sd)µ ,

(3.69)

It is straightforward to evaluate all C, S functions in (3.69). The intermediate steps involve
many terms, but after some cancellations, the final results are often quite simple. For
instance, the same helicity sector gives

Cµ
as + Cµ

bs = − i

2(k · ℓ) [v
µ
1 (ℓ · y1)− yµ

1 (ℓ · v1)] ,

Sµ
as + Sµ

bs = −1
2(k · ℓ)ϵ

µ[v1, y1, ℓ] .
(3.70)
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After collecting and simplifying the terms, using the symmetrisation of the i0+ prescription,
we extract the transverse part of the spin kick and check whether the result agrees with

{χ(n), y
µ
1 } = 1

m1

[
vµ

1 y
ν
1
∂

∂xν
1
+ ϵµν [v1, y1]

∂

∂yν
1

]
χ(n) . (3.71)

Again, the procedure is straightforward, and we confirm the agreement, but the calculations
tend to be lengthy. We give some details in appendix C.2.

4 Twistor WQFT

Worldline Quantum Field Theory (WQFT) [53] is a means of organising classical equations
of motion in a diagrammatic way that resembles Feynman diagrams of particle physics. The
simplest WQFT model action consists of two parts; the bulk part which describes field degrees
of freedom (DOFs) on the background spacetime, and one-dimensional sigma model that
takes the background spacetime as the target space, where the latter is interpreted as the
worldline action of a point particle moving on the background spacetime. The DOFs are
decomposed into the background value (which satisfies the classical equations of motion)
and fluctuations from the background value, and diagrammatic techniques developed for
perturbative QFT calculations are applied to the field fluctuations. The background value
for the background spacetime is usually taken to be the flat Minkowski spacetime, and the
background value for the worldline is usually taken to be the straight trajectory of a free
particle; xµ(σ) = bµ + vµσ + δxµ(σ). The fluctuation DOFs are evaluated as a perturbative
series of the coupling constant, which in the gravitational case is taken to be the Newton’s
constant G.

4.1 Worldline Feynman rules

When we apply the WQFT method to our twistor model, one novelty is that the twistor
variables (λ, λ̄, µ, µ̄) are the fundamental variables, and the target space of the worldline is
the twistor space indirectly related to the background spacetime by the incidence relations.
It is natural to express the propagators and vertex factors in terms of the twistor variables.
But, it is often convenient to use the vector variables (z, z̄) in intermediate steps. We will
use the incidence relations to switch between the twistor variables (“twistor picture”) and
the vector variables (“spacetime picture”) whenever necessary.

Classical limit. When ℏ is restored, the fundamental variables have the dimensions

[λα
I ] = [λ̄Iα̇] = [M1/2] , [µα̇I ] = [µ̄I

α] = [M1/2L] , [Aµ] = [M1/2L−1/2] , (4.1)

and the coupling becomes dimensionful: [q] = [M1/2L1/2]. The action also becomes iS → iS/ℏ,
therefore the interaction vertices are weighted by ℏ−1 while the propagators (both ⟨λµ̄⟩ type
and ⟨µµ⟩ type) are weighted by ℏ. We have no other ℏ scaling if we only use frequency ω

and wavenumber four-vector kµ in momentum space, which is allowed because there is no
“mass” in any of the fluctuation fields. Therefore, at a given q order (which determines the
number of vertices coupling to the photon field), the classical contribution is determined
from the diagrams with the least number of propagators that makes the diagram connected,
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which is equivalent to the statement that tree diagrams determine the classical physics.
The tree diagrams, however, generally have momentum integrals similar to loop integrals
of quantum field theory.

4.1.1 Background-fluctuation expansion

In the non-spinning WQFT, the expansion around a straight line trajectory is done by

xµ(σ) = bµ
0 + vµσ + δxµ(σ) , v2 = −1 , b0 · v = 0 . (4.2)

After the NJ-shift, the expansion is generalised as

zµ(σ) = bµ
0 + iyµ

0 + vµσ + δzµ(σ) , y0 · v = 0 . (4.3)

We should rephrase the background-fluctuation expansion in terms of twistor variables.
As we explained in section 2.1.2, we may assume a flat Regge trajectory m′ = 0. The resulting
equations of motion for the free action (2.8) are

δSfree
δµ̄I

α
= 0 = −dλα

I

dσ
+ κ1

2i λα
I

δSfree
δµα̇I

= 0 = −dλ̄Iα̇

dσ
− κ1

2i λ̄Iα̇

δSfree
δλα

I
= 0 = dµ̄I

α

dσ
+ κ0∆∆̄

2 (λ−1)I
α + κ1

2i µ̄I
α

δSfree

δλ̄Iα̇

= 0 = dµα̇I

dσ
+ κ0∆∆̄

2 (λ̄−1)α̇I − κ1

2i µ
α̇I .

(4.4)

Just like in the previous section, we fix the Lagrange multipliers as κ0 = 1/m and κ1 = 0.
We introduce the background values ℓαI and ℓ̄Iα̇ satisfying the conditions

det(ℓ) = det(ℓ̄) = m, ℓα
I ℓ̄Iα̇ = −mvαα̇ , (4.5)

where vµ is the normalised velocity vector introduced in (4.3). The following relations
satisfied by inverse matrices are useful in calculations.

(ℓ−1)I
α = −ϵIJϵ

αβℓβ
J

det(ℓ) , (ℓ̄−1)α̇I =
ϵα̇β̇ϵIJ ℓ̄Jβ̇

det(ℓ̄)
, (ℓ̄−1)α̇I(ℓ−1)I

α = −v
α̇α

m
. (4.6)

The twistor variables are expanded as

λα
I → ℓα

I + λα
I(σ) ,

λ̄Iα̇ → ℓ̄Iα̇ + λ̄Iα̇(σ) ,

µα̇I → cα̇I − m

2 (ℓ̄−1)α̇Iσ + µα̇I(σ) ,

µ̄I
α → c̄I

α − m

2 (ℓ−1)I
ασ + µ̄I

α(σ) .

(4.7)

The background-fluctuation expansion for zµ and z̄µ can be determined from the incidence
relations (A.12),

zα̇α → +2cα̇I(ℓ−1)I
α −m(ℓ̄−1)α̇I(ℓ−1)I

ασ + δzα̇α(σ) = zα̇α
0 + vα̇ασ + δzα̇α(σ) ,

z̄α̇α → +2(ℓ̄−1)α̇I c̄I
α −m(ℓ̄−1)α̇I(ℓ−1)I

ασ + δz̄α̇α(σ) = z̄α̇α
0 + vα̇ασ + δz̄α̇α(σ) .

(4.8)
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The relation between the fluctuation fields are determined from the incidence relations.

2µα̇I(σ) =
(
zα̇α

0 + vα̇ασ
)
λα

I(σ) + δzα̇α(σ)ℓαI + δzα̇α(σ)λα
I(σ) ,

2µ̄I
α(σ) = λ̄Iα̇(σ)

(
z̄α̇α

0 + vα̇ασ
)
+ ℓ̄Iα̇δz̄

α̇α(σ) + λ̄Iα̇(σ)δz̄α̇α(σ) .
(4.9)

We use the positive frequency expansion,

ϕ(x) =
∫

k
ϕ(k)eikx , f(σ) =

∫
ω
f(ω)e−iωσ , (4.10)

which relates the frequency space coefficients to annihilation modes and incoming momenta.
The frequency space expression for the incidence relation turns out to be more useful

δzα̇α(ω) =
[
2µα̇I − zα̇β

0 λβ
I + ivα̇β ∂λβ

I

∂ω
−
∫

ω′
δzα̇β(ω′)λβ

I(ω − ω′)
]
(ℓ−1)I

α ,

δz̄α̇α(ω) = (ℓ̄−1)α̇I

[
2µ̄I

α − λ̄Iβ̇ z̄
β̇α
0 + i

∂λ̄Iβ̇

∂ω
vβ̇α −

∫
ω′
λ̄Iβ̇(ω − ω′)δz̄β̇α(ω′)

]
,

(4.11)

where we have suppressed the ω dependence whenever it is obvious.
The free action in terms of the fluctuation fields becomes

Sfree =
∫ [

λα
Idµ̄I

α + λ̄Iα̇dµ
α̇I + det(λ) + det(λ̄) +m(ℓ−1)α

Iλα
I(ℓ̄−1)α̇J λ̄Jα̇

2 dσ

+ det(λ)(ℓ̄−1)α̇I λ̄Iα̇ + (ℓ−1)I
αλα

Idet(λ̄)
2 dσ + det(λ)det(λ̄)

2m dσ + · · ·
]
.

(4.12)

where the ellipsis denotes constant and total derivative terms irrelevant for Feynman rules.
The first line determines the 2pt functions, while the second line generates cubic and
quartic vertices.

4.1.2 Twistor propagators

The quadratic part of the free action in frequency space can be written as

iS2 = i

2

∫
ω,ω′

δ̄(ω′ + ω)
(
λα

I(ω′) µ̄I
α(ω′) λ̄Iα̇(ω′) µα̇I(ω′)

)

×


−1

2ϵ
αβϵIJ −iωδJ

I δ
α
β

m
2 (ℓ

−1)I
α(ℓ̄−1)β̇J 0

+iωδI
Jδ

β
α 0 0 0

m
2 (ℓ̄

−1)α̇I(ℓ−1)J
β 0 +1

2ϵ
IJϵα̇β̇ −iωδI

Jδ
α̇
β̇

0 0 +iωδJ
I δ

β̇
α̇ 0



λβ

J(ω)
µ̄J

β(ω)
λ̄Jβ̇(ω)
µβ̇J(ω)

 ,

(4.13)

where we used the delta support to convert ω′ → −ω. Inverting the quadratic action leads
to the twistor propagators in the straight line background:

⟨λ I
α (ω′)µ̄ β

J (ω)⟩ = −δ
β
αδ

I
J

ω
δ̄(ω′ + ω) , ⟨µ̄ α

I (ω′)µ̄ β
J (ω)⟩ = + i

2
ϵIJϵ

αβ

ω2 δ̄(ω′ + ω) ,

⟨λ̄Iα̇(ω′)µβ̇J(ω)⟩ = −δ
β̇
α̇δ

J
I

ω
δ̄(ω′ + ω) , ⟨µα̇I(ω′)µβ̇J(ω)⟩ = − i

2
ϵIJϵα̇β̇

ω2 δ̄(ω′ + ω) ,

⟨µα̇I(ω′)µ̄ β
J (ω)⟩ = − im2

(ℓ̄−1)α̇I(ℓ−1)β
J

ω2 δ̄(ω′ + ω) .

(4.14)
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An i0+ prescription is needed to determine the causality flow of the 2pt functions; e.g.
for ω → ω + i0+ causality flows from ω′ to ω. Otherwise stated, we use time-symmetric
i0+ prescription in the calculations, which is the prescription relevant for computing the
eikonal [40]. We also remark that all position type 2pt functions (i.e. ⟨µµ⟩, ⟨µ̄µ̄⟩, and ⟨µµ̄⟩)
should be understood as

⟨µ̄ α
I (ω′)µ̄ β

J (ω)⟩ = + iκ
0det(ℓ̄)
2

ϵIJϵ
αβ

ω2 δ̄(ω′ + ω) ,

⟨µα̇I(ω′)µβ̇J(ω)⟩ = − iκ
0det(ℓ)
2

ϵIJϵα̇β̇

ω2 δ̄(ω′ + ω) ,

⟨µα̇I(ω′)µ̄ β
J (ω)⟩ = − iκ

0det(ℓ)det(ℓ̄)
2

(ℓ̄−1)α̇I(ℓ−1)β
J

ω2 δ̄(ω′ + ω) ,

(4.15)

when we remove the gauge-fixing condition κ0 = 1
m and background value determinant

conditions det(ℓ) = det(ℓ̄) = m. This will become relevant in discussions of causality cuts
applied to the twistor model [58].

Let us introduce a graphical notation for the propagators (4.14). Without the mass-shell
constraint, the worldline propagator would be simply

ZA
I

Z̄J
B

= −δA
BδJ

I

ω
, (4.16)

which includes ⟨λµ̄⟩ and ⟨λ̄µ⟩ propagators. The mass-shell constraint introduces additional
propagators. We denote the ⟨µµ⟩, ⟨µ̄µ̄⟩ propagators as

µα̇I

µβ̇J

= − i

2
ϵIJϵα̇β̇

ω2 ,

µ̄I
α

µ̄J
β

= + i

2
ϵIJϵ

αβ

ω2 . (4.17)

The black dots in the middle remind us of the fact that these propagators originate from the
(λ̄λ̄) and (λλ) vertices in the Lagrangian.6 Finally, we denote the ⟨µµ̄⟩ propagator by

µα̇I

µ̄J
β

= − im2
(ℓ̄−1)α̇I(ℓ−1)β

J

ω2 . (4.18)

The black square in the middle is to show that this propagator comes from the m(ℓ−1)(ℓ̄−1)
vertex in the Lagrangian.

6This is a valid interpretation of the 2pt functions; we may only regard (4.16) as the fundamental 2pt
functions and understand the position type 2pt functions, (4.17) and (4.18), as insertions of 2pt vertices
between products of fundamental 2pt functions. See appendix D for regularisation of the divergences related
to the symmetric i0+ prescription of the 2pt functions.
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4.1.3 Vector 2-point functions

Turning to the “spacetime picture” where we organize diagrams in terms of δz, δz̄, the
following 2pt functions will play a crucial role.

⟨δzα̇α(ω′)δzβ̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2 δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δz̄β̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2 δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ = − 2
m

 ivα̇αvβ̇β

ω2 + vα̇βzβ̇α
0

ω′ + vα̇β z̄β̇α
0

ω

 δ̄(ω′ + ω)

− ivα̇βvβ̇α
( 1
ω′ +

1
ω

)
δ̄′(ω′ + ω)

 ,

(4.19)

where δ̄′(x) = d
dx δ̄(x) is the delta derivative. Note that terms proportional to ω−2 in (4.19) are

contributions from the 2pt functions given in (4.15). We have neglected the loop contribution
to the ⟨δz̄δz⟩ 2pt function,

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ ⊃ −4vα̇αvβ̇β

m2 δ̄(ω′ + ω)
∫

ω1

1
ω1(ω − ω1)

→ 0 , (4.20)

based on two reasons. First, ℏ counting from dimensional analysis requires an extra ℏ factor
for this loop contribution compared to tree contributions given in (4.19). Second, the loop
integral evaluates to zero if we assume invariance under shifts of the integration variable:7∫

ω′

1
ω′(ω − ω′) = 1

ω

∫
ω′

[ 1
ω′ −

1
ω′ − ω

]
. (4.21)

The delta derivative contribution can be simplified by( 1
ω′ +

1
ω

)
δ̄′(ω′ + ω) = ∂

∂ω

[
δ̄(ω′ + ω)

ω′

]
+ ∂

∂ω′

[
δ̄(ω′ + ω)

ω

]
= ∂

∂ω

[
− δ̄(ω

′ + ω)
ω

]
+ ∂

∂ω′

[
δ̄(ω′ + ω)

ω

]
= 1
ω2 δ̄(ω

′ + ω) ,

(4.22)

leading to

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ = − 2
m

 i(vα̇αvβ̇β − vα̇βvβ̇α)
ω2 + vα̇β(z̄β̇α

0 − zβ̇α
0 )

ω

 δ̄(ω′ + ω)

= − 2
m

 iϵα̇β̇ϵαβ

ω2 + vα̇β(z̄β̇α
0 − zβ̇α

0 )
ω

 δ̄(ω′ + ω) ,

(4.23)

7Although widely used in dimensional regularisation, this is not a trivial assumption; for example, ABJ
anomalies evaluate to zero under this assumption for (divergent) loop integrals.
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so that the delta derivative contribution vanishes. We have used v2 = −1 to simplify the
second line; vα̇αvβ̇β − vα̇βvβ̇α = −v2ϵα̇β̇ϵαβ = ϵα̇β̇ϵαβ. Note that the term proportional to
ω−1 implies propagation of spin degrees of freedom yµ ∝ zµ − z̄µ.

In the vector notation, the δz and δz̄ 2pt functions take the following form,

⟨δzµ(ω′)δzν(ω)⟩ = iηµν

mω2 δ̄(ω
′ + ω) ,

⟨δz̄µ(ω′)δz̄ν(ω)⟩ = iηµν

mω2 δ̄(ω
′ + ω) ,

⟨δz̄µ(ω′)δzν(ω)⟩ = i

m

[
ηµν

ω2 + 2(vµyν
0 + yµ

0 v
ν + iεµνλσvλy0σ)
ω

]
δ̄(ω′ + ω) .

(4.24)

It is useful to present the 2-point functions pictorially. To distinguish them from the twistor
propagators (4.16)–(4.18), we denote δzµ, δz̄µ by squares:

δzµ

δzν

= ⟨δzµδzν⟩ ,

δz̄µ

δz̄ν

= ⟨δz̄µδz̄ν⟩ ,

δz̄µ

δz̄ν

= ⟨δz̄µδzν⟩ . (4.25)

Finally, separating the position x and the spin-length y, we get

⟨δxµ(ω′)δxν(ω)⟩ =
[
iηµν

mω2 − 1
mω

εµνλσvλy0σ

]
δ̄(ω′ + ω) ,

⟨δyµ(ω′)δyν(ω)⟩ = − 1
mω

εµνλσvλy0σ δ̄(ω′ + ω) ,

⟨δxµ(ω′)δyν(ω)⟩ = 1
mω

(vµyν
0 + yµ

0 v
ν) δ̄(ω′ + ω) = −⟨δyµ(ω′)δxν(ω)⟩ .

(4.26)

4.1.4 Higher order correlators

For computations at 2PL or higher orders, we will need to evaluate the higher order correlators.
We write the 2pt correlators as

⟨δzα̇α(ω′)δzβ̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2 δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δz̄β̇β(ω)⟩ = −2iϵα̇β̇ϵαβ

mω2 δ̄(ω′ + ω) ,

⟨δz̄α̇α(ω′)δzβ̇β(ω)⟩ = −2i
m

ϵα̇β̇ϵαβ

ω2 − 2vα̇βyβ̇α
0

ω

 δ̄(ω′ + ω) .

(4.27)

The connected part of the higher point correlators can be computed using the recursive
substitutions

δzα̇α(ω) →
∫

ω′
δzα̇β(ω′)×

[
−λβ

I(ω − ω′)(ℓ−1)I
α
]
,

δz̄α̇α(ω) →
∫

ω′

[
−(ℓ̄−1)α̇I λ̄Iβ̇(ω − ω′)

]
× δz̄β̇α(ω′) ,

(4.28)
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the 2pt correlators

−(ℓ−1)I
α⟨λβ

I(ω′)δz̄γ̇γ(ω)⟩ = −
2vγ̇αδγ

β

mω
δ̄(ω′ + ω) ,

−(ℓ̄−1)α̇I⟨λ̄Iβ̇(ω
′)δzγ̇γ(ω)⟩ = −

2vα̇γδγ̇

β̇

mω
δ̄(ω′ + ω) ,

(4.29)

additional vertices from the free action

iSfree,3 = i

2

∫
dσ
[
det(λ)(ℓ̄−1)α̇I λ̄Iα̇ + (ℓ−1)I

αλα
Idet(λ̄)

]
= i

2

∫
ω′,ω

(
(ℓ̄−1)α̇I λ̄Iα̇(ω′)det(λ)[ω] + (ℓ−1)I

αλα
I(ω′)det(λ̄)[ω]

)
δ̄(ω′ + ω) ,

iSfree,4 = i

2m

∫
dσ
[
det(λ)det(λ̄)

]
= i

2m

∫
ω′,ω

det(λ)[ω′]det(λ̄)[ω]δ̄(ω′ + ω) ,

(4.30)

where

det(λ)[ω] = −ϵ
αβϵIJ

2

∫
ω′
λα

I(ω − ω′)λβ
J(ω′) ,

det(λ̄)[ω] = ϵα̇β̇ϵIJ

2

∫
ω′
λ̄Iα̇(ω − ω′)λ̄Jβ̇(ω

′) ,
(4.31)

and determinant insertions to the 2pt correlators

⟨⟨δzα̇α(ω0)δzβ̇β(ω1)det(λ̄)[ω2]⟩⟩ =
4ϵα̇β̇ϵαβ

mω0ω1
δ̄(ω0 + ω1 + ω2) ,

⟨⟨δz̄α̇α(ω0)δz̄β̇β(ω1)det(λ)[ω2]⟩⟩ =
4ϵα̇β̇ϵαβ

mω0ω1
δ̄(ω0 + ω1 + ω2) .

(4.32)

For example, the following 3pt correlator can be computed as

⟨⟨δz̄α̇α(ω0)δzβ̇β(ω1)δzγ̇γ(ω2)⟩⟩ = −(ℓ̄−1)α̇I
∫

ω′
⟨λ̄Iδ̇(ω0 − ω′)δzβ̇β(ω1)⟩⟨δz̄δ̇α(ω′)δzγ̇γ(ω2)⟩

− (ℓ−1)I
β
∫

ω′
⟨λδ

I(ω1 − ω′)δz̄α̇α(ω0)⟩⟨δzβ̇δ(ω′)δzγ̇γ(ω2)⟩

+
(
ω1 ↔ ω2 , β ↔ γ , β̇ ↔ γ̇

)
+ i

2

∫
ω′
(ℓ−1)I

δ⟨λδ
I(−ω′)δz̄α̇α(ω0)⟩

× ⟨⟨δzβ̇β(ω1)δzγ̇γ(ω2)det(λ̄)[ω′]⟩⟩ ,

where the first three lines come from the expansion (4.28) and the last line comes from the
insertion (4.32). The result partially simplifies to

⟨⟨δz̄α̇α(ω0)δzβ̇β(ω1)δzγ̇γ(ω2)⟩⟩ = −4ivα̇β

m2

(
ϵβ̇γ̇ϵαγ

ω0ω1ω2
+ 2vβ̇γyγ̇α

0
ω1ω2

)
δ̄(ω0 + ω1 + ω2)

+
(
ω1 ↔ ω2 , β ↔ γ , β̇ ↔ γ̇

)
+ 4ivα̇αϵβ̇γ̇ϵβγ

m2ω0ω1ω2
δ̄(ω0 + ω1 + ω2) ,

(4.33)
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where the frequency exchange is only present for manifest symmetry. In vectorial notation
the last term coming from determinant insertion cancels and simplifies to

⟨⟨δz̄µ(ω0)δzν(ω1)δzλ(ω2)⟩⟩ = − 4i
m2ω1ω2

[
yµ

0 (ηνλ + 2vνvλ) + vµ(vνyλ
0 + yν

0v
λ)

+iϵµν [v, y0]vλ + iϵµλ[v, y0]vν
]
δ̄(ω0 + ω1 + ω2) .

(4.34)

A similar calculation for the conjugate 3pt correlator yields

⟨⟨δz̄α̇α(ω0)δz̄β̇β(ω1)δzγ̇γ(ω2)⟩⟩ =
4ivα̇γ

m2

(
ϵβ̇γ̇ϵαβ

ω0ω1ω2
+ 2vβ̇αyγ̇β

0
ω0ω1

)
δ̄(ω0 + ω1 + ω2)

+
(
ω0 ↔ ω1 , α↔ β , α̇↔ β̇

)
+ 4ivγ̇γϵα̇β̇ϵαβ

m2ω0ω1ω2
δ̄(ω0 + ω1 + ω2) ,

(4.35)

which, in the vectorial notation, simplifies to

⟨⟨δz̄µ(ω0)δz̄ν(ω1)δzλ(ω2)⟩⟩ =
4i

m2ω0ω1

[
yλ

0 (ηµν + 2vµvν) + vλ(vµyν
0 + yµ

0 v
ν)

−iϵλµ[v, y0]vν − iϵλν [v, y0]vµ
]
δ̄(ω0 + ω1 + ω2) .

(4.36)

The following correlator may be of interest,

⟨⟨δyµ(ω0)δyν(ω1)δyλ(ω2)⟩⟩ = − 1
m2

[
yµ(ηνλ + vνvλ)

ω1ω2
+ (cyc.)

]
δ̄(ω0 + ω1 + ω2) , (4.37)

where (cyc.) denotes cyclic permutation.
Note that δz and δz̄ variables do not obey Wick factorisation, e.g. ⟨(δz)(δz̄)(δz̄)⟩ ̸= 0.

However, purely holomorphic/anti-holomorphic correlators such as ⟨(δz)(δz) · · · (δz)⟩ do obey
Wick factorisation, since δz(δz̄) is at most linear in µ(µ̄) and the correlators reduce to the
correlators of the form ⟨µµ · · ·µ⟩ or ⟨µ̄µ̄ · · · µ̄⟩.

4.1.5 Photon coupling vertex rules

We begin with the spacetime picture where the vertex rules take a simple form that are
easy to compare with other worldline models. Inserting the mode expansion of fluctuations
into the interaction (2.43), we get8

q

∫
k,{ω}

A+
µ (k)(vµ)eik·z0

∞∑
n=0

1
n! δ̄

(
(k · v)−

n∑
i=1

ωi

)
n∏

i=1
(ik) · δz(ωi) (4.38)

+ q

∫
k,{ω}

A+
µ (k)(−iω0)δzµ(ω0)eik·z0

∞∑
n=0

1
n! δ̄

(
(k · v)−

n∑
i=0

ωi

)
n∏

i=1
(ik) · δz(ωi)

+
(
A+

µ (k) → A−
µ (k) , z

µ
0 → z̄µ

0 , δz(ωi) → δz̄(ωi)
)
.

This expression is exact in z0, z̄0. To obtain a result at a fixed order in the background
spin-length y0, we may simply set zµ

0 = bµ
0 + iyµ

0 and z̄µ
0 = bµ

0 − iyµ
0 and expand in y0.

8Empty sum is zero and empty product is unity, i.e.
∑0

i=1 # = 0 and
∏0

i=1 # = 1.
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To compute Compton amplitudes or the 2PL eikonal, we only need terms up to linear
order in fluctuations,

Sint = q

∫
k
A+

µ (k)vµeik·z0 δ̄(k · v)

+ iq

∫
k,ω

A+
µ (k) [vµkν − ωδµ

ν ] δzν(ω)eik·z0 δ̄[(k · v)− ω]

+
[
A+

µ (k) → A−
µ (k) , z

µ
0 → z̄µ

0 , δz(ωi) → δz̄(ωi)
]
.

(4.39)

Aside from the leading term proportional to A± · v, we can write the Feynman rules in
terms of gauge-invariant field-strengths F±, since the vertex rules with at least one δzµ(σ)
fluctuation field9 can be read out from the variational derivative

δSint
δ[δzµ(σ)] = qF+

µν [z0 + vσ + δz(σ)]
(
vν + d(δzν(σ))

dσ

)
, (4.40)

which only depends on the field-strength F+. The same argument trivially generalises to the
anti-holomorphic sector. As a demonstration, we write the interaction terms up to quadratic
order in worldline perturbations as

Sint = q

∫
k
(A+

k · v)eik·z0 δ̄(k · v) + q

∫
k,ω

(δzω · F+
k · v)eik·z0 δ̄[(k · v)− ω]

+ q

4

∫
k,ω1,ω2

{[
(δz1 · F+

k · v)(ik · δz2) + (1 ↔ 2)
]
+ i(ω1 − ω2)(δz1 · F+

k · δz2)
}

× eik·z0 δ̄[(k · v)− ω1 − ω2]

+
(
A+

µ (k) → A−
µ (k) , F+

µν(k) → F−
µν(k) , z

µ
0 → z̄µ

0 , δz(ωi) → δz̄(ωi)
)
.

(4.41)

The expansion (4.41) is more useful than the expansion (4.38) since photon propagators
can be chosen to be free of Dirac string singularities. See section 4.2 for more discussions
on the photon propagator.

4.2 Photon propagator

A worldline model of a charged particle provides a localised source for the electromagnetic
field. Away from the sources, the photon propagates freely and the photon propagator is
independent of the worldline model. However, since the NJ shift forces us to separate the
self-dual and anti-self-dual parts of the photon field, we find it useful to recall some facts
regarding how to split the propagator according to self-duality, which translates to the helicity
of the photon at the quantum level.

In our twistor model, the photon field couples to the particle worldline via the NJ
shift (2.43) which we copy here:

Sint = q

∫
A+

µ (z)dzµ + q

∫
A−

µ (z̄)dz̄µ . (4.42)

This coupling may look unfamiliar to the readers. To gain some intuition, let us expand it to
the quadratic order in y. The zeroth order term reproduces the standard minimal coupling

9We argue using the time domain Feynman rules because the proof is simpler.
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for a non-spinning particle. The linear order term is

S
(1)
int = q

∫ [
Ãµẏ

µ + yµ(∂µÃν)ẋν
]
dσ . (4.43)

The appearance of ẏ is a notable feature of the root-Kerr coupling. To linear order, we can
remove it by integration by parts. Up to a total derivative, we find

S
(1)
int = q

∫ [
F̃µνy

µẋν
]
dσ = q

2

∫
[εµνρσy

µẋνF ρσ] dσ . (4.44)

Starting from the quadratic order, it is impossible to remove all ẏ factors. Up to a total
derivative, we find

S
(2)
int = q

2

∫
[ẏµyνFµν − (∂µFνρ)yµyν ẋρ] dσ . (4.45)

We can continue this expansion and express all S(n)
int (n ≥ 1) as Lorentz invariant products of

yµ, ẏµ, ẋµ, Fµν and εµνρσ, with no reference to A±
µ at all. With this form of the action, the

usual propagator for the photon field will suffice for all perturbative computations.
The beauty of the NJ shift (4.42) is that we can perform computations exactly in y

without ever expanding in powers of y. A small price to pay is that we should use less
familiar propagators written in terms of A±

µ .
Our discussion is inspired by Zwanziger’s (electromagnetic-duality covariant) two-potential

formalism [59] (see also refs. [60–63]). But, we will not directly follow Zwanziger’s formalism
in that we never use two potentials or consider sources with net magnetic charges. We
are interested in the long-distance interaction between two spatially localised sources. The
interaction is captured by the integral,

I12 =
∫
Jµ

1 (x)⟨Aµ(x)Aν(y)⟩Jν
2 (y) . (4.46)

We are doing classical physics, but we can use the propagator (Green’s function) in a
QFT notation, where ⟨AµAν⟩ is the 2-point function, which we take to be time-ordered
for concreteness.

Let us temporarily ignore the net (electric or magnetic) charges and focus on the dipole
or higher multipole moments. For a magnetic dipole, it is well known that a long-distance
observer cannot distinguish an Ampèrian dipole (electric current loop) from a Gilbertian
dipole (two opposing magnetic monopole charges). A similar story holds for an electric
dipole and all higher electric/magnetic multipole moments. So, as far as the long-distance
interaction is concerned, we can describe the same source using either an electric current
or a magnetic current.

To switch between the two pictures, we recall that Maxwell’s equations with both electric
and magnetic sources read

d†F = J , d†(∗−1F ) = J⋆ , d†F := (∂νFµν)dxµ . (4.47)

Electric-magnetic duality states that this set of equations is invariant under

EMD : F 7→ ∗−1F , (J, J⋆) 7→ (J⋆,−J) . (4.48)

– 34 –



J
H
E
P
0
8
(
2
0
2
4
)
0
8
0

It is natural to use the complex combinations of F and ∗−1F that are eigenstates of ∗,

F± := 1
2
(
F ± i∗−1F

)
, J± := 1

2
(
J ± iJ⋆

)
=⇒ d†F± = J± . (4.49)

For a given multipole, in the electric picture, we solve

d†F = J , d†(∗−1F ) = 0 , (4.50)

while in the magnetic picture, we solve

d†F = 0 , d†(∗−1F ) = J⋆ . (4.51)

The two pictures are related such that F away from the source is exactly the same. In
other words, for a “point-like” source, the difference between the two pictures is ultra-local
(delta function supported).

Depending on which picture we choose for each of the two sources, the integral (4.46)
can take different forms,

I12 =
∫
J1(x)⟨A(x)A(y)⟩J2(y) =

∫
J⋆

1(x)⟨A⋆(x)A⋆(y)⟩J⋆
2(y)

=
∫
J1(x)⟨A(x)A⋆(y)⟩J⋆

2(y) =
∫
J⋆

1(x)⟨A⋆(x)A(y)⟩J2(y) ,
(4.52)

where we suppressed the vector indices to avoid clutter. If we call ⟨AA⟩ “electric-electric”
propagator, we may call ⟨A⋆A⋆⟩ “magnetic-magnetic”, ⟨AA⋆⟩ “electric-magnetic”, etc. In the
QFT approach to the propagators, which we will review shortly, we split the mode expansion
according to the photon’s helicity such that10

A = A+ +A− , A⋆ = −i(A+ −A−) . (4.53)

Since ⟨A+A+⟩ = 0 = ⟨A−A−⟩, it follows that

⟨AA⟩ = ⟨A+A−⟩+ ⟨A−A+⟩ = ⟨A⋆A⋆⟩ ,

⟨AA⋆⟩ = +i
[
⟨A+A−⟩ − ⟨A−A+⟩

]
= −⟨A⋆A⟩ .

(4.54)

So far, our discussion has been general. Now let us focus on the multipole moments of
a root-Kerr particle. As we saw in (4.44) and (4.45), we find electric moments at O(y2k)
and magnetic moments at O(y2k+1). This splitting is expected to be a generic feature
of any parity-preserving spinning charged particle. The NJ shift (4.42) suggests a hybrid
approach which uses the electric picture for the electric multipoles and the magnetic picture
of the magnetic multipoles. We denote the currents by Je and J⋆

o where e and o stand
for even and odd, respectively.

Contributions from different multipole moments simply add up to give

I12 =
∫
J1,e(x)⟨A(x)A(y)⟩J2,e(y) +

∫
J⋆

1,o(x)⟨A⋆(x)A⋆(y)⟩J⋆
2,o(y)

+
∫
J1,e(x)⟨A(x)A⋆(y)⟩J⋆

2,o(y) +
∫
J⋆

1,o(x)⟨A⋆(x)A(y)⟩J2,e(y) .
(4.55)

10The notation of this section is related to those in appendix A as Ã = −A⋆. The minus sign originates
from ∗−1F = − ∗ F .
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Rewriting it in terms of ⟨A±A∓⟩, we find

I12 =
∫
J1,+(x)⟨A+(x)A−(y)⟩J2,−(y) +

∫
J1,−(x)⟨A−(x)A+(y)⟩J2,+ , (4.56)

where, for each source,

J± = Je ∓ iJ⋆
o . (4.57)

Comparing this with (4.49), we note a slightly non-trivial “metric” in the complex basis,

J± = 2J∓ . (4.58)

Applying it to the root-Kerr particle, we have

1
2(J−)

µ(x) = (J+)µ(x) = 1
2q
∫

˙̄zµ(σ)δ4(x− z̄(σ))dσ ,

1
2(J+)µ(x) = (J−)µ(x) = 1

2q
∫
żµ(σ)δ4(x− z(σ))dσ .

(4.59)

To summarize, we took a long route to explain how the NJ shift (4.42) can be understood
in conventional descriptions of multipole moments, only to motivate a less familiar method;
the most efficient way to compute the interaction between two root-Kerr particles is to use
the “helicity propagators” ⟨A±A∓⟩.

4.2.1 Helicity propagator

Let us present the result first and review the derivation. In terms of self-dual and anti-
self-dual fields, the propagators are [64]

∆+−
µν (k) := ⟨A+

µ (k)A−
ν (−k)⟩ =

i

k2 − i0+

[
2k(µnν) − (k · n)ηµν + iϵµναβk

αnβ

2(k · n)

]
,

∆−+
µν (k) = ∆+−

νµ (k) = [∆+−
µν (k)]∗ , ∆++

µν (k) = ∆−−
µν (k) = 0 ,

(4.60)

where nµ is an auxiliary reference vector, which we call a “Dirac string”. The spinor notation
offers a more compact expression. Pictorially, we denote the propagator as

k
A+

αα̇ A−
ββ̇ = ∆+−

αα̇ββ̇(k) = nαβ̇kβα̇

n·k
i

k2 − i0+ . (4.61)

For later purposes, we also note that

∆+−
µν (k) + ∆−+

µν (k) = −i
k2 − i0+

(
ηµν −

2k(µnν)
k · n

)
,

i∆+−
µν (k)− i∆−+

µν (k) = −iϵµναβk
αnβ

(k2 − i0+)(k · n) .
(4.62)

The chiral photon field A±
µ frequently appears in the form of the field strength tensor

F±
µν = ∂µA

±
ν − ∂νA

±
µ . We consider the combinations

⟨F±
µν(k)A∓

λ (−k)⟩v
λδ̄(k · v) , ⟨F±

µν(k)F∓
λσ(−k)⟩ .
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These 2pt functions can be expressed without the auxiliary reference vector nµ, since they
can be constructed from the non-chiral photon propagator (4.62) using the (anti-)self-dual
projectors

(P±)αβ
µν :=

δα
µδ

β
ν − δβ

µδ
α
ν ∓ iϵ αβ

µν

4 , F±
µν = (P±)αβ

µνFαβ =: (P± · F )µν . (4.63)

resulting in

⟨F±
µν(k)A∓

α (−k)⟩vαδ̄(k · v) = (P±)λσ
µν ⟨Fλσ(k)Aα(−k)⟩⟩vαδ̄(k · v)

= kµvν − vµkν ∓ iϵµναβk
αvβ

2(k2 − i0+) δ̄(k · v) ,
(4.64)

and

⟨F+
µν(k)F−

αβ(−k)⟩ = (P+)λσ
µν (P−)γδ

αβ⟨Fλσ(k)Fγδ(−k)⟩

= −i[ηµαkνkβ − ηναkµkβ − ηµβkνkα + ηνβkµkα]
2(k2 − i0+)

+ − (kµϵναβλ − kνϵµαβλ) kλ + (kαϵβµνλ − kβϵαµνλ) kλ

4(k2 − i0+) ,

(4.65)

where we have dropped the ultra-local (non-pole-possessing) terms. These 2pt functions can
also be derived from mode expansions of chiral photon fields.

We remark that all scattering observables and the classical eikonal (except for the 1PL
eikonal) can be computed from the 2pt functions (4.64) and (4.65), therefore the dependence
on the “Dirac string” of (4.60) is only superficial.

4.2.2 Mode expansion for the propagator

We can obtain the helicity propagator (4.60) through an off-shell extension of the on-shell
mode expansion in QFT. We define the polarisation vectors as (k0 > 0, n0 > 0)

ε±µ (+k0, k⃗) = ε±µ (k⃗) , ε±µ (−k0, k⃗) = −ε±µ (−k⃗) ,

ε+
µ (k) =

[k|σµ|n⟩√
2⟨kn⟩

, ε−µ (k) =
⟨k|σµ|n]√

2[kn]
,

(4.66)

such that [ε±µ (k)]∗ = ε∓µ (−k). The mode expansion of the chiral photon fields A±
µ (x) are

A±
µ (x) =

∫
k⃗

1
2k0

[
ε±µ (k⃗)ak⃗,±e

−ik0t+ik⃗·x⃗ +
[
ε∓µ (k⃗)

]∗
(a

k⃗,∓)
†e+ik0t−ik⃗·x⃗

]
=
∫

k⃗

ε±µ (k)
2k0

[
a

k⃗,±e
−ik0t+ik⃗·x⃗ − (a

k⃗,∓)
†e+ik0t−ik⃗·x⃗

]
,

(4.67)

where k0 = |⃗k| and [A±
µ (x)]† = A∓

µ (x). The creation-annihilation operators satisfy[
a

k⃗,h
, (a

k⃗′,h′)†
]
= 2k0δ̄(3)(k⃗ − k⃗′)δh,h′ , h, h′ = ± . (4.68)

The usual photon field and the dual photon field are given as (see appendix A)

Aµ(x) = A+
µ (x) +A−

µ (x) ,
Ãµ(x) = iA+

µ (x)− iA−
µ (x) .

(4.69)
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The time-ordered 2pt functions are

⟨A±
µ (x)A±

ν (0)⟩ = 0 , (4.70)

⟨A+
µ (x)A−

ν (0)⟩ =
∫

k⃗

ε+
µ (k⃗)[ε+

ν (k⃗)]∗Θ(t)e−i|⃗k|t+ik⃗·x⃗ + [ε−µ (k⃗)]∗ε−ν (k⃗)Θ(−t)e+i|⃗k|t−ik⃗·x⃗

2|⃗k|

=
∫

k⃗

Θ(t)e−i|⃗k|t+ik⃗·x⃗ +Θ(−t)e+i|⃗k|t−ik⃗·x⃗

2|⃗k|
×
[
−ε+

µ (k)ε−ν (k)
]

=
∫

kµ

i[ε+
µ (k)ε−ν (k)]
k2 − i0+ eik·x

=
∫

kµ

i

k2 − i0+

[
2k(µnν) − (k · n)ηµν + iϵµναβk

αnβ

2(n · k)

]
eik·x , (4.71)

where we used the identity∫
dω

2π
e−iωt

−ω2 + k⃗2 − i0+
=
∫
dω

2π
e−iωt

(|⃗k| − i0+ − ω)(|⃗k| − i0+ + ω)

= +i
2|⃗k|

[
Θ(t)e−i|⃗k|t +Θ(−t)e+i|⃗k|t

]
.

(4.72)

The computation can be repeated for 2pt functions of field strength tensors, which can
be used to justify the propagators (4.64) and (4.65). For example, (4.64) can be computed
from the substitution

ε+
µ (k)ε−ν (k) → 2i[k[µε

+
ν](k)ε

−
λ (k)]v

λδ̄(k · v) =
ik[µ[k|σν]|n⟩[n|v|k⟩

⟨kn⟩[nk] δ̄(k · v) ,

in the second line of (4.71) before using the identity (4.72), where kµ = (|⃗k|, k⃗) satisfies the
on-shell condition k2 = 0. Using the delta constraint, we can recast the numerator as

ik[µ[k|σν]|n⟩[n|v|k⟩
⟨kn⟩[nk] δ̄(k · v) = − i

4[k|σµσνv|k⟩δ̄(k · v)

= − i

2
(
kµvν − kνvµ − iϵµναβk

αvβ
)
δ̄(k · v) ,

which leads to the 2pt function (4.64) after off-shell continuation k2 ̸= 0 using (4.72).
With the modified definitions for the mode operators (k0 > 0)

akµ,± = a
k⃗,± , a−kµ,± = −a†

−k⃗,∓
, kµ = (k0, k⃗) , (4.73)

we can rewrite the mode expansion (4.67) as

A±
µ (x) =

∫
k
δ̄(k2) ε±µ (k) ak,± e

ik·x off-shell−→
∫

k
A±

µ (k) eik·x , (4.74)

which is the off-shell continued form used to obtain Feynman rules.

5 Compton amplitude

In this section, we compute the classical Compton amplitudes for a root-Kerr particle, and
compare them with similar results in the literature. We find perfect agreement to the linear
order in spin (at g = 2), whereas we find model-dependent discrepancy starting from the
quadratic order in spin.

– 38 –



J
H
E
P
0
8
(
2
0
2
4
)
0
8
0

(a) same helicity. (b) opposite helicity.

Figure 2. Diagrams for Compton amplitudes.

3-point coupling. The shift (4.42) induces the 3-point coupling of an incoming positive
helicity photon,

iA3 ∼ iq(ε+ · v)e−k·yeik·bδ̄(k · v) , (5.1)

where kµ is photon momentum. This agrees with the black hole 3-point coupling in the
literature. For example, appendix B. of [65] gives the minimal coupling as

Mη,s
3 =Mη,s=0

3 × exp[−ηκ0(k · a)] , (5.2)

where η = ±1 is the helicity sign of the incoming massless quanta of momentum kµ, aµ is the
spin-length vector (yµ = −aµ), and κ0 = η00 is the metric convention parameter.

5.1 Computation

The Compton amplitudes will first be computed using the Feynman rules derived from the
interaction term expansion (4.38) to parallel the WQFT computations in the literature [55, 66],
which will be reorganised into a form that connects more naturally to the Feynman rules
of the alternative expansion (4.41).

5.1.1 Same helicity

The diagram in figure 2(a) gives the same helicity amplitude. We need to compute the
following 2-point function of linear A+-fluctuation coupling terms (4.39), where we substitute
the A+

µ fields by the polarisation vectors of the external photons.

iA++
4 =

〈
V +(ε3, k3)× V +(ε4, k4)

〉
,

V +(ε, k) = −q
∫

k,ω
ε+

µ (k) [κvµkν − ωδµ
ν ] δzν(ω)eik·z0 δ̄[κ(k · v)− ω] .

(5.3)

Using the ⟨δzδz⟩ 2-point function (4.24) and contracting the tensor indices, we get

iA++
4 = iq2

m
ei(k3+k4)·z0 δ̄[(k3 + k4) · v] (5.4)

×
{
(k3 · k4)(ε+

3 · v)(ε+
4 · v)

(k4 · v)2 + (ε+
3 · k4)(ε+

4 · v)− (ε+
3 · v)(ε+

4 · k3)
(k4 · v)

− (ε+
3 · ε+

4 )
}
.

This is a simple shift of the non-spinning sector results [66] by an exponential spin factor.
The sign difference compared to (3.26) of the same reference comes from metric conventions.
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We may also write the amplitude in a gauge-invariant form as

iA++
4 = iq2

m

(v · F+
3 · F+

4 · v)
(k4 · v)2 ei(k3+k4)·z0 δ̄[(k3 + k4) · v] , (5.5)

where F±
µν = i(kµε

±
ν −kνε

±
µ ) is the on-shell field strengths of the external photons and (v ·F1 ·

F2 · · · ) = vµ1F
µ1

1 µ2F
µ2

2 µ3 · · · is a shorthand notation for a concatenation of tensor contractions.
The expression (5.5) can be obtained directly from the Feynman rules corresponding to the
alternative interaction term expansion (4.41).

5.1.2 Opposite helicity

The opposite helicity Compton amplitude comes from the diagram in figure 2(b). We may
simplify the relevant expression in (4.24) as

⟨δz̄µ(ω′)δzν(ω)⟩ ≈ 2i
m

[
ηµν

2ω2 + iϵµνλσvλy0σ

ω

]
δ̄(ω′ + ω) . (5.6)

We discarded terms proportional to vµ using the fact that the vertex rules at linear order in
perturbations satisfy the “Ward identity” and vanish under the substitution δzµ → vµ.

iq

∫
k,ω

A+
µ (k) [κvµkν − ωδµ

ν ] δzν(ω)eik·z0 δ̄[κ(k · v)− ω]

= −iκq
∫

k,ω
A+

µ (k)(k · v)
[
δµ

ν − vµkν

k · v

]
δzν(ω)eik·z0 δ̄[κ(k · v)− ω] .

(5.7)

Introducing the notation aµν = ϵµναβvαy0β, the resulting Compton amplitude becomes

iA+−
4 = iq2

m
ei(k3·z0+k4·z̄0)δ̄[(k3 + k4) · v]

×
{
(k3 · k4)(ε+

3 · v)(ε−4 · v)
(k4 · v)2 + (ε+

3 · k4)(ε−4 · v)− (ε+
3 · v)(ε−4 · k3)

(k4 · v)

− (ε+
3 · ε−4 ) +

2i(k3 · a · k4)(ε+
3 · v)(ε−4 · v)

(k4 · v)
− 2i(ε+

3 · a · ε−4 )(k4 · v)

+ 2i(ε+
3 · a · k4)(ε−4 · v)− 2i(k3 · a · ε−4 )(ε

+
3 · v)

}
.

(5.8)

Similar to (5.5), the amplitude can be written in a gauge-invariant form as

iA+−
4 = iq2

m

{
(v · F+

3 · F−
4 · v)

(k4 · v)2 + 2i(v · F
+
3 · a · F−

4 · v)
(k4 · v)

}
ei(k3·z0+k4·z̄0)δ̄[(k3 + k4) · v] , (5.9)

which is more natural when the alternative interaction term expansion (4.41) is used for
the Feynman rules.

5.2 Comparison

We compare our classical Compton amplitudes with existing results in the literature, setting
g = 2. The linear-in-spin amplitude should agree, since it is the universal part captured by
the Thomas-Bargmann-Michel-Telegdi (TBMT) equation. We may find model-dependent
discrepancies starting from the quadratic order.
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The deviation at quadratic order in spin is an analogue of possible R2 type couplings
at O(S4) in the gravitational case [67]. Such curvature-squared type couplings (R2 or
F 2) have an interpretation as contributions from induced multipole moments, requiring
dimensionful coefficients for their correct normalisation; [ML4] for gravity and [M−1L2] for
electromagnetism at the leading order. We can introduce such operators without introducing
any additional length scale in the case of spinning objects, since the spin-length vector aµ

provides the necessary length scale, the spin order being O(S4) for gravity and O(S2) for
electromagnetism for the leading order curvature-squared operators.

5.2.1 Comparison with SUSY WQFT calculations

To compare the two results (5.4) and (5.8) with those of ref. [66], we use the explicit
polarisation vectors

ε+
3µ = [3|σ̄µ|4⟩√

2⟨34⟩
, ε−4µ = [3|σ̄µ|4⟩√

2[43]
, ε+

4µ = [4|σ̄µ|3⟩√
2⟨43⟩

, (5.10)

and the complex conjugation conditions

(λα)∗ = sgn(p0)λ̄α̇ . (5.11)

We use sgn(k0
3)sgn(k0

4) = −1 because one of the massless photons has to be ingoing and the
other has to be outgoing. In the rest frame of vµ = (1, 0⃗) where ω = k0

3 is the energy of
the photon, kµ = kµ

3 + kµ
4 is the transfer momentum, and

(k4 · v) = −(k3 · v) = ω, |⟨34⟩|2 = ⟨34⟩[34] = k2 = 4ω2 sin2(θ/2) = |[34]|2 ,
|[3|v|4⟩|2 = −[3|v|4|v|3⟩ = 4(v · k4)2 − k2 = 4ω2(1− sin2(θ/2)) = |[4|v|3⟩|2 ,

(5.12)

where θ is the scattering angle and we localised onto (k3+k4) ·v = 0 for the second expression.
The same helicity amplitude becomes

iA++
4 = iq2

m
e−k·y0 sin2(θ/2) (5.13)

which is simple to evaluate because the ⟨34⟩−2 factors out in the calculations, which we
substitute by |⟨34⟩|−2. For the opposite helicity amplitude, we get

iA+−
4 = iq2

m
e(k4−k3)·y0 1

−2k2

{
k2(n · v)2

2ω2 + 2iϵ[k3, k4, v, y0](n · v)2

ω
− 2i(k · a · n)(n · v)

}
,

(5.14)

where nµ = [3|σ̄µ|4⟩ vector carries the helicity weights. Note that this form is manifestly
shift-symmetric; the expression is invariant under the shift of the spin vector by

Sµ → Sµ + ξkµ/k2 ,

where ξ is an arbitrary parameter. The shift symmetry is one of the conjectures for tensor
structures of spinning black holes [67, 68].
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Now we multiply the factor [4|v|3⟩2
|[4|v|3⟩|2 to compensate the helicity weights, and use the

identity for fµ = −aµνkν ,

[3|f |4|v|3⟩ = (k · a · n)[4|v|3⟩
= 2 ((k3 · f)(k4 · v)− (k3 · k4)(f · v) + (k4 · f)(k3 · v)− iϵ[k3, f, k4, v])
= −4ω(k3 · a · k4) + 2iϵ[f, k3, k4, v]
= −4ωϵ[k3, k4, v, y0]− ik2(k3 − k4) · y0

(5.15)

to obtain

iA+−
4 = iq2

m
e(k4−k3)·y0

{
− cos2(θ/2)− (k3 − k4) · y0 + i

ϵ[k3, k4, v, y0]
ω

}
= iq2

m

{
− cos2(θ/2) + (cos2(θ/2)− 1)(k3 − k4) · y0 + i

ϵ[k3, k4, v, y0]
ω

+O(y2
0)
}
.

(5.16)

Setting g = 2, the results in (3.27) of ref. [66] for h = 1 become11

iA+−
4 = iq2

m

[
− cos2(θ/2) + sin2(θ/2)κ0[(k1 − k4) · a]−

i

ω
(−κ1)ϵ[k1, k4, a, v]

]
, (5.17a)

iA++
4 = iq2

m
sin2(θ/2) [1− κ0[(k1 + k4) · a]] , (5.17b)

where aµ = Sµ/m, and we have restored the convention parameters κ0 and κ1; ref. [66]
uses κ0 = η00 = +1 and κ1 = ϵ0123 = −1. The expressions match perfectly when we set
kµ

1 = kµ
3 and yµ

0 = −aµ.

5.2.2 Comparison with amplitude calculations

For the spin squared coupling, we compare our result with the minimal coupling amplitude
constructed from BCFW recursion [65]

A+−
4 ∝ [3|p1|4⟩2

(s−m2)(u−m2) exp
[
−ik

µ[3|σν |4⟩Sµν

κ0[3|p1|4⟩

]
, (5.18)

where we have restored the metric convention parameter κ0. Matching the overall normal-
isation12 we write the amplitude as

iA+−
4 = − iq

2

m

(n · v)2

4(k4 · v)2 exp
[
i
ϵ[k3 + k4, n, v, a]

(n · v)

]
, (5.19)

where we set pµ
1 = mvµ and take the classical limit for the Mandelstam invariants as

s−m2 = −(u−m2) +O(ℏ2) = 2m(k4 · v) +O(ℏ2) . (5.20)

11A factor of 2 has been removed from the results of ref. [66]; the factor is due to overcounting s-channel
and u-channel diagrams.

12As remarked in ref. [66], there is a mass factor difference between QFT amplitude results and WQFT
amplitude results, which can be interpreted as the ratio of δ̄(k · v) to δ̄(2k · p).
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The exponent can be simplified to

iϵ[k3 + k4, n, v, a]
(n · v) = (k3 − k4) · a−

[(k3 − k4) · v](n · a)
(n · v) (5.21)

using the identity

iεµνλσ = (σµσ̄νσλσ̄σ)α
α − (σν σ̄λσσσ̄µ)α

α

−4 (5.22)

and Schouten identities. It leads to the form of the amplitude used in HPET/HEFT [68–70]
and BHPT [71, 72] approaches,

i(A+−
4 )HEFT = − iq

2

m

(n · v)2

4(k4 · v)2 e
(k3−k4)·a exp

[2(k4 · v)(n · a)
(n · v)

]
(5.23)

after localising onto δ̄[(k3 + k4) · v], where the amplitude is regular up to order O(a2). We
compare it to the classical Compton amplitude of our twistor model,

iA+−
4 = iq2

m
e(k3−k4)·a

{
− (n · v)2

4(k4 · v)2 + iϵ[k3, k4, v, a](n · v)2

2(k3 · k4)(k4 · v)
− iϵ[k3 + k4, n, v, a](n · v)

2(k3 · k4)

}

= − iq
2

m

(n · v)2

4(k4 · v)2 e
(k3−k4)·a

{
1− 2(k4 · v)2

(k3 · k4)

[
iϵ[k3, k4, v, a]

(k4 · v)
− iϵ[k3 + k4, n, v, a]

(n · v)

]}

where we used yµ
0 = −aµ. We can use the identities (k = k3 + k4)

(v · n)ϵ[k, k4, v, a] = (v · k)ϵ[n, k4, v, a] + (v · k4)ϵ[k, n, v, a]
+ (v · v)ϵ[k, k4, n, a] + (v · a)ϵ[k, k4, v, n]

= (k4 · v)ϵ[k, n, v, a]− ϵ[k3, k4, n, a] ,
(5.24)

and

iϵ[k3, k4, n, a] = (k3 · k4)(n · a) , (5.25)

to write the twistor Compton amplitude as

i(A+−
4 )twistor = − iq

2

m

(n · v)2

4(k4 · v)2 e
(k3−k4)·a

{
1 + 2(k4 · v)(n · a)

(n · v)

}
. (5.26)

The difference between (5.23) and (5.26) is a non-pole-possessing term,13

i∆A+−
4 = − iq

2

m
e(k3−k4)·a(n · a)2 +O(a3) . (5.27)

This term can be reverse-engineered to find a O(a2) worldline contact term that generates
this contribution. From the definition of the polarisation vector (5.10) we relate the nµ

vectors to the polarisation vectors as

nµnν = −4(k3 · k4)ε+µ
3 ε−ν

4 . (5.28)
13Adding (5.27) (without O(a3) corrections) to (5.26) results in the HPET amplitude (3.9) of ref. [68] with

all free parameters c
(n)
j set to zero. JWK would like to thank Kays Haddad for pointing this out.
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To ensure the Ward identity, we use the substitution rule

nµnν → −4
[
(k3 · k4)ε+µ

3 ε−ν
4 − (ε+

3 · k4)kµ
3 ε

−ν
4 − (k3 · ε−4 )ε

+µ
3 kν

4 + (ε+
3 · ε−4 )k

µ
3 k

ν
4

]
(5.29)

with symmetrisation if necessary. We may also write this substitution as

nµnν → 4ηαβF+
αµ(k3)F−

βν(k4) , F±
µν(k) := ikµε

±
ν (k)− ikνε

±
µ (k) , (5.30)

where F±
µν(k) is the momentum space mode coefficient of the field strength 2-form F± = dA±.

We can now attribute the difference (5.27) to the worldline contact term

iScont = i

∫ 4q2

m

[
y · F+(z) · F−(z̄) · y

]
dσ +O(y3) . (5.31)

As we observed in section 2.2.2, the combination (y ·F+ ·F− · y) is an inevitable consequence
of the zig-zag symplectic perturbation theory. Our twistor model differs from other models
which do not carry (y · F+ · F− · y) terms.

The Compton amplitude (5.26) can also be compared to predictions of higher-spin gauge
symmetry [73]. In the notations of ref. [73], the non-scalar part of (5.26) can be written as
ex(1 − w), which differs from the result (6.61) of ref. [73] reproduced below

ex cosh z − wex sinh z
z

+ w2 − z2

2 E(x, y, z) , (5.32)

where

x = −(k4 − k3) · a , y = −(k3 + k4) · a, z = −|a|v1 · (k4 − k3),

w = −(n · a)[v · (k4 − k3)]
(n · v) ,

and

E(x, y, z) =
ey − ex cosh z + (x− y)ex sinh z

z

(x− y)2 − z2 + (y → −y) .

While this amplitude is quite different from the twistor worldline prediction (5.26), the
amplitude shares the same ex factor conjectured to be responsible for the singularity structure
of the aligned-spin one-loop eikonal (6.29).

6 Conservative dynamics from WQFT

In this section, we revisit the scattering observables of the binary system from the WQFT
perspective. We computed the 1PL and 2PL observables in section 3 by solving the equations
of motion and extracted the classical eikonal along the way. One advantage of the WQFT
approach is that it allows us to compute the eikonal before computing observables. Using two
approaches to compute the same eikonal serves as a consistency check. Besides, we specialise
to the aligned spin configurations and evaluate the Fourier integrals explicitly to obtain the
position space expressions for the classical eikonal up to the 2PL order.
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6.1 1PL observables and eikonal

Since the complex coordinate zµ = xµ + iyµ includes the position and the spin (recall
the sign aµ = −yµ), we can compute the velocity kick ∆vµ and the spin kick ∆yµ both
from the expectation values ⟨⟨δzµ

1 (ω)⟩⟩ and ⟨⟨δz̄µ
1 (ω)⟩⟩. For particle 1, the expectation value

⟨⟨δzµ
1 (ω)⟩⟩ is given by

⟨⟨δzµ
1 (ω)⟩⟩ = −q1q2

∫
k,k′,ω′

[
⟨δzµ

1 (ω)δzν
1 (ω′)⟩⟨F+

νλ(k)A
−
α (k′)⟩eik·z1+ik′·z̄2

+ ⟨δzµ
1 (ω)δz̄ν

1 (ω′)⟩⟨F−
νλ(k)A

+
α (k′)⟩eik·z̄1+ik′·z2

]
× vλ

1 v
α
2 δ̄[(k · v1)− ω′]δ̄(k′ · v2) ,

(6.1)

where z1,2, z̄1,2 in the exponents are understood as background values. This expression is
free of Dirac string singularity when we use the propagator (4.64).

The velocity kick and the spin kick can be computed from the expectation values as

∆(1)v
µ
1 = Re lim

τ→∞
dδzµ

1 (τ)
dτ

= Re
∫

τ

d2δzµ
1 (τ)

dτ2 = Re
∫

τ,ω
(−ω2)δzµ

1 (ω)e−iωτ

= Re lim
ω→0

(−ω2)δzµ
1 (ω) , (6.2)

∆(1)y
µ
1 = Im lim

τ→∞
δzµ

1 (τ) = Im
∫

τ

dδzµ
1 (τ)
dτ

= Im
∫

τ,ω
(−iω)δzµ

1 (ω)e−iωτ

= Im lim
ω→0

(−iω)δzµ
1 (ω) . (6.3)

This may be viewed as the worldline version of the LSZ reduction formula [74]; we can expect
that the equivalent of the S-matrix equivalence theorem [75, 76] will also hold for worldline
observables in WQFT. After some algebra, we can write the velocity kick as

∆(1)v
µ
1 = − q1q2

2m1

∫
k

iγkµ − ϵµ[k, v1, v2]
k2 ek·yeik·bδ̄(k · v1)δ̄(k · v2)

− q1q2
2m1

∫
k

iγkµ + ϵµ[k, v1, v2]
k2 e−k·yeik·bδ̄(k · v1)δ̄(k · v2) .

(6.4)

Similarly, we can write the spin kick as

∆(1)y
µ
1 = + q1q2

2m1

∫
k

i(v2 · y1)kµ − i(k · y1)vµ
2 − vµ

1 ϵ[k, v1, v2, y1]− γϵµ[k, v1, y1]
k2

× eik·(b−iy)δ̄(k · v1)δ̄(k · v2)

+ q1q2
2m1

∫
k

i(v2 · y1)kµ − i(k · y1)vµ
2 + vµ

1 ϵ[k, v1, v2, y1] + γϵµ[k, v1, y1]
k2

× eik·(b+iy)δ̄(k · v1)δ̄(k · v2) .

(6.5)

Both ∆(1)v
µ
1 and ∆(1)y

µ
1 agree with the results of section 3 as expected.

6.1.1 1PL eikonal

The eikonal is evaluated as the sum over the diagrams in figure 3:

iχ(1) = −q1q2

∫
k⊥

vµ
1 v

ν
2

[
eik·(z1−z̄2)∆+−

µν (k) + eik·(z̄1−z2)∆−+
µν (k)

]
, (6.6)
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Figure 3. Diagrams contributing to the 1PL eikonal.

where ∆+−
µν (k) and ∆−+

µν (k) are the helicity propagators (4.60). We write the integrand as

vµ
1 v

ν
2

[
e−k·y∆+−

µν (k) + e+k·y∆−+
µν (k)

]
= cosh(k · y)vµ

1 v
ν
2

[
∆+−

µν (k) + ∆−+
µν (k)

]
+ sinh(k · y)

(k · y) yλvµ
1 v

ν
2 (ikλ)

[
i∆+−

µν (k)− i∆−+
µν (k)

]
.

(6.7)

Using (4.62), we can simplify the (cosh) term slightly and write

cosh(k · y)vµ
1 v

ν
2

[
∆+−

µν (k) + ∆−+
µν (k)

]
= cosh(k · y)(v1 · v2)

−i
k2 . (6.8)

We remind the readers that we are treating terms proportional to (v1 · k), (v2 · k) or k2 as
zero. The (sinh) term is more interesting.

yλvµ
1 v

ν
2 (ikλ)

[
i∆+−

µν (k)− i∆−+
µν (k)

]
= yλvµ

1 v
ν
2 (ikλ)

[
i∆+−

µν (k)− i∆−+
µν (k)

]
− yλvµ

1 v
ν
2 (ikµ)

[
i∆+−

λν (k)− i∆−+
λν (k)

]
= yλvµ

1 v
ν
2 ϵλµ

αβ(ikα)
[
∆+−

βν (k) + ∆−+
βν (k)

]
= iϵ[k, v1, v2, y]

−i
k2 .

(6.9)

The term added to the second line vanishes due to δ̄(v1 · k); its purpose is to anti-symmetrise
in λ, µ indices. The equality between the second line and the third line follows from (4.62)
and the 4d Schouten identity (3.52). In the end, we obtain

χ(1) = −q1q2

∫
k⊥

[
cosh(k · y)γ − i

sinh(k · y)
k · y

ϵ[k, v1, v2, y]
]
eik·b

k2 . (6.10)

in agreement with (3.50). It is free of the Dirac string ambiguity as expected.
Next, we perform the Fourier integral explicitly and obtain

χ(1) =
q1q2γ

4π
√
γ2 − 1

1
ϵ
+Re

(
log (bµ + iyµ

⊥)2

b2
0

)

− ϵ[b, v1, v2, y⊥]
2γ
√
b2y2

⊥ − (b · y⊥)2
log

b2 + y2
⊥ + 2

√
b2y2

⊥ − (b · y⊥)2

b2 + y2
⊥ − 2

√
b2y2

⊥ − (b · y⊥)2

 ,
where D = 4− 2ϵ, b2

0 is the dimensional regularisation parameter absorbing all regularisation
artefacts (factors of π and γE , etc.), and

yµ
⊥ = yµ +

(
γ(y · v2)− (y · v1)

γ2 − 1

)
vµ

1 +
(
γ(y · v1)− (y · v2)

γ2 − 1

)
vµ

2 (6.11)
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Figure 4. Diagrams contributing to the 2PL eikonal, up to the exchange of the two particles and the
overall flip of holomorphy/helicity.

is the projection of yµ onto the impact parameter space defined by b · v1 = b · v2 = 0. In the
aligned spin configuration, yµ

⊥ = yµ and (b · y) = 0, the eikonal simplifies even further,

χ(1,aligned) =
q1q2γ

4π
√
γ2 − 1

[
1
ϵ
+ log b

2 − y2

b2
0

− ϵ[b, v1, v2, y]
γ|b||y|

log
( |b|+ |y|
|b| − |y|

)]
, (6.12)

where |b| =
√
b2 and |y| =

√
y2. Note that the aligned spin eikonal develops a logarithmic

singularity at b2 = y2; the eikonal “knows” that classical spin is a finite-size effect and the
point particle approximation breaks down when the two bodies are too close to each other.

6.2 2PL eikonal

The diagrams relevant for the 2PL eikonal are shown in figure 4.

Building up the eikonal integrand. The integrand can be constructed by replacing the
field strength tensors F±

iµν of the Compton amplitudes (5.5) and (5.9) by the linearised source
contribution from the other particle using the propagator (4.64),

F+
iµν → (k ∧ v2)µν − iϵµν [ki, v2]

2k2
i

× iq2e
−iki·z̄2 δ̄(ki · v2) ,

F−
iµν → (k ∧ v2)µν + iϵµν [ki, v2]

2k2
i

× iq2e
−iki·z2 δ̄(ki · v2) ,

(6.13)

attaching symmetry factors, integrating over photon momenta
∫

k3,k4
, summing over helicity

configurations, and summing over worldline permutation 1 ↔ 2.

iχ(2) = i

∫
k3,k4

[
I++ + 2I+− + I−−

]
+ (1 ↔ 2) , (6.14)

where we used the fact that I+− = I−+.

Same helicity integrand. The integrand turns out to be quite simple

I++ = −(q1q2)2

8m1
ei(k3+k4)·(z1−z̄2) δ̄(v1 · k3 + v1 · k4)δ̄(v2 · k3)δ̄(v2 · k4)

(v1 · k3)(v1 · k4)
k3 · k4
k2

3k
2
4
. (6.15)

At the level of the integrand, it is clear that I++ + I−− agrees with the cosh[(k + ℓ) · y] term
in (3.65) upon the identification (k3, k4)here ↔ (k, ℓ)there.

– 47 –



J
H
E
P
0
8
(
2
0
2
4
)
0
8
0

We can use Passarino-Veltman reduction to rewrite the integrand as

k3 · k4
(v1 · k3)(v1 · k4)k2

3k
2
4
= 1

2

[
(k3 + k4)2

(v1 · k3)(v1 · k4)k2
3k

2
4
− k2

3 + k2
4

(v1 · k3)(v1 · k4)k2
3k

2
4

]

= −1
2

[
k2

(v1 · k3)2k2
3(k − k3)2 − 2

(v1 · k3)2k2
3

] (6.16)

where we used the symmetry between k3 and k4, and then used the condition δ̄[(k3 + k4) · v1].
We also set kµ = kµ

3 + kµ
4 . We are left with evaluation of the integral (in D = 4 − 2ϵ

dimensions for regularisation)

I++(k, v) :=
∫

k3,k4

k3 · k4 e
i(k3+k4)·z

(v1 · k3)(v1 · k4)k2
3k

2
4
δ̄[(k3 + k4) · v1]δ̄[(k3 + k4) · v2]δ̄(k3 · v2)

= −1
2

∫
k⊥

eik·z
∫

k3

[
k2

(v1 · k3)2k2
3(k − k3)2 − 2

(v1 · k3)2k2
3

]
δ̄(k3 · v2) .

(6.17)

Then we separate the integral argument into k3∥ and k3⊥, such that k3⊥ · v2 = 0. The dk3∥
integral is trivial due to δ̄(k3 · v2), and we get

∫
dD−1k3⊥

[
k2

(v1⊥ · k3⊥)2k2
3⊥(k − k3⊥)2 − 2

(v1⊥ · k3⊥)2k2
3⊥

]
, (6.18)

where vµ
1⊥ = vµ

1 + (v1 · v2)vµ
2 = vµ

1 − γvµ
2 is the projection of vµ

1 onto the orthogonal space
such that v1⊥ · v2 = 0. The projection for kµ is not needed due to δ̄(k · v2) constraint.
The remaining integrals evaluate to zero when using the master integral (B.2), which is
consistent with vanishing same helicity sector contributions for the triangle coefficient in
amplitude calculations [32, 77, 78].

Opposite helicity integrand. Evaluating the relevant diagrams, and factoring out the
common denominator as

I+− = −(q1q2)2

8m1
ei(k3+k4)·b δ̄(v1 · k3 + v1 · k4)δ̄(v2 · k3)δ̄(v2 · k4)

k2
3k

2
4(v1 · k3)(v1 · k4)

× e(k4−k3)·(y1+y2)N [k3, k4, v1, v2, y1] ,
(6.19)

we find that the numerator, organized in powers of γ, is given as

N = 2γ2 (i(v1 · k4)ϵ[k3, k4, v1, y1] + (k3 · k4)) (6.20)

+ 2iγ
(
ϵ[k3, k4, v1, v2]− 2i(k3 · k4)(v1 · k4)(v2 · y1)− (v1 · k4)2ϵ[(k3 + k4), v1, v2, y1]

)
− (k3 · k4) + 2(v1 · k4)2 [1 + (y1 · k3)− (y1 · k4)] + 2i(v1 · k4)(v2 · y1)ϵ[k3, k4, v1, v2] .

It is straightforward to show that it agrees with the opposite helicity integrand in (3.65).
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To evaluate the Fourier integrals, it is convenient to reorganise the numerator as

N = γ2
[
k2 − k2

3 − k2
4

]
+ 2iγ2(v1 · k4)ϵ[k3, k, v1, y1]

+ 2iγϵ[k3, k, v1, v2] + 2γ(v2 · y1)(v1 · k4)
[
k2 − k2

3 − k2
4

]
+ 2iγ(v1 · k3)(v1 · k4)ϵ[k, v1, v2, y1]

− 1
2
[
k2 − k2

3 − k2
4

]
− 2(v1 · k3)(v1 · k4) [1 + (y1 · k3)− (y1 · k4)]

+ 2i(v1 · k4)(v2 · y1)ϵ[k3, k, v1, v2] .

(6.21)

Inspecting the master integral (B.2) we find that k2
3 and k2

4 of the numerator will evaluate
to zero (λ1 = 0 or λ2 = 0 condition) and can be thrown away. We organise the integrand as

I+− = (q1q2)2

8m1
eik·(b−iy)δ̄(v1 · k)δ̄(v2 · k)

e−2k3·yN [k3, k − k3, v1, v2, y1]δ̄(v2 · k3)
k2

3(k − k3)2(v1 · k3)2 ,

yµ = yµ
1 + yµ

2 ,

(6.22)

where we use k3 as the loop momentum. Performing the dk3∥ = dk0
3 integral we get∫

dDk3
(2π)D

e−2k3·yN δ̄(v2 · k3)
k2

3(k − k3)2(v1 · k3)2 =
∫
dD−1k3⊥
(2π)D−1

e−2k3·y⊥N⊥
k2

3(k − k3)2(v1⊥ · k3)2 (6.23)

where yµ
⊥ = yµ

1 + yµ
2 + vµ

2 (y1 · v2) and the effective numerator is

N⊥ =
[
γ2 − 1/2

]
k2 − 2γ(v2 · y1)k2(v1⊥ · k3)

+ 2
[
iγϵ[k, v1, v2, y1]

γ2 − 1 + 1
]
(v1⊥ · k3)2

+ 4(v1⊥ · k3)2
([
y1 −

k(k · y1)
k2 + v2(y1 · v2)

]
· k3

)

− 2i
{
γ2
([
ϵµ[k, v1, y1] +

vµ
1⊥γϵ[k, v1, v2, y1]

γ2 − 1

]
+ v2µϵ[v2, k, v1, y1]

)

+ (v2 · y1)ϵµ[k, v1, v2]
}
(v1⊥ · k3)kµ

3

+ 2iγϵµ[k, v1, v2]kµ
3 . (6.24)

The remaining integral can be evaluated using the list of integrals in appendix B.1. We
present the results in the supplementary file loopdata.dat.m. Including the overall e+k·y

factor from (6.22), the integral is consistent with the QED amplitude coefficients provided
by ref. [56] to bilinear order in spins, under the conditions Ci = 1, Di = 0, and covariant
SSC. We also present the full eikonal as a formal power series in the supplementary file
eikonaldata.dat.m. While the expressions by themselves do not provide any insight, they
greatly simplify in the aligned spin configuration, which we present next.

6.2.1 Aligned spin

Let us simplify the expression by going to the aligned spin configuration. For aligned spin we
have the conditions yµ

1 ∝ yµ
2 and y · v1,2 = 0. We introduce the ratio parameter ζ defined
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by yµ
1 = ζyµ; it follows that yµ

2 = (1 − ζ)yµ and yµ
⊥ = yµ. This reduces the expression to

a single infinite sum and we get∫
d4k3
(2π)4

e−2k3·yN δ̄(v2 · k3)
k2

3(k − k3)2(v1 · k3)2 =
∫
d3k3⊥
(2π)3

e−2k3·y⊥N⊥
k2

3(k − k3)2(v1⊥ · k3)2

= e−k·y

4(k2)
1
2

∞∑
m=0

(
−k2y2

2

)m

m!

[(
2γ2 − 1
γ2 − 1 − ζ

)
Im+1(k · y)
(k · y)m−1

+
(
γ2(4m+ 1)− 2m− 1

γ2 − 1 − 2mζ + iγ(ζ − 2)ϵ[k, v1, v2, y]
(γ2 − 1)

)
Im(k · y)
(k · y)m

]
,

(6.25)

where In(x) is the modified Bessel function of the first kind. The impact parameter space
integral can be organised as

χ+− =
∫

k3,k4
I+− = (q1q2)2

32m1

∫
d4k

(2π)4 δ̄(v1 · k)δ̄(v2 · k)
I+−eik·b
√
k2

= (q1q2)2

32m1
√
γ2 − 1

∫
d2kE

(2π)2
I+−ei(kE ·b)√

k2
E

, (6.26)

I+− =
∞∑

m=0

(
−k2y2

2

)m

m!

[(
2γ2 − 1
γ2 − 1 − ζ

)
Im+1(k · y)
(k · y)m−1

+
(
γ2(4m+ 1)− 2m− 1

γ2 − 1 − 2mζ + iγ(ζ − 2)ϵ[k, v1, v2, y]
(γ2 − 1)

)
Im(k · y)
(k · y)m

]
, (6.27)

where the factor iϵ[k, v1, v2, y] can be traded for the derivative operator ϵµ[v1, v2, y] ∂
∂bµ .

Imposing the additional constraint14 y · b = 0 simplifies the expression further and yields,

χ+− = (q1q2)2

64m1
√
γ2 − 1

(
1

π(b2 − y2)3/2

[
b2 + γ2(1− ζ) + ζ

γ2 − 1 y2
]

+ (ζ − 2)γ
π(γ2 − 1)ϵ

µ[v1, v2, y]
∂

∂bµ

1√
b2 − y2

)
, (6.28)

which has a singularity structure (b2 − y2)−3/2 = (b2 − (a1 + a2)2)−3/2 that was not visible in
the original perturbative spin expansion. The full aligned-spin 2PL eikonal is

χ(2,aligned) =
(q1q2)2

(
b2 − (ζ−2)γ

(γ2−1) ϵ[b, v1, v2, y] + γ2(1−ζ)+ζ
γ2−1 y2

)
32πm1

√
γ2 − 1 (b2 − y2)3/2 + (1 ↔ 2) , (6.29)

where symmetrisation is implemented by {m1 → m2 , v
µ
1 ↔ vµ

2 , b
µ → −bµ , ζ → 1− ζ}.

We remark that the singularity is still present in the spinless probe limit ζ → 0, and since
spin-dependence of the eikonal integrand (6.22) enters only through the exponential factors
e+k·ye−2k3·y in this limit, the singularity structure (b2 − y2)−3/2 seems to be a consequence
of the “Newman-Janis shift” of the integrand, which shifts the displacement between the
two worldlines by an imaginary spin sum vector ±iyµ = ∓i(aµ

1 + aµ
2 ). Note that similar

14This additional constraint conforms to the usage of “aligned spin” in the literature, where the orbital
angular momentum is also aligned with the spin direction.
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singularity structures at 2PM aligned-spin scattering were reported in the gravitational
case; the spinning-spinless eikonal has the form (b2 − a2)−3/2 [69],15 and Kerr-(spinning)
probe eikonal has the form ak

p(b2 − a2
b)−3/2−k where ab is the spin parameter of the Kerr

background and ap is the probe spin (k ≤ 2) [79]16 which can be viewed as an artifact of
expanding the singularity (b2 − (ab + ap)2)−3/2. If the “Newman-Janis shift” of the integrand
persists at higher loop orders, we can conjecture that the singularity structure of the spinless
probe scattering (b2 − a2

b)−3n/2 from n-loop contributions reported by ref. [79] generalises
to the singularity structure (b2 − (ab + ap)2)−3n/2. As remarked when comparing twistor
worldline Compton amplitudes with that of higher spin gauge symmetry [73], it would also
be interesting to check whether same singularity structures appear in the eikonal when the
Compton amplitude has exponential dependence on spin, a feature that is also shared by
the Compton amplitude construction in ref. [80].

We also consider axial scattering yµ ∝ bµ, which is independent of the sign of y · b because
the Fourier integrand (6.27) contains only even powers of k ·y. The iϵ[k, v1, v2, y] contribution
drops out due to the condition yµ ∝ bµ, and the Fourier transform (6.26) evaluates to

χ+− = (q1q2)2
√
b2

32π2m1(γ2 − 1)3/2

[
γ2(ζ − 1)− ζ

b2 K

(
−y

2

b2

)
− γ2(ζ − 2)− (ζ − 1)

b2 + y2 E

(
−y

2

b2

)]
,

(6.30)

where K(x) and E(x) are the complete elliptic integrals of the first and second kind. The
full result is

χ(2,axial) =
(q1q2)2

√
b2

16π2m1(γ2 − 1)3/2

[
γ2(ζ − 1)− ζ

b2 K

(
−y

2

b2

)
− γ2(ζ − 2)− (ζ − 1)

b2 + y2 E

(
−y

2

b2

)]
+ (1 ↔ 2) , (6.31)

which, unlike the aligned-spin case (6.29), develops a logarithmic singularity at b2 = 0 and
another singularity at the unphysical impact parameter b2 = −y2. The results (6.29) and (6.31)
can be reproduced from the full eikonal given in the supplementary file eikonaldata.dat.m
by taking the corresponding configurations and resumming the series expansion in y2/b2.

Before ending this section, we remark that the LSZ-like formulae (6.2) and (6.3) can
also be applied to 2PL scattering observables, where retarded worldline propagators are used
instead [81]. The 2PL observables can be separated into the eikonal part (the same diagrams
with symmetric worldline i0+ prescription) and the causality cut part (the contributions from
changing the worldline i0+ prescription), where the eikonal part computes {χ(2), O} and the
causality cut part computes 1

2{χ(1), {χ(1), O}}. This computation serves as a consistency
check of the calculations in section 3.2.2. The separation of the observables into the eikonal
part and the causality cut part can be shown to be a more general phenomenon that holds
in Hamiltonian worldline models [58].

15JWK would like to thank Kays Haddad for bringing this reference to attention.
16Ref. [79] reports the scattering angle which scales as ak

p(b2 − a2
b)−5/2−k ∼ ∂b[ak

p(b2 − a2
b)−3/2−k].
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7 Discussion

The (ambi-)twistor model for electromagnetically interacting spinning particles was studied
in this manuscript, which has the advantage that it is one of the simplest descriptions
of charged spinning particles where spin effects can be tracked to arbitrarily high orders.
Using (dynamical) Newman-Janis shift as the only input for generating all-orders-in-spin
interactions, it was found that the spin effects can be resummed to simple expressions in
special kinematic configurations; in the aligned-spin case (6.29) and in the axial scattering
case (6.31). Also, the model was used to confirm the interpretation, up to the 2PL order, of
the classical eikonal as the generator of canonical transformations that map the incoming
scattering states to outgoing scattering states.

Despite the disparities between electromagnetic and gravitational interactions, the similar-
ities between the singularity structures of the spin-resummed electromagnetic eikonal (6.29),
χ(2) ∝ (b2 − (a1 + a2)2)−3/2, and the probe limit Kerr scattering reported by ref. [79],
θ(2) ∼ ∂bχ(2) ∝ ∂b[(b2 − a2

b)−3/2], provides further evidence that using the total spin length
vector aµ

+ = aµ
1 + aµ

2 as the spin parameter of the effective Kerr metric—an ansatz motivated
by leading order PN Hamiltonian results [82]—in the effective-one-body approach [31] is
the preferable choice for resumming spin effects.17 On the other hand, one-loop results only
correspond to leading order effects in the mass-ratio expansion [54], therefore the singularity
structures resembling that of the background-probe calculation [79] could be a coincidence of
the leading order mass-ratio expansion. Whether novel singularity structures arise at NLO
in mass-ratio expansion will only be answered by pushing the computations to two-loops
and higher orders, and may point us to new directions in resumming spin effects. Of course,
studying the gravitationally interacting case is also necessary to confirm that such singularity
structures are also present in gravitating binary black holes.

When viewing the classical eikonal as the generator of canonical transformations, it
would be interesting to understand what it means to analytically continue the scattering
generator to bound dynamics. The boundary-to-bound map for the radial action [84, 85]
suggests that the continuation is a finite time-evolution generator that advances the system
by one radial period, e.g. the periastron passing is sent to the next periastron passing. If this
interpretation is correct, then we may argue that separability of the Hamilton-Jacobi equations
is not necessary for the existence of the bound orbit counterpart of the classical eikonal,
although its determination by analytic methods may only be possible when Hamilton-Jacobi
equations are separable [35, 86].

Apart from the obvious future direction—massive twistor worldline in gravitational
fields—there are several other directions that would be interesting to expand upon. One
future research direction would be to explore whether recent attempts to resum analytic
results for gravitational scattering of spinning black holes [26, 27] can be improved using
the singularity structures of (6.29) and their conjectured generalisation to higher loops
χ(n) ∝ (b2 − (a1 + a2)2)−3n/2.

Another direction would be making the (WQFT approach to the) model live up to its
name; quantisation. Since the twistor model has a simple set of constraints, the standard

17This is not the unique choice considered in the literature. A comparison of different choices for the spin
parameter of the effective Kerr metric can be found in ref. [83].
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BRST-BFV methods should be applicable. For small values of quantised spin, say 1/2 or
1, we expect the results to agree with the standard QFT of massive spinning fields. The
attempt to quantise the model for higher spin may shed new light on the complication with
massive higher spin fields. Comparison of the approach with chiral models for massive higher
spin fields [87] would also be an interesting study.

While the fundamental variables of our model are twistors, the physical observables (and
the classical eikonal) were given entirely in terms of the gauge invariant (x, y, p) variables.
Some intermediate steps of the computations, such as the ones in appendix C, tend to be quite
lengthy and not particularly illuminating. The computations may become vastly simplified
when full advantage of the twistor variables is taken. To do so, it would be crucial to use
massless twistor variables for the photon fields as well. Bailey’s twistor propagator [88],
and Guevara’s holomorphic classical limit [77] and twistor reconstruction [89] could provide
clues for further progress.

We remark that iterated action of the classical eikonal can be understood as causality cuts,
which computes contributions associated to changing the i0+ prescription of the worldline
propagators from time-symmetric to retarded; in the WQFT formalism scattering observables
are computed using retarded propagators [81], and changing the i0+ prescription of the
worldline propagators from retarded to symmetric generates (nested) Poisson brackets which
reorganises the scattering observable ∆O as the action of the scattering generator e{χ,•}O [58].
A direct consequence is that the longitudinal impulse at 2PL order is related to the i0+

prescription of the worldline propagators, which could be an interesting observation for
understanding the i0+ prescription affecting the definition of the impact parameter used
in one-loop waveform results [90–96].

Finally, it would be interesting to generalise the concept of the classical eikonal to
massless fields. Such an extended eikonal would place massive particles and massless fields
on an equal footing, and may help us clarify to what extent we can identify the eikonal as
the classical shadow of the quantum S-matrix.
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A Conventions

Vector. Flat metric and Levi-Civita tensor,

ηµν = diag(−,+,+,+) , ε0123 = +1 . (A.1)
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Electromagnetism without spin,

∂µFµν = −Jν , m
duµ

dτ
= qFµνuν . (A.2)

Hodge star acting on a two-form,

(∗F )µν = 1
2εµνρσF

ρσ . (A.3)

Self-dual and anti-self-dual parts of a two-form,

F± = 1
2(F ∓ i∗F ) =⇒ ∗(F±) = ±i(F±) . (A.4)

We may also use F̃µν = (∗F )µν . If we define A± and Ã by F± = dA± and F̃ = dÃ,

Aµ = A+
µ +A−

µ , Ãµ = i(A+
µ −A−

µ ) . (A.5)

Spinor. We follow the conventions of ref. [8] to a large extent, where |λ⟩ spinors are associated
to incoming negative helicity states. An important difference is that we define

vαα̇ := vµσ
µ
αα̇ , vµ = −1

2(σ̄
µ)α̇αvαα̇ (A.6)

for all vectorial quantities, nullifying the exception for xµ made in ref. [8]. To compare with
references where the metric ηµν and/or the Levi-Civita tensor εµνρσ carry the opposite sign
(e.g. ref. [78]), an invariant way to express conversion between spinor and Lorentz indices
is to introduce the parameters κ0 = η00 and κ1 = ε0123:

pαα̇ = pµσ
µ
αα̇ =

{
κ0|p⟩α[p|α̇ p2 = 0
κ0|pI⟩α[pI |α̇ p2 = κ0m

2 (A.7)

vαα̇w
α̇α = 2κ0(v · w) (A.8)

(σµσ̄νσλσ̄σ)α
α = 2(ηµνηλσ − ηµληνσ + ηµσηνλ − iκ1ε

µνλσ) (A.9)

The invariant tensor satisfies the complex conjugation relation

ϵα̇γ̇ϵβδ
[
σµ

γδ̇

]∗
= σ̄µα̇β (A.10)

which is useful for evaluating complex conjugation of vectors.

Twistor. The two major differences from ref. [8] are

(xα̇α)here = (−2)(xα̇α)there , (µα̇I , µ̄I
α)here = −(µα̇I , µ̄I

α)there . (A.11)

These changes propagate to all other equations. For example, the incidence relations read

µα̇I = 1
2z

α̇βλβ
I , µ̄I

α = 1
2 λ̄Iβ̇ z̄

β̇α , (A.12)

where we define the complex conjugate relations as

z̄µ = [zµ]∗ ⇒ z̄α̇β =
[
zβ̇α

]∗
, µ̄I

α =
[
µα̇I

]∗
, λ̄Iα̇ =

[
λα

I
]∗
. (A.13)
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The defining Poisson brackets are

{xµ, pν} = δµ
ν ⇒ {xα̇α, pββ̇} = −2δα̇

β̇
δα

β ,

{µ̄I
α, λβ

J} = δα
β δ

J
I , {µα̇I , λ̄Jβ̇} = δα̇

β̇
δI

J .
(A.14)

The consistency of the defining brackets can be confirmed from the relations

xα̇α = zα̇α + z̄α̇α

2 , pαα̇ = −λα
I λ̄Iα̇ . (A.15)

To determine the relation between yµ and the spin-length vector aµ = Sµ/m, we note
the Poisson brackets of the rotation generators

{J23, J31} = J12 ⇔ {J1, J2} = J3 (A.16)

and leverage the calculation to demand that

{Sµ, Sν}∗ = (−κ1)εαµνλ (−pα)
m

Sλ ⇔ {aµ, aν}∗ =
κ1
m2 ε

αµνλpαaλ (A.17)

where {•, •}∗ is the Dirac bracket and κ1 = ε0123. The end result is the standard convention
for the orientation of aµ:

{a1, a2}∗ = +a
3

m
. (A.18)

On the twistor side, from the Poisson brackets we find

{zµ, z̄ν} = −2i
m

[
yµvν − ηµν(y · v) + vµyµ + iκ1ε

µναβyαvβ

]
(A.19)

which implies

{yµ, yν} = κ1
m
εµναβyαvβ ⇒ {y1, y2} = −κ1ε

1230 y
3

m
= −y

3

m
. (A.20)

Thus we have to set yµ = −aµ.

B List of integrals

B.1 Master one-loop integral

We compute the Euclidean loop integral (k · v = 0)∫
dDℓE e2ℓE ·a

(ℓ2E)λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3
,

using the identities

1
αλ

= 1
Γ(λ)

∫ ∞

0
dt tλ−1e−αt ,

1
(α− i0+)λ

= iλ

Γ(λ)

∫ ∞

0
dt tλ−1e−i(α−i0+)t .

(B.1)
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After substitution, we have the integral

iλ3

Γ(λ1)Γ(λ2)Γ(λ3)

∫ ∞

0
dt1dt2dt3 t

λ1−1
1 tλ2−1

2 tλ3−1
3 exp

[
− t1t2
t1 + t2

k2 − t23
t1 + t2

v2
]

× exp
[

2t2
t1 + t2

(k · a) + −2it3
t1 + t2

(v · a) + a2

t1 + t2

] ∫
ℓ′E

e−(t1+t2)(ℓ′E)2

where ℓ′E is the shifted loop integration variable. We perform the Gaussian integral and
expand the exponential of the second line. Evaluating the gamma function and beta function
integrals, we get

∫
µ2ϵdDℓE e2ℓE ·a

(ℓ2E)λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3

= iλ3πD/2µ2ϵ

2Γ(λ1)Γ(λ2)Γ(λ3)(k2)λ1+λ2+ λ3
2 −D

2 (v2)
λ3
2

×
∞∑

l,m,n=0

(2k · a)l

(
−2i(v · a)

√
k2

v2

)m

(k2a2)n

l!m!n!
Γ(λ1 + λ2 + λ3

2 − m
2 − n− D

2 )Γ(
λ3+m

2 )
Γ(D − λ1 − λ2 − λ3 + l +m+ 2n)

× Γ
(
D

2 − λ2 −
λ3
2 + m

2 + n

)
Γ
(
D

2 − λ1 −
λ3
2 + l + m

2 + n

)
, (B.2)

where µ2ϵ is the mass scale required for dimensional regularisation D = 3 − 2ϵ. It is easy
to verify that for λ1 = 0 or λ2 = 0 the integral vanishes, and for λ3 = 0 that the integral
localises onto m = 0.18 Setting a = 0 we only keep l = m = n = 0 of the sum, and recover
the Euclidean version of (10.25) of ref. [97]. The divergence of the integral for non-positive
integral values of (λ1 + λ2 + λ3

2 − m
2 − n − D

2 ) ∈ Z≤0 is harmless since the result formally
becomes non-negative integral powers of k2, which vanishes under the impact parameter
space integral

∫
k e

ik·b for bµ ̸= 0. The master integral (B.2) can be viewed as a tensor integral
generating function, e.g. the vector integral can be evaluated as

∫
dDℓE ℓµE e

2ℓE ·a

(ℓ2E)λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3
= 1

2
∂

∂aµ

∫
dDℓE e2ℓE ·a

(ℓ2E)λ1 [(k − ℓE)2]λ2(2v · ℓE − i0+)λ3
.

This can be used to check consistency of (B.2), e.g. vµ ∂
∂aµ ⇔ (λ3 → λ3 − 1). Such consistency

relations could be used to bootstrap tensor integral generating functions [98].
In all the integrals listed in this appendix, we only keep the non-analytic terms in k2

and drop dimensional regularisation artefacts (O(ϵ−1) and O(ϵ)). All log(k2)-dependent
terms of the integrals vanish for time-symmetric i0+ prescription, which is equivalent to
taking the real part of the integrals.

18The value for λ3 = 0 should be understood as a limiting value λ3 → 0, where Γ(λ3/2)
Γ(λ3)

→ 2.
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Special cases: scalar integrals. λ1 = λ2 = 1, λ3 = 2, and D = 3− 2ϵ with extra k2.

k2
∫

dDℓE µ2ϵe2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)2

= π3

2(k2)1/2v2

∞∑
l,m,n=0

Γ(l +m+ n− 1
2)(2k · a)

l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1
2)Γ(n+ 1)Γ(l + 2m+ 2n− 1)

+ iπ2(v · a) log(k2)
2(v2)3/2

∞∑
l,m,n=0

Γ(l +m+ n)(2k · a)l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n)

= π5/2

2(k2)1/2v2

∞∑
l,m=0

Γ(l +m− 1
2)(2k · a)

l(−k2a2)m
2F1(1,−m; 1

2 ;
(v·a)2
v2a2 )

Γ(l + 1)Γ(m+ 1)Γ(l + 2m− 1)

+ iπ2(v · a) log(k2)
2(v2)3/2

∞∑
l,n=0

Γ(l + n)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n

Γ(l + 1)Γ(n+ 1)Γ(l + 2n) . (B.3)

λ1 = λ2 = λ3 = 1 and D = 3 − 2ϵ with extra k2.

k2
∫

dDℓE µ2ϵe2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)

= π3(v · a)(k2)1/2

2v2

∞∑
l,m,n=0

Γ(l +m+ n+ 1
2)(2k · a)

l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 3
2)Γ(n+ 1)Γ(l + 2m+ 2n+ 1)

+ iπ2 log(k2)
2(v2)1/2

∞∑
l,m,n=0

Γ(l +m+ n)(2k · a)l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n)

= π5/2(v · a)(k2)1/2

v2

∞∑
l,m=0

Γ(l +m+ 1
2)(2k · a)

l(−k2a2)m
2F1(1,−m; 3

2 ;
(v·a)2
v2a2 )

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 1)

+ iπ2 log(k2)
2(v2)1/2

∞∑
l,n=0

Γ(l + n)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n

Γ(l + 1)Γ(n+ 1)Γ(l + 2n) . (B.4)

λ1 = λ2 = 1, λ3 = 0, and D = 3.

∫
dDℓE e2ℓE ·a

(ℓ2E)(k − ℓE)2 = π5/2

(k2)1/2

∞∑
l,n=0

Γ(l + n+ 1
2)(2k · a)

l(−k2a2)n

Γ(l + 1)Γ(n+ 1)Γ(l + 2n+ 1) . (B.5)

λ1 = λ2 = 1, λ3 = −1, and D = 3.

∫
dDℓE (2v · ℓE) e2ℓE ·a

(ℓ2E)(k − ℓE)2 = −2π5/2(v · a)(k2)1/2
∞∑

l,m=0

Γ(l +m+ 3
2)(2k · a)

l(−k2a2)m

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 3) . (B.6)
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Special cases: vector integrals. Assume f ·k = f ·v = 0. λ1 = λ2 = λ3 = 1 and D = 3−2ϵ.

∫
dDℓE µ2ϵ(f · ℓE) e2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)

= −π
3(v · a)(f · a)(k2)1/2

2v2

∞∑
l,m,n=0

Γ(l +m+ n+ 3
2)(2k · a)

l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 3
2)Γ(n+ 1)Γ(l + 2m+ 2n+ 3)

− iπ2(f · a) log(k2)
2(v2)1/2

∞∑
l,m,n=0

Γ(l +m+ n+ 1)(2k · a)l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n+ 2)

= −π
5/2(v · a)(f · a)(k2)1/2

v2

∞∑
l,m=0

Γ(l +m+ 3
2)(2k · a)

l(−k2a2)m
2F1(1,−m; 3

2 ;
(v·a)2
v2a2 )

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 3)

− iπ2(f · a) log(k2)
2(v2)1/2

∞∑
l,n=0

Γ(l + n+ 1)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n

Γ(l + 1)Γ(n+ 1)Γ(l + 2n+ 2) . (B.7)

λ1 = λ2 = 1, λ3 = 2, and D = 3 − 2ϵ.

∫
dDℓE µ2ϵ(f · ℓE) e2ℓE ·a

(ℓ2E)(k − ℓE)2(2v · ℓE − i0+)2

= − π3(f · a)
2(k2)1/2v2

∞∑
l,m,n=0

Γ(l +m+ n+ 3
2)(2k · a)

l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1
2)Γ(n+ 1)Γ(l + 2m+ 2n+ 3)

− iπ2(f · a)(v · a) log(k2)
2(v2)3/2

∞∑
l,m,n=0

Γ(l +m+ n+ 1)(2k · a)l
(
k2 (v·a)2

v2

)m
(−k2a2)n

Γ(l + 1)Γ(m+ 1)Γ(n+ 1)Γ(l + 2m+ 2n+ 2)

= −π
5/2(f · a)

2(k2)1/2v2

∞∑
l,m=0

Γ(l +m+ 1
2)(2k · a)

l(−k2a2)m
2F1(1,−m; 1

2 ;
(v·a)2
v2a2 )

Γ(l + 1)Γ(m+ 1)Γ(l + 2m+ 1)

− iπ2(f · a)(v · a) log(k2)
2(v2)3/2

∞∑
l,n=0

Γ(l + n+ 1)(2k · a)l(−k2a2)n
(
1− (v·a)2

a2v2

)n

Γ(l + 1)Γ(n+ 1)Γ(l + 2n+ 2) . (B.8)

B.2 Fourier transform integral

The Fourier transform to impact parameter space is given as

∫
dDkE

(2π)D

ei(kE ·b)

[k2
E ∓ i0+]λ

=
Γ(D

2 − λ)
22λπ

D
2 Γ(λ)

1
(b2 ± i0+)

D
2 −λ

, (B.9)

where we assumed b2 ∈ R and included i0+ prescription for convergence. The i0+ prescription
can be dropped since there is no branch cut ambiguity for Euclidean signature.
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Fourier transforms with numerators can be evaluated using differentiation; kµ
E ↔ −i ∂

∂bµ
.

Repeated numerator factors can be computed as directional derivatives, i.e.

∫
dDkE

(2π)D

(kE · a)lei(kE ·b)

[k2
E ]λ

= l!
∫
dDkE

(2π)D

ei(kE ·[b−ia])

[k2
E ]λ

∣∣∣∣∣
O(al)

=
l!Γ(D

2 − λ)
22λπ

D
2 Γ(λ)

1
[(b− ia)2]

D
2 −λ

∣∣∣∣∣∣
O(al)

=
l!Γ(D

2 − λ)
22λπ

D
2 Γ(λ)

ilC
( D
2 −λ)

l ( (a·b)
(a2b2)1/2 )(a2)l/2

(b2)
D
2 −λ+ l

2
,

(B.10)

where C(λ)
n (x) is the ultraspherical/Gegenbauer polynomial. Differentiation in λ can be used

to compute Fourier transform for logarithms,

∫
dDkE

(2π)D
[k2

E ]λ(kE · a)l log(k2
E)ei(kE ·b) = l! ∂

∂λ

∫
dDkE

(2π)D
[k2

E ]λei(kE ·[b−ia])
∣∣∣∣∣
O(al)

= −
(−4)λλ!Γ(D

2 + λ)Γ(l + 1)
π

D
2

ilC
( D
2 +λ)

l ( (a·b)
(a2b2)1/2 )(a2)l/2

(b2)
D
2 +λ+ l

2
,

(B.11)

where λ ∈ Z≥0 is assumed.

Special cases: aligned spin. Only even powers of l are relevant for the aligned spin
configuration, where a · b = 0. The master integral (B.10) reduces to

∫
dDkE

(2π)D

(kE · a)2lei(kE ·b)

[k2
E ]λ

=
Γ(D

2 − λ)
22λπ

D
2 Γ(λ)

(D
2 − λ)l

(b2)
D
2 −λ

(2l)!
l!

(
a2

b2

)l

, (B.12)

where (a)n is the Pochhammer symbol. For axial scattering we set a · b = ±
√
a2b2, which

leads to

∫
dDkE

(2π)D

(kE · a)2lei(kE ·b)

[k2
E ]λ

= Γ(D + 2l − 2λ)
2D−1π

D−1
2 Γ(λ)Γ(D+1

2 − λ)
1

(b2)
D
2 −λ

(
−a2

b2

)l

. (B.13)

C 2PL computations

C.1 Longitudinal part of the momentum kick

Our goal is to show that the longitudinal part of ∆(2)p
µ
1 agrees with

∆(2)p
µ
1 |iter =

1
2{χ(1), {χ(1), p

µ
1}} = 1

2{χ(1),∆(1)p
µ
1} . (C.1)

Part 1. In the spin-less case, all iteration terms contain δ̄′. That is no longer true when
spin is turned on. Let us first focus on the new terms not containing δ̄′.
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Using the following results as building blocks,

{k · b, ℓ · b} = {k · y, ℓ · y} = ϵ[k, ℓ, y1, v1]
m1

+ ϵ[k, ℓ, y2, v2]
m2

,

{k · b,−ϵµ[ℓ, v1, v2]} = ϵµ[k, ℓ, v2]
m1

+ ϵµ[k, ℓ, v1]
m2

,

{ϵ[k, v1, v2, y], ℓ · b} = ϵ[k, ℓ, y, v2]
m1

+ ϵ[k, ℓ, y, v1]
m2

,

{ϵ[k, v1, v2, y], ℓ · y} = (k · ℓ)
(
v2 · y1
m1

− v1 · y2
m2

)
,

(C.2)

we collect four contributions to (C.1):

Aµ
1 = (iℓµ)γ2

{
cosh(k · y)eik·b, cosh(ℓ · y)eiℓ·b

}
= (iℓµ)γ2{k · y, ℓ · y} sinh(k · y) sinh(ℓ · y)eiq·b

− (iℓµ)γ2{k · b, ℓ · b} cosh(k · y) cosh(ℓ · y)eiq·b ,

(C.3)

Aµ
4 =

{
−iϵ[k, v1, v2, y]

sinh(k · y)
k · y

eik·b,−ϵµ[ℓ, v1, v2] sinh(ℓ · y)eiℓ·b
}

= iϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]{k · y, ℓ · y}
[cosh(k · y)

k · y
− sinh(k · y)

(k · y)2

]
cosh(ℓ · y)eiq·b

− iϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]{k · b, ℓ · b}
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ ϵ[k, v1, v2, y]
(
ϵµ[k, ℓ, v2]

m1
+ ϵµ[k, ℓ, v1]

m2

) sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

−
(
ϵ[k, ℓ, y, v2]

m1
+ ϵ[k, ℓ, y, v1]

m2

)
ϵµ[ℓ, v1, v2]

sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ i(k · ℓ)
(
v2 · y1
m1

− v1 · y2
m2

)
ϵµ[ℓ, v1, v2]

sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

(C.4)

Aµ
2 = γ

{
cosh(k · y)eik·b,−ϵµ[ℓ, v1, v2] sinh(ℓ · y)eiℓ·b

}
= −γ ϵµ[ℓ, v1, v2]{k · y, ℓ · y} sinh(k · y) cosh(ℓ · y)eiq·b

+ γ ϵµ[ℓ, v1, v2]{k · b, ℓ · b} cosh(k · y) sinh(ℓ · y)eiq·b

+ iγ

(
ϵµ[k, ℓ, v2]

m1
+ ϵµ[k, ℓ, v1]

m2

)
cosh(k · y) sinh(ℓ · y)eiq·b ,

(C.5)

Aµ
3 = (iℓµ)γ

{
−iϵ[k, v1, v2, y]

sinh(k · y)
k · y

eik·b, cosh(ℓ · y)eiℓ·b
}

= γ ℓµϵ[k, v1, v2, y]{k · y, ℓ · y}
[cosh(k · y)

k · y
− sinh(k · y)

(k · y)2

]
sinh(ℓ · y)eiq·b

− γ ℓµϵ[k, v1, v2, y]{k · b, ℓ · b}
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b

+ γ ℓµ(k · ℓ)
(
v2 · y1
m1

− v1 · y2
m2

) sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ iγ ℓµ
(
ϵ[k, ℓ, y, v2]

m1
+ ϵ[k, ℓ, y, v1]

m2

) sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

(C.6)
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As usual, we may work in the probe limit (m1/m2 → 0), where we get

m1A
µ
1 = −(iℓµ)γ2ϵ[k, ℓ, y1, v1] cosh[(k − ℓ) · y]eiq·b ,

m1A
µ
4 = −iϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]ϵ[k, ℓ, y1, v1]

sinh(k · y)
(k · y)2 cosh(ℓ · y)eiq·b

+ iϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]ϵ[k, ℓ, y1, v1]
cosh[(k − ℓ) · y]

k · y
eiq·b

+ ϵ[k, v1, v2, y]ϵµ[k, ℓ, v2]
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

− ϵ[k, ℓ, y, v2]ϵµ[ℓ, v1, v2]
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ i(k · ℓ)(v2 · y1)ϵµ[ℓ, v1, v2]
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

(C.7)

m1A
µ
2 = −γ ϵµ[ℓ, v1, v2]ϵ[k, ℓ, y1, v1] sinh[(k − ℓ) · y]eiq·b

+ iγϵµ[k, ℓ, v2] cosh(k · y) sinh(ℓ · y)eiq·b ,

m1A
µ
3 = −γ ℓµϵ[k, v1, v2, y]ϵ[k, ℓ, y1, v1]

sinh(k · y)
(k · y)2 sinh(ℓ · y)eiq·b

− γ ℓµϵ[k, v1, v2, y]ϵ[k, ℓ, y1, v1]
sinh[(k − ℓ) · y]

k · y
eiq·b

+ γ ℓµ(k · ℓ)(v2 · y1)
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

+ iγ ℓµϵ[k, ℓ, y, v2]
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b .

(C.8)

We can simplify Aµ
2 a bit and write

m1A
µ
2 = −γ ℓµ(k · ℓ)(v2 · y1) sinh[(k − ℓ) · y]eiq·b

+ iγϵµ[k, ℓ, v2] cosh(k · y) sinh(ℓ · y)eiq·b ,
(C.9)

Next, using (3.51), we try to remove (k · y) factors in the denominators of Aµ
3 and Aµ

4 :

m1A
µ
3 = −γ ℓµ(k · ℓ)(v2 · y1) sinh[(k − ℓ) · y]eiq·b

+ iγ ℓµϵ[k, ℓ, y, v2]
sinh(k · y)
k · y

cosh(ℓ · y)eiq·b ,

m1A
µ
4 = (iℓµ)(v2 · y1)ϵ[k, ℓ, v1, v2] cosh[(k − ℓ) · y]eiq·b

+ ϵ[k, v1, v2, y]ϵµ[k, ℓ, v2]
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b

− ϵ[k, ℓ, y, v2]ϵµ[ℓ, v1, v2]
sinh(k · y)
k · y

sinh(ℓ · y)eiq·b .

(C.10)

We have enumerated all terms not containing δ̄′. Now we split them into two parts: the
“y-part” and the “v-part”. The former is linear in y1 while the latter (marked red in the
equations above) is independent of y1. The k · y factor in the denominator is to be cancelled
against an ϵ[·, ·, ·, y] factor in the numerator.
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The y-part gives fairly simple expressions:

m1A
µ
1+4|y = (iℓµ)(−γ2ϵ[k, ℓ, y1, v1] + (v2 · y)ϵ[k, ℓ, v1, v2]) cosh[(k − ℓ) · y]eiq·b ,

m1A
µ
2+3|y = (iℓµ)(2iγ)(v2 · y1)(k · ℓ) sinh[(k − ℓ) · y]eiq·b .

(C.11)

There agree perfectly with the longitudinal part of (3.57), (3.59) in the main text.

Part 2. The v-part is more involved, as it gets combined with the δ̄′ terms. In the probe
limit, the δ̄′ factor comes from

{
eik·bδ̄(k · v1), eiℓ·bδ̄(ℓ · v1)

}
→ i(k · ℓ)e

iq·b

m1

[
δ̄(k · v1)δ̄′(ℓ · v1)− δ̄′(k · v1)δ̄(ℓ · v1)

]
= i(k · ℓ)e

iq·b

m1
δ̄(q · v1)δ̄′(ℓ · v1) .

(C.12)

This factor is to be multiplied by

Bµ =
[
γ cosh(k · y)− iϵ[k, v1, v2, y]

sinh(k · y)
k · y

]
× [(iℓµ)γ cosh(ℓ · y)− ϵµ[ℓ, v1, v2] sinh(ℓ · y)]

= Bµ
1 +Bµ

2 +Bµ
3 +Bµ

4 ,

(C.13)

where

Bµ
1 = (iℓµ)γ2 cosh(k · y) cosh(ℓ · y) ,

Bµ
4 = iϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]

sinh(k · y)
k · y

sinh(ℓ · y) ,

Bµ
2 = −γϵµ[ℓ, v1, v2] cosh(k · y) sinh(ℓ · y) ,

Bµ
3 = γℓµϵ[k, v1, v2, y]

sinh(k · y)
k · y

cosh(ℓ · y) .

(C.14)

Multiplying them by i(k · ℓ), and hiding eiq·bδ̄(q · v1)δ̄′(ℓ · v1) for now, we get

Dµ
1 = −ℓµγ2(k · ℓ) cosh(k · y) cosh(ℓ · y) ,

Dµ
4 = −(k · ℓ)ϵ[k, v1, v2, y]ϵµ[ℓ, v1, v2]

sinh(k · y)
k · y

sinh(ℓ · y) ,

Dµ
2 = −iγ(k · ℓ)ϵµ[ℓ, v1, v2] cosh(k · y) sinh(ℓ · y) ,

Dµ
3 = iγℓµ(k · ℓ)ϵ[k, v1, v2, y]

sinh(k · y)
k · y

cosh(ℓ · y) .

(C.15)

Now, we bring the red colored terms from (C.9) and (C.10) and apply the identity

δ(x) = −xδ′(x) . (C.16)
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After pulling out some overall factor, we record the results as

Cµ
1 = 0 ,

Cµ
4 = −(ℓ · v1)ϵ[k, v1, v2, y]ϵµ[k, ℓ, v2]

sinh(k · y)
k · y

sinh(ℓ · y)

− (k · v1)ϵ[k, ℓ, y, v2]ϵµ[ℓ, v1, v2]
sinh(k · y)
k · y

sinh(ℓ · y) ,

Cµ
2 = −iγ(ℓ · v1)ϵµ[k, ℓ, v2] cosh(k · y) sinh(ℓ · y) ,

Cµ
3 = +iγ(k · v1)ℓµϵ[k, ℓ, y, v2]

sinh(k · y)
k · y

cosh(ℓ · y) .

(C.17)

For Cµ
3 and the second line of Cµ

4 , we used δ̄(k · v1 + ℓ · v1) to replace (ℓ · v1) by −(k · v1).
Merging all the C-terms and the D-terms, we obtain the final result in perfect agreement
with the longitudinal part of ∆(2v)p

µ in (3.60), (3.61) in the main text.

C.2 Transverse part of the spin kick

In section 3.2.2 of the main text, we showed how to compute the 2PL spin kick. In this
appendix, we give some details of the computation and confirm that the transverse part of
the spin kick agrees with the eikonal formula,

{χ(n), y
µ
1 } = 1

m1

[
vµ

1 y
ν
1
∂

∂xν
1
+ ϵµν [v1, y1]

∂

∂yν
1

]
χ(n) . (C.18)

We begin with the overall structure of the 2PL spin kick (3.68):

∆(2)y
µ
1 = (q1q2)2

m2
1

∫
q⊥

eiq·b
∫

ℓ

δ̄(v2 · ℓ)
k2ℓ2(ik · v1 + 0+)2N

µ . (C.19)

The numerator N µ can be computed separately for each term in (3.67). For (a) and (b)
terms, we also distinguish the same/opposite helicity contributions.

N µ
(2ao) = (ch⊟ Cao + sh⊟ Sao)µ , N µ

(2as) = (ch⊞ Cas + sh⊞ Sas)µ ,

N µ
(2bo) = (ch⊟ Cbo + sh⊟ Sbo)µ , N µ

(2bs) = (ch⊞ Cbs + sh⊞ Sbs)µ ,

N µ
(2c) = (ch⊟ Cc + sh⊟ Sc)µ , N µ

(2d) = (ch⊟ Cd + sh⊟ Sd)µ ,

(C.20)

The same helicity terms are

Cµ
as = 1

2(ik · v1) [kµ(ℓ · y1)− ℓµ(k · y1)− yµ
1 (k · ℓ)] , Sµ

as = i

2(ik · v1)ϵµ[k, ℓ, y1] ,

Cµ
bs = i

2 [ℓµ(v2 · y1)− vµ
2 (ℓ · y1)] γ(k · ℓ) +

i

2ϵ
µ[ℓ, v2, y1]ϵ[k, ℓ, v1, v2] ,

Sµ
bs = 1

2 [ℓµ(v2 · y1)− vµ
2 (ℓ · y1)] ϵ[k, ℓ, v1, v2]−

1
2ϵ

µ[ℓ, v2, y1]γ(k · ℓ) .

(C.21)
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Among the opposite helicity terms, (a) and (b) terms are linear in y1:

Cµ
ao = 1

2(ik · v1) [−kµ(ℓ · y1)− ℓµ(k · y1) + yµ
1 (k · ℓ) + 2vµ

2 (v2 · y1)(k · ℓ)] ,

Sµ
ao = i

2(ik · v1) [vµ
2 ϵ[k, ℓ, y1, v2] + ϵµ[k, ℓ, v2](v2 · y1)] ,

Cµ
bo = i

2 [ℓµ(v2 · y1)− vµ
2 (ℓ · y1)] γ(k · ℓ)−

i

2ϵ
µ[ℓ, v2, y1]ϵ[k, ℓ, v1, v2] ,

Sµ
bo = 1

2 [ℓµ(v2 · y1)− vµ
2 (ℓ · y1)] ϵ[k, ℓ, v1, v2] +

1
2ϵ

µ[ℓ, v2, y1]γ(k · ℓ) ,

(C.22)

whereas (c), (d) terms are quadratic in y1:

Cµ
c = (ik · v1)i [[ℓµ(v2 · y1)− vµ

2 (ℓ · y1)] ϵ[k, ℓ, y1, v2]− ϵµ[ℓ, v2, y1](k · ℓ)(v2 · y1)] ,
Sµ

c = (ik · v1) [[ℓµ(v2 · y1)− vµ
2 (ℓ · y1)] (k · ℓ)(v2 · y1)− ϵµ[ℓ, v2, y1]ϵ[k, ℓ, v2, y1]] ,

Cµ
d = (ik · v1)2 [(ℓ · v1)(v2 · y1) + γ(ℓ · y1)] ϵµ[k, v2, y1]

+ (ik · v1)2ϵ[ℓ, v1, v2, y1] [kµ(v2 · y1)− vµ
2 (k · y1)] ,

Sµ
d = (ik · v1)2i [(ℓ · v1)(v2 · y1) + γ(ℓ · y1)] [kµ(v2 · y1)− vµ

2 (k · y1)]
− (ik · v1)2iϵ[ℓ, v1, v2, y1]ϵµ[k, v2, y1] .

(C.23)

Same helicity sector. The 2PL eikonal (3.65) contains a single term in the same helicity
sector, so its contribution to the spin kick should be also quite simple. Indeed, after a
lot of cancellations, we get

Cµ
as + Cµ

bs = − i

2(k · ℓ) [v
µ
1 (ℓ · y1)− yµ

1 (ℓ · v1)] ,

Sµ
as + Sµ

bs = −1
2(k · ℓ)ϵ

µ[v1, y1, ℓ] .
(C.24)

Not all terms contribute to the transverse part; ∆(2)y
µ|tr should be orthogonal to yµ

1 . The
non-orthogonal term, marked red in the equation above, is projected out upon symmetrisation
under the exchange operation k ↔ ℓ,

(ℓ · v1)(k · ℓ) cosh⊞ → (q · v1)(k · ℓ) cosh⊞ = 0 . (C.25)

The equality hold in the (q⊥) integral. What is left after the symmetrisation is

Cµ
as+bs|tr = − i

2(k · ℓ)v
µ
1 (ℓ · y1) , Sµ

as+bs|tr = −1
2(k · ℓ)ϵ

µ[v1, y1, ℓ] . (C.26)

These match the expectation from the 2PL eikonal (C.18) perfectly.

Opposite helicity sector. We treat the (a)-(b) group and the (c)-(d) group separately.
In the (a)-(b) group, partial cancellations leave us with

Cµ
ao + Cµ

bo = i(k · ℓ)γ [ℓµ(v2 · y1)− vµ
2 (ℓ · y1)] +

i

2(k · ℓ)v
µ
1 (ℓ · y1)

+ iℓµ(ℓ · v1)(k · y1)−
i

2(k · ℓ)(ℓ · v1) [2vµ
2 (v2 · y1) + yµ

1 ] ,

Sµ
ao + Sµ

bo = [ℓµ(v2 · y1)− vµ
2 (ℓ · y1)] ϵ[k, ℓ, v1, v2] +

1
2(k · ℓ)ϵ

µ[ℓ, v1, y1]

+ vµ
2 (ℓ · v1)ϵ[k, ℓ, y1, v2] .

(C.27)
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Again, the non-orthogonal terms, marked red in the equations above, are projected out upon
symmetrisation under the exchange k ↔ ℓ. We are left with

Cµ
ao+bo|tr = i(k · ℓ)γ [qµ(v2 · y1)− vµ

2 (q · y1)] +
i

2(k · ℓ)v
µ
1 (q · y1)

+ i

2[(k − ℓ) · v1] [kµ(ℓ · y1)− ℓµ(k · y1)] ,

Sµ
ao+bo|tr = [qµ(v2 · y1)− vµ

2 (q · y1)] ϵ[k, ℓ, v1, v2]−
1
2(k · ℓ)ϵ

µ[k − ℓ, v1, y1] .

(C.28)

On the other hand, the transverse spin kick derived from the eikonal by (C.18) contains

Cµ
χ |tr = i(q · y1)vµ

1

[
−(γ2 − 1/2)(k · ℓ) + (k · v1)(ℓ · v1)

]
+ iγϵµ[k − ℓ, v1, y1]ϵ[k, ℓ, v1, v2]

− i[(k − ℓ) · v1]ϵµ[v1, v2, y1]ϵ[k, ℓ, v1, v2]−
i

2[(k − ℓ) · v1]ϵµν [v1, y1]ϵν [k, ℓ, v1] ,

Sµ
χ |tr = −vµ

1 (q · y1)γϵ[k, ℓ, v1, v2]
− (γ2 − 1/2)(k · ℓ)ϵµ[k − ℓ, v1, y1] + γ[(k − ℓ) · v1](k · ℓ)ϵµ[v1, v2, y1] .

(C.29)

Despite appearances, things do match as expected,

Cµ
ao+bo|tr = Cµ

χ |tr . Sµ
ao+bo|tr = Sµ

χ |tr . (C.30)

We can repeat the same exercise for the (c)-(d) group. The computations are even
lengthier and not particularly illuminating, so we omit the details here.

D Regularisation for the product of time-symmetric Green’s functions

The usual time-symmetric i0+ prescription for ω−2 propagators is
1
2

( 1
(ω + i0+)2 + 1

(ω − i0+)2

)
⇔ −1

2 |σ| , (D.1)

where we use the positive frequency expansion f(σ) =
∫

ω f(ω)e−iωσ. The square of the
time-symmetric ω−1 propagator is given as[1

2

( 1
ω + i0+ + 1

ω − i0+

)]2
⇔ −1

4 |σ|+
e−0+×|σ|

40+ = 1
40+ − 1

2 |σ|+O[(0+)1] , (D.2)

where we expanded the expression as a Laurent series in the regulator 0+ and kept up
to O[(0+)0] terms. Employing the “minimal subtraction” scheme for the regulator 0+, we
throw out the divergent term in 0+ and conclude that the propagators (D.1) and (D.2) are
equivalent as distributions.

The reason (D.2) has a divergent contribution compared to (D.1) is because it should be
understood as the convolution of the time-symmetric ω−1 propagator in the time domain,

1
2

( 1
ω + i0+ + 1

ω − i0+

)
⇔ − i

2sgn(σ) , (D.3)

where sgn(σ) is the sign function. Unlike the retarded/advanced Green’s functions given by
the Heaviside step function, the convolution of (D.3) with itself diverges due to the “infinite
volume” of the real line, which manifests itself as the (0+)−1 divergence in (D.2).
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